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GENERAL PREFACE

This monograph was written for the Conference on the New Instructional

Materials in Physics, held at the University of Washington in the sum-

mer of 1965. The general purpose of the conference was to create effec-

tive ways of presenting physics to college students who are not pre-

paring to become professional physicists. Such an audience might include

prospective secondary school physics teachers, prospective practitioners

of other sciences, and those who wish tc 1c2rn physics as one component

of a liberal education.

At the Conference some 40 physicists and 12 filmmakers and design-

ers worked for periods ranging from four to nine weeks. The central

task, certainly the one in which most physicists participated, was the

writing of monographs.

Although there was no consensus on a single approach, many writers

felt that their presentations ought to put more than the customary

emphasis on physical insight and synthesis. Moreover, the treatment was

to be "multi - level" --- that is, oach monograph would consist of sov-

eral sections arranged in increasing order of sophistication. Such

papers, it was hoped, could be readily introduced into existing courses

or provide the basis for new kinds of courses.

Monographs were written in four content areas: Forces and Fields,

Quantum Mechanics, Thermal and Statistical Physics, and the Structure

and Properties of Matter. Topic selections and general outlines were

only loosely coordinated within each area in order to leave authors

free to invent new approaches. In point of fact, however, a number of

monographs do relate to others in complementEry ways, a resJlt of their

authors' close, informal interaction.

Because of stringent tim^ limitations, few of the monographs have

been completed, and none has been extensively rewritten. Indeed, most

writers feel that they are barely more than clean first drafts. Yet,

because of the highly experimental nature of tLe undertaking, it is

essential that these manuscripts be made available for careful review



by other physicists and for trial use with students. Much effort,

therefore, has gone Into publishing them in a readable format intended

to facilitate serious consideration.

So many people have contributed to the project that complete

acknowledgement is not possible. The National Science Fcundation sup-

ported the Conference. The staff of the Commission on College Physics,

led by E. Leonard Jossem, and that of the University of Washington

physics department, led by Ronald Geballe and Ernest M. Henley, car-

ried the heavy burden of organization. Walter C. Michels, Lyman G.

Parratt, and George M. Wolkoff read and criticized manuscripts at a

critical stage in the writing. Judith Bregman, Edward Gerjuoy, Ernest

M. Henley, and Lawrence Wilets read manuscripts editorially. Martha

Ellis and Margery Lang did the technical editing; Ann Widditsch

supervised the initial typing and assembled the final drafts. James

Grunbaum designed the format and, assisted in Seattle by Roselyn Pape,

directed the art preparation. Richard A. Mould has helped in all phases

of readying manuscripts for the printer. Finally, and crucially, Jay F.

Wilson, of the D. Van Nostrand Company, served as Managing Editor. For

the hard work and steadfast support of all these persons and many

others, I am deeply grateful.

Edward D. Lambe
Chairmna, Panel on the
New Instructional Materials
Commission on College Physics



CIRCULATION LAWS AND THEIR CONSEQUENCES

PREFACE

This fragmentary and rxelimina%y mate-
rial fits into an outline of 'multi-
level monographs" covering nose as-
pects of electromagnetism which in our
view an undergraduate physics major
should come to know best The approach
is phenomenological ald macroscopic,
designed to take adviiv°!age of prior
experience; we begin Magnetostatics
with magnets, for example. The material
is planned on two levels to lead
through the four fuhdamental empirical
laws of electricity and magnetism to
electromagnetic radiation as a climax.
The propagation of electromagnetic dis-
turbances with velocity c, reached in
the "first course" material without
use of the calculus and equivalent to
the homogeneous wave equation, was
written in an elementary way by Oliver
Heaviside (Electromagnetic Theor-,
London, Henn, Vol. III, p. 3), but only
recently has appeared in the 'regular
pedagogical literature. In our treat-

ment we have tried to stress the physi-
cL1 foundations of Maxwell's groat syn-
thesis, stating in words the argument
corresponding to each mathematical
step. This results in a considerably
larger proportion of expository writ-
ing relative to mathematics than is
customarily found in derivztions of
the wave equation from Maxwell's equa-
tions in their usual form. On the
other hand, expression of the laws in
differential form seems essential for
tracing radiation to its sources in a
physically meaningful way; the present
Chapter 3 of Magnetostatics could be
followed almost immediately by Chap-
ter 5 of Monograph III, which would
trace radiation fields to retardation
effects. We regret having not suffi-
cient time to write such a chapter, as
well as the omission of wha should
have been Chapter 3 of Magnetostatics,
an elementary tre'tment of magnetic
materials.

OUTLINE OF MONOGRAPHS ON ELECTRICITY AND MAGNETISM

I. ELECTROSTATICS II. MAGNETOSTATICS
III. CIRCULATION LAWS

AND THEIR
CONSEQUENCES

FIRST

COURSE

MATERIAL

1. Electric Forces

and Fields

2. Electric Ew.,rgy
and Potential

. Electrical ?roper-
ties of Matter

. Magnets and
Magnetism

Interaction of
Steady Currents

*Magnetic Proper-
ties of Matter

1. Faraday's La', of
Induction

2. Ampere's Law
Modified

3. Propagation of
Electromagnetic
Disturbances

UPPER

DIVISION

COURSE

MATERIAL

*4. Electrostatics
Reformulated

3. Magnetostatics
Reformulated

*Maxwell's Equa-
tions and Plane
Waves

*Radiation Fields

*No textual material was prepared in the summer of 1965 for these chapters.



We have assumed ao knowledge of
special relativity, but have empha-
sized the necessity for choosing a
frame of reference in which to define
electric and magnetic field quantities,
thus laying a foundation for the his-
torical development of relativity the-
ory. Unlike mechanics, vacuum electro-
dynamics needs no modification because
of special relativity except in inter-
pretation, so that an excursion into
relativity theory could be made before
or after study of the present material.

The experiments leading to the
four fundamental laws Ire described at
sNlie length, but in use this material
should be accompanied by demonstrations
and laboratory work. The basic experi-
ments should come to be a part of genu-
ine experience for students, but a lab-
oratory monograph should be written as
an extension of the present outline.
Ohm's law and circuitry, for example,
do not play an appreciable role in any
other projected booklets. We cannot
overemphasize the importance of labor-
atory work, although we were not able

Sections 1.4 through 1.7 can be
omitted without losing the line of the
argument leading to the propagation of
electromagnetic waves. Nothing in
Chapters 2 and 3 depends explicitly on
the development in these sections.

I had hoped to complete two addi-
tional sections: Experimental Confirm-
ation and Reference Frames. These would
have appeared at the end of Chapter 3.
The first would have described the ex-
perimenis confirming Maxwell's predic-
tions about the propagation of electro-
magnetic waves. The second would have
described the interplay of qE and
qv x B forces as we transform from one R. T. Mara

to undertake detailed consideration of
its content.

We assume that students will have
studied mechanics, that they know New-
ton's laws, the definition of work,
the meaning of the 2; symbol, and have
a working knowledge of elementary vec-
tor algebra before our material is in-
troduced. (We do define the vector
cross product as if for the first
time.) In the material designed for
upperclass work we assume calculus.
All vector calculus is developed as
needed, but we attempt throughout to
stress the physics, not the mathemat-
ics, and attempt no mathematical rigor.

The first chapters of Monographs
I, II, and III should be studied in
that order. The few discussion exer-
cises we include can only indicate a
type of problem we consider desirable.
Numerical problems, which we have made
no effort to provide, are also neces-
sary.

R. T. Mara
M. Phillips

inertial frame to another, and it
would have exhibited the difficulties
inherent in applying Galilean relativ-
ity to Maxwell's equations. While I
had no intention of introducing spe-
cial relativity in any detail, this
seemed the ideal place at which to set
the stage. In any case, students should
not be left with the impression that
everything they learned about transfor-
mations in the context of Newtonian
mechanics can be carried over to elec-
tromagnetic theory.
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1 FARADAY'S LAW

1.1 FARADAY'S DISCOVERY

Michael Faraday knew about Am-
pere's work, so he knew that a magnetic
field accompanies a current. The mono-
graph Magnetostatics gives a thorough
discussion of the relationship between
magnetic fields and currents. In math-
ematical terms,

110

L-1

x
47T r2

where B is the magnetic induction field
at a point P (see Fig. 1.1), I is the
steady current in tk,e element of length
As along the circuit and 6s is in the
direction of that current, r is the dis-
distance between As a' d the field point
P, and f is a unit vector pointing froma toward P.

There is a circulation law closely
associated with Eq. (1.1).

r;
L-4

s closed
a po I po 3 Ag.

S
(1.2)

This says that the circulation of IT is
proportional to the net charge that
passes per second through any surface
S bounded by the circulation path s.
There is a convention that relates the
sense in which 46; is taken as positive

around the circulation path and the
direction in which AS and hence I is
to be considered positive. This con-
vention is illustrated in Fig. 1.2.

The monograph Magnetostatics con-
siders B only in cases for which the
field point is in empty space, outside
of matter, and Eqs. (1.1) and (1.2)
are valid only for such cases. We shall
also study fields in empty space in
this monograph.

While Faraday did not have the
mathematical conception of Ampere's
work that appears in Eqs. (1.1) and
(1.2), he understood the physics con-

1
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tained in those equations. And he had
a strong hunch that there was more to
the story. T- understand Faraday's lan-
guage and hence something of the way he
thought, we quote the first paragraph
of a paper he presented to the Royal
Society in 1831.

1. The power which electricity of
tension (electrostatic charge) pos-
sesses of causing an .pposite elec-
trical state in its vicinity has
been expressed by the general term
Induction; which, as it has been

Fig. 1.1 The quantities appearing in
Eq. (1.1) describing the vector iff at the
field point P. Only a part of the complete
circuit is shown.

Fig. 1.2 The right-handed convention re-
relating the sense of as' and the direction
of a for Ampere's circulation law.



2 CIRCULATION LAWS AND THEIR CONSEQUENCES

received into scientific language,
may also, with propriety, be used

in the same general sense to ex-
press the power which electrical
currents may possess of inducing
any particular state upon matter in

their immediate neighborhood, other-
wise indifferent. It is with this
meaning that I purpose using it in

the present paper.'

In much the same sense that he

imagines static charge induces oppo-
site charges in nearby conductors,
Faraday sees a current inducing a mag-
netic field in its neighborhood. Fara-

day continues in the same paper.

2. Certain effects ol the induc-

tion of electrical currents have al-

ready been recognized and described:
as those of magnetization; . .

Still appeared unlikely that
these could be all the effects which

induction by currents could produce;
especially as, upon dispensing with
iron, almost the whole of them dis-

appear, whilst yet an infinity of

bodies, exhibiting definite phenom-

ena of induction with electricity of

tension, still remain to be acted

upon by the induction of electricity

in motion.
3. Further: Whether Ampere's

beautiful theory were adopted, or

any other, or whatever reservation

were mentally made, still it ap-

peared very extraordinary, that as

every electric current was accom-

panied by a corresponding intensity

of magnetic action at right angles

to the current, good conductors of

electricity, when placed within the

sphere of this action, should not
have any current induced through

them, or some sensible effect pro-

'Quoted from Faraday's Experiment,1 Researches

in Electricity, Vol. I, which is the first of

thrce volumes in which are collected all the pa-

pers Faraday published in the Philosophical,

Transactions in the years 1831-1838 (Richard and

John Edward Taylor, London, 1830.

duced equivalent in force to such

current.
4. These considerations, with

their consequences, the hope of ob-
taining electricity from ordinary
magnetism, have stimulated me at
various times to investigate exper-
imentally the inductive effect of

electric currents. . .

Faraday apparently felt deeply
that a current in one conductor should

do something tc n nearby conductor.

And paragraph 4 above seems to indi-

cate Faraday's hunch that if magnetita

could result from a current, then, in

some way or other, current should be

obtainable from magnetism. His view-

point is at least partly evident in

experiments he performed as early as

1824. He passed a magnet through a con-

ducting helix but noted no effect from

doing it. He passed a current through

one wire but found nothing in a nearby

wire. Then, in ten days of experimen-
tation, starting AAgust 29, 1831, and
ending November 4, 1831, Faraday found

what he.was after, although not really

what he had expected. On November 24,

he read his famous paper to the Royal

Society, and the quotations above are
taken from that paper.

In that short span Faraday discov-

ered j.Ast about every way possible to

induce current in conductors, and he

formulated a law that accounted for all

of them. That work is the basis. for all

modern electric power,, from the giant

turbines, at power stations to the mo-

tors that drive lathes and drill

presses. We do not intend to cover all

the work Faraday reported in even that

first paper. In any case,. no one is

likely to improve on Faraday's own re-

port, so James Clerk Maxwell's advice

is good,

I would recommend the student,

after he has learned, experimentally

if possible, what are the phenomena

to be observed, to read carefully

Faraday's Experimental Researches

in Electricit1. He will there find

a strictly contomporary historical
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account of some of the greatest
electrical discoveries and investi-
gations, carried on in an order and
succession which could hardly have
been improved if the results had
been known from the first, and ex-
pressed in the language of a man
who devoted much of his attention
to the methods of accurately de-
scribing scientific operations and
their results.2

In his laboratory notebook Fara-
day recorded what is apparently the
first experiment exhibiting the effect
that now carries his name.

I have had an iron ring made
(soft iron), iron rotnd and 7/8ths
of an inch thick, and ri-tg six inch
inches in external diameter. Wound
many coils of copper round, one half
of the coils being separated by
twine and calico; there were three

_ lengths of wire, each about twenty-
four feet long, and they could be
connected as one length or used as
separate lengths. By trials with a
trough each was insulated-from the
other. Will call this side of ring
A. On the other side, but separated
by an interval, was wound wire in
two pieces, together amounting to
about sixty feet in length, the di-
rection being as with the former
coils. This side call B.

Charged a battery of ten pairs
of plates four inches square. Made
the coil on B side one coil, and
connected its extremities by a cop-
per passing to a distance, and just
over a magnetic needle (three feet
from wire ring), then connected the
ends of one of the pieces on A side
with battery: immediately a sensible
effect on needle. It oscillated and
settled at last in original posi-

=Quoted from the Preface to the First Edition of
James Clark Maxwell's A Treatise on Electricity
and Magnetism, Vol. I, 3rd edition, 1891, repub-
lished by Dover Publicatit s, Inc., New York

(1954).

tion. On breaking connection on A
side of battery, again a disturbance
of the needle .3

Figure 1.3 (see next page) shows
Faraday's setup. It is not difficult
to depict,.given the clear account in
the notebook. The important thing Fara-
day describes is that the magnetic
needle is disturbed only at the in-
stant the contact to the battery is
made or broken; in between it settles
down, even though there is current in A.

While this was likely the first
experiment in which Faraday got a no-
ticeable effect, it is not the first
he describes in his paper. There he
describes his results, -'not as they

were obtained, but in such a manner as
to give the most concise view of the
whole." We shall select a few of his
experiments to explore in this chapter,
but we shall not return to the one al-
ready described. For our purposes here,
the iron ring is just a complication.
When you have learned something about
fields in magnetic materials, you will
understand why the effect is consider-
ably stronger with the iron present,
and then you can make reasonable con-
jectures about why Faraday first no-
ticed it this way. The first experi-
ment Faraday described in his paper is
equivalent to the one pictured in Fig.
1.3, but there is no iron present. Fig-
ure 1.4 (see next page) pictures the way
Faraday's worktable might have been ar-
ranged when he performed this experi-

ment.
He wound copper wire around a

wooden cylinder, and Le wound thread
at the same time to keep successive
t:urns of wire separated. He covered
this layer with cloth, and wound a
second layer of wire and thread on top
of the first. He continued until he
had a total of twelve windings, each
wound in the sane sense. He then con-
nected the ends of the first, third,
fifth, etc., windings to make a single

3Quoted from Tho Life and Letters of Faraday,

Vol. II, 2nd edition, revised by Bence Jones;
Longman, Green, and Co. (1870).
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MAGNETIC
NEEDLE

Fig. 1.3 'he experimental setup

GALVANOMETER

when Faraday first noticed an induction effect.

BATTERY

STEEL
NEEDLE

WIRE WOUND ON
WOOD CYLINDER

Fig. 1.4 Faraday's arrangement for detecting induced currents.

conductor. He did the same with the
second, fourth, sixth, etc. In this
way "two principal helices were pro-
duced, closely interposed, having the
same direction, not touching anywhere,
and each cont:=ining one hundred and
fifty-five feet In length of wire."

He connected one principal helix
across a galvanometer and the other
across "a voltaic battery of ten pairs
of plates four inches square, with dou-
ble coppers and well charged; yet not
the slightest sensible deflection of
tho galvanometer needle could be ob-

served." He did the same thing with
other metals used for the wire. No dif-
ference. He then made a bigger version
of the whole affair. He increased the
lengta of wire in each principal helix
to two hundred feet and the battery to
"one hundred pairs of plates four
inches square, with double coppers,
and well charged." This time something
did happen.

When the contact was made, there
was a sudden and very slight effect
at the galvanometer, and there was
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THE PRIMARY CIRCUIT THE PRIMARY CIRCUIT
HAS JUST BEEN CLOSED REMAINS CLOSED

THE PRIMARY CIRCUIT
HAS JUST BEEN BROKEN

Fig. 1.5 Changing the current in a nearby circuit can induce a current.

also a similar slight effect when
the contact with the battery was
broken. But whilst the voltaic cur-
rent was continuing to pass through
the one helix, no galvanometer ap-
pearances nor any effect like induc-
tion upon the other helix could be
perceived, . . . .

Faraday was certain that the same
effect must have been present when he
had used the smaller coils and weaker
battery. He suspected that his galvan-
ometer was simply not sensitive enough
to detect it, so he devised an ingeni-
ous substitute for the galvanometer.
He wound a coil around a glass tube
and placed a steel needle inside the
tube (see Fig. 1.4). If a current
passes through that coil, then there
will be a magnetic field inside the
tube that will magnetize the needle.
He substituted this arrangement for the
galvanometer and repeated the experi-
ment.

With the needle originally unmag-
netized, he made the connection to the
battery in the primary circuit. Before
breaking that connection he pulled out
the needle and found it to be magnet-
ized. Now he put a second, unmagnetized
needle into the tube and then broke the
primary circuit. The second needle was
also magnetized, but its polarity was

the reverse of that found in the first
needle.

When he put in an unmagnetized
needle before closing the primary cir-
cuit and left it in until after that
circuit was broken, he found "little
or no magnetism." When he closed the
primary circuit before putting the
needle in the tube, and then removed
the needle before breaking that cir-
cuit, he found no magnetism in the
needle.

These results can be explained
only on the basis that the current in
the induced, or secondary, circuit is
in one direction for a short time when
the primary has just been closed and
in the opposite direction for a short
time when the primary has just been
broken, and that there is no current
in the secondary during the interven-
ing time. That is, current appears in
the secondary only when the current in
the primary is changing.

Further, Faraday discovered that
'The [galvanometer] deflection on mak-
ing a battery contact always indicated
an induced current in the opposite di-
rection to that from the battery; but
on breaking the contact the deflection
indicated an induced current in the
same direction as that of the battery."

In Fig. .5 we have a summary of
the experimental results. The experi-
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ig

THE MAGNET IS
MOVING TO
THE RIGHT

THE MAGNET REMAINS THE MAGNET IS MOVING
STATIONARY TO THE LEFT

Fig. 1.8 Moving a nearby magnet can induce a current.

mental setup is a simplified version
of Faraday's, so that the effects can
be illustrated more clearly.

What is it that is changing at
the secondary that brings about the in-
duced current? Well, as the current
builds up in the primary, a magnetic
field is building up, too. Can it be
that a changing magnetic field causes
the induced current? There is a simple
way to find out.

The experimental setup shown in
Fig. 1.5 can be modified as shown in
Fig. 1.6. A movable magnet substitutes
for the primary circuit. When the mag-
net moves, the magnetic field at the
secondary certainly changes. If a
changing magnetic field is responsible
for !.educed currents, a current should
appear in the secondary while the mag-
net is moving. And it does, as Faraday
discovered in just about this way.

Now we have an interesting ques-
tion. Suppose that in the experiment
depicted in Fig. 1.6 we arrange to have
the conducting loop move and the mag-
net remain at rest (see Fig. 1.7). If

Fig. 1.7 Moving the loop in a fixed mag-

netic field can induce a current.

we can extend what we have learned in
mechanics into the realm of electricity
and magnetism, then the physics should
be the same, no matter which moves.
And that turns out to be correct. The
galvanometer response is the same
whether the magnet moves to the left
and the loop is stationary or the mag-
net is stationary and the loop moves
to the right. And Faraday discovered
that, too.

At this point, Faraday had his
hands on what he wanted. Things had not
turned out to be quite what he had
imagined when he began his Researches,
but his hunch was correct. His hope
that a "current should be obtainable
from magnetism" was realized.

Note:

The experiments described in this
.

section are relatively easy to do,
and reading about them is not really
the same as doing them or, at least,
seeing them done. Maxwell in the
Preface to his Treatise on Electric-
ity and Magnetism,says, ". . . be-

fore I began the study of electric-
ity I resolved to read no mathemat-
ics on the subject till I had first
read through Faraday's Experimental
Researches in Electricity. . . . I

would recommend the student, after
he has learned, experimentally if
possible, what are the phenomena to
be observed, to read carefully Far-
aday's Experimental Researches in
Electricity."

This chapter is certainly no
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satisfactory substitute for the Re-
searches, and Maxwell's admonition
about experimental understanding is
even more germane if a student is

relying largely on what is written
here. It is possible to reproduce
much of what Faraday did with inex-
pensive equipment, and it is well

worth while doing just that.

1.2 FARADAY'S LAW OF INDUCTION

Before we proceed to the general
statement of Faraday's law of induc-
tion, we want to give some simplified
order to the results of Faraday's ex-
periments. In essence, he found three
ways to produce induced currents, and

these are represented in Fig. 1.8. He
produced an induced current in a loop
by changing the current in a nearby
circuit. An idealized version of that
experiment is depicted in Fig. 1.8a,
where the current is being changed by

changing the resistance in the rheo-
stat R. He also found that an induced
current can appear in a loop when the

loop is moved in a magnetic field. That

experiment is depicted in Fig. 1.8b,
where a circuit with constant current
is used as the source of the magnetic

field. And finally, Faraday found
that an induced current can appear in

a stationary loop when the source of

the magnetic field is moved (see

Fig. 1.8c).
We intend to discuss all three

of these experiments of Faraday's in

this chapter, but we start with a
spe,tial case of the first. Suppose we

put a loop inside a long coil in which

we can vary the current (see Fig. 1.9).

If tie current in the coil rises from

zero to some steady value I0 in the

time At, then the galvanometer needle
will be deflected during that time.
Suppose we make up a set of loops iden-
tical in size, but constructed of dif-

ferent known nonmagnetic conductors.
Now we use one loop at a time, and note

the galvanometer deflection for each as.

the current in the coil rises to II). In

general, the deflections are not the

a

Fig. 1.8 Three ways to produce an induced

current.

same, the deflection being greatest for

those conductors whose resistance is

least. This means that while the geo-
metric arrangement is the same in each

case, and while the current rises in

the coil in the same way in each case,

the induced current in the various

loops is not the same.
We make now a different set of

loops, these to have different radii

but the same resistance. Again the

galvanometer deflections are different,

the loop with the larger radius giving

the greater deflection. And
for a given loop, the more rapidly we

increase the current in the coil the

larger induced current we find in the

loop. (If you try to perform this set

of experiments, you will likely do bet-

ter if you substitute an oscilloscope

for the galvanometer.)
If we can use Ohm's law to de-

scribe what is going on in the loop,

we see that while there is an induced

Fig. 1.9 Experimental arrangement for

studying induction.
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a

Ai

b

Fig. 1.10 Illustration of Lenz's law.

(a) Bt is the magnetic induction field at
the time t, StsbA at the time t + At, and i

the induced current. (b) Bi is the magnetic

induction field created by the induced cur-

rent.

current in the loop there must also.be

an induced electromotive force. That

is,

6 iR, (1.3)

where & is the electromotive force, i

the current, and R the resistance of

the loop.4 Recall that the electromo-

tive force (almost always abbreviated

as emf) is defined as being the work

done on a unit charge as that charge

travels once around the circuit. It is
too bad that this is called a force

when it really is work, but historical

origins of words often color our lan-

guage in strange ways.
Up to this point, we have been

concentrating on the detectioa and
measurement of induced currents in de-

scribing experiments. But It turls out

that the relationship between what goes

on in the loop and what is happening to

the environment in which that loop its

is most directly described in terms of

the induced emf. The mathematical

statement of that relationship is sim-

ply

41t is certainly true that Ohm's law is really

-slid only for steady currents, and the induced

current are not steady here. That means that

what consequences of Ohm's lrw we use will in

dote.l be incorrect, because we have not taken

aciount of the magnetic field created by the in-

()aced current itself. Those interested in this

matter can, after finishing this section, look

up the meaning of the word self-inductance.

A40

At '

(1.4)

where & is the induced emf in the loop,

and 40,1 is the flux of B threading that

loop, i.e.,

(bp -22 B . Ag, (1.5)

where S is any surface bounded by the

loop. In words, this says that the in-

duced emf & in a loop is equal to the

negative of the time rate of change of

the magnetic flux 400 threading the

loop.
While Maxwell was the first to put

this simple but powerful concept into

mathematical form, Faraday was the

first to discover the effect. It is

most often called Faraday's law of in-

duction. Later on we shall call it his
circulation law; that it is in fact a

circulation law will soon be clear.

We should look closely at Fara-
day's law as given by Eas. (1.4) and

(1.5), so that some important details

become clear. First, we look at the

reason for the minus sign in Eq. (1.4).

We want the convention relating the

sense of the emf and the direction of

the flux change to be the same as

that used in Ampere's law, where the

sense in which a circulation about a

closed path is related to the direction

in which the current threading that

path is co;:sidered to be positive (see

Eq. (1.2) and Fig. 1.2). In Fig. 1.10(a),

we show a stationary loop through

which 4 is changing. The direction of

that change is the direction of AB.

The corresponding sense of the induced

emf and of the induced current appear,

too, as they are experimentally deter-

mined. But the relationship between

these is just the opposite of our con-

vention, so we need the minus sign in

Eq. (1.4) to make that fact explicit.

There is another way to remember

the sense of the ineuced current and,

hence, of the induced emf. This way

has a sound physical basis. The cur-

rent induced in the loop is always in

the sense such that the magnetic in-

duction gi that it creates is in the
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direction that opposes the change
11415 threading the loop. Figure 1.10(b)

:.ilustrates this relationship, which

is often called Lenz's law. We can see

that the world must behave that way

when we consider what would happekl if

the induced current went the other way.

If the induced current were such

as to create a Bi that increases the

inducing "I, then that increase would

bring about a yet greater induced cur-

rent, which would further increase DDB,

which would again increase the induced

current, and so on without end. That

certainly cannot happen, so the induced

current must create a magnetic field

that reduCes the flux change Acbg. That

is, Lenz's law is a special consequence

of the requirement that energy be con-

served. And so we understand the appear-
.

ance of the minus sign in -4. (1.4).

We continue our closo look at de-

tails of Faraday's law. Eq. (1.5) is

just a definition of the flux of B

through a surface S, and that should

give us no difficulties. But in Fara-

day's law we can apparently use any

surface S that is bounded by the loop.

We are to understand this in precisely

the same way we understand that in Am-

pere's law we can calculate the cur-

rent through any surface bounded by

the circulation path. In the case of

Faraday's law, we are justified is the

claim that any surface will suffice,

provided it is bounded by the loop, by

the fact that

E a , 9. (1.6)

S closed

That is, the iIux of B through any

closed surface is zero. This is nothing

but the statement that there are no

separable magnetic poles (see mono-

graph Magnetostatics). Given (1.6), we

can easily see why we can use any sur-

face in Eq. (1.3), provided, of course,

that surface is bounded by the loop.

That there are no separable mag:

netic poles means that the lines of B

have no beginning and no ending. That

happens sometimes because the line of

E is closed, but it need not be closed.

If we start to trace along a line of g,

Fig. 1.11 Surfaces S1 and S2, each bounded

by the curve s, together form a closed sur-

face.The vectors LSI and LS 2 are shown in

the directions considered to be positive

when the sense of the circulation shown

about the curve s is considered positive.

we will never reach a point at which

it is terminated. This means that if a

line of B passes through one of the

surfaces shown in Fig. 1.11, it must

do one of two things. It must turn

around and pass back through that same

surfn.ce, or it must pass through the

second surface in the same direction

it passed through the first. In the

first case, it contributes nothing to

the flux through either surface. In the

second, its contribution to the flux

through one surface is the same as its

contribution to the flux through the

other. Thus, we arc. certain that the

flux through a surface bounded by the

loop is the same as the flux through

any other surface bounded by the same

loop.
We can make the same proof in a

more formal fashion. In Fig. 1.11 the

surfaces SI and S2 form 3 closed sur-

face when combined. We can ut-..e Eq. (1.6)

on that closed surface, so that

E E B . a; o,
S S2

where we have taken due care to have

the outward direction positive. From

this,

: - g bk.
Si S2
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Fig. 1.12 Edgewise view of a plane loop in
a uniform magnetic field B when he loop is
tilted. The projection of the loop's area
on a plane perpendicular to B is Al.

Since S1 and 52 here can be any two
surfaces bounded by the loop, we have
proved our contention.

With Faraday's law in hand we can
understand the results of the experi-
ments using the long coil shown in Fig.
1.9. If the coil is tightly wound and
is long enough, and if we stay near the
center of the coil, then B inside the
coil is very nearly the same at all
points. Its magnitude is given by

B = p0nI,

where n is the number of turns per unit
length of the coil measured along the
coil's axis, and I is the current in
the coil. Further, B is directed paral-
lel to the coil's axis. This result is
derived using Ampere's law in the mono-
graph Magnetostatics. If we are sure

that the loop is oriented with its
plane perpendicular to the coil's axis,
then we can find the flux 41/13 threading

the loop of area A. Since B is the
same everywhere, then choosing S to be
the plane surface of the loop, we can

write

41)s, B Ai i (E Ag) i 1

BA.

Now putting in the magnitude of B,

p0nAI.

Then, by Faraday's law, we can say

that

Fig. 1.13 The projected area of a nonpla-
nar loop. Note that this is a special case
of Al for the loop shorn.

- -ponA ,

where AI /At is the time rate of change
of the current in the coil. If we put
this result into Ohm's law, we get

i
p1nA AI

At '

(1.7)

where i is the current induced in the
loop, and R is the resistance in the
circuit containing the loop and the
galvanometer.

All the results reported earlier
for this experimental arrangement are
contained in Eq. (1.7). If we believe
Eq. k1.7) to be correct, then can
predict what will happen when we change
the loop's area or change the resist-
ance R. And we can predict how the re-
sult will depend upon the time rate of
change of the current in the coil; in
particular we would predict the behav-
ior shown in the plots appeasing in
Figs. 1 4 and 1.5.

We can generalize Eq. (1.7) to
take care of cases when the loop is
not oriented with its plane perpendic-
ular to B. When calculating 4B we are
really concerned with the projection of
the coil's area on the plane perpendic-
ular to B (see Fig. 1.12): That projec-
tion Al is just equal to A cos 0; and
that cos 0 factor appears when we cal-
culateiB B A, since the angle be-'
tween B and A is also 0. Then for any
orientation of the lOop, Eq. (1.7) is
generalized to
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a

Fig. 1.14 Two different surfaces "bounded"
by the same closed loop.

i
At

ponA cos 0 AI
(1.8)

In fact, there is nothing in our de-
velopment that depends upon the shape
of the loop; it need not be circular
as we have been picturing it. Further-
more, the loop need not even lie in a
plane, if we interpret Al to be the
area enclosed by the projection of the
loop onto a plane perpendicular to B
(see Fig. 1.13). Of course, this last
statement can be true only if no line
of B passes twice or more through the
surface bounded by the loop.

There are cases in which the
phrase "the surface bounded by the
loop" might seem ambiguous. Such a case
is shown in Fig. 1.14. The surface we
want is the one shown in Fig. 1.14(a).
The surface in Fig. 1.14(b) is really
not bounded at all. We can see this by
noting that this 8yrface does not have
two sides; it is the famous MObius
strip. You can make kz MObius strip for
yourself by laying out a strip of pa-
per, giving it a half twist about the
long axis, and then pasting the two
free ends together. Mathematics stu-
dents sometimes like to plague younger
brothers by asking them to color one
side of this strip blue and the other
red. If you have never seen this tried,
you might make the effort in the se-
crecy of your room.

QUESTION: See Fig. 1.14(a). Assume
the presence of a uniform magnetic

field B directed from left to right.

a

Fig. 1.15 (a) A closed loop of two turns.
Compare with Fig. 1.14(a). (b) Now we have
a coil. It is not a loop; it isn't closed.

How would you calculate the flux 4'
through this loop? Include a state-
ment of any assumptions you have
made to cover information not ex-
plicitly given to you.

If you have thought carefully
about the Question, you should be able
to conclude that for the purpose of
calculating 4!, the loop shown in Fig.
1.14(a) is identical with that in Fig.
1.15(a); and that each is equivalent
to two circular loops. From thi^ argu-
ment we would expect that had w. used
a loop of two turns in the expel ment
denictd in Fig. 1.9, we would have
doubled the 4013 and thus doubled the
value of AkB/At and of the induced
emf &. And experimental results agree
with that expectation. If we use a
loop with N turns, then we would need
to modify Eq. (1.8) to read

moNnA cos 0 AI
i

At
(1.9)

QUESTION: What is N for the loop
shown in Fig. 1.15(b)? Does it mat-
ter how the ends are connected?

1.3 FARADAY'S LAW AS A CIRCULATION
LAW.

In the case of the stationary
loopl an induced emf can appear only
if there exists an electric field in-
tensity R. The emf in a loop is de-
fined as being the work done on a unit
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charge as that charge traverses the
loop once, i.e.,

17e- E - As,
q

s closed

from the definition of work. But what

is

from_

in this case? Nothing but the
definition of E, the electric field in-
tensity. That means that for this case,
we can write Faraday's law as

AE R. . a ii.. -
AT

( 122 b. LL) ,

a closed S

(1.11)

which is a circulation law. Further,
since the loop is stationary, all fluxrt
changes are due to changes in B. In
that case, we can write Eq. (1.11) as

:Er
Z a - - :E: LAB: A t

At --, .1.12)
s closed S

where the surface S is any surface
bounded by the circulation path s -
here the loop. We are forced to a
startling conclusion that has enormous
consequences: If we have a changing
magnetic field, i.e., one in which B
is time dependent, then there is an
associated electric field! That is,
there can be an electric field even
though the charge density is zero
everywhere.

Maxwell was the first to express
Faraday's law of induction as a circu-
lation law. But he generalized the law.
He imagined that the law as expressed .

in Eq. (1.11) or (1.12) holds in empty

space, so that the circulation of E

need not be interpreted as the induced

emf in a material, conducting loop. If
we assume that Maxwell was correct in

his assumption, and he was, then we can
state Faraday's law in the following

way.
The circulation of E about a

path s at rest in the frame in

which is measured is equal to the
negative of the time rate of change of
the flux of 5" passing through any sur-

face S bounded 12Lthat circulation

Mit.

According to this circulation law,
the circulation of E is not necessarily
zero in time-dependent circumstances.
For time-independent cases, i.e.,
static cases, the circulation of E is
always zero, no matter what circulation
path we choose (see monograph Electro-
statics). That is, static electric
fields are conservative; not so for
electric fields associated with chang-
ing magnetic fields. Nonetheless, the
circulation law given by Eq. (1.11) is
true in general, i.e., when the elec-
tric field intensity E has contribu-
tions from both charge densities
(static field Es), and changing mag-
netic fields (induced fie3d Ei) . If we
write that E - Es + Ei, then the cir-
culation of E is

E I a - E (1, 4. Ei) ka;

. closed" s closed

.. fl, hg + 1: IT! . as

s closed s closed

m E Ei a.
s closed

The circulation of Re is zero, leaving
only the circulation of Ei, which is
equal to Atka/At as required by the
circulation law. Then we see that the
circulation law is true in general,
because the static contribution to the
total field E does not contribute to
the circulation of E.

We see clearly from this argument
that knowing the circulation of E does
not mean that we know much about E it-
self. In fact, we can use this circu-
lation law to calculate E only in spe-
cial, highly symmetrical circumstances.
The experimental arrangement shown in
Fig. 1.9 is one of these special cases.
We need not consider the probe loop
shown, if we accept Maxwell's generali-
zation to empty space. Again we imagine
that we are near the middle of a long,
tightly wound coil, so that we may as-
sume that B is uniform and directed
parallel to the coil's axis. There are
no charge densities around, so there

is no static field contribution to E
inside the coil.

t

i

i
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Figure 1.16 is a view looking
along the coil's axis. We choose as the
circulation path a circle of radius r,
centered on the coil's axis, and ori-
ented so that its plane is perpendicu-
lar to the coil's axis. As shown, r is
less than the inside radius of the
coil. If the current in the coil is
changing, then the magnitude of B is
changing, and so is the flux (B that
passes through a surface bounded by the
circulation path. Then the circulation
of E around that path is not zero. Can
we calculate what it is? Yes, we can
use the right-hand side of the circu-

lation law.

s closed

40 AB
E As

At

:11B

(---) (lrr2).
At

Now since we have good cylindri-
cal symmetry, the magnitude of E at
one point on the circular path must be

the same as it is at every other point

on the path. If there is no charge den-
sity around, then E at each point on
that circle is tangent to the circle,
and we can write the circulation law as

(E) (2vr) = -orr2)( )

And now we have that

r

E
(1.13)

For this highly symmetric situation we
have used the circulation law to get
an expression for E that should he

valid at all points inside the coil
and far from its ends. If, as we have
assumed, AB/At is the same everywhere
in that region, then we see that E is
zero on the coil's axis and increases

linearly with the distance from that

axis.

EXERCISE

Using Gauss's law, show that there
cannot be a radial component to I
in the example if there are no.
charge densities in the vicinity.

COIL

UNIFORM rt
DIRECTED

TOWARD US

Fig. 1.16 View along the axis of a long
coil. With the sense of As shown, the posi-
tive flux 44 _is directed toward us. The di-
rections of E on the circular path are for
the case of increasing 44.

The minus sign in Eq, (1.13) tells

is the direction of E. At each point on

the circular path, E must have the di-
rection just opposite to that of A. at

that point, provided that B is increas-
ing so that AB/At is positive. That is
the situation depicted in Fig. 1.16. If

the current I decreases, then AB/At is
negative, and the direction of E is op-
posite 'to that shown in the figure.

EXERCISES

Using Eq. (1.13), calculate the cir-
culation of E directly for the path
shown. Arrange your result so that

yciu can see clearly that it is equal

to the negative of the time rate of
change of 4 il. Choose the case in

which I is increasing.



14 CIRCULATION LAWS AND THEIR CONSEQUENCES

x

a

I

x r
1

var

111

a

411

IIMMIEN311111110..'81,./

.IS

AT TIME t

I

I
I

b

AT TIME t + at

II. SI

vat

Fig. 1.17 A loop moves through a nonuni-
form, time-independent, magnetic field. The
flux 4 is changing.

Suppose that in the above Exercise
we add a long wire along the coil's
axis and let this wire carry the
linear charge density X coulomb/
meter. Now calculate the circula-
tion of E for the path shown. In
what way does your result differ
from that you got when no charged
wire was present? Why? Does your
answer to this last question depend
upon the fact that the static elec-
tric field due to the line charge
is radial? Explain.

QUESTION. In either of the above two
exercises, what meaning can we as-
sign to the idea of "potential dif-
ference between two points in the

field" while the current in the coil
is changing?

1.4 MOTIONAL emf

To this point in our study of
Faraday's law, we have concentrated
upon emf's induced in a stationary
loop as a consequence of a time-vary-
ing magnetic field. In such a.case,
the flux 43B changes, because B changes

with time, at least over some region
of space. But there are other ways to
make 411 change for a given loop, and
we are going to look at one of them
now.

Consider the following simple
case for which we can make some calcu-
lations. We have a piece of wire bent
into a rectangle, so that it forms a
closed conducting loop. We place the
loop in the xy plane, as shown in Fig.
1.17(a). There is a magnetic field
present such that B points in the 4-z
direction at every point in the 'egion
of interest. Further, the magnitude of
B increases with increasing y, but B
at each point is constant in time.

Now we imagine that the loop is
moving with the velocity v in the di-
rection flf increasing y while it re-
mains entirely in Lhe 7.y plane. The
flux 4311 threading the loop is the.'

changing, and, if Faraday's law is cor-
rect, we should expect that an emf will
be induced in a loop which moves in
such an environment.

We should realize that this is a
quite different situation from that
discussed in the two previous sections.
This corresponds to the case shown in
Fig. 1.8(b). The flux change is being
created by the motion of a loop in a
nonuniform, time-independent, magnetic
field. We shall refer to the emf in-
duced in such a fashion as a motional
emf.

We can calculate the time rate of
change of 4313 for the simple case cited.

The locations of the loop at the times
t and t + At are Shown in Fig. 1.17(b).
If we let 41/11 be positive when it is in

the +z direction, we can get the cor-
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responding A.8 by calculating the gain
in .8 at the front edge and the loss of
.8 at the back That is,

+ (Bi av At) (B2 av At)

= (B1 B2) av At, (1.14)

where E; and B2 are the magnetic:induc-
tion fields at the front and back edges
of the loop. We have assumed that At is
so small that B does not vary appreci-
ably over either of the areas (av At)
at the front and back edges. Since we
let B1 > B2, then A.8 is positive; 11
is increasing.

prom Eq. (1.14),

At
(B1 B2) av, (1.15)

so thP.t the end induced in the loop is
by Faraday's law,

- (B1 B2) av, (1.16)

and the induced current is in the
clockwise sense around the loop as we
view the loop in Fig. 1.17(b).

If the magnetic field is uniform,
a translation of the loop will not pro-
duee an induced emf, sinc3 there will
be no flux chanle. The quantities B1
and B2 in Eq.. (1.16) will be equal.
But if we rotate the loop, even in a
uniform magnetic field, then we can
find an induced emf in the loop. Fig-
ure 1.18 shows a rectangular loop ro-
tating about an axis which is perpen-
dicular to a uniform field B. In this
case the flux +pis changing because
the projected area Al is changing. At
the instant shown, there is an induced
emf in the clockwise sense around the
loop as viewed from the xy plane. If
is uniform, then the flux .8 is simply
BAI for the case shown. Then, since
is constant in time,

AAI
-

13 At
(1.17)

QUESTION. Is there an axis about
which wo can rotate the loop in
Fig. 1.18 without inducing an emf?

y

Fig. 1.18 Inducing an en: in a loop by ro-
tating the loop in a uniform magnetic field.

If there is, does it matter what
the loop's orientation is with re-
spect to that axis?

The loop in Fig. 1.18 need not be
a rectangle; it was drawn that way for
simplicity. The loop can have any
shape; it could even be a coil with
many turns. In any case, we have here
the fundamental concepts of the gener-
ator, which we shall discuss in some
detail in section 1.6.

We see now that an induced emf can
appear if we move a loop in a time-
independent magnetic field. The needed
change of the flux (bilis brought about
in two ways: The loop moves through a
region in which B is not uniform (Fig.
1.17), and the loop's orientation rel-
ative to B changes (Fig. 1.18). Of
course both these could be going on at
the same time; calculating A48/At could
become a tricky and messy business. But
it turns out that in many eases such a
calculation is not difficult at all. We
shall make an assertion here, and then
we shL11 prove the assertion. There is
no physics in what we shall say; it is
simply a consequence of some mathemati-
cal reasoning. And, for the moment, we
shall view the assertion as an aid to
calculation. The assertion:

If B is independent of time, then

A4). A
)3 a

Al At

- E x 17)
s closed

(1.18)
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POSITION OF LOOP AT TIME t

vat
POSITION OF LOOP AT TIME t + At

Fig. 1.19 A moving loop.

ai;

where S is any surface bounded by the
curve s (our loop), v is the velocity
of the element Ag, and B in the_right-
hand sum is the field at each As. The
velocity v is measured in the same
frame of reference in which B is meas-
ured.

Equation (1.18) tells us that un-
der certain circumstances the time rate
of change of a flux can be writtep as a
circulation. The particular circum-
stances for which Eq. (1.18) is a valid
mathematical statement will appear as
we develop the proof, which we now pro-
ceed to do.

Figure 1.19 shows the positions
of a loop P.t the times t and t + At.
At the timt t, the flux is simply

4)11(t) - if d.

To find the flux at the time t + At,
we can use any surface bounded by the
loop, provided only that the lines of
B do not terminate. Or what is equiva-
lent, provided the flux of B over any
closed surface is zero. (This condition
is certainly satisfied by the magnetic
induction field.) Then suppose we
choose as the surface at t + At the
original surface S plus the edge sur-

face S' that has been generated by the
moving loop. Then

41v(t + At) -Eg.Ag+Eg Ag'.
s.

If '6 at each point in space is the
same at the time t + At as it was at
the time t, then the first term on the
right side is just CO. Then the
change in the flux 4113 that has occur-
rAl in the time At is

- + At) 4'(t) - if AS'.

But from Fig. 1.19, Ag' GAO x
where we have been careful to keep the
directions of As, AS, and AS' consis-
tent. If we substitute At(v x As) for
AS' in the sum, then we need to sum
over all the As rather than over the

AS'. Then we can write

th. Ot E x th;) .
s closed

We can see that if we are going
to be able to complete our proof at
all, we must be close to doing so now.
Only some jugg]5ng remains. We can di-
vide both sides by At to bring the
left-hand side into order.

Ohs -B AS E (v x el;)
At At

We have also changed the order of the
dot product on the right-hand side, but
that doesn't change anything. Compari-
son of what we now have with Eq. (1.18),
what we are trying to prove, shows that
we have only one thing left to do. The
proof that

x (v'x if) - ds

is really rather simple, but it is a
bit long. So that it will not clutter
up our work here, the proof has been

put at the end of this section. It is
really rather nice, and you might enjoy
looking at it.

With this final bit of juggling we
have completed our mathematical proof.
We are now prepared to state the math-
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erratical equality given in Eq. (1.18).
It is true for any vector field B sat-
isfying the two conditions that we im-
posed in our proof. First, the flux of
E over any closed surface must be zero,
or, put in another way, the lines of B
must have no beginning and no ending.

iSecond, f must not change with time. It
may be different at different points in
space, but at any given point in space
B remains constant.

Equation (1.18) contains no new
physics at all. But we can apply it to
the case of motional emf, because the
two conditions on ri are satisfied. The
vector B always satisfies the first of
these, and since we are considering
loops that move in time-independent
magnetic fields, B satisfies the sec-
ond in this instance.

If we use Eq. (1.18) in Faraday's
induction law, we get

E (; x 13.) A.;, (1.19)
s closed

where the right-hand side is just the
negative of Ats/At for this special
case.

Going back over our development,
we see that we did not really assume
any particular shape for the loop.
Equations (1.18) and (1.19) are good
for any loop. Further, there is noth-
ing in our proof of Eq. (1.18) requir-
ing all parts of the loop to have the
same velocity, so that Eq. (1.19) is
valid for a loop which is rotating.

We can apply Eq. (1.19) to any
case of motional emf. The right-hand
side tells us tc evaluate a circulation
about the loop, but we know that we are
zeally calculating the negative time
rate of change of 4.2, as is required
by Faraday's law.

EXERCISE

Use Eq. (1.19) to find the induced
emf in the loop shown in Fig. 1.17.
Check your result with Eq. (1.16).

z

This is the proof promised
earlier. Consider the three vectors a,
b, and c shown in the diagram. For ease
of reference we have put the vectors a
and b in the xy plane, but nothing we
do will depend upon any particular
frame.

The vector product a x b gives a
vector in the +z direction (perpendic-
ular to the plane containing a and b).
The magnitude of this vector, ab sin 4,
is just the area of the parallelogram
with sides a and b. The scalar product
of a x b and c gives the volume of the
parallelepiped with edges a, b, and c.
That is, it gives the area of the base
times the vertical height c cos 0.

Volume - x G) J.

If we take the vector product the
other way around, i.e., as b X a, then
we get a vector in the z di ..ction.
The scalar product of that vector with
c gives a negative number, just the
negative of the volume. So if we want
the volume to come out as a positive
quantity, we need the cross product in
the o: 'der X 17. Then the angle between
the vectors a X b and c is less than
v/2.

Of course it cannot matter which
face of the parallelepiped we choose
to be the base. We have used the one
defined by a and b, but we could as
well start with the one defined by g
and c or the one defined by c and a.
We just have to keep track of the or-
der in which we take each vector prod-
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uct, so that we are sure we get a pos-
itive result for the volume. Then it
must be that

(a x E ) C .2 ( 1 ) x C ) -; - (C" x 1) G.

We have shown this result for a- -
particular set of vectors a, b, and c,

but a little tholight should convince
you that the conclusion is valid for
any set. If the vectors we choose are
such that 6T x 0 c is positive, then
the other two arrangements will be pos-
itive too. If (; x G) c is negative,

then the other two arrangements will
also be negative. The result we have
here is independent of the labeling
and relative orientation of the three

vectors.
Now we use the first and third of

these, reversing the order of the vec-
tor product in the third and putting
in a minus sign to take care of that

reversal,

(a x I 3' ) a - (a x ; ) b.

.... -
Since a, b, and c are any vectors,

this completes the proof that

(7 x k:s) . /3' - -(7 x if) La,

which is what we asserted earlier.

1.5 MAGNETIC FORCE ON A MOVING CHARGE.

Something rather interesting hap-
pened in the last section, but we did

not pay any attention to it at the

time. Now we want to take a closer

look at Eq. (1.19).

8- E (; x IT) Al (1.19)

s closed

We got the right-hand side of
this by seeing what -I4 /It was for a

special case: a loop moving in a time-

independent magnetic field. That is,

Eq. (1.19) is just Faraday's law for

the special case where 6 then is the

resulting motional emf.
Now the emf is the work done on a

unit charge as that charge traverses

i

the circuit one time. But what is the
force doing that work in our special

case? There are no charge densities
around to give a static electric field.

And in the frame in which v is measured

the magnetic induction field B is not

changing with time; i.e., LB/Lt - 0, so

that in that frame there is no induced
electric field either. Then how shall

we account for the resulting emf?
Using the definition of 6 in

mathematical terms, i.e.,

6 - E (F vq) a.
s closed

Wecan write Eq. (1.19) as

(1.20)

. E i ai - E (;/- x 13) A.;,

s closed q
s closed

(1.21)

where both sums are over the same

closed loop.
There is no logical or mathemati-

cal basis for equating the bracketed
terms on the two sides of Eq. (1.21).

That is because it might be that

V . ,:_. =--vxls+u,
q

where e- is a vector field whose circu-

lation is always zero, as, for example,

in the static electric field. But if

for our special case-we do set the

bracketed terms equal to each other,
i.e., if we just set PA' equal to

-
v X B at every point along the loop,

then we get that

IT - q(v x iff) (1.22)

at every point on the loop. But this

is just the equation for the magnetic

force on a moving charged particle

(see monograph Magnetostatics).
Suppose we move a conductor in a

magnetic field. There are charges that

are free to move inside the conductor,

and they do so move when they experi-

ence the q(v x B) force. In a conduc-

tor such as copper, electrons are the

particles that can move around. When a
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copper wire is given a velocity ;7, the

electrons have that velocity too. Then

the electrons experience the q67 x

force that may result in an emf in the

loop. Figure 1.20 is meant to illus-

trate what happens. In the case shown,

the v x B force is along the wire, and

it can thus contribute to an emf.

Since q is negative for the electron,

the force F is directed opposite to

v xiT. The c,nventional current I, how-
ever, is still in the direction of

v x B.
If we try to trace the motion of

one of these electrons, if we try to

keep track of the forces on it as it

moves inside the conductor, we can get -

ourselves into a great tangle. As soon

as the electron gains a component of

velocity along the wire, then the force

it feels is no longer that shown in

Fig. 1.20. That is because its veloc-

ity is ro longer v. The velocity v
appearing in Eq. (1.19), and thus in

Eq. (1.22), is the velocity of the

wire, not the velocity of the electron

when the electron travels inside that

wire. Further, we certainly know that

the electron experiences an enormously

complex force field as it travels

through the conductor. Nevertheless,
if we assume the simple force law

given by Eq. '1.22), we come up with

the right result for the emf. That cer-

tainly seems strange, but it is true.

With the interpretation of v x

as a force per unit charge, the right

side of Eq. (1.19) takes on a new
physical meaning. We need not think of

it as being the negative of tie time

rate of change of 414, which it cer-

tainly is. We can think of it as being

the direct calculation of the emf us-

ing the defining Eq. (1.20) with 1.7 x B

being the force per unit charge.

All of this leads us to the fol-

lowing point of view: A charged parti-

cle can experience a force that is

velocity independent, and we write this

force as qt. The electric field inten-.

sity R can be the conseq'ience of a dis-

tribution of charge density or of a

time-varying magnetic field. A charged

particle can also experience a veloc-

=IP

Fig. 1.20 A segment of a conducting wire

which has the velocity v while moving in
the field B. F is the force on an elec-

tron in the wire.

ity-dependent force q(v x B), if there

is a magnetic field present. If we put

these together, we can say in general

that the electromagnetic force on a

particle with charge q is

Fq(E + x (1.23)

This has come to be ' :alled the

Lorentz force. Its application to the

motions of free particles in empty

space is often more straightforward

than it is when applied to particles

which themselves move around in moving

materials. Since v is the velocity of

the material, not that of the particle

inside the material, it seems as if the

particle is in a field v x B that ex-

ists inside materials whenever they

move in magnetic fields.

The strange nature of a velocity-

dependent force is discussed in a later

section. Sooner or later, we must look

into the difficulties encountered when

we try to reconcile the concept of a

velocity dependent force field with the

principle that all inertial frames of

reference are equivalent.

1.6 GENERATORS AND MOTORS

Modern electrical technology be-

gan with Faraday's discovery, for then

engineers had the ideas they needed to

permit the design of machines to create,

deliver, and use electric energy. When
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Fig. 1.21 A generator.

they were restricted to batteries,
electric energy was so limited that
engineers were unable to make much use
of it. Anyway, batteries run down. Now
electricity can light cities, turn mil-
lions of wheels, heat homes, and carve
mountains - all because Michael Fara-
day wondered about the ways that mag-
nets and currents were related.

Faraday had to suffer officials
who visited his laboratory while he
was working, and he was often called
upon to give public lectures on his
work.- There is no way to know how many
times he was asked, "What's the use of

Fig. 1.22 Finding E (7 x B) a for
closed

a rotating loop.

all this?" But he was ready with a
reply when Gladstone, then Chancellor
of the Exchequer, interrupted him im-
patiently, "But, after all, what use
is it?" Faraday fired back, "Sir, you
may one day be able to tax it." Such
opportunities come rarely, even to men
of Faraday's stature.

Benjamin Franklin responded to
questions like that with a question of
his own. "What is the use of a baby?"
What exactly is this baby that grew up
to be taxed? Its essence is in Fig.
1.18 which is meant to show a loop ro-
tating in a magnetic field.

Suppose we arrange, by some means
or other, 'to keep a loop rotating in a
magnetic field. And suppose, too, that
we arrange to make this loop part of a
larger electric circuit. Figure 1.21
shows what we have in mind, although
it doesn't show how we intend to sup-
port the loop or to keep it rotating.
But while that lo^p is rotating, it is
a source of emf for the circuit, and,
using Eq. (1.19), we should be able to
calculate that emf.

A look at Fig. 1.22 should help
us to calculate the circulation of
v x B around the rotating coil. If the
axis of rotation of the loop passes
through the loop's center and is paral-
lel to two of the edges, then each of
these edges has the same speed v. In
terms of the notation on the figure,
vi = v2. Further, if we have a uniform
magnetic field, then the magnitude of
v, x B is equal to the magnitude of
v 2 I since sin Or U) - sin 0. If
we t..0 the sense of the circulation
aboltt the loop to be along the direc-
tions of both vi x ET and v2 x then .

these two sides of the loop contribute

2vBL sin 9

to the circulation.
The two other sides contribute

nothing at all to the circulation, be--
cause at every point on them v x B is
perpendicular to big. Then we already
have the circulation of v x B around
the loop, so we can say that the emf
induced in the loop is
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Fig. 1.23 A plane loop rotates with constant angular velocity in a uniform magnetic field.

& = 2vBL sin 0, (1.24)

where we remember that v is the speed
of the sides which are always per-
pendicular to B. If we introduce the
other dimension of the loop; i.e., w,
we see that each point on these two
sides travels in a circle of radius
w/2. Then we can write that v = (w/2)w,
where w is the angular velocity of the
loop; i.e., w is just Aeia measured in
radians/second. With this substitution,
Eq. (1.24) becomes

& ... BAco sin 0, (1.25)

where we have substituted A, the loop's
area, for the product wL.

We want another calculation on
hand to help in our discussion of the
physical content of Eq. (1.25). When
the loop is in the position shown in
Fig. 1.22, then the flux cks that the
loop intercepts is

'Ds = BA cos O. (1.26)

At the instant shown in Fig. 1.22, the
flux ckB is positive but it is decreas-
ing. When cks is decreasing, then AFB / At

is negative. Since a minus sign appears
in Faraday's law itself, then the emf
should be positive at that instant.

Figure 1.23 shows all the perti-
nent relationships for the rotating
loop over one complete rotation. Fig-
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ure 1.23(a) displays the physical posi-
tion of thcl loop, the second position
corresponding roughly to that shown in
Fig. 1.22. For the plots in Fig. 1.23,
we have let 0 be zero at t = 0, so that
for constant angular velocity,w we have
that 0 - wt. Comparing the plots in (b)
and (c) of Fig. 1.23, we see that 8 has
a maximum magnitude when (bp is zero,
and 8 is zero when 41'13.has its maximum
magnitude. Well, that is really what we
expect, since Faraday's law says that
the induced emf is proportional to the
time rate of change of 4143. And that

time rate of change A4PB/At is just pro-
portional to the slope of the (DB vs. 0
curve in Fig. 1.23(b). And certainly
that slope has its maximum magnitude at
0 = g/2 and 0 = 3g/2, the same place
that & has its maximum magnitude. Since
AAIII/At is negative at 0 - g/2, then &
is positive there. Since 041g/At is pos-
itive at 0 3g/2, then & is negative
there. And since A4)8/ At is zero at

8 0 and 0 IT, then 8 is zero at

those value of 0.

EXERCISE

Using Eqs. (1.25) and (1.26) along
with Faraday's law, convince your-
self that

cos (wt)
- co sin (wt),

At

where w is a constant.

Figure 1.23 tells ut that the emf
in the loop is in one sense when 0 < 9
< g and in the opposite sense when g
< 0 < 2g. But the contact that the ro-
tating loop makes with the circuit can
be arranged so that the emf in the cir-
cuit is always in the same direction.
That sort of contact is shown in Fig.
1.21; it is called a split-ring commu-
tator. If the commutator is arranged
as shown in Fig. 1.24, then the emf in

TO CIRCUIT

Fig. 1.24 Electrical connection for
an a-c generator.

the circuit is in one sense for half a
cycle of the loop, and in the opposite
sense for the other half cycle. In that
case, we say that we have an a-c (al-
ternating current) generator.

EXERCISE

Plot the emf in the complete cir-
cuit when a split-ring commutator
is used such :s is illustrated in
Fig. 1.21, At what values of 0 do
the contacts pass through the
"splits"? Why?

Now we have the fundamental prin-
ciple of a generator. There are cer-
tainly refinements that we could make.
For instance, we could use a loop of
many turns, so that the emf would be
increased provided we can maintain a
sufficiently high angular velocity.
But we still have an important question
to answer. How do we keep the loop ro-
tating? We need an answer, because we
get an emf only when the loop rotates.

One way to crank this system is to
attach a paddle wheel to the loop and

I

1

1
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then put it at the bottom of a water-
fall. The water is going to lose all
that potential energy anyway, so it may
as well fall on the paddle wheel and,
thus, spin the loop. The large, spe-
cially designed, paddle wheels located
at places such as Niagara Falls are
called turbinc.3. If there is no nearby
waterfall, someone might build a high
dam on a river, so that giant pipes
running down Lhe inside of the dam pro-
vide an artifjcial waterfall. Lacking a
dam, the t.,:rbine can be driven by steam
at high pressure. In that case, we need
to boil water, which requires large
quantities of coal or else a nuclear
power reactor. In any case, the goal
is to rotate a turbine.

Engineers have spent a lot of time
designing electric power plants. And
they have solved an enormous number of
complex technical problems so that they
can operate these plants at the highest
efficiency. Our short description does
not do justice to what they have ac-
complished. We have just looked at the
basic scientific law that is the heart
of the matter.

If the electrical energy devel-
oped at a plant is to be delivered to
some place that is far away, there are
lots of other interesting problems to
solve. But we cannot go into the trans-
mission problems here. We are going to
see what we can do with this electric
energy once it has been delivered to
us. We are normally provided with two
electrical contacts; in houses the
usual potential difference between one
of these contacts and the other alter-
nates, taking on all values between
about +155 volts and 155 volts, the
root mean square (rms) value being
about 110 volts. If you want to run
washing machine and drier you will
likely need a pair at 220 volts rms
potential difference. A much higher
potential difference is maintained in
transmission lines, because energy
losses turn out to be less along the
way when the voltage is high. But the
voltage is reduced by a series of
transformers that are located between
the transmission lines and our houses.

What can we do with this potential
difference? Well, we can do some ob-
vious things. We can put that potential
difference across some resistance so
that we get heat. The resistance can
be in thin wire embedded in ceiling
plaster; that will heat a room. Or the
resistance can be in a coil on the top
of an electric range; that will boil
water and cook food. If the resistance
i- in the filament of a light bulb,
then we can heat that filament; that
will light our rooms.

Of course, we can use that poten-
tial difference to run a rani() or tele-
vision transmitter and to activate ra-
dio and television receivers. We shall
not go into the modern technology of
electronics that has become so impor-
tant. We are going to leave out all
those marvelous gadgets used for com-
munications, for calculations that go
on inside a computer, and for detect-
ing the presence of subatomic parti-
cles. We are going to study something
that seems much more prosaic: the elec-
tric motor.

Without the electric motor, the
industrial revolution would surely have
fizzled. The electric motor does a very
large fraction of the work that needs
doing in an industrialized, technologi-
cal society. And anyway, the electric
motor is easy to understand, once we
understand the electric generator. The
electric motor is just the electric
generator driven backward. Even though
true, that doesn't tell us much, so we
want to look a little closer at the way
such a motor works.

Suppose we have a loop sitting
still in a magnetic field. Figure 1.21,
used in the discussion of a generator,
pictures the situation. But now suppose
that the loop is part of an electric
circuit that has a source of emf in it,
a battery or a generator. As soon as we
complete that circuit by closing a
switch, current appears in the loop.
According to Ampere's law, a current-
carrying wire experiences a force in
the presence of a magnetic field. Let's
look at the forces on that loop.

The force on a current element IA;
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Fig. 1.25 Forces on a current-carrying
loop in a uniform magnetic field.

is just Id; X 117, so we need to sum the
forces on all the elements in the loop.
In Fig. 1.25, F1 is the force on one
side of the loop, and its magnitude is
just IBL. The force F2 on the opposite
side has the same magnitude. Since
these two forces are in opposite direc-
tions, their sum is zero.

The force Fr3 has the magnitude
IBw sin 8, and so does the force F4.
Therefore F3 + F4 = °/ since they, too,
are oppositely directed. We have ig-
nored the little gap in side 4, but we
can certainly make that gap as small
as we want.

Then the net force on the loop is
zero. But it certainly won't stay at
rest. There is a net torque on the loop
created by the forces Fi and F2. The
magnitude of that torque is

Fig. 1.26 A motor loop wound to give a
nearly constant torque.

T - IBLw cos 0.

We can write this in vector form

T= I X XIS, (1.27)

where A is perpendicular to the plane
of the loop and has the magnitude Lw,
the loop's area. We have also made use
of the fact that the angle between A
and if is (7T/2 + 8) and that cos 8 =
sin (7T/2 + 0).

Now we see that there is a torque
on the loop, so that the loop will have
an angular acceleration. If we con-
nected a pulley to the loop, that
torque would turn the pulley and lift
a weight hanging from it. That is ex-
actly what an electric motor does: It
turns a shaft to which pulleys or other
devices can be attached.

So it is true: An electric motor
is just a generator operated backward.
If we run a current through a loop that
sits in a magnetic field, we get a
torque on the loop. And we can use that
torque to do work.

We have described a very rudimen-
tary motor. It will operate better if
we wind the loop as shown in Fig. 1.26.
Then the torque is very nearly con-
stant and it is always greater than
the torque on a loop of a single turn.
Most motors have more refinements, but
they all operate on the principle that
tells us that a magnetic field produces
a force on a current-carrying wire.

Faraday's law determines the way
a generator works and Ampere's law de-
termines the way a motor works. It is
all wrapped up in Fig. 1.27. Faraday's
baby, now full grown, has changed the
face of the planet.

1.7 THE BETATRON

Most of the practical applications
of induced emf are.instances of mo-
tional emf rather than examples of in-
duced emf as the result of a time-vary-
ing magnetic field. That is because it
is easier to move a loop in a con-
trolled way than it is to change con-
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PERMANENT
MAGNET ELECTROMAGNET

Fig. 1.27 Crank the handle to spin the
generator loop to create an emf to send a

tinuously a magnetic field. But there
are uses for the time-varying field
approach, and one of the more striking
is in the operation of a betatron.

The betatron is a machine designed
to accelerate electrons to quite high
velocities. Electrons are often called
beta particles when they are not bound
to atoms, thus the name betatron. All
accelerators, including betatrons, have
lots of electronic gear attached to
them. There are many technical prob-
lems that must be solved before a beta-
tron will perform satisfactorily, but
we are going to ignore most of the
problems and concentrate on the way a
changing magnetic field is used to in-
duce an electric field which in turn
accelerates the electrons.

The heart of a betatron is a hol-
low toroidal affair -.:isually made of

ceramic. Figure 1.28 is a schematic
picture of one of these. You can see
why those in the business call this the
doughnut. We pass over a lot of hard
work and assume that we can evacuate
the doughnut and that we have arranged
to feed free electrons into it. Also,
we somehow supply a magnetic field
which is directed perpendicular to the
doughnut's horizontal median plane at
all points on that plane and which 's

cylindrically symmetric about the axis
of the doughnut. Further, we arrange to
have that field be variable in time.

MOTOR

current through the motor loop to establish
a torque to lift the weight.

Suppose we have an electron moving
inside the doughnut in the median plane
and in a circular orbit of radius r
concentric with the axis of the dough-
nut, that radius being determined by
the electron's velocity v and the mag-
netic induction field Bo at the elec-
tron's position. Now we suddenly in-
crease the magnetic field, so that
there is a LAB/At through the elec-
tron's orbit. We can use Faraday's law
in empty space, as Maxwell suggested,

DIUCTION
OF A ch/At,,

ELECTRON
INJECTION

I
CUT OUT TO SHOW
CROSS SECTION LINES OF B

Fig. 1.28 The doughnut of abetatron.
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so that if we take the circulation path
to be the electron's orbit,

2wrE
At '

A4)8
(1.28)

since the magnetic induction field is
cylindrically symmetric about the
doughnut's axis. The induced electric
field E at the orbit is tangent to the
orbit, so that if we have the electron
moving in the proper direction to begih
with, the force qE will increase its
speed. We can use Eq. (1.28) along with
Newton's second law of motion to give

-eE +
e A4313 A(mv)
2wr At At

where mv is the electron's linear mo-
mentum, and q -.0 is the electron's
charge. From the last two terms, we
have

A(mv) = 2
Ati)

wr BP
(1.29)

where A(mv) is the change in the elec-
tron's momentum that occurs over the
time it takes to change the flux by
A4DB.

In getting to Eq. (1.29), we have
assumed that the electron continues to
move in the same circle of radius r as
the flux increases. How can we arrange
to accomplish that? Using Newton's law
again and the fact that the electron
experiences the centripetal force
-e(7 X B), we get

ovB0 - mv2 /r,

where v2/r is the electron's centripe-
tal acceleration, and Bo is the mag-
netic indiction field at the electron's
position; i.e., at the circular orbit.
From this, we get my = erBo and thus

A(mv) erAB0, (1.30)

where AB0 is the change in the magnetic
induction field at r that accompanies
the change in the electron's momentum
A(mv).

The momentum change in Eq. (1.29)
is the same as that in Eq. (1.30), so

it must be that

A(DB

6B0 m 2
err

2 (1.31)

We arraged the terms in this way be-
cause we can say that

AFB = A(1rr2Bav) = Wr2 May,

where Bay is the average magnetic in-
duction field that exists over the
area of the circle. If we put this into
Eq. (1.31), the wr2 terms cancel and we
are left with

6Bo = ABay. (1.32)

Then the condition for keeping
the electron in a circular orbit is
simply that the change in at the or-
bit must equal just one-half the change
in the average B over the area ringed
by that orbit. One way to accomplish
that is to have Bo itself equal to half
of Bay at all times, but there are cer-
tainly other ways.

We have not described how we go
about assuring that the electrons do
not wander away from the median plane,
or hew to synchronize the injection of
electrons into orbit with the changing
magnetic fields, nor do we intend to.
The arts of designing, building, and
operating particle accelerators are
complex and mysterious for the unini-
tiated.

But we have seen how two very im-
portant ideas are used in the betatron.
When there is a time-dependent magnetic
field, then the circulation of E can be
different from zero, even in empty
space. A time-varying magnetic field
induces an electric field, and that
electric field is just what acceler-
ates the electron in its orbit. Also,
when a charged particle has a velocity
in a magnetic field, then it experi-
ences the force q(v X B). And that
force is just what keeps the electron
in the circular orbit. In short, we
need to use the full Lorentz force

+ v X B) to describe the appropri-
ate behavior of electrons in a beta-
tron.



2 MODIFICATION OF AMPERE'S LAW

2.1 AMPERE'S CIRCULATION LAW FOR

STEADY CURRENTS

Ampere's circulation law for

steady currents is developed and ex-

plained in the monograph Magnetostat-

ics. The law was az:plied only to cases

in which the circulation path is en-

tirely in empty space, and we shall

con'tnue thlt restriction here.

The law says that the circulation

of the magnetic induction field R about

any closed path is proportional to the

current I passing through any surface

bounded by that path. We can express
this statement in mathematical terms:

E g A; poI. (2.1)

a e l osed

The current I passing through a sur-
fate is just the flux of the current

density 3 through that surface, i.e.,

3 Ls.

If the circulation path over

(2.2)

which we sum B A; does not encircle

a current, then that circulation is

zero. This does not imply that B itself

is zero at all the points on sJch a

path; it implies only that the positive

and negative contributions to the cir-

culation cancel exactly.
Figure 2.1 shows a few kinds of

circulation paths and two sorts of sur-

faces bounded by circulation paths.

These serve as reminders of the way Am-

pere's circulation law works. You

should pay particular attention to the

relationship between the sense in which

the circulation path is traversed and

the direction in which the current is

considered positive. This convention

is the same as the one we used in Far-

aday's law when connecting the sense

of the circulation of gwith the posi-

tive direction of A4VAt. So far as

Eqs. (2.1) and (2.2) are concerned,

this is the convention relating the

sense of As with positive direction

of AS; the same one we used throughout

Chapter 1 and which was illustrated in

Fig. 1.1.

ds's =

s closed

E=GP

B As = poi

s closed

E . 4,7= 0

S closed

E i ,s-;
s closed

Fig. 2.1 Reminders of the way Lmpere's circulation law works.
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a

C

Fig. 2.2 A charging capacitor, a time-
dependent situation. 1

There is a simple way to decide
when a closed path is such that the
circulation of B around it will be
zero. While we understand that currents
are not always in wires, assume for the
moment that the current is in a wire as
it is shown in Fig. 2.1. Imagine now
that you have taken a length of string,
laid it along the circulation path, and
knotted the loose ends. Now, in your
imagination, of course, if you could
pull the string away from the wire,
then the circulation of B around that
path will be zero. In that case, we
would say that the path, or the siring,
did not encircle the current. You might
check this with the cases shown in
Fig. 2.2.

From the discussions in the mono-
graph Magnetnstatics, we are convinced
that Ampere's circulation law is valid
for time-independent situations, i.e.,

when the currents are steady and the
charge densities are constant. What
about time-dependent situations? Will
the law be valid when current or charge
densities are changing? It turns out
that the law is not applicable in such
cases, at least not as it stands in
Eq. (2.1). In the next section we are
going to look at a rather common situ-
ation for which Ampere's circulation
law certainly does not work.

2.2 A TIME-DEPENDENT SITUATION

As an example of a time-dependent
situation, we are going to investigate
the state of affairs depicted in Fig.
2.2(a). We suppose that we are charging
a capacitor consisting of two conduct-
ing plates that are circular and paral-
lel. The figure shows the long straight
wires leading to these plates, and we
assume that the rest of the circuit is
so far away that it does not affect
what goes on in the region we are in-
vestigating.

This is a time-dependent situa-
tion. We know that at least one thing is
changing - the charge on the plates. We
shall find a fundamental contradiction
if we apply Ampere's law here. That
contradiction will convince us that

Ampere's circulation law is not gener-
ally applicable to time-dependent situ-
ations.

Let's see how the law behaves.
Suppose we pick the circulation path s
which is a circle of radius r and which
is concentric with the current-carrying
w=ry. That path is shown in Fig. 2.2(b).
We can choose the plane surface bounded
by s to be our surface S, and that is
also shown in Fig. 2.2(b).

Since we have a nice symmetrical
arrangement, we are quite sure that at
any instant the magnitude of B is the
same at every point on the circular
path s. If we assume further that the
angle between B and the circle's tan-
gent is the same at every point, then
we can calculate the circulation that
appears on the left-hand side of Am-
pere's law. We get
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E g A; 2arBt, (2.3)

S closed

where Bt is the component of B tangent
to the circle, assumed to be the same
everywhere on the circular path. We
have some confidence in this result,
although we should know what the cur-
rents are like in the capacitor plates
before we give it too much credence.
For our purposes here, the detailed
correctness of Eq. (2.3) is not im-
portant. Anyone too disturbed by the
many assumptions made in reaching this
result can just substitute the average
value Bt for Bt, and then the result
will be true by definition.

We can calculate the right-hand
side of Ampere's law too. Using the
plane surface shown in Fig. 2.2(b), we

get

E j 11,3 = 1101, (2.4)

where I is the current in the wire at
the same instant at which we calculated
the circulation to get Eq. (2.3).

If we were to equate the results
in Eqs. (2.3) and (2.4), as we can
when Ampere's law is corr ct, then we
would get a result for Bt teat looks
like what we got for an unbroken, in-
fiaitely long, straight current (see
Monograph II, Magnetostatics). And we
would expect that result to be reason-
ably good, particularly if the circu-
lation path is far away from the ca-
pacitor or if the capacitor plates are
small and close together.

Of course, Ampere's law tells us
that we may choose any surface bounded
by s, so we could have chosen the vase-
like one shown in Fig. 2.2(c). That one
is also bounded by s, but it passes
between the capacitor plates. Using
that S to calculate the right-hand
side of Ampere's law, we get

pi) E a 0, (2.5)

since no charge at all passes through
that surface; i.e., the current den-
sity j is zero everywhere on that sdr-
face.

Now we can see the contradiction.
We certainly cannot equate Eq. (2.3) to
Eq. (2.4) anu then turn around and
equate Eq. (2.3) to Eq. (2.5) too.
Since B cannot be both not zero and
zero at the same time, we can expect
trouble when we try to use Ampere's

law in time-dependent circumstances.
Of course, no one ever told us that we
could use the law when there are time
variations in currents or charge den-
sities. We just wanted to try extending
the range of application of the law,
and we were not successful.

If we persist in trying to extend
the applicability of Ampere's law, we
shall need to be more careful - and
thoughtful. Maybe we should first un-
derstand why the law does not work in
time-dependent situations. That is what
we look into in the following section.

2.3 CHARGE CONSERVATION AND AMPERE'S
LAW

We are going to see why Ampere's
circulation law fails in time-dependent
situations. Once we understand that, we
can investigate the possibilities of

generalizing the law so that it will
work. We begin by returning to a fun-
damental principle, the conservation
of charge (see Monograph I, Electro-

statics).
Consider a volume in space bounded

by the cloned surface S. If a net cur-
rent passes through that surface,
either into or out from the volume,
then the net charge existing in the
volume must change. And the magnitude
of that change must be just equal to
the magnitude of the net charge carried
across that surface. This is simply an-
other way of saying that we cannot cre-
ate or annihilate net charge; we can
just move charges around. And we can
keep track of them.

The mathematical statement of the
conservatiea of charge principle is

I E J tSS -44*/.51, (2.6)
S closed

where we have expressed the principle



30 CIRCULATION LAWS AND THEIR CONSEQUENCES

OS

Fig. 2.3 Breaking a closed surface into

two surfaces, each of which is bounded by a

closed path.

in terms of the time rate of change of

charge instead of just tne change of

charge. Here j is the current density

on the surface S, and Q is the net

charge in that volume enclosed by S.

We need the minus sign in Eq. (2.6),

because I is considered positive when

the net conventional current is outward

through the bounding surface.

For steady currents and constant-

charge densities the quantity AQ/At is

zero for any volume, for whatever cur-

rents pass into a volume must pass out-

ward, too. If a current passed into a

volume without leaving, then positive

charge would accumulate in that volume.

In that case, the charge density would

be changing at some place in the vol-

ume, and that is contrary to the as-

sumption that charge densities are con-

stant; i.e., time - independent.. Then the

mathematical statement of the princi-

ple, or law, of charge conservation for

the special case when everything is

independent of time is just

;E:
S closed

J A 0. (2.7)

Now we must be careful. Equation

(2.7) is not the right -hand sidesof

Ampere's law given by combining Eqs.

(2.1) and (2.2),

46-1; 110
LE: j A. (2.8)

s closed S

In Eq. (2.7) the surface S is closed,

and it completely bounds a volume. In

Eq. (2.8) the surface is, in general,

not closed, ;Alt It is itself bounded

by the eltoied path 14, NCl/VahtliChH,

charge conservation as given by Eq.

(2.7) is contained in Ampere's law as

given by Eq. (2.8). And that is just

what assures us that Ampere's law can-

not possibly work in time-dependent

situations.
To support this last assertion we

want to show that the special case of

charge conservation, Eq. (2.7), is con-

tained in Ampere's law, Eq. (2.8). Con-

sider a closed surface S which in our

mind's eye we imagine to be cut into

the two surfaces S1 and S2, as shown

in Fig. 2.3.
We can certainly say that the cur-

rent passing out from the closed sur-

face S is just that passing "out"

through Si plus that passing "out"

through S2. (Why are the two "outs" in

quotes?) We put this in mathematical

form:

S closed

3 2: y..032.
S, s,

There is not really any physics in this
mathematical statement, but now we can
apply Ampere's law to each of the terms

on the right-hand side. If we do put
physics into the equation this way, we

get

E a
S closed

Po si closed
:s; E

s2 closed
if ad .1

;E: A

To be sure that we are calculating the

currents "out" from S1 and S2, we must

make sure that we traverse the paths

si and s2 in the right senses. You

should check to see that Asi and As2

are correctly shown in Fig. 2.3.

But si and s2 are really just the

same path. In the 24Ast circulation of

B we are traversing that path in one
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sense, and in the second we are trav- ior,

ersing the same path in the opposite could

sense. The second circulation then ical

just cancels the first, for surely

4:s;

7..

asi
closed s 2 closed

With this we are left with the result

that

E es.0
S closed

if Ampere's law is valid. And this is
just Eq. (2.7), the conservation of
charge principle for the special case
of time-independent currents and charge

densities.
Well, then, we have proved what

we set out to prove: namely, Ampere's
law contains within it the statement
of time-independent charge conserva-
tion. No wonder it doesn't work for
time-dependent cases: In particular,
we see why it led to a contradiction
in the previous section when we tried
to apply it to the charging capacitor:
Equation (2.7) simply is not true for

any surface that encloses a single

plate during charge or discharge.
Now that we know at least one good

reason that Ampere's circulation law

works only for time-independent situa-
tions, we go back to the question of
what we can do to generalize it - if

we can do anything.

2.4 MODIFIED CIRCULATION LAW,
DISPLACEMENT CURRENT.

Good experimenters do not simply
rummage about in a random way, hoping
by chance to fall upon new information
about the way nature behaves. Faraday,
for instance, had something in mind
when he began his Researches. His early
vague thoughts were more hunches than

ideas, but he followed them doggedly.
In Chapter 1, we traced Faraday's prog-
ress from his first halting steps
through the inspired series of experi-
ments that searched out nature's behav-

and finally to the time when he
formulate a new fundamental phys-
law. The process was: hunch, ex-

periment, theory. That is certainly an
oversimplification, but it describes in
a rough way a process that has often
led to new knowledge. But that is not
the only process in the scientific en-

terprise.
Sometimes the order is turned

around: hunch, theory, confirming ex-
periment. That such an order often
leads to advances in scientific under-
standing is a surprise to some people.
They are usually the ones who think
that "the scientific method" is the
gathering of data until that data
forces the recognition of an important
order, or law. What we discuss next
should serve to bury that narrow con-
ception of what "the scientific method"

is.

We are going to follow Maxwell's
reasoning as we try to generalize Am-
pere's law so that it will be valid in
time-dependent situations. We shall
introduce no new experimental evidence.
We shall not really deduce anything.
We are going to use our imagination as
we try to "fix up" the law, being care-
ful to avoid introducing relationships
we already know to be wrong.

Let's review the state of our un-
derstanding. We know that Ampere's law
is valid for steady currents and con-
stant-charge densities; i.e., for time-
independent situations. Further, we
know that Ampere's law contains the
charge-conservation principle for time-
independent situations, and that alone
is enough to assure us that Ampere's
law cannot be applicable when there
are changingcurrents or charge densi-

ties present.
We might ask ourselves the follow-

ing question: Since Ampere's law con-
tains the special case of charge con-
servation, can it be that Ampere's law
is itself just a special case of a gen-
eral circulation law that contains
the general principle of charge con-

servation?
If the arrow below means "implies

that," then we can write that
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ji . a . NO
E -..J

s closed S

E ; ..5- 0,
S closed

. 1 s / - ..

(2.9)

for time-independent cases. For our

sought-after general circulation law,

we might write that

E -ff a - ? - . Li 3- a
a closed S closed

+ AQ/At = 0. (2.10)

We will have made some progress,
if for the ? in Eq. (2.10) we can put

the flux of something through a surface

hcunded by the circulation path. That

would be nice, because if we can write

the general circulation law as

E g Ag v r2 Ag, (2.11)

s closed S

then, even though we don't yet know

what C is, we are certain that

17 a a . 0. (2.12)

S closed

That Eq. (2.12) follows from Eq.(2.11)

can be shown by exactly the same argu-

ment we used to show that Eq. (2.7)

follows from Eq. (2.8); that is, the

same argument that let us put the "im-

plies that" arrow in Eq. (2.9). That

is a purely mathematical argument;

there is no physics in it._.
Now if we can choose C such that

Eq. (2.12) is the general statement of

charge conservation, then we will in-

deed be making progress. Namely, the

general circulation law will imply the

general statement of charge conserva-

tion. The trouble is that the general

statement of charge conservation; i.e.,

E j AS + AQ/At - 0,

S closed

has not come to us in the form of Eq.

(2.12). The first term is in the right

form; it is a flux through a closed

surface. But the second term is not.

Can we cast that term in the fora of

a flux of something through a closed

surface? We need a relationship between

the net charge contained in a volume

and the flux of something through the

surface enclosing that volume. We do

know of such a relationship: Gauss's

law (see Monograph I, Electrostatics).
Gauss's law says that the flux of

the electric field intensity E through

a closed surface is proportional to

the net charge encompassed by that sur-

face. In mathematical terms,

E R Kg . Q/go, (2.13)

S closed

where E is the electric-field intensity

on the closed surface S, and Q is the

net charge in the volume enclosed by S.

Using Gauss's law, we get that

AQ
NE E ( / tig) ,a t 0

S closed

or, if the surface S is held fixed in

space,

AQ . E EeAt at
closed

AS. (2.14)

we make this substitution, we can
write the general principle of charge

conservation as

E 3 A's- + E E a.a
0

S closed S closed

= E (3 + .0 _2) ,.... 0. (2.15)

S closed

We have been trying to get the

general principle of charge conserva-

tion into the form of Eq. (2.12), and

we have done it. The term inside the

parentheses in Eq. (2.15) is just the

C we have been after. Then following

our lead in Eq. (2.11), we write the

proposed general circulation law as

4,E
E5- . ii - p0 E(-5 + Eo ,E,--,). As.

S closed S

(2.16)
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We have put a po in front of the right-
hand side of Eq. (2.16), so that the
general law will satisfy another con-
dition that we certainly must impose.
We want the general circulation law to
reduce to Ampere's law for time-inde-
pendent situationb, since Ampere's law
is correct in t ,se cases. And Eq.
(2.16) now does just that; AE/At being
zero if everything is independent of
time.

Well, we have fixed up the circu-
lation law in such a way that it has
some nice features:

(a) For time-independent situations;
i.e., steady currents and constant-
change densities, we get Ampere's
law back again.

(b) The law has the general, as well
as the special, statement of charge
conservation built into it.
(c) In a case such as the charging
capacitor, Fig. 2.2, the right-hand
side of Eq. (2.16) is not zero, even
for a surface that passes between
the plates. And we get the same re-
sult for that right-hand side no
matter what surface we choose, so
long as the surface is bounded by
the circulation path.

EXERCISE.

Can you prove that the second sen-
tence in (c) above is true? If you
cannot, you probably do not under-
stand the conservation of charge
principle as it is given by Eq.
(2.6) or by Eq. (2.10).

In developing the general circu-
lation law, we were concerned about
certain criteria we knew must be satis-
fied, if such a law were to exist at
all. And we built in the general con-
servation principle too. Once begun,
everything went along surprisingly
well. Something like knocking over the
first in a line of toy soldiers. It is
encouraging that all went so smoothly,

but the fact is that we have been play-
ing a game. Aside from the requirement
that we not do violence to anything
already known to be true, we set our
own rules for the game. We still need
to answer the important question: Is
our proposed general circulation law
true; i.e., does it check with exper-
iment? This is the ultimate question
asked of all theory, no matter how
pretty that theory may seem. The won-
derful thing about what we have done
here is that the general law is true.
It does describe the way nature wcrks.

It is not at all clear why our
procedure did lead to a physically
valid result. we set out to save Am-
pere's law, but we had no truly guid-
ing experimental results to lead us.
Nor did Maxwell. Equation (2.16) is a
statement about the physical world. It
says that a certain arrangement of
measurable things is invariably equal
to another arrangement of some other
independently measurable things. We did
not deduce this relationship from known
principles,and so we have no guarantee
that the relationship is true. Never-
theless, it is true. But the experimen-
tal verification came after Maxwell had
proposed it.

We have, of course, presented this
development in an artificial way, not
at all as its creator likely did it for
the first time. Textbook writers are
supposed to know where they are going,
so we went right on a beeline from the
posing of the question to the statement
of the proposed answer. And we made
nary a wrong turn along the way. Our
development comes closer to what might
appear in a scientific journal, and
that sort of thing disguises or hides
all questions, mental gymnastics, and
false starts. Nobody reports in a
journal how many reams of paper he
threw away after running down hunches
that did not work out. The report that
goes into a journal is usually cleaned
up, so that it appears logical and
straightforward.

The way we went about getting the
general circulation law is a distortion
in another sense. Maxwell had in mind
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much more than just Ampere's law, al-
though that law was vitally important
to his entire scheme. He was trying to
construct what we today call a field
theory for all of electromagnetism. He
was using the conceptualizations of

Faraday, putting them in manageable
mathematical form, extending and gen-
eralizing the known physical laws, and
putting it all together into a concise
and consistent whole. And the whole
was indeed more than the sum of its
parts. We shall see Maxwell's full the-
ory all in one place in Chapter 4.

In Chapter 3 we shall see how
Maxwell's extension of Ampere's law is
verified. We shall see that the term

co 62/At that we added to the regular

conduction current density j turns out
to be necessary for the description of
electromagnetic fields. laxwell called

that added term the displacement cur-
rent. That is probably not very appro-
priate toaay, but its root lies in
Maxwell's model around which he built
much of his theory. The model has lost
its cogency, but the label continues.



3 PROPAGATION OF AN ELECTROMAGNETIC
DISTURBANC E.

3.1 THE CIRCULATION LAWS IN EMPTY
SPACE.

We now have two circulation laws.
The first, Faraday's law, tells us that
the emf around any closed path is equal
to the negative of the time rate of
change of the magnetic flux through
any surface bounded by that path.

& m 14E: As - -
A4)

s closed q

E
AL

S

At

(3.1)

The second, Ampere's law as modified
by Maxwell, tells us that the circula-
tion of 13- around any closed path is

proportional to the sum of two fluxes
through any surface bounded, by that
path: the conduction-current density
and the displacement-current density.

AR\E E. AS p E(3 + co C ) Ag.
I closed

(3.2)

As written here, Eq. (3.2) already
assumes that the circulation path s is
being held fixed in space. That is not
the case for Eq. (3.1), but we shall
be dealing only with those circulation
paths which are stationary. Further,
Eq. (3.2) is written for a circulation
path that is in empty space, i.e.,
everywhere outside material media.
That is not true for Eq. (3.1), for
which the circulation path can be with-
in a material loop. But Eq. (3.1) is
certainly valid when the circulation
path is entirely in empty space, and
we shall be considering only such
paths.

Suppose now that we consider cir-
culation paths which are stationary in
empty space, and suppose further that
in the region we are investigating
there are no charge densities and no
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conduction currents. If a circulation
path is stationary, then PAI - E in

Eq. (3.1), and we can write

r
s closed

afka E B Ag.
At At

(3.3)

and if there are no conduction cur-
rents around, then j 0 in Eq. (3.2),
and we can write

Ad,a poco At
closed

Pt, Co E E AS.
S

(3.4)

Equations (3.3) and (3.4) show
the intimate relationships that exist
between electric and magnetic fields
in time-dependent circumstances. In
such cases, we no longer have two sep-
arate areas of interest: electric
fields and magnetic fields. When
things are changing it is difficult
and often misleading to think of the
two fields independently. Faraday's
law tells us that there is always an
electric field associated with a time-
dependent magnetic field, even in the
absence of charges. The Maxwell-Ampere
law tells us that there is always a
magnetic field associated with a time-
dependent electric field, even in the
absence of conduction currents. Equa-
tions (3.3) and (3.4) tell us the in-
terdependence of IT and B and allow us
to keep them both in mind at once.
When we do that, we say that we are
talking about an electromagnetic field,
the description of wnich requires the
descriptions of both E and B.

In Chapter 1, when we discussed
Faraday's law, we sometimes said that
a changing magnetic flux creates or
brings into being an electric field.
In Chapter 2; we thought of a changing
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electric field as being a cause of a
magnetic field. As we now look at Eqs.

(3.3) and (3.4), we see that this kind
of thinking does not make sense. The

laws do not tell us which causes which,

they only tell us that in time- depend-
et situations we get both an E and a

114 We know only that there are two as-
sociated field vectors: E and B. It

makes no sense to say that a changing
B creates an E, which if it changes
creates a B. We would need a time se-

quence of events, if we were to think

in this way. And the laws provide no

such sequence.
Nor do Eqs. (3.3) and (3.4) tell

us about a mechanism through which the

two fields sense each other's exist-

ence. This seeming deficiency has

caused conceptual difficulties for

very able physicists. We shall discuss

that problem later on when it is more

appropriate. First we are going to in-

vestigate a very remarkable consequence

of the interdependence displayed in

Eqs. (3.3) and (3.4).

3.2 THE VELOCITY OF PROPAGATION.

Maxwell came to a startling con-
clusion when he combined the physics

contained in our Eqs. (3.3) and (3.4).

He convinced himself that light is an

electromagnetic disturbance - that
light consists of a varying electric

field and an associated magnetic field

directed perpendicular to each other

and both perpendicular to the direction

in which light travels.
We are going to develop the evi-

dence that was most convincing to Max-

well, although we shall not do it in

quite the way he did. We want to show

that a disturbance in an electromag-
netic field travels in empty space
with the speed of light. We are going

to use the two circulation laws as
written for empty space.

We direct our attention to an
empty region of space. There are no
material objects there and thus no

charges and no currents. We imagine

that there is a changing field some-

I
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i
Fig. 3.1 The uniform field g is to the

left of the moving plane and points in the

direction of increasing z.

where in that region, and we begin

with a particular kind, suiting our
purpose. Suppose we have a magnetic

field such that B, pointing in the +z

direction, is uniform everywhere on

one side of a very large plane surface

parallel to the yz plane and that B is

zero everywhere on the other side of

the surfa,:.e. We introduce the changing

character of the field by letting this

plane travel in the +x direction with

the speed v. Then, at every instant,

the magnetic field is changing at

every point on the moving plane. Fig-

ure 3.1 shows this arrangement.
We are assuming that this dis-

turbance is traveling along unabated.

We do not want to say anything about

how it was produced. At this point in

our study we have not yet convinced

ourselves that such a disturbance can

be produced. We just imagine that the

disturbance, as described, exists and

that we have no knowledge of its dis-

tant history. We know what it is doing

now, and we assume that it will con-

tinue in the same way. And we ask what

the characteristics of such a disturb-

ande would be.
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We first use the circulation law
given by Eq. (3.3). We select the sta-
tionary rectangular circulation path in
the xy plane as shown in Fig. 3.2. The
left side of the rectangle is inside
the region where B * 0, i.e., to the
left of the moving plane. Figure 3.2(a)
shows the location of the moving plane
at the time t, and Fig. 3.2(b) shows it
at the time t + a. We have made cer-
tain that the rectangle's length L is
large enough, so that the moving plane
will not have reached the right side of
the rectangle by the time t +

We can calculate the change in the.
the magnetic flux through a surface
bounded by this rectangular path. In
the time interval the change in
that flux is

Bwv At,

sc that the time rate of change of the
magnetic flux is

&DB
Bwv.

be
(3.5)

We shall call this quantity positive
when the flux is increasing in time in
the +z direction, i.e., when its in-
crease is as shown in Fig. 3.2.

Now Faraday's law, Eq. (3.3),
says that the circulation of I around
that same rectangular path must equal
the negativ,3 of A(1)11/6t. Negative, that

ls, when we traverse the rectangle in
the counterclockwise sense as seen in
Fig. 3.2. Then there must be an elec-
tric field intensity E somewhere.
Where is it, what is its magnitude.
and in what direction is it pointing?

As we calculate the circulation
of E around the rectangular path, we
go along the lower side in one direc-
tion parallel to the x axis and along
the upper side in the opposite direc-
tion. These two contributions surely
cancel each other, since the field 2'
at each point on one of these sides
must be equal to I at the correspond-
ing point on the other. And we can put
the right side of the rectangle so far
away from the moving plane that we wee

a

b

Y

. *Z.

x
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y

1vAt-ipA.
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11X
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Fig. 3.2 (a) The location of the moving
plane at the time t. (b) The location of
the moving plane at the time t +

certain that no fields exist there,
and, thus, there can be no contribu-
tion to the circulation along that
side. Then only the left side remains
to provide a contribution to the cir-
culation of E, and it must carry the
full burden.

The contribution to the circula-
tion along this left-hand side must be
Ew, as we see when we recall that we
are going in a counterclockwise sense
around the path. That is, for Faraday's
law to be correct, E must be in the +y
direction at all points on the left
side of the rectangular circulation
path (check this with Lenz's law).
Equating the circulation of E, i.e.,
Ew, with the negative of Eq. (3.5),
we get for the magnitude of E along
the left side of the rectangle

E e vB. (3.6)

We have assumed that the only
component of I along the lelft side of
the rectangle is the y component. That
is the only component that contributes
to the circulation. But whon we are
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Fig. 3.3 The uniform field I is to the
left of the moving plane and points in the
direction of increasing y.

finished with this development, it
will be clear that Elias only a y com-

ponent there.
We can move the left side of the

rectangular circulation path anywhere
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7

x

7

4.

Z

I

14-mat-1.1

1

i

1

1

r o

b 11.x

.

z

.1

I

I

1

I

I

Fig. 3.4 (a) The location of the moving

plane at the time t. (b) The location of

the moving plane at the time t + At.

W

I

to the left of the moving plan with-

out changing the argumect that leads
to Eq. (3.6). Then there must be an
electric field E at each point to the
left of that moving plane. And the
magnitude of that E must everywhere be
just vB, and E must everywhere point
in the +y direction. Then correspond-
ing to the magnetic field shown in
Fig. 3.l,there must be an electric
field as shown in Fig. 3.3.

EXERCISE

Show that there can be no y com-
ponent to any electric field inten-
sity that exists at any point to
the right of the moving plane.

Of course we can use the circula-
tion law Eq. (3.4), too. We now choose
the rectangular circulation path in
the zx plane as shown in Fig. 3.4, the
left side of which is inside the re-
gion where E * 0. In the time interval
At the change in electric flux is

MIN- Ewv At,

so that the time rate of change of the

electric flux is

bkz
At

= Ewv. (3.7)

We shall call this quantity positive
when the flux is increasing in the +y
direction, i.e., when its increase is

shown in Fig. 3.4.
According to Eq. (3.4), the cir-

culation of B around the rectangular
path should equal collo times A(DE/At,
when we traverse the path in a counter-
clockwise sense as seen in Fig. 3.4.
As before, we get a contribution to
the circulation only along the left
side of the rectangle. If we lat Bi be
the magnetic induction field there,
then the circulation gives us just Biw
where Bi points in the +z direction.
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(Check thiL. direction using the con-
vention relating the sense of the cir-
culation and the direction of positive
flux.) Equating this circulation to
£0p times Eq. (3.7), we get that

E =
1 B. (3.8)

Let's review what we have found
up to this point. We used Faraday's
circulation law on the originally
given B field, and we found an in-
auced electric field E that ac-
companies E everywhere behind the ad-
vancir.g plane. Further, R and if are
perpendicular to each other in such
directions that E X B is in the direc-
tion of the velocity ;,7. Equation.(3.6)
gives the relations between the magni-
tudes of EE and B.

Next, we used the Maxwell-Ampere
circulation law on the electriz field
R, and we found that an induced mag-
netic induction field Ni accompanies ri
everywhere behind the advancing plane.
Further, Bi is in the same direction
as the original B, so that R x Bi is
in the direction of the velocity V.
Equation f3.8) gives the relation be-
tween the magnitudes of an'

To see what this means, we must
remember an important point about the
circul .tion laws, i.e., about Eq.
(3.3) and (3.4). If we have time-vary-
ing electric and magnetic fields, then
the field vectors R and rs must satisfy
both equations. Then the Bi we have
been talking about in connection with
the Ampere-Maxwell law cannot be some
new magnetic field. It must be the
same one we had whca we used Faradr,y's
law. That is, vectors E and gmust
satisfy Eqs. (3.3) and (3.4) simul-
taneously. Not only is the if in Eq.
(3.3) equal to the if in Eq. (3.4), the
E in (3.3) is the 13- in (3.4) .5

11n fact, we could have begun with the i1ectric
field .1 shnwn in F. 3.3 instead of with the
magnetic field. We would have used the V NCI-
Ampere circulation law on that A field, and Cum
we would have used Faraday's circulation law on
the associated magnetic field. We would have
ended with the MAIO relationships.

How can we build_ in the fact that
IT? Well, Bi and s are in the same

direction, so we just need to arrange
things so that their magnitudes are
the same. That means that the Bi in
Eq. (3.8) must be made to equal the B
in Eq. (3.6), which is possible only if

V2 = 1/E0 Po (3.9)

That seems strange. The advancing
pla-e cannot have just any velocity,

must have a particular velocity. We
can find out what that v is by using
the known values for co and po (see
Monographs I and II, Electrostatics and
Magnetostatics). You may remember them
in the forms

1

4ZE0
- 9 X 10' newton- m2 /coulomb2,

-6- = 10-7 newton/amp2.
4w

A little rearranging gives the result
1/Copo - 9 X 101$ m2/sec2, or

v - (Copo)-1/2 - 3 X 10 nisec.

(3.10)

But this is not just an interesting
velocity, it is the velocity of light!'
Who can imagine the thoughts flashing
through Maxwell's mind when this came
to him?

We should be careful about what
we have and have not done. We have
shown that if there is a self-sustain-
ing electromagnetic disturbance that
travels through empty space, then the
velocity of propagation of that dis-
turbance is c, the velocity of light
in empty space. We have not explained
how to create such a disturbance. We
have not shown how the disturbance is
related to sources, i.e., what the
sources must do to create this kind of
disturbance.

A1n vacuum, which is fine since Co and po are
supposed to be 4etermined for vacuum, too. Actu-
ally, c m 2.998 x 10A m/ssc.
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Fig. 3.5 Spatial profiles of electromag-
netic disturbances: (a) a single abrupt,
discontinuous rise; (b) a series of smaller

This is the evidence Maxwell con-
sidered most convincing. He reported
his conclusion in confident, though
guarded, language, "This velocity is
so nearly that of light, that it seems
we have strong reason to conclude that
light itself (including radiant heat,
and other radiations, if any) is an
electromagnetic disturbance in the
form of waves propagated through the
electromagnetic field according to
electromagnetic laws."7

Today there is no doubt; light is
electromagnetic in character. And by
"light" we mean the entire electromag-
netic spectrum: radio waves, micro-
waves, infrared radiation, visible
light, ultraviolet light, rays and
y rays. The evidence is nc. overwhelm-
ing. Each of these is an electromag-
netic disturbance, the frequency in-
creasing in the order in whir.' they
ore listed. But conclusive experimen-
tal evidence did not come until more
than twenty years after Maxwell's work.
(see section 3.3).

We chose a particular kind of
disturba-ice for our development, but
the conclusions are really independent

'Maxwell's paper, "A Dynamical Theory of the
Electromagnetic Field," Philosophical Transac-
tions, Vol. 155, 1865. The quote is taken from
A Source Book in Physics by William Francis
Mails, McCraw-H111 Book Co., Ise York, 1935.

B

OR
E/c

b c

discontinuous rises; and (c) a continuous
rise.

of that choice. We have taken an ex-
treme case in which the field goes
from zero to a finite value abruptly
at the moving plane front, Fig. 3.5(a).
We could have chosen to build up the
field in space at any instant by a set
of smaller steps, Fig. 3.5(b). These
steps need not be very widely separated
in space, because we can always choose
the length L of the rectangular circu-
lation paths to be shorter still. Of
course, the corresponding At would need
to be smaller, too. In any case, we
could treat each boundary between suc-
cssive steps just as we treated the
single one before.

And while we are not yet prepared
to give a rigorous proof, it is true
that the results are the same when the
field has any continuously changing
profile in space, Fig. 3.5(c).

That is, no matter what the shape
of the spatial profile of the electro-
magnetic disturbance, at every point
E = cB, and the disturbance travels
through empty space while maintaining
its shape (see Fig. 3.6). All the trav-
eling disturbances we have described
are called plane waves, each point in
the disturbance traveling in the same
direction. We shall restrict ourselves
to plane waves in this monograph, but
you can likely figure out for yourself
some of the characteristics of cylin-
drical and spherical waves.

We are now in position to see the
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Fig. 3.6 Tile characteristics of t plane

electromagnetic wave in empty space.

(a) The spatial profile is unchanged as it

travels with the speed c. (b) tang' B are

consequences of what Maxwell did to

Ampere's circulation 1%- (see Chapter

2). He not only saved the law for time-

depcbrident situations, :le predicted the

character of electruAagnetic radiation.

The displacement current poco(bEibit)

that he added, see Eqs. (3.2) and

(.3.4), is just what makes that predic-

tion possible. This is surely the

strongest evidence we have for Max-

well's modification of Ampere's law.

Further, we begin to see how the

entire theory fits togetb2r. We now -

have four independent statements about

electromagnetic fields in empty space:

as gm 01E0,

S closed

E -0,
S closed

Eids--E
s closed

aT
at

perpendicular, and at each point Ix ilia
in the direction of the wave's velocity. At

each point E cB.

E g
s closed

mi No E Cs + Co A.3i.)
S

(d) (3.11)

where the circulation paths are as-

sumed to be at rest in the frame in

which E and B are measured. These four

equations along with the Lorentz force

law contain all of electromagnetic the-

ory. You should be able to say, in

words, what each of these tells us

about the way nature behaves. And you

should be able to explain the physical

basis for each and give an example or

two of situations that each describes.

Further, you should now see that,

taken together, these equations tell

us something that they did not when

taken one at a time.

These are the famous Maxwell equa-

tions, here written for the case when

the field point is in empty space. You

will meet them again in Chapter 4 [not
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yet completed]. At that time we shall
be able to use a bit more sophisticated
mathematics to help us, but we already
have all the physical concepts we need.

Before leaving this section, we
should make one further point. Start-
ing with the monograph Electrostatics,
following with Magnetostatics, and now
in this monograph, we have been pro-
ceeding as if the two constants co and

Po were independent of each other and
were, thus, independently defined and
measured. But if we take the point of
view, which we now do, that c is a uni-
versal constant, then we have just one
of these constants to define. The
choice is to define mo :s being altt

X 10-7 newton/amnere2 exactly. Then Co
is no longer an independently defined
quantity; it is given by (c2'po)-l.

61.


