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: R , Boston State College

In accordance with the re;ommendations of the Cambridge Conference
meeting of the summer of 1966, “rofessor Weiss.and I embarked on the
~ project of developing a sample vourse for use in the teacher's college.
We worked in close cooperation with Professors Perrault and Callahan of
the Boston State College. From the beginning we felt strongly that it
was important to develop the material in close cocoperation with a teacher's
- college. The reason for this was that our first main problem was one of
educating ourselvgé as to the nature of the students and educational
atmosphere in the teacher's college. During the fall semester our operat-—
ing procedure was as follows: We would hold weekly (or bi-weekly) meetings
with Professor Callahan (who was teaching the course) to discuss educa-
tional objectives and methods prior to classes. I then attended the class
(disguised as a student registered in the class) and Professor Veiss viéitéd

the class at regular intervals. (Actually, my schedule allowed me to attend

only two of the three classes per week and Professor Weiss visited the

regctions of a few df the stu&énférquifeﬂkeil.-'inh}eirdSpect_I can say
that this procedure was extremely vaiuable. I learned a great deal about
the nature of the educational problems and this information was used in re-
vising the material for the course.

Our approach to the course was based on three methodological
principles: 1) that emphasis should be placea on mathematics as an organi-
zation of (cxperimecntal and other) informaticn and not primarily as a
deductive system; 2) that it is important to use concrete objects to em-

~ phasize the "real" nature of mathematics; 3) that the material taught in
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the course sg;ﬁld have a direct bearing on the material that the prospective
7o teacher would use in the elementary school classroom.

As to 1): There is no doubt that the key feature distinguishing
mathematics from the other scierces is its purely deductive cnaracter.
However, it is our feeling that (especially with the students under question)

- -this point has been over-emphasized at the expense of understanding the

meaning of mathematical assertions. Thus, a proposition is regarded pri-

marily—aé a Qtepping stone to the next proposition. What is seriously

+——- .. -lacking is an understanding that a prop@sition is an efficient way of gather-

ing together a lot of mathematical information. In manyvcases, the stué;nfs
"were able to repe;t vérious mathematical "laws' but were stymied when asked
to illustrate them or apply them in a given instance. Furthecrmore, even
the best students in the class had a very weak idea of what constituted a
valid mathematical argument and it seemed unwise to push this side of

haad mathematics too far.

As to 2): In close connection with the previous point, it was clear
that many of the students did not relate mathematics to any notion of
‘reality. To illustrate, at one juncture, the students were asked to compare

the length of two segments that they had randomly drawn themsclves. They
were asked to compare the lengths experimentaily using straight edge and
compass. Some students rejected their own findings because the answers

did not come out a whole number after three or four bisections. As one
student put it - "math problems are supposed to come out even''. Apparently
one reliable way of checking what is drilled into the students in primary
—- —and high school is to see if tte answer is a single integer. This has had
the effect of d{vorcing mathematics from real life to the extent that the
previoué ;étoﬁnding quote was possible. We, therefore, strongly felt that

a substantial portion of the course should be given in "laboratory" dealing

{
t

with physical objects.




As to 3): Th;'reason here is two-fold. First of all, since most
prOSpective teachers teaching the course will not be intrinsically
motivated to matheﬁatics or be motivated by the applications of mathematics,
some external motivation must be supplied. A source of motivation is the
possibility of using the material of the course in a future classroom
situation. In fact, the greatest show of enthusiasm I saw was vhen cone
of the girls'has trying out some of the course material in her practice
teaching. A second point, of course, is that if a thorough understanding

- of the material is not achieved by all étudents, these students will at
least have acquired some useful devices for the classroom situation.
- The subject matter of the course consisted of a study of the positive

ifreal numbcrs in connection with the measurement process, the study of the

: whole number line as a one dimensional vector space and the study of
vector geometry in the plane. Our reason for this choice of subject con-
sisted, in part, of a desire to counterbalance the recent trend to base all
arfthmetic on gcta, which han had the effecct to cmphanize the dizerete and
de-emphasize the continuous and geometric aspects of arithmetic. Due to some

- debugging of early material, there was not enough time left to adequately

~ treat the vector geometry in the plane. We expect that this material will
be covered, tested and revised in the current épring term.

So far, we have developed "laboratory material" such as balances,
weights, ruler and compass methods, and a gadget for addiig vectors in the
plane quickly. A laboratory manual for the first two-thirds of the material
has been written. However, it will need to be seriously revised. A final
draft of the first portion of the text is currently being written. We
anticipate that after further experimentation this term (especially on

the last third of the material), we should have a complete package, con-
P P

sisting of text, laboratory manual and laboratory materials,
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Chapter 1

Measurement

1-1 Introduction

The purpose of this chapter is to examine the notion of
measurement with some care, and also to study the real numbers
with emphasis on the role they play in describing the measurement
or the size of various objects. It may be remarked, in passing,
that by the real numbers we mean all the numbers which are
usually used in arithmetic -- that is, all the numbers on the
number-line. One of the major objectives of this course is to
deepen tﬁe student's understanding of the real numbers. This is
important mathematically and because of its close connection with
the mathematics curriculum of the elementary school.

In recent years, there has been a tendency, at all levels of
the educational process, to base arithmetic on the operations of
set theory. This has led to heavy emphasis upon the discrete .
aspects of arithmetic as opposed to the continuous aspects which
arise in a natural way from the process of measurement. We prefer
to emphasize the continuous, and ouf procedure will be inductive
rather than axiomatic. That }s, we will derive various rules or

properties of the algebra of measurement as abstractions from ex-

periments or experiences which have grometric or intuitive content.
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Our experiments will center on weights and on lengths, although

analogous experiments could be applied in any situation where

measurable quantities are obtained.

W,
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1-2. Inequality

The most primitive notion underlying any situation in which
some kind of measurement plays a role is that of inequality. As
examples of the type of situation we have in mind, we may list
the follawing: one weight weighs less than another, one stick
is shorter than another, or one baseball team is inferior to
.another. Of course, there are many\ways to define what is meant
by the statement that team A is worse than team B; one possibility
1s that tean B won -the last game they played, another possibility
might be that over the full season team B won more games from
team A than it lost. The reader should have no difficulty in
choosing other possible definitions.

Our first experimenté\are with the notion of weight. Here,
the measurement or more precisely, the comparison, is determined
by aibalance. Object A is put on one side of the balance, and
object B is put on the other side. If the side containing A goes
up while the side containing B goes dowh, we sayrthat object A is
lighter than B and write A < B. If side A is the one which goes
\down, we write B A. The sign € is to be read as less than.

(It could be that different observers comparing A and B will

arrive at different observations. Thus one observer may "see"

that A is lower, while the other observer cannot decide which is




lower. In our discussion, we shall avoid such problems by assum-

ing that there is an objective reality which is seen by all

observers.) In the present context, where the comparison is that

of weight, we might use the terminology larger than (and write D )

instead ;f less tian. However, in order to maintain mathematical
consistency and simplicity we will ?se only the symbol for less

than. - L “ ' ' o o T T

It is exgremely important that it be gnderst66d that this
notion of comparison of weights has nothing to do with numbers.

(In particular, such things.can be taught-to first grade children.)
We do not say that object A weighs so many ounces and that object B
weighs a certain number of ounces. Our sole assertion is that
there is a comparative statement relating objects A and B. At a
later stage, we shall analyze the mathematical properties of this
relationship; eventually this will allow us to introduce the real
numbérs as representing the measurement of such things as weights.

We shall also experiméﬂt'with le;gfhs which are represent;d
concretely by sticks or line segﬁents. Here, we compare sticks
A and R by placing one on top of (or against) the other such that
both have an end in common -- for example, we might stand them

both up on the table. If stick B extends beyond stick A, we say

that A is shorter than B (or thai B is longer than A). Thus, here




too we may write A < B and say that A is less thaa B. Naturally,
we are making the uunderlying assumption that the result of this
comparison is not affected by moving the sticks around in space
v: by which endpoints we take as common to both. Of course, the
same ass;mption of invariance of compafison under motion applies
also tke case of weights. Again we emphasize that our comparison

==~ ~"has nothing to do with numbers; we do not "measure" each stick -~

all we do is compare them.




1-3. Transitive Law for Inequalities

The first fundamental property of our "less than" relation-
ship.for welights or lengths is the transitive law. If A is
lighter than B and B is lighter than C, then A is lighter than

C; in symbols, if A< B and B C then A< C. This rule, which

>

is known as the transitive law, is so obvious that we often take
_ it for granted. It is certainly ob;ious for the case of weights.
It is equally obvious for the case of lengths; that is, if A is
shorter than B and B is shorter than C, then A is shorter than C.
On the other hand, the transitive law does not hold in all
situations of every day life where we make comparative statements.
Consider, for example, the comparison of baseball teams mentioned
earlier. If the lMinnesota Twins are not as good as the Red Sox
(that is, Twins < Red Sox) and also Red Sox < White Sox then it
does not follow in practice that Twins< White Sox. The reason
for the failure of the transitive law in this context is that more
than one factor enters into the winning of a single ball game ;r
series of ball games and these factors may not combine. It might
be that Minnesota hitters hit White Sox pitching very well but
do poorly against the Red Sox. By-the same token the Twins may
have pitchers who lose consistently to the Red Sox (because of

the special dimensions of Fenway Park) but who specialize in
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certain pitches that the White Sox hit very well. In addition,
the Red Sox may be weak in fielding which causes them to lose to
the White Sox. Thus the factors that determine who wins or loses

may not combine, and it is quite possible that Twins < Red Sox,

- —Red Sox €< White Sox, and White Sox < Twins.

An example which illustrates this point is the children's

game commonly known as "Rock, Scissors and faper". The rules of

the game are as follows: There are two players; each places one

hand behind his back; then the hidden hands are brought forth

——— . ———

simultaneously. Each child displays either a clenched fist re-
presenting a rock, or his open hand representing paper, or two

fingers representing a pair of scissors. If one child displays a

" 'fist and the other an open hand, then the one with open hand wins

because paper wraps rock. Furthermore, scissors wins over paper
because scissors cuts paper, and rock wins over scissors because

rock can break scissors. In short, the rules of the game are, _

‘rock < paper, paper < scissors, scissors & rc¢ck, which means that

there is a clear-cut violation of the transitive law. By stretch-
ing things a bit, one might say that the transitive law breaks
down precisely because the relationship between rock and scissors

is entirely different from the relation between scissors and

paper...Roughly speaking, .we may say that the transitive law holds

when our comparison is based on a single simple quantity such as




weight or length, rather than on some complex combiz=tion of factors.
Bventuall&, we intend to express the relationship of inequality
(that is, less than) in tefms of numbers. More precisely, cme of our
goals is to assign numbers to objects in such a way that relatioms
between objects are reflected by corresponding relations between the
assigned.;umbers. In other words, if A and B are objects and "less
“;han" compares them in weight or length we would like to assign
"=~ -~ -  numbers to A and B such that A < B if and only if the number associ-
ated with A is less than the number associated with B. Thus, the
relation of < for-objects will co?fé;pond to the relation §f < for
the associated numbers. Since, as is well known, the transitive law
holde for numbers, it becomes absolutely essential that (ia order to
preserve the < relation under our correspondence) we deal with objects
” for which the < relation is transitive. We also want tc emphésize
that unlike the example of the baseball teams, mathematicians use the
symbol < only in cases where the transitive law holds. This accounts,
in part, for our emphasis on weights and lengths.
Topics for Discussion:
1. How would you undertake to teach small childien zbout
the transitive law?
2. What is the meaning of the phrase "if and only if?" Are
you chuaiﬁted with other ways of saying the same thing?
What is a "necessary condition"? What is a "sufficient

condition"? What is meant by a "necessary and sufficient"

condition? What is a converse?
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1-4. Experiments with the Transitive Law

Our first experiments concerning the transitive law for
weights are based upon use of the balance. If the balance tells
"~ "us that object A weighs less than object B and also that object B
weighs léss than object C, then one observes, experimentally,
-thaAt':when A and C are compared it turns out that A is less than C.
————--— - —-By performing this experiment severa-zl times with different choices
of A, B, and C we may satisfy (i.e. convince) ourselves experi-
"7 ""mentdlly that thz transitive 1aw does, in Tact, Txo“h; Eor ‘weights...
Once this stage has been reached, the transitive law may be used
48 3 principle of deduction. Thus if A< B and B.wr - th:an we may
“corclude that A < C without making use of the balance.. Further-
S — more if, :-ln addition, we know that C < D then the transitive iaw :

enables us to deduce that B¢ D and A< D. It is clear then that

the transitive law may be used to "telescope" a series of

" inequalities -- for example, if we ha\}e-also, D<EEC F, F< G,

6 (ﬁ then one conclusion is A < H. .

In this connection, an interesting experiment is to start
with a reasonably light weight A and t}zve each ;)f the students
construct, in succession, a heavier weight. In other words, the

- -first student with his balance constructs weight B slightly

heavier than A, then the second student uses his balance to con-

T T 'gtruct we—ight C 'Ig'htly heavier thaii"B, and tﬁi.smii'ocess continues




as the weights are passed around the room. If one stops ﬁhis
experiment at any point and compares the end weight with the
original weight A, then the result is always A £ end weight.
Thus, the transitive law and its consequences hold experimentally
without ;ny difficulty. On the other hand, we shall see later
that difficulties arise when one tr;es to deal experimentally
with the transitive law for equalities.

The transitive law can be conveyed effectively to children
as a matter of organizational efficiency. Suppose they are given
a large number of objects aﬁd asked to record all the comparative
statements that can be made relating any pair of these objects.
For example, suppose that each child is given a weight (clearly,
lengths could be used instead of weights). The teacher selects
pairs of children (many of them) and asks them to compare their

weights. The children should soon observe that the most efficient

way to organize all this information is to order all the objects
accérding to increasing weight -- for fhi# enasie; them to deduce
the relation between any-pair of objects from this ordering and
the transitive law. Of course, heavy use is made of the transitive
law in ordering all. the objects according to increasing weight.

A useful pedagogical device which may be introduced at this

point, with the purpose of hammering home the use of the transitive




law, is to pléy a guessing game with the following rules. A
certain number, call it n, of objects are given and arranged
according to weight -~ for convenience, we may write Al <

Ay < A3< cee & An Someone selects one of these n objects, and
the othe;s must then guess which object was chosen. The guessers
are permitted to ask questions of a single type (which queétions
- do not count as guessers), namely -; is the unknown object
greater than (or less than) the { th object Aj. Naturally,
guessers may be made even before any questions are asked, but
after a few trials the children may get some feeling as to how to
ask questions efficiently; so that after as few questions as
possible they have no doubt as to which is the unknown object.

It is easy to see that for n=3 objects, 2 questions suffice fér
determining the unknown object with certainty -- while 1 question
does not suffice. For any n, let q denote the minimal number of
questions after which we can Pick out the unknown object with
certainty. We have noted al;gady ?hat if n=3 then q=2. It ma;
then be observed that if n=4 then q=2, while if n=5 then q=3.
Continuing our systematic examination_of the connectioq_between
n and ¢, we see that if n=8 then q=3. It follows then that for

for n=6 6r 7 we have q=3. The next case to consider is n=16=2%--

and by now it is fairly clear that q=4. As before, it follows
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that if n=9, 10, 11, 12, 13, 14 or 15 then also q=4. What about
the general rule? This is essentially within our grasp. If n

is a power of 2, say n=2k, then by simply extending the procedures
used before, we see that q=k. If n is not a power of 2, then n

2k'1< n £

.. -14ies between two consecutive powers of 2 -- that is,
2k -- and we get q=k. For example, if n=100 then 20264 < n=100<
27=128 so that gq=7.

of coursé; one does not discuss n and q explicitly or in a
formal sense with children -- one simply does many examples, and
-~ "leads them to discover the pattern. Such a line of exploration

introduces children to some uses of powers of 2, and serves as

preparation for the eventual study of binary expansions.
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1-5. Equality and its Properties

If objects A and B are placed on different sides of a balance

and neither side goes down, that is, if tne two sides balance,

" then we say that object A is equal in weight to object B. For

-

simplicity, we then write A=B, although such a notation obviously

leaves much to be desired. In similar fashion, segment A is

"saild to be equal in length to segment B if neither one is lionger

than the other. We shall deal with weights, although the same

" sort of discussion would apély equally well to lengths.

_ _The first fundamental observation about the relationship of
equality is again the validity of the transitive law. That is,
if A=B and B=C then A=C. However, in contrast to the transitive
law for inéquality, the transitive law for equality is frequently
an idealization from experience rather than something that always
holds true in practice. Thus, if we have objects A, B, C, D, E
with A=B, B=C, C=D and L=E then standard rules of reasoning lead
to the conclusion that A=E. Unfortunately, the experiment
corresponding to this assertion often breaks down. In fact,
suppose that one student starts with object A and produces object
B of equal weignt. Le keeps object A and gives B to the next
student who constructs object C equal in weight to B. He then

gives C to another student and the same process is repeated;

this goes on as maﬁ&ikiﬁés as desired -- 10 will usually suffice,
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but one may prefer to have every student participate. If the
last object constructed is compared with A, they frequently turn
out to be of unequal weight.

- -The reason for this apparent contradiction of the rules of
logic is; of course, the inaccuracy of our balance. There is a
certain amount of éxpéfimental error involved; thus although A
and B balance on our rough balance,xthey are probably not really

equal in weight, and the use of a more delicate and accurate

~balance could show this. Now, such errors can accumulate suffi-
ciently so that they do indeed show up even on our rough balance;

. this is why the experiment led to an unexpected result. Un-

fortunately, this accumulation of error is unavoidable. If we
were to use extremely delicate balances, the same trouble would
arise, because, after all, no balance is truly perfect.

It may be remarked that if this experiment is repeated a

number of times, it will turn out that sometimes the end product

is lighter than A, sometimes it equals A, and sometimes it is
heavier than A. If things work reasonably well, the end product
turns out to be lighter than A or heavier than A with equal

frequency. This indicates that the breax—down of the transitive

law for equality does not reflect something that is fundamentally

missing from the relation -- rather, it is due simply to accumula-

“tion-of experimental error. The cases in which the end product . .
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is equal to A in weight occur precisely when the various ex-
perimental errors cancel each other -- some students may produce
weights which are too heavy while others may produce weights
which are too light.

In summary, the transitive law for equality is a rule which

we regard as holding in an ideal situation. According to our

A

" “viewpoint, the equality represented by a balance is merely a

crude approximation to the ideal equality that we would expect to
hold for an ideal balance.
Question: If A=B and B & C, what if the relation between A and C ?

‘Explain.

Discuss whether this is an experimental fact or a law

- of logic.




1-6. Equivelience Relations

If we have objects A and B and are dealing with weights
(analogous remarks will apply to lengths) then our previous nota-
tion involves writing A=B to signify that A and B are equal in
weight. This notation has an unfortunate aspect which could con-
ceivably lead to confusion, for it is customary to interpret a
statement like A:B.in terms of "beiﬁg identical" -~ that is,

object A is the same z2s object B, so that A and B are possibly

-.-differvent names for the same obiect. In the interest of precision
P

we shall temporarily use the notation A—!- B to mean that A and B
are equal in weight; another possible notation would be w(A)=w(B)
(We shall revert to our old notation after this section.)

This definition of equality in weight, A; B or w(A)=w(B)
implies that we arz focusing attention only on what the balance
tells us. Thus, for our purposes, a cup of coffee and a soggy
doughnut are the "same" if they balance. The important point is
that-- this relat;ion_i_ of balancing allows us to introduce én -
abstract notion called '"weight' to each real object: w(A) is the
weight of the object.A. Wg»mean this is in the same sense thag
we attach thne color green to all green objects. We may then con-
sider the idea of "green" as an abstract notion in its own right.

Note that, as yet, we have no right to consider weight as a

-number any more than we can consider color as a number.




In the Eﬁglish language we tend to distinguish between
adjectives and nouns. In a certain sense this distinction is
artificial and purely a matter of usage or convenience. We are
not accustomed to saying "a green" when we mean any green object
or "a fat" when we mean any fat person. (There are exceptions;
;; do say "a square” to mean any square figure.) 1In mathematical
p— -~ discourse, however, it is quite com;on to drop the distinction

between adjective (or other modifying word) and noun. Wé talk,

~ "~ "therefore, about *the weight A® when we really mean “any object
_-yhogeiweighg is w€A)": We pProceed-to analyze this idea of intro-

ducing an "abstract" notion such as‘weight.

"The general mathematical setting in which the preceding
notion of equality in weight (or of equality in length) should be
viewed involves the concept of an‘equivalence relation. We now
proceed to explain what is meant by an equivalence relation in a
somewhat abstract éetting. Consider an arbitrary set S whose
elements or numbers are denoted by A, B, C; D,...and such that—

there 1s given some relation, denoted by R which may or may not
hold between any two elements of S. Thus, for any given pair
(A,8), in the given order, with A, B € S we write A R B when A is
related to B (that is, when A and B satisfy thé relation) and

A ; B when A is not related to B. Some concrete examples should

prove helpful at this point:




1) Let S be the set of all integers, that is,

S ' cees=2, -1, 0, 1, 2, 3,...t and let the relation R be
"less than" (:ln.symbols, &<). Then A R B means A € B, while
A ;. B means that A is not less than B (that is, A 2 B).

2)  S= 4..,-2, -1, 0, 1, 2,...} and R is = (less than or

equal to).
of being equal in weight. Here, for A, B € S, A R B means

. ___ that A g.B Of course, this may also be done for lengths.
4) S is the set of all objects (i.e. weights) and R is the
relatib'n 6f leés t';nan. Here, A R B means that A is less
than B in weight. In our old notation. this 'woas.d be expressed
¢ as A { B; however, in keeping with our remarks dit the beginning

of this section, it might be preferable to write A 2B or |

w(A) € w(B).

5) S is the set of all real numbers and R is € -—- so AR B

--- if and only if A € B. - -

6) S is the set of all real numbers aﬁd R is=—.
7) S 1is the set of all triangles in the plame, R is the

relation "has the same area as" -- so A R B sigpifies that A

has the same area as B. Among other possible relations on

- this same set S we may mention "is congruent to", "is similar

to" or "has the same perimeter as".




8) S 1is the surface of the earth, and A R B means that

A has the same latitude as B.

9) s=£0,%, %,...3 1s the set of all integers and

AR B is taken to mean that A-B is divisible by 7.

Ret;rning now to an arbitrary set S with a relatien R on ice,
if the following three properties are satisfied we say that R

1s an equivalence relation.

(I) ARAforall Acs : (reflexive law)
(II) If AKB then B R A for all A, B €S (symmetric law)

(III) If ARB and BR C then A R C for . )
g allA, B, CecsS (transitive law)

The reader may verify easily that the reflexive law is
satisfied in examples 2, 3, 5, 6, 7, 8, 9, and that it is not
satisfied for examgles 1 and 4. Note that the reflexive law in
example 3 is really a logical "fiction"; it cannot be verified
experimentally witﬁ a balénce because the object A cannot be
Placed on both sides of‘the balance simultaneously. There is
only one object A, and any copy of it is obviously not the same
as object A. Thus, for our ideal balance, we are really making
the gssumption Fhat if the same object could be placed on both
sides of the balaace simultaneously then both sides would balance--

- i.e. that an object weighs the same as it#elf.

The reader may also verify that the symmetric law holds for
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- examples 3, 6, 7, 8, 9 and that it does not hold (which means
that we need produce only one case in which it breaks down) for
examples 1, 2, 4, 5. Note that in example 3 the symmetric law
reflects/the underlying assumption that our ideal balance is not
"biased"; in other words, if A and B balance when A is placed on, -
say, the left side of the balance and B is on the right side
(i.e. iIf AR B) then they also balance when A is on the right side
and B is on th; left (i.e. B R A).— In particular, writing A R B
involves distinguishing one side of the balance.
-—~~Finally it is easy to see that the transitive law is

satisfied for all the examples 1 through 9.
Problem: Define a set S with a relation R such that

a) R is symmetric and transitive but not reflexive

"b) R is reflexive and transitive but not symmetric

c) R is reflexive and symmetric but not transitive

d) R satisfies Anly the reflexive law

e) R satisfies only the symmetric law

f) R satisfies only the transitive law

Examples 3, 6, 7, 8, 9 are, all of them, equivalence relations,

and the reader may easily produce other examples of equivalence
relations. The mathematical importance of the notion of equiva-
lence relation is that, in such a situation, the set S can be

partitioned into disjoint subsets (which subsets are usually known
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as "equivalence classes"). In detail: we say that A is equivalent

to B (with respect to R, of course) when A R B, and then for

every X €S we let [X] denote the set of all elements of S which

are equivalent to X -- symbolically, [X] = {AQS l AR X}. A

subset of form [X] for X€S is known as an equivalence class ~--

or th-e.eqﬁivalence class deté}mined by X. The fundamental -

~

. properties of these equivalence classes are as follows:
1) AE[A] f.or‘any A€S; in words, each element of S belongs

—~ ~—to the equivalence class which it determines.

i1) 1If Be [A] then [B] = [A] sy in words, any element of an

equivalence class determines the class.
111) [a] = [B]¢=>A R B; in words, two elements of S

determine the same equivalence class if and only if they are

‘equivalent. :
v) If [4] n[B];é / then (A] = [B];in words, 11 two

equivalence classes have an element in common then they are

identical.

W 1 n [B] - Je ks
As for the proof of the-: _ opz.uies, i) is immediate in virtue
of the reflexive law. 17 puave i), note that, using the symmetric
law, B¢ [A]<=2" R A=A P E&-3k 5 (5] Then X€[B] =X R B

S=—>X R A (since B R A)=—) xe [A]. This‘ means .hat [B]C [A],




~and in similar fashion (that is, by a symmetrical argument)
(aJc (B]-- therefore, [a] = [&]. | The proof of iii) is ncw simple:
[4) = (B]=>Be [A]==B R A=—3ARB, and 4 R B=—> Bl —>
[A] = [8]. To prove 1v), observe that 1f ce [a]n [5] then
ce [a] and c< [8) , so [a] = [c] = [B] . The proof of v) is 1eft
to the reader. . |
“From what has gone before we see that if S is a set on whi?h

we have an equivalence relation then two equivalence classes are

either disjoint (that is, ha&ing no element in common) or

.- ~.identical -- not both -- so that S breaks up into disjoint

equivalence classes. Thus we can form a new set, denoted by S/R,
whose elements are the distinct equivalence classes [A] ,‘[B] ’
etc...

If we are considering the set S of all material objects with
the equivalence relation R of "is equal in weight to", then each

equivalence class consists of all objects which happen to have

the same weight. Mathematically, we may then think of each such
class as a new object in its own right. 1In this way, each
equivalence class has a weight associated with it (one might even -
go further and say that each equivalence is a weight). This is
entirely analogous to considering the set of all colored objects
with the relation "is the same color as". The equivalence classes

consist of all objects having the same color -- so each equivalence
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-class may, for all practical purposes, be considered as the color
itself, and the set S/R here is just the set of all colors.
Returning to weights, we‘observe that for the equivalence
classes we have a natural notion of [A]‘<[?] -~ namely, when
A 2 B. A key point here is that [A] < [B} is "well defined";
this means that the definition does not depend on the choice of
representatives for the equivalehce classes. In other words, if
[A‘] = [A] and :[B']= [B] then (see the question at the end of
sec. 1-5) A 2 B&= A" < B . Consequently, the notion of
. .—1less than can be regarded not only as a relation between objects
but also as a relation between weights -~- that is, as a relation
between equivalence classes.

Problem: Discuss several equivalence relations (especially

example 9) and describe the equivalence classes.
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1-7. Addition and its Properties

For convenience, we shall deal in this section only with
weights, and leave it to the reader to consider the analogous

situatibn of lengths. Our purpose is to show that we can combine

-

weights in such a manner that the usual rules for addition hold.

Consider any two objects A and B, and combine them by lumping

A

them- together into a single pile. This pile may be viewed as a

new object wh;bh we denote by A+B. From the point of view of our

balance, A+B means simply that both A and B are placed together

~on the same side of the balance. Since it clearly does not

matter in what order A and B are placed on the same side of the
balance, there is no way to distinguish between A+B and B+A;
therefore, we must view A+B and B+A as the same object -- that is,

A+B = B+A.

e
S

Suppose we now take additional objects A' and B' with A"
and B' £ B. Then we may form A'+B' and verify experimentally
thét A'+B' = A+B. (Thus wéAare-Qerifyihg-he;;“the familiar )
phrase: adding equals to equals gives equals.) By the definition
of equivalence classes for objects with respect to the relation of
"equal in weight'" we know that A’ £ A means that A'e [A] and
B' = B means that B'e (8] . our experiment therefore tells us

that if A'€ [A] and B'e¢ [B] then A'+B'€ [A+B] . This says that we

can define the notion of addition on the set of all equivalence
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classes -- that is, on the set of weights. More precisely, if
we are given two weights (that is, equivalence classes) [A]
and [B] then we define

[a] + [8] = [&Hﬂ
This opeéétion seems to depend on the choice of the objects A and
B, but the thrust of our experiment is that this operation of
addition of weights is well-defined.-- in other words, if A' and
B' are equal in weight to A and B respectively then A'+B' is
equal in weight to A+B; in symbols, [Aﬂ = [A] and [Bf, = [B]
together imply [A'+B'] = [A+B] . To put it still another way,
if A' and A belong to the same equivalence class and also B'
and B belong to the same equivalence class then A'+B' and A+B
belong to the same equivalence class. In short, the addition of
weights does not depend on the choice of objects of the given
weights,

This operation of addition provides a cruc;al step towards
ourvgbal of assigning numbers to abstract properties such as ]
weights. With this objective in mind we need, first of all, to
observe that the usual rules for addition of numbers are valid
for this operation of addition of weights. We also need to
understand how this relation of addition interacts with the

relation of inequality (i.e. less than).




Let us sketch briefly several experiments with weights which

lead to important properties of addition. Having been quite

careful heretofore in distinguishing between an object A and its

weight [AJ » we shall now find it convenient to drop this distinc-

tion.

This should cause no difficulty, as it should be clear

from the context what is meant.

1)7”Givén three weights A, B, and C we may construct the
weights D = A+B and E = B+C. As indicated earlier, it is
clear that A+B = B+A; that is, of course, known as the

commutative law for addition. We may also show experimentally

that D+C = A+E. This assertion is usually written as

(A+B) + C = A + (B+C)

for all weignts A, B, C and #c known as the associative law

for addition. Notice that this implies, for example, that
(atB) + C  + F = (A+B) + (CHF) = A + (B + (C+F)) , etc...
In short, in order to add several weights it doesn't matter
where the parentheses are placed -- that is, in what order
the additions are performed. Furthermore, the end result is
the same as would be obtained by simply putting all the
weights in the same pan of the balance. Thus, there is no
ambiguity about the meaning of an expression of form

A+B+C+F+G; even more, in virtue of the commutative law, this
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" “addition, C < D then it is a consequence of the transitive

is equal to C+G+B+E+A or to any other sum of the same weights
in whatever order.

2) Suppose that A and B are weights with A B then, as
noted in section 1-6, if A' = A and B' = B we may verify
experimentally that A' £ B'. It is also equally easy to

check that for any weight C we have A+C <B+C. If, in

law that A+C &< B+D. Of course, this can also be checked

experimentally.

~.3) Suppose we have weights A, B, C, D, X, Y with A <X <B

and C €Y <D then it follows from what ha: gone before that
A+C L X+Y £ B+D. In other words, the weight X+Y is boxed

in between A+C and B+D. It should further be noted that

this rule, which applies for lengths also, involves a certain
loss of information. We may illustrate what is meant by

examining an analogous situation.

Suppose we are dealing with real numbers. As is usually
taught in grade school we say, for example, that x = 5 to the

nearest integer when 4)% <€ x < 5%. Suppose further that

7% <y < 8%, that is, y = 8 to the nearest integer. Therefore,
adding inequalities, we have 12 €x +y < 14 and we can no

longer say what x + y is to the nearest integer -- it could

be 12, 13 or 14 depending on appropriate choices for x and y,




just so long as they are within the prescribed bounds. Thus,
the addition of inequalities has involved a loss of information --
that is, when dealing with the notion of "to the nearest integer"

addition is not determined to tne nearest integer.

Prcblems:
1) Discuss the transitive law for weights -- that is, for

equivalence classes -- and its experimental verification.

2) How are the possible experimental errors in this section
related to the desired theoretical statements? What should

children be told about experimental errors?

3) As in example 9 of section 1-6, let S = {p, 1, 12,..1}

be the set of all integers, and let k be the relation such

that A R B means that A-B is divisible by 7. Show that R

is an equivalence relation, and describe the equivalence
classes. Define addition on the set of equivaiénce classes.
Define, if you éan, an order (that is; a relation of less

than) on the set of equivalence classes; is it transitive?

does it satisfy the condition that [2] < [B] implies [2+8]<[B+8]
where [2), [B], [8] are equivalence classes? Can you generalize

this entire example?
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1-8. Multiplication by a Positive Integer

- For convenience we shall continue to deal with weights, and
to use the symbols A, B,... to denote both an object and its
weight.

From the preceding section, we know how to add weights; thus,

for any weight A we may define 2A = A+A, 3A = A+A+A, and, in

.general, for any positive integer n, nA = A+A+....+A, where there

are n copies of A in the sum on the right. Note that for n=1,
the definition says that 1A= A. Tiris operation, in which we
take a positive integer and a weight and "combine" them to get a
weight may be called "multiélication by a positive integer"; it
will be generalized significantly later.

There are several natural and important properties of this
operation. From the associative law for addition it follows that
if m and n are pogitive integers and A is an arbitrary weight then

] (min) A = mA + nA
for instance wvhen m = 2 and n= 3 (2+3) A = 2A+3A

(mn) A= m (nA)
so G6A = 2(3A)

and

Note that in the first of these equations the addition on the left
side is for integers, while on the right side it is addition of

weights. In addition it follows from the 2ssociative and

commutative laws for addition that if n is any positive integer




and A and B a?e arbitrary weights, then
n (A+B) = pA + nB

Let us illustrate the steps of the proof for the case n = 2;
2(a+B) = (A+B) + (a+B) = ((a+B) + A) + B = (A+(a+B)) + B =
((a+a) + B) + B = (a+a) + (B+B) = 24 + 28.

Despite the fact that the distributive laws (m+n)A = maA + nA,
- and n(A+B) = nA + nB and the "associativity" property (mn)A = m(nA)
are logical consequences of the rules for addition, it is of some
value to verify them experimentally. When this is done, even
with a great deal of care, the experiment may fail -- these laws
are really idealized statements, and they are more than mere

tautologies.

It is clear that m = n implies mA = nA for any A.
Conversely, we observe, that for any A, if mA = nA then m = n.
Of course, this too is an idealized statement; in fact, if A
is sufficiently light our imprecise balance may even be unable
to distinguish between A and 2A -- in other wﬁrds, tﬁe balance-
would say, A = 2A. It should also be pointed out that this rule
(i.e. cancellation law) is not obvious to young children. As a
matter of fact, the simpler notion that counting a set of discrete
objects always yields the same number is something of which they

are not certain. This explains, in part, why they will often

count the elements of a set in several ways.




Finally, we may observe (either experimentally or as a
consequence of properties of addition) that multiplication by a

positive integer preserves the relation of léss than -- in other

words, if A £ B then nA { nB for any positive n.

-

Problem: If m {n what relation exists between mA and nA ?

Explain.

Discgiés whether this is an experimental fact or a law

of ].:ogic .




1-9. The Archimedean Principle

Once we have introduced the notion of multiplication by
positive integers we can begin to make some refinements on the
relation of inequality. We have seen that for all positive n,
nA ¢ nB its a consequence of A < B and it is instructive to
-&iscéver Statements relating a multiple of A with some other
‘multiple of B (that is, comparing nA and mB) that are not
consequences of A < B. For instance, suppose that A < B; we
may then ask, how does 2A compare with B. If B < 2A then the
pair of inequalities A < B < 2A surely provide more information
than the single relation A < B. If on the other hand 2A < B,
we might then compare 3A and B, and get perhaps 3A < B -- or
going one step further, perhaps 3A < B € 4A. The question
we are really considering here is the following: there are two
sets of inequalities B < 2B <3B < .... <mB £.... and
A L2A L3A<L....4nA <&.... and our problem is how to interleave
these two sequences -- that is where to place the multiples of—
A in the sequence of multiples of B.

In order for this procedure to be effective, we would
certainly want to know that A and B are comparable (in magnitude)--
in other words, that if A € B we do not have all multiples of A

less than B. What we really want then 1is that, for any A and B

there exists an integer n, which may be ‘very large, such that
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nA> B (of course, the roles of A and B here are imterchangeable).
When this property does hold, it is known as the Archimedean

Principle.

The Archimedean Principle is easy to verify experimentally

-~

in the case of weights or of lengths. For example, if A is a

drop of water and B is a house then taking enough drops of water

- (that is, taking n sufficiently large) we get nA > B. On the

other hand, the Archimedean Principle need not hold im all
situations where there is an interplay between addition and in-
equality. Let us give an eiample.

Consider all possible words that can be formed from the
26 letters of the English alphabet, where by a word we mean any
finite sequence of letters. Thus abcdef is a word, as are cat

and dog. We may then form a nonsense dictionary of all such words,

- where the words are placed in lexicographic order -- that is, the

usual dictionary order. This provides us with a notion of less
than; for example aa < aba < abcdef < cat £ cow < dog < teacher
&£ xerox. Of course, this relation of < is transitive. Now, let

us define addition of words simply as juxtapositiomn -- for example,

cat + dog = catdog and abcdef + bcxy + adcdefbexy. In terms of this
addition if a < b then a "plus" ¢ < b "plus" o , that is ac < bc .
The reader will notice that if A and B are words with A < B then

pA < B for all n. Thus, the Archimedean Principle is violated.
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Problem: In formulating the Archimedean Principle it is
important that we keep adding A to itself. If it is
not always the same A that is added, then the principle
need not hold. For instance, for the real numbers we

" have Zenos' paradox, which says essentially that if we
add a1+a2 + az t..... + a +..... then we may not be
able to add enough terms Eo get a result exceeding any

fixed b.

a) Can we add enough terms of 1 + 1 +1 +1+....
2 4 8

+ + .... to get an arbitrarily large number?

hﬂk‘

b) Can we add enough terms of 1 + 1/2 4+ 1/3 + 1/4 + ....

+1/n + .... to get an arbitrarily large number.

Problem: In the nonsense dictiénarv exarple of a non-archimedian

system the law for addition is not commutative. Thus;
cat + dog = catdog and this is not the same as

dog + cat = dogcat. We can improve an our example to
make it commutative. Do this by considering a dictionary
of complete nonsense where the only words allowed are

in alphabetical order. Thus, cat or dog would not be
allowed bﬁt act and dgo would. Now define addition as

Juxtaposition followed by arranging the new word in




alphabetical order. Thus
act + dgo = acdgot
Show that all the rules ﬁe have described so far are satisfied
except the Archimedean Principle.
Topic for Discussion:
Can you think of human value judgements where the Archimedean
Principle is violated?

For instance compare human life with money: one human life

is worth more than any amount of money.




1-10. Halving of Objects

In the next section, we shall combine the standard properties
already at our disposal with the Archimedean Law in order to de-
rive and organize more precise information connecting given
objects A and B than we have been able to get heretofore. To
do this, we negd to make one simpie and rather natural physical
assumption --'%iven any object A there exists (and presumably,
we can find) an object B such that 2B = A -- or equivalently, we
may write B = 3A., If B' is any other object such that 2B' = A
then B' = B. |

In this section, we shall discuss some of the elementary
properties of this process of halving. First of all, it should
be noted that the mechanics of carrying out such a division into
two equal parts experimen;ally can lead to all kinds of technical

difficulties. For example, if object A {s a weight consisting
of a container of water then, even in this simple case, it takes
time (and usually several approximations) to get %A. However,
for lengths as represented by segments there is a well-known
mechanical procedure of dividing a segment in half by use of ruler
and compass. Because of this, our discussion will center on
segments; another possible advantage in dealing with segments is
that visual intuition may be helpful in understanding what is

~ going on.
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It should be noted that the choice of division by 2 is
little more than a matter of taste and convenience. We could
equally well deal theoretically with- the division of an object
into n equal parts, for any integer n = 2. (As shall become clear
later, our usual number system is based on the case n = 10.) Of
éouréé;'it is more difficult to divide an object into 3 or more
equal parts than to divide it in half -- so that physical
convenienece or efficiency points toward the choice of n = 2. As
our discussion proceeds it will also be seen that the choice of
n = 2 leads to some logical and computational advantages.

Let us turn to some of the consequences of "division by 2".
Suppose we have two objects A and B; we may take 1A, B and also

3+ (A+B), and then observe that

$(A+B) = 3A + 3B
To prove this, it suffices, by the definition of halving, to observe
that 2(3A + $B) = 3A + 3B + $A + 3B = A + {A + 4B + 3B = A + B.
“ Another useful property of hai&iﬁg is th;t it behaQ;s correctly

for inequalities -- more precisely,

A<B &> iA < 4B
To see this, we note first that if %A < 1B, then according to the
rules for adding inequalities, A = A + A < B + B = B. In the
same way, $B<}A implies B < A; and according to the rules for
adding equalities %A = fB implies A = B. Since exactly one of
$A < 4B, 3A = B, iB < %A holds, it follows that A < B==>3A < {B --

thus completing the proof. \




Starting from any segments A we have postulated the gxis;gﬁce
of a segment %A for which %A + %A = A (that is, 2(3A) = A) and noted
how %A may be constructed with ruler and‘compass. (Naturally, it
is implicit here that A is not too big or too small to be handled
with our ;iven ruler and compass.) In general, if n is any in-

teger > 1 and C is a segment such that nC = A then we may intro-

 duce a new symbol "éA for C, and note that n (éA) = A, Perhaps,

it needs to be emphasized that although we know how to construct

#
ﬁA with a ruler and compass, for any n > 1, we are not even assuming

at this stage that éA exists; our only assumption is that %A exists,
Now, as observed at the end of section 1-8, A < 2A, and conse-
quently A > A, If we divide in half again, the result is

C= %(%A); and since 2C = %A and 4C = A we have C = 3A -~ in

other words, any A can be divided into four equal parts which are

denoted by %(3A) = A = 33A , and. such that A> XA > %A,

Dividing by 2 once more, we see that %A = 3(3A) = 3(31A) = %sA

exists and A > 3A > %A > %A, This process of halving may be re-

peated; we then have the segments

1(4ed) = %A ' r=1, 2, 3...

and

A>*A7*3A>' eoeo e 7*" A> *.('*C A7 )




Moreover, according to our basic assumption, this shrinking
sequence of segments never stops -- that is, at any stage, it is
theoretically possible to divide the segment at hand in half. 1In
practice, of course, the segments we deal with get quite small rather

quickly -- for example, if segment A is one mile long and we divide

‘in half 15 times, the result is #sA whose length is less than

2 inches. Thus, because our tools are so rough, after a few
divisions the segments become too small for physical manipulation ...
but the theoretical story continues. In particular, supposing that
we cannot physically construct half of a segment of length & of an
inch and assuming (as is quite reasonable) that the original

segment A has length < one foot, it then takes no more than 8
divisions by 2 to arrive at a break-down situation where we can no

longer divide by 2.

We have already observed that the segments in the sequence

ASIASEA> ....>%rFA> ..., get small very rapidly. It is

also worth noting that they get "arbitrarily small" -- that is,
as small as we like, or as close go 0 as we iike. More precisely
the assertion is that given any segment C, there exists an
integer n such that ({n)A < C —- so that C > nA> faecn A> ....

The proof of this assertion is not hard. According to the
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Archimedean principle there exists an integer n such that
nC > A. But there always exists a power of 2 which is greater
- than n -- in fact, the reader may show, by induction, that 22 > n.
We have then 27C > nC > A, from which it follows that %~A < C.
" Topic for Discussioni ~ <~ T
| . What 1is Mathénat:l.cal Induction? o 7 -
What is the; Binomial Formula?

~m - ~- -—The reader'may show that by either of the above methods 2®s5n.

- m—— e . m | e em————— o . . . . . - -
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1-11: Nested Intervals

In this section we fix a segment A and use it as a standard

against which to measure any segment B -- that is, we consider

-

A as a "unit" of measure. It is left to the reader to convince

himself at every stage that the discussion carries over to weights.

~ - -6iven the fixed segment A and any segment B we may compare

them in the usual way by placing them one on the other with one
endpoint in common. For convenience, let us set things up in
such a way that the common end-point is on the left. Along the
line determined -by the segment A we may consider the segments
A <2A €3A<<4AK< .... <mA < .... all of which have a
common end-point on the left. According to the Archimedean
principle there exists a positive ﬁteger m such that B < mA --
in other words, by adding A to itself enough times we get a
segment bigger than B. Let nA (n an integer) be the last
segment for which nA € B -~ this impli;es_ that the next one

(n+l)A is not € B -- so

A € B < (nt+l)A (*)

Note that we may well have B € A, so that we must allow the case

n = 0, too; here we write oA £ B < 1A, where oA may be considered

as a formal symbol (with oA £ any segment, and this implies




oA < any segment) which is introduced im order to permit uniform
notation in (*) for all n = o.

For convenience, when nA < B < (n+l)A we shall say that B
falls in the "interval” [nA, (n+1)l9 and write B € [nA, (n+1)A).
The distinction between the square bracket on the left and the

~ordinary parenthesis on the right serves to indicate t.ha.t on the
left we have < and on the right <.

- --he.geometric picture corresponding to our situation is

nA + A = (nt+l)A

and clearly the interval [nA, (n+l)A = nA + 19 has the same iength
~~ 7 as the segment A (after all, we add A to nA and get (n+1)A).
~ What we have really done is to break up the set .of all éos'sible
leﬁg'.:hs into an infinite collection of disjoint :l.ntervals. of size A,

and any length then falls in exactly one such interval.

The next step is essentially to cut the interval [nA, (n+l)A)
in half. More precisely, instead of the two segments nA < (n+l)A we

—-~consider the three segments nA < nA + $}A < nA + 2(}A) = nA + A = (n+1)A.




Bt ot anmnnl

‘Since nA =B < (ntl)A it is clear that exactly one of the
possibilities B < nA + 3A or B = nA + 3A holds; in other words

exactly one of the following situations 1is valid

DA <B <nA+ jA or nA + }A <B < (ntl)A. Note that each of the

_intervals [nA, nA + 3A), [nA + }A, (n+l)A) has size 1A, so that

we have improved our knowledge of the length of segment B in the
sense that we know in which interval of size 3A it falls.
In connection with the preceding, we shall also write

nA + {A as (o+i)A; this is the definition of the symbol (n+})A --

-~ ~—until now this symbol had no meaning. If m is a positive integer

then it is clear that for any positive integer r the meaning of
(%,)A should be taken as m(3rA). Furthermore, expressions like

m, + m, + my +...+ ES) should be defined to mean
26, 2 23 2Y4

m, + m,, + m +....+ mga. In order to keep things consistent
R A 2

it is useful to make some conventions about 0. Thus, we write _
DA = nA + oA = (n+o)A=[(n+o(4)]A = nA + o($A), ... , =nA .
We shall eventually return to a more careful treatment
of 0 — here we merely comment that 0 behaves as expected.
With our new notation in force, we note that the .nterval

[nA, (n+1)A) of size A breaks up into two disjoint intervals

-[nA, (n+i)A) and [(n+})A, (n+1)A) of size 3A, ~nd that B falls in

exactly one of these smaller intervals. Suppose, for purposes of




1llustration that B falls in the latter interval. The geometric

picture then looks as follows:

_.0A DA (n+i)A B (n+1)A
— - . — — +

where the labels of the points signify that they are the endpoints
~0f the segments of that size (all st;rting from the same point).
Now that we have (n+;)A <B < (ntl)A, the same procedure may

-be repeated. Thus, the interval [(n+3)A, (n+1)é) of size %A breaks

up into two disjoint intervals [(n+})A; (n+i+i2)A) and

[(a+i+)A, (0+1)A) of size 42A, and B falls in exactly one of

these intervals. Suppose B falls in the first of these; then the

L picture looks as follows:
B

1 'l L
- > Lot

nA (ntis)A (n+i)A (n+i+ia)A

L g
e® o ¢ ¢ £ ' 4

(n+l1)A
"~ At this stage, in view of assvmptions at each step with regard to

the location of B, we have Ce e .

nA £ B < (n+l)A
(o)A < B < (ntl)A
"(o+i)A € B < (n+i+s)A

By our assumption that every segment can be halved, there exists

a segment irA for every positive r and therefore this process of

refining our knowledge of the location of B continues indefinitzly
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(1n theory). At the first step, B falls in an interval of size A;
at the second step, it falls in an interval of size 3A; at the
third step, B falls in an interval of size }sA; and clearly, at
the rth step, B falls in an interval of size jr-A. Thus, B falls
In each of an infinite sequence of nested intervals (meaning that
_each interval is contained in the preceding one) -- where the rth
interval has size }v-1A. Since, as seen in the preceding section,
the intervals }v1A become as small as desired as r increases, it

is clear (intuitively) that there is exactly one "point" that

belongs to all the intervals of the nested sequence -- namely, the
point which represents the end-point of B. In view of this, it
{*) is perfectly natural to say that B is represented by this infinite
sequence of nested intervals or inequaiities. Conversely, any
such infinite sequence of nested inequalities or intervals
represents a segment C -- namely, the oﬁe whose end-point falls in
all the intervals. o ' -
The nested sequence of intervals whichiﬁe have associated
with a segment B started with an interval of size A. Since what
really matters is that the end-point of B be thz unique point
which belongs to all the intervals, it does not really matter which

interval of the nested sequence is taken as the initial one. In other

--—--— .. words, we could throw away the first r intervals of sizes, A, $A,...}r-3




Aand atart with the interval of gize érA -- for. after all. this
still leaves us with an infinite nested sequence of intervals
whose only common point is the end-point of B. It may also be
noted that once we ha;é-the inferval of size %rA them the earlier
intervals may be recaptured from it. For example, suppose that at
the sixth approximation we know (17 + %a + % Jio)A <B< (17 + 35:. + !53)A
ﬁhen the intervals preceding this one are:
(17 + 32+ $4)ASB (17 + $a + $5)A, (17 + $2)A <B < (17 + ta + $4)A,
(17 + $2)A €B < (17 + $)A, 178.< B.<(17 + %)A (17)A < B < 18,

6ne may ask, at this poiﬁt, wh#t h;bpens if B torns out

eventually to be the same as the left end-point of ome of the

; intervals -- for example, if in the preceding B = (17 + 4o+ 44+ {5)A2?
For us, this is nothing more than an accident which does not affect
the process; that is, the process still continues and still leads
to an infinite nested sequence of intervals which close down on

4 th; end-point of B. _ ,
Next, let us consider how the relations or operations between

segments are reflected in their nested sequences of intervals.
Suppose that we have two segments B and C, each expressed in terms
of an infinite sequence of nested intervals in terms of A; from

. these intervals we can decide which is bigger. One simply compares
the intervals of corresponding size, and finds the first pair which

- ce——— . —— ——

are not identical -- the one to the right is associated with the




€

--bigger segment. For example, suppose that 17A < B < 18A,
(17 + 4)A < B < 18A,....while 17A < C <184, 17A < C < (17 + $)A;

clearly, C < B. 1In this type of situation, it is customary to say

that we ha}ve--a lexicographic ordering, because it is essentially
- __._like the ordering of words in a dictionary.
What about B + C in terms of the nested intervals?‘ Here one
‘ Ms“iﬂ.-tﬁﬁf; takes intervals of corresp_c);ldiﬁg ‘size and adds their
end-points. Thus, for the preceding example, we get 34A € B + C < 36A,
(34 + i—)A SB+C <(35+-31)A,....The nested intervals here are of

/
. -sizes 2A, A, %A, %.A,....and they do have exactly one point in

common -- namely, the end-point of B + C.




1-12. Dyadic Expansions

In the preceding section we have seen that once a segment A is
fixed then an arbitrary segment B is represented by an infinite se-
--quenceé of nested intervals (or inequalitieé) of sizes %n A n=0,1,2...,
and cogversely. Let us consider a specific example and see what the
nested intervals look like. Suppose that we take some segment B and
_ then define the segment A to be A = 3B; this A is to be our fixed seg-
ment, and we wish to examine the description of B in terms of A (of

-

course, we are really looking at B = 1 A) as given by nested intervals.
Since we wish to work with A and B in3concrete fashion they should be
taken, at the start, to be neither too big nor too small. When B is
compared with A experimentally, we find that the first approximation

is

oA £ B 1A

Now, the procedure for finding the nested intervals associated with B
is perfectly straightforward, and if we work carefully and accurately
it should turn out that -- the second approximation is

oA = B <1lA
: 2

while the third approximation is

1 ASB<1A
22 .2
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L
while the fourth approximation is
<
_:]é._zA..B<l+13)A
. Continuing, experimentally, in the same way, we find that the fifth L
approximation is .
(1 +14)A$B<(1 +13)A
~ 777 77 "that ‘the sixth approximation is o T T e e
- -2-—4)A B<(2+1+1>A S = e
- and the seventh approximation is
() (1 +1 +'-6)A B<(1 +_4+;5

--At this stage, we may well have reached the tolzrance limit of our

tools; of course, in theory this process of approximation continues

- ad infinitum.

Our notation is obviously racher cumbersome and it is surely con-
veanient to introduce a more condeneed notation. Consider the term

(_2!.2 + 14 + _2];6 ) A from the seventh approximation. If we examine the

Pprocedure by which this expression arose, it is clear that its meaning

is the same as

T a) ) o) ¢ ) + oft) 19




-- or with the natural use of 0, as

- 941 4 041 40 L1
[0"'2"'2:"'53"'24-*55"'-216] A

Thus, it is not surprising that we choose to write this as

[0,010101] A

"7 77" "where, as we shall see later, the vertical stroke } plays the same
role as the decimal point in our usual number system. According to

this notation, the seventh approximation looks 1like

[o|010101] A$B<[0|010110] A

and, in par‘ticular, B falls in the interval of size (%6) p Whose

left end-point is [0 IO 1010 l]A. Note that from this left end
- — - —points all the preceding approximations can be recaptured -- the left
: L end~points arise by dropping the right most digits from [0 IO 1010 l]
one at a time, and each right hand end-point_ arises from the corres-

ponding left end-point when we make use of tne fact that !"r +1 =1

3 P ’
. o ’\"

More exactly, in our situation we get:

sixth approximation: [0 lo1o0 10] A< B <EJ'0 101 1] A

fifth approx_i.mation: [0 lO 10 1] A<B ([0 lO 11 0] A

* | fourth approximation: [0 |0 1 0] A €B < [0 lO 1 l] A

2t 2F 2r-l




third approximation: [o | o 1] A<B < [o| 1 o] A
--gecond approximation: [0 l 0]_ A< B <L [Ol 1] A

first/approximation: 0 A<B<«<1l A,

Let us turn, momentarily, from the specific example B = %_ A
“ underp consideratlon, to the general case. Here the segment A is
fixed, and B is 'some fixed, but arbitrary segment. In the first
;ppxgeec_ihxetioh, we heve an. integer_ n 2 0 such that 1; A < B < (nt+l) A.
" 777 7 —"The process of subdivision, starting with the interval
[n A; (n+l) A) ,» by which we arrive at the infinite sequence of
J | hested intervals associated v;ith B, yields then in the rth approxi-

~mation an interval of size %r-l A 1in which B lies and whose left

hand end-point looks like (n + @] +a-2+ ...+ 3 (r-l) )
2 22

A= [n ta__l a_g «eo a—(r—i)]A where each of a -1 a -2 2t a (r—l)

is -either 0 or 1. The right hand end-point of this interval is

%‘r-; A to the left end-point. Thus, for example,

if the left end-point is [5 |]o1o0o0111 1] A, then the right end-

gotten by adding_

point fs [5]01010000G] A since we've added /00000001 to 3/01001111.

-~

- ‘ Of course, knowing the left end-point of the rth apptoxi.mation enables

- us to determine the left end-point of the (r-l) approximation --

s yrn +— o

namely, by simply dropping the a -1 term -- and from it the right

. S - : - h : : . - _th

end-point of the (r-1)  approximation; so that from the r approximation,

s L

P ™
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same way it is clear that if we know the r

-

~

or nested interval, we can recapture all the preceding ones. For

example, if as just assumed,

[5lo1001111] a<8<[s|lo1010000] a

(fhis being the 9th approximation) then the gth approximation is

A

[Slo100111] a<B<[s|o101000] a ,

4th

-and going further we get among others the approximation

[slo1o] a=B<[5{011] & ete...
Returning then to the arbitrary segment B, the rth approximation (that
is, the rth pested interval) is determined by its left end-point,
which is of form [nl a_] a, --- a—(r—l):] A with each a equal O or
1. We the;efore have an infinite sequence of these end-points. How
-

are they-related? It has already been observed that the (r-1)" end-

point is gotten from the rth by dropping the "digit" a_ (1) In the

th end-point, then the next

end-point, that is, the (r+1)th (which is the left end-point of the
the (r+1)th nested interval) arises by adjoining an extra "digit"
(namely, a_, , which is a 0 or a 1) to the representation of the.
rth end-point. |

From all this, we arrive at an infinite sequence of zeros and

ones, a_j; 3a_9; 3.3 341 > and may introduce the symbol




[n,a_l a, a_, a_, ...] A (*)

where the three dots indicate that the expression goes out to infinity.
In other words, starting from an arbitrary segment B we are led to
associate with it a symbol of type (*). The purpose or meaning of
this symbol is simply to provide a simple, compact amtation that re-
presents the infinite sequence of nested intervals associated with an
T ai:b-it'rary-segﬁetllt._ M&re I)reci_sel_y, the infinité segquence of nested
- . Antervals associated with B determines the symbol (%), Conversely,
given an expression of form (*), it determines an isfinite sequence of

nested intervals --.namely, the rth iested interval kas

[n aj ... a—(r—l)] A as its left end-point, and its size is 1 A,

2r-1
Since B is the segment whose right end-point is the wique point

which lies in everyone of the infinite sequence of mested intervals

asscclated with B, we are indeed justified in writiag
B =. [n a) a, a_q ...] 9

We shall have to learn how to operate with the symbols of form (*).
As a matter of fact, at this stage, for given B we de a0t know how to
find the associated symbol (which may be referred ts as an infiﬁite
dyadic decimal) of form (*). For example, going back to the previous

concrete example B = ]

A » Ve have seen that the sewenth approximation
3

is




[oJo10101] a<8< [olo10110] a

Thus, the infinite sequence which gives the dyadic decimal ex-
pression for B starts with 0 IO 10101. If our tools are very
refined, we may be able to get a few more digits, but it is obvious

that we cannot get them all in this way. Based on how things have

gone in the fir;t few appfoximations, one might suspect that for
B=1

<A

3

. B= [0]01 0101 01.......] a

where the notation is designed to indicate that the peir 0 i is
repeated an infinite number of times ~- but this is nothing more
than a guess!!

Let us now look at another example. Consider D =1 c

7
that is, choose any scgment D and take C = 7 b. If we follow the

experimental procedure applied before, then the seventh approximation

should turn out to be

{ofoo1001]c =0 <[oj00101o} c

(There is no need, once this is known, to record the first six approxi-

mations.) This leads to a guess that the expansion of D in terms of




- p=[o]oo1 001 001....] ¢

-~

_ We shall return to this question later, and decide if this guess is

accurate.

Exercise:
-1) -Determine the approximations up to and including the seventh
order for B = 1

- .. 5 A )
of B with respect to A?

What is your guess as to the expansion

2) Do the same for C =6 . .
g‘A

3) Do the same for D = 43
128

A L ]

We conclude this section with one more example. Consider a seg-
ment A, and construct a right triangle both of whose legs are segments
of length A. Call the hypotenuse B -- we investigate the expansion
of B with respect to A. 1In virtue of the Pythogorean theorem we

are really trying to express B =|f§- A in terms of A. Working

carefully, we "should" find that the seventh approximation is

[Lio11010] AasB<[1]011011] a

and maybe even that the eighth approximation is




[1lo110101] a< 5 < [1jo110110]

Eventually, this will be seen to provide a very good approximation

. --to the square root uf 2.
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1 - 13. Dyadic Expansion of Integers

. In the preceding section, we have seen that an arbitrary length
or segment B can be expressed in terms of a fixed segment A in the

form

B=[a[5 b, by ] A

where n is an integer greater than or equ to 0, and each bi for
i=-1, -2, -3, ... is either 0 or 1. Note that this involves a
minute change from the notation used in section 1-12 -- namely, the
use of b's instead of a's. It is more logical that, with A fixed
and B subject to choice, the expression for B in terms of A should

contain b's. 1In this spirit, for any length C we would write

C = l:% l c c c ..T;:Z A
-1 -2 -3

with m=0 and each ci equal to 0 or 1 for 1 = -1, -2, -3,...

There is a certain awkwardness and lack of symmetry in the
notation for B. On the left side of the vertical stroke we have an
integer == 0, and on the right side an infinite sequence of zeros
and ones. Can something be done to make the left side also consist
only of zeros and ones so that both sides of the vertical strokes
are similar objects and can then be treated in unified fashion? Thus,

we really wish to examine the case

B=nAS= ![ET/ 0 0...0... A
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-- that is, where the sequence of nested intervals expressing B in
terms of A all have n A, with n an integer> 0, as the left-hand

end-point. We would hope to be able to replace n by a sequence of

0's and 1's. 1In an expression of form ! rt, b 1 b_, b._3 ...7

the meaping of the stuff to the right of the vertical stroke is, of

course,
b + b + b + ...+ b + ...
-1 -2 -g -r
2 22 2 2L
or, what is the same
-1 -2 -3 -r
b 2 + b 2 + b 2 + ...+ b_2 + ...
2 -3 r

Thus, we may say somewhat carelessly that the stuff to the right of
the vertical stroke represents a "sum of powers of 2" -- namely,
negative ones. We shall try to express n, the stuff to the left of
the vertical stroke, as a sum of powers of 2; if this can be done,
we would expect to use only non-negative powers of 2.

Let us start with some simple concrete examples. Consider

n =27 and B = 27A = ‘F"27,0 0 ...0...] a. 1t is not hard to
4

see that

4 3
27 =2 +2° +2+1
)

4 3 2 1 0
= 162 + 162 + 0e2 + 162 + L2
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Thus, we may associate with 27 the ''sequence" 11011 determined by

(*), and write

B = 27A = l 11011/00...0... A

Consider next n = 69 and B = 69A; then it may be observed that

6 2
69 =2 +2 +1

6 5 4 3 2 1 0
= ]o2 + 002 + 022 + 002 + le2 + 002 + lo2

Thus, 1000101 is a sequence of zeros and ones to be associated with

69, and we write

B = 69A = z 1000101/0...0... A

Finally, let us consider n = 84 and B = 84A. Since

6 4 2
8 =2 +2 + 2

6 5 4 3 2 1 0
= 162 + 002 + 102 + 002 + 1le2 + 0e2 + 002
we may write

B = 84A = EOIOIOO/O...O... A

From these exanples we may conjecture that if n is a positive

integer and B = pi, then we can write

r r-l 1 4]
(#) n=be2 +Db 2 + ...+ be2 + be2
r r~1 1 0
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where each b , b «eey b b isO0Oorl, b =1, and r 2 0, and
r r-l, 1, O r

express B by the notation

B=nA=]b b ...b b 0“&:7A
) r r-l 1 O

The crucial question, therefore, is whether or not any positive
integer n can be expressed in the focrm (#) =-- that is, as a sum of
powers of 2 -- more precisely, can n be written as a sum of certain

0 1 2 3 4 5
. of the integers 2 =1,2 =2,2 =4,2 =8,2 =16, 2 = 32,

6 7
2 =64, 2 = 128,...

Exercise: Can you express each of the following integers as a sum

of powers of 2? -- 78, 99, 129, 150, 250, 437, 500.

By now, the reader is probably convinced that every positive
integer can indeed be written as a sum of powers of 2. Let us try
to indicate informally why this appears to be true. Using on1y20=1
and 2 =2, we can express 1, 2, 3 (but not 4) in the appropriate form.
Thus, if we throw in 22=4, then using 20, 21, 2", we can express
(in addition to 1, 2, 3) 4, 5, 6 and 7 as a sum of powers of 2.

3
Throw!ng in 2 =8, we can then express 1 thru 7 and also 8 thru

8 + 7=15 in the desired form. Thus proceeding inductively -~
o .1 r T+l
given 27, 2 , ..., 2 we can express every integer from 1 to 2 -1

as a sum of certain of the preceeding powers of two.

Problem:

1 2 3 r
Show that 2° + 2 + 2° 4+ 2 + **+ 42 =

21'4'1 - 1
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For a complete discussion of writing a decimal integer as

powers of 2 the reader is directed to Appendix I.

One may now inquire if the ba;e 2 expansion of any integer n
is unique for example the decimal number 179." Of course, the method
of dividing by 2 and using the remainders leads to a single result,
but this does not, in itself guarantee that there cannot exist some.

expression for 179 other than 10110011. To show that the expansion

and show that they must be identical. Thus suppose that

n=b b eee b b =1
r r-l 0 r
5 and also that _
n=¢ ¢ eee C e =1
8 s-1 G 8
we must shew that r = s and that for i =C, 1, ..., c =b.

The hypotheses say that

r r-1 s
() b2 +b 2 +...+be2+b =¢c2 $c 25
r r-l 1 0 5 s-1

-1

of an’ integer n is unique we suppose that there are two such expansions

+...+ce2 + ¢
1
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Can it be tiat b # ¢ ? If so, then sayc =>b , which means
0 0 o 0

that ¢ =1and b = 0. But this says that n, as given by the
0 0
left side of Q”s, ic even (becauz= 2 divides the left side) while

n, as given by the right side of ijg, is odd (because division by
2 gives a remainder of 1) -- a contradi-tion. We conclude that we
must have b =c¢ . Consequently, upon suttracting or removing

0 0

b = c¢ from both sides of (1#& and then dividing the result by 2,
0 0

we arrive at

b2l 4b T2 . .. +be2+D e 2?4
' 4 r-l 2 1

But this is exactly the same set-up as (Jﬁ?, and as was done there
we conclude that b1 = cl. This process may be repeated inductively,
to get b1 =c . If the b's are used up first so that b =¢c ,

i 0 0

b =¢, ..., b =c then it follows easily that ¢ = ,,..=¢ =0,
1 1 r r r+l 8

and indeed r = s.

The upshot of this entire discussion is that instead of
expressing an arbitrary segment B in terms of the fixed segment A

in the form B =Jmlb L b_2 cos ; A, we may write

B=1b b ...blb b ...jA
[ rl of -1 -2
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where b =1 and each b is 0 or 1. How are all the b's to be
r i
found? As of now we first locate B in an interval of size A,

B €Jna, (n + 1) A), -- that is,
nA<L BZ (n+1) A

This determines n, and then expressing n in base 2 gives

b, ..., b . Furthermore, by repeated halving of the interval
r 0

EnA, (n+1) A) there zrises a nested sequence of intervals

described completely by b L’ b ,b_, ... . The approach to the

-2° -3
left side of the vertical stroke differs from the approach to the
right side, but it is important to observe that it need not be
so -- we can treat all the b's, rather than just those on the
right of the vertical stroke, according to the same nested
sequence of intervals procadure that was used before. More
precisely, if BGE)A, IA) then dividing intervals in half in
the usual way we get B =EOIb-1 b.2 ...j A. 1In the general
case where B = A, consider the lengths A = ZOA, 2A, 22A = 4A, )
23A = 8A, ..., ZmA, .«. == these lengths get arbitrarily large,

and there exists a unique integer r =>0 such that

+1
neErA, 2" IA)
r

The size of this interval in which B falls is 2 A, and we have
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2"a<p o 2",

For this r, we put b = 1. Then halving *his interval B falls
r -
in exactly one of the intervals of size 2 A

. -1
[:er, "+ 2°7L A) , Ezr +2 )a, z”l;Q

If B falls in the first one, we have br 1 = 0, if it falls in the

second one, then b L = 1. In any case, the canonical method for
r-

deriving a nested sequence of intervals applies and gives us,

starting from b = 1, all the b's so that

1
B=J Db b eee b , b b ... A
r r-l1 ol -1 =2
Of course, b b «cee b still represents the 1ntegef n such
r r-l 0

that nA< B2 (n + 1) A.
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1=14: Computation with Dyadic Exsansions

We know that if a segment A is fixed then any segment B can

be expressed in terms of A in the form B =ﬁA where

B- 1’".br b e bolb'l b, j

———

== in other words,ﬁ may be considered as an infinite sequence
of zeros and ones with one "spot" distinguished from all others,
namely, by the vertical stroke. In such a situation one may say
(with some degree of carelessness) that ﬂ is the dyadic
expansion of B and that / is a '"real number"”. It is time to
learn how to operate and compute with such dyadic expansions, and
of course the derivation of computation rules must arise from the
rules for operating with seguaents.

Thus, suppose we have another segment C; then C may be

expressed in the form C =XA, where

xs c...c,c C ... ¢c =0orl
s 0 -1 22 i

Now, the sum of the two segments B + C = C + B also has an

expression in terms of A -- say B + C =S‘A where




——
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§-a ..afa d ]
t 0 -1 =2
Our first objective then is to add/ and )’ .

]Cbr bo/ b-l b.2 j + Es co } c.1 c-z _7

and in this way_:to rind g. For this, it is

convenient and instructive to start working with integers --

explicitly, suppose that Ig = m, J = n are integers, B = mA,

c=nA,ﬂ=m= Eb ...b/OO...O... , Y =n-=
r 0

C +..C P ¢ so that B+ C = (m + n) A and =m+n
| s 0/ :] ) &
d ... doIO...O.._.j . 1In view of the fact that

t

r-1

r
b ...bJO ... represents b2 +b_ 2 + oo +be2 + Db

and

8 s-1

c ...c(JO ... | represents c 2 +c¢ 2 + ... +ce2 +c
s 8 s-1 1

witheachb, ...;, b, ¢, ccc5 C being 0 or 1, in order to carry
r 0O s
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]

out the addition

' E bO/o _7 [ CO/O' _7

we need only carry out the addition of their base 2 represeantations
-- and this ie trivial because we know how to add ordinary integers.

Rather than letting ourselves get boéged down in all the verhiage

base 2 represenfations in general, it is better to turn to a few
examples which will serve to illustrate the points involved.

Consider /5 =m =27 and 2’ = n=69. We recall that -
27 =E101]/0..-.7which reflects the fact that

A 3 2 1
27 = 102 + 12" + 002 + 142 + 1

needed to descrfbe accurately how one adds two integers in their
and write all this simply as 11011. In the same way, 69 =

EIOOOIOI/O j = 1000101, which erpresses symbolically the

relation

6 5 A 3 2
69 = 122 + 002 + 002 + 002 + 1le2 + 002 + 1
;

In order to find the sum 11011 + 1000101 we take
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4 3 2 1 6 5 A 3 2
(le2 + 102" - 002 + 102 + 1) + (12 + 002 + 002 + 002 + 1le2

and according to the usual rules for adding integers this equals

-6 5 A 3 2 1 0
(*) le2 + 062 + 102 + 102 102412 + 202

Unfortunately, this expression is nog quite in the proper form

of a base 2 expansion -- we must have a sequence of zeros and ones,
dut the last coeifficient { the one associatred with the Zo‘term)
here is 2. Of course, it is not hard to adjust (*) to put it in
the correct form. First of all, 202O = 201 = 12 = 1021= so that
the 2020 term may be replaced by 1122, thus giving 1021 + 1121 =

1
202 - and (*) may then be re-written as

4 3 1
102% 4 002”7 + 102 + 102° + 1027 + 202" + 0020

1 _
But now we have the anal:ogous difficulty with 2¢? ; however, this

2
term may be replaced by 1¢2 -- to give

6 5 4 3 2 1 0
162 + 002 + 122 + 162 + 202 + Q0e2 + Qe2

T

‘The method is now clear, if we ever get 202 this may be replaced

r+l
by 162 » So that things are "moved" one step to the left. Of

1
+ 02 + 1)




e
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r
course, if a term 392 should arise it needs to be replaced by

r+l r
142 + 102 ., Continuing in this way until all terms have

coefficient either 0 or 1, it is easy to see that the end result

is
6 5 4 3 2 1 0
102 + 12 + 002 + 002 + Qo2 + 002 + 002
This says that
11011 + 1000101 = 1100000

which, it may be noted, is another way of saying that

27 + 69 = 96.

Exercise: 1) Verify that 11011 + 10101C0 = 1101111, and that

this corresponds to 27 + 84 = 111 ( one hundred and eleven).

2) Verify that 1000101 + 1010100 = 10011001 and that

this corresponds to 69 + 84 = 153.

3) Find the following sums and the ordinary integers

N\

to which they correspond

11011 + 10110011

1000101 + 10110011

1010100 + 10110011

i
\

10110011 + 10110011

L]
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4) Perform the following additions and check the results by

translating everything to ordinary integers:

10110 + 110001

11001101 + 100110

111111101 + 101101

5) Perform the following additions by changing to base 2

’

adding and then re-writing the result as an ordinary integer:

98 + 47 =
198 + 943 =
7511 + 5751 =

For those who are experiencing difficulty with the above problems

-may we recommend a review of Appendix I and serious study of Appéndix I,

We still want to be able to add in the general case, namely,

where each of our dyadic expansions
=/ b ...b /b _ b ... and =Jc ...cfJe_c ...
A R A R A I

is really infinite (this means that an infirite number of the b'-
are 1 and also that an infinite number of the c‘s are 1). However,
this will be deferred until later. ©. the other hand, it is clear
that if both dyadic expansions are finite, then exactly the same
principles used in adding dyadic expansions of integers apply.

The only variation is the use of the vertical stroke(in both

directions ) for indexing purposes. Thus, for example, we can add

T—Touol/lomloo j + Emm/oouooo 7

[ -

T TR TR T T TN TR e T R A S
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without any d_fficulty via

-- s0 the result is [1000110/110110 7 ,» and we do not find
it necessary to re-interpret the symbols involved as numbers,

fractions or powers of 2 in order to perform the mechanical act

of computation.

Exercise: a) Perform the indicated additions and translate the
results to ordinary rational numbers <?or example, in the

preceding,

/ [101101/10101_7 +E1oo1/ oo117 = Eooouo/uou ;

translates to 45 21/32 + 25 3/16 = 70 27/3212

Z 1101 0l01 ;-kl:FOOIIQIQIIOI ;
l 11110%/11001 ; +-li§011001/ﬁ011101 ;
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!

b) Perform the following additions of rational numbers by
finding their dyadic expansions, adding these, and then translating

the result to rational form:
79 19/32 + 85 31/64

157 17/32 + 193 111/128

Having dealt with the addition of dyadic expamsions {at
least, in the situation where both expansions are¢ finite) we
turn to the question of subtraction. More precisely, given

segments B, C expressed in terms of A as B =ﬁ A, C=xy A then
B-c= (=) 4

so that for/ =£br bO./b-l j, I=E:s...c0/c-1..J

we need to learn how to compute/—z, the dyadic expansion

of B - C in terms of A.* Of course, before this can be discussed

it is essential that C( B, so as a first step we should learn

to recognize which of two dyadic expansions/f and a’ is the
bigger one. In order to do this, it is convenient to start with
the simple situation where bothﬂ and X are integers -~

* Point of clarification -- B - C represents the segment we would
"attach"” to C so that their combined lengths [c + (B-C)] would be

as long as B B

TT

'
——
®

C
i -
Whereas B and D’ are binary numbers. = B-C
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/=m=[br'...me.j a’=n=[cs...cJo _7

(as a matter of fact, this special case in-cludes the necessary

general principles). As some examples, we note that
10>1, 100211, 1000>111, 10000>r111l, ...etc.

-- in fact, according to the way addition works, adding 1 tc the
right side of each of these gives the left side. Therefore, the
inequalities are as stated. Even more, the left side is in each
case the expression for 2r (r=1), so it follows immediately
that the right side is Zr- 1 whose expression is

r r-1 r-2
2 =1 =1e2 + 182 + ...+ 102 + 1

In other words, 111...1 =b b ... b 18 the expansion of _
r r-l 0

Now, it is clear that 1111l...1 (with t 1's) is greater than

any finite expansion with the same number of terms (provided, of

course, that at least one of the terms is 0), and by transitivity

we see that 1000...0 (with t O's) is greater than any expansion

with t terms. It is equally clear that éﬂz_eipression witht + 1

terms starting with a 1 is greater ‘than any expression with t terms.
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This constitutes a large quantity of words for a general principle

which can best be understood from a few examples:

100=>10, 1lol01>>1101, 10001>111, 1111121110, 111000211011

According to this, if we have two integers expressed dyadically

ﬂ Er 1 cee bdlo ..j andZ'*[s ;-1 cee co,O ...‘- ‘

with both leading terms b and ¢ equal to 1 then
r 8

> = >

-- in short, if one of two binary expressions for integers

(with both expressions starting with 1)'1: longer than the other,

then the corresponding integer is the larger of the two. -
It remains to examine the situation where r = s -- that is,

where the two expressions have the same length. In this case,

b =c =1, and the leading terms of/ and " may be ignored --

r r

in other words, it suffices to compare b ... b and c cee C ,
r-1 0 r-l 0

which are of the same length except that the leading terms can

be 0. Thus, if b . £ c . the matter is settled, while if
r- r-
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b ! = c ! we continue by discarding these terms. In summary,
r- r-

for expansions of equal length, we work from left to right, find

the . r.t place where the two expresgions differ (that is, where
they have different digits) and the one which has a 1 in this
place is Bigger than the one that has a 0. Some examples of this

are:

11010 22 10001 11011 27 11001 110011010110~ 1116211001110

Exercise: Line up the following dyadic expansions.of integers

according to size: -
101, 1011, 11110001, 1010110, 110, - 1101, 1001,

100100, 1101011, 101101, 10110111, 101100.

" We can now decide which of two integers in dyadic form is

graater (note that we read this off directly from the notation

and because of our knowledge of addition the procedure for doing

subtraction is straightforward. Thus, 1f/6? = 10101 and

& = 111101 then surely 2’7/ and J— ﬂ = 101000. The only

surprise or difficulty is perhaps that in "borrowing' one may

and do not have to evaluate the symbol as an ordinary integer),
:
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end ub doing the real borrowing from far up the line --

for example,

10110010

- - 1110111

111011
The readerfsu;ely understands how to borrow and subtract,

and long-winded explanations at this point would most likely be
confusing. We shall merely indicate one way in which one might
do subtraction without the mental effort of keeping track of the
borrowings. In the example, and whenever subtraction is to be
performed, we would like to re-write the top number, permitting
digits other than 0O, 1, so that the term in each column is

the term in the corresponding column of the bottom number. This
involves, when appropriate; replacing 10 by 02, 100 by 12,
1000.by 112, 10000 by 1112 eté;m Tﬁ;s, 1ﬁ—the-e;amp1e, 10110010-—=
10000000 + 110010, and the first of the terms on the right equals
1111131 + 1 which we have permitted sursclves the luxury of

writing as 1111112. Consequently, since 1111112 + 110015 equals

1221122, and the subtraction
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1011001°¢

- 1110111

becomes
1221122
i

‘- 111011

and the result is obviously 111011.

Exercise: Perform ti:» following subtractions and interpret them

in terms of ordinary integers:
110 - 101, 10010 - 1111, 1010101 - 1010, 11100100010 - 1101101110.

Once we know how to compare the size of two integers expressed
in dyadic form and how to subtract one from the other, it is easy
to see that some procedures apply for any finite dyadic expansions.

Thus, to compare

V4 =E"’ bo)b-l b-pO :] and ¥ = c .o colc-l...c-qo.j




the vertical stroke plays a key role. Clearly, ifb ... b =
€ ... ¢ (these are expansions of integers, and accoiding tg the
s 0

preceding we can decide which is bigger) theg/5?=’27i On the
other hand, if b ... b =¢ ... ¢ (that is, if the left sides
of the vefLical :trokeoare :dentigal) then working to the right
of the vertical stroke, from left to right, we locate the first
place where bt # ¢ . One of these 1; 1 ( and the other is 0),
and this determine: the bigger of the two dyadic expansions.

As for subtracting, this goes exactly as for integers; for
integers, the vertical stroke is at the right edge for both terms,
while for finite dyadic expressions the vertical strokes must be

lined so, and from this starting place all the columns are then

lined up.

Exercise: Line up all of the following finite dyadic expansions

according to size, and then subtract each from the next largest:

one.

Ellouj, Eomllg, Elou/owfi, E01l10_1_7, [}101/011017,
: Dolwg , EIOIIO/O_I] , [111/0000-17 , E01/901o‘17 ,
Eoom/ 10001_7 : Elo/m 17 : Eow /1010_17

Our discussion throughout this section has been rather formal
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and algebraic ( rather than geometric) and in this spirit let us

practice multiplication in simple cases even though a geometric

Interpretation is gjven in the laboratory exercises. Consider two integers

m =E> 0/O 7, n =E cJO ..jand their dyadic
r s

expansions -~ then, of course, mn = ( br2r + ... + blo 2 +b)
0

s
(c2 +...+ce2+c) and by using the well-known rules for
. 8 O 0.

computation with integers we can get the right side in form

t+s
d 2 + L 4- d o 2 + d
r+s 1 0

sc that mn = d eee d ,0 . Let us show how to carry
r+s 0

out these steps, in practice, using our ccompact notation by

considering an example. Suppose m =£10110#0 7,
n =E11011/o J, since 11011 = 10000 + 1000 + 10 + 1 we

have at the start

(101101) x (11011) = {101101) x (10000 + 1000 + 10 + 1)

-

= (101101) x (10000) + (101101) x (l000) + (101101) x (10)

+ (101101) x (1)




-80-

Therefore, everything boils down to multiplication by numbers of

form 1, 10, 100, 1000, 10000, 100000, ... and then performing

some additions ( and this observation obviously applies whenever

we wish to multiply any two integers). Now multiplication by 1

is trivial; the key is multiplication by 10. Since 10 represents
. tlie integer 2, multiplication of a number by 10 means multiplying

it by 2, which in turn means adding the number to itself. Thus,

(101101) x (10) = 101101 + 101191 = 1011010

We see, from what happens when a dyadic expansion of an integer

is added to itself, that here and in general, multiplication by

10 involves moving everything over one place to the left =-- or

more precisely placing a 0 at the end of the dyadic expansion.
Turning to multiplication by 100, we note that 100 = (10) x (10)

(which we may also write as (10)2) so that multiplication by 100

involves multiplying by 10 twice -- it is therefore éccomplished

by placing two O's at the end of the dyadic‘expansion of the
number we are multiplying. Repeating the process, it follows
‘ that multiplication by 100 ... 0, with r zeros (so this is

* (10) x (10) ... x (10) r times =-- {. e. (10)') means multi-

plying by (10) r times, and involves placing r zeros at the end.
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Coming back to our example we see that

"(101101) x (11011) = 1011010000 + 101101000 + 1011010 + 101101

and all the work can be coalesced and done directly via the

familiar type of line-up:

101101
x 11011
'1 c1101 (mult. by 1)
1011010 "~ (mult. by 10)
101101000 (mult. by 1000)
1011010000 (mult. by 10000)

10010111111

Note that we do not even have to do the multiplicatidns from
right to left; any order will do provided the columns are lined

up correctly.

Exercise: a) Perform the following multiplications, and check

them by translating to "ordinary integers”.
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(10101) x (110); (1011101) x (11001); (11011011) x (101101111)

b) Verify the distributive law in the following examples,

by performing all the operations with dyadic expansions:
179 (47 + 137) = (179)(&7) + (179)(137)
(5311) (2132 + 1897) = (5311)(2122) + (5311)(1897).

Finally, to conclude this section, it remains to examine the

multiplication cf two finite dyadic expansions

/ i'br... be-l... bg,. 2'=['cs... colc-f" cJ

There are really no new principles involved, one merely keeps

track of the vertical stroke. 1In particular, here, multiplication
by 10 =l:§0/0 ..i:] requires moving the vertical stroke one place
to the right, and multiplication by 100 = [:EOQ/O ..;]7 requires
moving the vertical stroke two places to the right, ...etc... (Note
that this is exactly what was involved when multiplying integers ==

for example, (1011) x 100 =E011/oo j = Eouoo/o J

= 101100)’)
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What about multiplication by[O/‘O EO/OIO J,
[ IOOlO J, and so on? We know that EO/IO is the

representation of %¥ (and we may also write it ar (10) , and it
is obvious that multiplying by % requires moving the vertical
stroke one piace to the left (after all, when the result of

multiplying by % is then multiplied by 2 = 10 we are back where

we started). Furthermore, to multiply byEO/Oﬂ = 1/22 =

[_-0/10_7x [0/1(17we must clearly move the vertical stroke two

places to the left, ... and so on.

As ‘an illustration, consider:

ElOlllO/Ollng[1001/1011 —

101110/01101

x 1001!1011
10/111001101 (mult. by 1074
10111001101  (ault. by 1073
10113001101 (mult. by 10 )
10111001101 (mult.by1=100)
101110011j01 (mult. by 103)

E111000001,100011111;

-- we may leave it to the reader to check that the above is one
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way of showing that

(46 13/32) x (9 11/16) = 449 287/512

Exercise: a) Compute El.LOlO/llOll_] X EOII/IOI}] and check

by transferring to "ordinary" notation.

b) Compute (79 22/32) x ( 58 15/32), and check by

transferring to dyadic notation.
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1-15, Computation with Infirite Dyadic Expansiors

If A is a fixed sepment then we recall that every segment
B can be expressed in the form B = BA where § = [hr ceo bolb_l cee)
is an infinite dyadic expression - in other words, in general,
an ipfinite number of the digits bi are 1. It is with such
~objects B that we wish to coripute; in the preceding section,
we learned how to compute with certain special kinds of B's,
namely, the finite ones - that is, those with only a finite
mmber of digits bi equal to 1, and which could therefore be
expressed using only a finite number of b's. Of course, even
though B has an infinite expansion this does not mean that we
- know all the b;'s, or that we have a rule which enables us to
find every b; . (This is entirely analogous to the fact that
the number n = 3,14159... is an infinite decimal which, with
the advent of computers, we now know up to some 2000 places;
however, the remaining infinite mumber of digits are not known.)

Thus, it is not surprising that to compu+¢ nnmer1cally with an

infinite expression 8, (all of whose terms may not even be knowr:
to us) we work with finite approximations te 8, and that the geo-

¢ ¢

metric aspects play an important role.

Consider two segments B = BA, C = ¥ A where p = [br...bolb_l...]

and ¥ = [cs...colc_l...]. It will be convenient to write
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B = [br...balooo...]
B = [br...bolb_looo...] =B + b_l-llr

= [br...b |[b b 000...] = -1 . ‘ . 1 .
B = [b, nI b, ] B +b_ 32=8 +b Z+b

B, = [br...bolb_lb_z...b_tOOO...] for t =0, 1, 2, 3, ...

Thus, B & is the finite dyadic approximation to P gotten by using
all the digits aup to and including the ‘l’.t'-ll place to the right

of the vertical stroke, and of course

Py = Pig * b

Nd_lb-‘

Naturally, the same notation applies to ¥ , and we have

¥, = legeeecgle ey cen ey 00...] t =0,1,2,3,....
We recall further that BA {and YA too) is really a short-hand
notation for an infinite sequence of nested intervals; in fact,
in virtue of the discussion in sections 1-12 and 1-13 combined
with the notation here, we have B =BA and C = YA given by

the nested sequences:

ERIC

Full Tt Provided by ERIC.
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Bk <B < (By*1)A ¥r<C < (¥
BASB < (By* DA fa<c < (F+
BASB S (By iz)‘ ¥a<C < (Ve %2)1
B,A<B < (By* %t)a ¥A<C < (¥ %t)u

1 4,
P Haasc < (T St

_These infinite sequences of nested intervais provide complete

descriptions of B and C respectively, and they provide us with
the theoretical tools for discussing computations. The easiest
case —when the sequence of nested intervals is finite, which
means that p = [br....bc)lb._1 seesb g 00...] = 3p-— occurs when
B falls on the left hand erd-point of one of the nested inter-
vals; this case was treated in the preceding section, and the

infinite case is handled by making use of finite cases which

approximate it.




Y

First of all, we may note in passing, how the infinite
dyadic expansions may be used to compare the size of B and C,
If B, > ¥, (these are finite dyadic expressions, and we
already know how to compare them) this means that B,A < B < (ﬁoﬂ)k,
¥, A<C < (xo-&)A, so that B falls in the interval [po,poﬂ)x
which is entirely to the right of the interval [\'0, Yo+1)A in
which C falls —consequently B > C, and we also write p > ¥ .
On the other hand, if B, = XO’ then we compare §, and Y]_;
if g, > , then as above B > C; and if B, = ¥, then the

process is repeated with Bz and 3'2. We proceed therefore

until we arrive at some suhscript p where pp;“ ¥ , and

P
this settles the decision for us. Of course, it is clear from
the geometry of nested intervals, that if ﬁi > Y i then

Binn > xi-"l’ Bisp > ¥ j,p» --- and that every subsequent

B j is greater than the corresponding ¥ j° The reader should
not lose sight of the fact that all this formal verbiage is

just another way of saying that we compare the digits of B and X
term by term (at corresponding places) going from left to right,
and at the first place at which they differ the expression

with the 1 at this place is the bigger of the two expressions.

In particular, one sees immediately that

[Lo110|011011....] >[10110|011001....]

even if we do not know the missing digits.

©

ERIC
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We turn to the addition of B = BA and C = ¥ A where
p=Ilb ... b0|b-1 eee] and Y= I[c ... colc_l eee]o The
sum B+ C =pA + YA is a segnent which can be expressed in
terms of A, and in keeping with the notation when  and Y
are integers or have finite dyadic expansions we denote this
segnent by (B+¥)A—so B + C = (B+ ¥ )A, and we must find

¢ the dyadic expansion of (B+¥ ).  For this, it is necessary
to locate an infinite sequence of nested intervals associated
with B + é (as expressed in terms of A); after all, given such
a sequence of nested intervals, the dyadic expansion associated
with it is precisely what we have denoted by § + ¥ . To carry
this out, we make use of the nested intervals associated with
B and C, which were described above in detail. Aecording to
the rules for adding inequalities, corresponding intervals in

the nested sequences of B and C lead to the inequalities
(Bg* ¥ < B +C < (By* ¥y*2)A ‘ -
(B;* ¥PA<B+C < (py+ %44

(p2+ l'z)A <B+C < (pz+ o* }z-)A

(B ¥JA<B+C < (Byr ¥ %i-._i A

1
(Byyy* Fp)A <B+C < (Brgr Ty + 90

©

ERIC
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Note that the intervals in which B + C falls are of sizes
2A

A o

B

1
il

Furthermore, because

B < B < B < eece eoe
0o - 1 - 2 - = P = Per1 e

3 e " v - it f£ollous
Yo 2 1 2 % =2 < ¥ 2 Yo+l that
B+¥y < B4¥, < B¥ < - XB+Y¥ < B 4
o0 — 11~ 22 ~ —tt ~ t+lb,t+1

"Consequently, in order to show that the intervals associated above

with B + C are nested, it suffices to verify that

(304- Ko+2) > (514» X1+1) > eeee > (Bt"‘ .+ iff_'i') 2 (51,'4.1"‘ 8t+1%t) 2 eee

To accomplish this we note that either B, =B, or B, = Bo * %

(depending on whether the digit after the vertical stroke in B
is a 0 or a 1), so that always B, < B, + 1

Eo
1 1
82591*';5, 33552"‘;3‘31“1’ in general,

In the same way,

1

pt..,l fat + ;t—;i t ..0’ 1’ 2, eoe

Exactly the same procedure gives

1
xt+1-<' xt’-t-;i: t.o’ 1’ 2’ eoe

©
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We have, therefore,

1 1
0< 31-'...1"'31-' = 2t+1 0< x‘h—l - Yt = 2‘(‘,4'1
and adding gives
1
0=Bg* Ypa=By- ¥ = 3
which says ti‘xat
1
B * ¥y Bray” Tpn* £ =° (%)

But we needed to prove that

i 1
By + Vi * S > Byt Yo * =

which is just another way of writing (*). -

All this says that we have a nested sequence of intervals
which locates B +-C; in particular, (B L * .1 t)A is the left
hand endpoint of an interval of size (li-l)A in which B + C lies —
so (pt + ‘(t)A gives a very good appr:ximation to (B+¥)A =B +C

as t gets bigger.

ERIC
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To illustrate: if B = [1011|0110101....], ¥= [11000|101110011....]
with the dots signifying that the missing digits are not given
or simply omitted, then

)

By * ¥, = [100011]00...(al1 0)...]
By * ¥, = [100011]100...(al1 0)..]

Byt ¥, - [100011]|1100....(all 0)..]

By ¢+ 3’7 = [100100|001000100...(all 0)...]

Moreover, [100100[001008800...]1 & = (B, + ’(7)A is < B + C,
and is an approximation within ( 3'-6 JA of B + J==that is,
within [0]00000100....]JA. 1In this2 case we see, therefore, that
the expansion of B + C starts with the digits [100100]/00100].
In general, we have no way of writing all the digits in
the expansions of B and ¥, so that there is no hope of writing
all the digits of p +¥ - we must restrict ourselves to finite
approximations (and this is what we always do when measuring in
real life). However, there is one type of situation in which
we have all the digits under control - namely, when the expan=
sion eventually becomes periodic; in other words, the digits

start to repeat themselves after a while, ad infinitum,




Consider, for example,
I~ PN
8 = [110]001 001 OO ...]

(ihere the motation 001 indicates that the triplet 001 is
repeated over and over) and

A

I e T
= [1010/010 010 010 ...]

If we start to compute the approximations 2 ’o’t to

By* 3’9 , we see that among others
By + ¥ = [10000]00...]
By + 13 = [10000|0110000...]
Bg * ¥ = [10000]011011]

Bg+ ¥

9 " (10000{011011011]

Of course, (B9 + 19)A is <B +C = (B + ¥)A and the "error"
is at most lB A, so the expression for B, + ¥, is the

2 9 9
ncorrect" expression for B + ¥ through 6 digits to the right

of the vertical stroke.




By repetition of this process, it becomes clear that
TN N N
B+ ¥ = (10000/011 011 O11 ....)
We may leave it to the reader to check, in detail, that
P o B e WP N
g +B = [1100]/010 010 010 ...]
SN g—
¥ +¥ = [10100]/100 100 100 ...]
Things go smoothly in the preceding examples because the periods
fit perfectly — what happens if they do not fit exactly.
\ For example, suppose

B = [0]0D01 G0 0Ol ...], ¥= [0/GI0 010 010 ...],

then it is fairly straightforward tu convince oneself (from

the approximations) that
P i N T
B+ ¥ =[0]o101701701...]

- perhaps the quickest way to see this is to re-write ¥ in
) SN S
the form ¥ = [0]0 100 100 100 ...].

ERIC

Full Tt Provided by ERIC.




What about the following situation?
p=[00I10l...], ¥=I[olT18T10 ]S ...)
Taking a few approximations we have among others
ﬂz + 32 ‘= [1]00]
B + xs = [1|00101]
Bg + ¥ = [1]oor0m1]
By, * ¥, = [1/001100001011]
Big * 4 18 = [1]001100001100001011]
and it is not hard to convince oneself that _ _
p+ ¥ = [1'@ 001100 cone)
The period of B + ¥ is 6, essentially because we may re-write
p = [0|010101510101. ..]

p—, P
¥ = [0]110110 110110 ...]




Appendix I

How can we find the representation of an integer n in
terms of powers of 2 ? Rather than begin this discussion in mathe-
matical terms dealing with the integer n 1let us attack the problem

from a more experimental nature.

Take a collection of 27 objects of the same type; for
example, cards or pebbles will do. Group these 27 objects into
piles of two elements, thus getting 13 piles of two and 1 element
left over. Now taking the 13 two-element piles, we double these
up, thus getting 6 piles of 4 elements each and one pile with two
elements left over. So far, our 27 elements are distributed amnong
6 piles of 4 elements each, 1 pile with 2 elements and 1 pile with
1 element. Continuing in the same way, we double up the 6 piles of
4 elements and get 3 piles of 8 elements each. Again doubling up
these 3 piles we arrive at 1 pile of 16 elements and 1 pile of 8.
Obviously, we cannot do any further doubling up, and our set of
27 objects is "broken up" into 1 pile of 16, 1 pile of 8, 1 pile
of 2, and 1 pile of 1. There can be no more concrete realization

of the fact that

27 =16 +8 r2 +1
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!

This straightforward mechanical procedure of doubling up clearly
works for any positive integer n. It shows not only that n can be
expressed as a sum of non-negative powers of 2, but also produces

such an expression.

Exercise: Use the doubling-up method to express each of the following

integers as a sum of powers of 2 cmmamo- 78, 99, 129, 150, 250, 437, 500.

{
i

The methcod described above for finding the exp
integer in powers of 2 is informal, but surely thoroughly convincing.
On the other hand, it requires objects for manipulation, and if n
is large this is a matter of considerable inconvenience. Thus, it
L is not unimportant to give a formal, numerical explanation of our
method, which shows how to find the expansion of any n (no matter
how large) with minimal effort.

Consider any positive integer n; then upon division by 2 the
remainder is either 0 or 1 (in fact, the remainder is O or 1
according as n is even or odd, respectively); In either case, we
may write

n=2n + b b =0orl
0 0 0

and b is the remainder upon division by 2, Note that this reflects
0

exactly what was done with the concrete objects -- for example, if
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n = 27, the 27 objects break up into no = 13 piles of 2 objects each

and there is b =1 object left over. Now, we may repeat the process

for the positive integer n,

n =2n +5b b =0or1l
(Note that in the case n = 27 this represents the second step where
the n = 13 piles of 2 elements each with one two-element pile left

over). Substituting this expression for n in the expression for n

0
we have
2
R=2(2n +b)+b =ne2 +be2+DH
1 1 0 1 1 0

Repeating this process, we have

n =2n +5b b =0or1l

1 2 2 2

a7 that

n= (2n +b)2"+b-2+b
z 2 1 0

3 2
=ne2  +be2 +be2+b
2 2 1 0

and eventualiy we can divide no further and arrive at an expression




(3)

r

each b =0 or 1.

- i
sum of powers of 2,

This is simply a finite
a one, of course) which

is often referred to 3s

r
n=b2 +b 2

iv

r-1l

This is the canonical expression for n as a

and needless to say we abbreviate it by writing
E

b
r

b ..o b b

r-1 1 0
sequence of zeros and ones (starting with
is a short-hand notation for (3[), and it

the "base 2" expansion of n.

In order to fix the procedure for finding the base 2 expansion

of n in mind, it is

Suppose that n

which means that n
0

so that n

=21, b
1 1

useful to do some examples.

= 84, then

84 = (2) (42) + 0

42, b = 0; the next step gives
0

42 = (2) (21) + 0

0. Continuing this process, we get

21 = (2)(10) +1
10 = (2)(5) + 0
5 =(2)(2) +1
2 =201+0




L

. A "

How long does the process continue? Until we get an expression

n = 2n +b with n =1
r=-2 r-1 r-1 r-1

(this must always happen), whereupon we put b =n 1 and then
r r-

have n as b b e b b . Thus, the remainders b , b , b,
r r-l 1 0 o 1 2

coey br and the last n L = 1 give precisely the digits of the
- r-

base 2 expansion of n -- going from right to left. In particular,
the base 2 expansion of 84, as read off from the list of remainders

is
1010100
In similar fashiosn, for n = 179 we have

179 = (2)(89) +1

89 = (2)(44) + 1
4h = (2)(22) +0
22 = (2)(11) + 0
11 = (2)(5) + 1

5+ (2)(2) +1

2 = (2)(1) + 0

and, therefore the base 2 expansion of 179 is precisely 10110011

which is short-hand notation for 179 = 128 + 32 + 16 + 2 + 1




Appendix II

A

 In this section we are interested in develoﬁing an economic
method of adding in the base 2. By economic we mean both in notation
and in computation.
As an example let us return to the text for an illustration;
11011 + 1000101
but instead of working horizontally let us work vertically after lining
digits up carefully in columns. Labelling the columns at the top, for

illustrative purposes, we are considering the addition

—

27 | 26 | 2S 24 23 22 21 20 =1
B 1 1 0 1 1
1 0 0 0 1 0 1
1 0 1 1 1 1 2
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Note that this, and everything we do here, is just a short-hand
notation for the things done earlier. Now, replacing the 2 in
the last column (or in any column) by a 1 in the next column to
the left, we can keep re-writing -- and listing the various

-

intermediate steps until we arrive at the final answer, we have

L 6t 5 4 3} -2 1 | o |
2 2 2 2 2 2 2 =1 -
1 0 1 1 1 1 1 2
= 1 0 1 1 1 2 0
= 1 0 1 1 2 o | o
= 1 0 1 2 0 0 0
= 1 0 2 0 0 0 0
= 1 1 0 0 0 0 0
[ |

Thus, every line equals the preceding one, and the end-result

is indeed 1100000.

In a sense, it is not the label at the top of a column
that matters, but rather the relation between adjacent columns,
and if we can keep the columns lined up accurately then éhe names
of the columns and the "art-work' may be dispensed with. 1In this

vein let us do 1011011 + 100111l -- so .




-

Now, there are several 2's to be adjusted, and it is important

to appreciate the fact that these may be treated in any order.

~ For example,

= 2 0 2 0 1 2 2
= ~2 0_—2 —; 1 3 O
= 1 0 0 2 o0 1 3 O
= 1 0 0 2 0 2 1 o
= 1 0 1 0 0 2 1 o

iii
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We conclude, therefore, that

Of course, nof all the steps need to be written out in detail --
much of the work may be done mentally. 1In fact, if one proceeds
through the columns in order from right to left, and keeps mental
track of the "carrying'" from one column to the next, then it is
possible to write down the answer (term-by-term, and from right

to left) without any intermediate steps. For example,

-- in the right column we have 1 + 1 = 2, so we write 0 and'carry"
1 to the next column. In this column, we now have 1 + 1 = 2, so
we write 0 and carry 1. The third column has then 1 +1 + 1 = 3

8o we write 1 and carry l; the reader can easily complete the

details.
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LABORATORY MANUAL FOR CHAPTER I

In this chapter we analyse the notion of measuremeﬁt. We
do so by performing a series of experiments. The materials con-
sist of :

A simple balance

Assorted vials to hold liquid, beans, etc.

Assorted objects suitable for weighing, such as metal
shavings, dried beans, etc.

Ruler

Compass

Some prepared plasticene sheets.

It is suggested that in the experiments involving the balances,
two or three students work together to speed up the operations.

Be sure, in all weighing experiments using vials, that the
same number of vials appear on both pans of the balunce (adding

empty vials if necessary). Otherwise, excess weight of the vials

will render the experiment inaccurate.




1.1 - 1.4, TIneouality

The most primitive notion underlying any situation in
which some kind of measurement plays a role is that of
inequality. An inequality is merely a way of making a comparison

between two objects.

DEFINITION:

Inequality of two objects according to weight. Object A is
put on one side of the balance, and object B is put on the other
side. If the side containing A goes up while the side containing
B goes down, we say that object A is lighter than B and write
A< B, If side A is the one which goes down, we write B<A. The

2 -

sign < is to be read as less than.

A< B

Experiment 1

1. Fill two vials with unequal amounts of water. Label the
one with less water A, and the one with the larger amount B.
Compare these two vials on the balance.

5. Till a third vial with a small amount of metal shavings.

Have the volume of these metal shavings be less than the volume of




water in A. Label this vial C. Compare A with C. Write
+ - down your result using the symbol ¢ . Do the same for B and C.

Retain the two vials A and B for use in the next experiment.

Discussicn

Notice that when we compare two objects on the balance, we
are really forgetting about all other relations between them other
than there relative weight. A smaller volume of metal may weigh
more than a larger volume of water. Our comparison introduces a

certain amount of abstraction.

Experiment 2
1. On a balance demonstrate once again that A < B.

2. Now weigh out another vessel of water called C such
that B< C.

2.
A ‘ B
ACB B |_C_ BeC

3. What will the balance look like when we put A on one
side and C on the other? Indicate by drawing your
prediction.

4. Check your predicted answer to 3 by comparing A with C.

Discussion

The first fundamental property of our "less than" relation-
ship for weights or lengths is the transitive law. If A is lighter
than B and B is lighter than C, then A 1is lighter than C; in
symbols, if AL B and B C then A L C. This rule, which is

known as the transitive law, is so obvious that we often take it for

granted.




In the text we point out (by Example) that for other kinds
of comparisons, the transitive law need not hold. The transitive
law for weights is thus really based on a collection of experimen-
- tal-facts. Whenever anyone p§§“cqmpared the weights of two objects
A and B and found that A < B, comp;red B—'wifh"mc and found
that B < C, then it has always turned out that a direct comparison
of A with C showed thet A < C. This has happened so consistently
that we believe it to be true in all cases, As with all physical
laws we then use the transitive law as a basis for deduction. If
we are informed that A< B and B< C, we conclude that A C

without directly comparing A with C.

Experiment 3

Directions

1. Make an alphabetical list of all students in the class.

2. The first person on the list will weigh out a rather small
weight and mark it A.

. This first person will pass this weight A to the next person

on the list.

The second person should make a weight and mark it B such that

A<B,.

Pass this weight B to the third person.

The third person will make a weight C such that B<C.

Continue in this manner until the last person makes a weight.

Whet is the relation between this last weight and weight A?,

weight B?, weight C?

o3 O\ £ W

Discussion

We could have predicted the outcomes of this experiment by
repeated application of the transitive law: If A<B and BXC
then A<xC. If C<D then since AXC and CxD we deduce that A<D,
and so on.

The actual experiment is performed in order to contrast it with

Experiment 7.




TRANSITIVE PROPERTY.

If A, B and C are any three weights the folicwing
statement is true:

if AB and B<? then A<C.

1.5 - 1.6 Equality and its Properties

If objects A and B are placed on cifferent sides of a balance
and neither side goes down, that is, if the two sides balance,
then we say that object A is equal in weight to object B. For
simplicity, we then write A=B, aithough such a notation obviously
leaves much to be desired. Thus A=B does not mean that A is B.

It only means that A and B balance each other on the scale.

A= A B

In checking for equality be sure to interchanve A with B
and the balance.

To be sure of equality, remove A and B from the balance
and then replace them, (perhaps ~n opposite sides). This is to

help avoid the interference from the friction of the balance.

kExperiment U4
l. Put some beans in one vial. Mark it A. Fill vial B with
water so that A=B.

Discussion

This experiment shows that (with some difficulty) we can reproduce




any given weight. That is, starting with any object A we can

find another object B that weighs the same.

Experiment 5
1. Pour some water into a vial and mark it C.

2, TFill vial D with metal bolts so that D=C. Can this be
done?

Discussion

An essential property of weight as opposed to number is that it
is not discrete. We may not be able to reproduce a given weight by
a number of multiples of some other weight.

The transitive law for equality

Experiment 6

1. Choose an object A and weigh out a vial B of water equal
in weight to A.

2. Weigh out an object C equal in weight to B.

3. Compare C with A.

Experiment 7 Repeat Experiment 3 for equality. That is,

1. Make a list of the students in the class

5. Let the first person on the list pick an object A, reproduce
an object B equal in weight to A and pass B to the second
person on the list, returning A.

3. The second person then carefully weighs out C equal in
weight to B and passes C to the third person on the list
and returns B. .

L. Continue in this way to the last person on the list.

5. What do you expect the relation of the last object and A to be?

6. Compare the last object with A.

Discussion

The first fundamental observation about the relationship of
equality is again the validity of the transitive law. That is,

if A=B and B=C then A=C. However, in contrast to the transitive




law for inequality, the transitive law for equality is frequently
an idealization from experience rather than something that always
holds true in practice. Thms, if we have objects A, B, C, D, E
with A=B, B=C, C=D and D=E then standard rules of reasoning lead
to the conclusion that A=E. Unfortunately, experiment 7 shows
that in practice this assertion often breaks down. We tend to
think of the transitive law as "logically obvious."

The reason for this apparent contradiction of experience with
the rules of logic is, of course, the inaccuracy of our balance.
There is a certain amount of experimental error involved in each
weighing. Thus although A and B balance on our rough balance, they
are probably not really equal in weight, that is, the use of a more
delicate and accurate balance could show this. Now, such errors
can accumlate sufficiently so that they do indeed show up even on
our rough balance; this is why the experiment led to an unexpected
result. Unfortunateiy, this accumilation of error is unavoidable.
If we were tc use extremely delicate balances, the same trouble would
arise, because, after all, no balance is truly perfect.

It may be remarked that if Experiment 7 is repeated a number
of times, it will turn out that sometimes the end product is lighter
than A, sometimes it equals A, and sometimes it is heavier than A.
Tf things work reasonable well, the end product turns out to be
lighter than A or heavier than A with equal frequercy. This indi-
cates that the break-down of the transitive law for equality does
not reflect something that is fundamentally missirg from the relation
-- rather, it is due simply to accumulation of experimentzl error.

The cases in which the end product is equal to A in weight occur
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precisely when the various experimental errors cancel each other --
some students may produce weights which are too heavy while others
may produce weights which are too light.

In summary, the transitive law for equality is a rule which
we regard as holding in an ideal situation. According to our
viewpoint, the equality represented by a balance is merely a cride
approximation to the ideal equality that we would expect to hold for
an ideal balance.

If A weighs the same as B we shall write

w(a) = w(B).

The idea of this notation is that we can replace the relation
between the objects A and B by an assertion concerning an "abstract
property” of A and of B. Instead of saying that A and B balance out
the scale, we say that the "weight of A" equals the "weight of B."
We have attached to each real object A an abstract property, w(A),
which is called its weight. (It is important to observe that w(A)
is not a number). Two objects "have the same weight" if they balance.
The general way in which abstract properties are attached to real
objects is via the nction of equivalence relation. This is discussed
in the text. In terms of the notion of equivalence class, we can

say that the weight of A is the equivalence class to which A belongs.

Experiment 8
1. Choose objects A and B with A<B.
1

2, Weigh out objects C and D such that w(A)=w(C) and
w(B)=w(D).

3. Compare C with D.




Discussion

The experiment shows that if A < B and w(A)=w(C) and
w(B)=w(D) then C < D. Thus in the inequality A <B between
two real objects A and B, we could replace A by any other
object of the same weight and replace B by any other object
weighing the same as B and the inequality will still hold. This
shows that we really have an inequality between the weight of A
and the weight of B and we can write

w(a) < w(B) .

This is now an inequality relating the abstract concepts w(A) and
w(B). It says choose any object whose weight is w(A) and you will
f£ind that it weighs less than any object whose weight is w(B).

Of course, the transitive law holds for the notion of inequality
of two weights:

if w(A) < w(B) and w(B) < w(E) then w(A) < w(E).

1.7 Addition and its properties.

Consider any two objects A and B, and combine them by
lumping them together into a single pile. This pile may be viewed
as a new object which we denote by A+B. From the point of view of
our balance, A+B means simply that both A and B are placed
together on the same side of the balance. Since it clearly does not
matter in what order A and B are placed on the same side of the
balance, there is no way to distinguish betweer. A+B and B+A; there-
fore, we must view A+B and B+A as the same object -- that is,

A+B = B+A,




Experiment 9

1. Choose objects A and B. Get objects A' and B' such
that w(A')=w(A) and w(B')= w(B).

2. Compare A+B with A'+B' .

Discussion

If w(A)=w(A') and w(B)=w(B') then w(A+B)=w(A'+B'). This
shows that w(A+B) depends only on w(A) and w(B) and not on the
specific objects A and B. It therefore makes sense to write
w(A)+w(B) where it is understood that we are making the definition

w(A) + w(B) = w(A+B) .
This definition says: we add the weights w(A) and w(B) as follows:
pick any object A of weight w(A) and any object B of weight
w(B) and bring them together to get A+B. Then we define
w(A) + w(B) to be w(A+B). This definition makes sense because of
the outcome of Experiment 9. If we chose some other weight A!
instead of A and some cther weight B' imstead of B, then we would
end up with the same weight -- w(A+B)=w(A'+B').

This operation of addition provides a crucial step towards
our goal of assigning numbers to abstract properties such as
weights. With this objective in mind we need, first of all, to
observe that the usual rules for addition of numbers are valid for
this operation of addition of weights. We also need to understand
how this relation of addition interacts with the relation of in-

equality between weights.

~10 ~
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Experiment 10
1. Select three objects A, B, and C.
2. Construct an object D such that w(D)=w(A+B).
3. Construct an object E such that w(E)=w(B+C).

L., Compare w(A)+w(E) with w(D)+w(C).

Discussion

Experiment 10-illustrates the associcztive property:

(w(a)+(B) +w(c) = w(a)+((B)w(C)).

1-8. Multiplication by a positive integer

Warning! Change in convention! From now on we are going

to make a basic change in cur convention. We are going to use the
symbol A to denote the weight of an object instead of w(A). We
shall also use the symbol A to denote any object having the weight
w(A). So, we will say "reproduce weight A" instead of using the

more cumbersome (but more precise) language "construct an object Al
such that w(A)=w(A')." We will say "form A+B" when we mean "construct
an object C such that w(C)=w(4+B)." We will tolerate this slight
misuse (or imprecision) of language in order to have a little more
smoothness of expression.

From the preceding section, we know how to add weights; thus,
for any weight A we may define 2A = A#A, 3A = A+A+A, and, in
general, for any positive integer n, nA = A+A+....+A, where there
are n copies of A in the sum on the right. Note that for n=1, the
definition says that 1A = A. This operation, in which we take a
positive integer and a weight and "ecombine" them to get a weight

will be called "miltiplication by a positive integer.”

-]11 -




Ar integer timé; a weight is another weight. This operation
is quite distinct from the product of two integers. (It makes no
Sense to multiply two weights nor does it make any sense to say A-n).

There are several natural and important properties of this
operation. From the associative law for addition it follows thut
if m and n are positive integers and A is an arbitrary weight then

(m*n) A = mA + nA
and
(mn) A = m (na)
Note that in the first of these equations the addition on the left
side is for integers, while on the right side it is addition of
weights. In addition it follows from the associative and
commutative laws for addition that if n is any positive integer,

we can illustrate the first of these equations by the following:

Experiment 11

Choose a weight A

Form 2A and set it aside

Form 3A and set it aside

Form 5A (by reproducing A five times).
Compare 2A+3A with 5A.

Vi LW
.

Since 5=2+3 we can rewrite the result of step 5 as 2a+3a=(2+3)A

The equation (m+n)A=mA+nA is called the first distributive law.
The second distributive law.
Experiment 12

1. Select any two random weights, A and B, by pouring two
arbitrary amounts of water into two different cylinders.
2. Using a balance produce the following weights and
designate the weight on the container:
a. A+B
b. Reproduce A1B.
c. 2 x (A+B)
d. 2 x A.
e. 2 X B.




3. Compare on a balance the weight 2 x (A+B) with
the weight 2 A + 2 B.

Discussion

The distributive law says that for any integer n and any
weights A and B, if we form A+B and then multiply by n it is the

same as multiplying A by n and B by n and then adding; symbolicall.

n (A+B) = nA + nB .

INEQUALITIES

If A and B are weights with A € B and if C is any other weight then
A+Cc<B+C.

If you like, you can devise and carry out the experiment which
verifies this.
If ACB and C< D then
A+C<B+C

while
B+Cc<B+0D

so,by the transitive law
A+C<B+D.

If A< B then (if we let C=A and D=B in the previous inequality)
A+A<B+8B

or, in other words

oA < 2B .
For the same reason

3A < 3B
and, in general,

mA < mB

for any positive integer m.
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If A< B we do not know how 2A compares with B.

Experiment 13

Choose a weight A.
Demonstrate equality in the balance to get a
number of equal weights.

n

s

1

3. Put several copies of A aside for use.
L. Measure out a weight B such that A < B.

/
I

i
L5

5. On the same side as A put on more A's until
B < A+A+A+, . +A ,

B <mA

6. What is the smallest m that works? m = ——.

Discussion

We started with two weights A and B such that A < B.
We found an integer m such that
B<mA
but such that B is not < {m-1)A . We can say that either
(m-1)A<B
cr (m=-1)A = B
As a shorthand notation, we shall write

(m-1)A< B

-1 -




y which is to be read as (m-1)A is "less than or equal" to B.

We thus have

(m-1)A< B

B<m .
We shall frequently combine these two inequalities by simply
writing

(m-1)A SB< ma .
In other words, we know that B is at least as large as (m-1)A
but definitely smaller than mA.

There is, of course, at most one integer A +that works.
This integer m gives us a better idea of how B compares with
A . There is, for example, much more information in the assertion

4ba< B < 5A
than in the assertion A < B. Starting with A and B, can we
always find a suitable m ? Is it possible that A is so small
compared to B that no matter how many copies of 4 we add to

itself we never exceed B ¢

Experiment 1k

l. This time our A is to be a drop of water measured
from the standard eye-dropper in your kit.

2. Put a weight B on the balance and a container
with one drop on the other side.
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3. With the eye dropper add enough A's uncil the
balance looks like fig. L4.g (2).

-~
//]3

l Fig. 4 g (2)

A's

i, How many drops did you need?

The Archimedean principle asserts that given any weights A anl B, A¢B
there always will be some integer m such that

B <mA .

Experiment 15

1. Choose a weight A and reproduce several copies
of A for nse in this and the following experiment.

2. Choose weights B and C significantly different from A .

find m such that

w

mA < B< (mt1)A (Notice the shift in
notation from the
lasi experiment. If
UAS B < 5A then

m=4!)
4, Find an integer n such that
mEncg (n+1)A
5. Construct B+C. Find R such that

rA Sn+c < (R+1)A.
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Experiment 16
Use the weight A of .ne previous experiment
1. Find a weight E such that
2A < E<3A
2. Find a weight F such that
S5A< F < 6A
3, Construct E + F. Find the integer p such that

pAS E + F< (pHl)A.

p:

Retain A, E and F for the next experiment.

Discussion

If 2A< E and 5A < F then the law of addition of inequalities
tells us that
2A + SA<E + F
so, in other words
TALE +F.
Similarly
E<3A and F <6A
tell us that
E + F <3A+6A = OA .
So we know, in advance that
7TA<E +F
and E + F <¢9A.
So, in Experiment 16, we could have predicted in advance that

p=T or p=8. We can't tell, in advance, which of these is correct.




A But we have made a first step towards reluting the addition of
weights to the addition of numbers. The next step is to try to
re’’ine the infcmation releating B to A by comparing B with

multiples of 3A. For this we must construct iA.

Experiment 17

l. Find a weight G such that G+G=A. We call this
weight 1A,

2. Using the weight E of the last experiment, decide
vhich of the following assertions is true

nlE< oA+IA or

OA+A SE<3a
3. Decide which of the following assertions is true

5a< F< 5A+1A or

5a + 1A <F<er
i, From the :rue assertions in 2 and 3, can you deduce
an assert.on relating E+F to A which is more refined
than 7TA & E+F < 9A, What is this more refined
asserticn?
To contimue our analysis, we would want to have LA at our disposal.
We would find it by subdividing iA into two equal parts.

Since dividing a weight in two is a difficult and tedious process,
we will now switch from our study of weights to a study of length of
line segments. We should bear in mind that the experiments we will
be performing with segments could theoretically be carried out with
vejghts.

Let UV and XY be two line segments.
v X

/




We compare their lengths as follows: Open the compass so that one

point lies on U and the other lies on V. Place the compass with

this opening with one point at X. If the other point does not

reach as far és Y, we say that UV is shorter than XY and write

1(0v) € 1(XY) .

If the other end of the compass fits exactly at Y, we write

1(0V) = 1(XY) .

Wé can check that the inequality involving length satisfies the
transitive law. We can also check that the relation

1(v) = 1(XY)
is an equivalence relation. We can therefore study the corres-
ponding abstract property known as length. We shall denote
segment lengths by letters a,b,c, etec.

Before proceeding, we recall a mmber of constructions from

plane geometry.

Basic Geometric Constructions using a compass and an unmarked

straight-edge

Construction No. 1

Reproducing a line segment on the given line.

l. Given segment a. y a Vv

X

line
2. Put the compass point on the left end-point U of a
and open the compass until it spans segment a.

3. Keeping this opening, put the compass point a point

on the line and strike an arc through the line.

X




1'» ' L., This is reproducing segment a on the line.

Construction No., 2
Bisecting a line cegment.
1. Given a line segment a with end points A and B.

o2, With A as center and AB as radius construct
a circle.

3. With B as center and BA as radius
construct a circle.

4. Draw a segment using for endpoints
the intersections of the above
constructed circles.

5. This newley constructed segment is
the bisector of AB, and is also
perpendicular to AB.

Construction No. 3

Duplicate an angle

l. Given an angle A and a s=sgment b
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Using A as center strike an arc intersecting with
A at B and C.

Maintain same radius and strike an arc with left end-
point (G) of b as center and intersecting b at D.

{

Transfer segment BC to point D such that the arc's inter-
sect at E.

Draw GE.

X BAC

‘;L EGD

Construction No. L

Constructing a line parallel to a given line through a point.

1.

2.

Given a line 1,and a poirt D not on the line.
Choose a point € on 1, and draw the line through C and D.
Let A and B be points on 1, .

At D and on the same side of CD as B, construct an angle
CDF congruent to ACD.

Draw the line through D and F. This line is pérallel to l|.

Construction No. 5

Divide a line segment into n congruent parts.

1.

Given segment a to be divided into n con-

n congruent parts. The e dpoi ts of segments
a are A and B.

. from the left endpoint of a draw a line 1

. On 1' lay off n congruent segments,

AC, = TiCp = CxC3=...=Chq Cy

. Through D draw the line parallel to 1,.

. On this line, starting from D lay of n
segments congruent to AC . Call D=Dn,
the next point Dn-1 ard so on.




6. Join Cn to Dn, Cn-1 %o Dn-1, etc.

7. The intersections of these lines with a_subdivide a
into n equal parts.

Construction No. 6
Addition of two segments
1. Given two segments 2 and b.
2. Draw a line 1
3. Reproduce aonl as in C .+wction 1.

L. Starting at right endpoint of a,
reproduce b on 1.

5. Segment (a+b) begins at left endpoint
of a and eris at right endpoint of b.

1.10 - 12 Bisection of Segments

Let us bisect an arbitrary segment b and designate the length
or each bisected segment as b. Now bisect the resultant segment
b and designate its length ai 1 (B) = 713 Repeat the bisecting for
Ehe segment % and designate iti lingth as g. In general, if this
bisection is repeated n times on the resultant segment the length of th

the final segment will be designated as En
2

Thesz lengths, after the bisection has been repeated twice, can

be represented by means of the following diugram:

B b o

. + 0.~ + 1. b -

Ob Cb + C.2 L Ob + 1..2. +0.f Ob+ l.%:L.h b
1" "

b
i—b %b £b
or using a notation that is less cumbersome we have
0.00b 0.01b 0.10b 0.11b 1.00b

After the bisection has been repeated three times the lengths of
the segments may b2 represented as follows: |




C.GCOO0b

0.001b 0.010b 0.011b 0.100b C.101b 0.11Cb  C.11ilb L.00Cb

lb ?
2 .

In general then, if the bisection has been repeated n times, so
that the length of the segment :s b then the binary exvansion of
bn i1s represented as 0.000...1b
= N i’

2 n digits

The following table shows the representation of the length of
each segment as the number »f bisections of segment b increases.

g%ggggiggs of Length of each segment
Segment 6 binary expansion
b
1 2 L.0an
Bé ;
2 2 0.01lb
b_
3 35 0.001b
b,
L E4 0.C001b
’ 0000, 15
n-1 n- 1gits
B b 0.000...1b
n P n digits




As the number of bisections increase, it follows that the length of

each segment decreases. This is reflected in the binary expansion of tne
segmnents. Thus

b - b - b . b .
> 0.1b, 4 0.01b, g = 0.001b, ...,zn = 0.000...1
n’digits
Hence for bisection of segments the larger of two segments is the
segment which possesses a digit 1 in the left-most position.

By referring to the line diagram and the table for tne bisected line
segments upon adding the segment of length.g; to the segment of length b
-

we have 2 2
§; = 0.01b
+ 2. = o.0m
27
b _
> 0.1b

2 x (0.01b) = 0.1b.

This may be expressed as 2 x Q_)
21
S—

In general m x(g designates b + b + ...+ b (m times).
2™ 24 2N 2
The following addition of segments are similarly true:
b b
2% = 0.001b 33 = 0.001b
b - b -
+ Y 0.001b 51 0.010b
b =
52 0.010b 3x%3 = 0.011b

From these examples the following addition facts must be true: ¢

0+0=0
0+1-=1
1+0-=1
1+1=10

b b .
Exercise : Find the sum of the two segments 73 and 74 both by means

of the line diagram and by meaus of adding their binary expansions.

It wvas previously shown that 2 x (0.0l1b) = 0.1b. Multiplying by
two, or equivalently doubling the size of the segment, results then in
shifting the radix point one place to the right. Multiplying by four,
that is, multiplying by two twice, results then in shifting the radix
point two places to the right.

n
Exercise : What is the result of multiplying a binary number by 2 ?

Now let us examine multiplication more closely for the purpose of
developing a multiplication algorithm. Consider the product 3 x (0.01lb)

3 x (0.01b) = (2+1) x (0.01b)
=2 x (0.01b) + 1 x (0.01b)
= 0.1b + 0.01b

3 x (0.01b) = 0.11b
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This example may be abbreviated by means of the following algorithm:

3 x (0.01b) = .01b

11

.01b

0.1 b

0.11b

For multiplication then the following multiplication facts must be
true:

0x0=0
0O0x1=20
1x0=0
l1x1=1

Exercise: Find the product of 5 x 0.001b both by means of the line
diagram and by means of the multiplication algorithm.

Now consider the addition fact previously established: 0.001b + 0.010b =
0.011b. This addition fact is equivalent, by the definition of subtraction,
to the statement 0.011b - 0.010b = 0.001b, that is the answer to 0.011b -
0.010b is the number which when added to 0.01Cb yields 0.011lb. Thus:

_ 0.011b
0.01Cb
0.001b

Exercise: Find the difference of the two segments (,111b and 0.101b

both by means of the line diagram and by means of subtracting their binary
expansions.

Now consider the multiplication fact previously established:
3 x (0.01b) = 0.11b
3 x (0.01b) = 0.11b is equivalent, by the definition of division, to

the statement 0.11b - 0.01b is the number of times 0.0lb can be subtracted
from 0.11b till 0.b is left. Thus 0.11b - 0.01b may be obtained as follows:

0.11b
~ 0.01b
_ 0.10b 1
0.01b |
_0.01b 1
0.01b |
€
This repeated subtraction approach may be abbreviated by the following
algorithm:
11 =1(2) +1¢1) =3
0.01bJ0.11b
.10b
.01b
.01b

Exercise: Find the quotient 0.011b + 0.00l1b by the process of repeated
subtraction and by the division algorithm.
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1.12 Dyadic Expansion of Segments

Experiment 18

In this next series of experiments we are going t» investigate
the nature of a real number as a sequence of ''mested inequalities."

The method by which this investigation is to be carried out 1s
to compare an arbitrary segment in terms of a given or chosen segment.
The comparison 1s to be made using thefdyadic expansions as explained
in the previous pages.

As an aid to your work the following example should be noted.

Given an arbitrary segment a and a unit segment u.

& W
S — &

No. 4 is obviously a bztter
approximation of a in terms of
our unit u than is No. 1, but
there is still room for improve-

ment if our tools permit us.'OL_—_____

0.0u € a<1.0u
0.1lu € a <1.0u
0.100 < a2 <0.11u
0.101lu<a € 0.110u

The illustration at the Q
right indicates the suc-
cessive steps you will be
taking but of course you
will do this work on one
line.

000QY 2 T

Oll (0]V)
Carry out the next two steps.
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Experiment 19

Directions
1. Choose a segment equal in length t- the width of ycur
four fingers. Call it a.
2. Construct a unit segment equal to three times the length
of a. Call it b.
3. Find the binary exnansion of a in terms of b.
k. Use the accompanying table as a guide.

0.0b €a < 1.0b
0.0b < a < 0.1b
< a<k :
< a<l
<a<l
< a<
ag

What is the general pattern?

If you do not see the general pattern, then repeat the

experiment with the segment a two or three times as large as the

one you are now using and carry it out to eight or more steps.

Homework assignment

Experiment 19c

Directions

1.

2.

What is the general pattern? What will be the answer if we

Choose two segments ¢ and d such that 4 = Te.
Find the binary expansion of ¢ in terms of d.

It is important, since we want a fair degree of accuracy,
that a rather large segment d should be chosen and that
viie constructions be as accurate as possiblc.

For convenience and unifurmity, use the accompanying table.

0.0d < ¢ < 1.0d
0.0d € ¢ € 0.1d
0.00d< c € 0.014
<c <K
<c <
<c<
<c<




can get three more stages of accuracy? Will the procedure ever
terminate whith exact equality?

Experiment 20

Addition of Segments

Directions

1. Choose any fairly large segment u as the unit of
comparison. Keep u for the next few exreriments.

2. Choose segments a and ¢ and then construct a segment
of length (a+c).

3. Find the binary expansions of a and ¢ in terms of u
to five places.

4. Find the birary expansion of (a+c) to five places.

5. Compare the binary expansion of a plus the binary
expansion of ¢ with the binary expansion of (a+c).

Show your computations here.

What are your conclusions?

Experiment 21

Directions

1. Construct an isosceles right triangle with a leg equal to a,
where a is a fairly large segment.

V)

Find the binary expansion of the hyrotenuse in terms of
a, to five places.

3. Recall the rule for multiplication of dyadic expansions
(p.90-95) of the text. Multiply the binary expansion
obtained in stage 2 by itself. What is the answer?
What do you think the answer should be if the binary
expansion were carried out to ten places?




Suppose that the ex-ansion of segments m, n, p, q and r in terms
of segment a are as follows:

0.100000a < m < 0.100001a
0.011000a < n < 0.011001a
0.10110%a < p < 0.10110la
0.010101a < g < 0.01C110a
0.001010a < r < 0.001011a
As these dyadic expansions are represented in terms of the
binary ex ansions of segment a it follows tliat we can use the
binary ex ansions to compare segments. The larger of two segments
is the segment which possesses a digit 1 in the left most position;
if both segments possess a digit 1 in the same left position the same
comparison is made for each digital position to the right until the
two segments nossess a different digit.
Exercise: Using the preceding definition order by magnitude

segments m, n, n, q, and r.

Experiement 22

Directions

1. Choose a fairly large segment a to be used as a unit.
2. Construct q =1
3
3. Find the binary expansion of q and of r to 6 places.

4, Construct q+r and find its binary expansion.

Discussion

Let us see how we could have used the binary expansions of q and
r to predict the expansion of q+r.

Since
0.010101a i q < 0.010110a and

0.001010a < r < 0.001011a
it follows that q + r must be at least as large as the
smallest possible value of q added to the smallest possible

value of r and g + r must be less than a value which
exceeds q added to a value which exceeds r.
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R

' Expressed symbolically we have

0.010101a q 0.010110a
C.001010a r 0.0010lla

0.011111la g+r 0.100001a

In more detail, the successive dyadic expansions of
segments q and r in terms of segment a are given with the
corresponding results for q+r.

0.0a < q < 0.1a 0.0a £ r<o0.l1a
0.0la <q < 0.10a 0.00a < r<0.0la
0.010a < q < 0.0lla 0.00la < r < 0.010a
0.010la < a < 0.0110a 0.0010a < r € 0.0011a
0.01010a < q < 0.010lla 0.0010la < r < 0.00110a
0.010101la < g < 0.010110a  0.001010a < r < 0.0010lla

0.0a < g+r < 1.0a
0.0la < g+r < 0.1la
| 0.0lla < g+r < 0.101a
' 0.0l1lla < g+r < 0.10Cla
0.0l1lla < gtr < 0.10001a
[ 0.011111a < a+r < 0.100001a
|
!
0.01111...11a < g+r < 0.10000...1a

0.0101010...10a q 0.0101010...11 0.00101010...10a r  0.001010..

.1lla




As we steadily improve the accuracy of the dyadic expansion
of q and r , we get better and better estimastes on qtr. In
our case we see that the dyadic expansion of q+r should be either

.01111i11... a or .010...0 a and we must agree that these two

expansions represent the same number. See the discussion.

We have seen how the addition of segments corresponds to the
addition of their corresponding dyadic expansions, once we have
chosen a unit: If we start with segments q and r we can find their
dyadic expansions, add these dyadic numbers and construct tne
segment corresponding to the sum. The segment we obtain will
be q + r. In this sense we are able to "translate" arithmetic

into geometry and vica versa.
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Multiplication of a segment by a real number. We know how

to multiply a segment by an integer. For instance 5a = a + a +
a+a+ a. This multiplication by an integer reduces to repeated
addition. We also know how to multiply a segment ty 1/2: starting
with segment a we simply bisect it to find a segment 1/2 a such
that 1/2 a + 1/2 a = a. In this way we know the meaning of .001 a
which we obtain by successively bisecting a three times. We
tnen know the meaning of (101.101) x a for instance. It is ob-
tained as 5 a + 1/2 a + 1/8 a. In this way we know how to multiply
a segment by finite dyadic expansion. We also know how to mul-
tiply a segment by an infinite dyadic expansion: For any dyadic
expansion such as r = 1.011010... (which keeps on going) and any
segment, c, we can construct r ¢ to any desired degree of accuracy.
For instance (taking the above value of r) we know that

1.011010 ¢ € rc « 1.011011 ¢
and so on. If we have a segment b whose dyadic expansion in terms
of our unit is r, we can also eonstruct the segment rc geometrically
as in the next two experiments.
Experiment 23.

o b

1. Choose a unit, a.

2. Choose a segment b, and find its dyadic expansion in
terms of a to five pldaces. Call r this dyadic expansion
of b. Thus r = (to five places).

3. Choose a segment c. Q

4. On a line, mark off the segment a and the segment c so
that they have a common left end point. For instance

L
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5. Construct a segment equal to b, perpendicular to the line 1,
through the end point of a. Thus

b
Qa "
C
6. Draw the line through the other end point of a and of
b. Thus
b
o- 1

7. Draw the pef%endicular to 1 through ¢ until it meets
this line. Thus

o
Call the segﬁent so obtained d.

8. Find the dyadic expansions of c and d in terms of a.
Compare r x (the dyadic expansion of c¢) with the dyadic
expansion of d.

Discussion. This way of multiplying is the way used frequently
by the Arabs. It has some advantages over direct computation

with all the binary expansions, at least in those cases where the
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binary expansions are rather complicated. We illustrate this

in the next experiment.

Experiment 24. Purpose - - to multiply fg'x Is.

1. In terms of the unit a construct the segments b = J3a
and ¢ = J5a by drawing the appropriate right triangles.

2. Using the procedure of experiment 23 construct d = fg.x c.

3. Find the dyadic Sxpansion of d (to five places) and call
it s. Compute s”.

4. Construct J15 * a directly via rigiht triangles:

5. Compare {15 a with d.

We can use the geometric construction to illustrate some of
the laws of multiplication:
Experiment 25. (The distributive law)

1. Choose a unit segment a and segment b = ra.

2. Choose segments ¢ and d.

3. Construct c +d = e.




4. Find ré and rd and re by the method of Experiment 23.

5. Construct rc + rd and compare it with re.
It is perhaps worthwhile now to pause to 1list some of the proper-
ties and operations we have been studying of lengths and numbers.

A length is nct a number. Nevertheless we can add two lengths
to get a third and both the associative and commutative laws hold
for this addition. We can multiply a length by a real number to
get another length. The distributive laws hold for this multipli-
cation. Of course we can also add and multiply numbers to get
other numbers. The various laws are listed in the text.

We have also seen how tc assign a number to every length

(and a length to every number) once a unit has been chosen. If

we change the unit, the rule assigning numbers to lengths will

change. Let us illustrate how this change works in a simple case.

Suppose we start with a as a unit and b = 2a. Thus the number

we assign to b (in terms of the unit a) is 2. Suppose we decide

to replace a by a' = 1/3 a. Then b = 2a and a = 3a' so that

b = 6a'. Thus the number assigned to b in terms of a' is 6.

Replacing the unit a by the smaller unit a' = 1/3 a has the effect

of multiplying the number assigned to b by 3. We illustrate this

in the next experiment.

Experiment 26. Divide class into six equal groups and call them
A, B, C, D, E, and F. Sections A, B, and C will work
together in the early stages as will sections D, E, and F.

l. Table A

Draw a unit segment and make two copies of it. Give
one copy to B and one to C.
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10.

11.

Table B

Construct a segment twice the length of A's segment.

Table C

Construct a segment three times A's segment.
Table D

Draw a unit segment and make two copies of it. Give
one to E and one to F.

Table E

Construct a segment twice the length of D's segment.

Table F

Construct a segment three times D's segment.

Each person now makes a copy of the segment assigned to
their work area.

Use the segments (m, n, p, q, r) that you were given earlier
and get the dyadic expansion of each of these in terms

of your new segment. To conserve time and energy, each
person could do a different one.

Table A

Compare you expansion of m to B's expansion of m

n to B's " n
p to B's " P
q to B's " q
r to B's " r

Is there any generality developing?
Table D

Do the same as 9 with table E.

Is there any generality developing?
Table A

Compare your expansion of m to C's expansion of m

n n




Compare your evpansion of p to C's expansion of p

12. Table D
Do the same as 11 with table F.
Is there any generality developing?

13. Now compare table B with table C and table E with table F.
Can you make any generalization?

14. Compare table A with D
B with E
C with F

Can you generalize?

If not, try to compare the dyadic expansions of the
original segments.
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Chapter 11

The One Dimensional Vector Space

Tn Chapter I we studied the number system that enters naturally in the
context of measurement. This was the system of "positive real numbers"'.
These numbers do not capture all the meanings we like to associate to a
number system. What is missing is a certain symmetry as regards direction.
Let us explain what we mean by several examples. When we talk about
temperature, we usually express how hot or cold it is by stating the
temperature in degrees. We may say that it is 75 degrees or 30 degrees
or 10 degrees below zero and so oa. The new point here is that we have
to talk about "degrees below zero". We never have to talk about a "below
zero number of" inches or pounds. If we analyze the situation, we see
that the difference is due, in part, to the fact that our notion of "zero
degrees" is quite arbitrary. When we talk about weight, it is quite clear
to us that an object canuot weigh less than nothing. As to temperature,
we feel that it can get hotter and hotter or colder and colder without and.
We thus pick some arbitrary point and say that we will measure temperature

in both directions from this point. (Actually a deep law of physics says

that it can't keep on getting colder - there is an absolutely coldest point.
Let us pretend ignorance of this law, however.) We sometimes write +75°
for "seventy-five degrees" and -10° for "ten degrees below zero". Notice
that in these expressions we have two symbols in additicn to the numeral .

We have © which signifies "degrees" and either + or - which tells us
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whether we are "above zero'" or ''below zero". In this sense, the + or -
are not operation signs, and the more correct usage (as found in more
recent textbooks) would be to use different symbols than the symbols
used for addition and subtraction. No matter how we write it, the
expressions of the form -10 occur in many other places besides temperature.
vor instance, we make talk of an altitude of 200 ft. meaning 200 feet above
sea-level and -200 ft. meaning 200 feet below sea level. To say that
my bank balance is +$100 means that the bank owes me 100 dollars, while
to say that my account is -$50 means that I owe the bank $50. Notice that we
can also operate with such expression. To take the last example, let us
count a deposit of $20 as a deposit of +$20, while we write a withdrawal
of $30 as a "deposit" of -$30. Then starting with $100 in the bank and
withdrawing 30 (so we "deposit" -$30) leaves us with $70 in the bank. We
can write this as 100 - 30 = 70 or 100 + (-30) = 70. Similarly, starting
with 10 dollars in the bank and withdrawing 30 leaves us owing the bank
$20, or 10 - 30 = -20.

In this chapter we show how "signed real numbers" enter naturally
into geometry and study these numbers in the geometrical context. As

before, we shall pick a specific geometrical model - this time the study

of translations of the line.




2-1. Translations on a Line

The object we wish to study are sliding motions of a line. That is, we
are given a line and can slide it along itself (without changing lengths).
We can visualize these motions as on a slide rule, for example. We can
slide the inside of the rule in either direction by any amount. (Let us
imagine the slide extending indefinitely in both directions.) The things
we wish to study are the motions themselves. The first important property

about these sliding motions, or as they are called, translations are that

we can compare two of them to get a third. Slide the rule once, and then
again, the net effect, as far as the change of position is concermned, is

the same as making a single translation. Thus translating by this amount

and direction

] —— —

moves the line to the right:

£
v

If we then translate by

L <

we move the line to

Q-t o




.. The net effect of the two translations together is the same as a

translation by 3

Y
!
T




|

2,2 Directed segments

We want to have some way of labelling and keeping track of our
translations. The translations themselves are rather "abstract" objects.
They are rules, telling us how to move the line or the slide. To have a
more concrete way of dealing with them, we shall proceed as was suggested

by the diagrams in 2-1. We draw a separate line and agree that every

directed segment on this line is to represent a translation in the

following way: A directed segment is just a segment with an arrow drawn

on it so that it has a head and a tail:

A i 8

(A is the tail and B is the head)

Suppose we start with the directed segment above. Pick any point on

the slide rule.

Mark the point, P, both on the slide and on the base. Now reproduce the

segment AB on the base putting the tail at P. Call the other end point

Q.




B

Now move the slide so that the point originally over P now lies over Q.

We have thus shown how the segment AB prescribes a motion of the

slide. Of course, we must check that the prescription does not depend on

which point P we chose. This must, and can, be checked. If we pick some
other point as our "start" positicn, we will find that we will have moved
the slide exactly the same way. 1In fact, it is clear, that the motion of
the slide is determined by the length of the segment AB and the direction
of the arrow. For this reason we shall be more specific and draw all our

segments with a common "tail" point which we shall call '0'. That is, we

draw a fixed line and pick a fixed point (or "origin'") on the line.
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A
L) Picking any other point, B, on the line determines a segment OB. Thus,
8
<« e ‘ —
o > 8
or
C o
€ : —— o of
C 1<' o
or
, o D
o > D

are segments with "tail" '0' and head B, C, or D. Each of the segments
OB or OC or OD determines a motion of the slide.

Once we pick the point B or C or D we have determined the segment
OB or OC or OD. Each of these segments gives us a rule for moving the
slide. In this way, we have associated to each point of the line,
a rule for moving the slide. Conversely, start with any motion of the
slide. Pick a point P on the slide before the motion. Label Q the point
where P ends up after the motion. Then 'DGQ is a segment and we can
find a point E such that OE is equal in length to PQ and points in the

same direction. Then OE determines the motion we started with.




In this way

The translations of the slide can be represented as points on the

line




2.3 The zero translation

Some special mention should be made of the one special point on our
line, the point '0'. What motion does the point 'O' determine? A moment's
reflection shows that ""the motion" corresponding to 'O' cannot move the slide
at all. In other words, the point '0' corresponds to the "rule of motion"
which says "don't move the slide at all." For convenience, we regard this
rule as also being a "rule of motion" much the same way as we regard zero
as being a number. In fact, we shall call this rule the "zero translation".

Its similarity to the number zero will become even more apparent a little

later on.




- 2.4 Addition of vectors

Suppose we are given two translations, vy and Vo We know how to

put them together to get a third. The rule is first apply vy and then

; apply Ve Remember that v1 and v, are di—-ections for moving the slide.

5 We get a new direction which says "first move according to the rule v1

This has the effect of moving the

! and then according to the rule v2".

slide and is, in fact, another translation, Vi
We will denote the operation going from the two translations v,
and v, to the translation v, by the overworked symhol, "+'". We will thus

write:

V, = + v

3°- V17V

which says,

"the translation v, is obtained by just moving according to v; and

then according to v,".

Suppose that we represent the translations v, and v, as points on

1

our line ,p Thus, for example, suppose that \41 and Vo

by
€« 4 s >
o v, V5

are given as in the diagram.

How do we find v3? Imagine our slide is situated with the point P

directly over '0'. Then the rule '"v." says to move P to vy. Now apply the

1

rule "vz", picking as our start the point situated over v The rule "vz"

1‘5

says to draw a segment with tail vy equal in length to 'O'v2

—

P
0

<
‘u<0




1 P
o “« ' [ A —
< o \,' \‘,1 —pr
N/
oV,
| ) ]
< 24 4 I + - —>
O V, v‘; VJ
‘r e J
! Vv, +V,

The segment starting at '0' and ending at this new point will correspond

to v, + Vye To repeat, to find v, + v,.on the line we operate as follows:
Draw a segment equal in length ¢é 'O'V2 whose taii is Vg The other

ead point is v, + v,

Here are some illustrations:

o« ' + — -l
toy v, 0 Vy
\ I/
OVa
L
€ — :%’ -+ —n
v 2 vy
< - . — —
v, e {Vs Vs
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and so on.

0 \'4 )
'OV
2
< ~
o V7
+ !
(o] vl
]
1
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2.5 Laws of addition, multiplicscion Dy positive reals.

Let us examine some of the pProperties of this composition. Suppose

we start with v, and V,. We can form v, + v, which says "first do vy

and then do v2" or we can form v, + v, which says "first do v, and then

do vl." Usually, it matters in which order instructions are performed:
"first put on your shoes and then your socks" ends you up in a different
state of affairs from "first put on your socks and then your shoes." 1In
the present circumstance it doesn't matter.

v. tv =v +v

1 2 2 1
as must be verified experimentally:

¢ V‘ A'o 'v‘ ;
. . —_—
6 % b 'v'
VitV)
V-
<% v ¥ 3 }w —
¢ f e f
< }¥ v ‘4
v l( vy o v, >
VitV / Vi
s ” 3 L >
= ) S v
| !
Thus the "commutative law holds". Also
= + .
(vl+ v2) + v3 v1 + (v2 v3)
In fact the left side says first apply v. then v_ and then v. and so

1 2 3
does the right. 1In this case the "associative law" is practically a

tautology.

Suppose we start with a translation v . We can form vl + v1 +v

1
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and we will naturally call this 3v Similarly, by bisecting the

1°
segment '0'v we can find a w such that w + w = v. We will call w =
1/2 v. In this way, we can multiply any translation v by an integer
or a dyadic rational, or, in fact, by any positive real number:
Start with the vector v and the positive real number r. Find
the segment whose length is equal to r x (the length of '0'v).

Draw the segment of this length with tail '0' and which points in

the same direction as '0'v. This will be the tramslation rv.

N
.
(=)

Properties of the zero vector

Let us pay scme attention to our special tramslation '0'. The
rule corresponding to '0' is "stay put." If we apply any tramslationm,
v, and then stay put this has the same net effect as applying v. Thus

v+ '0'=v.
Thus '0' "acts like zero" as far as "+" is concerned. Since
'0' + '0' = '0' or 2'0' = '0'
and '0' + '0' + '0' = '0' or 3'0' = '0' and so on we have
n x '0' = '0' for any natural number n. Since '0' + '0' = '0' we know
that 1/2 '0' = '0'. Similarly 1/4 '0' = '0' and we make the reasonable
conclusion that r'0' = '0' for any positive number r.

We have one further useful convention: The number '0' x any vector

= '0'. This coincides with our desire that the distributive law hold:

rv + sv

(r +s) v
if s = '0' and r = 1 we wish to have
1+'0') v=v + '0'
and we know that v + '0' = v so we get into no trouble by insisting on

the rule '0'v = '0"'.
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We have now reached the point quite close to that of chapter one.
We can add two translations and we can multiply any translation by a
positive number or by zero, and the usual commutative and associative
laws hold for the addition and the various distributive laws hold for

the multiplication.

2.7 Multiplication by -1

There is one new operation that we can perform on translations:
we can reverse the translation. If a translation carries P into Q we
can consider the new translation which carries Q into P. In terms of
our representation of translations on our line it says take v and

draw the segment of length '0O'v but headed in the opposite direction:

—p—

ﬁ-
OL T
CPp =

We shall give a name to this operation of reversing v; we shall
call it multiplication by -1. Here -1 is just a symbol whose conven-
ience will become more apparent in a little while. Our notation is
thus

(-1) x v = the "opposite" of v.
- —&
(~1)xv

 Z

We shall examine some properties of this '"reversal" operation. The first

one that we take note of is

(-<1) (w+w)=(1) xv+ (-1) w.
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This says that if we first add v and w and then reverse the sum we end
up with the same translation as if we had first reversed v and reversed

w and then added. We illustrate:

€ - w —>
0 .
< * v W —->
L viw? ~
. g' —
- > :
(=){v +W)
< 4+~ + —t— —t 4 -—
(<)w (-)v 0 v w
< - —— 41f -+ + $ —
-w )V 0 v w
%

< . 4
(-V + ()W

Lio
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2.8 Negative of a vector

, Wk

The next observition about the reversal operation that we wish to
make is perhaps the most cbvious one:
v+ (-1) v="20".
This says that if we first apply v and then apply the reverse of v we
end up back where we started, which is essentially what the reverse of
V means.
Notice that this then implies that for any w we can conclude that

W+ (-1)v)+v=w

since
(w+ (-1)v) =w+ ((-1) v + v)
=w+ '0'
= w.

Thus w + (-1) v is a translation, which, when v is added to it gives us .-
back w. This is very analogous to the operation of subtraction and we
are tempted to write w - v instead of w + (-1) v. We shall indeed

write w - v with the understanding that w - v is a shorthand way of
writing w + (-1) v. For the same reason we shall sometimes write -v

as a short way of writing (-1) x v.

2.9 (-1) x (-1) =1

The next observation about the reversal operation is that reversing
a translation twice ends us back with the translation we started with.
This is clear both from the definition of the operation and from our

geometrical representation.
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o > -
< $ —>
0 v
——
< +— —>
(-xV o
- —> — S
<« *
0 S (P12%)

We write this as
(-1) x ((-1) xVv) = v.

2.10 Multiplication by a negative number

Suppose we take a v and multiply it by 2. Then reverse the answer.
Thus we form (-1) x (2 x v). We know that this is the same as forming
2 x ((-1) x v). We shall introduce some shorthand notation by writing
(-2) x v for (1) x (2v). In other w.:ds, we are using the symbol -2
to denote the following operation on v: 'double v and reverse the

' Let us see what the effect of this new notation is. Choose

direction.'
any v. Then
-2) xv+v=(-l)v+(-l) v+v=(1 v

or

(-2) x v+1lxvs= (1) xv.
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If we think of the ogcration sending v into (-2) x v as a kind of
"multiplication by -2" then this last equation says that for any v if
we multiply v by -2 and add the result to what we get by multiplying v
by 1 we end up with the same result as multiplying v by -1. This is
true for any v. Let us consider the symbols -2, 1, -1 etc. in so far
as their effect via multiplication on the v's are concerned. Then we

can shorten the previous equation to

-2+1-=-1,
Similarly
-5+3=-2
~4+7=3
-2+2=0
in the sense that for any v
-5xv+3xv==-2xv

b xv+7xv=3xv
and -2xv+2xv=0,
In other words, we are thinking of the symbols 3, 5, -1, -7 and so on
as rules for operation v's. As such
-5+ 14

means the rule vhich sends zny v into -5v + 1l4v which happens to be
the same as 9v. Thus -5 + 14 has the same effec: as 9 and we write
5+ 14 =y,

Notice that we are already at a double level of abstraction. The
v's stand for rules of how to move the slide. We are now studying the

symbols -5, 4 etc. which change one v to another. Put another way, the
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*
> symbol -5 stands for "a change in the rules."

We shall not press this
point because we prefer to visualize the v's as points on the line.

Then -5 is the rule taking any point, v, on the line into -5 v:

[N J
«— — >
0 v
€ f +- + + ‘- i >
-5V 0

The collection of all symbols of the form 1/2, -7, 8, -I3 have

certain rules of combination. We have studied addition.

2.11

o Let us now look at multiplication. If we send v into 2v and then

triple the answer we get 6v. In symbols

3x (2 xv)-=6Vv.

We write this as

3x2-=06.

1f we send v into -2v and then triple the answer we get -6v. In symbols
3x(-2xvVv)=-6xv or
3 x-2=-6.
E 1f we double v and then multiply by -3 we get -6v, that is
K -3x (2 xv)=-6wm
which we srite as
-3 x2 = -6.

Finally if we multiply v by -2 and then by -3 we have reversed direction
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twice and multiplied the length of 'O'v by 6 and so
(-3) x (-2v) = 6v
or
-3 x -2 = 6.

We have thus enlarged our 'number system'" to include all symbols
of the form r or -s where r and s are positive (or zero) real numbers.
The rules of operation for multiplication are

(-r) xs=1r x (-s) = -(r x 8)
and (-r) x )-s) = rs
together with the usual distributive (and commutative and associative
laws). The collection of all such members is called the real number

system. Thus -5, J14, -13: 0, are all real numbers.

2.12 Ve laws

If we are given any translation v and any real number r we can form
the new translation rv. We can also add two translations to get a third.
Let us collect some of the properties satisfied by these operations.

In the following list of properties letters at the end of the alphabet
like v, w, z, will stand for translations and letters at the beginning,

such as a, b, ¢, will stand for real numbers:

v+tw=w+vVv Commutative Law for

addition of vectors

(v+w +z=v+ (w+ 2) Associative Law
for addition of vectors

"' +v=yv Existance of an identity

for addition

a (v+w) =av+ aw

(a+b) v =av + bv Distributive Laws

(axb) v=ax (bv)
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a»
tr lxv=yv
“-lxv+v=0
2,13 Coordinates on the line
Suppose we pick a translation u # 0 and keep it as our "unit".
+ & M Py —>

We already know from Chapter I that for any v we can find a positive
real number r such that the length of '0O'v is r x (the length of '0'u).
If v and u point in the same direction then v=r x u. If v and u
point in opposite directions then v = -r x u. (If v = '0' then v = '0'u.)
Thus, once we have chosen our unit u every other v on the line is determined
by a real number r. If v = ru and w = su then v+ w = (r + s) u and
no addition of the v's will correspond to addition of real numbers.
Similarly for multiplication. In other words:

Once a unit u has been chosen every v on the line is determined

by {and determines) a real number. Addition of the v's corresponds

to addition of the real numbers.

We can thus 'parametize the line" by the collection of all real numbers.
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Analytic Geometry of the Plane

In this chapter we are going to extend the ideas of the last
chapter to two dimensions. Our program is to try to express geometrical
facts about the plane in algebraic terms. Again, our primary concern will
be with building up a certain amount of intuition to make the assertions
of linear algebra appear both meaningful and plausible.

The most primitive notion underlying geometry is the idea of trans-
formation. We implicitly think of transformations whenever we are confronted
with symmetry. When we see a circle, we notice that rotating the circle
about its center leaves it unchanged. When we say that a square exhibits
certain symmetries, we mean that there are certain motions of the plane,
such as rotating through 90%about the center or flipping over the diagonals
which again leave the square unchanged. In short, when we speak of the
symmetries of a figure, we mean those transformations we can perform to a
plane which do not change the given figure.

We have been speaking about transformations. What, in fact, do we
mean by the word transformation? A transformation is simply a rule, T,
which assigns to each point, P, of the plane, another point Tp. (At this
juncture we shall not try to define what we mean by the word "plane," and
the word "point." For the moment we will get along on the reader's intuitive
feelings about these words.) As typical examples of transformations of the
plane we mention the following:

1. Let some point O of the plane be fixed. Let Ty denote the
rotation of the plane through a 45 angle about the point 0. Thus T,0=0

while if P is some point other than O, the point Tlp is the same distance




T,P
from O as P and the angle PO C:lp)

is 495. P
0

~

2. Let O be a fixed point of the plane again, and let
To> assign to G the point O and to each point P different from O the
point q which lies on the line from O through P but is twice the distance

from O then P is

3. Again, let O be a point, let T30=0 and let T3P lie on the
line from O through P. But this time let T3P be the point whose distance

to O measured in 1ncges is the square of the distance from O to P. 1In

symbols T3(P0) = PO .

T,R

O
®
.




- - AC 2 fourth example, let us assume that our plane comes

cquipped with directions (NESW) andTm’ consist of moving cne inch to the

east. . o
F ™ F

T),0
. )
R T).R
It is easy to imagine more and more complicated transformations of

the plane. The reader can easily invent some for himself. It is of
interest to see what a transformation does to various figures in the plane.
In the followirg figures we present the result of applying each of the
above transformations to a triangle. What is depicted is the result of

drawing all the points Tp where the p's are all the points on the triangle.




Thus the dark triangle in’ the figure is our original triangle. We have
drasm the image of this triangle under each of the transformations
T2 and T3 . Notice that while the image .of the triangle under T;
and To are sgain triangles, the image under T3 18 not a triangle.

*

sl
L'!- ’

osne inch

iL



The reader can readily construct or imagine many transformations of
his own. He will soon be convinced that one can conceive of some pretty
wild and complicated transformations.

What operations can we perform with transformations? The most
obvious operation that springs to mind is that of composition. Let S and
T be two transformations. We can then consider the composite transformation
T-S which says first apply the transformation S and then apply the transfor-

mation T to what results. Thus

TP (TyoT5)P
0 P T),P

For instance, let us consider the transformation T}y T; where T} and Tj

are the transformations given in the previous examples. Then T).T; says

first rotate the plane by 45 and then shift to the east by one inch.




Notice that TjeT; is not the same as T; T, The transformation
T, -T), says first move one inch to the east and then rotate about the
point which now occupies the spot 0. To check that these are not the

same thing, let us examine where these transformations move the point 0.

. T1°Tho
. [
C TuO

Thus(ThoTl)C is the point lying one inch to the right of 0. On the other

hand
(TyeT)) © = T, (1,0)

Mow TdO lies one inch to the east of O. The transformation T. wWill rotate
2

this by 45 about 0. Thus T;~T)O lies one inch to the northeast of O.

In short, the operation of composition is not commutative in general.

The order in which we compare two transformations matters very much in the

final outcome.

Although the commutative law fails for general transformations the
associative law holds. If R, S, and T are any three transformations then

(T°S)cR and T-(S°R) represent the same transformation. Indeed suppose that




for any point a

Ra = b
while Sb = c.
Then (SeR)a = Sb = ¢ 80
To(SeR)a = Tc
while (T°S)°>Ra = (T*S)b = Tc so that

(T°S) Ra = Tc
also. Thus To(SeR) and (T:S)oR have the same effect when applied to
any point and are thus more identical.

Now the study of all transformations of the plane is a hopelessly
complicated mathematical task. In order to be able to make any progress at
all, we have to focus attention on a collection of transformations which is
manageable from a mathematical point of view. On the other hand, one of our

most fundamental feelings about the plane (or about a blank sheet of paper)

is that all points are "the same," a feeling that the plane is homogeneous.
Thus there should be enough "symmetries of the plane'" to carry any point into
any other point. Put another way, our collection of transformations should
contain enough transformations to move any point of the plane into any other
point. We also expect that if two transformations belong to our collection
of transformations so should their composition. Otherwise we may have to
keep adding transformations to cur collection when we compose two transforma-
tions. It can be shown that the collection of transformations having all the
desired properties and which is simplest in many respects is the collection
of all translations.

2. Translations. Intuitively, we can think of a translation of the plane




as a sliding motion of the plane which 4-<~ nnt change dircetion, that

is, containing no rotation. We can imagine jerforming a translation of

plane as follows: We can let a sheet of ruled (cross secticn) paper

represent the plane. We place a ruled transparent plastic sheet on the

paper so that the rulings match up horizontal lines lying over horizontal
lines. In this way we can think of the plastic sheet as simply being another
copy of the plane. We now pick up the plastic sheet and place it down in

some other position, being sure that the rulings line up once more. In

this way, we have "moved" the points of the plane from one position to an-
other, preserving distances and not rotating the plane. Such a motion is
called a translation of the plane. Notice that we can carry any point into
ain; other point by a translation: if we have two points a; and a; on our paper,
we can put the plastic sheet down in such a way that the point that used to be

over a, is now over a, (A convenient way to keep track would be to mark

1

the point of the plastic sheet that was originally over a; with ink, and
now simply place the sheet so that this ma: :ed point now lies over ajp_

Notice that not only can we transform any point of the plane into any
other point via a translation, there is exactly one translation which will

do the job. Given the points a; and 3, there is exactly one translation of

the plane carrying a; into a, (This is one of the ways that the collection
consisting of translations alone is a convenient group of transformations to

study. If we would allow fbtations, for instance, there would be more than

one way of transforming the plane which carries a; into a.)




Since the pair of points a, and a, determine the translation, we
can use them to provide a geometric representation of the translation.
In order to indicate which point is moved into which we draw a segment
from a, to a, and put a little arrow on it. Such a segment with an arrow

1

is called a directed segment.

/2

We say that the directed segment aa, is a representative of the
translation taking a] to ap; . Of course, 1if we started with some other
point b; we would get a different directed segment, bjb, representing the
same translation. Thus while a directed segment determines a unique trams-
lation, many different directed Segments may determine the same translation.
The natural question now arises: when will two directed segments, aja) and
byb, determine the same translation? The purpose of the first two experiments
of this chapter is to convince ourselves of the following fact:

Two directed segments aja; and b;b, determine the same translation
1f and only if all of the following three properties hold:
1) the line through a, and a, is parallel to the line through

b, and b




ii) the distance from a, to a, is equal to the distance

from b1 to bz; il.e. ajap; = b1b2 and

iii) the arrows point in the same direction.

We say that the two directed segments a and b b, are equivalent if
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i, 11, and iii are all true. It is easy to check that we have indeed defined
an equivalence relation on directed segments. (Notice that we can check
properties 1, ii, and iii without the use of our plastic sheet, using ruler
and compass alone. Thus our equivalence relation makes sense within the con-
fines of Euclidean geometry. We can reformulate the results of our first two
experiments as saying that a translation corresponds to an equivalence class
of directed segments. An equivalence class of directed segments is called a
‘vector. Thus the word vector is synonymous, for all practical purposes with
the word translation.

As usual, special mention must be made of the identity translation. We
can consider the transformation of the plane which simply does not move any
point as a kind of translation. For reasons of convenience we must consider

it in our collection, just as we must count zero as a number. This identity

translation carries any point a, into a, and so does not determine a segment.

Nevertheless we can think of the pair aa, in its own right, and rephrase the

previous equivalence relation to read as follows: Two pairs aja, and b;b,

are equivalent if either a 1~ 3 and b; = by or a, # a, and by # by in which
case 1), ii), and 1ii) must hold in order for the pairs to be equivalent. Be

it as it may, we have a special kind of vector called the zero vector which

/O




corresponds to the identity transformation of the plane.

Addition ot Vectors. Let S and T be two translations. We can consider

their composite transformations TeS. The first thing that we notice is

that ToS is again a translation. The composition of two translations 1is

again a translation. This is our next experimental fact concerning trans-
lations. (Notice that there was no reason to expect this in advance. Not

all simple looking collections of transformations need be closed under
composition. Thus we may consider the following collection of transformations
of numbers: We admit any rule which assign to each number n the number an + b.
The collection of such transformations is closed under composition: sending n
into an + b and then sending an + b into c(antb) + d is the same as sending

n into ac n + ¢cb + d and is thus another transformation of the same type.

But if we consider the collection of all transformations which send n into a
number of the form an2 + bn + ¢ this is not closed under composition. If we
consider a second transformation with coefficients e, f, and g then sending

n into e(an2 + bn + C)2 + f(an2 + bn + ¢) + g is not of the same type since
it involves an expression raising n to the fourth power.)

The next thing to notice is that if S and T are translations, then

TeS = SoT

We verify this fact experimentally in our third experiment. We
choose some point O as starting point so that Oa and Ob are directed segments

representing S and T. Now choose a as a starting point for a directed seg-
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ment  representing T and choose b as a starting point for a directed
sepwent representing S. It turns out that the end points of these two directed
seyments coincide. 1In the language of vectors, let v be the vector standirg
for S and let w be the vector standing for T. Since TeS is agaiu a
translation, it corresponds to a vector which we denote by v .- w then the
equation S¢T = TgS can be written
v + w = w + v

and is known as the commutative law for the addition of vectors. Because of
the diagram representing this law, it sometimes is called the parallelogram
law.

We now know how to add vectors. We shall be making frequent use of the
geometrical representation of the sum of two vectors in what follows. Let
us describe the procedure once again. We first choose an arbitrary point O

as our origin. Then every vector can be represented by a directed segment

whose starting point is O. 1If Oa represents v and Ob represents w, we
can find the directed segment representing v + w, and whose starting point is
O by constructing the segment parallel and equal to Ob with initial point a
(and heading in the same direction as Ob). We could do the construction using
ruler and compass, but it is more convenient to use the plastic sheets.

Since the associative law holds for the composition of any three trans-

formmtions, it certainly holds for the composition of translations. Thus the

associative law holds for the addition of vectors:

vi(w+2) = (v+w + z.
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e following is a diagram illustrating the associative law for the

addition of vectors. Y
. v . Lev
veu Lhevey
® [ J u
o 0
l u..

In what follows, we shall adopt a convention in drawing the diagrams
which illustrate various algebraic laws concerning vectors: We shall fix
an origin once and for all in our diagrams. We shall use the same letter to
denote the vector and the second end point of the directed segment represent-
ing the vector; thus Oa will be the directed segment representing the
vector a. The origin will be denoted by O since O represents the zero
vector. In this way, every point in the plane now can also stand for a
vector: a point c¢ stands for the directed segment Oc which in turn is
a representative for tne vector c¢. The vectot ¢ 1is anocher name for the

translation that sends the point O into the point c.

Multiplication of a vector by a anumber. Let a be a vector. We can form

the vectors & + aand a + (a + a) and so on. By the associative law,

it doesn't matter how we add various sums of a ,s so that the expression

a + a + a

is unambiguous, and we denote it, as usual, by 3a. It follows from the




associative law that 3a + 2a = 5a, just as we have seen in similar
situations in the preceeding two chapters. We can thus talk of the pro-
duct, na, of a vector by a positive integer, and are able to assert that
the distributive law

(mn)a = ma + na
. holds. By (1/2)a we shall mean the vector which satisfies

(1/2)a + (1/2)a = a.

If a = 0, then (1/2)a = 0. 1If a # O, we can construct (1/2)a by bisecting
the segment Oa. If we denote midpoint of the segment by ¢ then indeed
¢ + ¢ =a as can be checked. Similarly we can define the vector ra where
r 1is any positive real number. We could do all of these things by simply
mimicking the constructions and definitions of Chapter 2. Actually, we can
proceed a little differently. Suppose that a 1is a non-zero vector. It then
determines a line in the plane. Let us consider this line as a one dimensional
vector space with origin O. Then if r is any real number, the vector ra
makes sense in terms of the one dimensional vector geometry of Chapter 2.
Since ra 1is a vector lying in a line in our plane, it is a vector in the plane.
We can thus consider ra as a vector in the plane. In short, what we are
doing, is regarding each line through the origin as a one dimensional vector
space.

In any event, we now know how to multiply a vector by any real number.

In particular the vector (-l1)a has the property that

(-1)a + a = 0.

xa




We shall therefor denote this vector by -a, just as in Chapter 2.
The one new item that has to be checked is the distributive law
for multiplication. If a and b don't lie on the same line, it is no

longer a consequence of previous results that

r(a+b) = ra + rb.

Fortunately this fact is also true and is illustrated by our fifth experi-
ment.
Experiment 6 illustrates a use of the associative law:
We are asked to construct 2a + b where a and b are such that 2a
does not fit on the page. Nevertheless, since 2a + b 6 = a+(a+b) and

both at+b and a do lie on the page it turns out that we can find 2a + b.

The Axioms. We can now state the properties of addition of vectors in
the plane in the form of a list of axioms. Except that the symbols now
refer to vectors in the plane the axioms are identical with those listed
in Chapter 2.

There is a binary operation called addition which assigns to each
pair of vector u, and v the vector u + v. This binary operation
satisfies the

ASSOCIATIVE LAW u+ (v+)=(u+v) +w for any three vectors u, v, and v

and the

COMMUTATIVE LAW u+v=v+u for any pair of vectors u and v




IE EXISTENCE OF ZERO

there is a vector 0 such that 0 - v =v

[here is also a binary operation called multiplication between real nu.bcrs
and vectors: given any real number r and any vector v we can fcri. the
product rv which is another vector. This multiplication satisfies the

FIRST DISTRIBUTIVE LAW FOR ADDITION (r+s)a = ra + sa for any real nunbers
r and s and vector v.

and the

SECOND DISTRIBUTIVE LAW FOR ADDITION r(atb) = ra + rb for any number r
and vectors a and b

as well as

ASSOCIATIVE LAW FOR MULTIPLICATION r(sa) = (rs)a for any two numbers r
and s and any vector Vv

and

THE REAL NUMBER ZERO TIMBS ANY VECTOR IS THE VECTOR ZERO.

Strictly speaking we should have a separate symbol for the vector O

and the number 0 . In practice there shouvld never be any confusion whether

we are talking about a number or a vector. It is therafor simpler to tolerate

some notational ambipuity than to creat a proliferation of symbols.




.inear Independerce and Spanning. Let a and b be tw: ncn zer: vectors

*nat Jdo not determine the same line. Let us star!: to construct the vect .r:

3
()

nt  Jor various positive a. . negative integer valuecs of = and :.

We czn construct these points by repeated use of our procedure for
adding vector with our plastic sheets. Experiment number eight suggests
this method of construction. Actually, since we wish to construct many
éoints of the form ma + nb it is quicker to proceed somewhat differently
as described in experiment number nine. There the suggested procedure is
as follows: Suppose for instance that we wish to construct all points of
the above form where -5 & m & 5 arnd -5€ n$§ 5. We first construct
the points a, 2a, 3a, 4a 5a, -a, -2a, =-3a, -4a -5a using the
plastic sheet and do the same for the multiples of b. We then construct
the points 5a + b etc. so that we have all points from 5a - 5b to 5a + 5b.
Similarly we construct the points a + 5b, 2a + 5b etc. until we have
constructed all the points from =-5a + 5b to 5a + 5b. We then draw the
line from -5a + 5b through -5a, the line from -4a + 5b through -4a and so
on until we reach the line from 5a + 5b through 5a. All of these lines are i
parallel. There are eleven in all. Similarly, we draw the lines from

5a + Sb to Sb, from S5a + 4b to 4b etc., eleven lines all parallel in the

direction of a. At the points of intersection we have the various vectors




of the desired form.

The ccllection of all the vectors of the form ma + nb where = an:
n are integers is known as the integral lattice generated by .he vectors
a and b . It is called a lattice because it looks like lattice worx. It
is apparent from the picture involved in our construction that we have ~<ver-
ed the whole plane with parallelograms whose corners are at the points ma - nb.
Every point in the plane lies exactly in one parallelogram, urless it happens
to lie on a boundary - a side or a corner of a parallelogram. In this latter
case it is ambiguous, which of the two or four parallelograms we should
assign to it. This is a problem similar to the problem we encountered in
Chapter I.

We shall solve this problem by making a convention analogous to the
convention of Chapter I. Let us consider the parallelogram with vericies
0, a, b, and a + b. Let us agree that the point O and all the points on the
segments join O to a and to b belong to the parallelogram, except for
the points a and b themselves. Thus in the diagram, the darkened por-

tion of the boundary belongs to the parallelogram.

&
0

It is clear that this convention for one parallelogram then determines

what to do for each parallelogram. Each parallelogram now contains, along




with its interior,one vertex and two sides. With this convention, each
point of the plane now belongs to exactly one parallelogram.

In analogy with our procedure of Chapter I, let us agree to label each
parallelogram by the pair of integers describing the vertex it contains.

Thus the parallelogram containing the vector 3a + 2b will be labelled (3,2).

Now let us construct the vectors (1/2)a and (1/2)b. We can now construct
the integral lattice on these vectors or what amounts to the same thing,
construct all points in the plane of the form (m/2)a + (n/2)b. See experiment
#10 If we draw the corresponding parallelograms, we see that we have, in
effect,divided each of our previous parallelograms in quarters. Again, with

the same convention as before, each point of the plane now belongs to exactly

one of these smaller parallelograms.
We can continue the process in complete analogy to the procedure in
Chapters I and II. In this way we will assign to each point, c, of the plane,

These numbers are called the cocrdinates of ¢

a pair of real numbers (r,s).
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relative tc the basis consisting of the vectors a and b. We can checr that

c =ra + sb.

This last equation suggests an alternate way of obtaining the numbers
r and s from the vector c¢: Through the point ¢ draw the lines parallel
to the lines determined by the vectors a and b. On each of the lines through
a and b, mark off the points of intersection with these parallel lines
through c. The point of intersection with the line through a 1is a point
lying on the line through a.

We have already remarked that we can consider this line as a one
dimensional vector space in its own right. Thus, by the results of Chapter
1I, we know that this point can be expressed as some multiple of a by a
real number. We soon enough discover that this multiple is r. Similarly,
the point of intersection lying on the line through b 1is exactly sb.

We thus have two procedures (which give the same answer) which assign
a pair of real numbers to each vector in the plane. Conversely, given the
pair of real r and s we can construct the vector ra + sb. Thus, once a choice
of a and b is made, every point in the plane correspomds to exactly one pair
of real numbers and conversely.

Notice that the whole procedure depends on the assumption that the
vectors a and b do not lie on the same line. If a and b do lie on

a line, then all the vectors ra - sb will also lie on this line and thus cannot

span the whole plane. We include some pictures of what happens when a and b




yet close- and closer to being collinnear. Notice that so long as they
don't actrilly lie on one line, the vectors ra + sb fill up the vhele "o
Rut ao*ice olse that as a and b get closer to being collinear, the
actual values needed of r and s needed to describe a givern point ¢ in
the plane get larger and larger. As we move b more and more inte & line
with a the lattice points ma + nb seem to fold up like a folding jate.
Experiments 9-12 are concerned with developing some experience uith

the introduction of coordinates in the plane.

Affine Transformations. We know that the coordinates we introduce in the

plane depend on the choice of the basis vectors a and b. In the next
sequence of experiments, we wish to investigate the outcome of the following
operations: Several different choices of basis vectors are made. For the
sake of discussion, suppose that on one plane we choose a pair of basis
vectors a and b and a second plane we choose some other basis vectors a'
and b' .

Now suppose we draw a figure in the a,b plane. Each point on our
figure has certain coordinates. On the a',b' plane, let us draw the points with
the corresponding coordinates. In the following sequence of figures, we ex-
hibit the result of performing this with a circle in the a,b plane. The se-
quence of diagrams shows the result of plotting a few, then several more noints
in the a',b' plane corresponding to various points on the circle of the a,b,plane.

It should be noticed that not only is there a change in the overall scale, there

is also a distortion: the image of the circle is definitely not a circle. ( It

turns out, as we shall see later in the chapter, that the image is an ellipse.)










llere is the circle in the a,b plede egain. This time e have Grawn the lines
of the lattice on (1/4)a and (1/4)Y, and have marked the points of interseciic

of the circle with these lines. .
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The purpose of experiments 13 and 14 is to demonstrate the fo:t that
despite the distortion involved in the transferring process from the
a,b plane to the a'b' plane, any straight line in the a,b plane is carried
over into a straight line in the a'b' plane. (Also, a parallelogram in
the a,b plane is carried over into a parallelogram in the a',b' plane.)

We can say that our procadure, which assigns to each point in the
a,b plane, a point in the a®,b' plane is a transformation from the a,b
plane into the a',b' plane. A transformation from one plane to another
vhich carries lines into lines is called an affine transformation. Our
experiments show that the transformations we have been studying are affine
transformations. A theorem in geometry assesrts that the most general affine
transformation is obtained by the procedure that we have just described. Let
us be more explicit about what this theorem asserts. It says the following:
Suppose that T 1is a one to one transformation of the plane into itself (or
on one plane into another). Suppose that T has the property that the image
under T of any straight line is again a straight line. Choose three points
O, a and b and let

0'=TO, a' =Ta and b' =Tb

If we now apply the above procedure to the vectors Oa and Ob (with
choice of origin 0) and to 0' and the vectors O'a' and 0'b* in the second
plane we come up with exactly the transformation T. In this way, our

mapping procedure using coordinates comstructs the most general affine transforma-

tion.
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et us try to see why this theorem should be true. We are start-
ing with a transformation T. All we know about T 1s that it carries
lines into lines and that it doesn't carry two distinct points into the
same point. Let f1 and f2 be two parallel lines in the a,b plane.
Then Tf; and Tfj; must also be parallel lines. They are lines because T
carries lines into lines. They are parallel, for if they have a point of
intersection, this point would be the image of two distinct points since
f, and f, are parallel. Now let us choose our origin O and the two
basis vectors Oa and Ob, and define the points o', a', and b’ as we indi-
cated above. Since T carries parallel lines into parallel lines, T will
carry the parallelogram spanned by O, a, g, and a + b into the vertices
of a parallelogram. But the fourth vertex of the parallelogram spanned by
0',a' and b' is the point a' + b' (when our origin is 0'). Thus, if we

take O as origin in the first plane and 0' as the origin in the second,

and using these origins, identify points with vectors, we see that

T(a+b) = Ta + Tb.
But then this same argument shows that T(ma +nb) = mTa + nTb, for all

integers m and n. The previous argument may be applied to any pair of

vectors, so long as they don't lie on the same line. We can thus apply
1 a and l;-ﬁ
this result to the vectors M sh "¢
+ to conclude that
T(ra + sb) = ra' + sb'
for all dyadic rationals. - From this it will follow that the abeve equation

holds for all r and s.




But this last equation says that the transformation is of the type we
Jdescribed above: a point whose coordinates are (r,s) in the first plane
is carried over into a point with the same coordinates in the second
plane.

Affine géometry is the study of those propertie; of figures in the
plane which are invariant under arbitrary affine transformatioms. Th' s,
for example, to say that a quadrilateral is a parallelogram makes sense
in affine geometry, since applying an affine transformation to a
parallelogram yields another transformation. On the other hand. to say
that a quadrilateral is a square makes no sense in affine geometry, be-
cause applying an affine transformation we can change a square into an
arbitrary parallelogram. Similarly, it makes no sense in affine geometry
to say that a figure is a circle, since an affine transformation will, in
general covert a circle into an ellipse. (If we consider a circle as a
special kind of ellipse, one whose axes are equal, then it makes sense in
affine geometry to say that a figure is an ellipse. This is because the
most general affine transformation will carry an ellipse into another
ellipse . This fact is not obvious and needs to be proved).

Linear Transformations. In order to be able to study the transformations of
the last section a little more closely, it is convenient to consider those

affine transformations of a plane into itself which keep the origin fixed.

Keeping the origin fixed is a minor restriction, because once we are in the




~ame plane, we can always shift the origin back via a translation. an
tffiw ~:znsformation of the plane into itself, keeping the -rig: +:i:

{5 crlled a linear transformation. The rest of this chapter will be

devoted to the study o linear transfcrmations of the plane.
Let T be a linear transformation. Let a and b be vectors
in the plane. By the results of the ' _ section, we know that

T(ra+so) = rTa + sTb.

Thus, if we %now the image of a and of b under the linear transform:tion
T, we know the image of any point in the plane. Now the vector Ta lies

in our plane, and so has coordinates relative to the basis given by & and b.
The values of these coordinates determines Ta and Tb, and thus deternine the
vaiue of T on any point in the plane. Let us illustrate this by a specific

numerical example.

2b
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Suppose that Ta

and Tb -a + b,

Then

(r-s)a +(2r-s)b.

T(raisb) = rTa + sTb = r(a+2b) + s(-a+b)
Thus, for instance, taking r=1 and s=1.

3b.

T(atb) = (1-1)a -- (2+1)b
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Similarly, taking r = -1 and 8 = -2 we see that
= (1) Ta + (-2) Tb = -(a + 2b) + -2(-a+b)
t(-a - 2b) _ (L34p) 5 + (-2 -a) b = a - Lb.

There is a convenient way of writing these relations which will be very
useful for many computations later on. We take the coefficients occurring

6n the equation Ta = a + 2b and write them in a column

()

and write the coefficients occurring in the expression for Tb in an

&

This square array of numbers is known as the matrix of the linear trans-

adjoining column so as to obtain the expression

formation T.
Now let us take the coordinates of any point c¢ in the plane, for

instance, the point ¢ = 3a + 4b. The coordinates of c are J§

and Q We write these coordinates as & colunm next to the matrix
of T

1 -1 3

2 1)tk

and multiply as follows: to obtain the entry in the first position

of the image of ¢ under T, we take the first row of the matrix, multifply

the first element in the first row, by the top entry in the column

and add this to the second entry in the first row multiplied by the bottom

- - —————_—




catry in the column representing c: Thus
1 -1 3
= 1x 3 +(-1) xbk -1
2 1k

We obtain the entry in the second position by the same procedure, using the

second row of the matrix this time instead of the first. Thus, we get

1 -1\/3 1x 3 +-1xh_('-l

2 1 L ) 2x 3 + 1x 4 0

or, in short,

/1 -1 3 -1
) kz 1 4 .= 10
(J

which tells us that the coordinates of the image of ¢ are-1 and©O

if the coordinates of c¢ are 3 and U4. Similarly, if c = -a +2b

P
[]
P

-1 1 x (-1) + -1 x =2 1

-2 2 x (-1) + 1 x =2 =4

(3
p—

For the general point ¢ = ra + sb the computations read

lxr + -1 x 38 r-s

2xr + 1l xs 2v+s

P
[]
P

g}

N
p—
n

In this way, we see that the matrix of a linear transformation gives

us 'he full details on how the transformation actually operates. Let us




now formulate the procedure for a general linear transformation. Sup-
pose that T 1is a linear transformation such that

Ta = xa + yb and Tb = ua + vb.
The matrix of this linear transformation T (in terms of the basis

vectors a and b) 1is given by

The linear transformation T applied to the vector ra + sb is then
computed according to the rule
x u\/r Xr + us
(ty v ;) yr + vs .
Excrcises. Compute the results of applying the following matrices to the

vectors with the given coordinates. In experiments we draw the linear

transformation corresponding to some of these matrices.

1. 1 2 3
x

-1 1 1

2, 4 0 1
x

o
W
—
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Matrix Multiplication, Let S and T be linear transformations. Then
T S 1is again a linear transformations. How can we express the matrix of
T S in terms of the matrix of T and the matrix of S. Now this matrix
is determined by what the linear transformation ToS does to the basis

vectors a and b.

Suppose, for example, that S 1is the linear transformation whose

matrix is

and that T 1is the linear transformation whose matrix is
2 3

’2 4 .

Then

Sa = la+ 3.

We compute the result of applying the linear transformation T to

the vector S a as

2 3\/J1 2x1+3x3 11
-2 4A 3 -2x1+4x3 105 .




TSa = 1la -+ 10b .

Sb 2a - 4b

2 3\/jJ2 16
-2 4 J4 12

ToSb = 16a + 12,

We have thus computei
T.Sa = 1lla + 10b

16a +~ 12b

-3

(7, ]
o
]

from wvhich we see that the matrix of T-S |is

11 16

10 12 }.

we oltzin the cxpression for T St in a similar manner:

- ——— TN et




Ye obtained the first column of the matrix

11 16
10 12
hy applvirn_ thx -at-ix
2 3
-2 &4
1
to the vector (which is the first column nof the matrix of S.

3

e obtained the second colunn tv applying the matrix

to the vectu: ,ZJ which is the second column in the matrix

2 3
)
1 23 cf
o )
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be the 1atrix of S8 and let
x' u'
yl vl

he the :atrix o ™. The application >f the linear transformation S
to the vact~r a (vhose coordinates are (1, 0) gives the vector xa vt
wvhose coordinzt=.: are (x,y). Applyirg the linear transformation T to

this vecstor, v~ obtain, by our method of computation,

x u x x'x + u'y

b4 y'x + v'y

in other words,

TS a = (x'xtu'yla + (y'xw'y)b.

A similar argument allows us to compute the image of b: Since the

coordinates of Sb are (u,v) if we apply the operator T to this

vector we get
u x'u + u'v

v y'u + v'v

;e thus see that the matrix of T S is given by

x'x - u'y x'a + u'v

y'x + v'y y'u + v'vJ.

If we considar the composition of twc linear transformations as a sort

E

k % of rmultiplicction,
i
|
i

chen we have a formular for the corresponding "product”

L 7;
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of two ratrices. The product of two matrices is given by the forrmula

To illustrate the meaning of this formula, we shall work a few more
numerical examplas. The rule for forming the product says to apply
the natrix on the left to the first column of the matrix on the right
to get ~he first column of the product matrix; and to apply the matrix
on the left to the second column of the matrix om the right to get the

second rolumn of the product matrix. Let T have the matrix

1 -1
2 1
and 12t S hav~ the matrix
1 -1
1 -2 7.

Then, tx crr revious computation
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1 -1 1 -1 x1+-1x1 1 x (-1) + (-1 x (-2) 2

" 1 -2 2x1*' 1x1 2x -1 + (1) x (=2) 3 -4}
\

lLet us nw o pute the prcduct of these same two matrices in the reverse

ordz2~, Tw 2 wil! be computing the 1atrix of the linear transformation

-~

5 T.

1 -1 1 x1-+ (-1) x2 1 x (-1) + (-1) =1 -1 <2

Py
-2

> oy \1x1+(2)x2 1x (1) +-2x1 -3 -3J.

T7 ve con irc this aaswer with the previcus one we see that the matrices
- vie get arc urequi)l. This is just a reflection of the fact the composition .
~{ two transformations is not a commutative operation.
i -
ir vtz to gair some experiance with the multiplication of matrices

it is i:'portont to work the flowing examples.
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Th. algebra of linear transformations. Until now, all the examples of

linear transformations that we have been considering have had the pro-

perty of being one to one, that is they do not carry two distinct points

into one and the same point. In order to proceed further, it is con-

venient to drop this restriction. This will be necessary if we want to

be able to add two linear transformations. In order to be clear on this

point, we reformulate our definition of the notion of linear transformation.
A linear transformation is any transformation of the plane with

the property that for any pair of vectors a and b and for any pair of

real numbers r and s the equation

T(ra+sb) = rTa + 8Tb

holds.

As an extreme example of a linear transformation which is not one
to one, consider the transformation which sends every vector in the plane
into the vector 0. Then this tramsformation is a linear transformation.
In fact, what we have to check is whether or not the above equation holds
for all pairs of vectors and all pairs of numbers. It certainly does hold,
because if T carries all vectors into O then both sides of the above
equation are equal to zero no matter what a,b,r, or s actually are.

Let S and T be two linear transformations. We are going to define
a new transformation called the sum of these linear transformations, and

denoted by S + T . To define the transformation § + T we must

43
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. specify how 8§ - T acts when applied to any vector. We specify it
by setting

(S + T)a = Sa + Ta.
In other words, the transformation S -+ I'y when applied to any vector
a 1is simply the sum of the two vectors Sa and Ta. We must check that
the transformation § + T {is again linear. That is we must check
whether

(§ + T)(ratsb) = r(S - T)a + s(S + T)b
fir all vect~rs a and b and for all nunbers r and s. We see that
this is indeed true by the following string of equalities:

(S+T) (ra+sb)

S(ra+sb) -- T(ra+sb) by the definition of S + T

= rSat+tsSb + rTa +sTb since S and T are both linear

('\ r(Sa+Ta) + s(Sb+Tb) by the commutative and
! distributive laws for vectors

= r(StT)a + 8(S+T)b by the definition of S+T
once again

Notice the following properties of our notion of addition of linear

transformations:

Addition of linear transformations is commutative: S+ T=T+ S
In order to prove this, we must show that both sides of the above

equation give the same result when applied to any vector in the plane. But

(S+T)a = Se + Ta

Ta - Sa by the commutative law for the addition
of vectors

(T+S)a.




By exactly the same argument, we see that the Associative l.u °

addition of linear transformations: (S+T) + U= S + (T V) hcl's

Let us now consider the result of composing the linear transfori:®: nu

U with the sum (S+T). That is, we wish to examine the linear trans

(5 4

U~(S+T). Applying this to any vector a we see that

Ur(S+T) a = U(Sa'Ta)

USa + UTa since U 1is linear

We thus see that we have

The distributive law Uo(S+T) = UnS + U-T .

Similarly,
((s+T)e U)a= (S+T)(Ua) = S(Ua) + T(Ua) = (S-U)a + (T U)a

= (SoU + ToU)a .

In other words, we have the second

Distributive law (s+T):U = S U+TU .

Let us call the transformation that takes every vector into the
zero vector the zero linear transformation. Thus the transformation ¢ is
; the *ransformation given by

Oa

]
o




for any vector a. It is easy to check that

O + T = T and 0-~T = 0 and T ¢ = ¢

for any linear transformation, T.

Finally, let 1 be the identity linear transformation. Thus I 1is tue

transformation that carries every vector in the plane into itself. Then
(ITa = (T Da

for any vector a, so that we can write

IT = T1I for any linear transformation T .

Notice that if we regard composition as a sort of multiplication,

- and define addition the vay we have, then the collection of all linear
transformations behaves very much like the collection of all numbers. The
one striking difference is that the commutative law does not hold in the
case of composition of linear transformations. Other than this, our usual
axioms for the number system=--the associative laws for addition and multi-
plication, the distributive laws, the commutative law for addition, the
existence of an additive identity (a zero) and a multiplicative identitye-
all of these hold true for the case of the collection of all linear transfor-
mations. The only additiomal law that does not hold for linear transformati ns

the canceilation law for multiplication. We shall discuss this point in the sec

tion after next.
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ihe algebra of matrices. We know that every linear transforwmation is

determined by its matrix once a choice of basis vectors is mace. We
have already scen how to obtain the matrix sf the compositec of two
lincar transfarmations. What is the formula for the matrix c¢f the su..

~f tw: -atrices! Suppose that the matrix of S is given by

)
(3).

What is the matrix of 5 *+ T - We must corpute (S+T)a and {S-T)b.
Now

~re

and the natrix 3f T is given by

S-T)a: Sa +~Ta=a . 3b -la 6b =25 +9b
while (STL = SbTb =2a+b -5a:7b=Ta+8 .
Thus the natrix of S - T is
(s 7)
9 8

Notice that the rule for obtaining the matrix of S + T from ti¢ i - -

S and the matrix of T is very simple: Just add the numbers im the corres-

12 LsY_ i 25\=/57
31)*\67 35 647 98

Ye can now check numerically, in terms of matrices, the various axioms for

ponding positions. Thus

addition and multiplication. We don't have to o this checking in order to

establish that the various laws hold, we know that the operations of ratrices

/7
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reflect the corresponding operations on linear transformation3. Thus we

are sure that the associative laws for addition and multiplication etc. hcl.
for addition and multiplication of matrices. Nevertheless, let us check some
of these lawa in order to get some further feeling for addition and multipli-

cation of matrices. For instance, let us check the distributive law by

verifying numerically that
1 3 -1 11)]13 -1 1).(1
+ = +
2 1 1 3 1 1 2 Yyu 3 2 1J%1 1
On the left, the sum inside the parentheses becomes
30
0 4
so that the formula for the product on the left is
1 3 0 3 12

2 0 4 6 4y .

On the other hand, multiplying the matrices on the right hand side gives

1 3\ ]2 <1 (sa)
([2 4)4LL 3)== 5 1
and
3 1 1 24
l)a*!;. 1?)8 13
Adding these two expression; we get,

58\+ 24\ = 3 12
51 13 6 L

verifying the distributive law for this special example.




| The reacer should compute the various matrix products and sums in

the follo.’:: :-crcises to get some experience with addition and
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Multiplicative inverse. We have already seen that the identity transformation

multiplic:t ‘on of matrices.

to ©
Vg

[]

L]
NO
onN
e
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(.) 1 acts as a unit for multiplication. Of course, the matrix corresponding to

the identitv transformation is the matrix

10
01

The question now arises as to whether we can find a multiplicative inverse
for a linear transformation T. That is, we are looking for a linear transfor-

mation T 1 with the property that
™l 1=1.

Just as irn the case of numbers, we don't expect that every linear transformation

will have a multiplicative inverse. For imstance, if we consider the zero




A,

transformation, O, then 0 S = § 0 = 0 no matter vhat the linear transforma-
tion S is. Thus O canno: have a multiplicative inverse. This is just iike
the situation with real numbers, the number zero does not have a multipiicative

inverse. Hcwever, in the case of linear transformations, there will be non-

zero linear transformations which will also not have a multiplicative inverse.

For example, consider the linear transformation T whose matrix is

01)
o0
This is not the zero transformation since its matrix has a one in the upper

right hand corner. On the other hand, let us compete the linear transformation

Tz . Its matrix is computed by

(+3)2)-63

thus T-T = ‘l‘2 = 0 . From this it follows that the linear transformation T

cannot have a multiplicative inverse. Indeed, suppose tiat it did and we will
derive a contradiction: suppose (contrary to fact) that there is a linear

transformation T-1 such that

lar = 1 .

Multiply this equation on the right by T , and using the associative law for
multiplication, we see that
0 =T1§0 = r'l.r.r = JoT = T

contradicting the fact that T 1is not O.

30
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This example also shows that the cancellatiom law for multipli-
cation does not hold in the case of linear transformations. In fact, we

have T-T=T70 =0 but T 1is not equal to zero.

As another example of a linear transformation which does not have a

multiplicative inverse, consider the linear transformation whose matriX

is
11
11 .

Let us apply this matrix to the vector a - b whose coordinates are

(1, -1). Then we see that G 5(.})' (g) |

In other words, T(a-b) = O. But this implies that T cannot have a
multiplicative inverse. In fact, suppose there were a multiplicative inverse
T’l to T. Then T-loT = 1 so that

(T’loT)(a-b) = I(a-b) = a-b

but
1 7 (ab) = T"l1(T(a-b)) = 110 = 0 ,
which is a contradiction. Thus T does not have a multiplicative inverse.
It is easy to see from a geometric point of view when we would expect a
linear transformation T to have a multiplicative inverse and when not. Let

us apply T to our basis vectors a and b. Then if Ta and Tb do not lie

on the same line through the origin, we can find a linear transformation which




i

takes Ta back into a and Tb back into b. We just use the geometric
constructinon described earlier in the chapter. On the other hand, if Ta anc
Tb do lie on the same line, then T(ra + sb) = sTa + rTb will also lie on this
same line for all values of r and s. Thus T will collapse the whole

plane into a line. In such a circumstance we would not be able to find an

inverse for the transformation T, since a linear transformation carries a line

into a line and not into the whole plane.
We now pose ourselves the following problems: first of all, to
determine, in terms of the matrix of a linear transformation, whether or

not it has a multipiicative inverse. Secondly, if the transformation dc2s

have a multiplicative inverse, to find the matrix of the multiplicative inverse

in terms of the matrix of the given linear transformation.

To answer the first question, it turns out that there is a number
that we can attach to any matrix. This number has the property that %he
matrix has an inverse if and only if this number is unequal to zero. Since
this number determines whether or act the matrix has a multiplicative in-
verse, this number is called the determinant of the matrix. As is shown in
Experiment 2 this number is closely related to the area of the parallelogram
spanned by the vectors Ta and Tb .

We now proceed to give the definition of the determinant of a matrix.

X u
y v

For any matrix
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form the diagonal prcducts xv and uy and subtract uy from xv, that
is form the number
XV'uy.

This number is called the determinant of the given matrix. For instance,
for the matrix

12

34
we form the diagonal products

i.e. 1lwh - 2w3

and conclude that the determinant of this matrix is 4 - 6 = -2 .
(It turns out that this matrix does indeed have a multiplicative inverse.)
To compute the determinant of the matrix
11
11
we form the diagonal products

Ixl - Lyl

and obtain 1 - 1 = 0. Thus the determinant of this matrix is 0.
As we have already seen, this matrix does not possess a multiplicative in-
verse. In experiments--we give a geometric interpretation to the determinant.

Let us now show that if the determinant of a matrix is zero then the

matrix cannot have a multiplicative inverse. Thus suppose that the matrix

G+)




has its determinant zero, i.e. suppose that

Xv - yu=0,
We wish to show that this matrix cannot possess a multiplicative inverse.
We shall conder several cases when this can occur. Suppose, first of all,
that our matrix has the property that x = 6 and y = 0. That is, suppose
our matrix has the form

0Ou

oOv .
Then the corresponding linear transformation takes the vector a into zero.

By the same argument we gave above for the matrix (? i), we know that this

matrix cannot have a multiplicative inverse.

We may therefor assume that either x or y is unequal to 0. Suppose
that x 1is not zero. Let us apply the corresponding linear transformation,
T , to the vector ua - xb, which is a non-zero vector because x # 0. Computin

obtain .
X u u Xu -~ uX 0]

y VvjI\X yu-xv‘ OF ¢

Similarly, consider what happens when we apply the transformation T to the

vector va - yb. We get
(x u)(;&): (Tv -uw\ O
y VR- yv - vy 0
vicho

If y#0 the vector va - yb # 0 and so we have again found a non-zerqlwhich is

sent into zero by T.




We know that this means that T has no multiplicative inverse.

We have thus established in al. cases that if the determinant of a
matrix vanishes, then the matrix has no multiplica;ive inverse.

I'e now must show that if the det<rminant does not vanish, then the
matrix does have a multiplicative inverse. To do this, we shall go one
step further and write down a formula for the multiplicative inverse of the
matrix in question. Rather than pass immediately to the general formula, let
us first explain the formula by numerical examples. The rule for finding the
multiplicative inverse 1s as follows: We start with the given matrix,say

)
2 4

and compute its determinant, which in our case is 8 -~ 6 = 2. We then take
our matrix and switch the entries along the 2-4 diagonal and put a

minus sign in frow® of the entries in the other diagonal, thus optaining

4 =3
-2 2
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We then divide each number by the determinant, getting

2 =3/2
-1 1
This last matrix is the multiplicative inverse of the matrix we started with.

To check this, we simply multiply the matrices

2 -3 2 3 2x2-3x4 2x3-3x4 1 0
2 2 2
-1 1 2 4 “1x2+1x2 “1x3+1x4 01

which is the identity matrix.

Let us wor another example. We start with the matrix

A
L

2 -1
1 2
We first compute the determinant, which is 2 x 2 1 x (=1) = 5. We then

take our matrix

interchange the el ements along the main diagonal and replaces the remaining
elements by their negatives, obtaining

21)

-1 2).
We then divide each term by 5 which is the determinant of the matrix to

get

L
5

Wi




Multiplying out, we check that we have indeed found the multiplicative

inverse of the given matrix

2 1 -1 2 x 2+1x1 2x-1l+1x2 1
5 5 _[5 5 5 5 _
-1 2\ 2 -l x 2+2x1 -1x2 +2x1 0
5 5 5 5 5 5

As another example, let us compute the multiplicative inverse of the matrix

G 2)

Here the determinant is Ix5 - 2¥3 = =1 , Interchanging the diagonal terms

and replacing the other elements by thefx negatives yields

Dividing each element by -1 finally yields

-5 2
3 -1

We check that this is indeed the multiplicative inverse by multiplication:
-5 Ap 2\ (:5 x1+2x8 5x2+2x5 \_ 10

3 -1 5 3x 1+ (-1) x3 32+ (-)x 5 01

Let us now formulate the rule in general. Let

X u
yv

be a matrix whose determinant d = xv - yu 1is unequal to zero.
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v =u
-V X

and then the matrix

v o-u

d d
Y X
d d

and we claim that this matrix is the multiplicative inverse of ; :)

We check this by multiplying out:

y u A .Y.x_.‘ly v u Xv-uy 0

-y X - 4 -

PRIV v) \Ex+Ey Tesz2vf\ o wew )\ 0!
d

In this way we have a formula that provides us the multiplicative inverse of
any matrix, provided that we can divide by the determinant, that i3, provided
that the determinant is not zero. We have thus proved that any matrix with

non-zero determinants does indeed have a multiplicative inverse.
To get some feeling for multiplicative inverse, the reader should compute the

multiplicative inverse of each of the following matrices, provided that the

inverse does exist. If there is no multiplicative inverse then he should

58




indicaze tnis fact. He should check by multiplication that he has in-

deed founa the correct mcliiplicative inverse.
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Solving linear equations. Computing the multiplicative inverse of a matrix
also proviides us with a means of solving simultaneous linear equations., '
hegin our discussion of this point with an illustrative example. Suppose that

we start with a linear transformation, say the linear transformation -hose

(: 3

and with a point in the plane, say the point 7a + 1lb, whose coordinates are

ratrix is

(7,11). Applying our linear transformation to this poirt gives

2 NJ7)_f2x7 +3x11) _ [ &
2 4Qj11 2x7+4x11 58].

In other words,
2x7+3x11 = 47

and
2x7+4x11 = 58
If we apply the inverse mztrix to the vector (47, 58) we will, of course,
get our original vector (7,11) back again. We have already computed the
inverse matrix which is
2 -3/2
-1 1
Applying it to the vector (47,58), we get
2 - 3/4 2 x47 - (3/2) 58} 47
-1 1.5 -1 x47 +1 x 58 11
does indeed give us back (7,11). Now suppose that someone asked us to find

numbers r and s such that

2xr + 3xs =47

and 2xr + 4xs =58,

&o
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"¢ could answer by applying the inveirse matrix to (47,56) to find that
r =7 n1s =11, For instance, suppose we wish to solve the equations
2xr - 3xs8=95
2xr + 4xs8=10.
This time we dc not know the answer in advance. However, we simply apply the

inverse matrix to the vector whose coordinates are (5,1C) to obtain,

2 -3/2} (5 2x5-(3/2)x17 (ls)

-1 i 10} -1 x5+1x10 ) 5
The reader can check that {-5,5) is indeed the sclution >f our pair of
equations.
The genrral procedure is now clear. Suppose we are given the numbers
X, y, u, and v, and are also given the numbers e and f. Suppose that
ve wish to find Zhe unknown numbers r and s satisfying the equations

x X r + u X s = e

y X £t -~ v X s =f

and

If the natrix(; gahas a multiplicative inverse, then we apply this inverse

matrix to the vector with coordinates (e,f) we will obtain the vector

whose ccordinates are (r,s). This then solves our system of linear equations.
if the wmatrix “-~c act have a multiplicative inverse, the situation

is a little :iore complicated. W2 know that if the matrix does not have a

multiplicative inverse, then the corresponding linear transformation maps

¢/
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the whole plane into a line. If the vector with coordinates (e,f) does
net lie na this line, then it can not be obtained by applying the matrix
to anv vectcr at all. Thus the system of equations will nct have any

suvlution. Thus, for instance, the equations

2r+4s

"
i

3r +-6s

L]
=)}

will have no solution at all, because the corresponding transformation
naps the whole plane onto the line passing through the vector whose
coordinates are (2,3). On the other hand, if the vector (e,f) does lie
on the line determined by the matrix, then there will be (many) solutions
to the corresponding equation. Thus, in the preceding example, if we

had 8 and 12 on the right instead of 5 and 6, so that our equations are

"
(-]

2r+4s

3r+6s 12,

n
We can find many solutions, for instance r = 4, s = O’A’; = -1, s =2%

and so on.

This procedure also works in general. Suppose that the matrix

x
{y :)has no multiplicative inverse. Then if all the entries x, y, u and v

are all 0, then there is no solution to the equations at all unless e and f
are both zer-», in which case_any numbers r and s will do. If at least one

of the entries of the matrix is not zero, then the vectors (x, y) and (u, v)

6L
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qaust lic on the same line. In this case, the vector (e, f) must lie on

the samc lire, otherwise the equations have no solution. To say that ( e, f)
lies on this line reans that (e, f) is some multiple of (x, y); or, if

x and : d.e borh zero, that (e, f) is some multiple of (u, v). Thus, in

the exar.ple above, (5, 6) does not lie on the same line as (2, 3) and sc

the equa-ions "ave no solution. On the other hand, (8, 12) is a multiple

oi (2, 3), in fact, 8 = 4 x 2 and 12 = 4 3 so that the equations do have
solutions, for instance, r = 4, s = 0. Also, (8, 12) is a multiple of

(4, 6) since 8 = 2X4 and 12 = 2){ 6, so that r = 0 and 8 = 2 is another
solution pair for the equations.

The reader should solve the following linear equations ( or
indicate the lack of solutions or the fact that there -is more than one
solution). This will provide practice not only in solving linear equationms,
but also additional practice in evaluating determinants and computing the

multiplicative inverses of matrices.

1. 2r= 5 4. 3r+2s=1 7. r+s=2
3s=10 2r+3s8=0 2r + 2s = 3
2. r+t+2s=25 5. 3r+2s=0 8. r+ s=10
s =11 3r+2s8=1" 2r+2s=20
3. 3r+2s=25 6. 3r--2s=%4
2 r+3s=11 3r+2s=28




Eienvalues and eigenvectors. Let us consider a transformation T whose

watcix ( in terms of our basis vectors a and b) takes the simple form of
hivir; non--ero cntries only about the main diagonal. Thus suppose, for

instance that the natrix of T is

Such a matrix is called a diagonal matrix. The geometric picture of the
action of T is very simple. It stretches everything by a factor of 3
along the a direction and contracts everything by a factor of % along
the b direction. Thus a diagram of how T acts on a parallelogram whose
() sides are parallel to the a and b directions is provided below. We
give two pictures, corresponding to different choices of basis vectors

a and b.

T carries the parallelogram with heavy boundary into the

shade: :aralledogram
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Here is a picture for a different choice of basis vectors, say c and d.

Mow the choice of the vectorsoa and b is completely arbitrary,
subject to the condition that they don't lie on the same line. Thus it
might be the case that the transformation T carried the vector ¢ into
some multiple of itsclf and carried the vector d into some multiple of
itself. If c and d don't lie on the same line, and we had chosen them
as our basis vectors, then the matrix of T would be in diagonal form.
However, we did not have the good fortune to make this choice of basis
vectors. The matrix of T then looks more complicated. Let us illustrate
with a specific numerical example. Suppose that the linear transformation

T has the property that

T(a + b) = 3(a + b)

and

T(a - 2b) = %(a - 2b)




(L)

Thus the transformation T carries the vector a + b in three times itself
and carries the vector a - 2b into one half of itself. Let us see what

the matrix of the linear transformation T is in terms of our basis vectors

1 1

a and b. By computing the inverse of the matrix 1 -2

we see,or can

directly verify, that
a = 2/3 (atb) + 1/3 (a-2b)
and b = 1/3 (atb) - 1/3 (a=2b)

Then Ta = 2/3T (atb) + 1/3T(a-2b) = 2/3 x3(a+b)

+1/3 ¥ 1/2(a-2b) = @ 1/6)a + (1+4/3)b

=

1/3T(a+b) - 1/3T(a-2b) = 1/3 X 3(atd)
- 1/3 X 1/2(a=2b) = 5/6a + @ +1/3)b

Thus the matrix of T in terms of the basis a and b is

1

2¢ 2
u 1
1-§ 1§-

Suppose we had started with this matrix. It certainly looks very

complicated. How could we tell that by suitable choice of the vectors

A




c (a+b) andd ( = a - 2b) that the transformation takes the simple
form of stretching (or contracting) along the lines determined by these
vectors? This is the type of problem which we wish to solve in this
section.

Starting out with a linear transformation whose matrix is given to
us, we wish to ask the following three questions: First of, are there
lines along which the transformation T simply stretches (or contracts)
everything? If so, what are the factors of expansion (or contraction)?
Thirdly, if our transformation does have this property, what are these
lines?

Notice that in formulating the problem we used the word lines
instead of the word vectors. The reason is that if T carries the non-zero
vector ¢ into some multiple of itself, it will do the same for any other
vector lying on the line determined by c.

Observe that not every linear transformation will have the property
that it carries some line itself. For instance, {f T is rotation through
45° about the origin, then T moves every line and so does not carry any

vector into a multiple of itself.

Let T be a linear transformation. We are searching for all possible

numbers z and all possible vectors ¢ with the property that T carries the

vector ¢ into a multiple of itself by the factor z. In other words, we




()

are looking for numbers z and non-zero vectors ¢ such that

Te = zc

It turns out, su:i;risinzly, that we can find out what the possible z's
are without kuowi-y th. vectors ¢ in advance. OQur way of finding the
possible z's is <- ‘irst write the above equation in a slightly different
form. . - 2 be tte linear transformation which multiplies every vector
in the plane by the number z. Thus Z is the linear transformation whose

matrix is

We can rewrite th2 ahove equation as

Te = 2Zc¢
or Tc = 2c =0
or, finally (T-2)c =20

¢ 8
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Mow we are supposing that ¢ is a non-zero vector. The last equation says
that the !inear transformation (T-Z) takes this non-zero vector into zero.
As we have seen severzl times already, this means that the linear trans-
formation /7-7) iics not have a multiplicative inverse. This information
is sufficient to deternine the possible z's. To see how this works, let

us examine a numerical example. Suppcse that T is a linear transformation

whose mat. ix is

1 2

5 4
Then the matrix of T-Z is

l-2z 2

5 4oz

where z is the unknown number we are looking for. To say that T = 2
does not have a multiplicative inverse means that the determinant of
the last matrix must vanish. We can compute the determinant of this

matrix which is

(1-2) (4-2) - 2X5 =4-52+22-10 =zz-Sz-6

4




|
| This means that the number 2z must make this last expression vanish.
i

Thus z must be a solution of the quadratic equation
z -52 -6 = 0.
Now we can factor this last equation as
2
z -5z «6 = (z-6)(z+1).

Thus the two possible values of z are z = 6 and z = -l.

These two numbers, 6 and -1, are called the eigenvalues of the matrix

We can indeed check that when we substitute these values for z into
T-Z the matrix we get has determinant zero. In fact, taking z = 6

gives the matrix

1-6 2 -5 2
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whose determiaant is 10 - 10 = 0. Also the matrix

1+1 2 [: :

"

5 4+1 5 5

has dei¢rminant zero.

Once we have found the values of z the problem of finding the
corresponding vectors c is very easy. Cluppose we take the value z = 6.

We are looking for a vectcr satisfyin,

(T-2)c = 0.

1f the coordinates cf ¢ are r and s, we wish to find r and s such that

-5 2 r -5r + 2s 0

5 <=2 8 S5r - 2s 0

An obvious solution of this equation is r = 2, s = 5. (Any multiple of
this vector will also be a solution as well. A rule of thumb for finding
the solution is to take a row of the ratrix of T-Z, read it from right

to left and change one sign. Thus in




wve took the bottom row, changed the -2 to 2 and read from right to left
to obtain (2,5). If one row consists of 0, O then the other row must be

used. If both rows are 0 so that the matrix of T-Z is the zero matrix

then eny values of r and s will do.

Let us now check that if we take z = 6 and ¢ = 22 + Sb then
Tc = 6¢.
This reduces to checking that

1 2} 2 2
= 6
S 4] 5 5

To do this, we simply multiply out, obtaining

)

1 2 1X2 + 245 12 6x2 6(2
S 4\S 542 + 4%5 30 615 5

Similarly, let us take the other value of z given by z = -1.

The corresponding matrix T = Z becomes
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so we take ¢ = =-2a + 2b. We must check that for this choice of the

vector c we get

Tc =C.

We verify this by the computation

12\/-2 _ 1(=2) + 2x2 -2 +4 2
54,"\2“ (-2) + 4x2 -10+8 2

These special numbers, 6 and -1 associated to the matrix 1 2 are called

the eigenvalues of the matrix. The corresponding vectors 2a + 5b and
-2a + 2b are called eigen vectors of the matrix.

¥f we have found eigenvalues and two distinct eigenvectors (not
lying on the same line) for a given matrix, then it is very easy to
describe the geometric behavior of the corresponding transformation.
We simply draw the lines containing these two vectors. The transformation
then stretches (or contracts with possible reverse in direction) along
thedirections parallel to these two lines, by the amount indicated by
the eigenvalues. Thus, in the next diagram, we illustrate how the
transformation T, whose matrix is given by (; z)in terms of the given
basis a and b. We first draw the vectors 2a + 5b and -2a + 2b. We

can then indicate how the transformation operates by drawing the image

of a parallelogram to the axes provided by these eigenvectors.
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We now state the general method, illustrating it by another numerical
example. We start with a given transformation whose matrix, in terms of

our basis is

general method specific example
6 L
X u 2 9
yv =3 =4

We first look for the eigenvalues of the matrix. We thus wish to find
those values of z for which the determinant of the matrix corresponding

to T = Z becomes equal to zero;this means sol7s7ing the quadratic equation
1
¢ (x-2) (v-z) ~uy =0 (62 - 2)(b=2) -9 (-3) = 0
or, rearranging the terms, this is the same as the quadratic equation
2
z = (x+v)z+ (xv - uy) z -
(Notice that this quadratic equation takes on a very simple form in
‘ 2
terms of the original matrix. The coefficient of z* is always one, the

coefficient of z is always -(the sum of the terms on the diagonal) and

the constant term is always the determinant).




We next solve this equation for z. We can use the formula for the

solution of a quadratic equation,

S —

(x+v) = 1 (x+v)2 =4 (xv-uy)

z = 2 z =2, z =%

Notice that there will be no real
solutions if the expression under
the square root sign is negative.
Thus, if the expression under the
square root sign is negative there
will be no eigenvalues. This
expression can be simplified,

()

(xtv)? ~4(xv-uy) =

2
X2+ 2xv + v -bxv + buy =

2
(x-v) + 4uy.

Therefore, 1if (x-v)2 + 4uy 18 a

negative number, there will not

E be any eigenvalues of eigenvectors.

Let us first restrict our attention

to the case where this expression is




‘)

sreater than zero so that there will
exist two distinct values of z given
by the abor. formula. We shall call

them 2, and z_ to avoid having to

- £a

carry the complicated formula with
us durin; ouvr computations. We
will return to studv the case when
the expression is negative or zero
in a later section.
For each of the two values of z so obtained we form the matrices of

the transformations T - Z which are

X=2 u X~z u 4% 9 ‘ 6 9
and

y v-2 y V=2 -3 -61 -3 -4k

For each of these matrices, we take a non-zero row, and read it
backwards changing on sign, and this gives us the corresponding
eigenvectors. Any non-zero multiple of an eigenvector is again an
eigenvector. We may use this fact to obtain an eigenveclor whose
coordinates have a simpler looking form: The corresponding eigenvectors

are thus




-ua + (x-z,)b -ua + (x-zz)b =9a + 4%b 4%a - 3b
o and or
-(v-zl)a t vb -(v-zz)a + yb Multiplying Multiplying

this eigenvector
by~2/9 we get the
simpler looking

eigenvector

za—bo

by-2/3 we get
the simpler
looking eigenvector

- 3a < 2b.

The reader should check that these
are indeed eigenvectors corresponding

to the eigenvalues 2 and %.

The reader should compute the eigenvalues and eigenvectors of the following

matrices. Not all answers will come out looking nice.
. 12
1. ;, 02 4,
34
-6 7

2. [ -2 2 5. 0 2
(-21 7 2 0
3. 01 6. 2 4
10 6 8
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Change of basis. In the last section, we saw that a linear transformation

having distinct eigenvalues has a very simple geometrical description in
terms of its eigenvectors. It also has a very simple matrix form if we
were fortunate enough to choose our basis to consist of eigenvectors.

In fact, if our basis consists of eigenvectors, then the matrix is in

diagonal form, that is, it takes the form

where z1 and z2 are the eigenvalues of the linear transformation. 1If

we were not so fortunate as to choose the eigenvectors as our basis
elements, then the expression for our matrix might appear quite compli-
cated. We should therefore study the problem of how the matrix of a
linear transformation changes when we decide to make a change of our
choice of basis vectors. In pursuing this question, we will be able to
reformulate the results of the previous section in a form which will
allow us to handle the case where the qQuadratic equation we encountered
last time does not have real roots.

Let T be a linear transformation whose matrix, in terms of the

basis a and b, is
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Suppose now that we wish to change our basis to a different choice of

basis, say «' and b' where

a® = 2a= b, b' = -3a + 2b,

(Here, as usual, we have chosen specific values for a' and b' for
illustrative purposes.) Let us see how to express the matrix of T in
terms of the new choice of basis. We compute Te' and Tb' by our usual

procedure.

AP,
“ N
L
b
[]

—_ N
i
(]

2x - u X u =3 ) =f-3x + 2u
2y = v yv 2 -3y + 2v
)
This gives

Ta' = (2x-u)a + (2y v)b Tb' = (3x .+ 2u)a + (3y + 2v)b

However, we are interested in the expression of Ta' and Tb' in terms of

a' and b', not in terms of a and b. For this we use the fact that

a=2a'"+b' b= 2b' + 3a'

which we derive by computing the inverse of the matrix




and verify directly. The final expression for what T does to a' and b'

is as follows:

Ta' = (2x -u)a + (2y - v)b

= (2x - u)(2a' + b') + (2y - v)(2b' + 3a')
-{-2(2x-u3+3(2y-v}a'+{(2x-u)+2(2y-v)} b'.

Also
Th! = (-3x + 2u)a + (=3y + 2v)b

= (=3x + 2u)(2a' + b") + (-3y + 2v)(2b' + 3a')

=z,;(-3x + 2u) +3(-3y + Zﬁi} a' +Zf'(-3x + 2u) + 2(-3y + 2v£}-b'

Thus the matrix of T, in terms of a' and b' is

2(2x = u) + 3(2y - v) 2(=3x + 2u) + 3(=3y + 2v)

(2x = u) + 292y - v) (=3x + 2u) + 2(3y + 2v)

This complicated looking matrix can be written in a similar form which

is easier to remember and understand. It can be written as the triple

product




as can be checked by multiplying this out. The matrix

l Thus the rule for changing the matrix when we change the basis is the
following: first write out the new basis in terms of the old basis, and
write down the corresponding matrix. Let us call this the change of
basis matrix. Compute the inverse of this matrix. Then the matrix of

the linear transformation in terms of the new basis is given by

matrix inverse of change of
old
in new = change of )( )( basis
matrix
basis basis matrix matrix

§2




For example, let us take the linear transformation whose matrix in terms

of aand b is

6% 9

=3 =4
According to our computations of the previous section, we know that this
matrix has eigenvalues 2 and % with corresponding eigenvectors 2a - b
and -3a + 2b. If we set a' = 2a - b and b' = -3a + 2b as our new basis

vectors, we know that the matrix of T with respect to these new basis

vectors is the diagonal matrix

We can verify that this coincides with our rule as formulated above. The

matrix for the change of basis from a and b to a' and b' is

wvhile the inverse of “his mutrix is




We then check by multiplication of the matrices that

R R RN R ]

Thus

N IR P B B

We can, of course, rewrite this last equation as

6% 9 2 -3 2 0 2 3
D W B T Y
In this form, we can give a more geometrical interpretation to the
equation, by considering all the matrices on the right as matrices of
linear transformations. The general idea is as follows:
Suppose that we really have a preferred choice of basis vectors a and b.
For instance, since we can always buy cross-section paper, it would save
us a lot of work if we choose a and b to be along the axis of the cross-

section paper and one inch in length. In this way, the printed lines

provide us with an inmediate way of computing the coordinates of any

£4




point on th2 plcn~.  “sw a diagonal matrix such as 2 0 has a very simple

0%
interpreta“i-r. It says, expand horizontally by a factor cf two and

compress va2rtically by a factor of one half.

Now the transfori.ation T whose matrix is [ 6% 9 ) expands and compresses

in the directions of its eigenvectors 3 <4 Thus a picture of

its action is
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We can regard this action as the composition of three transformations:
First "unhinge" the plane and map it into itself in such a way that the
eigenvecto-s 2a-b and -3a + b are carried into our basis vectors a and
b. Then apply the simple vertical and horizontal compression and
expansion described by the diagonal matrix. Then map the plane back
into itself in such a way that the vectors a and b go back into the

eigenvectors again. Pictorially, we are regarding T as the composition

of the three steps drawn below.

)
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We can thus regard a transformation of the distinct real eigenvalues as
a distorted version of a diagonal transformation, whereby a diagonal
transformation we mean a transformation whose matrix is diagonal in our

preferred coordinate system.

The collection of all diagonal matrices has some very nice

properties. Any two diagonal transformations cc-mute,

DR I D DA I A B

A diagonal matrix has an inverse if and only if both entries along the

uiagonal are not zeio, in which case the multiplicative inverse is given

() by the formula

o )

< o

e—
]

ll/x 0-
01/v

E Conformal transformations. We now wish to study linear transformations

which do not possess real eigenvalues: thuvs those linear transformations

whose matrix

satisfies

5&
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A
\

(x-v)2 + 4uy <0

We shall d-scribe a '"nice" ccllection of linear transformations with

this property. We shall see later on that any linear transformation
2

with (x-v) - 4uy 0 can be regarded as a distortion of one of these

transformatioins by a skew choicr of basis.

Consider a transformation whose matrix has the form

-8 r

In this case x =r &and v=r while u=s and y = -8 so that the

expression

o——
t
patats

2 2
(x=v) + 4uy = =4s _‘.: 0

In experiments the following facts are brought out concerning
transformations of this type.

Any transformation of this type is a s -ilarity transformation
of the plane, that is, it carries any figure into a figure similar to it.

2 2
It distorts length by a factor of f r + s , and can be

regarded as the composition of a rotation ol the plane followed by the

, 2 2
transforration that changes all distances by the amount Y r + s .




A similarity transformation is sometimes called a linear conformal transformation.
A conformal transformation preserves angles but need not preserve lengths. As a
convenient convention, we shall agree to call the zero transformatiorn conformal.
Let 5 and T be two conformal {ranstformations. If either S or T is
zero, then clearly S T is zero. If both S and T are not zero, then T an? 3
both preserve angles. If we first apply T and then apply S we will still have
preserved all angles. Thus S T will again preserve angles. Thus the composite
-f two conformal transformations is again conformal.
Let us check this fact by looking at the product of the corresponding matrices.
Suppose that T has the matrix _% : and S has the matrix _: : . Then

multiplying the matrices gives

u a byY_ fau-bv bu + av
-v u){-b a} \-bu-av au - bv J.

We see that the product matrix has the form
X V¥
-y X

X = au - bv and y = bu + av

where

and thus corresponds to a conformal transformation.
Notice that the sum of two conformal matrices is again conformal. Indeed

u vy fa b (u+ta) (b+v)

-v uyJ\l-b a -(b+v) (u+a)

and the matrix on the right has the desired form.
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Let us go back to the expression for the product of two conformal matrices:
u vyja b\ _ au - bv ub + va
-~ (-v u)(-b a)‘ -(bv + bu) au + bv
Let us now multiply tham in reverse order:
(a b)(u v), au - bv av+bu)
-b aff-v u} ® [-(bu + av) -bv + au
Notice that we get the same answer. Thus, if S and T are conformal linear
transformations, we have
SeT = TeS
i.e., multiplication is commutative.

When will a conformal transformation have a multiplicative inverse? If

T 1is a cornformal linear transformation whose matrix is

()

we know how to answer this question. We must check the determinant of this
matrix which is .

( a®a - bR(-b) = a2 + 2
Notice that this expression can be zero only when a and b are both zero.
Thus if T is a non-zero conformal linear transformation, it possesses a
multiplicative inverse.

Notice that the collection of all conformal matrices behaves a lot like the
number system. We have noticed on page that some of the laws for numbers break
down for the collection of all matrices. The commutative law does not hold for
the collection of all.matrices. It does hold for the collection of all conformal
matrices. For the collection of all matrices, it is not true that any non-zero
element has a multiplicative inverse. For the collection of conformal linear

transformations it is true that every non-zero element has a multiplicative in-

verse.




o

Let us now examine two special c&nformal transformations. The first
one is our old friend the identity transformation. The identity transformation
clearly preserves angles, because it preserves all geometric figures; it does
not move the plane at all. Remember that its matrix is
1 0

o 1y .

The second transformation we wish to consider is the one whose matrix is

().

It is clearly conformal. What does it correspond to geometrically? It

2 2
changes the length of any vector by a factor 0 + 1 - that is it doesn't
change length at all. It sends the vector (1,0) into the vector (0, -1),

that is, it rotates it clockwise by ninety degrees. Similarly, it sends the
vector (0, 1) into the vector (1,0) - that is, it rotates it also by ninety
degrees. Therefor vwe conclude that it rotates every vector in the plane by
ninety degrees as can be checked in the experiments.

Rotating through ninety degrees twice is the same as rotating through one

hundred and eighty cegrees. We can check this fact directly by matrix multiplica-

o Nfo 1\ -1 0
1 oJt-1 o) o- .

We can write this last equation as

GG M6

Now the point of this discussion is that we can express any conformal matrix

tion:

in terms of the two special matrices

(1 o) an; (o 1)

01 -1 0

Y AE Y B ).
12
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Let us give special names for these two conformal transformations: 1let

us call
& the identity form

and i the transformation whose matrix is

We can thus write every conformal transformation of the place as
a} + bi .
We know that multiplication of two conformal linear transformations is commutative
and the rest of the usual laws of multiplication hold. The transformation is the
identity for multiplication while
jei = i° = &
We can use these rules to reconstruct the rule for multiplication of conformal
linear transformations. Suppose we wish to multiply
(ad + bi)x (@ + vi)

We get,

(ed + bi)u(ul + vi) = (@) x(ud) + (Q)a(vi) + (bla(ud) + (bi)x(vi)
by the distributive laws. Sinced is the identity for multiplication we have
(cQ)X(bR)=21 , (@Q)X vi=avi, bieal = dui

and since 12 = =1 we have

-~

(bi)x (vi) = -bv
thus
(ad +bi)x WQ+ vi) = (a . -bv)q + (av + bu)i vhege matrix is
au - bv av + bu

~-(av + bu) au - bv
If we compare this with the equatiomon pagefiwe see that we have obtained the
same answer. Since acts as the identity for multiplication, the product

(ai)xT is the same as aT

for any transformation T. Thus as far as multiplication is concerned, we
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can suppress the ﬂ, in making computation=. For this reason, people usually
write
a + bi instead of a1 + bi .
When we write conformal linear transformations this way, they are called
complex numbers. Thus a complex number is an expression of the form
a + 1ibi

where all the rules of arithmetic apply, together with the rule i =-1,




LABORATORY MANUAL FOR CHAPTER 3

VECTORS IN THE PLAKE

The pu:rpnre of the next collection of experiments is to study
oroperties >f transiations in the vlane. The equipment consists of
cross-sectioned graph paper ruled 8 Squares to the inch and plastic
transparency sheets also ruled ¢ sguares to the inch. In addition
you wiil also use your straight edge and compass. The purpose of the
ruling on the paper and on the plastic transparency sheets is to insure

that no rotation occurs while sliding it along the paper.

The first two experiments demonstrate that a directed segment
determines a translation and two directed segments determine the same

translation if and only if they are parallel, of equal length, and

point in the same direction.

The next three exveriments show the geometric meaning of the

group laws (commutative and associative laws).

We then study scalar multiplication and vector space propertis=s
rd

the notion of basis, lattice and so on.
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EXPERIMENT I TRANSLATIONS
Directions

1. Draw a directed segment a,, ao, anywhere on the ruled paper.

2. Line up the plastic transparency over the ruled paper
making sure the horizontals line up with the horizontals ana

the verticals line up with the verticals.

3. Mark the point, a5, with a felt tipped pen, lying over the

initial point of the directed segment.

4. Now slide the transparency to the position with the marked
point lyirg over the termi:al point of the directed segment.

This is the translation associated with the directed segment .

5. Return the transparency to its original position; that is
return the marked point to the initial point, a;. Puncture the
transparency at some other point, marking the ruled paper
underneath. Call this point b,. Now slide the transparency SO
that the point originally lying over a a; now lies over a,. Mark

the position of the hole on the ruled paper. Call this point b,.
6. Check that the line determined by bj and b2 is parallel to the

line determined by aj-and a,. Check that the segment by, bo,

has the same length as a;, ap and points in the same direction.

ERiC‘ 7. Repeat L, 5, and 6 with some other puncture.
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Pagze 3

EXPERIMENT II  EQUIVALENT DIRECTED SEGMENTS
Steps 4, 5, and 6 of the previous experiment show that a translation
together with 2 "starting point” by determine an "ending point" b,. We say
that the trans’'ation transforms by into b,. We say that the directed segment
b, b, corresponds to the translation. We saw that if two segments a; a, and by b

1

correspond to the same translation then they lie on parallel lines, are of equal

2

length and point in the same direction.

We now establish the converse.

Directions
1. Draw a directed segment a; as.
2. Choose any point b, on the ruled paper.
3. Draw the line through by which is parallel to the line determined
by aq and an.
L. Mark the point b, on this line so that b; b, has the same length
as a; a, and points in the same direction.
5. Place the transparency over the ruled raper and mark, with felt
tipped pan, the points lying over a, and b,.
6. Slide the transparency so that the pcint originally over a; now
is over as. Check that the point originally over by now lies over
b,.
bo are equivalent directed segments.

1

Two equivalent directed segments determine the same translation. The

We say that al 8 and b

translation is called a vector. We use the letter v to denote a vector. We
sometimes also use the letter T, to emphasize that we are thinking of v as a motion

of the plane. (The letter T -stands for transformation).
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EXPERIMENT III ADDITION

Let T
vy

obtained by first applying Tvl and then T < We check that TvgvTV1 is agair a

and T, be two transiations. Let T., ¢ T, Dbe the transformation

2 2 V1
translation. vie denote it by Tv3 and we write V3 =V + vo. We check that TR
v, + V.

2

Directions

1. Draw two directed segrents 8, a2 and b, b, on the ruled paper.

2. Place the transparency over the ruled paper, line it up, and
puncture the points over a; ap by and bs.

3. Slidz the transparency until the point corresponding to a;
is over b2, line up the transparency and mark the point which
was over a, on the ruled paper. Call this point e.

L. Place the point corresponding to by over a, mark the point
corresponding to b, on the ruled paper. Call this point d.

5. Notice that b20 and ald are equivalent, they detemmine the same
translation. This experiment is more striking if we choose sur
segments with the same intial point.

6. Let 0a and Ob be two directed segments under the same initial
point O. Find the sum of the corresponding vectors and demonstrate

the commutative law.
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. Recall that the translation corresponding to a directed segment a; a, is
called a vector. Frequently, since any vector is merely a representative of
equivalence class of segments,we choose a common initial point O to represer:
all vectors. This point is called the origin. Since now all segments have the
same initial point we can identify them by merely noting their terminal point.
We will denote the vector corresponding to Oa by a and will therefore denote the

endnoint of the segment corresponding to a + b and whose initial point is O |

a+t+b.

EXPERIMENT IV THE ASSOCIATIVE LAW
Directions
1. Choose O and three points a, b, and c.
2. Construct a + band b + c.

3. Construct (a +b) +c and a + (b + c).
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Cralar Multiplication
As usual, we denote a + b by 2a and, more generaliy a + atat+ ... +a

(n times) by na. We can also construct a vector 2a as the vector

satisfying %a + %a = a. In fact we can find it by bisecting the

segement Oa.

EXPERIMENT V THE DISTRIBUTIVE LAW
Directions

1. Choose vectors a and b.

2. Construct a + b.

3. Construct (1 + %)a by extending vector a half again as much
in the same dirention. Do the same for (1 +2)b. Construct
(1 + %) (a+b) by extending ( - b) half again as much in the
same direction.

L. Add (1 + 3)a to (1 +3) b.

5. Form (1 - ) (a +b), by extending (a + b) half again in the

same direction. Notice that

(1+3) (@a+b)= (L +3)a+(1+%ih
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Experiment VI

Here are two vectors a and b . Construct 2a + b .
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O EXPERIMENT VII INVERSE OF A VECTOR
Let ay a2 be any directed segment corresponding to a vector a so that
translating by a moves a, to a,. Then the inverse of a will move to a5 to 3.
That is 8o, a; represents -a.
Construction of -a from a fixed origin.
Directions.
1. Choose point a.
2. Puncture the transparency over O and a, after lining up the
grids.
3. Place the point which was over a over the origin O and line
up the grids.

L. Mark the point which was formerly over O on the ruled paper.

This is -a.
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EXPERIMENT VIII

Directions
1. Choose vectors a and b.
2. Construct the following points:
2a, atb, 2b, 2a-b,2a-2b, a-b, a-2b,-a, -2a, -b, -2b, -a-b.

-2a-b, -a-2b, -2a-2b, b-a, b-2a, and 2b-2a.
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EXPERIMENT IX - THIS EXPERTMENT REQUIRES A LARGE SHEET OF PAPER WHICH WILL
BE USED REPEATEDLY IN THE SUCCEEDING EXPERIMENTS.

1) Choose an origin O near the center of the paper.

2) Choose points a and b so that Oa ard Ob are not too large or too small,
say somewhere between one and three inches each.

3) Form the vectors a, 2a, 3a, la, 5a, -a -2a, -3a, -ha, -5a and the vectors

b, 2b, 3b, Lb, 5b, -b, -2b, -3b, -4b, -5b. The easiest way to draw these
vectors is by drawing the line through O and a and then marking off the
points with a compass. S8imilarly for b.

L) Form the point -5a + b. Draw the line through -5a and -5a+b and then mark
off the points -5a+b, -5a+2b, -5a+3b, -5a+hkb -5a+5b and -5a-b, -5a-2b, -5a-3b,
-5a-bb and -5a-5b.

‘5) Construct 5b+a. Draw the line through 5b and 5b+a and then mark off the
points S5b+a, 5b+2a, 5b+ 3a, Sb+ia, 5b+5a, 5b-a, 5b-2a, 5b-3a, S5b-La and 5b-5a.

6) Draw the line passing through -5a_5b and -5a, the line through -4a+5b and -ka et

until the line through 5a+5b and 5a. There are eleven lines in all

7) Similarly, draw the eleven lines through -5a+5b and 5b, -5a+ib and Ub etc.,
eleven lines in all.

8) Label many of the poin’s of intersection such as a+b, a+2b, 3a-Lb etc.
In order to same time and space use the following notation; (3,4) stands
for 3a+ib, (1,1) stands for a+b, (-2,3) stands for -2a+3b and so on.

9) Get some practice with this notation. Locate the points (3,-3), (2,-2), (1,1),

the points (L4,2), (2,1), (-2,-1), the points (u,o), (2,0), (-3,0).

We have subdivided the plane into parrallelograms; We can use one

corner of the parrallelogram to label the parrallelogram. Wé,use the point
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(3,-4) to label the parallelograms whose corners are 3a-ib, La-Ub, 3a-3b and
’48- 3b .

10) Which is the parallelogram labeled by (2,-3) on your sheet?
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EXPERIMENT X
Use the same sheet as in experiment IX

1) Find the point 3ia + 21b.

2) Find the point -ig + b.
EXPERIMENT YZ

1) Pick a point Q. In which parallelogrem does it lie? What is the

label of this parallelogram.

2) Subdivide the parallélogram containing Q into four congruent parallelograms.
What is the label of the small parailelogram containing Q? .

3) Subdivide the small parallelogram containing Q once more into four.

What is the label of the parallelogram containing Q?

S S TrmTy s TR omes o o mrm e T R T TR ~ — - - —————
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.y EXPERIMENT XII

Continue to use the same sheet as in experiment IX . Draw all the figures
of this experiment in very light pencil as they will not be used in the
next experiments, while the sheet itself will continue to be used.

1) Through the point Q of experiment XI draw the line parallel t¢ th=
line through 0 and b .

2) Mark the point of intersection of this line with the line through 0
and a . Call this point c.

3) The point c 1lies on the line through 0 and a . If we take 0
as the origin on this line and we use a as a basis of this line then
we know that ¢ = ra where r 1is some real number . We can find the
expansion of this real number according to the methods of Chapter II . Find

the expansion of r up to the second dyadic place .Compare this with the
first term of the answer to part 3) of experiment XI .

4) Repeat parts 2) ,3) and 4) interchanging a and b . That is,
draw the line through Q which is parallel to the line through 0 and a.
Mark tic pu:at of intersection of this line with the line through 0 and
b ; call this point d . Expand d in terms of b, finging the first
two terms in the expansion of 8 where d = s b . Compare your answer
with the second term of the answer to part 3) of experiment XI .

5) Observe that

so that we may write

Q =ra + sb .




