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Boston State College

Shiomo Sternberg

December 1967

In accordance with the recommendations of the Cambridge Conference

meeting of the summer of 1966, 1/rofessor Weiss and I embarked on the

project of developing a sample .ourse for use in the teacher's college.

We worked in close cooperation .ith Professors Perrault and Callahan of

the Boston State College. From the beginning we felt strongly that it

was important to develop the material in close cooperation with a teacher's

college. The reason for this was that our first main problem was one of

educating ourselves as to the nature of the students and educational

atmosphere in the teacher's college. During the fall semester our operat-

ing procedure was as follows: We would hold weekly (or bi-weekly) meetings

with Professor Callahan (who wa.; teaching the course) to discuss educa-

tional objectives and methods prior to classes. I then attended the class

(disguised as a student registered in the class) and Professor Weiss visited

the class at regular intervals. (Actually, my schedule allowed me to attend

only two of the three classes per week and Professor Weiss visited the

third class.) By being "part of the class" I was able to get to know the

reactions of a few of the students quite well. In retrospect I can say

that this procedure was extremely valuable. I learned a great deal about

the nature of the educational problems and this information was used in re-

vising the material for the course.

Our approach to the course was based on three methodological

principles: 1) that emphasis should be placed on mathematics as an organi-

zation of (experimental and other) information and not primarily as a

deductive system; 2) that it is important to use concrete objects to em-

phasize the "real" nature of mathematics; 3) that the material taught in
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the course should have a direct bearing on the material that the prospective

teacher would use in the elementary school classroom.

As to 1): There is no doubt that the key feature distinguishing

mathematics from the other scierces is its purely deductive caaracter.

However, it is our feeling that (especially with the students under question)

this point has been over-emphasized at the expense of understanding the

meaning of mathematical assertions. Thus, a proposition is regarded pri-

marily as a stepping stone to the next proposition. What is seriously

lacking is an understanding that a propOsition is an efficient way of gather-

ing together a lot of mathematical information. In many cases, the stqdents

were able to repeat various mathematical "laws" but were stymied when asked

to illustrate them or apply them in a given instance. Furthermore, even

the best students in the class had a very weak idea of what constituted a

valid mathematical argument and it seemed unwise to push this side of

mathematics too far.

As to 2): In close connection with the previous point, it was clear

that many of the students did not relate mathematics to any notion of

reality. To illustrate, at one juncture, the students were asked to compare

the length of two segments that they had randomly drawn themselves. They

were asked to compare the lengths experimentally using straight edge and

compass. Some students rejected their own findings because the answers

did not come out a whole number after three or four bisections. As one

student put it "math problems are supposed to come out even". Apparently

one reliable way of checking what is drilled into the students in primary

--and high school is to see if tte answer is a single integer. This has had

the effect of divorcing mathematics from real life to the extent that the

previous astounding quote was possible. We, therefore, strongly felt that

a substantial portion of the course should be given in "laboratory" dealing

with physical objects.



As to 3): The reason here is two-fold. First of all, since most

prospective teachers teaching the course will not be intrinsically

motivated to mathematics or be motivated by the applications of mathematics,

some external motivation must be supplied. A source of motivation is the

possibility of using the material of the course in a future classroom

situation. In fact, the greatest show of enthusiasm I saw was uhen one

of the girls was trying out some of the course material in her practice

teaching. A second point, of course, is that if a thorough understanding

of the material is not achieved by all students, these students will at

least have acquired some useful devices for the classroom situation.

The subject matter of the course consisted of a study of the positive

real numbers in connection with the measurement process, the study of the

'whole number line as a one dimensional vector space and the study of

vector geometry in the plane. Our reason for this choice of subject con-

)
,...., sisted, in part, of a desire to counterbalance the recent trend to base all

arithmetic on soul, which haq hnd Of! effect La mphan17. tho di.:orte and

de-emphasize the continuous and geometric aspects of arithmetic. Due to some

debugging of early material, there was not enough time left to adequately

treat the vector geometry in the plane. We expect that this material will

be covered, tested and revised in the current spring term.

So far, we have developed "laboratory material" such as balances,

weights, ruler and compass methods, and a gadget for addilg vectors in the

plane quickly. A laboratory manual for the first two-thirds of the material

has been written. However, it will need to be seriously revised. A final

draft of the first portion of the text is currently being written. We

anticipate that after further experimentation this term (especially on

the last third of the material), we should have a complete package, con-

_
sisting of text, laboratory manual and laboratory materials.
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Chapter I

Measurement

1-1 Introduction

The purpose of this chapter is to examine the notion of

measurement with some care, and also to study the real numbers

with emphasis on the role they play in describing the measurement

or the size of various objects. It may be remarked, in passing,

that by the real numbers we mean all the numbers which are

usually used in arithmetic -- that is, all the numbers on the

number-line. One of the major objectives of this course is to

deepen the student's understanding of the real numbers. This is

important mathematically and because of its close connection with

the mathematics curriculum of the elementary school.

In recent years, there has been a tendency, at all levels of

the educational process, to base arithmetic on the operations of

set theory. This has led to heavy emphasis upon the discrete

aspects of arithmetic as opposed to the continuous aspects which

arise in a natural way from the process of measurement. We prefer

to emphasize the continuous, and our procedure will be inductive

rather than axiomatic. That is, we will derive various rules or

properties of the algebra of measurement as abstractions from ex-,

periments or experiences which have geometric or intuitive content.
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Our experiments will center on weights and on lengths, although

analogous experiments could be applied in any situation where

measurable quantities are obtained.



1-2. Inequality

The most primitive notion underlying any situation in which

some kind of measurement plays a role is that of inequality. As

examples of the type of situation we have in mind, we may list

the following: one weight weighs less than another, one stick

is shorter than another, or one baseball team is inferior to

another. Of course, there are many ways to define what is meant

by the statement that team A is worse than team B; one possibility

hat team B von -the last game they -played, another possibility

might be that over the full season team B won more games from

team A than it lost. The reader should have no difficulty in

choosing other possible definitions.

Our first experiments\pIv with the notion of weight. Here,

the measurement or more precisely, the comparison, is determined

by a balance. Object A is put on one side of the balance, and

object B is put on the other side. If the side containing A goes

up while the side containing B goes down, we say that object A is
1

1

lighter than B and write A < B. If side A is the one which goes

I

i

down, we write BAC A. The sign <is to be read as less than.

i

.

I (It could be that different observers comparing A and B will

i. arrive at different observations. Thus one observer may "see"

1 that A is lower, while the other observer cannot decide which is

i
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lower. In our discussion, we shall avoid such problems by assum-

ing that there is an objective reality which is seen by all

observers.) In the present context, where the comparison is that

of weight, we might use the terminology larger than (and write> )

instead of less than. However, in order to maintain mathematical

consistency and simplicity we will use only the symbol for less

th

-

It is extremely important that it be understood that this

notion of comparison of weights has nothing to do with numbers.

(In particular, such things can be taught to first grade children.)

We do not say that object A weighs so 'many ounces and that object B

weighs a certain number of ounces. Our sole assertion is that

theie is a comparative statement relating objects A and B. At a

later stage, we shall analyze the mathematical properties of this

relationship; eventually this will allow us to introduce the real

numbers as representing the measurement of such things as weights.

We shall also experiment with lengths which are represented

concretely by sticks or line iegments. Here, we compare sticks

A and P by placing one on top of (or against) the other such that

both have an end in common -- for example, we might stand them

both up on the table. If stick B extends beyond stick A, we say

that A is shorter than B (or that B is longer than A). Thus, here



-.5-

too we may write A < B and say that A is less than B. Naturally,

we are making the underlying assumption that the result of this

comparison is not affected by moving the sticks around in space

by which endpoints we take as common to both. Of course, the

same assumption of invariance of comparison under motion applies

also the case of weights. Again we emphasize that our comparison

has nothing to do with numbers; we do not "measure" each stick --

all we do is compare them.
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1-3. Transitive Law for Inequalities

The first fundamental property of our "less than" relation-

ship for weights or lengths is the transitive law. If A is

lighter than B and B is lighter than C, then A is lighter than

C; in symbols, if A.eB and B4( C then Al: C. This rule, which

is known as the transitive law, is so obvious that we often take

it for granted. It is certainly obvious for the case of weights.

It is equally obvious for the case of lengths; that is, if A is

shorter than B and B is shorter than C, then A is shorter than C.

On the other hand, the transitive law does not hold in all

situations of every day life where we make comparative statements.

Consider, for example, the comparison of baseball teams mentioned

earlier. If the Minnesota Twins are not as good as the Red Sox

(that is, Twins <Red Sox) and also Red Sox < White Sox then it

does not follow in practice that Twins 4C White Sox. The reason

for the failure of the transitive law in this context is that more

than one factor enters into the winning of a single ball game or

series of ball games and these factors may not combine. It might

be that Minnesota hitters hit White Sox pitching very well but

do poorly against the Red Sox. By the same token the Twins may

have pitchers who lose consistently to the Red Sox (because of

the special dimensions of Fenway Park) but who specialize in
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certain pitches that the White Sox hit.very well. In addition,

the Red Sox may be weak in fielding which causes them to lose to

the White Sox. Thus the factors that determine who wins or loses

may not combine, and it is quite possible that Twins 4:Red Sox,

--Red Sox G White Sox, and White Sox <Twins.

An example which illustrates this point is the children's

game commonly known as "Rock, Scissors and Paper". The rules of

the game are as follows: There are two players; each places one

hand behind his back; then the hidden hands are brought forth

-----iimataneouily. Each child displays either a clenched fist re-

presenting a rock, or his open hand representing paper, or two

fingers representing a pair of scissors. If one child displays a

fist and the other an open hand, then the one with open hand wins

because paper wraps rock. Furthermore, scissors wins over paper

because scissors cuts paper, and rock wins over scissors because

rock can break scissors. In short, the rules of the game are,

rock 4:paper, palmed!. scissors, scissors 4,r(A, which means that

there is a clear-cut violation of the transitive law. By stretch-

ing things a bit, one might say that the transitive law breaks

down precisely because the relationship between rock and scissors

is entirely different from the relation between scissors and

paper...Roughly speaking,.we may say that the transitive law holds

when our comparison is based on a single simple quantity such as
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weight or length, rather than on some complex combi==tion of factors.

Eventually, we intend to express the relationship of inequality

(that is, less than) in terms of numbers. More precisely, one of our

goals is to assign numbers to objects in such a way that relations

between objects are reflected by corresponding relations between the

assigned numbers. In other words, if A and B are objects and "less

than" compares them in weight or length we would like to assign

numbers to A and B such that A < B if and only if the number associ-

ated with A is less than the number associated with L. Thus, the

relation of < for objects will correspond to the relation of < for

the associated numbers. Since, as is well known, the transitive law

holds for numbers, it becomes absolutely -essential that (in order to

preserve the < relation under our correspondence) we deal with objects

for which the < relation is transitive. We also want to emphasize

that unlike the example of the baseball teams, mathematicians use the

symbol < only in cases where the transitive law holds. This accounts,

in part, for our emphasis on weights and lengths.

Topics for Discussion:

1. How would you undertake to teach small children shout

the transitive law?

2. What is the meaning of the phrase "if and only if?" Are

you acquainted with other ways of saying the same thing?

What is a "necessary condition"? What is a "sufficient

condition"? What is meant by a "necessary and sufficient"

condition? What is a converse?
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_1-4. Experiments with the Transitive Law

Our first experiments concerning the transitive law for

weights are based upon use of the balance. If the balance tells

--us that object A weighs less than object B and also that object B

weighs less than object C, then one observes, experimentally,

that when A and C are compared it turns out that A is less than C.

By performing this experiment several times with different choices

of A, B, and C we may satisfy (i.e. convince) ourselves experi-

men-tally that the transitive law does, id Tact, 'had for weights.

Once this stage has been reached, the transitive law may be used

as a principle of deduction. Thus if A 4 B and B e 1: then we may

conclude that A < C without making use of the balance. Further-

more. if, in addition, we know that C < D then the transitive law

enables us to deduce that B< D and A < D. It is clear then that

the transitive law may be used to "telescope" a series of

inequalities -- for example, if we have-also, D < E, E <F, F < G,

G <II then one conclusion is A < H.

In this connection, an interesting experiment is to start

with a reasonably light weight A and he each of the students

construct, in succession, a heavier weight. In other words, the

- -first student with his balance constructs weight B slightly

heavier than A, then the second student uses his balance to con-

--struct weight C '.ightly heavier thaif B, and this process continues
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as the weights are passed around the room. If one stops this

experiment at any point and compares the end weight with the

original weight A, then the result is always A 4end weight.

Thus, the transitive law and its consequences hold experimentally

without arty difficulty. On the other hand, we shall see later

that difficulties arise when one tries to deal experimentally

with the transitive law for equalities.

The transitive law can be conveyed effectively to children

as a matter of organizational efficiency. Suppose they are given

a large number of objects and asked to record all the comparative

statements that can be made relating any pair of these objects.

For example, suppose that each child is given a weight (clearly,

lengths could be used instead of weights). The teacher selects

pairs of children (many of them) and asks them to compare their

weights. The children should soon observe that the most efficient

way to organize all this information is to order all the objects

according to increasing weight -- for this enables them to deduce

the relation between any pair of objects from this ordering and

the transitive law. Of course, heavy use is made of the- transitive

law in ordering all the objects according to increasing weight.

A useful pedagogical device which may be introduced at this

point, with the purpose of hammering home the use of the transitive



law, is to play a guessing game with the following rules. A

certain number, call it n, of objects are given and arranged

according to weight -- for convenience, we may write Al <

A2 < Avic ... < A. Someone selects one of these n objects, and

the others must then guess which object was chosen. The guessers

are permitted to ask questions of a single type (which questions

do not count as guessers), namely -- is the unknown object

greater than (or less than) the i th object Ai. Naturally,

guessers maybe made even before any questions are asked, but

after a few trials the children may get some feeling as to how to

ask questions efficiently, so that after as few questions as

possible they have no doubt as to which is the unknown object.

It is easy to see that for n=3 objects, 2 questions suffice for

determining the unknown object with certainty -- while 1 question

does not suffice. For any n, let q denote the minimal number of

questions after which we can pick out the unknown object with

certainty. We have noted already that if n=3 then q=2. It may

then be observed that if n=4 then q=2, while if n=5 then q=3.

Continuing our systematic examination of the connection between

n and t", we see that if n=8 then q=3. It follows then that for

for n=6 or 7 we have q=3. The next case to consider is n =16=24--

and by now it is fairly clear that q=4. As before, it follows
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that if n=9, 10, 11, 12, 13, 14 or 15 then also q=4. What about

the general rule? This is essentially within our grasp. If n

is a power of 2, say n=2
k

, then by simply extending the procedures

used before, we see that q=k. If n is not a power of 2, then n

--lies between two consecutive powers of 2 -- that is, 2k-14 n <

2k -- and we get q=k. For example, if n=100 then 26=64 < n=1004

2
7=128 so that q=7.

Of course, one does not discuss n and q explicitly or in a

formal sense with children -- one simply does many examples, and

leads them to discover the pattern. Such a line of exploration

introduces children to some uses of powers of 2, and serves as

preparation for the eventual study of binary expansions.
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1-5. Equality and its Properties

If objects A and B are placed on different sides of a balance

and neither side goes down, that is, if the two sides balance,

-then we say that object A is equal in weight to object B. For

simplicity, we then write A=B, although such a notation obviously

leaves much to be desired. In similar fashion, segment A is

said to be equal in length to segment B if neither one is longer

than the other. We shall deal with weights, although the same

sort of discussion would apply equally well to lengths.

__The first fundamental observation about the relationship of

equality is again the validity of the transitive law. That is,

if A=B and B=C then A=C. However, in contrast to the transitive

law for inequality, the transitive law for equality is frequently

an idealization from experience rather than something that always

holds true in practice. Thus, if we have objects A, B, C, D, E

with A=B, B=C, C=D and 1)=E then standard rules of reasoning lead

to the conclusion that A=E. Unfortunately, the experiment

corresponding to this assertion often breaks down. In fact,

suppose that one student starts with object A and produces object

B of equal weight. He keeps object A and gives B to the next

student who constructs object C equal in weight to B. He then

gives C to another student and the same process is repeated;

this goes on as many times as desired -- 10 will usually suffice,
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but one may prefer to have every student participate. If the

last object constructed is compared with A, they frequently turn

out to be of unequal weight.

- The reason for this apparent contradiction of the rules of

logic is, of course, the inaccuracy of our balance. There is a

certain amount of experimental error involved; thus although A

and B balance on our rough balance, they are probably not really

equal in weight, and the use of a more delicate and accurate

--balance could show this. Now, such ettcts eats secumulete suffi-

ciently so that they do indeed show up even on our rough balance;

this is why the experiment led to an unexpected result. Un-

fortunately, this accumulation of error is unavoidable. If we

were to use extremely delicate balances, the same trouble would

arise, because, after all, no balance is truly perfect.

It may be remarked that if this experiment is repeated a

number of times, it will turn out that sometimes the end product

is lighter than A, sometimes it equals A, and sometimes it is

heavier than A. If things work reasonably well, the end product

turns out to be lighter than A or heavier than A with equal

frequency. This indicates that the breaK-down of the transitive

law for equality does not reflect something that is fundamentally

missing from the relation -- rather, it is due simply to accumula-

-tion-of experimental error. The cases in which the end product
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is equal to A in weight occur precisely when the various ex-

perimental errors cancel each other -- some students may produce

weights wkich are too heavy while others may produce weights

which are too light.
.0"

In summary, the transitive law for equality is a rule which

we regard as holding in an ideal situation. According to our

--viewpoint, the equality represented by a balance is merely a

crude approximation to the ideal equality that we would expect to

hold for an ideal balance.

Question: If A=B and B 4:C, what if the relation between A and C ?

Discuss whether this is an experimental factor a law

of logic.
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1-6. Equiveience Relations

If we have objects A and B and are dealing with weights

(analogous remarks will apply to lengths) then our previous nota-

tion involves writing A=B to signify that A and B are equal in

weight. This notation has an unfortunate aspect which could con-

ceivably lead to confusion, for it is customary to interpret a

statement like A=B in terms of "being identical" -- that is 2

object A is the same as object B, so that A and B are possibly

-afferent names for the same object. In the interest of precision

we shall temporarily use the notation A= B to mean that A and B

are equal in weight; another possible notation would be w(A)=w(B)

(We shall revert to our old notation after this section.)

This definition of equality in weight, A= B or w(A)=w(B)

implies that we are focusing attention only on what the balance

tells us. Thus, for our purposes, a cup of coffee and a soggy

doughnut are the "same" if they balance. The important point is

that- this relation-It of balancing allows us to introduce an

abstract notion called "weight" to each real object: w(A) is the

weight of the object A. We mean this is in the same sense that

we attach the color green to all green objects. We may then con-

sider the idea of "green" as an abstract notion in its own right.

Note that, as yet, we have no right to consider weight as a

-number any more than we can consider color as a number.
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In the English language we tend to distinguish between

adjectives and nouns. In a certain sense this distinction is

artificial and purely a matter of usage or convenience. We are

not accustomed to saying "a green" when we mean any green object

or "a fat" when we mean any fat person. (There are exceptions;

we do say "a square" to mean any square figure.) In mathematical

discourse, however, it is quite common to drop the distinction

between adjective (or other modifying word) and noun. We talk,

therefore, about "the weight A' when we really mean "any object

-whose weight is w(A)"; We proceed-to analyze this idea of intro-

Awing an "abstract" notion such as weight.

The general mathematical setting in which the preceding

notion of equality in weight (or of equality in length) should be

viewed involves the concept of an equivalence relation. We now

proceed to explain what is meant by an equivalence relation in a

somewhat abstract setting. Consider an arbitrary set S whose

elements or numbers are denoted by A, B, C, D,...and such that

there is given some relation, denoted by R which may or may not

hold between any two elements of S. Thus, for any given pair

(A,B) , in the given order, with A, B E S we write A R B when A is

related to B (that is, when A and B satisfy the relation) and

A R B when A is not related to B. Some concrete examples should

prove helpful at this point:



1) Let S be the set of all integers, that is,

S = 1;..,-2, -1, 0, 1, 2, 3,...3 and let the relation R be

"lees than" (in symbols, 4). Then A R B means A4:13, while

A R B means that A is not less than B (that is, A B ) .

2) -S -1, 0, 1, and R is 1= (less than or

eq ua 1 to).

3) S is the set of all objects and R is the relationship

of being equal in weight. Here, for A, B !ES, A R B means.

that A
w

B. Of course, this may also be done for lengths.

4) S is the set of all objects (i.e. weights) and R is the

relation of less than. here, A R B means that A is less

than B in weight. In our old notation. this iiou4d be expressed

as A B; however, in keeping with our remarks At the beginning

of this section, it might be preferable to write A 4:11 or

w(A) 4:w(B).

5) S is the set of all real numbers and R is so A R B

if and only if Al:B.

6) S is the set of all real numbers and R is= .

7) S is the set of all triangles in the plane, R is the

relation "has the same area as" -- so A R B sigitifies that A

has the same area as B. Among other possible relations on

this same set S we may mention "is congruent to", "is similar

to" or "has the same perimeter as".
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8) S is the surface of the earth, and A R B means that

Al has the same latitude as B.

9) S {p, ±2,...J is the set of all integers and

A R B is taken to mean that A-B is divisible by 7.

Returning now to an arbitrary set S with a relation. R on it,

if the following three properties are satisfied we say that R

is an equivalence relation.

(I) A R A for all A e S

(II) If A R B then 3 R A for all A, B E S

(III) If A R B and B R C then A R C for
all A, B, C E S

(reflexive law)

(symmetric law)

(transitive law)

The reader may verify easily that the reflexive law is

satisfied in examples 2, 3, 5, 6, 7, 8, 9, and that it is not

satisfied for examples 1 and 4. Note that the reflexive law in

example 3 is really a logical "fiction"; it cannot be verified

experimentally with a balance because the object A cannot be

placed on both sides of the balance simultaneously. There is

only one object A, and any copy of it is obviously not the same

as object A. Thus, for our ideal balance, we are really making

the assumption that if the same object could be placed on both

sides of the balance simultaneously then both sides would balance--

i.e. that an object weighs the same as itself.

The reader may also verify that the symmetric law holds for
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-examples 3, 6, 7, 8, 9 and that it does not hold (which means

that we need produce only one case in which it breaks down) for

examples 1, 2, 4, 5. Note that in example 3 the symmetric law

reflects the underlying assumption that our ideal balance is not

"biased"; in other words, if A and B balance when A is placed on,

say, the left side of the balance and B is on the right side

(i.e. if A R B) then they also balance when A is on the right side

and B is on the left (i.e. B R A). In particular, writing A R B

involves distinguishing one side of the balance.

---Finally it is easy to see that the transitive law is

satisfied for all the examples 1 through 9.

Problem: Define a set S with a relation R such that

a) it is symmetric and transitive but not reflexive

b) it is reflexive and transitive but not symmetric

c) it is reflexive and symmetric but not transitive

d) It satisfies only the reflexive law

e) 11 satisfies only the symmetric law

f) It satisfies only the transitive law

Examples 3, 6, 7, 8, 9 are, all of them, equivalence relations,

and the reader may easily produce other examples of equivalence

relations. The mathematical importance of the notion of equiva-

lence relation is that, in such a situation, the set S can be

partitioned into disjoint subsets (which subsets are usually known



-21-

as "equivalence classes"). In detail: we say that A is equivalent

to B (with respect to R, of course) when A R B, and then for

every X eS we let [X] denote the set of all elements of S which

are equivalent to X symbolically, [X] = &eS I A R X3.

subset of form [X] for X ES is known as an equivalence class --

or the equivalence class determined by X. The fundamental

A

properties of these equivalence classes are as follows:

i) A E[A] for any A eS; in words, each element of S belongs

to the equivalence class which it determines.

ii) If Be [A] then [B) = ; in words, any element of an

equivalence class determines the class.

4:=4*A. R B; in words, two elements of S

determine the same equivalence class if and only if they are

equivalent.

iv) If [A] n[B] /then (Ai = [B];in words, ii two

equivalence classes have an element in common then they

identical.

v) [A] (1 [B] = B

As for the proof of thrzL i) is immediate

of the reflex; we law. 111 ii), note that, using;

are

in virtue

the symmetric

law, Be R A4)A P. L Then X E R B

X R A (since B R A)_) XE [A]. This means `Nat [B]c [A],
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and in similar fashion (that is, by a symmetrical argument)

CA3c [B]-- therefore, vl = [p3. The proof of iii) is new simple:

[Al = (B]:=e0e [A]:=74>B R All==4 A R B, and A R BA[B].

(A] = [8]. To prove iv), observe that if C E IA then

CE 1.4 and Cc (B) , so [A] = [C] = [B] . The proof of v) is left

to the reader.

From what,has gone before we see that if S is a set on which

we have an equivalence relation then two equivalence classes are

either disjoint (that is, having no element in common) or

__Identical -- not both -- so that S breaks up into disjoint

equivalence classes. Thus we can form a new set, denoted by S/R,

whose elements are the distinct equivalence classes [AI , [B] ,

etc...

If we are considering the set S of all material objects with

the equivalence relation R of "is equal in weight to", then each

equivalence class consists of all objects which happen to have

the same weight. Mathematically, we may then think of each such

class as a new object in its own right. In this way, each

equivalence class has a weight associated with it (one might even

go further and say th at each equivalence is a weight). This is

entirely analogous to considering the set of all colored objects

with the relation "is the same color as". The equivalence classes

consist of all objects having the same color -- so each equivalence



p

-23-

-class may, for all practical purposes, be considered as the color

itself, and the set S/R here is just the set of all colors.

Returning to weights, we observe that for the equivalence

classes we have a natural notion of [A] 41B] -- namely, when

A < B. A key point here is that [A) < Li) is "well defined";

this means that the definition does not depend on the choice of

representatives for the equivalence classes. In other words, if

[Al = (A] and 14= [B] then (see the question at the end of

w
sec. 1-5) A 4t 154.,:=4>A. 4: B' . Consequently, the notion of

--less than can be regarded not only as a relation between objects

but also as a relation between weights ,- that is, as a relation

between equivalence classes.

Problem: Discuss several equivalence relations (especially

example 9) and describe the equivalence classes.



1-7. Addition and its Properties

For convenience, we shall deal in this section only with

weights, and leave it to the reader to consider the analogous

situation of lengths. Our purpose is to show that we can combine

weights in such a manner that the usual rules for addition hold.

Consider any two objects A and B, and combine them by lumping

them-together into a single pile. This pile may be viewed as a

new object which we denote by A+B. From the point of view of our

balance, A+B means simply that both A and B are placed together

on the same side of the balance. Since it clearly does not

matter in what order A and' B are placed on the same side of the

balance, there is no way to distinguish between A+B and B+A;

therefore, we must view A+B and B+A as the same object -- that is,

A+B = B+A.

Suppose we now take additional objects A' and B' with A' 1E A

and B' 4 B. Then we may form A' +B' and verify experimentally

that A'+B' = A+B. (Thus we are verifying here the familiar

phrase: adding equals to equals gives equals.) By the definition

of equivalence classes for objects with respect to the relation of

"equal in weight" we know that A'
w
== A means that A'e [A] and

B' = B means that B'e [B] . Our experiment therefore tells us

that if A'E CA] and B'E [BI then A'+B'e [A +B] . This says that we

can define the notion of addition on'the set of all equivalence
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classes -- that is, on the set of weights. More precisely, if

we are given two weights (that is, equivalence classes) [A]

and [B] then we define

Oil [A +B]

This operation seems to depend on the choice of the objects A and

B, but the thrust of our experiment is that this operation of

addition of weights is well-defined -- in other words, if A' and

B' are equal in weight to A and B respectively then A'+B' is

equal in weight to A+B; in symbols, Skl = [A] and [Bi = [B]

together imply [A'+B'i = [ A+B . To put it still another way,

if A' and A belong to the same equivalence class and also B'

and B belong to the same equivalence class then A'+B' and A+B

belong to the same equivalence class. In short, the addition of

weights does not depend on the choice of objects of the given

weights.

This operation of addition provides a crucial step towards

our goal of assigning numbers to abstract properties such as

weights. With this objective in mind we need, first of all, to

observe that the usual rules for addition of numbers are valid

for this operation of addition of weights. We also need to

understand, how this relation of addition interacts with the

relation of inequality (i.e. less than).
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Let us sketch briefly several experiments with weights which

lead to important properties of addition. Having been quite

careful heretofore in distinguishing between an object A and its

weight [A] , we shall now find it convenient to drop this distinc-

tion. This should cause no difficulty, as it should be clear

from the context what is meant.

1) Given three weights A, B, and C we may construct the

weights D = A+B and E = B+C. As indicated earlier, it is

clear that A+B = B+A; that is, of course, known as the

commutative law for addition. We may also show experimentally

that D+C = A+E. This assertion is usually written as

(A+B) + C = A + (B+C)

for all weights A, B, C and is known as the associative law

for addition. Notice that this implies, for example, that

(A+B) + C + F = (A+B) + (C+F) = A + (B + (C+11 , etc...

In short, in order to add several weights it doesn't matter

where the parentheses are placed -- that is, in what order

the additions are performed. Furthermore, the end result is

the same as would be obtained by simply putting all the

weights in the same pan of the balance. Thus, there is no

ambiguity about the meaning of an expression of form

A+B+C+F+G; even more, in virtue of the commutative law, this



is equal to C+G+B+E+A or to any other sum of the same weights

in whatever order.

2) Suppose that A and B are weights with A 4:8 then, as

noted in section 1-6, if A' = A and B' = B we may verify

experimentally that A' 4: B'. It is also equally easy to

check that for any weight C we have A+C <B+C. If, in

-addition,,C < D then it is a consequence of the transitive

law that ;A+c 4:B+D. Of course, this can also be checked

experimentally.

_3) Suppose we have weights A, B, C, D, X, Y with A 4:X <8

and C 4;ir <:1) then it follows from what gone before that

A+C 4:X+Y 4:13+1). In other words, the weight X+Y is boxed

in between A+C and B+D. It should further be noted that

this rule, which applies for lengths also, involves a certain-

loss of information. We may illustrate what is meant by

examining an analogous situation.

Suppose we are dealing with real numbers. As is usually

taught in grade school we say, for example, that x = 5 to the

nearest integer when 41/2 1.x 451/2. Suppose further that

71/2 liy 4:8k, that is, y = 8 to the nearest integer. Therefore,

adding inequalities, we have 12Sx 1-y < 14 and we can no

longer say what x + y is to the nearest integer -- it could

be 12, 13 or 14 depending on appropriate choices for x and y,



just so long as they are within the prescribed bounds. Thus,

the addition of inequalities has involved a loss of information --

that is, when dealing with the notion of "to the nearest integer"

addition is not determined to the nearest integer.

Problems:

1) Discuss the transitive law for weights -- that is, for

equivalence classes -- and its experimental verification.

2) How are the possible experimental errors in this section

related to the desired theoretical statements? What should

children be told about experimental errors?

3) As in example 9 of section 1-6, let S = [0, 11, 172,....)

be the set of all integers, and let R be the relation such

that A R B means that A-B is divisible by 7. Show that R

is an equivalence relation, and describe the equivalence

classes. Define addition on the set of equivalence classes.

Define, if you can, an order (that is, a relation of less

than) on the set of equivalence classes; is it transitive?

does it satisfy the condition that Cal< [B] implies (21-8]<[B+8]

where (21, [B], [8] are equivalence classes? Can you generalize

this entire example?
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1-8. Multiplication by a Positive Integer

For convenience we shall continue to deal with weights, and

to use the symbols A, B,... to denote both an object and its

weight.

From the preceding section, we know how to add weights; thus,

for any weight A we may define 2A = A+A, 3A = A+A+A, and, in

general, for any positive integer n, nA = A+A+....+A, where there

are n copies of A in the sum on the right. Note that for n=1,

the ihrfimdftion says that 1A -- A. This operation, in which we

take a positive integer and a weight and "combine" them to get a

weight may be called "multiplication by a positive integer"; it

will be generalized significantly later.

There are several natural and important properties of this

operation. From the associative law for addition it follows that

if m and n are positive integers and A is an arbitrary weight then

(m+n) A = mA + nA

for instance when m = 2 and n m 3 (2+3) km 2k+3& _

and
(mn) A= m (nk)
so 6k 2, 2(3k)

Note that in the first of these equations the addition on the left

side is for integers, while on the right side it is addition of

weights. In addition it follows from the associative and

commutative laws for addition that if n is any positive integer
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and A and B are arbitrary weights, then

n (A+B) = nA + nB

Let us illustrate the steps of the proof for the case n = 2;

2(A+B) = (A +B) + (A+B) = &+B) + A) + B = (WW.119 + B =

((A +A) + B) + B = (A+A) + (B+B) = 2A + 2B.

Despite the fact that the distributive laws (m+n)A = mA + nA,

and n(A+B) = nA + nB and the "associativity" property (mn)A = m(nA)

are logical consequences of the rules for addition, it is of some

value to verify them experimentally. When this is done, even

with a great deal of care, the experiment may fail -- these laws

are really idealized statements, and they are more than mere

tautologies.

It is clear that m = n implies mA = nA for any A.

Conversely, we observe, that for any A, if mA = nA then m = n.

Of course, this too is an idealized statement; in fact, if A

is sufficiently light our imprecise balance may even be unable

to distinguish between A and 2A -- in other words, the balance

would say, A = 2A. It should also be pointed out that this rule

(i.e. cancellation law) is not obvious to young children. As a

matter of fact, the simpler notion that counting a set of discrete

objects always yields the same number is something of which they

are not certain. This explains, in part, why they will often

count the elements of a set in several ways.
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Finally, we may observe (either experimentally or as a

consequence of properties of addition) that multiplication by a

positive integer preserves the relation of less than -- in other

words, if A 4B then nA <;n3 for any positive n.

Problem: If m 4:n what relation exists between mA and nA ?

Explain.

DiscUss whether this is an experimental fact or a law

of iogic.
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1-9. The Archimedean Principle

Once we have introduced the notion of multiplication by

positive integers we can begin to make some refinements on the

relation of inequality. We have seen that for all positive n,

nA 4:n8 is a consequence of A 4:B and it is instructive to

discover statements relating a multiple of A with some other

multiple of B (that is, comparing nA and mB) that are not

consequences of A <:B. For instance, suppose that A 4:B; we

may then ask, how does 2A compare with B. If B <2A then the

pair of inequalities A <:B 4:2A surely provide more information

than the single relation A <B. If on the other hand 2A < B,

we might then compare 3A and B, and get perhaps 3A. < B -- or

going one step further, perhaps 3A < B 4:4A. The question

we are really considering here is the following: there are two

sets of inequalities B 4:2B <38 <0... and

A <2A 43A < .4.nA <. and our problem is how to interleave

these two sequences -- that is where to place the multiples of

A in the sequence of multiples of B.

In order for this procedure to be effective, we would

certainly want to know that A and B are comparable (in magnitude)--

in other words, that if A< B we do not have all multiples of A

less than B. What we really want then is that, for any A and B

there exists an integer n, which may be very large, such that



nA> B (of course, the roles of A and B here are interchangeable).

When this property does hold, it is known as the Archimedean

Principle.

The Archimedean Principle is easy to verify experimentally

in the case of weights or of lengths. For example, if A is a

drop of water and B is a house then taking enough drops of water

(that is, taking n sufficiently large) we get nA 7 E. On the

other hand, the Archimedean Principle need not hold in all

situations where there is an interplay between addition and in-

equality. Let us give an example.

Consider all possible words that can be formed from the

26 letters of the English alphabet, where by a word we mean any

finite sequence of letters. Thus abcdef is a word, as are cat

and dog. We may then form a nonsense dictionary of all such words,

where the words are placed in lexicographic order -- that is, the

usual dictionary order. This provides us with a notion of less

than; for example as Gaba 4:abcdef 4:cat 4:cow 4:dog 4:teacher

< xerox. Of course, this relation of <is transitive. Now, let

us define addition of words simply as juxtaposition -- for example,

cat + dog = catdog and abcdef + bcxy + adcdefbcxy. In terms of this

addition if a < b then a "plus" c < b "plus" c , that is ac < be .

The reader will notice that if A and B are words with A < B then

< B for all n. Thus, the Archimedean Principle is violated.
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Problem: In formulating the Archimedean Principle it is

important that we keep adding A to itself. If it is

not always the same A that is added, then the principle

need not hold. For instance, for the real numbers we

have Zenos' paradox, which says essentially that if we

add a
1
+a

2
+ a

3
+ + a

n
+ then we may not be

able to add enough terms to get a result exceeding any

fixed b.

a) Can we add enough terms of 1 + 1 + 1 + 1 +
2 4 8

+ 1 + to get an arbitrarily large number?-11

b) Can we add enough terms of 1 -V 1/2 + 1/3 + 1/4 +

+ 1/n + to get an arbitrarily large number.

Problem: In the nonsense dictionary example of a non-archimedian

system the law for addition is not commutative. Thus,

cat + dog = catdog and this is not the same as

dog + cat = dogcat. We can improve on our example to

make it commutative. Do this by considering a dictionary

of complete nonsense where the only words allowed are

in alphabetical order. Thus, cat or dog would not be

allowed but act and dgo would. Now define addition as

justapoiition followed by arranging the new word in
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alphabetical order. Thus

act + dgo = acdgot

Show that all the rules we have described so far are satisfied

except the Archimedean Principle.

Topic for Discussion:

Can you think of human value judgements where the Archimedean

Principle is violated?

For instance compare human life with money: one human life

is worth more than any amount of money.
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1-10. Halving of Objects

In the next section, we shall combine the standard properties

already at our disposal with the Archimedean Law in order to de-

rive and organize more precise information connecting given

Objects A and B than we have been able to get heretofore. To

do this, we need to make one simple and rather natural physical

assumption -- 'given any object A there exists (and presumably,

we can find) an object B such that 2B = A -- or equivalently, we

may write B = IA. If B' is any other object such that 2B' = A

then B' = B.

In this section, we shall discuss some of the elementary

properties of this process of halving. First of all, it should

be noted that the mechanics of carrying out such a division into

two equal parts experimentally can lead to all kinds of technical

difficulties. For example, if object A fs a weight consisting

of a container of water then, even in this simple case, it takes

time (and usually several approximations) to get IA. However,

for lengths as represented by segments there is a well-known

mechanical procedure of dividing a segment in half by use of ruler

and compass. Because of this, our discussion will center on

segments; another possible advantage in dealing with segments is

that visual intuition may be helpful in understanding what is

going on.
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It should be noted that the choice of division by 2 is

little more than a matter of taste and convenience. We could

equally well deal theoretically withthe division of an object

into n equal parts, for any integer n ?J=2. (As shall become clear

later, our usual number system is based on the case n = 10.) Of

course, it is more difficult to divide an object into 3 or more

equal parts than to divide it in half -- so that physical

convenience or efficiency points toward the choice of n = 2. As

our discussion proceeds it will also be seen that the choice of

n = 2 leads to some logical and computational advantages.

Let us turn to some of the consequences of "division by 2".

Suppose we have two objects A and 13, we may take fA, fB and also

f(A +B), and then observe that

i(A+B) = fA + kB

To prove this, it suffices, by the definition of halving, to observe

that 2(iA + B) = IA + B + IA + fB = IA + fA + B + &B = A + B.

Another useful property of halving is that it behaves correctly

for inequalities -- more precisely,

A C B 4===> /A < B

To see this, we note first that if /A <B, then according to the

rules for adding inequalities, A = to + fA <0 + /13 = B. In the

same way, /134=/A implies B < A; and according to the rules for

adding equalities IA = kB implies A = B. Since exactly one of

to <B, to = B, B < IA holds, it follows that A < B=4>IA < IB

thus completing the proof.
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Starting from any segments A we have postulated the exi$tnce.

of a segment kA for which IA + kA = A (that is, 2(A) = A) and noted

how Vh. may be constructed with ruler and compass. (Naturally, it

is implicit here that A is not too big or too small to be handled

with our given ruler and compass.) In general, if n is any in-

teger > 1 and C is a segment such that nC = A then we may intro-

-duce-A new symbol lA for C, and note that n (kJ) = A. Perhaps,

it needs to be emphasized that although we know how to construct

-A with a ruler and compass, for any n > 1, we are not even assuming

at this stage that P. exists; our only assumption is that kA exists.

Now, as observed at the end of section 1-8, A < 2A, and conse-

quently A > kA. If we divide in half again, the result is

C = %(AA); and since 2C = kA and 4C = A we have C = kA -- in

other words, any A can be divided into four equal parts which are

denoted by k(kA) = kA. = 1/2sA , and. such that A > A > 113A.

Dividing by 2 once more, we see that IA = kaA) = k(IsA) = ksA

exists and A > 14 > 12.A> 1/A. This process of halving may be re-

peated; we then have the segments

and

i(frA) = r = 1, 2, 3...

A". iA .... it A7 i-r+i A
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Moreover, according to our basic assumption, this shrinking

sequence of segments never stops -- that is, at any stage, it is

theoretically possible to divide the segment at hand in half. In

practice, of course, the segments we deal with get quite small rather

quickly -- for example, if segment A is one mile long and we divide

in half 15 times, the result is 1.4.A whose length is less than

2 inches. Thus, because our tools are so rough, after a few

divisions the segments become too small for physical manipulation

but the theoretical story continues. In particular, supposing that

we cannot physically construct half of a segment of length *; of an

inch and assuming (as is quite reasonable) that the original

segment A has length 6. one foot, it then takes no more than 8

divisions by 2 to arrive at a break-down situation where we can no

longer divide by 2.

We have already observed that the segments in the sequence

A > kA > aA > "frA > get small very rapidly. It is

also worth noting that they get "arbitrarily small" -- that is,

as small as we like, or as close to 0 as we like. More precisely

the assertion is that given any segment C, there exists an

integer n such that (in)A < C -- so that C > in A 7 mow. A >

The proof of this assertion is not hard. According to the



Archimedean principle there exists an integer n such that

nC >A. But there always exists a power of 2 which is greater

than n in fact, the reader may show, by induction, that 2n ). n.

We have then 2nC: nC >A, from which it follows that IAA< C.

TOPic for DiscUssiOni-

What is Mathematical Induction?

Wbat is the Binomial Formula?

--The reader may show that by either Of the above methods 2n > n
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1-11: Nested Intervals

In this section we fix a segment A and use it as a standard

against which to measure any segment B -- that is, we consider

A as a "unit" of measure. It is left to the reader to convince

himself at every stage that the discussion carries over to weights.

-Given the fixed segment A and any segment B we may compare

them in the usual way by placing them one on the other with one

endpoint in common. For convenience, let us set things up in

such a way that the common end-point is on the left. Along the

line determined by the segment A. we may consider the segments

A < 2A 4:3A < 4A < < .... all of which have a

common end-point on the left. According to the Archimedean

principle there exists a positive integer m such that B <mA

in other words, by adding A to itself enough times we get a

segment bigger than B. Let nA (n an integer) be the last

segment for which nA B -- this implies that the next one

(n+l)A is not B -- so

nA 111E B < (n+l)A (*)

Note that we may well have B < A, so that we must allow the case

n = 0, too; here we write oA 4: B < IA, where oA may be considered

as a formal symbol (with oA 4 any segment, and this implies
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0A 4: any segment) which is introduced in order to permit uniform

notation in (*) for all n!o.

For convenience, when nAtc- B <(n+1)A we shall say that B

falls in the "interval" [nA, (n +l)A) and write B e[nA, (n+l)A).

The distinction between the square bracket on the left and the

ordinary parenthesis on the right serves to indicate that on the

left we have -.5_ and on the right

--The geometric picture corresponding to our situation is

B

nA + A al (n+l)A

and clearly the interval [nA, (n+l)A = nA + A) has the same length

---as the segment A (after all, we add A to nA and get (n+l)A).

What we have really done is to break up the set of all possible

lengths into an infinite collection of disjoint intervals of size A,

and any length then falls in exactly one such interval.

The next step is essentially to cut the interval [nA, (n+l)A)

in half. More precisely, instead of the two segments nA4:(n+1)A we

----consider the three segments nA < nA + A < nA + 2(iA) nA -+ A S. (n+l)A.
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Since nA < B 4: (n+1)A it is clear that exactly one of the

possibilities B < nA + IA or B nA + fA holds; in other words

exactly one of the following situations is valid

nA B < nA + fA or nA, + /A. B < (n+1)A. Note that each of the

intervals [nA, nA + fA), [nA + fA, (n+1)A) has size iA, so that

we have improved our knowledge of the length of segment B in the

sense that we know in which interval of size fA it falls.

In connection with the preceding, we shall also write

nA + IA as (n+f)A; this is the definition of the symbol (n+)A --

-until now this symbol had no meaning. If m is a positive integer

then it is clear that for any positive integer r the meaning of

(19A should be taken as m(frA). Furthermore, expressions like

C+ + m, +...+ m9 should be defined to mean
.21. 2* 23

Is A

mz
A + 11 4' -+ lsA. In order to keep things consistent

2'

it is useful to make some conventions about 0. Thus, we write

nA = nA + oA = (n+10A=[(n+o(MA = nA + o(kA), , a nA

We shall eventually return to a more careful treatment

of 0 -- here we merely comment that 0 behaves as expected.

With our new notation in force, we note that the _nterval

[nA, (n+1)A,) of size A breaks up into two disjoint intervals

[nA, (n+ )A) and [(n+f)A1 (n+l)A) of size iA, :,nd that B falls in

exactly one of these smaller intervals. Suppose, for purposes of



illustration that B falls in the latter interval. The geometric

picture then looks as follows:

OA nA (n +k)A B (n +l)A

1 1 4

wherethe labels of the points signify that they are the endpoints

-of the segments of that size (all starting from the same point).

Now that we have (n +k)A E B <:(n+1)A, the same proredure may

-be repeated. Thus, the interval [(n+f)A, (n+1)A) of size IA, breaks

up into two disjoint intervals [(n+f)A; (n+f+fi)A) and

[(n+f+fe.)A, (n +l)A) of size f4A, and B falls in exactly one of

these intervals. Suppose B falls in the first of these; then the

picture looks as follows:

nA

B

I g-

(m+12.)A (n+f)A (n+f+fa)A (n+1)A

---At this stage, in view of assumptions at each step with regard to

the location of B, we have

nA B < (a+1)A

(ft+1),A 1; B < (n+l)A

(n+)A B < (n+f+fa.)A

By our assumption that every segment can be halved, there exists

a segment krA for every positive r and therefore this process of

refining our knowledge of the location of B continues indefini!zay
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(in theory). At the first step, B falls in an interval of size A;

at the second step, it falls in an interval of size iA; at the

third step, B falls in an interval of size f2A; and clearly, at

the rth step, B falls in an interval of size ir-JA. Thus, B falls

in each of an infinite sequence of nested intervals (meaning that

each interval is contained in the preceding one) -- where the rth

interval has size Since, as seen in the preceding section,

the intervals ir-iA become as small as desired as r increases, it

is clear (intuitively) that there is exactly one "point" that

belongs to all the intervals of the nested sequence -- namely, the

point which represents the end-point of B. In view of this, it

is perfectly natural to say that B is represented by this infinite

sequence of nested intervals or inequalities. Conversely, any

such infinite sequence of nested inequalities or intervals

represents a segment C -- namely, the one whose end-point falls in

all the intervals.

The nested sequence of intervals which we have associated

with a segment B started with an interval of size A. Since what

really matters is that the end-point of B be the unique point

which belongs to all the intervals, it does not really matter which

interval of the nested sequence is taken as the initial one. In other

words, we could throw away the first r intervals of sizes, A, iA,...ir-s
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mud Mart with the _interval of size 4rA -- for. after all, this

still leaves us with an infinite nested sequence of intervals

whose only common point'is the end-point of B. It nay also be

noted that once we have the interval of size krA then the earlier

intervals may be recaptured from it. For example, suppose that at

the sixth approximation we know (17 + ja + 3/4* ke)A < B < (17 + Vs+ 3/44)A

then the intervals preceding this one are:

(17 + + /4)A <B G (17 + I + /)A, (17 + la)A < (17 + z + WA,

(17 + f)IL SB < (17 + )A, 17A.< B-<(17 + 3/4)A (17)A < B < 18k.

One may ask, at this point, what happens if B turns-out

eventually to be the same as the left end-point of one of the

intervals -- for example, if in the preceding B = (17 + fa+ 14+ fs)A2

For us, this is nothing more than an accident which does not affect

the process; that is, the process still continues and still leads

to an infinite nested sequence of intervals which close down on

the end-point of B.

Next, let us consider how the relations or operations between

segments are reflected in their nested sequences of intervals.

Suppose that we have two segments B and C, each expressed in terms

of an infinite sequence of nested intervals in terms of A; from

these intervals we can decide which is bigger. One simply compares

the intervals of corresponding size, and finds the first pair which

are not identical -- the one to the right is associated with the
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--bigger segment. For example, suppose that 17A B <18A,

(17 + B < 18A,....while 17A C <18A, 17A C < (17 + i)A;

clearly, C < B. In this type of situation, it is customary to say

that we have a lexicographic ordering, because it is essentially

like the ordering of words in a dictionary.

What about B + C in terms of the nested intervals? Here one

simply takes intervals of corresponding size and adds their

end-points. Thus., for the preceding example, we get 34A B + C < 36A,

(34 + i)A :CB + C Ac(35 + DA,....The nested intervals here are of

__sizes 2A, A, iA, faA,....and they do have exactly one point in

common -- namely, the end-point of B + C.
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1-12. Dyadic Expansions

In the preceding section we have seen that once a segment A is

fixed then an arbitrary segment B is represented by an infinite se-

quence of nested intervals (or inequalities) of sizes 1 A n = 0,1,2
111

and conversely. Let us consider a specific example and see what the

nested intervals look like. Suppose that we take some segment B and

then define the segment A to be A = 3B; this A is to be our fixed seg-

ment, and we wish to examine the description of B in terms of A (of

course, we are really looking at B = 1 A) as given by nested intervals.

3

Since we wish to work with A and B in concrete fashion they should be

taken, at the start, to be neither too big nor too small. When B is

compared with A experimentally, we find that the first approximation

is

o A 4.-S B < 1A

Now, the procedure for finding the nested intervals associated with B

is perfectly straightforward, and if we work carefully and accurately

it should turn out that -- the second approximation is

oA 5. B <1A
2

while the third approximation is

1 A < B< 1 A
2
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while the fourth approximation is

2
1 A 1

3) A
_2 < B

2 +
22

Continuing, experimentally, in the same way, we find that the fifth

approximation is

(1 + 1
--4/ A B < (12 +

23
)

2 2 2
A

----that-the sixth approximation is

z 2 2

.and the seventh approximation is

(2
+

2 2

1 12 4 + 1 6) A B < (-12 +4 + 1 5) A
2 2

--At this stage, we may well have reached the tolerance limit of our

tools; of course, in theory this_process of approximation continues

ad infinitum.

Our notation is obviously richer -comberdome and it is surely con-

venient to introduce a more condensed notation. Consider the term

+
A+ i ) from the seventh approximation. If we examine the.'"4(24 2'2w

procedure by which this expression arose, it is clear that its meaning

is the same as

+ Otl) + 1(.11-) +
2- k2

+ 1/14) + 045) + 146)1 A2 2-



or with the natural use oL 0, as

[0 + + + 1+ 14, + + _16] A

Thus, it is not surprising that we choose to write this as

[01010101] A

Iwhere, as we shall see later, the vertical stroke plays the same

role as the decimal point in our usual number system. According to

this notation, the seventh approximation looks like

[010 1 0 1 0 1] AS. B < [0 10 1 0 1 1 0] A

and, in particular, B falls in the interval of size /1,1 A whose
kr)

left end-point is [0 10 1 0 1 0 1] A. Note that from this left end

-points all the preceding approximations can be recaptured -- the left

end-points arise by dropping the right most digits from [0 I 0 1 0 1 0 1]

one at a time, and each right hand end-point arises from the corres-

pending left end-point when we make use of the fact that 1 + 1 ,ar 17 7 Tr-142,
More exactly, in our situation we get:

sixth approximation: [0 10

fifth approximation: c0 10

fourth approximation: [o 10

1 0 1 0] A B <[0 I 0 1 0 1 1] A

1 0 1] A B< [0 10 1 1 0] A

1 0] A 13 < [0 10 1 1] A
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third approximation: [a I 0 1] A .5.B G E0 11 0] A

--Second approximation: [o 101 A tc. B < COI 1] A

first approximation: OA <BG1 A.

Let us turn, momentarily, from the specific example B =
3
-1 A

under consideration, to the general case. Here the segment A is

fixed, and B is some fixed, but arbitrary segment. In the first

approximation, we have an integer n 2:0 such that nA:54Bic (n+1) A.

The-process of subdivision, starting with the interval

& A, (n+1) A) , by which we arrive at the infinite sequence of

nested intervals associated with B, yields then in the rth approxi-

-mation an interval of size fr_i A in which B lies and whose left

hand end-point looks like (n a-1 + a-2 + + a-(r-1) )

2 2 2r-.1

A= [a a a a
-1)

:1A where each of a_l , a_2

iseither 0 or 1. The right hand end-point of this interval is

gotten by adding r.1 A to the left end-point. Thus, for example,

if the left end-point is [510 1 0 0 1 1 1 /I A, then the right end-

point is [51 0 1 0 1 0 0 0 01 A since we've added /00000001 to 5/01001111.

of the rth approximation enables

the (r-1)th approximation --

Of course, knowing the left end-point

-us to determine the left end-point of

namely, by simply dropping the an term -- and from it the right

end -point of the (r:Oth approximation; so that from the rth approximation,



or nested interval, we can recapture all the preceding ones. For

example, if as just assumed,

10 1 0 0 1 1 1 1] A B< [51 0 1 0 1 0 0 0 0] A

(this being the 9th approximation) then the 8th approximation is

[50 1 0 0 1 1 1] A 1.; B 4= [5 10 1 0 1 0 0 0] A ,

and going further we get among others the 4th approximation

[51 0 1 01 A S.- B < [5 I 0 1 1: A etc....

Returning then to the arbitrary segment B, the rth approximation (that

is, the rth nested interval) is determined by its left end-point,

which is of form Dal a_1 a2 a(r_i) I A with each a equal 0 or

1. We therefore have an infinite sequence of these end-points. How

are they related? It has already been observed that the (r -1)th end-

point is gotten from the rth by dropping the "digit" a_(r_1) . In the

same way it is clear that if we know the rth end-point, then the next

end-point, that is, the (r+1)th (which is the left end-point of the

the (r+l)th nested interval) arises by adjoining an extra "digit"

(namely, a_r , which is a 0 or a 1) to the representation of the

rth end-point.

From all this, we arrive at an infinite sequence of zeros and

ones, a
--11 a-21

a_31 a_41 , and may introduce the symbol
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[n a a A-1 -2 (*)

where the three dots indicate that the expression goes out to infinity.

In other words, starting from an arbitrary segment Z we are led to

associate with it a symbol of type (*). The purpose or meaning of

this symbol is simply to provide a simple, compact notation that re-

presents the infinite sequence of nested intervals associated with an

arbitrary segment. More precisely, the infinite sequence of nested

____in_tervals associated with B determines the symbol (*). Conversely,

given an expression of form ( *), it determines an infinite sequence of

nested intervals -- namely, the rth flested interval has

[n a_1 ... a_(r_i) I A as its left end-point, and its size is lr_i A.

Since B is the segment whose right end-point is the unique point

which lies in everyone of the infinite sequence of nested intervals

associated with B, we are indeed justified in writing

B = [n I a_i a_3 A

We shall have to learn how to operate with the symbols of form (*).

As a matter of fact, at this stage, for given B we di not know how to

find the associated symbol (which may be referred taus an infinite

dyadic decimal) of form (*). For example, going back to the previous

concrete example B = 1 A , we have seen that the seventh approximation
3

is



[0 1 0 1 0 1 0 11 A 'IS B [0 1 0 1 0 1 1 0] A

Thus, the infinite sequence which gives the dyadic decimal ex-

pression for B starts with 0 10 1 0 1 0 1. If our tools are very

refined, we may be able to get a few more digits,Jout it is obvious

that we cannot get them all in this way. Based on how things have

gone in the first few approximations, one might suspect that for

B = 13A

B= [01 0 1 O1 O1 O1 ] A

where the notation is designed to indicate that the pair 0 i is

repeated an infinite number.of times -- but this is nothing more

than a guess!

Let us now look at another example. Consider D = 1 c --
7

that is, choose any segment D and take C = 7 D. If we follow the

experimental procedure applied before, then the seventh approximation

should turn out to be

[01 0 0 1 0 0 1] C D < [0 1 0 0 1 0 1 01 C

(There is no need, once this is known, to record the first six approxi-

mations.) This leads to a guess that the expansion of D in terms of



C is

[o I o o o o o o ....] c

We shall return to this question later, and decide if this guess is

accurate.

Exercise:

-1) -Determine the approximations up to and including the seventh

order for B = 1
A

. What is your guess as to the expansion_3-

of B with respect to Al

2) Do the same for C = 6 .

5

3) Do the same for D = 43
A

128

We conclude this section with one more example. Consider a seg-

ment A, and construct a right triangle both of whose legs are segments

of length A. Call the hypotenuse B -- we investigate the expansion

of B with respect to A. In virtue of the Pythogorean theorem we

are really trying to express B = j-2- A in terms of A. Working

carefully, we "should" find that the seventh approximation is

[1 1 0 1 1 0 1 0 ] A 5- B < [1 1 0 1 1 o 1 1] A

and maybe even that the eighth approximation is
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[110110101] AtS B 4: [1 10 1 1 0 1 1 0]

Eventually, this will be seen to provide a very good approximation

_ __to the square root of 2.

f



1 - 13. Dyadic Expansion of Integers

In the preceding section, we have seen that an arbitrary length

or segment B can be expressed in terms of a fixed segment A in the

form

B = b
-1

b
-2 A

where n is an integer greater than or equ to 0, and each b for

i = -1, -2, -3, ... is either 0 or 1. Note that this involves a

minute change from the notation used in section 1-12 -- namely, the

use of b's instead of a's. It is more logical that, with A fixed

and B subject to choice, the expression for B in terms of A should

contain b's. In this spirit, for any length C we would write

c = c c c . . .3 A
-1 -2 -3

with m'PO and each c equal to 0 or 1 for i = -1, -2, -3,...

There is a certain awkwardness and lack of symmetry in the

notation for B. On the left side of the vertical stroke we have an

integer 0, and on the right side an infinite sequence of zeros

and ones. Can something be done to make the left side also consist

only of zeros and ones so that both sides of the vertical strokes

are similar objects and can then be treated in unified fashion? Thus,

we really wish to examine the case

B nA = E/ 0 0...0..3 A
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-- that is, where the sequence of nested intervals expressing B in

terms of A all have n A, with n an integer 0, as the left-hand

end-point. We would hope to be able to replace n by a sequence of

0's and l's. In an expression of form b
-1

b_2 b
-3

the meaning of the stuff to the right of the vertical stroke is, of

course,

b + b + + b
-1 -2

7/5
-r

2 2z 2 lr

or, what is the same

-1. -2
b 2 + b 2 + b 2

-3
+ + b 2 +

-1 -2 -3 -r

r

Thus, we may say somewhat carelessly that the stuff to the right of

the vertical stroke represents a "sum of powers of 2" -- namely,

negative ones. We shall try to express n, the stuff to the left of

the vertical stroke, as a sum of powers of 2; if this can be done,

we would expect to use only non-negative powers of 2.

Let us start with some simple concrete examples. Consider

n = 27 and B = 27A =

see that

c *)

27 =

=

27/ 0 0

2
4
+ 2

3
+ 2

1.24 + 1.23

... 0

+ 1

+ 0.22

A.

+ 1.2
1

It is not hard to

+ 1. 2
0
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Thus, we may associate with 27 the "sequence" 11011 determined by

(*), and write

B = 27A = E1011100...0..::7 A

Consider next n = 69 and B = 69A; then it may be observed that

6 2
69 = 2 +2 +1

6 5 4 3 2 1

= 1.2 +0.2 +0+2 +0.2 + 1.2 + 0-2 + 1020

Thus, 1000101 is a sequence of zeros and ones to be associated with

69, and we write

B = 69A ..-- E000101/0...0..2 A

Finally, let us consider n = 84 and B = 84A. Since

we may write

6 4 2
84 = 2 +2 +2

6 5 4 3 2 1 0
= 1.2 + 0.2 + 1.2 + 0.2 + 1.2 +0.2 +0.2

B = 84A = Li010100/0...0.13A

From these examples we may conjecture that if n is a positive

integer and B = . then we can write

( # )
r r-1 1 0

n = b 2 + b . 2 + ... + b 2 + b . 2
r r-1

1 0
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where each b , b b b is 0 or 1, b = 1, and r 3'.0, and
r r-1, 1, 0

express B by the notation

B= nA = b b ...b b j 0...0..3 A
r r -1

The crucial question, therefore, is whether or not any positive

integer n can be expressed in the form ( #) that is as a sum of

powers of 2 -- more precisely, can n be written as a sum of certain

. of the integers 20 = 1, 2
1
= 2, 2

2
= 4, 2

3
= 8, 2

4
= 16, 2

5
= 32,

6 7
2 = 64, 2 = 128,...

Exercise: Can you express each of the following integers as a sum

of powers of 2? -- 78, 99, 129, 150, 250, 437, 500.

By now, the reader is probably convinced that every positive

integer can indeed be written as a sum of powers of 2. Let us try

0
to indicate informally why this appears to be true. Using only 2 =1

1
and 2 =2, we can express 1, 2, 3 (but not 4) in the appropriate form.

2 0 1 2
Thus, if we throw in 2 =4, then using 2 , 2 , 2, we can express

(in addition to 1, 2, 3) 4, 5, 6 and 7 as a sum of powers of 2.

3
Throwthg in 2 =8, we can then express 1 thru 7 and also 8 thru

8 + 7=15 in the desired form. Thus proceeding inductively --

r
given 20, 2

1
, .6.2 2 we can express every integer from 1 to 2

r+1
- 1

as a sum of certain of the preceeding powers of two.

Problem:

Show that 20 + 2
1

+ 2
2

+ 2
3

+ +2r = 21%4'1 - 1
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For a complete discussion of writing a decimal integer as

powers of 2 the reader is directed to Appendix I.

One may now inquire if the base 2 expansion of any integer n

is unique for example the decimal number 179. Of course, the method

of dividing by 2 and using the remainders leads to a single result,

but this does not, in itself guarantee that there cannot exist some,

expression for 179 other than 10110011. To show that the expansion

of an'integer n is unique we suppose that there are two such expansions

and show that they must be identical. Thus suppose that

and also that

n= b b b b = 1
r r-1 0

n = c c c c = 1
s s-1

we must show that r = s and that for i = C, 1, ;.., r c
i
= bi.

The hypotheses say that

r r-1
(#) b2 +b 2 +...+b2+b =c 2 +c 2s-1 +... +c;

r 1 0 s s-1 1 0
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Can it be t43t b 0 c ? If so, then say c 7 b , which means

0 0 0 0

that c = 1 and b 0. But this says that n, as given by the

0 0

left side of 4, is even (becau:' 2 divides the left side) while

n, as given by the right side of chk, is odd (because division by

2 gives a remaindel: of 1) -- a contradiltion. We conclude that we

must have b = c . Consequently, upon subtracting or removing

0 0

b = c from both sides of (A and then div!ding the result by 2,

0 0

we arrive at

b 2
r-1

+ br-
r-2

+ + b 2 + b = c 29-1 + + c 1 +c
r 2 1 s 2 1

=But this is exactly the same set-up as (t., and as was done there

we conclude that b = c . This process may be repeated inductively,
1 1

to get b = c . If the bis are used up first so that b = c ,

i i
0 0

b = c , ...2 b = c then it follows easily that cr+
1
= = c

s
= 0,

1 1

and indeed r = s.

The upshot of this entire discussion is that instead of

expressing an arbitrary segment B in terms of the fixed segment A

in the form B =En/131 b2 .73 A, we may write

B= r; b b / b b

r r-1 0 -I -2 A.7
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where b = 1 and each b is 0 or 1. How are all the b's to be

found? As of now we first locate B in an interval of size A,

B EIFA, (n + 1) A) , -- that is,

nAZ BAC.(n + 1) A

This determines n, and then expressing n in base 2 gives

b , b Furthermore, by repeated halving of the interval
r 0

EnA ,
(n + 1) A) there arises a nested sequence of intervals

described completely by b
-1

, b
-2

, b 4 The approach to the

left side of the vertical stroke differs from the approach to the

right side, but it is important to observe that it need not be

so -- we can treat all the b's, rather than just those on the

right of the vertical stroke, according to the same nested

sequence of intervals procedure that was used before. More

precisely, if BEDA, 1A) then dividing intervals in half in

the usual way we get B b_2 ....In' A. In the general

0 2
case where Bl.trA, consider the lengths A = 2 A, 2A, 2 A = 4A,

23A = 8A, 2 A9 'too these lengths get arbitrarily large,

and there exists a unique integer r>0 such that

B
r
A, 2

r+1
A)

r
The size of this interval in which B falls is 2 A, and we have
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r
2 At--B.c. 2

r+1
A

For this r, we put b = 1. Then halving this interval B falls

r r-1
in exactly one of the intervals of size 2 A

+2r r-1) r r-1
A ,

L(2 +2 ) A, 21-44.

If B falls in the first one, we have b
r1 = 0, if it falls in the

second one, then b = 1. In any case, the canonical method for
r-1

deriving a nested sequence of intervals applies and gives us,

starting from b = 1, all the bs so that
1

11; b b b b .2:7 A
r r-1 0 -1 -2

Of course, b b b still represents the integer n such
r r-1 0

that nAg4-BG(n + 1) A.
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1-14: Computation with Dyadic Ex-ansions

We know that if a segment A is fixed then any segment B can

be expressed in terms of A in the form B =164 where

= b b b lb b
r r-1 0 -1 -2

-- in other words," may be considered as an infinite sequence

of zeros and ones with one "spot" distinguished from all others,

namely, by the vertical stroke. In such a situation one may say

(with some degree of carelessness) that, is the dyadic

expansion of B and that )61? is a "real number". It is time to

learn how to operate and compute with such dyadic expansions, and

of course the derivation of computation rules must arise from the

rules for operating with segments.

Thus, suppose we have another segment C; then C may be

expressed in the form C = tA, where

r= ...c lc c
0 -1 -2

c = 0 or 1

Now, the sum of the two segments B + C = C + B also has an

expression in terms of A -- say B + C agA where



-66-

.. . d d
0/ d-1 -2 --3

Our first objective then is to add/ and r ,

Eb ... bjb b ......] + ilC ...cicc
r -1 -2 s 0 -1 -2

and in this way to find alib For this, it is

convenient and instructive to start working with integers --

explicitly, suppose that ie = rasa. = n are integers, B = mA,

LI
C = nA,fl = m = b ... b 00...0..:17, y = n =

r 0

11:7

...c 6...0..3, so that B + C = (m + n) A and C = in + n =

s 0

fl:

d ... do/0...0....7 . In view of the fact that

t

r r-1

b ...bop ...] represents b 2 + b
r-1

2 + ... + b
1
02 + b

0
r r

and

II
s s-1

IC 0 0 0 Cop ... represents c 2 + c 2 + ... + c 2 + c

8 $ s-1 1 0

with each b , ..., b , c , ..., c being 0 or 1, in order to carry

r 0 s 0
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b +LT
0 0

we need only carry out the addition of their base 2 representations

-- and this is trivial because we know how to add ordinary integers.

Rather than letting ourselves get bogged down in all the verbiage

needed to describe accurately how one adds two integers in their

base 2 representations in general, it is better to turn to a few

examples which will serve to illustrate the points involved.

Consider = m = 27 and a"'= n = 69. We recall that

27 =L11011/0 which reflects the fact that

4 3 2 1
27 1.2 + 1.2 +0.2 + 1.2 + 1

and write all this simply as 11011. In the same way, 69 =

I100010110 = 1000101, which expresses symbolically the

relation

6 5 4 3 2
69 12 +0.2 +0.2 +0.2 +1.2 +0.2 +1

In order to find the sum 11011 + 1000101 we take
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4 2 1 6 4 3 2 1
(1.2 + 1.2 + 0.2 + 1.2 + 1) + (102 + 02

5
+ 02 + 0.2 + 1.2 + 02 + 1)

and according to the usual rules for adding integers this equals

4 3 2 1 0

(*) 1.2
6
+ 0025 + 1/2 + 1+2 102+1/2 + 202

Unfortunately, this expression is not quite in the proper form

of a base .2 expansion -- we must have a sequence of zeros and ones,

but the last coefficient ( the one associated with the 20-term)

here is 2. Of course, it is not hard to adjust (*) to put it in

1

the .correct form= First of all, 2020 = 2.1 = 102 = 1.2 so that

0 2 1 1
the 2.2 term may be replaced by 1.2 , thus giving 1.2 + 112 =

1
202 -- and (*) may then be re-written as

1.26 + 002
5
+ 102

4
+ 11,2

3
+ 102

2
+ 202

1
-s- Cs20

1
But now we have the anaL.gous difficulty with 2.2 ; however, this

2
term may be replaced by 1.2 -- to give

6 5 4 3 2 1 0
1.2 +0.2 + 102 + 102 + 2.2 +0.2 +0.2

r
The method is now clear, if we ever get 2.2 this may be replaced

r+1
by 102 , so that things are "moved" one step to the left. Of



r
course, if a term 302 should

r+1 r
102 + 102 . Continuing in
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arise it needs to be replaced by

this way until all terms have

coefficient either 0 or 1, it is easy to see that the end result

is

6 5 4 3 2 1 0142 + 1.2 +002 +002 +002 +0.2 +0.2

This says that

11011 + 1000101 = 1100000

which, it may be noted, is another way of saying that

27 + 69 = 96.

Exercise: 1) Verify that 11011 + 1010100 = 1101111, and that

this corresponds to 27 + 84 = 111 ( one hundred and eleven).

2) Verify that 1000101 + 1010100 = 10011001 and that

this corresponds to 69 + 84 = 153.

3) Find the following sums and the ordinary integers

to which they correspond

11011 + 10110011 =

1000101 + 10110011 =

1010100 + 10110011 =

10110011 + 10110011 =
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4) Perform the following additions and check the results by

translating everything to ordinary integers:

10110 + 110001 =

11001101 + 100110 =

111111101 + 101101 =

5) Perform the following additions by changing to base 2

adding and then re-writing the result as an ordinary integer:

98 + 47 =.

198 + 943 =

7511 + 5751 =

For those who are experiencing difficulty with the above problems

may we recommend a review of Appendix I and serious study of Appendix II.

We still want to be able to add in the general case, namely,

where each of our dyadic expansions

fe br b ifb
1
b
-2-

and De coic
1

c
--2

is really infinite (this means that an infinite number of Lhe b'-

are 1 and also that an infinite number of the c's are 1). However,

this will be deferred until later. 'M. the other hand, it is clear

that if both dyadic expansions are finite, then exactly the same

principles used in adding dyadic expansions of integers apply.

The only variation is the use of the vertical stroke(in both

directions ) for indexing purposes. Thus, for example, we can add

puoiholinoo ÷E.10040011000



without any difficulty via

1 0 1 1 0

1 1 0 0

1 0 0 0 1 1
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0 I
1

0 1 0 1

0 1 1 0

1 0 1 1

-- so the result is D50ollohlollo .1.1, and we do not find

it necessary to re-interpret the. symbols involved as numbers,

fractions or powers of 2 in order to perform the mechanical act

of computation;

Exercise: a) Perform the indicated additions and translate the

(results to ordinary rational numbers for example, in the

preceding,

L101101/101013 + 11001 0011 = 1000110/ 110113

translates to 45 21/32 + 25 3/16 = 70 27/32)

L im (nog+ Eoonoimoij

Emolilloo3 Eolloolionlog
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b) Perform the following additions of rational mimbers by

finding their dyadic expansions, adding these, and then translating

the result to rational form:

79 19/32 + 85 31/64

157 17/32 + 193 111/128

-1Wving dealt with the addition of dyadic expansions <at

least, in the situation where both expansions aA:,: finite) we

turn to the question of subtraction. More precisely, given

segments B, C expressed in terms of A as B 7/11 A, C .ir A then

B - C = r A

so that for 1b b b X=c ...c
0 -1, 0 -1

we need to learn how to compute/9y, the dyadic expansion

of B - C in terms of A.* Of course, before this can be discussed

it is essential that CI( B, so as a first step we should learn

to recognize which of two dyadic expansions" and/ is the

bigger one. In order to do this, it is convenient to start with

the simple situation where both, and y are integers --

* Point of clarification -- B - C represents the segment we would

"attach" to C so that their combined lengths [c + (B-C)] would be

as long as B
B

C

Whereas B and 21 are binary numbers. B-C
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= =Eb '1.. be jet 1.7 n- cd0

(as a matter of fact, this speCial case in-Audes the necessary

general principles). As some examples, we note that

10:10-1, 100711, 1000.111, 1000071111, ...etc.

-- in fact, according to the way addition works, adding i to the

right side of each of these gives the left side. Therefore, the

inequalities are as stated. Even more, the left side is in each

r
case the expression for 2 (rEt1), so it follows immediately

that the right side is 2r- 1 whose expression is

r r-1 r-2
2 - 1 = 102 + 1o2 +...+ 102 + 1

In other words,

r+1

111...1 = b
r

b
r-1

b is the expansion of
0

2 - 1.

Now, it is clear that 11111...1 (with t l's) is greater than

any finite expansion with the same number of terms (provided, of

course, that at least one of the terms is 0), and by transitivity

we see that 1000...0 (with t 0's) is greater than any expansion

with t terms. It is equally clear that am expression with t + 1

terms starting with a 1 is greater than any expression with t terms.
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This constitutes a large quantity of words for a general principle

which can best be understood from a few examples:

100710, 1010171101, 100017111, 1111171110, 1110W:711011

According to this, if we have two integers expressed dyadically

b b /0 and X" = c c 10 ..j
r r-1 d - s 8-1 0

with both leading terms b and c equal to 1 then
r s

-- in short, if one of two binary expressions for integers

(with both expressions starting with 1) ig longer than the other,

then the corresponding integer is the larger of the two.

It remains to examine the situation where r = s -- that is,

where the two expressions have the same length. In this case,

b = c = 1, and the leading terms of, and T may be ignored --
r r

in other words, it suffices to compare b ... b and c ... c ,
r-1 0 r-1 0

which are of the same length except that the leading terms can

be 0. Thus, if b A c the matter is settled, while if
r-I r-1
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b = c we continue by discarding these terms. In summary,
r-1 r-1

for expansions of equal length, we work from left to right, find

the :.r-t place where the two expressions differ (that is, where

they have different digits) and the one which has a 1 in this

place is bigger than the one that has a 0. Some examples of this

are:

11010 10001 11011 7 11001 11001101011071110011001110

Exercise: Line up the following dyadic expansions of integers

according to size:

101, 1011, 11110001, 1010110, 110, 1101, 1001,

100100, 1101011, 101101, 10110111, 101100.

We can now decide which of two integers in dyadic form is

grzbater (note that we read this off directly from the notation

and do not have to evaluate the symbol as an ordinary integer),

and because of our knowledge of addition the procedure for doing

subtraction is straightforward. Thus, if = 10101 and

111101 then surelyr.7)gandXfi = 101000. The only

surprise or difficulty is perhaps that in "borrowing" one may
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end up doing the real borrowing from far up the line --

for example,

1 0 1 1 0 0 1 0

The reader surely understands how to borrow and subtract,

and long-winded explanations at this point would most likely be

confusing. We shall merely indicate one way in which one might

do subtraction without the mental effort of keeping track of the

borrowings. In the example, and whenever subtraction is to be

performed, we would like to re-write the top number, permitting

digits other than 0, 1, so that the term in each column is

the term in the corresponding column of the bottom number. This

involves, when appropriate, replacing 10 by 02, 100 by 12,

1000 by 112, 10000 by 1112 etc. Thus, in the example, 10110010 =

10000000 + 110010, and the first of the terms on the right equals

1111111 which we have permitLed auraelvec the -c

writing as 1111112. Consequently, since 1111112 + 110010 equals

1221122, and the subtraction
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1 0 1 1 0 0 1 0

1 2 2 1 1 2 2.

1 1 1 0 1 1 1

and the result is obviously 111011.

Exercise: Perform tt:-. following subtractions and interpret them

in terms of ordinary integers:

110 - 101, 10010 - 1111, 1010101 - 1010, 11100100010 - 1101101110.

Once we know how to compare the size of two integers expressed

in dyadic form and how to subtract one from the other, it is easy

to see that some procedures apply for any finite dyadic expansions.

Thus, to compare

'dr b )b b 0 and irlE c lc ...c 0.13
0 -1 -p s 0 -1 -q
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the vertical stroke plays a key role. Clearly, if b b
r 0

c c (these are expansions of integers, and according to the
0

preceding we can decide which is bigger) thetyPe>ir. On the

other hand, if b b = c c (that is, if the left sides
r 0 s 0

of the vertical stroke are identical) then working to the right

of the vertical stroke, from left to right, we locate the first

place where b # c . One of these is 1 ( and the other is 0),
t t

and this determines the bigger of the two dyadic expansions.

As for subtracting, this goes exactly as for integers; for

integers, the vertical stroke is at the right edge for both terms,

while for finite dyadic expressions the vertical strokes must be

lined so, and from this starting place all the columns are then

lined up.

Exercise: Line up all of the following finite dyadic expansions

according to size, and then subtract each from the next largest

one.

E0014110], 1:11011/01017, 1:101h0.11 b101/0110.17,

EL01/103, 1110110/0 , I:114000017. EN/00101T

E00011100017, E1010117, 11.010)101017

Our discussion throughout this section has been rather formal
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and algebraic ( rather than geometric) and in this spirit let us

practice multiplication in simple cases even though a geometric

interpretation is given in the laboratory exercises. Consider two integers

=17) bop n = c c 0 and their dyadic
r

expansions -- then, of course, mn = ( b
r
2 + + b172 + b )

0

(c 2 + + c 2 + c ) and by using the well-known rules for
1 0

computation with integers we can get the right side in form

r+s
d 2 + A- d 2 + d
r+s 1 0

sc that mn = d 0 Let us show how to carry
its 0

out these steps, in practice, using our compact notation by

considering an example. Suppose m =E10110Y0

n 4:110140 .1:7, since 11011 = 10000 + 1000 + 10 + 1 we

have at the start

(101101) x (11011) = (101101) x (10000 + 1000 + 10 + 1)

= (101101) x (10000) + (101101) x (1000) + (101101) x (10)

+ (101101) x (1)
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Therefore, everything boils down to multiplication by numbers of

form 1, 10, 100, 1000, 10000, 100000, ... and then performing

some additions ( and this observation obviously applies whenever

we wish to multiply any two integers). Now multiplication by 1

is trivial; the key is multiplication by 10. Since 10 represents

the integer 2, multiplication of a number by 10 means multiplying

it by 2, which in turn means adding the number to itself. Thus,

(101101) x (10) = 101101 + 101101 = 1011010

We see, from what happens when a dyadic expansion of an integer

is added to itself, that here and in general, multiplication by

10 involves moving everything over one place to the left -- or

more precisely placing a 0 at the end of the dyadic expansion.

Turning to multiplication by 100, we note that 100 = (10) x (10)

(which we may also write as (10)2) so that multiplication by 100

involves multiplying by 10 twice -- it is therefore accomplished

by placing two 0's at the end of the dyadic expansion of the

number we are multiplying. Repeating the process, it follows

that multiplication by 100 ... 0, with r zeros (so this is

(10) x (10) ... x (10) r times -- i. e. (10)7) means multi-

plying by (10) r times, and involves placing r zeros at the end.
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Coming back to our example we see that

(101101) x (11011) = 1011010000 + 101101000 + 1011010 + 101101

and all the work can be coalesced and done directly via the

familiar type of line-up:

1 0 1 1 0 1

_x 1 1 I) 1 1

1

1 0 1

1 0 1 1

1 0 0 1 0

1

0

1

0

1

0 1 1 0 1 (mult. by 1)

1 1 0 1 0 (mult. by 10)

0 1 0 0 0 (mult. by 1000)

1 0 0 0 0 (mult. by 10000)

1 1 1 1 1

Note that we do not even have to do the multiplications from

right to left; any order will do provided the columns are lined

up correctly.

Exercise: a) Perform the following multiplications, and check

them by translating to "ordinary integers".
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(10101) x (110); (1011101) x (11001); (11011011) x (101101111)

b) Verify the distributive law in the following examples,

by performing all the operations with dyadic expansions:

179 (47 + 137) = (179)(47) + (179)(137)

(5311) (2132 + 1897) = (5311) (2122) + (5311)(1897).

Finally, to conclude this section, it remains to examine the

multiplication cf two finite dyadic expansions

boil) b , i'= c c /c c2-s7
-1 -p

0 -1

There are really no new principles involved, one merely keeps

track of the vertical stroke. In particular, here, multiplication

by 10 =1:10/0 .. j requires moving the vertical stroke one place

to the right, and multiplication by 100 = 1:10010 .....7 requires

moving the vertical stroke two places to the right, ...etc... (Note

that this is exactly what was involved when multiplying integers --

for example, (1011) x 100 =i7011100 .27 . 101100/0 ..37

. 101100))
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What about multiplication by170/10 ...],ED/O10 ..g,

Diono .....7, and so on? We know that 1:0/10 ....:7 is the

-1
representation of 1/2 (and we may also write it ar (10) , and it

is obvious that multiplying by requires moving the vertical

stroke one place to the left (after all, when the result of

multiplying by k is then multiplied by 2 = 10 we are back where

we started). Furthermore, to multiply byD/0.17 = 1/22 =

L:6k1K 1:0110.7we must clearly move the vertical stroke two

places to the left, ... and so on.

As-an illustration, consider:

Cl 0 1 1 1 1/0 1 1 0 gx EI 0 0 41 0 1 g ..--

x

10

1 0 1

1

1

0

1

0

0/0

111

1

0

1

1

0

1

1

1

0

0

1

1 (mult. by 10-4)

(mult. by 10
-3

)

-1
(mult. by 10 )

0
(mult. by 1 = 10

3
(mult. by 10 )1

1

10

1 1

0

1

0

1

1

1

0

1

0

1

1

1

011

1.11

110

010

110

1

1

0

1

1

1

0

1

1

0

0

1

0

0

1

0

1

1

1

1

1::1110000011100011111:"

-- we may leave it to the reader to cheek that the above is one

)
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(46 13/32) x (9 11/16) = 449 287/512

Exercise: a) Compute X1.1010111011 L101110111 and check

by transferring to "ordinary" notation.

b) Compute (79 22/32) x ( 58 15/32), and check by

transferring to dyadic notation.

I
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1-15. Computation with InfirlIe2iadic Expansions

If A is a fixed segment then we recall that every segment

B can be expressed in the form B = p.A. where p [1:72, b0 lb1

is an infinite dyadic expression - in other words, in general,

an infinite number of the digits bi are 1. It is with such

objects p that we wish to compute; in the preceding section,

we learned how to compute with certain special kinds of n's,

namely_, the finite ones - that is, those with only a finite

number of digits bi equal to 1, and which could therefore be

expressed using only a finite number of b's. Of course, even

though p has an infinite expansion this does not mean that we

know all the b Is
'
or that we have a rule which enables us to

find every bi. (This is entirely analogous to the fact that

the number n = 3.14159... is an infinite decimal which, with

the advent of computers, we now know up to some 2000 places;

however, the remaining infinite number of digits are not known.)

Thus, it is not surprising that to compute numerically with an

infinite expression a, (all of whose terms may not even be known

to us) we work with finite approximations to 0, and that the geo-

metric aspects play an important role.

Consider two segments B = pA, C = 1;A where p = (br...1:0011).1...]

and If = [cs...colc.i...]. It will be convenient to write
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B =
r
...b

0
1000...]

0

0 = [b ...b lb 000...] = a + b 1
r 0 -1

0 -1 I
= [br...b lb b 000...] = 0 + b = 4, b . 1 + b . 1

2 0 -1 -2 1 -2 2 o -1 2 -2 1-2

St = [br...bolb_lb_2...b_t000...] for t = 0, 1, 2, 3, ...

Thus, pt is the finite dyadic approximation to p gotten by using

all the digits up to and including the tth place to the right

of the vertical stroke, and of course

Pt Pt-1 * bt -"2t

Naturally, the same notation applies to and we have

Irt (ce...colc, c2 0.. ct oo...] t = 0,1,2,3,

We recall further that pA (and IrA too) is really a short-hand

notation for an infinite sequence of nested intervals; in fact,

in virtue of the discussion in sections 1-12 and 1-13 combined

with the notation here, we have B = pA and C = arA given by

the nested sequences:



130A < B A: 00+1)A

< B < (p1+ 1)A

B < (p2+ 122)A

PtA < B < (Pt+ )A2t

V0A < C < ( Ifo+1)A

< C < ( 11+ 2-)A

< C <' ( r2+ 122)A

rtA < < Irt+ 2t)A

These infinite sequences of nested intervals provide complete

descriptions of B and C respectively, and they provide us with

the theoretical tools for discussing computations. The easiest

casewhen the sequence of nested intervals is finite, which

means that p = [br....b0lb/ ....b-p 00...] = Pp-- occurs when

B falls on the left hand end-point of one of the nested inter-

vals; this case was treated in the preceding section, and the

infinite case is handled by making use of finite cases which

approximate it.
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First of all, we may note in passing, how the infinite

dyadic expansions may be used to compare the size of B and C.

If PO ) YO (these are finite dyadic expressions, and we

already know how to compare them) this means that p0A < 13 < (p0+1)A,

Iro A < C ( ( yo.a)A, so that B falls in the interval [130,p0+1)A

which is entirely to the right of the interval [ ire, r0+1) A in

which C fallsconsequently B > C, and we also write p > 2(

On the other hand, if 130 = i0, then we compare pi and Y i;

if pi IA , then as above B > C; and if 133. yi then the

process is repeated with 132 and 12. We proceed therefore

until we arrive at some subscript p where ri), and

this settles the decision for us. Of course, it is clear from

the geometry of nested intervals, that if pi > ri then

Piil. > V Fla? Pi+2 > If i+2' ... and that every subsequent

p1 is greater than the corresponding If The reader should

not lose sight of the fact that all this formal verbiage is

just another way of saying that we compare the digits of 13 and

term by by term (at corresponding places) going from left to right,

and at the first place at which they differ the expression

with the 1 at this place is the bigger of the two expressions.

In particular, one sees immediately that

[1 01101011011 ....] > (3. o 1 1 o 1 0 1 1 0 0 1 ....]

even if we do not know the missing digits.
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We turn to the addition of B is 13A and C in Y A where

p - [ br .. bolka ...] and If it [cs ... col c ...]. The

sum B + C gi pA + If A is a segment which can be expressed in

terms of A, and in keeping with the notation 'hen 13 and y

are integers or have finite dyadic expansions we denote this

segment by (p+3 )A so B + C = (p+ v )A, and we must find

the dyadic expansion of (p+ )j ). For this, it is necessary
. -

to locate an infinite sequence of nested intervals associated

with B + C (as expressed in terms of A); after all, _given such

a sequence of nested intervals, the dyadic expansion associated

with it is precisely what we have denoted by p + V . To carry

this out, we make use of the nested intervals associated with

B and C, which were described above in detail. According to

the rules for adding inequalities, corresponding intervals in

the nested sequences of B and C lead to the inequalities

(p0+ ro)A < B + C < (p0+ 10+2)A

(pl+ (1)A < B + C ( (01+ c+i)A

(Pe r2)A < B +C < (P2+
y

2
1)

.

(4+ rt)A < B 4 C ( tP t+ dt
1
t

IA

+
1 %

(p
t+1

+ V
t+1

)A < 13 + C < (pt+i+ Yt.o. tiA
2
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Note that the intervals in which B + C falls are of sizes

2A

A

1 Ait °I`

Furthermore, because

BO < B
1

< B
2

<
--

A <

<
t

< It <

. . and
t+1

it f011Owe
ft+1 that

B < B 41- < B < < B < B +a-
0 .0 1 1 2 2 t t t+1 t+1

Consequently, in order to show that the intervals associated above

with B + C are nested, it suffices to verify that

(Po+ 10+2) > (Pi+ V1 +1) > (Pt+ It+ 721-) (Pt+1+ rt+3.412t)
2

To accomplish this we note that either pi = po or pi po +
1

(depending on whether the digit after the vertical stroke in p

is a 0 or a 1), so that always pi < po + 2. In the same way,

A 1
B B +1 and, in eeneral,

P2 rl 22 3
<- 2 23 -

Pt41 I Pt + 2t+1

Exactly the same procedure gives

t+i t
2
t+1

t n 0, 1,

t = 0, 1, 2, ...
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We have, therefore,

10 I Pt+i Pt f 2t+1

and adding gives

0 < ;+1 C f-
1
t+1

2

1
0 < 13t + I( t +1 "bPt Irt f. 2

which says that

1

Pt + / t "Pt+i Irt+3. 4.
2
i. ".. °

But we needed to prove that

Pt + 'it +
1
t-1 > Pt+1 +

I(
t+).

1
2t

which is just another way of writing (*).

(*)

All this says that we have a nested sequence of intervals

which locates B + C; in particular, (Pt + rt)A. is the left

hand endpoint of an interval of size (Ii_i)A in which B + C lies --
2

so (pt + Irt)A. gives a very good approximation to (13+ 2r)A = B + C

as t gets bigger.
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To illustrate: if P = [loillonoloi....], i= [110001101110011....]

with the dots signifying that the missing digits are not given

or simply omitted/then

po + = (100011100...( all

pi + Y = [1000111100...(all 0)..]

P2 1r2 = [10001111100....(all 0)..]

p7 +
7

= [1001001001000100...(all 0)...]

Moreover, [1001001001001300,..] A = (p7 (7)A is < B + C,

and is an approximation within (16-6 )A of B + C -that is,

2

within [0100000100....]A. In this case we see, therefore, that

the expansion of B + C starts with the digits [100100100100].

In general, we have no way of writing all the digits in

the expansions of p and ', so that there is no hope of writing

all the digits of p - we must restrict ourselves to finite

approximations (and this is what we always do when measuring in

real life). However, there is one type of situation in which

we have all the digits under control - namely, when the expan-

sion eventually becomes periodic; in other words, the digits

start to repeat themselves after a while, ad infinitum.
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Consider, for example,

p = [1101E1 001 001 ...)

where the notation 001 indicates that the triplet 001 is

repeated over and over) and

[1ololio 010 010 ...]

If we start to compute the approximations at
+

t
to

p9+ 199 , we see that among others

po = [10000loo...]

P3 + 13 = [10000I0110000...]

P6 + Brls = [100001011011]

p9 + tr9=[ i0000lononoil]

Of course, (p9 + 19) A is < B + C = (p + VA and the "error"

is at most 18 A, so the expression for p9 + 1r9 is the

2
"correct" expression for p +ar through 6 digits to the right

of the vertical stroke,
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By repetition of this process, it becomes clear that

p 1r = [100001012. 011 011 ....]

We may leave it to the reader to check, in detail, that

p p (11001513 010 010 ...]

r [10100153 100 100 ...1

Things go smoothly in the preceding examples because the periods

fit perfectly what happens if they do not fit exactly.

For example, suppose

p [o I oni. 0. of ...], 1M [015B 1515 ...1,

then it is fairly straightforward to convince oneself (from

the approximations) that

p + 11 [010S. 101 101 *. el

- perhaps the quickest way to see this is to re-write If in

the form )f = [010 1oo 100 100 ...].
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What about the following situation?

p (0151 ...1 , [01 '372 5.1z ...1

Taking a few approximations we have among others

p2
+ = [1OO]

p5 + = [1100101]

P6 1r6 [11
001011]

P12 l2
[ilooll0000loil]

P18 1(18
[11001100001100001011]

and it is not hard to convince oneself that

p + = [11001100 acTiTia ....]

The period of p +1r is 6, essentially because we may re-write

p [o I Oil/010101...]

to 1 O 110110 .



Appendix I

How can we find the representation of an integer n in

terms of powers of 2 ? Rather than begin this discussion in mathe-

matical terms dealing with the integer n let us attack the problem

from a more experimental nature.

Take a collection of 27 objects of the same type; for

example, cards or pebbles will do. Group these 27 objects into

piles of two elements, thus getting 13 piles of two and 1 element

left over. Now taking the 13 two-element piles, we double these

up, thus getting 6 piles of 4 elements each and one pile with two

elements left over. So far, our 27 elements are distributed among

6 piles of 4 elements each, 1 pile with 2 elements and 1 pile with

1 element. Continuing in the same way, we double up the 6 piles of

4 elements and get 3 piles of 8 elements each. Again doubling up

these 3 piles we arrive at 1 pile of 16 elements and 1 pile of 8.

Obviously, we cannot do any further doubling up, and our set of

27 objects is "broken up" into 1 pile of 16, 1 pile of 8, 1 pile

of 2, and 1 pile of 1. There can be no more concrete realization

of the fact that

27 = 16 +8 f 2 + 1
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This straightforward mechanical procedure of doubling up clearly

works for any positive integer n. It shows not only that n can be

expressed as a sum of non-negative powers of 2, but also produces

such an expression.

Exercise: Use the doubling-up method to express each of the following

integers as a sum of powers of 2 78, 99, 129, 150, 250, 437, 500.

The method described above for finding the expansion of an

integer in powers of 2 is informal, but surely thoroughly convincing.

On the other hand, it requires objects for manipulation, and if n

is large this is a matter of considerable inconvenience. Thus, it

is not unimportant to give a formal, numerical explanation of our

method, which shows how to find the expansion of any n (no matter

how large) with minimal effort.

Consider any positive integer n; then upon division by 2 the

remainder is either 0 or 1 (in fact, the remainder is 0 or 1

according as n is even or odd, respectively). In either case, we

may write

n = 2n +b b = 0 or 1
0 0 0

and b is the remainder upon division by 2. Note that this reflects
0

exactly what was done with the concrete objects -- for example, if



n = 27, the 27 objects break up into n
0

= 13 piles of 2 objects each

and there is b = 1 object left over. Now, we may repeat the process
0

for the positive integer n0

n = 2n +b
0 1 1

b =0 or 1
1

(Note that in the case n = 27 this represents the second step where

the n
0

= 13 piles of 2 elements each with one two-element pile left

over). Substituting this expression for n in the expression for n
0

we have

2
n = 2(2n + b ) + b = n 2 + b 2 + b

o1 1 0 1 1.

Repeating this process, we have

go that

n = 2n + b
1 2 2

n=(2n +b)2 +b2+b
2 2 1 0

2
ag n 2

3
+1).2 +1)82 + b

2 2 1 0

b =0 or 1
2

and eventualiy we can divide no further and arrive at an expression



r
n = b 2 +b 2r-1 + + b 2 + b , br 1,

r r-1 1 0

each b = 0 or 1. This is the canonical expression for n as a
i

sum of powers of 2, and needless to say we abbreviate it by writing

b b b b
r r-1 1 0

This is simply a finite sequence of zeros and ones (starting with

a one, of course) which is a short-hand notation for andand it

is often referred, to as the "base 2" expansion of n.

In order to fix the procedure for finding the base 2 expansion

of n in mind, it is useful to do some examples.

Suppose that n = 84, then

84 = (2) (42) + 0

which means that n = 42, b = 0; the next step gives
0 0

42 = (2) (21) + 0

so that n =-21, b = 0. Continuing this process, we get
1 1

21 = (2) (10) + 1

10 = (2)(5) + 0

5 = (2)(2) + 1

2 = 2 1 + 0



How long does the process continue? Until we get an expression

n = 2n + b with n = 1
r-2 r-1 r-1 r-1

(this must always happen), whereupon we put b = n and then
r r-1

have n as b b b b . Thus, the remainders b , b , b ,

r r-1 1 0 0 1 2

b and the last n = 1 give precisely the digits of the
r-1 r-1

base 2 expansion of n -- going from right to left. In particular,

the base 2 expansion of 84, as read off from the list of remainders

is

1010100

In similar fashion, for n = 179 we have

and, therefore the base

179

89.

44

22-

11

5

2

2

= (2)(89) + 1

= (2)(44) + 1

= (2)(22) + 0

= (2) (11) + 0

= (2)(5) + 1

+ (2)(2) + 1

= (2)(1) + 0

expansion of 179 is precisely 10110011

which is short-hand notation for 179 = 128 + 32 + 16 + 2 + 1



Appendix II

In this section we are interested in developing an economic

method of adding in the base 2. By economic we mean both in notation

and in computation.

As an example let us return to the text for an illustration;

11011 + 1000101

but instead of working horizontally let us work vertically after lining

digits up carefully in columns. Labelling the columns at the top, for

illustrative purposes, we are considering the addition

2
7

2
5

2
3

2
1 0

= 1



Note that this, and everything we do here, is just a short-hand

notation for the things done earlier. Now, replacing the 2 in

the last column (or in any column) by a 1 in the next column to

the left, we can keep re-writing -- and listing the various

intermediate steps until we arrive at the final answer, we have

1 6 522

1

1

1

1

1

1

0

0

0

1

4
2 2

3
2

2

2

1

2
0

1

1

1

1

1

2

0

1

1

1

2

0

0

1

1

2

0

0

0

1

2

0

0

0

0

sl

0

0

0

0

0

Thus, every line equals the preceding one, and the end-result

is indeed 1100000.

In a sense, it is not the label at the top of a column

that matters, but rather the relation between adjacent columns,

and if we can keep the columns lined up accurately then the names

of the columns and the "art-work" may be dispensed with. In this

vein let us do 1011011 + 1001111 -- so



1 0

2 0

1 1 0 1 1

0 1 1 1 1

1 2 1 2 2

Now, there are several 2's to be adjusted, and it is important

to appreciate the fact that these may be treated in any order.

For example,

2 0 1 2 1 2 2

2 0 2 0 1 2 2

2 0 2 0 1 3 0

1 0 0 2 0 l' 3 0

1 0 0 2 0 2 1 0

1 0 1 0 0 2 1 0

= 1 1 0 1 0 0



We conclude, therefore, that

1 0 1 1 0 1 1

1 0 0 1 1 1 1

1 0 1 0 1 0 1 0

Of course, not all the steps need to be written out in detail --

much of the work may be done mentally. In fact, if one proceeds

through the columns in order from right to left, and keeps mental

track of the "carrying" from one column to the next, then it is

possible to write down the answer (term-by-term, and from right

to left) without any intermediate steps. For example,

1 0 1 0 1 0 1 0 1 1 0 1

1 0 0 1 1 0 1 1 1

I 1 0 1 1 0 0 1 0 0

-- in the right column we have 1 + 1 = 2, so we write 0 and"carry"

1 to the next column. In this column, we now have t + 1 = 2, so

we write 0 and carry 1. The third column has then 1 + 1 + 1 = 3 ,

so we write 1 and carry 1; the reader can easily complete the

details.
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1,1

LABORATORY MANUAL FOR CHAPTER I

In this chapter we analyse the notion of measurement. We

do so by performing a series of experiments. The materials con-

sist of :

A simple balance

Assorted vials to hold liquid, beans, etc.

Assorted objects suitable for weighing, such as metal

shavings, dried beans, etc.

Ruler

Compass

Some prepared plasticene sheets.

It is suggested that in the experiments involving the balances,

two or three students work together to speed up the operations.

Be sure, in all weighing experiments using vials, that the

same number of vials appear on both pans of the balance (adding

empty vials if necessary). Otherwise, excess weight of the vials

will render the experiment inaccurate.



3.1 - 1.4. Ineouality

The most primitive notion underlying any situation in

which some kind of measurement plays a role is that of

inequality. An inequality is merely a way of making a comparison

between two objects.

DEFINITION:

Inequality of two objects according to weight. Object A is

put on one side of the balance, and object B is put on the other

side. If the side containing A goes up while the side containing

B goes down, we say that object A is lighter than B and write

AsB. If side A is the one which goes down, we write Bc:A. The

sign is to be read as less than.

A<

Experiment 1

1. Fill two vials with unequal amounts of water. Label the

one with less water A, and the one with the larger amount B.

Compare these two vials on the balance.

2. Fill a third vial with a small amount of metal shavings.

Have the volume of these metal shavings be less than the volume of



water in A. Label this vial C. Compare A with C. Write

down your result using the symbol c. Do the same for B and C.

Retain the two vials A and B for use in the next experiment.

Discussion

Notice that when we compare two objects on the balance, we

are really forgetting about all other relations between them other

than there relative weight. A smaller volume of metal may weigh

more than a larger volume of water. Our comparison introduces a

certain amount of abstraction.

Experiment 2

1. On a balance demonstrate once again that A < B.

2. Now weigh out another vessel of water called C such

that B< C.

2.

BBC

3. What will the balance look like when we put A on one

side and C on the other? Indicate by drawing your
prediction.

4. Check your predicted answer to 3 by comparing A with C.

Discussion

The first fundamental property of our "less than" relation-

ship for weights or lengths is the transitive law. If A is lighter

than B and B is lighter than C, then A is lighter than C; in

symbols, if A< B and B ( C then A (C. This rule, which is

known as the transitive law, is so obvious that we often take it for

granted.
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In the text we point out (by Example) that for other kinds

of comparisons, the transitive law need not hold. The transitive

law for weights is thus really based on a collection of experimen-

tal facts. Whenever anyone has compared the weights of two objects

A and B and found that A iz B, compared B with C and found

that Biz C, then it has always turned out that a direct comparison

of A with C showed that A C. This has happened so consistently

that we believe it to be true in all cases. As with all physical

laws we then use the transitive law as a basis for deduction. If

we are informed that A ic B and B c C, we conclude that A< C

without directly comparing A with C.

Experiment 3

Directions

1. Make an alphabetical list of all students in the class.
2. The first person on the list will weigh out a rather small

weight and mark it A.

3. This first person will pass this weight A to the next person
on the list.

4. The second person should make a weight and mark it B such that
Al:B.

5. Pass this weight B to the third person.
6. The third person will make a weight C such that Bc:C.
7. Continue in this manner until the last person makes a weight.
8. What is the relation between this last weight and weight A?,

weight B?, weight C?

Discussion

We could have predicted the outcomes of this experiment by

repeated application of the transitive law: If A<B and BcC

then AN-C. If C1rD then since ATC and CTD we deduce that A<D,

and so on.

The actual experiment is performed in order to contrast it with

Experiment 7.



TRANSITIVE PROPERTY.

If A, B and C are any three weights the folio-aing
statement is true:

if ACB and BcC then A< C.

1.5 - 1.6 Equality and its Properties

If objects A and B are placed on different sides of a balance

and neither side goes down, that is, if the two sides balance,

then we say that object A is equal in weight to object B. For

simplicity, we then write A=B, although such a notation obviously

leaves much to be desired. Thus A=B does not mean that A is B.

It only means that A and B balance each other on the scale.

A=B
AI 1-BH

In checking for equality be sure to interchanve A with B

and the balance.

To be sure of equality, remove A and B from the balance

and then replace them, (perhaps -n opposite sides). This is to

help avoid the interference from the friction of the balance.

Experiment 4

1. Put some beans in one vial. Mark it A. Fill vial B with

water so that A=B.

Discussion

This experiment shows that (with some difficulty) we can reproduce



any given weight. That is, starting with any object A we can

find another object B that weighs the same.

Experiment 5

1. Pour some water into a vial and mark it C.

2. Fill via' D with metal bolts so that D=C. Can this be

done?

Discussion

An essential property of weight as opposed to number is that it

is not discrete. We may not be able to reproduce a given weight by

a number of multiples of some other weight.

The transitive law for equality

Experiment 6

1. Choose an object A and weigh out a vial B of water equal

in weight to A.

2. Weigh out an object C equal in weight to B.

3. Compare C with A.

Experiment 7 Repeat Experiment 3 for equality. That is,

1. Make a list of the students in the class

2. Let the first person on the list pick an object A, reproduce

an object B equal in weight to A and pass B to the second

person on the list, returning A.

3. The second person then carefully weighs out C equal in

weight to B and passes C to the third person on the list

and returns B.
4. Continue in this way to the last person on the list.

5. What do you expect the relation of the last object and A to be?

6. Compare the last object with A.

Discussion

The first fundamental observation about the relationship of

equality is again the validity of the transitive law. That is,

if A=B and B.--C then A=C. However, in contrast to the transitive



law for inequality, the transitive law for equality is frequently

an idealization from experience rather than something that always

holds true in practice. Thus, if we have objects A, B, C, D, E

with A=B, B=C, C=D and D=E then standard rules of reasoning lead

to the conclusion that A=E. Unfortunately, experiment 7 shows

that in practice this assertion often breaks down. We tend to

think of the transitive law as "logically obvious."

The reason for this apparent contradiction of experience with

the rules of logic is, of course, the inaccuracy of our balance.

There is a certain amount of experimental error involved in each

weighing. Thus although A and B balance on our rough balance, they

are probably not really equal in weight, that is, the use of a more

delicate and accurate balance could show this. Now, such errors

can accumlate sufficiently so that they do indeed show up even on

our rough balance; this is why the experiment led to an unexpected

result. Unfortunate4, this accumulation of error is unavoidable.

If we were to use extremely delicate balances, the same trouble would

arise, because, after all, no balance is truly perfect.

It may be remarked that if Experiment 7 is repeated a number

of times, it will turn out that sometimes the end product is lighter

than A, sometimes it equals A, and sometimes it is heavier than A.

If things work reasonable well, the end product turns out to be

lighter tl,an A or heavier than A with equal frequerey. This indi-

cates that the break-down of the transitive law for equality does

not reflect something that is fundamentally missing from the relation

-- rather, it is due simply to accumulation of experimental error.

The cases in which the end product is equal to A in weight occur



precisely when the various experimental errors cancel each other --

some students may produce weights which are too heavy while others

may produce weights which are too light.

In summary, the transitive law for equality is a rule which

we regard as holding in an ideal situation. According to our

viewpoint, the equality represented by a balance is merely a crLde

approximation to the ideal equality that we would expect to hold for

an ideal balance.

If A weighs the same as B we shall write

w(A) = w(B).

The idea of this notation is that we can replace the relation

between the objects A and B by an assertion concerning an "abstract

property" of A and of B. Instead of saying that A and B balance out

the scale, we say that the "weight of A" equals the "weight of B."

We have attached to each real object A an abstract property, w(A),

which is called its weight. (It is important to observe that w(A)

is not a number). Two objects "have the same weight" if they balance.

The general way in which abstract properties are attached to real

objects is via the notion of equivalence relation. This is discussed

in the text. In terms of the notion of equivalence class, we can

say that the weight of A is the equivalence class to which A belongs.

Experiment 8

1. Choose objects A and B with AC B.

2. Weigh out objects C and D such that w(A)=w(C) and

w(B)=w(D).

3. Compare C with D.



Discussion

The experiment shows that if A< B and w(A)=w(C) and

w(B)=w(D) then C4( D. Thus in the inequality A <B between

two real objects A and B, we could replace A by any other

object of the same weight and replace B by any other object

weighing the same as B and the inequality will still hold. This

shows that we really have an inequality between the weight of A

and the weight of B and we can write

w(A) < w(B) .

This is now an inequality relating the abstract concepts w(A) and

w(B). It says choose any object whose weight is w(A) and you will

find that it weighs less than any object whose weight is w(B).

Of course, the transitive law holds for the notion of inequality

of two weights:

if w(A) < w(B) and w(B) < w(E) then w(A) < w(E).

1.7 Addition and its properties.

Consider any two objects A and B, and combine them by

lumping them together into a single pile. This pile may be viewed

as a new object which we denote by A+B. From the point of view of

our balance, A+B means simply that both A and B are placed

together on the same side of the balance. Since it clearly does not

matter in what order A and B are placed on the same side of the

balance, there is no way to distinguish between A+B and B+A; there-

fore, we must view A+B and B+A as the same object -- that is,

A+B = B+A.



Experiment 9

1. Choose objects A and B. Get objects At and B' such
that w(A')=w(A) and w(B')= w(B).

2. Compare A+B with A' +B' .

Discussion

If w(A)=w(A') and w(B)=w(B?) then w(A+B)=w(A'+B1). This

shows that w(A+B) depends only on w(A) and w(B) and not on the

specific objects A and B. It therefore makes sense to write

w(A)+w(B) where it is understood that we are making the definition

w(A) + w(B) = w(A+B) .

This definition says: we add the weights w(A) and w(B) as follows:

pick any object A of weight w(A) and any object B of weight

w(B) and bring them together to get A+B. Then we define

w(A) + w(B) to be w(A+B). This definition makes sense because of

the outcome of Experiment 9. If we chose same other weight A'

instead of A and some ether weight B' instead of B, then we would

end up with the same weight -- w(A +B)= w(A' +B').

This operation of addition provides a crucial step towards

our goal of assigning numbers to abstract properties such as

weights. With this objective in mind we need, first of all, to

observe that the usual rules for addition of numbers are valid for

this operation of addition of weights. We also need to understand

how this relation of addition interacts with the relation of in-

equality between weights.



Experiment 10

1. Select three objects A, B, and C.

2. Construct an object D such that w(D)=w(A+B).

3. Construct an object E such that w(E)=w(B+C).

4. Compare w(A)+w(E) with w(D)+w(C).

Discussion

Experiment 10-illustrates the associEtive property:

(w(A)+w(B) + w(C) = w(A)+C.T(B)+w(C).

1-8. Multiplication by a positive integer

Warning! Change in convention! From now on we are going

to make a basic change in our convention. We are going to use the

symbol A to denote the weight of an object instead of w(A). We

shall also use the symbol A to denote any object having the weight

w(A). So, we will say "reproduce weight A" instead of using the

more cumbersome (but more precise) language "construct an object A'

such that w(A)=w(A')." We will say "form A+B" when we mean "construct

an object C such that w(C)=w(A+B)." We will tolerate this slight

misuse (or imprecision) of language in order to have a little more

smoothness of expression.

From the preceding section, we know how to add weights; thus,

for any weight A we may define 2A = A+A, 3A = A+A+A, and, in

general, for any positive integer n, nA = A+A+....+A, where there

are n copies of A in the sum on the right. Note that for n=1, the

definition says that lA = A. This operation, in which we take a

positive integer and a weight and "combine" them to get a weight

will be called "multiplication by a positive integer."



Jr. integer times a weight is another weight. This operation

is quite distinct from the product of two integers. (It makes no

sense to multiply two weights nor does it make any sense to say A11)

There are several natural and important properties of this

operation. From the associative law for addition it follows that

if m and n are positive integers and A is an arbitrary weight then

(m+n) A = mA + nA

and

(m) A = m (nA)

Note that in the first of these equations the addition on the left

side is for integers, while on the right side it is addition of

weights. In addition it follows from the associative and

commutative laws for addition that if n is any positive integer,

we can illustrate the first of these equations by the following:

Experiment 11

1. Choose a weight A
2. Form 2A and set it aside
3. Form 3A and set it aside
4. Form 5A (by reproducing A five times).
5. Compare 2A+3A with 5A.

Since 5=2+3 we can rewrite the result of step 5 as 2a+3a=(2+3)A

The equation (m+n)A=mA+nA is called the first distributive law.

The second distributive law.

Experiment 12

1. Select any two random weights, A and B, by pouring two
arbitrary amounts of water into two different cylinders.

2. Using a balance produce the following weights and
designate the weight on the container:

a. A+B
b. Reproduce A+B.
c. 2 x (A+B)
d. 2 x A.
e. 2 x B.



3. Compare on a balance the weight 2 x (A+B) with
the weight 2 A + 2 B.

Discussion

The distributive law says that for any integer n and any

weights A and B, if we form A+B and then multiply by n it is the

same as multiplying A by n and B by n and then adding; symbolically

n (A+B) = nA + nB .

INEQUALITIES

If A and B are weights with A < B and if C is any other weight then

A + C <B + C.

If you like, you can devise and carry out the experiment which

verifies this.

If A < B and C< D then

A +C<B+ C

while

B +C<B+ D

so,by the transitive law

A + C < B + D.

If A < B then (if we let C=A and D=B in the previous inequality)

A +A<B+B

or, in other words

For the same reason

and, in general,

for any positive integer m.

2A < 2i3 .

3A < 3B

mA < mB



If A < B we do not know how 2A compares with B.

Experiment 13

1. Choose a weight A.
2. Demonstrate equality in the balance to get a

number of equal weights.

A

j

LA_

3. Put several copies of A aside for use.
4. Measure out a weight B such that A< B.

5. On the same side as A put on more A's until
B <A+A+A+..+A

B < mA

6. What is the smallest m that works? m =

Discussion

We started with two weights A and B such that A <B.

We found an integer m such that

B <1111A

but such that B is not <(m-1)A . We can say that either

(m-1)A< B

Of (1M-1)A = B

As a shorthand notation, we shall write

(m-1)A S. B



which is to be read as (m-1)A is "less than or equal" to B.

We thus have

(m-1)ALB

and

B < mA .

We shall frequently combine these two inequalities by simply

writing

(m-1)A B < mA .

In other words, we know that B is at least as large as (m-1)A

but definitely smaller than mA.

There is, of course, at most one integer A that works.

This integer m gives us a better idea of how B compares with

A . There is, for example, much more information in the assertion

4A.c_ B<:5A

than in the assertion A < B. Starting with A and B, can we

always find a suitable m ? Is it possible that A is so small

compared to B that no matter how many copies of A we add to

itself we never exceed B ?

Experiment 14

1. This time our A is to be a drop of water measured
from the standard eye-dropper in your kit.

2. Put a weight B on the balance and a container
with one drop on the other side.

A <B A



3. With the eye dropper add enough A's until the
balance looks like fig. Lg (2).

A's

Fig, 4 g (2)

4. How many drops did you need?

The Archimedean principle asserts that given any weights A ao'fl B1 A(B

there always will be some integer m such that

B <:mA .

Experiment 15

1. Choose a weight A and reproduce several copies
of A for use in this and the following experiment.

2. Choose weights B and C significantly different from A

3. Find m such that

mA -CB4((m+1)A (Notice the shift in
notation from the

lasjexperiment. If

B < 5A then
m=4!)

4. Find an integer n such that

nA r,' < 1)A

5. Construct B+C. Find R such that

FA --Ti+C < (R+1)A.



Experiment 16

Use the weight A of vne previous experiment

1. Find a weight E such that

2A < E<3A

2. Find a weight F such that

5A< F < 6A

3. Construct E + F. Find the integer p such that

pAS E + F < (p+1 )A.

P=

Retain A, E and F for the next experiment.

Discussion

If 2A < E and 5A < F then the law of addition of inequalities

tells us that

so, in other words

Similarly

tell us that

So we know, in advance that

2A + 5A < E + F

7A < E + F .

E < 3A and F < 6A

E + F < 3A46A = 9A .

7A < E + F

a n d E + F <9A.

So, in Experiment 16, we could have predicted in advance that

p=7 or p=8. We can't tell, in advance, which of these is correct.

17



But we have made a first step towards relating the addition of

weights to the addition of numbers. The next step is to try to

refine the infr-mation relating B to A by comparing B with

multiples of A. For this we must construct 1A.

Experiment 17

1. Find a weight G such that G+G=A. We call this
weight A.

2. Using the weight E of the last experiment, decide
which of the following assertions is true

2A E < 2A+A-A or

2A4A < 3A

3. Decide which of the following assertions is true

5A F<5A4A or

5A + < 6A

4. From the true assertions in 2 and 3, can you deduce
an assertion relating E+F to A which is more refined
than 7A S E+F < 9A. What is this more refined
assertion?

To continue our analysis, we would want to have lA at our disposal.

We would find it by subdividing -IA into two equal parts.

Since dividing a weight in two is a difficult and tedious process,

we will now switch from our study of weights to a study of length of

line segments. We should bear in mind that the experiments we will

be performing with segments could theoretically be carried out with

weights.

Let UV and XY be two line segments.

-18-
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We compare their lengths as follows: Open the compass so that one

point lies on U and the other lies on V. Place the compass with

this opening with one point at X. If the other point does not

reach as far as Y, we say that UV is shorter than XY and write

lar-V)< 101-11) .

If the other end of the compass fits exactly at Y, we write

l(W) =l() .

We can check that the inequality involving length satisfies the

transitive law. We can also check that the relation

l(N) = l()

is an equivalence relation. We can therefore study the corres-

ponding abstract property known as length. We shall denote

segment lengths by letters a,b,c, etc.

Before proceeding, we recall a number of constructions from

plane geometry.

Basic Geometric Constructions using a compass and an unmarked

straight-edge

Construction No. 1

Reproducing a line segment on the given line.

1. Given segment a. u a V

X.,..mommup
line

2. Put the compass point on the left end-point U of a
and open the compas3 until it spans segment a.

3. Keeping this opening, put the compass point a point X

on the line and strike an arc through the line.
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4. This is reproducing segment a on the line.

Construction No. 2

Bisecting a line segment.

1. Given a line segment a with end points A and B.

2. With A as center and AB as radius construct
a circle.

3. With B as center and BA as radius
construct a circle.

4. Draw a segment using for endpoints
the intersections of the above
constructed circles.

5. This newley constructed segment is
the bisector of AB, and is also
perpendicular to AB.

Construction No. 3

Duplicate an angle

1. Given an angle A and a segment b



I

2. Using A as center strike an arc intersecting with
A at B and C.

3. Maintain same radius and strike an arc with left end-
point (G) of b as center and intersecting b at D.

4. Transfer segment BC to point D such that the arc's inter-
sect at E.

5. Draw GE.

6. X. BAC = EGD

Construction No. 4

Constructing a line parallel to a given line through a point.

1. Given a line l and a point D not on the line.

2. Choose a point C on 1: and draw the line through C and D.

3. Let A and B be points on 11.

4. At D and on the same side of CD as B, construct an angle
CDF congruent to ACD.

5. Draw the line through D and F. This line is parallel to 11.

Construction No. 5

Divide a line segment into n congruent parts.

1. Given segment a to be divided into n con-
n congruent parts. The e dpoi is of segments
a are A and D.

2. From the left endpoint of a draw a line 1

3. On 1
I

lay off n congruent segments,

ACS = C1C2 = C2C3 = = Cn-1 Cn

4. Through D draw the line parallel to 11.

5. On this line, starting from D lay of n
segments congruent to AC . Call D=Dn,

the next point Dn-1 and so on.



6. Join Cn to Dn, Cn-1 to Dn-1, etc.

7. The intersections of these lines with a subdivide a
into n equal parts.

Construction No. 6

Addition of two segments

1. Given two segments a and b.

2. Draw a line 1

3. Reproduce a on 1 as in C iction 1.

4. Starting at right endpoint of a,
reproduce b on 1.

5. Segment (a+b) begins at left endpoint
of a and etis at right endpoint of b.

1.10 - 12 Bisection-of Segments

Let us bisect an arbitrary segment b and designate the length

or each bisected segment as b. Now bisect the resultant segment
2

b and designate its length as 1 (b) = b. Repeat the bisecting for

the segment b and designate its length as b. In general, if this

bisection is repeated n times on the resultant segment the length of th

the final segment will be designated as b .

7n

Thes3 lengths, after the bisection has been repeated twice, can

be represented by means of the following diagram:

.0b Cb + 0.12- +1.12- 12_: .1Z4 Ob + 1.
2

b
+ b

Ob + 1.2 +1

ft

3b1
b 2T

2

or using a notation that is less cumbersome we have

0.00b 0.01b 0.10b

1.b

0.11b 1.00b

After the bisection has been repeated three times the lengths of
the segments may be represented as follows:

22



C.000b 0.00lb 0.010b 0.011b 0.100b 0.101b 0.11Gb 0.1ilb

c

7
In general then, if the bisection has been repeated n times, so

that the length of the segment is b then the binary expansion of
b is represented as 0.000. lb

n digits

The following table shows the representation of the length of
each segment as the number of bisections of segment b increases.

Number of
bisections of
Segment 6

Length of each segment

binary expansion

1

b

2 0.1b
fi

2

1)
.2
2 0.01b

3

b.

..-) 0.00lb

-.4 0.0001b
.

:

.

n-1
0.000...lb
n2rliglts

n

b

2P
0.000.....b

n digits

23



As the number of bisections increase, it follows that the length of
each segment decreases. This is reflected in the binary expansion of tne
segments. Thus

2= 0.1b, t = 0.01b, k = 0.001b, ...
n

=
2 '

2

00...1

n digits

Hence for bisection of segments the larger of two segments is the
segment which possesses a digit 1 in the left-most position.

By referring to the line diagram and the table for tne bisected line
segments upon adding the segment of length b to the segment of length b
we have 23 2''

4.

b

2"'

b

23'

= 0.01b

= 0.01b

b
= 0.1b

2

This may be expressed as 2 xib N 2 x (0.01b) = 0.1b.
k214

In general m x it) \ designates b + b + ...+ (m times) .

l2"9 2° 2" 2

b

4
The following addition of segments are similarly true:

b

7
0.00lb

b
-21 = O.00lb

2

+ b =

2,
0.001b b

--21=
0.010b

1 = 0.010b 3xb

23
22' = 0.011b

From these examples the following addition facts must be true:

0 + 0 = 0
0 + 1 = 1
1 + 0 =1
1 + 1 = 10

b b
Exercise : Find the sum of the two segments p and laf both by means

of the line diagram and by means of adding their binary expansions.

It vas previously shown that 2 x (0.01b) 0.1b. Multiplying by
two, or equivalently doubling the size of the segment, results then in
shifting the radix point one place to the right. Multiplying by four,
that is, multiplying by two twice, results then in shifting the radix
point two places to the right.

Exercise : What is the result of multiplying a binary number by 2
n

?

Now let us examine multiplication more closely for the purpose of
developing a multiplication algorithm. Consider the product 3 x (0.01b)

3 x (0.01b) =

=

=

3 x (0.01b) =

(2+1) x (0.01b)

2 x (0.01b) + 1 x (0.01b)

0.1b + 0.01b
0.11b



true:

This example may be abbreviated by means of the following algorithm:

3 x (0.01b) = .01b

11

.01b

0.1 b

0.11b

For multiplication then the following multiplication facts must be

0 x 0 = 0
Oxl= 0
1 x 0 = 0

1 x 1 = 1

Exercise: Find the product of 5 x 0.00lb both by means of the line
diagram and by means of the multiplication algorithm.

Now consider the addition fact previously established: O.00lb + 0.010b =
0.011b. This addition fact is equivalent, by the definition of subtraction,
to the statement 0.011b - 0.010b = 0.001b, that is the answer to 0.011b -
0.010b is the number which when added to 0.01eb yields 0.011b. Thus:

0.011b
0.01Gb
0.00lb

Exercise: Find the difference of the two segments 0.111b and 0.101b
both by means of the line diagram and by means of subtracting their binary
expansions.

Now consider the multiplication fact previously established:

3 x (0.01b) = 0.11b

3 x (0.01b) = 0.11b is equivalent, by the definition of division, to
the statement 0.11b i- 0.01b is the number of times 0.01b can be subtracted
from 0.11b till 0.b is left. Thus 0.11b :r 0.01b may be obtained as follows:

0.11b 1
0.01b

0.10b 1
0.01b
0.01b 1

0.01b 0
This repeated subtraction approach may be abbreviated by the following

algorithm:

11 = 1(2) + lki) = 3
0.01bF.117b

.10b

.01b

. 01b

Exercise: Find the quotient 0.011b 2.- 0.001b by the process of repeated
subtraction and by the division algorithm.



1.12 Dyadic Expansion of Segments

Experiment 18

In this next series of experiments we are going to investigate

the nature of a real number as a sequence of "nested inequalities."

The method by which this investigation is to be carried out is

to compare an arbitrary segment in terms of a given or chosen segment.

The comparison is to be made using the - dyadic expansions as explained

in the previous pages.

As an aid to your work the following example should be noted.

Given an arbitrary segment a and a unit segment u.

No. 4 is obviously a b?.tter
approximation of a in terms of
our unit u than is No. 1, but
there is still room for improve-
ment if our tools permit us.09U

0.0u < a < 1.0u
0.1u < a < 1.0u
0.10u < a <0.11u
0.101u< a < 0.110u

The illustration at the
right indicates the suc-
cessive steps you will be
taking but of course you
will do this work on one
line.

0.0QU

0.009,2 0.1QpU

Carry out the next two steps.

26
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Experiment 19

Directions

1. Choose a segment equal in length to the width of your
four fingers. Call it a.

2. Construct a unit segment eaual to three times the length
of a. Call it b.

3. Find the binary expansion of a in terms of b.

4. Use the accompanying table as a guide.

0.0b < a < 1.0b
0.0b < a < 0.1b

< a<
< a<
< a<
< a<
< a <

What is the general pattern?

If you do not see the general pattern, then repeat the

experiment with the segment a two or three times as large as the

one you are now using and carry it out to eight or more steps.

Homework assignment

Experiment 19c

Directions

1. Choose two segments c and d such that d = 7c.

2. Find the binary expansion of c in terms of d.

3. It is important, since we want a fair degree of accuracy,
that a rather large segment d should be chosen and that

constructions be as accurate as possible.

4. For convenience and uniformity, use the accompanying table.

0.0d < c < 1.0d
0.0d < c < 0.1d
0.00d<c < 0.01d

< c <
< c <
< c <

< c <

What is the general pattern? What will be the answer if we



can get three more stages of accuracy? Will the procedure ever
terminate whith exact equality?

Experiment 20

Addition of Segments

Directions

1. Choose any fairly large segment u as the unit of
comparison. Keep u for the next few exreriments.

2. Choose segments a and c and then construct a segment
of length (a +c).

3. Find the binary expansions of a and c in terms of u
to five places.

4. Find the binary expansion of (a+c) to five places.

5. Compare the binary expansion of a plus the binary
expansion of c with the binary expansion of (a+c).

Show your computations here.

What are your conclusions?

Experiment 21

Directions

1. Construct an isosceles right triangle with a leg equal to a,
where a is a fairly large segment.

2. Find the binary expansion of the hyrotenuse in terms of
a, to five places.

3. Recall the rule for multiplication of dyadic expansions
(p.90-95) of the text. Multiply the binary expansion
obtained in stage 2 by itself. What is the answer?
What do you think the answer should be if the binary
expansion were carried out to ten places?

28



Suppose that the ex- ansion of segments m, n, p, q and r in terms
of segment a are as follows:

0.100000a < m < 0.100001a

0.011000a < n < 0.011001a

0.101100a < p < 0.101101a

0.010101a< q< 0.010110a

0 . 001010a < r < 0 . 001011a

As these dyadic expansions are represented in terms of the
binary ex ansions of segment a it follows that we can use the

binary ex ansions to compare segments. The larger of two segments

is the segment which pobbesses a digit 1 in the left most position;

if both segments possess a digit 1 in the same left position the same
comparison is made for each digital position to the right until the
two segments possess a different digit.

Exercise: Using the preceding definition order by magnitude
segments m, n, p, q, and r.

Experiement 22

Directions

1. Choose a fairly large segment a to be used as a unit.

2. Construct q = 1 a and r = la.

3 6

3. Find the binary expansion of q and of r to 6 places.

4. Construct cifr and find its binary expansion.

Discussion

Let us see how we could have used the binary expansions of q and
r to predict the expansion of q+r.

Since
0.010101a < q < 0.010110a and

0.001010a < r < 0.001011a

it follows that q + r must be at least as large as the
smallest possible value of q added to the smallest possible

value of r and q + r must be less than a value which

exceeds q added to a value which exceeds r.

29



Expressed symbolically we have

0.010101a q 0.010110a
0.001010a r 0.001011a

0.011111a q+r 0.i00001a

In more detail, the successive dyadic expansions of
segments q and r in terms of segment a are given with the
corresponding results for q+r.

0.0a < q < 0.1a 0.0a < r < 0.1a

0.01a < q < 0.10a 0.00a < r< O.Ola

0.010a < q < O.011a 0.001a < r < 0.010a

0.0101a < q < 0.0110a 0.0010a < r < 0.0011a

0.01010a < q < 0.01011a 0.00101a < r < 0.00110a

0.010101a < q < 0.010110a 0.001010a < r < 0.001011a

. . .

0.0101010...10a q 0.0101010...11 0.00101010...10a r 0.001010...11a

0.0a < q+r < 1.0a

O.Ola < q+r < 0.11a

O.011a < q+r < 0.101a

0.0111a < q+r < 0.10Cla

0.01111a < q+r < 0.10001a

0.011111a < q+r < 0.100001a

.
.

. .

.
.

0.01111...11a < q+r < 0.10000...la



As we steadily improve the accuracy of the dyadic expansion

of q and r , we get better and better estimates on q+r. In

our case we see that the dyadic expansion of q+r should be either

.u1111111... a or .010...0 a and we must agree that these two

expansions represent the same number. See the discussion.

We have seen how the addition of segments corresponds to the

addition of their corresponding dyadic expansions, once we have

chosen a unit: If we start with segments q and r we can find their

dyadic expansions, add these dyadic numbers and construct the

segment corresponding to the sum. The segment we obtain will

be q + r. In this sense we are able to "translate" arithmetic

into geometry and vica versa.



Multiplication of a segment by a real number. We know how

to multiply a segment by an integer. For instance 5a = a + a +

a + a + a. This multiplication by an integer reduces to repeated

addition. We also know how to multiply a segment by 1/2: starting

with segment a we simply bisect it to find a segment 1/2 a such

that 1/2 a + 1/2 a = a. In this way we know the meaning of .001 a

which we obtain by successively bisecting a three times. We

then know the meaning of (101.101) x a for instance. It is ob-

tained as 5 a + 1/2 a + 1/8 a. In this way we know how to multiply

a segment by finite dyadic expansion. We also know how to mul-

tiply a segment by an infinite dyadic expansion: For any dyadic

expansion such as r = 1.011010... (which keeps on going) and any

segment, c, we can construct r c to any desired degree of accuracy.

For instance (taking the above value of r) we know that

1.011010 c S mit' 1.011011 c

and so on. If we have a segment b whose dyadic expansion in terms

of our unit is r, we can also construct the segment rc geometrically

as in the next two experiments.

Experiment 23.

1. Choose a unit, a. OL 6

2. Choose a segment b, and find its dyadic expansion in
terms of a to five pieces. Call r this dyadic expansion
of b. Thus r = (to five places).

3. Choose a segment c.

4. On a line, mark off the segment a and the segment c so
that they have a common left end point. For instance

S
0.



5. Construct a segment equal to b, perpendicular to the line 1,
through the end point of a. Thus

$

6. Draw the line through the other end point of a and of
b. Thus

7. Draw the perpendicular to 1 through c until it meets
this line. Thus

Call the sealent so obtained d.

8. Find the dyadic expansions of c and d in terms of a.
Compare r x (the dyadic expansion of c) with the dyadic
expansion of d.

Discussion. This way of multiplying is the way used frequently

by the Arabs. It has some advantages over direct computation

with all the binary expansions, at least in those cases where the
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binary expansions are rather complicated. We illustrate this

in the next experiment.

Experiment 24. Purpose - - to multiply fix 57

1. In terms of the unit a construct the segments b =
and c = .0a, by drawing the appropriate right triangles.

2. Using the procedure of experiment 23 construct d = c.

3. Find the dyadic qxpansion of d (to five places) and call
it s. Compute s'.

4. Construct f15 a directly via right triangles:

5. Compare TIT a with d.

We can use the geometric construction to illustrate some of

the laws of multiplication:

Experiment 25. (The distributive law)

1. Choose a unit segment a and segment b = ra.

2. Choose segments c and d.

3. Construct c + d = e.
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4. Find rc and rd and re by the method of Experiment 23.

5. Construct rc + rd and compare it with re.

It is perhaps worthwhile now to pause to list some of the proper-

ties and operations we have been studying of lengths and numbers.

A length is not a number. Nevertheless we can add two lengths

to get a third and both the associative and commutative laws hold

for this addition. We can multiply a length by a real number to

get another length. The distributive laws hold for this multipli-

cation. Of course we can also add and multiply numbers to get

other numbers. The various laws are listed in the text.

We have also seen how to assign a number to every length

(and a length to every number) once a unit has been chosen. If

we change the unit, the rule assigning numbers to lengths will

change. Let us illustrate how this change works in a simple case.

Suppose we start with a as a unit and b = 2a. Thus the number

we assign to b (in terms of the unit a) is 2. Suppose we decide

to replace a by a' = 1/3 a. Then b = 2a and a = 3a' so that

b = 6a'. Thu:, the number assigned to b in terms of a' is 6.

Replacing the unit a by the smaller unit a' = 1/3 a has the effect

of multiplying the number assigned to b by 3. We illustrate this

in the next experiment.

Experiment 26. Divide class into six equal groups and call them
A, B, C, D, E, and F. Sections A, B, and C will work
together in the early stages as will sections D, E, and F.

1. Teule A

Draw a unit segment and make two copies of it. Give
one copy to B and one to C.



2. Table B

Construct a segment twice the length of A's segment.

3. Table C

Construct a segment three times A's segment.

4. Table D

Draw a unit segment and make two copies of it. Give
one to E and one to F.

5. Table E

Construct a segment twice the length of D's segment.

6. Table F

Construct a segment three times D!s segment.

7. Each person now makes a copy of the segment assigned to
their work area.

8. Use the segments (m, n, p, q, r) that you were given earlier
and get the dyadic expansion of each of these in terms
of your new segment. To conserve time and energy, each
person could do a different one.

9. Table A

Compare you expansion of m to B's expansion of m

n to B's as

p to B's a'

q to B's i

r to B's at

Is there any generality developing?

10. Table D

Do the same as 9 with table E.

Is there any generality developing?

11. Table A

Compare your expansion of m to C's expansion of m
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Compare your expansion of p to C's expansion of p

q

r

12. Table D

Do the same as 11 with table F.

Is there any generality developing?

q

r

13. Now compare table B with table C and table E with table F.
Can you make any generalization?

14. Compare table A with D

B with E

C with F

Can you generalize?

If not, try to compare the dyadic expansions of the
original segments.

I
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Chapter II

The One Dimensional Vector Space

In Chapter I we studied the number system that enters naturally in the

context of measurement. This was the system of "positive real numbers".

These numbers do not capture all the meanings we like to associate to a

number system. What is missing is a certain symmetry as regards direction.

Let us explain what we mean by several examples. When we talk about

temperature, we usually express how hot or cold it is by stating the

temperature in degrees. We may say that it is 75 degrees or 30 degrees

or 10 degrees below zero and so on. The new point here is that we have

to talk about "degrees below zero". We never have to talk about a "below

zero number of" inches or pounds. If we analyze the situation, we see

that the difference is due, in part, to the fact that our notion of "zero

degrees" is quite arbitrary. When we talk about weight, it is quite clear

to us that an object cannot weigh less than nothing. As to temperature,

we feel that it can get hotter and hotter or colder and colder without end.

We thus pick some arbitrary point and say that we will measure temperature

in both directions from this point. (Actually a deep law of physics says

that it can't keep on getting colder - there is an absolutely coldest point.

Let us pretend ignorance of this law, however.) We sometimes write +75°

for "seventy-five degrees" and -10° for "ten degrees below zero". Notice

that in these expressions we have two symbols in addition to the numeral.

We have which signifies "degrees" and either + or - which tells us
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whether we are "above zero" or "below zero". In this sense, the + or -

are not operation signs, and the more correct usage (as found in more

recent textbooks) would be to use different symbols than the symbols

used for addition and subtraction. No matter how we write it, the

expressions of the form -10 occur in many other places besides temperature.

for instance, we make talk of an altitude of 200 ft. meaning 200 feet above

sea-level and -200 ft. meaning 200 feet below sea level. To say that

my bank balance is +$100 means that the bank owes me 100 dollars, while

to say that my account is -$50 means that I owe the bank $50. Notice that we

can also operate with such expression. To take the last example, let us

count a deposit of $20 as a deposit of +$20, while we write a withdrawal

of $30 as a "deposit" of -$30. Then starting with $100 in the bank and

withdrawing 30 (so we "deposit" -$30) leaves us with $70 in the bank. We

can write this as 100 - 30 = 70 or 100 + (-30) = 70. Similarly, starting

with 10 dollars in the bank and withdrawing 30 leaves us owing the bank

$20, or 10 - 30 = -20.

In this chapter we show how "signed real numbers" enter naturally

into geometry and study these numbers in the geometrical context. As

before, we shall pick a specific geometrical model - this time the study

of translations of the line.
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2-1. Translations on a Line

The object we wish to study are sliding motions of a line. That is, we

are given a line and can slide it along itself (without changing lengths).

We can visualize these motions as on a slide rule, for example. We can

slide the inside of the rule in either direction by any amount. (Let us

imagine the slide extending indefinitely in both directions.) The things

we wish to study are the motions themselves. The first important property

about these sliding motions, or as they are called, translations are that

we can compare two of them to get a third. Slide the rule once, and then

again, the net effect, as far as the change of position is concerned, is

the same as making a single translation. Thus translating by this amount

and direction

moves the line to the right:

I

I

If we then translate by

1 we move the line to

1

1

a



The net effect of the two translations together is the same as a

translation by 3

a

3

1



A

S-

2.2 Directed segments

We want to have some way of labelling and keeping track of our

translations. The translations themselves are rather "abstract" objects.

They are rules, telling us how to move the line or the slide. To have a

more concrete way of dealing with them, we shall proceed as was suggested

by the diagrams in 2-1. We draw a separate line and agree that every

directed segment on this line is to represent a translation in the

following way: A directed segment is just a segment with an arrow drawn

on it so that it has a head and a tail:

A B

(A is the tail and B is the head)

Suppose we start with the directed segment above. Pick any point on

the slide rule.

Mark the point, P, both on the slide and on the base. Now reproduce the

segment AB on the base putting the tail at P. Call the other end point

Q.
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P

Now move the slide so that the point originally over P now lies over Q.

p

We have thus shown how the segment AB prescribes a motion of the

slide. Of course, we must check that the prescription does not depend on

which point P we chose. This must, and can, be checked. If we pick some

other point as our "start" position, we will find that we will have moved

the slide exactly the same way. In fact, it is clear, that the motion of

the slide is determined by the length of the segment AB and the direction

of the arrow. For this reason we shall be more specific and draw all our

segments with a common "tail" point which we shall call '0'. That is, we

draw a fixed line and pick a fixed point (or "origin") on the line.
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Picking any other point, B, on the line determines a segment OB. Thus,

0 6

or

C 0

6

or

0
I

D

O 111

are segments with "tail" '0' and head B, C, or D. Each of the segments

OB or OC or OD determines a motion of the slide.

Once we pick the point B or C or D we have determined the segment

OB or OC or OD. Each of these segments gives us a rule for moving the

slide. In this way, we have associated to each point of the line,

a rule for moving the slide. Conversely, start with any motion of the

slide. Pick a point P on the slide before the motion. Label Q the point

where P ends up after the motion. Then PQ is a segment and we can

find a point E such that OE is equal in length to PQ and points in the

same direction. Then OE determines the motion we started with.
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In this way

The translations of the slide can be represented as points on the

line



2.3 The zero translation

Some special mention should be made of the one special point on our

line, the point '0'. What motion does the point '0' determine? A moment's

reflection shows that "the motion" corresponding to '0' cannot move the slide

at all. In other words, the point '0' corresponds to the "rule of motion"

which says "don't move the slide at all." For convenience, we regard this

rule as also being a "rule of motion" much the same way as we regard zero

as being a number. In fact, we shall call this rule the "zero translation".

Its similarity to the number zero will become even more apparent a little

later on.
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2.4 Addition of vectors

Suppose we are given two translations, vl and v2. We know how to

put them together to get a third. The rule is first apply vl and then

apply v
2.

Remember that v
1
and v

2
are di7ections for moving the slide.

We get a new direction which says "first move according to the rule vl

and then according to the rule v2". This has the effect of moving the

slide and is, in fact, another translation, v3.

We will denote the operation going from the two translations vl

and v
2
to the translation v

3
by the overworked symbol, "+". We will thus

write:

v
3
= v

1
+ v

2

which says,

"the translation v
3
is obtained by just moving according to vl and

then according to v2".

Suppose that we represent the translations vi and v2 as points on

our line JP Thus, for example, suppose that vi and v2

.1)

0

are given as in the diagram.

How do we find v3? Imagine our slide is situated with the point P

directly over '0'. Then the rule "v1" says to move P to vl. Now apply the

rule "v2", picking as our start the point situated over vls The rule "v2"

says to draw a segment with tail vl equal in length to '0'v2

P

14--
0 VI

V
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P

t
0 VI Va

001%/3

I

v,o )4 vA

1

The segment starting at '0' and ending at this new point will correspond

to vi + v2. To repeat, to find vi + v2.on the line we operate as fullows:

Draw a segment equal in length to 'O'v2 whose tail is vl. The other

end point is vi + v2.

Here are some illustrations:

VI 0 V).

Vs
10 7 1 vs

VI ÷ Va
V.
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o v
I < I

V2.
0 VI

4.

and so on.

O vi
1111111111(11

Vi + Va
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2.5 Laws of addition, multiplicacion by positive reals.

Let us examine some of the properties of this composition. Suppose

we start with vl and v2. We can form v
1
+ v2 which says "first do v

1
and then do v

2
" or we can form v

2
+ v

1 which says "first do v
2
and then

do vl." Usually, it matters in which order instructions are performed:

"first put on your shoes and then your socks" ends you up in a different

state of affairs from "first put on your socks and then your shoes." In

the present circumstance it doesn't matter.

v +v=v+ v
1 2 2 1

as must be verified experimentally:

V) 0 V

Vs

Vs

V3 0

V3

..110
V.

V3 V

Thus the "commutative law holds". Also

Cv
1
+ v

2
) + v

3
= v

1
+ Cv

2
+ v

3
).

In fact the left side says first apply vl then v2 and then v3 and so

does the right. In this case the "associative law" is practically a

tautology.

Suppose we start with a translation v . We can form v + v + v
1 1 1
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and we will naturally call this 3v1. Similarly, by bisecting the

segment 'O'v we can find a w such that w + w = v. We will call w =

1/2 v. In this way, we can multiply any translation v by an integer

or a dyadic rational, or, in fact, by any positive real number:

Start with the vector v and the positive real number r. Find

the segment whose length is equal to r x (the length of 'O'v).

Draw the segment of this length with tail '0' and which points in

the same direction as 'O'v. This will be the translation rv.

2.6 Properties of the zero vector

Let us pay some attention to our special translation '0'. The

rule corresponding to '0' is "stay put." If we apply any translation,

v, and then stay put this has the same net effect as applying v. Thus

v + '0' = v.

Thus '0' "acts like zero" as far as "+" is concerned. Since

'0' + '0' = '0' or 2'0' = '0'

and + '0' + '0' = '0' or 3'0' = '0' and so on we have

n x '0' = '0' for any natural number n. Since '0' + '0' = '0' we know

that 1/2 '0' = '0'. Similarly 1/4 '0' = '0' and we make the reasonable

conclusion that r'0' = '0' for any positive number r.

We have one further useful convention: The number '0' x any vector

= '0'. This coincides with our desire that the distributive law hold:

(r + s) v= ry + sv

if s = '0' and r = 1 we wish to have

(1 +'0') v = v + '0'v

and we know that v + '0' = v so we get into no trouble by insisting on

the rule 'O'v = '0'.
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We have now reached the point quite close to that of chapter one.

We can add two translations and we can multiply any translation by a

positive number or by zero, and the usual commutative and associative

laws hold for the addition and the various distributive laws hold for

the multiplication.

2.7 Multiplication by -1

There is one new operation that we can perform on translations:

we can reverse the translation. If a translation carries P into Q we

can consider the new translation which carries Q into P. In terms of

our representation of translations on our line it says take v and

draw the segment of length 'O'v but headed in the opposite direction:

We shall give a name to this operation of reversing v; we shall

call it multiplication by -1. Here -1 is just a symbol whose conven-

ience will become more apparent in a little while. Our notation is

thus

(-1) x v = the "opposite" of v.

I

We shall examine some properties of this "reversal" operation. The first

one that we take note of is

(-1) (v + = (-1) x v + (-1) w.
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This says that if we first add v and w and then reverse the sum we end

up with the same translation as if we had first reversed v and reversed

w and then added. We illustrate:

41C

o v w

I > 1

I I
o v W

0

I
V

0

v +141 )
i

(-0(v< +vv) I

I I i

HIV 0 V w

II

(-Ow (-9 v Zs

0

I

v w

I i
(- I) V 4- (-Oa
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2.8 Negative of a vector

The next observ-Aion about the reversal operation that we wish to

make is perhaps the most obvious one:

v + (-1) v = '0'.

This says that if we first apply v and then apply the reverse of v we

end up back where we started, which is essentially what the reverse of

v means.

Notice that this then implies that for any w we can conclude that

Ow + (-1) v) + v = w

since

(w + (-1)v) = w + ((-1) v + v)

= w + '0'

= w.

Thus w + (-1) v is a translation, which, when v is added to it gives us ,-

back w. This is very analogous to the operation of subtraction and we

are tempted to write w - v instead of w + (-1) v. We shall indeed

write w - v with the understanding that w - v is a shorthand way of

writing w + (-1) v. For the same reason we shall sometimes write -v

as a short way of writing (-1) x v.

2.9 (-1) x (-1) = 1

The next observation about the reversal operation is that reversing

a translation twice ends us back with the translation we started with.

This is clear both from the definition of the operation and from our

geometrical representation.
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1

0 V

(-OA V 0

We write this as

I
0 t-i)g6-000

(-1) x ((-1) x v) = v.

2.10 Multiplication by a negative number

Suppose we take a v and multiply it by 2. Then reverse the answer.

Thus we form (-1) x (2 x v). We know that this is the same as forming

2 x ((-1) x v). We shall introduce some shorthand notation by writing

(-2) x v for (-1) x (2v). In other we are using the symbol -2

to denote the following operation on v: "double v and reverse the

direction." Let us see what the effect of this new notation is. Choose

any v. Then

or

(-2) x v + v = (-1) v + (-1) v + v = (-1) v

(-2)xv+lxv= (-1) x v.
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If we think of the oi:ration sending v into (-2) x v as a kind of

"multiplication by -2" then this last equation says that for any v if

we multiply v by -2 and add the result to what we get by multiplying v

by 1 we end up with the same result as multiplying v by -1. This is

true for any v. Let us consider the symbols -2, 1, -1 etc. in so far

as their effect via multiplication on the v's are concerned. Then we

can shorten the previous equation to

-2 + 1 = -1.

Similarly

- 5 + 3 = -2

-4 + 7 = 3

- 2 + 2 = 0

in the sense that for any v

-5 x v + 3 x v = -2 x v

-4xv+ 7xv= 3 x v

and -2 x v + 2 x v = O.

In other words, we are thinking of the symbols 3, 5, -1, -7 and so on

as rules for operation v's. As such

-5 + 14

means the rule vlAch sends any v into -5v + 14v which happens to be

the same as 9v. Thus -5 + 14 has the same effect: as 9 and we write

-5 + 14 = 9.

Notice that we are already at a double level of abstraction. The

v's stand for rules of how to move the slide. We are now studying the

symbols -5, 4 etc. which change one v to another. Put another way, the
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symbol -5 stands for "a change in the rules." We shall not press this

point because we prefer to visualize the v's as points on the line.

Then -5 is the rule taking any point, v, on the line into -5 v:

<
6V

0

0

The collection of all symbols of the form 1/2, -7, 8, -J3 have

certain rules of combination. We have studied addition.

2.11

Let us now look at multiplication. If we send v into 2v and then

triple the answer we get 6v. In symbols

3 x (2 x v)-= 6 v.

We write this as

3 x 2 = 6.

If we send v into -2v and then triple the answer we get -6v. In symbols

3 x (-2 x v) = -6 x v

3 x -2 = -6.

If we double v and then multiply by -3 we get -6v, that is

-3 x (2 x v) = -6vi

which we srite as

-3 x 2 = -6.

or

Finally if we multiply v by -2 and then by -3 we have reversed direction
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twice and multiplied the length of 'O'v by 6 and so

(-3) x (-2v) = 6v

or

-3 x -2 = 6.

We have thus enlarged our "number system" to include all symbols

of the form r or -s where r and s are positive (or zero) real numbers.

The rules of operation for multiplication are

(-r) x s = r x (-s) = -(r x s)

and (-r) x )-s) = rs

together with the usual distributive (and commutative and associative

laws). The collection of all such members is called the real number

system. Thus -5, la, -,fl", 0, are all real numbers.

2.12 Vector laws

If we are given any translation v and any real number r we can form

the new translation rv. We can also add two translations to get a third.

Let us collect some of the properties satisfied by these operations.

In the following list of properties letters at the end of the alphabet

like v, w, z, will stand for translations and letters at the beginning,

such as a, b, c, will stand for real numbers:

v + w = w + v Commutative Law for
addition of vectors

(v + + z = v + (w + z) Associative Law
for addition of vectors

'0' + v = v Existance of an identity
for addition

a (v + w) = av + aw

(a + b) v = av + by Distributive Laws

(a x b) v = a x (bv).
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lxv= v

-lxv+v= 0

2.13 Coordinates on the line

Suppose we pick a translation u 0 0 and keep it as our "unit".

o LA.
14111111011

We already know from Chapter I that for any v we can find a positive

real number r such that the length of 'O'v is r x (the length of 101u).

If v and u point in the same direction then v = r x u. If v and u

point in opposite directions then v = -r x u. (If v = '0' then v = 'O'u.)

Thus, once we have chosen our unit u every other v on the line is determined

by a real number r. If v = ru and w = su then v + w = (r + s) u and

no addition of the v's will correspond to addition of real numbers.

Similarly for multiplication. In other words:

Once a unit u has been chosen every v on the line is determined

by (and determines) a real number. Addition of the v's corresponds

to addition of the real numbers.

We can thus "parametize the line" by the collection of all real numbers.
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Analytic Geometry of the Plane

In this chapter we are going to extend the ideas of the last

chapter to two dimensions. Our program is to try to express geometrical

facts about the plane in algebraic terms. Again, our primary concern will

be with building up a certain amount of intuition to make the assertions

of linear algebra appear both meaningful and plausible.

The most primitive notion underlying geometry is the idea of trans-

formation. We implicitly think of transformations whenever we are confronted

with symmetry. When we see a circle, we notice that rotating the circle

about its center leaves it unchanged. When we say that a square exhibits

certain symmetries, we mean that there are certain motions of the plane,

such as rotating through 90°about the center or flipping over the diagonals

which again leave the square unchanged. In short, when we speak of the

symmetries of a figure, we mean those transformations we can perform to a

plane which do not change the given figure.

We have been *peaking about transformations. What, in fact, do we

mean by the word transformation? A transformation is simply a rule, T,

which assigns to each point, P, of the plane, another point Tp. (At this

juncture we shall not try to define what we mean by the word "plane," and

the word "point." For the moment we will get along on the reader's intuitive

feelings about these words.) As typical examples of transformations of the

plane we mention the following:

1. Let some point 0 of the plane be fixed. Let Ti denote the

rotation of the plane through a 45 angle about the point O. Thus T10 .0

while if P is some point other than 0, the point Tlp is the same distance



from 0 as P and the angle PO (TIP)

is 45.

2. Let 0 be a fixed point of the plane again, and let

T2 assign to 0 the point 0 and to each point P different from 0 the

point q which lies on the line from 0 through P but is twice the distance

from 0 then P is

0

P
T2P

3: Again, let 0 be a point, let T30=0 and let 13P lie on the

line from 0 through P. But this time let T3P be the point whose distance

to 0 measured in inches is the square of the distance from 0 to P. In

2

symbols T3(PO) = PO

0.
T3 P T3P

T
3
R



A: a fourth example, let us assume that our plane comes

equipped with directions (NESW) and T14 consist of moving one inch to the

east.

T

TLF

R TLR

It is easy to imagine more and more complicated transformations of

the plane. The reader can easily invent some for himself. It is of

interest to see what a transformation does to various figures in the plane.

In the followirg figures we present the result of applying each of the

above transformations to a triangle. What is depicted is the result of

drawing all the points Tp where the p's ire all the points on the triangle.



1

Thus the dark triangle in'the figure is our orXginal triangle. We have
drawn the image of this triangle under each of the transformations T1 ,

T2 and T3 . Notice that while the image.of the triangle under Ti
and T2 are again triangles, the image under T3 is not a triangle.

one inch

-."ti

-

wtl

4

.72



The reader can readily construct or imagine many transformations of

his own. HE will soon be convinced that one can conceive of some pretty

wild and complicated transformations.

What operations can we perform with transformations? The most

obvious operation that springs to mind is that of composition. Let S and

T be two transformations. We can then consider the composite transformation

T,S which says first apply the transformation S and then apply the transfor-

mation T to what results. Thus

701P (T4e2)13

0 P T4P

For instance, let us consider the transformation T4 T1 where Th. and Tl

are the transformations given in the previous examples. Then T4011 says

first rotate the plane by 450 and then shift to the east by one inch.

s-



Notice that T4oT1 is not the same as TioT4 The transformation

i says first move one inch to the east and then rotate about the

point which now occupies the spot 0. To check that these are not the

same thing, let us examine where these transformations move the point 0.

TioT40

T o

Thus(ThoTOC, is the point lying one inch to the right of 0. On the other

hand

(T1cT4) 0 = Ti (T40)

Now T 0 lies one inch to the east of O. The transformation T. will rotate

this by 45 about O. Thus T1,,T40 lies one inch to the northeast of O.

In short, the operation of composition is not commutative in general.

The order in which we compare two transformations matters very much in the

final outcome.

Although the commutative law fails for general transformations the

associative law holds. If R, S, and T are any three transformations then

(ToS)cR and Tr(S011) represent the same transformation. Indeed suppose that



for any point a

Ra = b

while Sb = c.

Then (SoR)a = Sb = c so

To(SoR)a = Tc

while (ToS)bRa = (ToS)b = Tc so that

(ToS) Ra = Tc

also. Thus To(SoR) and (ToS)0R have the same effect when applied to

any point and are thus more identical.

Now the study of all transformations of the plane is a hopelessly

complicated mathematical task. In order to be able to make any progress at

all, we have to focus attention on a collection of transformations which is

manageable from a mathematical point of view. On the other hand, one of our

most fundamental feelings about the plane (or about a blank sheet of paper)

is that all points are "the same," a feeling that the plane is homogeneous.

Thus there should be enough "symmetries of the plane" to carry any point into

any other point. Put another way, our collection of transformations should

contain enough transformations to move any point of the plane into any other

point. We also expect that if two transformations belong to our collection

of transformations so should their composition. Otherwise we may have to

keep adding transformations to cur collection when we compose two transforma-

tions. It can be shown that the collection of transformations having all the

desired properties and which is simplest in many respects is the collection

of all translations.

2. Translations. Intuitively, we can think of a translation of the plane



as a sliding motion of the plane which d r.--)t change th7,±

is, containing no rotation. We can imagine ?erforming a translation of

plane as follows: We can let a sheet of ruled (cross secti-_-n) paper

represent the plane. We place a ruled transparent plastic sheet on the

paper so that the rulings match up horizontal lines lying over horizontal

lines. In this way we can think of the plastic sheet as simply being another

copy of the plane. We now pick up the plastic sheet and place it down in

some other position, being sure that the rulings line up once more. In

this way, we have "moved" the points of the plane from one position to an-

other, preserving distances and not rotating the plane. Such a motion is

called a translation of the plane. Notice that we can carry any point into

any other point by a translation: if we hate two points al and a2 on our paper,

we can put the plastic sheet down in such a way that the point that used to be

over a
1

is now over a
2.

(A convenient way to keep track would be to mark

the point of the plastic sheet that was originally over al with ink, and

now simply place the sheet so that this mai ed point now lies over a2.

Notice that not only can we transform any point of the plane into any

other point via a translation, there is exactly one translation which will

do the job. Given the points al and a2 there is exactly one translation of

the plane carrying al into a2. (This is one of the ways that the collection

consisting of translations alone is a convenient group of transformations to

study. If we would allow rotations, for instance, there would be more than

one way of transforming the plane which carries al into a2.)



Since the pair of points al and a2 determine the translation, we

can use them to provide a geometric representation of the translation.

In order to indicate which point is moved into which we draw a segment

from a
1

to a
2
and put a little arrow on it. Such a segment with an arrow

is called a directed segment.

al

We say that the directed segment ala2 is a representative of the

translation taking al to a2 . Of course, if we started with some other

point bl we would get a different directed segment, b1b2 representing the

same translation. Thus while a directed segment determines a unique trans-

lation, many different directed segments may determine the same translation.

The natural question now arises: when will two directed segments, a1a2 and

b1b2 determine the same translation? The purpose of the first two experiments

of this chapter is to convince ourselves of the following fact:

Two directed segments a1a2 and b1b2 determine the same translation

if and only if all of the following three properties hold:

i) the line through al and a2 is parallel to the line through

b
1
and b

2

9



1

ii) the distance from a
1

to a
2

is equal to the distance

from 131 to b2; i.e. ala2 = 1)0)2 and

iii) the arrows point in the same direction.

We say that the two directed segments ala2 and bib2 are equivalent if

ii, and iii are all true. It is easy to check that we have indeed defined

an equivalence relation on directed segments. (Notice that we can check

properties i, ii, and iii without the use of our plastic sheet, using ruler

and compass alone. Thus our equivalence relation makes sense within the con-

fines of Euclidean geometry. We can reformulate the results of our first two

experiments as saying that a translation corresponds to an equivalence class

of directed segments. An equivalence class of directed segments is called a

-vector. Thus the word vector is synonymous, for all practical purposes with

the word translation.

As usual, special mention must be made of the identity translation. We

can consider the transformation of the plane which simply does not move any

point as a kind of translation. For reasons of convenience we must consider

it in our collection, just as we must count zero as a number. This identity

translation carries any point al into al and so does not determine a segment.

Nevertheless we can think of the pair alai in its own right, and rephrase the

previous equivalence relation to read as follows: Two pairs ala2 and 1)11)2

are equivalent if either a l= a2 and bl = b2 or al 0 a2 and bl b2 in which

case i), ii), and iii) must hold in order for the pairs to be equivalent. Be

it as it may, we have a special kind of vector called the zero vector which



corresponds to the identity transformation of the plane.

Addition of Vectors. Let S and T be two translations. We can consider

their composite transformations ToS. The first thing that we notice is

that ToS is again a translation. The composition of two translations is

again a translation. This is our next experimental fact concerning trans-

lations. (Notice that there was no reason to expect this in advance. Not

all simple looking collections of transformations need be closed under

composition. Thus we may consider the following collection of transformations

of numbers: We admit any rule which assign to each number n the number an + b.

The collection of such transformations is closed under composition: sending n

into an + b and then sending an + b into c(an+b) + d is the same as sending

n into ac n + cb + d and is thus another transformation of the same type.

But if we consider the collection of all transformations which send n into a

number of the form an
2 + bn + c this is not closed under composition. If we

consider a second transformation with coefficients e, f, and g then sending

n
,

into e(an
2 + bn + c)

2
+ f(an

2
+ bn + c) + g is not of the same type since

it involves an expression raising n to the fourth power.)

The next thing to notice is that if S and T are translations, then

T DS = SoT

We verify this fact experimentally in our third experiment. We

choose some point 0 as starting point so that Oa and Ob are directed segments

representing S and T. Now choose a as a starting point for a directed seg-

1/
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ment representing T and choose b as a starting point for a directed

segment representing S. It turns out that the end points of these two directed

segments coincide. In the language of vectors, let v be the vector stanclir;.,

for S and let w be the vector standing for T. Since TvS is again a

translation, it corresponds to a vector which we denote by v -.- w then the

equation SLT = TeS can be written

v + w = w + v

and is known as the commutative law for the addition of vectors. Because of

the diagram representing this law, it sometimes is called the parallelogram

law.

We now know how to add vectors. We shall be making frequent use of the

geometrical representation of the sum of two vectors in what follows. Let

us describe the procedure once again. We first choose an arbitrary point 0

as our origin. Then every vector can be represented by a directed segment

whose starting point is O. If Oa represents v and Ob represents w, we

can find the directed segment representing v + w, and whose starting point is

0 by constructing the segment parallel and equal to Ob with initial point a

(and heading in the same direction as Ob). We could do the construction using

ruler and compass, but it is more convenient to use the plastic sheets.

Since the associative law holds for the composition of any three trans-

formations, it certainly holds for the composition of translations. Thus the

associative law holds for the addition of vectors:

v I . (w + z) = (v + w) + z.

/



following is a diagram illustrating the associative law for the

addition of vectors. Iv
It V

1/P.a
144 41111

IL

a IAA g

In what follows, we shall adopt a convention in drawing the diagrams

which illustrate various algebraic laws concerning vectors: We shall fix

an origin once and for all in our diagrams. We shall use the same letter to

denote the vector and the second end point of the directed segment represent-

ing the vector; thus Oa will be the directed segment representing the

vector a. The origin will be denoted by 0 since 0 represents the zero

vector. In this way, every point in the plane now can also stand for a

vector: a point c stands for the directed segment Oc which in turn is

a representative for tne vector c. The vectot c is another name for the

translation that sends the point 0 into the point c.

Multielication of a vector by a number. Let a be a vector. We can form

the vectors a + a and a + (a + a) and so on. By the associative law,

it doesn't matter how we add various sums of a ,s so that the expression

a + a + a

is unambiguous, and we denote it, as usual, by 3a. It follows from the



associative law that 3a + 2a = 5a, just as we have seen in similar

situations in the preceeding two chapters. We can thus talk of the pro-

duct, na, of a vector by a positive integer, and are able to assert that

the distributive law

(m+n) a = ma + na

holds. By (1/2)a we shall mean the vector which satisfies

(1/2)a + (1/2)a = a.

If a = 0, then (1/2)a = O. If a # 0, we can construct (1/2)a by bisecting

the segment Oa. If we denote midpoint of the segment by c then indeed

c + c = a as can be checked. Similarly we can define the vector ra where

r is any positive real number. We could do all of these things by simply

mimicking the constructions and definitions of Chapter 2. Actually, we can

proceed a little differently. Suppose that a is a non-zero vector. It then

determines a line in the plane. Let us consider this line as a one dimensional

vector space with origin O. Then if r is any real number, the vector ra

makes sense in terms of the one dimensional vector geometry of Chapter 2.

Since ra is a vector lying in a line in our plane, it is a vector in the plane.

We can thus consider ra as a vector in the plane. In short, what we are

doing, is regarding each line through the origin as a one dimensional vector

space.

In any event, we now know how to multiply a vector by any real number.

In particular the vector (-1)a has the property that

(-1)a + a = O.



We shall therefor denote this vector by -a, just as in Chapter 2.

The one new item that has to be checked is the distributive law

for multiplication. If a and b don't lie on the same line, it is no

longer a consequence of previous results that

r(a + b) = ra + rb.

Fortunately this fact is also true and is illustrated by our fifth experi-

ment.

Experiment 6 illustrates a use of the associative law:

We are asked to construct 2a + b where a and b are such that 2a

does not fit on the page. Nevertheless, since 2a + b 6 = a+(a+b) and

both a+b and a do lie on the-page it turns out that we can find 2a + b.

The Axioms. We can now state the properties of addition of vectors in

the plane in the form of a list of axioms. Except that the symbols now

refer to vectors in the plane the axioms are identical with those listed

in Chapter 2.

There is a binary operation called addition which assigns to each

pair of vector u, and v the vector u + v. This binary operation

satisfies the

ASSOCIATIVE LAW u + (v + ) = (u + v) + w for any three vectors u, v, and w

and the

COMMUTATIVE LAW u + v = v + u for any pair of vectors u and v



;IF: EXISTENCE OF ZERO

there is a vector 0 such that 0 v = v fc r

any. v .

fhere is also a binary operation called multiplication between real nu:-..bcrs

and vectors: given any real number r and any vector v we can fcm the

product ry which is another vector. This multiplication satisfies the

FIRST DISTRIBUTIVE LAW FOR ADDITION (r+s)a = ra + sa for any real numbers
r and s and vector v.

and the

SECOND DISTRIBUTIVE LAW FOR ADDITION r(a+b) = ra + rb for any number r

and vectors a and b

as well as

ASSOCIATIVE LAW FOR MULTIPLICATION r(sa) = (rs)a for any two numbers r
and s and any vector v

and

THE REAL NUMBER ZERO TINS ANY VECTOR IS THE VECTOR ZERO.

Strictly speaking we should have a separate symbol for the vector 0

and the number 0 . In practice there should never be any confusion whether

we are talking about a number or a vector. It is therefor simpler to tolerate

some notational ambiguity than to creat a proliferation of symbols.
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:inlear Independence and Spanning. Let a and b be tw: ncn zers ft.cturs

!..nat do nut determine the same line. Let us start to cons,:ruct the ,dict,r,

n.a kn, fol various positive a... negative integer values of r., and :.

We czn construct these points by repeated use of our procedure for

adding vector with our plastic sheets. Experiment number eight suggests

this method of construction. Actually, since we wish to construct many

points of the form ma + nb it is quicker to proceed somewhat differently

as described in experiment number nine. There the suggested procedure is

as follows: Suppose for instance that we wish to construct all points of

the above form where -5 4: m $ 5 and -51E n 15. We first construct

the points a, 2a, 3a, 4a 5a, -a, -2a, -3a, -4a -5a using the

plastic sheet and do the same for the multiples of b. We then construct

the points 5a + b etc. so that we have all points from 5a - Sb to 5a + 5b.

Similarly we construct the points a + 5b, 2a + 5b etc. until we have

constructed all the points from -5a + Sb to 5a + Sb. We then draw the

line from -5a + Sb through -5a, the line from -4a + Sb through -4a and so

on until we reach the line from 5a + Sb through 5a. All of these lines are

parallel. There are eleven in all. Similarly, we draw the lines from

5a i- Sb to Sb, from 5a + 4b to 4b etc., eleven lines all parallel in the

direction of a. At the points of intersection we have the various vectors



of the desired form.

The collection of all the vectors of the form ma + nb where r an:

n are integers is known as the integral lattice generated by he vectors

a and b . It is called a lattice because it looks like lattice won:. It

is apparent from the picture involved in our construction that we have --ver-

ed the whole plane with parallelograms whose corners are at the points ma nb.

Every point in the plane lies exactly in one parallelogram, unless it happens

to lie on a boundary - a side or a corner of a parallelogram. In this latter

case it is ambiguous, which of the two or four parallelograms we should

assign to it. This is a problem similar to the problem we encountered in

Chapter I.

We shall solve this problem by making a convention analogous to the

convention of Chapter I. Let us consider the parallelogram with vericies

0, a, b, and a + b. Let us agree that the point 0 and all the points on the

segments join 0 to a and to b belong to the parallelogram, except for

the points a and b themselves. Thus in the diagram, the darkened por-

tion of the boundary belongs to the parallelogram.

It is clear that this convention for one parallelogram then determines

what to do for each parallelogram. Each parallelogram now contains, along



with its interior,one vertex and two sides. With this convention, each

point of the plane now belongs to exactly one parallelogram.

In analogy with our procedure of Chapter I, let us agree to label cach

parallelogram by the pair of integers describing the vertex it contains.

Thus the parallelogram containing the vector 3a 2b will be labelled (3,2).

Now let us construct the vectors (1/2)a and (1/2)b. We can now construct

the integral lattice on these vectors or what amounts to the same thing,

construct all points in the plane of the form (m/2)a + (n/2)b. See experiment

#10 If we draw the corresponding parallelograms, we see that we have, in

effect,divided each of our previous parallelograms in quarters. Again, with

the same convention as before, each point of the plane now belongs to exactly

one of these smaller parallelograms.

We can continue the process in complete analogy to the procedure in

Chapters I and II. In this way we will assign to each point, c, of the plane,

a pair of real numbers (r,$). These numbers are called the coordinates of c

//



relative tc the basis consisting of the vectors a and b. We can check that

c = ra + sb.

This last equation suggests an alternate way of obtaining the numbers

r and s from the vector c: Through the point c draw the lines parallel

to the lines determined by the vectors a and b. On each of the lines through

a and b, mark off the points of intersection with these parallel lines

through c. The point of intersection with the line through a is a point

lying on the line through a.

We have already remarked that we can consider this line as a one

dimensional vector space in its own right. Thus, by the results of Chapter

II, we know that this point can be expressed as some multiple of a by a

real number. We soon enough discover that this multiple is r. Similarly,

the point of intersection lying on the line through b is exactly sb.

We thus have two procedures (which give the same answer) which assign

a pair of real numbers to each vector in the plane. Conversely, given the

pair of real r and s we can construct the vector ra + sb. Thus, once a choice

of a and b is made, every point in the plane corresponds to exactly one pair

of real numbers and conversely.

Notice that the whole procedure depends on the assumption that the

vectors a and b do not lie on the same line. If a and b do lie on

a line, then all the vectors ra + sb will also lie on this line and thus cannot

span the whole plane. We include some pictures of what happens when a and b

-2_ 6



iet close- and closer to being collinnear. Notice that so long az they

din't actullly lie on one line, the vectors ra + sb fill up the ::'..,1e -'.-

Eut n,)'-ice alsc, that as a and b get closer to being collinear, nt:

actual values needed of r and s needed to describe a given point_ c in

the plane get larer and larger. As we move b more and more into c. 1Lnc

with a the lattice points ma + nb seem to fold up like a folding gate.

Experiments 9-12 are concerned with developing some experience with

the introduction of coordinates in the plane.

Affine Transformations. We know that the coordinates we introduce in the

plane depend on the choice of the basis vectors a and b. In the next

sequence of experiments, we wish to investigate the outcome of the following

operations: Several different choices of basis vectors are made. For the

sake of discussion, suppose that on one plane we choose a pair of basis

vectors a and b and a second plane we choose some other basis vectors a'

and b' .

Now suppose we draw a figure in the a,b plane. Each point on our

figure has certain coordinates. On the a',131 plane, let us draw the points with

the corresponding coordinates. In the following sequence of figures, we ex-

hibit the result of performing this with a circle in the a,b plane. The se-

quence of diagrams shows the result of plotting a few, then several more points

in the a',131 plane corresponding to various points on the circle of the a,b,plane.

It should be noticed that not only is there a change in the overall scale, there

is also a distortion: the image of the circle is definitely not a circle. ( It

turns out, as we shall see later in the chapter, that the image is an ellipse.)



We starttrith the figure consisting of a circle in the alb plane.

m."111.011,0 .1IWN.M
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Here is the circle in the sob pl e again. This time the have drawn the lim:s
of the lattice on (1/4)a _and (1/4) and have marked the points of intercecijo,
of the circle with these lines.
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The purpose of experiments 13 and 14 is to demonstrate the that

despite the distortion involved in the transferring process from the

a,b plane to the a'b' plane, any straight line in the a,b plane is carried

over into a straight line in the a'b' plane. (Also, a parallelogram in

the a,b plane is carried over into a parallelogram in the a',b' plane.)

We can say that our procedure, which assigns to each point in the

a,b plane, a point in the agib' plane is a transformation from the a,b

plane into the a',b' plane. A transformation from one plane to another

which carries lines into lines is called an affine transformation. Our

experiments show that the transformations we have been studying are affine

transformations. A theorem in geometry asserts that the most general affine

transformation is obtained by the procedure that we have just described. Let

us be more explicit about what this theorem asserts. It says the following:

Suppose that T is a one to one transformation of the plane into itself (or

on one plane into another). Suppose that T has the property that the image

under T of any straight line is again a straight line. Choose three points

0, a and b and let

01 = TO, a' = Ta and b' = Tb

If we now apply the above procedure to the vectors Oa and Ob (with

choice of origin 0) and to 0' and the vectors Wa' and O'b' in the second

plane we come up with exactly the transformation T. In this way, our

mapping procedure using coordinates constructs the most general affine transforma-

tion.



Let us try to see why this theorem should be true. We are start-

ing with a transformation T. All we know about T is that it carries

lines into lines and that it doesn't carry two distinct points into the

same point. Let fl and f2 be two parallel lines in the a,b plane.

Then Tfl and Tf2 must also be parallel lines. They are lines because T

carries lines into lines. They are parallel, for if they have a point of

intersection, this point would be the image of two distinct points since

f
1
and f

2
are parallel. Now let us choose our origin 0 and the two

basis vectors Oa and Ob, and define the points 0', a', and b' as we indi-

cated above. Since T carries parallel lines into parallel lines, T will

carry the parallelogram spanned by 0, a, b, and a + b into the vertices

of a parallelogram. But the fourth vertex of the parallelogram spanned by

0',a' and b' is the point a' + b' (when our origin is 0'). Thus, if we

take 0 as origin in the first plane and 0' as the origin in the second,

and using these origins, identify points with vectors, we see that

T(a+b) = Ta + Tb.

But then this same argument shows that T(ma +nb) = mTa + nTb, for all

integers m and n. The previous argument may be applied to any pair of

vectors, so long as they don't lie on the same line. We can thus apply

1 and 1

this result to the vectors 27T-

. to conclude that

T(ra + sb) = ra' + sb'

for all dyadic rationals. From this it will follow that the Ammo equation

holds for all r and s.



But this last equation says that the transformation is of the type we

described above: a point whose coordinates are (r,$) in the first plane

is carried over into a point with the same coordinates in the second

plane.

Affine geometry is the study of those properties of figures in the

plane which are invariant under arbitrary affine transformations. Th'3,

for example, to say that a quadrilateral is a parallelogram makes sense

in affine geometry, since applying an affine transformation to a

parallelogram yields another transformation. On the other hand. to say

that a quadrilateral is a square makes no sense in affine geometry, be-

cause applying an affine transformation we can change a square into an

arbitrary parallelogram. Similarly, it makes no sense in affine geometry

to say that a figure is a circle, since an affine transformation will, in

general covert a circle into an ellipse. (If we consider a circle as a

special kind of ellipse, one whose axes are equal, then it makes sense in

affine geometry to say that a figure is an ellipse. This is because the

most general affine transformation will carry an ellipse into another

ellipse . This fact is not obvious and needs to be proved).

Linear Transformations. In order to be able to study the transformations of

the last section a little more closely, it is convenient to consider those

affine transformations of a plane into itself which keep the origin fixed.

Keeping the origin fixed is a minor restriction, because once we are in the



:ame plane, we can always shift the origin back via a translation. An

iffilo ..:Lnsformation of the plane into itself, keeping the -riL:

is crllec! a linear transformation. The rest of this chapter will be

devoted to the stay o linear transformations of the plane.

Let T be a linear transformation. Let a and b be vectors

in the plane. By the results of the 1 section, we know that

T(ra+so) = rTa + sTb.

Thus, if we know the image of a and of b under the linear transformition

T, we know the image of any point in the plane. Now the vector Ta lies

in our plane, and so has coordinates relative to the basis given by a and b.

The values of these coordinates determines Ta and Tb, and thus determine the

value of T on any point in the plane. Let us illustrate this by a speciric

numerical example.

Suppose that Ta = a + 2b

and Tb = -a f b.

Then

T(rai-sb) = rTa + sTb = r(a+2b) + s(-a+b) = (r-s)a +(2rs)b.

Thus, for instance, taking r=1 and s=1.

T(a-:-b) = (1-1)a (2+1)b = 3b.

3
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Similarly, taking r = -1 and s = -2 we see that

(-1) Ta + (-2) Tb ,--- -(a + 2b) + -2(-a+b)
t(-a - 2b) ( -1 +2)-1+2) a + (-2 -a) b = a - Lb.

There is a convenient way of writing these relations which will be very

useful for many computations later on. We take the coefficients occurring

6n the equation Ta = a + 2b and write them in a column

M
and write the coefficients occurring in the expression for Tb in an

adjoining column so as to obtain the expression

This square array of numbers is known as the matrix of the linear trans-

formation T.

Now let us take the coordinates of any point c in the plane, for

instance, the point c = 3a + 41'. The coordinates of c are 3

and t

of T

We write these coordinates as a colunm next to the matrix

(21 -11) 0
and multiply as follows: to obtain the entry in the first position

of the image of c under T, we take the first row of the matrix, multiply

the first element in the first row, by the top entry in the column

and add this to the second entry in the first row multiplied by the bottom

31



eltry in the column representing c: Thus

We obtain the entry in the second position by the same procedure, using the

second row of the matrix this time instead of the first. Thus, we get

-1)(3 ) x 3 + -1 x 4

2 1 4 2 x 3 + 1 x 4 0

or, in short,

/1

(2 1 4 10

which tells us that the coordinates of the image of c are -1 and

if the coordinates of c are 3 and 4.

-2

Similarly, if c = -a + 2b

x (-1) + -1 x 1

2 x (-1) + 1 x -2 -4

For the general point c = ra + sb the computations read

( )

1 x r + -1 x s

2 1 s 2xr+ lxs r+s

In this way, we see that the matrix of a linear transformation gives

us he full details on how the transformation actually operates. Let us



now formulate the procedure for a general linear transformation. Sup-

pose that T is a linear transformation such that

Ta = xa + yb and Tb = ua + vb.

The matrix of this linear transformation T (in terms of the basis

vectors a and b) is given by

u

y v

The linear transformation T applied to the vector ra + sb is then

computed according to the rule

8,)

+ us

y v yr + vs

Exercises. Compute the results of applying the following matrices to the

vectors with the given coordinates. In experiments we draw the linear

transformation corresponding to some of these matrices.

33



(40 3) 2(1

1,

4.

(0 2) (r s)

5. 2 0

() ()6. x 0 r
x

0 V s

(0 1 (1- s)

17.

. (3

9. 2

10 .

1 s

11. u )

34

0

u) (r )
s

12. 2

(
1 0

Jr
s

13. 0

2-4

5 5

5 5

x

s

414.



Matrix Multiplication, Let S and T be linear transformations. Then

I S is again a linear transformations. Hoy can we express the matrix of

T S in terms of the matrix of T and the matrix of S. Now this matrix

is determined by what the linear transformation ToS does to the basis

vectors a and b.

Suppose, for example, that S is the linear transformation whose

matrix is

and that T is the linear transformation whose matrix is

Then

2 3

(-2 4).

S a la + 3h .

We compute the result of applying the linear transformation T to

the vector S a as

(..-2 4 3 -2 x 1 + 4 x 3 10

2 2 x 1 + 3 x 3



T S a = :la + 10b .

We oLtc:in the expression for T St- in a similar manner:

Sc

We have thus compute i

Sb = 2a -,- 4b

2 ( 16)

(2 4 4 12

ToS b = 16a 4- 12 .

TeS a = lla -g- 10b

T S b = 16a - 12b

from which we see that the matrix of T'S is

(
11 16

10 12



We obtained the first column of the matrix

by applyin, th'

(

1

to the vector (which is the first column of the matrix of S.

3

-2 4

3

(We obtainc.d the second column by applying the matrix 2 3

-2 I-

to the vector 12 which is the second column in the matrix 1 2 of

S. 3 4
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Let

be the .natrix of S and let

x u

u'

ye ye

he the :12triy ac *". The application of the linear transformation S

to the vet-,r a (whose coordinates are (1, 0) gives the vector

whose caordilLts., are (x,y). Applyint, the linear transformation T to

this vector, -4- obtain, by our method of computation,

in other words,

ul + usyld)

ye ve y y'x + v'y

T S a = (x'x+u'y)a + (yIxA-vey)b.

A similar argument allows us to compute the image of b: Since the

coordinates of Sb are (u,v) if we apply the operator T to this

vector we get

+ uevtete

y'
1 1vv vev

thus see that the matrix of T S is given by

yix + v'y

/ea + u'v

s+ vy u V

Tf we consior the composition of tr linear transformations as a sort

of multirliczti,n, ~hen we have a formular for the corresponding "product"



of two matrices. The product of two matrices is given by the formula

To ill'istrate the meaning of this formula, we shall work a few more

numerical examples. The rule for forming the product says to apply

the matrix on the left to the first column of the matrix on the right

to get the first column of the product matrix; and to apply the matrix

on the left to the second column of the matrix on the right to get the

second I:Jlumn of the product matrix.

2

and let S have the matrix

1

Let T have the matrix

-1

1

-1

-2 .

Then, by err :revious computation



1 -2 2x1'1x1 2x-1 4- (1) x(-2) 3 .4)

it us nw n.zpute the product of these same two matrices in the reverse

are 2-. ,c i11 he computing the natrix of the linear transformatiln

(1 x 1 + (-1) x 2 1 x (-1) + (-1) x 1 -1 -2

1 1 x 1 + (-2) x 2 1 x (-1) + -2 x 1 -3 -3 .

T= ve con:zrc t:-:is answer with the previous one we see that the matrices

we get arc urequal. This is just a reflection of the fact the composition

t4o transformations is not a commutative operation.

Ir t3 gain some experience with the multiplication of matrices

it is i:Tirt.int to work the flowing examples.
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Th.: algebra of linear transformations. Until now, all the examples of

linear transformations that we have been considering have had the pro-

perty of being one to one, that is they do not carry two distinct points

into one and the same point. In order to proceed further, it is con-

venient to drop this restriction. This will be necessary if we want to

be able to add two linear transformations. In order to be clear on this

point, we reformulate our definition of the notion of linear transformation.

A linear transformation is any transformation of the plane with

the property that for any pair of vectors a and b and for any pair of

real numbers r and s the equation

T(ra+sb) = rTa + sTb

holds.

As an extreme example of a linear transformation which is not one

to one, consider the transformation which sends every vector in the plane

into the vector 0. Then this transformation is a linear transformation.

In fact, what we have to check is whether or not the above equation holds

for all pairs of vectors and all pairs of numbers. It certainly does hold,

because if T carries all vectors into 0 then both sides of the above

equation are equal to zero no matter what a,b,r, or s actually are.

Let S and T be two linear transformations. We are going to define

a new transformation called the sum of these linear transformations, and

denoted by S + T . To define the transformation S + T we must
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specify how S

by setting

T acts when applied to any vector. We specify it

(S + T) a = Sa + Ta .

In other words, the transformation S r, when applied to any vector

a is simply the sum of the two vectors Sa and Ta. We must check that

the transformation S T is again linear. That is we must check

whether

(S + T) (ra+sb) = r(S T)a s(S + T)b

flr all vectors a and b and f:lr all numbers r and s. We see that

this is indeed true by the following string of equalities:

(S+T)(ra+sb) = S(ra+sb) T(ra+sb) by the definition of S + T

= rSa+sSb rTa +sTb since S and T are both linear

= r(Sai-Ta) + s(Sb+Tb) by the commutative and
distributive laws for vectors

= r(S +T)a + s(S+T)b by the definition of S+T
once again

Notice the following properties of our notion of addition of linear

transformations:

Addition of linear transformations is commutative: S+T=T+ S

In order to prove this, we must show that both sides of the above

equation give the same result when applied to any vector in the plane. But

(S+T)a = So + Ta

= Ta Sa

= (T+S)a.

/1

by the commutative law for the addition
of vectors



By exactly the same argument, we see that the Associative 1,w

addition of linear transformations: (S+T) + U = S (T CD

Let us now consider the result of composing the linear transfori,,Lt

U with the sum (SIT). That is, we wish to examine the linear trans ,
t;

Un(S+T). Applying this to any vector a we see that

UP(S+T) a = U(Saila)

= USa + UTa since U is linear

= (US + U T)a .

We thus see that we have

The distributive law Uo(S+T) = UnS + UaT .

Similarly,

((S+T)U)a= (s+T)(Ua) = S(Ua) + T(Ua) = (SoU)a + (T U)a

= (Soli + ToU)a .

In other words, we have the second

Distributive law (S+T):Al = S,U + T U .

Let us call the transformation that takes every vector into the

zero vector the zero linear transformation. Thus the transformation 0 is

the f-ransformation given by



for any vector a. It is easy to check that

0 T = T and O T = 0 and T

for any linear transformation, T.

Finally, let I be the identity linear transformation. Thus I is the

transformation that carries every vector in the plane into itself. Then

(I T)r = (T I)a

for any vector a, so that we can write

I T = 11'1 for any linear transformation T .

Notice that if we regard composition as a sort of multiplication,

and define addition the 'ay we have, then the collection of all linear

transformations behaves very much like the collection of all numbers. The

one striking difference is that the commutative law does not hold in the

case of composition of linear transformations. Other than this, our usual

axioms for the number system--the associative laws for addition and multi

plication, the distributive laws, the commutative law for addition, the

existence of an additive identity (a zero) and a multiplicative identity

all of these hold true for the case of the collection of all linear transfor

mations. The only additicraal law that does not hold for linear transformations

the cancellation law for multiplication. We shall discuss this point in the se(

tion after next.



the algebra of matrices. We know that every linear transformation is

determined by its matrix once a choice of basis vectors is mice. We

have already .;ren how to obtain the matrix of the crmipositc of tvn

linear transf3rmations. What is the formula for the matrix cf the sl!..

tw* -ate: icr.ft: Suppose that the ratrix of S is given by

1-.)

and the matrix lf 7 is given by

5
6^

What is the matrix of S T 7 We must copute (S+T)a and (S%T)b.

Now
S,T)a Sa Ta = a 3b -4a 6b = 5a + 9b

while (S T)11 S b *-Tb = 2a s h 5 a i7b = 7a + 8b .

Thus the matrix of S T is

(95 78)

Notice that the rule for obtaining the matrix of S + T from tic. Lk.

S and the matrix of T is very simple: Just add the numbers it the corres-

ponding positions. Thus

12 (14 5
6 7

) ti 5 7
3 1 3' 5 6+7 9 8

We can nnw check numerics ly, in terms cif matrices, the various axioms for

addition and multiplication. We don't have to (20 this checking in order to

establish that the various laws hold, we know that the operations of matrices



reflect the corresponding operations on linear transformations. Thus we

are sure that the associative laws for addition and multiplication etc. Itc?4

for addition and multiplication of matrices. Nevertheless, let us check some

of these laws in order to get some further feeling for addition and multipli-

cation of matrices. For instance, let us check the distributive law by

verifying numerically that

3 1 3 1

1 1)

On the left, the sum inside the parentheses becomes

(30 04)

so that the formula for the product on the left is

(1
O)

n
(3 12

2 0 4 6 4) .

On the other hand, multiplying the matrices on the right hand side gives

(1 Y2' 4/ (5

8

2 1 1 3 5 1

and
( 1) 4

Adding these two expressions we get,

(5 8 + = 3 12
51 13 6 4

verifying the distributive law for this special example.



The readtr should compute the various matrix products and sums in

the follo%': rerrises to get some experience with addition and

multiplicon of matrices.

1.

2 0

0ta it 0) ..(

C '2 2 -2 0

(4 )

4 3

03)

0 3 3 0

0 1 1 0 0 v

0 3 4 3 12)a( 3

5 . )
8
2) 2) ( 0)

0
01 9 9 8 0 1

6 (0 )43 i0
1 0 1 2

1
1 2

r (1
of

Multiplicative inverse. We have already seen that the identity transformation

I acts as a unit for multiplication. Of course, the matrix corresponding to

the identity transformation is the matrix

0 1

The question nlw arises as to whether we can find a multiplicative inverse

for a linear transformation T. That is, we are looking for a linear transfor-

mat ion T
-1 with the property that

T-1 T= I.

Just as in the case of numbers, we don't expect that every linear transformation

will have a multiplicative inverse. For instance, if we consider the zero



transformation, 0, then 0 S = S 0 = 0 no matter what the linear transforma-

tion S is. Thus 0 cannot have a multiplicative inverse. This is just like

the situation with real numbers, the number zero does not have a multiplicative

inverse. However, in the case of linear transformations, there will be non-

zero linear transformations which will also not have a multiplicative inverse.

For example, consider the linear transformation T whose matrix is

0 0

This is not the zero transformation since its matrix has a one in the upper

right hand corner. On the other hand, let us compete the linear transformation

T2 . Its matrix is computed by

tO1 1)40
00 00 00

thus TtT = T2 = 0 . From this it follows that the linear transformation T

cannot have a multiplicative inverse. Indeed, suppose twit it did and we will

derive a contradiction: suppose (contrary to fact) that there is a linear

transformation T'l such that

T'1 T = I .

Multiply this equation on the right by T , and using the associative law for

multiplication, we see that

0 = T-1i0 = T4GT.T = I oT =

contradicting the fact that T is not 0.



This example also shows that the cancellation law for multipli-

cation does not hold in the case of linear transformations. In fact, we

have T:T = r 0 = 0 but T is not equal to zero.

As another example of a linear transformation which does not have a

multiplicative inverse, consider the linear transformation whose matrix

is

Let us apply this matrix to the vector a - b whose coordinates are

(1, -1). Then we see that

11 1(-11 (g) .

In other words, T(a-b) = 0: But this implies that T cannot have a

multiplicative inverse. In fact, suppose there were a multiplicative inverse

T-1 to T. Then T'ler = I so that

(T"loT)(a-b) = I(a-b) = a-b

but

T'1 T (a-b) = T'l(T(a-b)) = T44.0 = 0 ,

which is a contradiction. Thus T does not have a multiplicative inverse.

It is easy to see from a geometric point of view when we would expect a

linear transformation T to have a multiplicative inverse and when not. Let

us apply T to our basis vectors a and b. Then if Ta and Tb do not lie

on the same line through the origin, we can find a linear transformation which



takes Ta back into a and Tb back into b. We just use the geometric

construction described earlier in the chapter. On the other hand, if Ta any

Tb do lie on the same line, then T(ra + sb) = sTa + rTb will also lie on this

same line for all values of r and s. Thus T will collapse the whole

plane into a line. In such a circumstance we would not be able to find an

inverse for the transformation T, since a linear transformation carries a line

into a line and not into the whole plane.

We now pose ourselves the following problems: first of all, to

determine, in terms of the matrix of a linear transformation, whether or

not it has a multiplicative inverse. Secondly, if the transformation dees

have a multiplicative inverse, to find the matrix of the multiplicative inverse

in terms of the matrix of the given linear transformation.

To answer the first question, it turns out that there is a number

that we can attach to any matrix. This number has the property that the

matrix has an inverse if and only if this number is unequal to zero. Since

this number determines whether or att the matrix has a multiplicative in-

verse, this number is called the determinant of the matrix. As is shown in

Experiment 2 this number is closely related to the area of the parallelogram

spanned by the vectors Ta and Tb .

We now proceed to give the definition of the determinant of a matrix.

For any matrix



form the diagonal products xv and uy and subtract uy from xv, that

is form the number

xv - uy .

This number is called the determinant of the given matrix. For instance,

for the matrix
1 2

34

we form the diagonal products

i.e. 1&4 - 213

and conclude that the determinant of this matrix is 4 - 6 = -2 .

(It turns nut that this matrix does indeed have a multiplicative inverse.)

To compute the determinant of the matrix

1 1

11

we form the diagonal products

and obtain 1 - 1 = 0. Thus the determinant of this matrix is 0.

As we have already seen, this matrix does not possess a multiplicative in-

verse. In experiments - -we give a geometric interpretation to the determinant.

Let us now show that if the determinant of a matrix is zero then the

matrix cannot have a multiplicative inverse. Thus suppose that the matrix



has its determinant zero, i.e. suppose that

xv - yu = 0

We wish to show that this matrix cannot possess a multiplicative inverse,

We shall conder several cases when this can occur. Suppose, first of all,

that our matrix has the property that x = 0 and y = 0. That is, suppose

our matrix has the form

0 u
0 v .

Then the corresponding linear transformation takes the vector a into zero.

('!

By the same argument we gave above for the matrix I
, we know that this

matrix cannot have a multiplicative inverse.

We may therefor assume that either x or y is unequal to 0. Suppose

that x is not zero. Let us apply the corresponding linear transformation,

T , to the vector ua - xb, which is a non-zero vector because x # 0. Computini

obtain S

x u U X U a. U X

y v -x y u - xv

(o
0 )

Similarly, consider what happens when we apply the transformation T to the

vector va - yb. We get
U 1.43r 0

Y v -Y - vy 0
144466

If yi0 the vector va - yb # 0 and so we have again found a non-zervhich is

sent into zero by T.



Wf i-n)ur that this means that T has no multiplicative inverse.

We have thus established in all cases that if the determinant of a

matrix anighes, then the matrix has no multiplicative inverse.

(!e now must show that if the determinant does not vanish, then the

matrix does have a multiplicative inverse. To do this, we shall go one

step further and write down a formula for the multiplicative inverse of the

matrix in question. Rather than pass immediately to the general formula, let

us first explain the formula by numerical examples. The rule for finding the

multiplicative inverse is as follows: We start with the given matrix,say

(22 43)

and compute its determinant, which in our case is 8 - 6 = 2. We then take

our matrix and switch the entries along the 2-4 diagonal and put a

minus sign in frog* of the entries in the other diagonal, thus obtaining



1"41111,0n..,

We then divide each number by the determinant, getting

2 -3/2

(1 1

This last matrix is the multiplicative inverse of the matrix we started with.

To check this, we simply multiply the matrices

(11 2 4 -1 x 2 + 1 x 2 -1 x 3 + 1 x 4 (0 1

2

-3 2 3 2 x 2 - 3 x 4 2 x 3- 3 x 4 1 02

which is the identity matrix.

Let us work another example. We start with the matrix

2 -1

1 2

We first compute the determinant, which is 2 x 2 1 x (-1) = 5. We then

take our matrix

(2 -1)
1 2

interchange the elements along the main diagonal and replaces the remaining

elements by their negatives, obtaining

We then divide each term by 5 which is the determinant of the matrix to

get

5'



Multiplying out, we check that we have indeed found the multiplicative

inverse of the given matrix

2 1

5 5

-1

-1 2 1 2

5 5

=

2

5

-1

5

x

x

2

2

+1x1
5

+ 2 x 1

5

2x-1 + lx2
5 5

-1 x 2 + 2 x 1

5 5

1

(0

0

1

As another exaLiple, let us compute the multiplicative inverse of the matrix

1

3 5(

Here the determinant is 110 - 2X3 = -1 . Interchanging the diagonal terms

and replacing the other elftents by thee negatives yields

5 -2

-3 1

Dividing each element by -1 finally yields

We check that this is indeed the multiplicative inverse by multiplication:

(

- 5 2 2) (75 x 1 + 2 x 3 -5 x 2 + 2 x 5 ) 10
3 -1 3 5= 3 x 1 + (-1) x3 3 V 2 + (-1)x 5 0 1

Let us now formulate the rule in general. Let

x u
y v

be a matrix whose determinant d = xv - yu is unequal to zero.
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''arm the :-aLrix

(y X

and then the matrix

v -u

d

"Y. It.

d d

y v).
and we claim that this matrix is the multiplicative inverse of

u

We check this by multiplying out:

"

v u
d x "d Y

i 0
1 0

d d
A V X y

-v
u + v 0 EIVIE

0 I-I 2t...

d

In this way we have a formula that provides us the multiplicative inverse of

any matrix, provided that we can divide by the determinant, that 139 provided

that the determinant is not zero. We have thus proved that any matrix with

non-zero determinants does indeed have a multiplicative inverse.

To get some feeling for multiplicative inverse, the reader should compute the

multiplicative inverse of each of the following matrices, provided that the

inverse does exist. If there is no multiplicative inverse then he should



indicate tai' fact. He should check by multiplication that he has in-

deed founa the c.2:rect ilultiplicative inverse.

1 I..
C 3)

:.

()
, )

3.

0 r)
(

,

4. (x o
where x # 0 and v # O.

v

.

(

t:%....

0
.

6. 1 2

t 1)
7. (1 -.

0 1

: t J.

1

9. I)
2

(lo

10.

11.

12.

13.

14.

15.

16.

17.

18.

I

0

0

1

(0
1

0

1

(11

(12

1(

1

2
(

(3

It

1

01)

11
0)

1

1

)

22)

1

2

3

2

4

6
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Solvink_linear equations. Computing the multiplicative inverse of a matrix

also pravies us with a means of solving simultaneous linear equations. '1..

begin our iiscussion of this point with an illustrative example. Suppose that

we start with a linear transformation, say the linear transformation .hose

ratrix is

(2
2

and with a point in the plane, say the point 7a + 11b, whose coordinates are

(7,11). Applying our linear transformation to this poiLt gives

(2 117) _(2 x 7 + 3 x 11 (474)
2 4 11 2 x 7 + 4 x 11 58.

In other words,
2 x 7 + 3 x 11 m 47

and
2 x 7 + 4 x 11 = 58

If we apply the inverse matrix to the vector (47, 58) we will, of course,

get our original vector (7,11) back again. We have already computed the

inverse matrix which is
2 -3/2

(-1 1

Applying it to the vector (47,58), we get

( 2 - 3/164 2 x 47 - (3/2) 58) 4 71
-1 1 5 -1 x 47 + 1 x 58 11

doss indeed give us back (7,11). Now suppose that someone asked us to find

numbers r and s such that

2xr + 3xs =47

and 2xr + 4xs =58.



ailswer by applying the inverse matrix to (47,58) to fine that

r = 7 s = 11. Fir instance, suppose we wish to solve the equations

2xr 3xs= 5

2xr s 4xs= 10.

This time we do not know the answer in advance. However, we simply apply the

inverse matrix to the vector whose coordinates are (5,10) to obtain,

1( 2 5 2 x 5 - (3/2) x 11;) 5 ))

A. 10 -1 x 5 1 x 10 5

The reader can check that (-5,5) is indeed the solution 3f our pair of

equations.

The general procedure is now clear. Suppose we are given the numbers

x, y, u, and v, and are also given the numbers e and f. Suppose that

we wish to find the unknown numbers r and s satisfying the equations

x X r u X 8 =

and
y )( r Y v )( s =

(
If the matrix ux has a multiplicative inverse, then we apply this inverseV !I

matrix to the vector with coordinates (e,f) we will obtain the vector

whose ccordinatcs are (r,$). This then solves our system of linear equations.

If the matri-, e:mx nct have a multiplicative inverse, the situation

is a little L:nre complicated. Ws know that if the matrix does not have a

multiplicative inverse, then the corresponding linear transformation maps

(1



a

the whole plane into a line. If the vector with coordinates (e,f) does

:),_!t lie In this line, then it can not be obtained by applying the matrix

o vectc:r at all. Thus the system of equations will not have any

solution. Thus, for instance, the equations

2 r + 4 s = 5

3 r 6 s = 6

will have no solution at all, because the corresponding transformation

naps the whole plane onto the line passing through the vector whose

coordinates are (2,3). On the other hand, if the vector (e,f) does lie

on the line determined by the matrix, then there will be (many) solutions

to the corresponding equation. Thus, in the preceding example, if we

had 8 and 12 on the right instead of 5 and 6, so that our equations are

2 r + 4 s = 8

3 r + 6 s = 121

et,
We can find many solutions, for instance r = 4, s = 0,ir = -1, s =

and so on.

This procedure also works in general. Suppose that the matrix

(x u
y v has no multiplicative inverse. Then if all the entries x, y, u and v

are all 0, then there is no solution to the equations at all unless e and f

are both zer', in which case anv numbers r and s will do. If at least one

of the entries of the matrix is not zero, then the vectors (x, y) and (u, v)

6-2



inust lie on the same line. In this case, the vector (e, f) must lie on

the san, line, otherwise the equations have no solution. To say that ( e, f)

lies JU this line reans that (e, f) is some multiple of (x, y); or, if

x and : 1'th zero, that (e, f) is some multiple of (u, v). Thus, in

the exan.ple above, (5, 6) does not lie on the same line as (2, 3) and sc

the eqva'Aans 'lave no solution. On the other hand, (8, 12) is a multiple

of (2, 3), in fact, 8 = 4 x 2 and 12 = 4 3 so that the equations do have

solutions, for instance, r = 4, s = O. Also, (8, 12) is a multiple of

(4, 6) since 8 = 2X4 and 12 = 46, so that r = 0 and s = 2 is another

solution pair for the equations.

The reader should solve the following linear equations ( or

indicate the lack of solutions or the fact that there As more than one

solution). This will provide practice not only in solving linear equations,

but also additional practice in evaluating determinants and computing the

multiplicative inverses of matrices.

1. 2 r = 5

3 s = 10

2. r + 2 s = 5

s= 11

4. 3 r + 2 s = 1 7. r + s = 2

2r+ 3 s= 0

5. 3 r + 2 s = 0

2r + 2s = 3

8. r + s = 10

3 r + 2 s = 1 ' 2 r + 2 s = 20

3. 3r 2 s = 5 5 6. 3 r 2 s = 4

2 r± 3 s = 11 3 r + 2 s = 8

6.3



toe" ,

Ei;.envalues and eiRenvectors. Let us consider a transformation T whose

hat-ix ( in terms of our basis vectors a and b) takes the simple form of

h:v1r.; non-:-ero entries only about the main diagonal. Thus suppose, for

instance that the matrix of T is

3 0

0

Such a matrix is called a diagonal matrix. The geometric picture of the

action of T is very simple. It stretches everything by a factor of 3

along the a direction and contracts everything by a factor of along

the b direction. Thus a diagram of how T acts on a parallelogram whose

) sides are parallel to the a and b directions is provided below. We

give two pictures, corresponding to different choices of basis vectors

a and b.

b

a

T carries the parallelogram with heavy boundary into the

shadeq :,aralle&ogram



Here is a picture for a different choice of basis vectors, say c and d.

0
Vow the choice of the vectors a and b is completely arbitrary,

subject to the condition that they don't lie on the same line. Thus it

might be the case that the transformation T carried the vector c into

some multiple of itself and carried the vector d into some multiple of

itself. If c and d don't lie on the same line, and we had chosen them

as our basis vectors, then the matrix of T would be in diagonal form.

However, we did not have the good fortune to make this choice of basis

vectors. The matrix of T then looks more complicated. Let us illustrate

with a specific numerical example. Suppose that the linear transformation

T has the property that

and

T(a + b) = 3(a + b)

T(a - 2b) = I(a - 2b)



I it

U

(

Thus the transformation T carries the vector a + b in

and carries the vector a - 2b into one half of itself.

the matrix of the linear transformation T is in terms

three times itself

Let us see what

of our basis vectors

1a and b. By computing the inverse of the matrix
-1

1

-2
we see,or can

directly verify, that

a = 2/3 (a+b) + 1/3 (a-2b)

and b = 1/3 (a+b) - 1/3 (a-2b)

Then Ta = 2/3T (a+b) + 1/3T(a-2b) = 2/3 )(3(a+b)

+ 1/3x 1/2(a-2b) = 1/6)a + (1+4/3)b

Tb = 1/3T(a+b) - 1/3T(a-2b) = 1/4 3(a+b)

- 1/3 X 1/2(a-2b) = 5/6a + (1 41/3)b

Thus the matrix of T in terms of the basis a and b is

Suppose we had started with this matrix. It certainly looks very

complicated. How could we tell that by suitable choice of the vectors

64



a

c (= a + b) and d ( = a - 2b) that the transformation takes the simple

form of stretching (or contracting) along the lines determined by these

vectors? This is the type of problem which we wish to solve in this

section.

Starting out with a linear transformation whose matrix is given to

us, we wish to ask the following three questions: First of, are there

lines along which the transformation T simply stretches (or contracts)

everything? If so, what are the factors of expansion (or contraction)?

Thirdly, if our transformation does have this property, what are these

lines?

Notice that in formulating the problem we used the word lines

instead of the word vectors. The reason is that if T carries the non-zero

vector c into some multiple of itself, it will do the same for any other

vector lying on the line determined by c.

Observe that not every linear transformation will have the property

that it carries some line itself. For instance, if T is rotation through

45
o

about the origin, then T moves every line and so does not carry any

vector into a multiple of itself.

Let T be a linear transformation. We are searching for all possible

numbers z and all possible vectors c with the property that T carries the

vector c into a multiple of itself by the factor z. In other words, we



are looking for numbers z and non-zero vectors c such that

Tc = zc

It turns out, sulcrisin3ly, that we can find out what the possible z's

are with .t Ictowi:e tt.t vectors c in advance. Our way of finding the

possible z's is its!: write the above equation in a slightly different

form. Z be tt.e linear transformation which multiplies every vector

in the plane by the number z. Thus Z is the linear transformation whose

matrix is

z 0

0 z

We can rewrite rill above equation as

Tc = Zc

or Tc - Zc = 0

or, finally (T-Z)c = C



Mow we are supposing that c is a non-zero vector. The last equation says

that the linear transformation (T-Z) takes this non-zero vector into zero.

As we have seen several times already, this means that the linear trans-

formation (J-7.) :Los not have a multiplicative inverse. This information

is sufficient to determine the possible z's. To see how this works, let

us examine a numerical example. Suppose that T is a linear transformation

whose mat:, ix is

Then the matrix of T-Z is

2

1 -z 2

5 4-z

where z is the unknown number we are looking for. To say that T - Z

does not have a multiplicative inverse means that the determinant of

the last matrix must vanish. We can compute the determinant of this

matrix which is

(1 -.) (4-z) - 2 X 5 = 4-5z + z
2

- 10 = z
2

- 5z - 6

G9



This means that the number z must make this last expression vanish.

Thus z must be a solution of the quadratic equation

2
z - 5z - 6 = 0.

Now we can factor this last equation as

2
z - 5z -6 = (z-6)(z+1).

Thus the two possible values of z are z = 6 and z = -1.

These two numbers, 6 and -1, are called the eigenvalues of the matrix

2

We can indeed check that when we substitute these values for z into

T-Z the matrix we get has determinant zero. In fact, taking z 6

gives the matrix

2 -5 2

5 4 -6 5 -2

7



whose determinant is 10 - 10 = O. Also the matrix

+ 1 2 )
...

5 4+1

has determinant zero.

Once we have found the values of z the problem of finding the

corresponding vectors c is very easy. Euprose we take the value z ---- 6.

We are looking for a vector satisfyinb

(T-Zlc = O.

If the coordinates of c are r and s, we wish to find r and s such that

-5 2)(r) 4

5 -2 s 5r - 2s 0

An obvious solution of this equation is r = 2, s = 5. (Any multiple of

this vector bill also be a solution as well. A rule of thumb for finding

the solution is to take a row of the ratrix of T-Z, read it from right

to left and change one sign. Thus in

(-5 2

5 -2

7/



we took the bottom row, changed the -2 to 2 and read from right to left

to obtain (2,5). If one row consists of 0, 0 then the other row must be

used. If both rows are 0 so that the matrix of T-Z is the zero matrix

then any values of r and s will do.

Let us now check that if we take z = 6 and c = 2a + 5b then

Tc = 6c.

This reduces to checking that

2) 2

6[2)
5 4 5 5

To do this, we simply multiply out, obtaining

2y2) 2 + 2 45)- (31 612)

5 4 5 54°2 + 4 3t 5 30 6.10 5

Similarly, let us take the other value of z given by z = -1.

The corresponding matrix T - Z becomes

+ 1 2 (2 2)

5 4+ 1 5 5
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t
so we take c = -2a + 2b. We must check that for this choice of the

vector c we get

Tc = -c.

We verify this by the computation

\ /-2\ +

-10 +8

-2 + 4){22)..(2)

5 41/ 5X-2) + 4A2 - 2

These special numbers, 6 and -1 associated to the matrix 1 2 are called

the eigenvaluez of the matrix. The corresponding vectors 2a + 5b and

-2a + 2b are called eigen vectors of the matrix.

If we have found eigenvalues and two distinct eigenvectors (not

lying on the same line) for a given matrix, then it is very easy to

describe the geometric behavior of the corresponding transformation.

We 'simply draw the lines containing these two vectors. The transformation

then stretches (or contracts with possible reverse in direction) along

thedirections parallel to these two lines, by the amount indicated by

the eigenvalues. Thus, in the next diagram, we illustrate how the

1

transformation T, whose matrix is given by 1 2 in terms of the given
54

basis a and b. We first draw the vectors 2a + 5b and -2a + 2b. We

can then indicate how the transformation operates by drawing the image

of a parallelogram to the axes provided by these eigenvectors.
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We now state the general method, illustrating it by another numerical

example. We start with a given transformation whose matrix, in terms of

our basis is

general method specific example
1

x u 6
9)

y v -3 -4

We first look for the eigenvalues of the matrix. We thus wish to find

those values of z for which the determinant of the matrix corresponding

to T - Z becomes equal to zero;this means soling the quadratic equation

(x -z) (v-z) -uy = 0
1

( 6 - z) (-4 - z) - 9 (-3) = 0

or, rearranging the terms, this is the same as the quadratic equation

z
2

- V) Z (XV uy) z
2

- + 1 = 0.

(Notice that this quadratic equation takes on a very simple form in

terms of the original matrix. The coefficient of z
2

is always one, the

coefficient of z is always -(the sum of the terms on the diagonal) and

the constant term is always the determinant).

7s



We next solve this equation for z. We can use the formula for the

solution of a quadratic equation,

(x+v) ; i(xr7v)2 -4(xv-wv)
z = 2

Notice that there will be no real

solutions if the expression under

the square root sign is negative.

Thus, if the expression under the

square root sign is negative there

will be no eigenvalues. This

expression can be simplified,

(x+v) 2 -4 (xv-uy) =

2
x
2
+ AXV v -4xv + 4uy =

(x-v)
2

+ 4uy.

Therefore, if (x-v)
2
+ 4uy is a

z = 2, z = k

negative number, there will not

be any eigenvalues of eigenvectors.

Let us first restrict our attention

to the case where this expression is
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e
1

greater than zero so that there will

exist two distinct values of z given

by the abo-,. formula. We shall call

them z
1
and z

7
to avoid having to

carry the corplicated formula with

us durin;) J.,.r c'mputations. We

will return, to study the case when

the expression is negative or zero

in a later section.

For each of the two values of z so obtained we form the matrices of

the transformations T - Z which are

y v-z) y v-z
2

-3 -6 (:-3 -4h

Vu eland

x- u
z2

(14.k )

6 9

For each of these matrices, we take a non-zero row, and read it

backwards changing on sign, and this gives us the corresponding

eigenvectors. Any non-zero multiple of an eigenvector is again an

eigenvector. We may use this fact to obtain an eigenvector whose

coordinates have a simpler looking form: The corresponding eigenvectors

are thus



-ua + (x-z
1
)b -ua + (x-z ) b

2
-9a + 4kb 4ka - 3b

ir and or

-(v-z
1
)a , ,71) -(v-z

2
)a + yb Multiplying Multiplying

this eigenvector by-2/3 we get

by -2/9 we get the the simpler

simpler looking looking eigenvector

eigenvector -3a-P2b.

2a -.b.

The reader should check that these

are indeed eigenvectors corresponding

to the eigenvalues 2 and h.

The reader should compute the eigenvalues and eigenvectors of the following

matrices. Not all answers will come out looking nice,

3. 0 1

10

4.

5.

6.

(31

( 0

2

2

6

2

2 )
0

4 )
8



Change of basis. In the last section, we saw that a linear transformation

having distinct eigenvalues has a very simple geometrical description in

terms of its eigenvectors. It also has a very simple matrix form if we

were fortunate enough to choose our basis to consist of eigenvectors.

In fact, if our basis consists of eigenvectors, then the matrix is in

diagonal form, that is, it takes the form

0

0 z
2

where z
1

and z
2

are the eigenvalues of the linear transformation. If

we were not so fortunate as to choose the eigenvectors as our basis

elements, then the expression for our matrix might appear quite compli-

cated. We should therefore study the problem of how the matrix of a

linear transformation changes when we decide to make a change of our

choice of basis vectors. In pursuing this question, we will be able to

reformulate the results of the previous section in a form which will

allow us to handle the case where the quadratic equation we encountered

last time does not have real roots.

Let T be a linear transformation whose matrix, in terms of the

basis a and b, is
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Suppose now that we wish to change our basis to a different choice of

basis, say a' and b' where

a' = 2a- b, b' = -3a + 2b.

(Here, as usual, we have chosen specific values for a' and b' for

illustrative purposes.) Let us see how to express the matrix of T in

terms of the new choice of basis. We compute fa' anc4 Tb' by our usual

procedure.

x ( ..2 2 x u ( -3 ) =-(-3x + 2u
y v 2 -3y + 2v

This gives

Ta' = (2x.u)a + (2y v) b Tb' = (3x ,4. 2u) a + (3y + 2v) b

However, we are interested in the expression of Ta' and Tb' in terms of

a' and b', not in terms of a and b. For this we use the fact that

a = 2a' + b' b = 2b' + 3a'

which we derive by computing the inverse of the matrix



and verify directly. The final expression for what T does to a' and b'

is as follows:

Also

To' = (2x -u) a + (2y - v) b

= (2x - u) (2a' + b') + (2y - v) (2b' + 3a')

= Ili (2x - uj + 3 (2y - v) a' +I' (2x - u) + 2 (2y - v),) b'.

Tb' = (-3x 2u)a + (-3y + 2v)b

= (-3x + 2u) (2a' + b') + (-3y + 2v) (2b' + 3a')

=26(-3x + 2u) +3(-3y + 217.) a' +((-3x + 2u) + 2(-3y + 2v) b'

Thus the matrix of T, in terms of a' and b' is

2(2x - u) + 3(2y - v) 2(-3x + 2u) + 3(-3y + 2v)

(2x - u) + 292y - v) (-3x + 2u) + 2(3y + 2v)

This complicated looking matrix can be written in a similar form which

is easier to remember and understand. It can be written as the triple

product

8/

.



/2 31 x u 2 -3 )

1 21 y v i -1 2i

as can be checked by multiplying this out. The matrix

21 23 j

is just the inverse of the matrix

2 -3

-1 2 ) .

Thus the rule for changing the matrix when we change the basis is the

following: first write out the new basis in terms of the old basis, and

write down the corresponding matrix. Let us call this the change of

basis matrix. Compute the inverse of this matrix. Then the matrix of

the linear transformation in terms of the new basis is given by

)(

inverse of change of
old i)

in new )1(change of basis

matrix

basis basis matrix matrix

,2



For example, let us take the linear transformation whose matrix in terms

of a and b is

1

6% 9

-3 -4

According to our computations of the previous section, we know that this

matrix has eigenvalues 2 and 11 with corresponding eigenvectors 2a - b

and -3a + 2b. If we set al = 2a - b and be = -3a + 2b as our new basis

vectors, we know that the matrix of T with respect to these new basis

vectors is the diagonal matrix

2 0

0 3/4

We can verify that this coincides with our rule as formulated above. The

matrix for the change of basis from a and b to a' and b' is

2 -3

-1 2

while the inverse of ':his matrix is

/2 3 I

1 2 I.

g3



We then check by multiplication of the matrices that

2

1. 2

Thus

2 0

61/2 9 2 -3 2 3 4 - 2 0

-3 -4 -1 2 1 2 -2 1 0 1/2 .

2 3 61/2 9 2 -3

1 2 -3 -4 -1 2

We can, of course, rewrite this last equation as

-3 -41 -1 2 0 k 1 2

61/2 9 2 -3 2 0 2 3

In this form, we can give a more geometrical interpretation to the

equation, by considering all the matrices on the right as matrices of

linear transformations. The general idea is as follows:

Suppose that we really have a preferred choice of basis vectors a and b.

For instance, since we can always buy cross-section paper, it would save

us a lot of work if we choose a and b to be along the axis of the cross-

section paper and one inch in length. In this way, the printed lines

provide us wit'a an immediate way of computing the coordinates of any

Si



t
point on the plcn-. "ow a diagonal matrix such as 2 0 has a very simple

0 k

interpref-a-ir. It says, expand horizontally by a factor of two and

compress vertically by a factor of one half.

Now the transfortation T whose matrix is 61/2 9 expands and compresses

in the directions of its eigenvectors -3 -4 . Thus a picture of

its action is

I
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We can regard this action as the composition of three transformations:

First "unhinge" the plane and map it into itself in such a way that the

eigenvecto-s 2a-b and -3a 1 b are carried into our basis vectors a and

b. Then appl!, the simple vertical and horizontal compression and

expansion described by the diagonal matrix. Then map the plane back

into itself in such a way that the vectors a and b go back into the

eigenvectors again. Pictorially, we are regarding T as the composition

of the three steps drawn below.

i7



We can thus regard a transformation of the distinct real eigenvalues as

a distorted version of a diagonal transformation, whereby a diagonal

transformation we mean a transformation whose matrix is diagonal in our

preferred coordinate system.

The collection of all diagonal matrices hae some very nice

properties. Any two diagonal transformations co-mute,

x' 0 x' 0 x'

-0 v CO v' 0 vv' to v' 0 v

A diagonal matrix has an inverse if and only if both entries along the

uiagonal are not zeLo, in which case the multiplicative inverse is given

by the formula

-1

x O flix 0

( 0 1/4

Conformal transformations. We now wish to study linear transformations

which do not possess real eigenvalues; thud those Linear transformations

whose matrix

satisfies



I

(x-v)
2
+ 4uy

We shall di-scribe a "nice" collection of linear transformations with

this property. We shall see later on that any linear transformation

2

with (x-v) 4uy 0 can be regarded as a distortion of one of these

transformations by a skew choice of basis.

Consider a transformation whose matrix has the form

(-s :

In this case x = r and v = r while u = s and y = -s so that the

expression

2 2 ,e
(x-v) + 4uy = -4s 41-- 0

In experiments the following facts are brought out concerning

transformations of this type.

Any transformation of this type is a s Ilarity transformation

of the plane, that is, it carries any figure into a figure similar to it.

2
It distorts length by a factor of Y r

2
s. , and can be

regarded as the composition of a rotation of the plane followed by the

transformation that changes all distances by the amount r + s .



A similarity transformation is sometimes called a linear conformal transformation.

A conformal transformation preserves angles but need not preserve lengths. As a

convenient convention, we shall agree to call the zero transformation conformal.

Let S and T be two conformal transformations. If either S or T is

zero, then clearly S T is zero. If both S and T are not zero, then T are' S

both preserve angles. If we first apply T and then apply S we will still have

preserved all angles. Thus S T will again preserve angles. Thus the composite

-f two conformal transformations is again conformal.

Let us check this fact by looking at the product of the corresponding matrices.

a b
Suppose that T has the matrix -b a and

multiplying the matrices gives

S has the matrix

u a b au -bv bu + av
1(-b a)= (bu-av au - by ).

We see that the product matrix has the form

where
x = au - by and y = bu + av

U V
-v u . Then

and thus corresponds to a conformal transformation.

Notice that the sum of two conformal matrices is again conformal. Indeed

(u v a b (u+a) (b+v)

-v uY-b a -(b+v) (u+a)

and the matrix on the right has the desired form.



Let us go back to the expression for the product of two conformal matrices:

(u it a b ( au - by
-v u -b a -(bv + bu)

ub + va)
au + bv

Let us now multiply them in reverse order:

a b)( u v ) as au - by
(

av + hu
-b a -v u al -(bu + av) -bv + au

Notice that we get the same answer. Thus, if S and T are conformal linear

transformations, we have

S.T = T.S

i.e., multiplication is commutative.

When will a conformal transformation have a multiplicative inverse? If

T is a conformal linear transformation whose matrix is

a b
(-1, a

we know how to answer this question. We must check the determinant of this

matrix which is

a at a - b C-b) = a2 b2

Notice that this expression can be zero only when a and b are both zero.

Thus if T is a non-zero conformal linear transformation, it possesses a

multiplicative inverse.

Notice that the collection of all conformal matrices behaves a lot like the

number system. We have noticed on page that some of the laws for numbers break

down for the collection of all matrices. The commutative law does not hold for

the collection of all,matrices. It does hold for the collection of all conformal

matrices. For the collection of all matrices, it is not true that any non-zero

element has a multiplicative inverse. For the collection of conformal linear

transformations it is true that every non-zero element has a multiplicative in-

verse.
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Let us now examine two special conformal transformations. The first

one is our old friend the identity transformation. The identity transformation

clearly preserves angles, because it preserves all geometric figures; it does

not move the plane at all. Remember that its matrix is

0

0 1 .

The second transformation we wish to consider is the one whose matrix is

0

(71

It is clearly conformal. What does it correspond to geometrically? It

changes the length of any vector by a factor 0
2
+ 1

2
- that is it doesn't

change length at all. It sends the vector (1,0) into the vector (0, -1),

that is, it rotates it clockwise by ninety degrees. Similarly, it sends the

vector (0, 1) into the vector (1,0) - that is, it rotates it also by ninety

degrees. Therefor we conclude that it rotates every vector in the plane by

ninety degrees as can be checked in the experiments.

Rotating through ninety degrees twice is the same as rotating through one

hundred and eighty degrees. We can check this fact directly by matrix multiplica-

tion:
1 ( 0 1 0

1 0 -1 0 0 -1 .

We can write this last equation as

(01 01)(03. 1 0_(03).

Now the point of this discussion is that we can express any conformal matrix

in terms of the two special matrices

0 1

and (-1 0)

In fact,
(a b) by 3. 0)+ b( 0 1

-b a 7 o a -b o 0 1 -1 0) .

LIZ



Let us give special names for these two conformal transformations: let

us call

Al the identity form

and i the transformation whose matrix is

We can thus write every conformal transformation of the place as

+ bi .

We know that multiplication of two conformal linear transformations is commutative

and the rest of the usual laws of multiplication hold. The transformation is the

identity for multiplication while

=
2 = 4

We can use these rules to reconstruct the rule for multiplication of conformal

linear transformations. Suppose we wish to multiply

(4 bi) (41. vi)

We get,

+ bi)e(ul, + vi) = (4) Jr (4) + (4) x (vi) + (bi ) rt (u a) + (bi) x (vi)

by the distributive laws. Since is the identity for multiplication we have

(a40 (141)= al (a3) *t vi = av i bixaj = bu,i

2
and since

.= -1 we have

(bi)x(vi) =

thus

(al +bi)4 (l41, + vi) = (a -bv),/ + (av + bu)i whale matrix is

(au - by av + bu

-(av + bu) au - by

If we compare this with the equation on pageflwe see that we have obtained the

same answer. Since acts as the identity for multiplication, the product

(8.4)4T is the same as aT

for any transformation T. Thus as far as multiplication is concerned, we

93



can suppress the doin making computations. For this reason, people usually

write

a + bi instead of al + bi .

When we write conformal linear transformations this way, they are called

complex numbers. Thus a complex number is an expression of the form

a + ibi

where all the rules of arithmetic apply, together with the rule i2 = - 1 .



LABORATORY MANUAL FOR CHAPTER 3

VECTORS IN THE PLANE

The p;:11-.-e of the next collection of experiments is to study

properties pf translations in the plate. The equipment consists of

cross-sectioned graph paper ruled 8 squares to the inch and plastic

traysparency sheets also ruled squares to the inch. In addition

you will also use your straight edge and compass. The purpose of the

ruling on the paper and on the plastic transparency sheets is to insure

that no rotation occurs while sliding it along the paper.

The first two experiments demonstrate that a directed segment

determines a translation and two directed segments determine the same

translation if and only if they are parallel, of equal length, and

point in the same direction.

The next three experiments show the geometric meaning of the

group laws (commutative and associative laws).

We then study scalar multiplication and vector space properties

the notion of basis, lattice and so on.
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EXPERIMENT I TRANSLATIONS

Directions

1. Draw a directed segment al, a2, anywhere on the ruled paper.

2. Line up the plastic transparency over the ruled paper

making sure the horizontals line up with the horizontals and

the verticals line up with the verticals.

3. Mark the point, al, with a felt tipped pen, lying over the

initial point of the directed segment.

4. Now slide the transparency to the position with the marked

point lying over the termi,lal point of the directed segment.

This is the translation associated with the directed segment.

5. Return the transparency to its original position; that is

return the marked point to the initial point, al. Puncture the

transparency at some other point, marking the ruled paper

underneath. Call this point b1. Now slide the transparency so

that the point originally lying over a al now lies over a2. Mark

the position of the hole on the ruled paper. Call this point b2.

6. Check that the line determined by bl and b2 is parallel to the

line determined by alland a2. Check that the segment bl, b2,

has the same length as al, a2 and points in the same direction.

7. Repeat 4, 5, and 6 with some other puncture.
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EXPERIMENT II EQUIVALENT DIRECTED SEGMENTS

Steps 4, 5, and 6 of the previous experiment show that a translation

together with a "starting point" bl determine an "ending point" b2. We ray

that the trans'ation transforms bl into b2. We say that the directed segment

bl b2 corresponds to the translation. We saw that if two segments al a2 and b1 b2

correspond to the same translation then they lie on parallel lines, are of equal

length and point in the same direction.

We now establish the converse.

Directions

1. Draw a directed segment al a2.

2. Choose any point bl on the ruled paper.

3. Draw the line through bl which is parallel to the line determined

by al and a2.

4. Mark the point bl on this line so that bl b2 has the same length

as al a
2
and points in the same direction.

5. Place the transparency over the ruled raper and mark, with felt

tipped pan, the points lying over al and b1.

6. Slide the transparency so that the point originally over al now

is over a2. Check that the point originally over b2 now lies over

b
2.

We say that a
1
a
2

and b
1
b2 are equivalent directed segments.

Two equivalent directed segments determine the same translation. The

translation is called a vector. We use the letter v to denote a vector. We

sometimes also use the letter Tv to emphasize that we are thinking of v as a motion

of the plane. (The letter T 'stands for transformation).
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EXPERIMENT III ADDITION

Page 14

Let Tv andand T
v 2

be two translations. Let T. c T be the transformation
1.2

Tv

obtained by first applying T
vi

v

and then T,
2 "

. We check that T,
2 "

0T,
1

is agair a

translation. r;e denote it by Tv3 and we write v3 = vl + v2. We check that

v2 + v2'

Directions

1. Draw two directed segments al a2 and bl b2 on the ruled paper.

2. Place the transparency over the ruled paper, line it up, and

puncture the points over al a2 bl and b2.

3. Slides the transparency until the point corresponding to al

is over b2, line up the transparency and mark the point which

was over a
2 on the ruled paper. Call this point C.

4. Place the point corresponding to b2 over a2 mark the point

corresponding to b2 on the ruled paper. Call this point d.

5. Notice that b
2
0 and a

1d are equivalent, they determine the same

translation. This experiment is more striking if we choose our

segments with the same intial point.

6. Let Oa and Ob be two directed segments under the same initial

point 0. Find the sum of the corresponding vectors and demonstrate

the commutative law.
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Recall that the translation corresponding to a directed segment al a2 is

called a vector. Frequently, since any vector is merely a representative of

equivalence class of segments,we choose a common initial point 0 to represer

all vectors. This point is called the origin. Since now all segments have the

same initial point we can identify them by merely noting their terminal point.

We will denote the vector corresponding to Oa by a and will therefore denote the

endpoint of the segment corresponding to a + b and whose initial point is 0 ;

a + b.

EXPERIMENT IV THE ASSOCIATIVE LAW

Directions

1. Choose 0 and three points a, b, and c.

2. Construct a + b and b + c.

3. Construct (a + b) + c and a + (b + c).
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.(alar Multiplication

As usual, we denote a + b by 2a and, more generally a + a+ a+ ... + a

(n times) by na. We can also construct a vector la as the vector

satisfying la + la = a. In fact we can find it by bisecting the

segement Oa.

EXPERIMENT V THE DISTRIBUTIVE LAW

Directions

1. Choose vectors a and b.

2. Construct a + b.

3. Construct (1 + i)a by extending vector a half again as much

in the same direction. Do the same for (1 + 1)b. Construct

(1 + 1) (a+b) by extending ( - b) half again as much in the

same direction.

4. Add (1 + to (1 + 1) b.

5. Form (1 - i) (a + b), by extending (a + b) half again in the

same direction. Notice that
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Experiment VI

Here are two vectors a and b . Construct 2a + b .
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EXPERIMENT VII INVERSE OF A VECTOR

Let al a
2
be any directed segment corresponding to a vector a so that

translating by a moves al to a2. Then the inverse of a will move to a2 to a1.

That is a2 a1 represents -a.

Construction of -a from a fixed origin.

Directions.

1. Choose point a.

2. Puncture the transparency over 0and a, after lining up the

grids.

3. Place the point which was over a over the origin 0 and line

up the grids.

4. Mark the point which was formerly over 0 on the ruled paper.

This is -a.



LABORATORY MANUAL FOR CHAPTER 3

EXPERIMENT VIII
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Directions

1. Choose vectors a and b.

2. Construct the following points:

2a, a+b, 2b, 2a- b,2a -2b, a-b, a- 2b, -a, -2a, -b, -2b, -a-b.

-2a-b, -a-2b, -2a-2b, b-a, b-2a, and 2b-2a.
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EXPERIMENT IX - THIS EXPERIMENT REQUIRES A LARGE SHEET OF PAPER WHICH WILL

BE USED REPEATEDLY IN THE SUCCEEDING EXPERIMENTS.

1) Choose an origin 0 near the center of the paper.

2) Choose points a and b so that Oa and Ob are not too large or too small,

say somewhere between one and three inches each.

3) Form the vectors a, 2a, 3a, 4a, 5a, -a -2a, -3a, -4a, -5a and the vectors

b, 2b, 3b, 4b, 5b, -b, -2b, -3b, -4h, -5b. The easiest way to draw these

vectors is by drawing the line through 0 and a and then marking off the

points with a compass. Similarly for b.

4) Form the point -5a + b. Draw the line through -5a and -5a+b and then mark

off the points -5a+b, -5a+2b, -5a+3b, -5a+4b -5a+5b and -5a-b, -5a-2b, -5a-3b,

-5a-4b and -5a-5b.

5) Construct 5b+a. Draw the line through 5b and 5b+a and then mark off the

points 5b+a, 5b+2a, 5b+ 3a, 5b+4a, 5b+5a, 5b-a, 5b-2a, 5b-3a, 5b-4a and 5b-5a.

6) Draw the line passing through -5a 5b and -5a, the line through -4a+5b and -4a et

until the line through 5a+5b and 5a. There are eleven lines in all

7) Similarly, draw the eleven lines through -5a+5b and 5b, -5a+4b and 4b etc.,

eleven lines in all.

8) Label many of the points of intersection such as a+b, a +2b, 3a-4b etc.

In order to same time and space use the following notation; (3,4) stands

for 3a+4b, (1,1) stands for a+b, (-2,3) stands for -2a+3b and so on.

9) Get some practice with this notation. Locate the points (3,-3), (2,-2), (1,1),

the points (4,2), (2,1), (-2,-1), the points (4,o) (2,0), (-3,0).

We have subdivided the plane into parrallelograms. We can use one

corner of the parrallelogram to label the parrallelogram. Ife use the point
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(3,-4) to label the parallelograms whose corners are 3a-4b, 4a-4b, 3a -3b and

4a-3b.

10) Which is the parallelogram labeled by (2,-3) on your sheet?
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EXPERIMENT X

Use the same sheet as in experiment IX

1) Find the point 31a + 21b.

2) Find the point -3a + b.

EXPERIMENT X:

1) Pick a point Q. In which parallelogram does it lie? What is the

label of this parallelogram.

2) Subdivide the parallelogram containing Q into four congruent parallelograms.

What is the label of the small parallelogram containing Q?

3) Subdivide the small parallelogram containing Q once more into four.

What is the label of the parallelogram containing Q?
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Continue to use the same sheet as in experiment IX . Draw all the figures

of this experiment in very light pencil as they will not be used in the

next experiments, while the sheet itself will continue to be used.

1) Through the point Q of experiment XI draw the line parallel to the.

line through 0 and b .

2) Mark the point of intersection of this line with the line through 0

and a . Call this point c.

3) The point c lies on the line through 0 and a . If we take 0

as the origin on this line and we use a as a basis of this line then

we know that c = ra where r is some real number . We can find the

expansion of this real number according to the methods of Chapter II . Find

the expansion of r up to the second dyadic place .Compare this with the

first term of the answer to part 3) of experiment XI .

4) Repeat parts 2) ,3) and 4) interchanging a and b . That is,

draw the line through Q which is parallel to the line through 0 and a .

Mark tea pu:ut of intersection of this line with the line through 0 and

b ; call this point d . Expand d in terms of b , finning the first

two terms in the expansion of s where d = s b . Compare your answer

with the second term of the answer to part 3) of experiment XI .

5) Observe that

so that we may write

c + d

Q ra + sb


