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. of the previous summer revised the syllabi and textbook choices for

RECOMMENDATIONS FROM THE EDC FROJECT

For the past two years, the EDC Project at Indiana University
has involved members of the Mathematics Department and the School of
Education in a coBperative study of the question: How sﬁould pPros-
pective elementary school teachers be prepared to teach mathematics
to children? |
T Diring the summer of 1967, three members of the Mathematics™ ~ ~ —
Department and three members of the Sq@ool of Education worked together
to revise fhe existing mathematics and matﬂematics education curriéula
for elementary teachers. Every =ffort was made to correlate the contents
of the two curricula., Unnecessary duplications of content and instfuc;
tional matérials were eliminated. Syllabi were prepared for the
courses T104, T106, and E343, and texts and supplementary materials
for these courses were chosen. |

These syllabi and materials were used during the Spring semester
of 1967-68. Matters were arranged so that two sections, made up of
students who had taken T104 the preceding semester, were enrolled in
both TL06 and E343, For each of these sections, the two courses were
taught in the same classroom during two adjacent class periods: One
of the mathematics teachers evaluated the effectiveness of this program
by comprehensive testing of these two éections. The other instructors
involved in the program conducted informal evaluations with their
sections, Each instructor was asked to suggest needed revisions in

the prepared syllabi.

During the summer of 1968, & team constituted similarly to that

T10k, T106, ard E343, for use in 1968-69. A syllabus was also pfepared

!




for an‘inkegrated_mathematics course, described in Recommendation 1
below. Copies of these syllabi and related materials are appende& to
this report. 1In the recommendations the two parts of éhe integrated
mathematics course just mentioned are denoted by "Int I" (5 credits)

and "Int TI" (3 credits).

On the basis of okjective and subjective evidence gathered during ~—

the two years of the Project, the team members make the following

N

recommendations:

i
.
f

1. Elementar& school programs clearly reflect an integration of
arithmetic, geometry, and algebra into a single course of study.

The mathematics education course content reflects the elementary
school curriculum. Yet in the three mathematics content courses

T104 (arithmetic), T106 (geometry), and T108 (algebra), these .
three streams of thought are still separated. Thus it is

RECOMMENDED that beginning in 1969-70 (the earliest practical

date), the courses T1O4, T106, and T108 be replaced by the

one~year, eight-credit, integrated mathematics course here called

Int I -—Int II (see syllabus, appended).

2. Evidence seems to point to the need for keeping the mathematics
content courses as close as possible to the mathematics education

course., It also seems clear that the content course should not
be taken after the education course, although current policy allows

this. In the existing Education program; the mathematics education
course is taken just prior 1o student teaching. Thus 1t 4s

- RECOMMENDED that the mathematics content courses be removed from
the 100 (¥reshman) level and placed at -the 200 or 300 level. It

~ is further RECOMMENDED that T1O4 (or Int I) be made a preréquisite
for T106 (or Int II) and E343%, and that E343 be made a co-requisite
for T106 {or Int II). Students should also be strongly urged to
take T104 and T106 (or Int I and Int II) in adjacent school terms °

(i.e, either Fall-Spring, Spring-Summer, or Swmmer-Fall).
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3 ’It is felt that additional attention should be given to the
development of instructional materials to supplement the basic
texts in the various courses. Members of the matﬁematics team

have so far prepared two supplementary units for TLO4, covering
material not included in the basic T104 text (copies of these units
appended). Members of the mathematics education team have worked
towards preparing packages of materials to supplement each unit =
of the E343 syllabus (some of this material is appended). It is
RECOMMENDED that additional supplementary instructional materials

be produced for use in both the msthematics and mathematics edu-
cation progrg%s, Additional monies and personnel will be needed

to develop this aspect of the project further. For the most effective
use of the materials developed for E343, it is RECOMMENDED that

a learning laboratory be set up for E343 students, and that a
diagnostic mathematics examination be given at the beginning of

E343 to determine which students still need work on which topics.

b, It is felt that a student who receives a grade of D in T104

or T106 is not sufficiently prepared to teach mathematics in

the elementary schools; yet it is possible; under current policies,
for such students to attain certification. Thus it is

RECOMMENDED that grades of C or above in T104 and T106 (or

Int I and Int II) be required of all candidates for certification.
Further, a grade of C or above in Int I should be a prerequisite
for Int II. To make this requirement meaningful, it will be neces-
sary to have more or less uniform grading standards for all sections
¢f & given course., The Teaching Asscciates con the team, however,
are opposed to the idea of giving all students the asame examinaw-
tions. Thus the team has prepared, for eacﬁ:?33¥§Zﬂ a list of
topics and skills which they feel a student should master in order
to receive a grade of C or above; these lists are appended to the

syllabi,and Teaching Associates will be encouraged to use them

as standards.

L e a—— 208 " i
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- e ANd/or. T106 (or Int I and possibly Int II) and allowed (and

5. An increasing (though still small) number of students entering
the Education program have been so well prepared in high school
that they already know the material covered in T1O4 and/or T106.
Thus it is RECOMMANDED that a comprehensive mathematics exami-
nation, covering the material of T104 and T106, be offerad during
Registration 'Jeek each semester, and that students who score

sufficiently high on this examination be given credit for T104

encouraged) to take more advanced mathemnatics courses., (If
Recommendation 4 is adopted things should be arranged so that
a student with a previous D grade in one of the courses can
satisfy certification requirements and/or prerequisites for the

next course by scoring sufficiently high on the examination.)

6. It is RECOMMENDED that the present policy of choosing T104
and T106 Teaching Associates mostly from the Mathematics Egucation

program be continued, and maintained for Int I and Int II.

7. It is RECOMMENDED that the Teaching Associates for T1iO4 and
T106 (or Int I and Int II) be given considerably more supervision
and advice than they presently receive. 1In particular:

a) The Teaching Associates for each course skhould be divided
into groups of not more than six, each group teaching under the
close supefvision of a .faculty member of the Mathematics De~
partment. This is current policy, but since the faculty
member must now perform his supervisofy duties ian addition to
his full-time regular teaching job, supervision is not now
adeqgnate, Thus it is STRONGLY RECOMMENDED that sufficient
faculty be hired to allow the supervision of six Teaching
Assocmates to count as one-half of tke faculty supervisor' 8

total work load. Two additional faculty meabers should be

given, as their total work load, the overall supervision of

all the sections of T104 and T106 (or Int T and Int II), one
course for each of them. A supervisor would visit at least

ﬂ.~one sectlon meeting each day and would hold frequent conferences
with his Teaching Associates, both individually and in grouvs,
to discuss teaching problens and strategies, construction of

tests, and so on.

-




( b) The Teaching Associates in each course should be given desk
’ space in the same office, and reference naterials relevant to
their course shcould be placed in that office.

, e) A1l Teaching Associates should be given copies of the
- Teaching Associate's Handbook which will be produced by

. the staff of the Summer Seminar for Prosypective Teaching
} - As?°9?3ﬁ?§_ﬂ?@9@¢?%§ held*;quﬁghyathematics Department

- ——— -

; - .= .. during the summer of 1948,
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d) Teaching Associates should be encouraged to visit each
other's classes. i

e) Visual feaching alds, such as abaci, should be purchased
-and made available to the Teaching Associates. Tle Teaching

Associates should als¢ be encouraged to exploit the resources
~ - of the Audio~Visual Center,
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COURSE OUDPLINE FOR THE OHE-YEAR INTEGRATLD MATHEMATICS COURSE
FOR PROS JJCTIVL EL#HEHTARY SCHOOL TEACHLRS

Main Textbcok: Garstens and Tackson, lMathematics for Elementary School

" Peachers , Macmillan, 1967.

Supplementary Textbook:

-

Topics in Mathematics for Elementary School Teuchers

(Twenty-Ninth Yearbook), National Council of Teachers

of Mathematics, Washington, D.C., 1964,

Teacher's Refereﬁcea:

!

Péterson and Hashisaki, Theory of Arithmetic, 2nd ed.,

John Wiley and Sons, 1967.

Smeltzer, Man and Number, Collier Books, 1962.

-~

Mos%t of the topics to be stressed in each part of this course
are excellently sumnarized in the final sections (entitled "Terminal

Pasks") of each chapter of the main text, and in the Teacher's HMunual

aCcompaﬁying the main text. Thus the lists of "Terminal Tasks'' are

to be used as the basic course outline. The following material is

to be regarded as an amendment to the outllne given by the "Terminal
Tasks" For each unit of 1nstructlon, we here give: "1) renarks which
can (and should) be made to motivate the study of the Matexlal beJond
those remarks made in the first section of each chapter ol the muin

text (which should also be used); 2) remarks on methods of teaching

the material, beyond those given in the Teacher's Manual; and 3) in-

structions to make various changes in the succession of topics covered

in the text, either to include new topics or to omit given ones.

Units of 1nstructlon not based on the text. are described in full detail.
.unless specifically omitted below, a1l sections of the text are

to be covered in this course, even those about which no remarks are

made below about motivation or methods.

-




INTRODUCTION o
Discuss goals of the,cburse, method of gralding, testing schedule,
and so on. Learn students' némea as. quickly as possib]e. Pave students
introduce thempalves to each other, and encouramu them to work dmd
study *ogelher outside of”class. Good in+r04uctory films exist; one
may be madé available for showing to your class qurlng this first week.
Bring one or two sets of elementary-school mathematics textbooks to
class and pass then around to let students see what they are gzing to -
be tnaching. _
The text will treat wholn numbers as glven, but the cla,s should
be given some motivational background.' Develop the idea that a (whole),
"number is a\concept associated with the size of a set of objects, At '
first numbers vere not naﬂed but only comnared. A caveman pight test
wvhether he had more stone axes than his neighbor by pairing off the
two sets of axee and seeing which get ran out first. A shepherd might
put one pebble in his pocket for every'sheep léaving the fold; later,
he could tell if all had returned. Commerce eventually required men
to name numbers larger than could be indicated by just holding up fingers.
(E.g. "How many stones will be needed to build this pyramid?") How are
we@o.name the various numbers? We could simply give separate, mutually
‘unrelated names to each number; but this would be impractical. Gét the
’-class to tblnk of grouping the get to be counted 1ntu groups oi ten
(or other small number), then grouving the vroups of ten into groups
of ten, etc. Study various numeration systens: Egyptman,;Babylonlan;
Chinese, Mayan (see Smeltzer, pp. 29-55; Peteréon % Hashisaki, Chap. 1).
-Make up a simple numeration syst@m yourself, using funny, symbols, and
have the students try to decode it from five or six given examples,
Show the students how to write numbers in different bases (using
'Hindu~Arabic numerals), and have them translate some numbers from
base ten to'other bases and back again. (3ee 29th Yearbook, pp. 111-132.)

CHAPTER 2 . - R

We defer Chapter 1 until later siﬁce its material will be new and

alien to the student, while that of Chapter 2 is fawmiliar. Also, students

should be more willing to study logic per se if the need for such a
systematic study is previously impressed upon them by exposure to a few

(mysterious) proofs. Some teachers may even wish to defer Chapter 1

ko
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until after Chapter 3.

The textitireats addition;and.multiplicationvof whole numbers, and
their bdsic properties, as known, and leaps directly into an axiomatic
developrent. Agaln, additional background and motivation should be
given, Define addition of whole numbers m and n as putting m obgects
‘together with n other obaects and counting the resilting set., Define
multiplication of m and n as putting together m different sets of n
objects each and counting the resultinv set. Point out that having
done this once for each m and n, we can put down the results in a table
whlch we can then rmemorize wmthout further thought but that the way
we got the table _hould be kept in mind ;n case wo forget part of the
table. The set of whole numbers; together with the operations of

addition and multiplication, form an examvle of a wathematical system.

Go over the axioms of Sections 2.2--2.6 and convince the students of
the truth of these axioms by ‘means of experimentation and picture=-

‘drawing.,

.-
4

" Motivate the axiomatic development of.number systems“as follows:

We know two ways of convinecing ourselves that a given true statemeht
is true. We can verify it by experimentation, or we can deduce it
lbgiéally from known fécts. The first method is difficult, and not
entirely convincing; the second method is comparatively easy and is.
Qompletely'convincing in the -sense that ‘the conclusions of a vali@
'argumepﬁ,must,be accepted if itsfprémises are. So in developing a
large collection of facts it makes sense toivéxify as few of then aslﬁ
possible by experiment and EEQXE the others from these few; thl is
what we shall do. ‘ N

Having made these remarks, do some of the proofs in the Exercises
of Sections 2.2--2,6., Introduce theinumber line (whole numbefs only)
and view addition and (where defined) subtraction in terus of moving
back and forth on the line. Cover Sections 2.8 and 2.9. |

Now study the addition, subtraction, multiplication, and division
algorithms (use the 29th Yearbook, ép. 133--165). It is crucial that

" elementary teachers know exactly #hy these computational nethods work,

- and not think of them as magic rituals which wil} give the right answers
if only one can remember how to perfdrm them corréctly. (The same goes
for all other algorithms to be covered later, e.g. multivlication of |
fractions.) To test understanding of these algorithms, spend a day

~ -— - '
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1doing'eomputations in other number bases. This will force the students

to experience the same preblems which their own students will later

have Wlth base ten comoutatlon.

Ty

To motivnte Section 2.10, present the whole nuMbers under ‘multi-

-plication as arstructure in which the various numbers are '"put together"

_from basic building blocks, namely the primes. State and illustrate

.the Fundamental Theorem of Arithmetic. Find some prime factorizati.as,
g«ced.'s, and l.cem.'s. Give examples of systems in which factoriza-

tions into primes are not unique, Present some of the classical unsolved

problems of number theory, oot 1) Goldbach's Conjecture-~Is every

et e

- Cover Sectlon 2. 12.

even number greater than 2 equal to a sun of two primes? 2) Twin

Prime Problem--Are there an infinite number of ‘twin prines (primes p

such that p+2 is also prime)? 3) Fermat's Last "Theorem"--Does

N n n Pa;dcwe . .
X" +Y¥Y =2 have any, integral solutions x, ¥, and z if n Jis a whole number

.greater than 2?2 4) Perfect Number Problem--Are there any odd perfect

numbers {numbers equal %o the sum of their proper divisors)?

Ask "How many primes are there?”; then prove Theorem 2.14, which

does not answer this question but shows that the answer is not a finite

nunber, Use this to lead into the question of how the sizes of infinite

sets are tc be cempared; Propose the text®s definition. Be ﬁfepﬁred
to counter the obaectlon that since there are obv1ously more whole

numbers than even whale numoers, tne two sets cannot be the same size.

p—

-~

,CHAPTER 1

»Motivation} Having explored the territory by stumbling through

a few proofs, we will now study proof techniques generally.

. .Metho&s.‘ In Section 1.4, the text does not state the truth-value
of P-qu when'P and O'are statements and P 1s falsey this should be done.

-

To convince. studeﬂts that P -»9 should be frue "when P is false, -show

"t

by examples that in everyday speech "Either R or Q" means the sane

thing as "If not R, then Q. Then substitute "not P" for "R" and

'.eliminate the double negation to see that "If P, then Q" means the

~then be computed from knowledge of "or" and *'not". Stress that the

‘smae thing as "Either (not P) or Q". The truth-values of P->49 can

‘mere truth of P e>Q does not imply a logical or causal connection

between P and 3 (the word "implication”" in the text is misleading and
should probably be .replaced by "conditional™).

. —— -'

-

i
1(.
i
i
!
2




- .80 4o not stress thls section too heavily. 1In Sections 4 6m=lt, 7,

- Again, the content of a theorem is more imnortant than its proof.

: Students should learn fron thls course what a good proof is, and how

from the text. At the end of the chapter, briefly treat the reflection-

- matics Teacher, April 1968). Review the classical compass~and-straightedge

_ Chapter 5.

CHAPTER 3

‘Motivation., So far we have applied mathematical methods onlytto

the study of pumbers. But there are other structures in everyday life

wh:ch can be studied by mathematical methods.,
Methods. Lead into Section 3.2.via clock arithmetic. Abstract
the propertles of a group fron those of mod 3 arithmetic. Point out
that anything we prove from the group axjoms will be true of any structure
which satislies those axioms. Give an example of a non—numerlcal group,

such as the group of rotat;oﬁs of a cube (use a real cube).

CHAPTER 4 ' .
Methods. Section 4.4 is just an example of a deductive system;

the actual content of the theory there developed is of ‘little importance.

get the students to come up with definitions of the various defined

terms, based on their experience, and work with the class to get these

definition into precise form (agreeing with those in the text). Do

not go throggh all the proofs in detail{ knowledge of the content of
the'content of the theorems is more important than memorizing proofs.
An inStructiveIpraotical exercise in set theory can be found in Peterson

and Hashisaki (p. 55, #13).

CHAPTER 5 L |
Methods. Try to get the students to come up with properties which
the congruence correspondences should have; thus develop the axioms '

CSl--CS?7. Go through the first proofs slowly, but speed up later.

to write simple ones, but they should not have to memorize hard proofs

rotatlon-translatlon approach to congruence. Use the article "Congru-
J‘umor

ence Geometry for leh School Students" by Dennis and Sanders (Mathe-

constructions, showing how they are consistent with the axioms of




CHAPTER 6 o “ .
Motivation, I had %100 and I spent (on credit) %200; how much noney

do 1 have now? 1 started three mlles east of to;n and moved five miles

'westward ‘how far east of toun am I now? I want to solve the equation

'x-+6._4, what can I do? Answering these ques tlons requires the creation

" of new numbers. What is the 'relationship these new numbers must hold -

to the known (whole) numbers? Trying to solve x+6 =14 in whole numbers, -

I see trkat any whole number is too big to be x. Thus we want our new

numbers to be less than zero. Ve want, e.g., 4 -6 to be equal to some

nunmher, but we nust create a new number for this purpose. Why not Just
‘call this new number (4 - 6)° Plotting several such new numbers on an
extension of the number line (e.g. (4 - 6) goes 6 units left of 4), we

see that we want, e.g., (&-»6) and (5~-7) to be the same number,

| W‘How can we 1dent1fj ‘such numbers w1th each other in a neat, formal way?

Having settled on the deflnltlons of the new numbers, how shall we add
and multlply them? How shall we relate them to the o0ld numbers?
Methods. Make the above remarxs at the beginnirg of the chapter,

so that the students will know why we do what we later do.

CFAPTLR 7

Motlvatlon. I am countiﬁg the number of basketfuls of graiu

;.harvested on ny ‘farm and I come to a basket which is only partially

- full; how do I count 1t° I am. -measuring my fleld with a stick and I

find that the field is more than 103 sticks long, but less than 104
sticks long; how long is my field? I want to solve the equation
3x =5, but I see that 1 and all smaller integers are too small to be X,

and 2 and all 1arger integers are too big; what can I do? We need

to create more new numbers which lie in between the integers;- We will
do this in the same sort of way we created the integers. |
Changes. After Section 7. 7, spend a day d01ng story problems

involvang percentages, surh as the studerts w;ll later be teaching

‘to their own atudents. Also teach "SCLentlfl” notation" for writing

ratlonae numbers, e.g. 2 45:c106, 1‘97,c10-5. Sectien 7.8 may be

omltted if time is short.

S i s s e o
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CHAPTZR 8

Motiviation. In Section 8.6, after introducing infinite decinals

ask: Jhy should we grant all infinite dec1ma1s the status of numbers?
Reasonb" 1) They form a n1ce ordered pattern in which we can embed the
‘rational nunbers such thal the two oLdeylngs agree, 2) Under certain
definitions of addition and multiplication of infinite decimals, not
only do these operations agree with those of the rational numbers uh,n

the latter are embedded, but equations llke xz-—z now have solutiois.,

But this equation dld not have a solution in the rational numbors.
(Prove this now) 3) Yle want 2 to have a number as a square root, for
later when we talk about measurement we will want a number for every
distance measurable along the number 1ipe; and we can measure a distancé
whose square is 2, |

Methods. Any proof that we can '"measure a distance whose square

is 2" will be a fudge at this point, since we have not yet studied area,

the Pythagorean Theorem, etc. The simplest n PO
way is to argue that the dotted square in | -'//’ "x\‘

the flgure must have area 2 since it is ObV1— ‘kt"“‘”‘“**%¥
ously half of the large square, which has area \\\ xx/ }1
L, -

. Additions. After Section 8.4, define cormmensurability and ask if

any two line segments are corrmensurable, After showing 42 is irrational,

return- to this question and answer it. U el
CHAPTER ¢ | |

Changes, Study Appendix A right after Section 9.8.
CHAPTZR 10

Motlvatlon. For Section 10 2: Throughout mathematlcs, it has

often been found that a non-numerlcal structure (in this case, the

- plane) can be more effectively studied if we associate numbers to its
various points in some clever way. For Sections 10.3--10.4: Given

two figures which have the same shape,‘what sort of transformation can
we perform on it to get it to coincide with the other? ile must expand
or shrink it, and then move it rigidly (translate, rotate, or reflect).

How can we rigorously describe "expanding" and "shrinking'"?

D .-‘ /L —_ o . ) )
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_ CALENDAR

Changes, Omit Sections 10.6 and 10.9. The interested student
may wish to read the article '""Rotations, Angles, and Trigonometry'" by
Troyer (Mathematics Teacher, Feb., 1968)

APPENDIGES B--D

'Méthéds. The feacher may assign the better students to lecture

on these sections.
PROBABILITY AND STATISTICS _
This topic is not covered in the text., Mimeographed text materials

and teaching ouplineé will be distributed.

- -

‘

~

]

;

!
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To insure that each class covefs all the material of this course,
and that all the sections finish the first semester at the same point
'(so that students can change sections to accomodate their schedules),

it is recommended that Teaching Associates follow this schedule: .

———FIRST SEMESTER (75 days of class)

Introduction : -, . 5 days
Chapter 2 | ' 15 days
Test S 2 days .
 Chapter 1 5 days
" “Chapter 3 "6 days )
= Test 2 days 2
_Chapter L 7 days
Chapter 5 1) days
Test - 2 days
Chapter 6 .9 days /
Test - i 2 days | g
Chapéer 7 _ 7 days .. . ., ' , - N
Test and review - 2 days ‘ ) B




SECOND SEMESTER (45 days of class)

Chapter 8 . _ 11 days
Test | _ 2 days

] dhapter é _ 10 days
Test "2 days
Chapter 10 6 days
Appendices B--D % days
Test | , 2 days
Prdb?ﬁliﬁy/statistics 5 days
Review (whole course) 3 déys_'

" Two days are allotted for tests so that the test may be discussed the
‘day after it is given. It is also suggested that short quizzes (10-15

min.) be given frequently, as time pernits.

PR - -
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COURSE OUTLINE - T104

t

Regulred Textbooks

P Peterson, J. A. and Hashisaki, J., Theory of Arithmetic,
fszcond edition) John Wiley and Sons, Inc,, New York,
967. .
Y National Council of Teachers of Mathematics, Enrichment
Mathematics for the Grades, Qfwenty-Seventh Yearbook,
National gouncil of Teachers of Mathematics, Washington,
.D. C., 19063,

Optional Textbooks (available in Swain Hall Library)

E Eves, Howard, An Introduction to the Historvy of Mathematics,
Holt, Rinehart, and Winston, New York, 1953.

M Meserve, B. E. and Sobel, M. A., Introduction to Mathematics,
Prentice-Hall, Inc., Englewocod Cliffs, N. J., 1964,

MS Meserve, B. E. and Sobel, M. A., Elements of Mathematics,
Prentice-Hall, Inc., Englewood CLiffs, N. J., 1968. |

R Rees, Paul K., Principles of Mdhematics, Prentice-Hall, Inc.,
Englewood Cliffs, N. J., 1959, o
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o the Student:

[ —

In recent years there has been a revolution iﬁ school
mathematics. A quick glance into some newer elementary school
mathematics texts will show that skill in computation is no

longer sufficient criteria for teaching elementary school mathe- -

matics. The sequence of courses consisting of T-10%, T-106,
and T-108 is designed to give prospective elementary teachers
the background in mathematics that they must have in order to
teach mathematics successfully to elementary school pupils.

The courses T-104%, T-106, and T-108 are concerned with
mathematical ideas of two types: those which will be taught

to elementary pupils and those which will give the prospective
teacher a deeper understanding of the concepts he will teach.
These courses are strictly mathematical in naturej; a companion -
course, E-343, will instruct the prospective teacher in the
techniques of the actual presentation of the mathematical

ideas to his pupiis. S

In order that the students may benefit maximally from the
lectures, it is strongly recommended they study beforehand the
material presented in each lecture. | .
The texts required for T-10% are also used in T-106 and

the students will probably have occasion to use them as personal
references,
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Course Content

1.
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History and Founaatlons

P: 1.1 - 1.4, 1.5e, 1.5f

M: 1.1

E: selected topies

S: selected topiecs

Logic

901“'90)’"

: 282 - 290 (required reading)

s 291 - 301

Inmaratinn Qquems
15’a,,c d, 1.6
Chapter 5 (complete)
Chapter 2 (required reading)
pp. %1 - 49, pp. 23% - 239
selected topics

t Theory and Relations
Chapter 2 (complete)

M: Chapter 4

P: Chapter 3 (complete)

Whole Numbers |

P: Chapter 4 (complete)

Y: Chapter 5

Intergers

P: Chapter 6 (complete)

M: pp. 18 - 19

Y: pp. 73 - 91

Rationals

P: Chapter 7

Real Numbers

P: Chapter 8 (omit 8.1ka)

Probability and Statistics

MS: Chapter 8

Test 1

Test 2
Midterm Exam

Test L4
Test 5

Final Exam
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I. Introduction

This course is primarily for students with one year
of study in each of high school algebra and high school
geometry. Students with such preparation should be able
to take the course with profit and without major difficulty.
Students who have not had the equivalent amount of prior
study may need to be supplied some background material.

A person with a good command of the concepts, proofs, and
techniques presented in the course should have the under-
standing of arithmetic necessary to teach in the elementary
school. '

Since it is intended that the course be thoroughly
Mastered, a superfieial acquaintance with the concepts and
. techniques presented here will not be sufficient. A large
part of the mathematics of the elementary school is arithmeticy
consequently the preparation must assure that a teacher have
understanding and skill in arithmetic and confidence in his
knovwledge of the basic concepts of the subject.

Although familiarity with the natural numbers might seem
to make unnecessary any attempt to define these numbers, we
nave sought to go a little deeper and to relate the funcamental
notion. of numbers to the correspondence between sets. The real
numbers are introduced by successive extensions of the set of
natural numbers. In each extension, the associative, commuta-
tive, and distributive properties are required to hold. The
rules for performing operations are obtained by use of these
properties and definitions.

The use of simple equations and inequalities should be
a prominent feature of the course, and the student should have
extensive practice not merely in solving equations and
%gequalities, but also in formulating them to solve word pro-

enms. | ?

It should be understood that this course guide is merely !
a brief sketch of the content of the topies that should be |
covered in the order we believe that they should be studied,

The brevity of the sketch creates an impression of logical I
austerity. It is, however, an essential part of the task of I
the teacher to avoid such -austerity by filling in an intuitive J
background and furnishing illustrations at every opportunity. |
A bare sequence of definitions, theorems, and proofs is un-

acceptable for two reasons. In the first place, it would be
pedagogically quite hopeless at the level, and for the audience,

that we have in mind. In the second place, the prospective

elementary teacher needs to become aware of ways to bridge the

gap between mathematical ideas as they appear in formal

theories and the various intuitive forms in which these same

ldeas may be introduced to young children. - R

There is an instructor's manual for Theory of Arithmetic
which may help the instructor to decide what material to

emphasize. Sample quizzes and answers to problems are ineluded
in this manual. | .
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2,

II, Course Qutline

History and Foundatlions

A.

c.

Content

This introductory section includes a brief summary
of the history of numerals and systems of numeration.
Consider the Egyptian hieroglyphic, Roman, Ionic
Greek, Chinese~Japanese, Mayan, and Babylonian
systems. It is not necessary for “he students to

‘memorize the various symbols, since the emphasis

should be on recognizing the characteristics of
each system. Discuss the counting board and the
abacus as examples of early computing instruments.
Examine finger multiplication, patterns of numbers,

- and geometric patterns. Introduce the tally system

as the first system of representing numbers. There
1s no need to assign exercises in this section.
This sectiorn will not be tested.

Refererces
P: 1.1-1.4, 1.5e, 1,5,
M: 1.1

E: selected topies
S: selected topics

Recommended Time: 2 lectures

Logic

A.

B.

C.

Content |
Discuss *.e¢ difference between simple statements and
compound stutements, Discuss the meanings of the
connectives, and construct simple truth tables.
Introduce the idea of implication. Show how a
statement, its inverse, its converse, and its con-
trapositive differ. Briefly discuss quanhifiers
with emphasis on how to negate quantified statements.
Discuss different kinds of everyday logical arguments.
Then discuss the nature of proof and various common
proof procedures., ‘ , -

References

M: 901"90)4'

Y: 282-:290 (required reading)
Y: 291-301

Recommended Time: 5 lectures




3. Numeration Systems
A. Content o
Discuss the Hindu-Arabic system, exponents, decimal g
system, standard notation, and scientific notation.
Introduce systems with bases other than ten. ©Show
some examples of computation in other bases, but do
nct give students too much of this to do on their
own., Aim for understanding rather than computational
skill. Snhow how decimal fractions may be written in
other bases. Some students may be interested in
‘looking at negative number bases on their ovm. Such
material may be found in the Mathematics Teacher.

B. References \

P: 1.5a, 1.5b, i.5¢c, 1.5d, 1.6
P: Chapter 5 zcomplete)

M

Y

T

Chapter 2 (required reading)
:  pp. ¥1-49, pp. 234-239
selected topics

¢

C. Recommended Time: 5 lectures
| Note: Test 1 follows this section. | g
4, Set Theory and Relations

A. Content | - -
Do not assign an excessive number of exercises in 3
this section. Discuss sets, subsets, intersection,
union, universal set, empty set, complement, and
cartesian product, Discuss relations, éne-to-one
correspondence, and cardinal numbers. Introduce
the concept of a function and show how to graph
relations and functions. “

cLt TR PRy
N -

B. References
P: Chapter 2 (complete)
M: Chapter 4
P: Chapter 3 (complete)

C. Recommended Time: 8 lectures o | B

‘ T

n
!’
#

)

Note: Test 2 follows this section.
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5. Whole Numbers

A,

Content

In this section we show the relation between the
cardinal number of a set and the corresponding whole
number. Discuss binary relations and the various
properties of the whole numbers, Define the system
of Wthole mumbers. Show examples of the addition and
multiplication algorithms, but do mot require the
students to do more than one of each, Discuss the

 .order relations for the whole numbers, leading

B.

C.

into the notion of an upper bound on a set. Defilne
LUB and GLB in the appropriate manner, -Show students
how to graph the examples in sectionm 4.16b on the
number line, If the students want to look at short-
cuts in computation, read Yearbook. SRR

References

P: ‘Chapter 4 (complete)

Y: Chapter 5

Recommended Time: 10 lectures

Note: Midterm Examination follows this section.

6. Integers

A.

Content

Introduce the set of integers as an extension of the
set of whole numbers. Define the system of integers.
Show distinction between a prime rnumber and a com-
posite number. Prove that the number of primes is
infinite. Discuss prime factorigzation and state the
Fundamental Theorem of Arithmetic. Give an example
of a system without unique factorization, such as the
set of even positive integers. State and give .
examples of the division algorithm and define GCD and
LCM. Discuss order relations among the integers.
Distance on the line is given by a discussion of
absolute value. Use clock arithmetic to introduce
congruence. Another example of a system without
unique factorization can now be shown. The set of
positive integers congruent to 1 modulo 3 does not
have unique factorization. Consider some unsolved
problems.of number theory. | |

References A
P: Chapter 6 (complete)
M: pp. 18-19

¥: pp. 73-91 (opticnal)
Recommended Time: 12 lectures

Note: Test 4 follows this section.
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ERIC.

7. Rationals

A.

B.
c.

8. Real

B.

Ce

Conten?

Define a rational number as an equivalence class of
ordered pairs of integers. Define the system of
rational numbers. Discuss the various interpretations
of rational numbers. Discuss the order relations
in the rationals and derive the various properties
of order. Discuss the property of denseness and
plot soiution sets of inequalities., Introduce the
dirrational numbers by looking for a number whosec
square 1s two. Prove that the square roots of

2, 3, and 5 are not rational. Ask students to try
£0 prove that the square root of U is 1rrﬂtional.

References
P: Chapter 7

Recommended Time: 12 leckures
Note: Test 5 follows this section.
N-ambers

Content

Discuss the real number line, Consider decimal
approximations of rational and irrational numbers.
Define the system of real numbers. Discuss square
roots, omitting the square root algorithm in section
8. 1Ha and consider Newton's method. While talking
about the complex numbers, keep the dlscu351on as
simple as possible.

References
P: Chapter 8 (omit section 8 1ha)

Recommended Time: 7 lectures

9. Probability and Statistics

A.

Content '

Define probability and give examples that can be
solved by counting methods. Do not introduce
permutations and combinations. Show the difference
between mean, median, and mode., Give examples. of
different dlstrlbut¢ons to show this. Show how

the standard deviation can be found. Discuss |
correlation intuitivelyvy by means of grapns of points.
Show the standard normal curve and its characteris-
tics. Give examples of how statisties can "lie",

- 22~
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B. Reference '
! MS: ‘Chapter 8 /

-

C. Recommended Time: 5 lectures
Note: PFinal Kxamination followg this section
10. Optional Topics

These topics wmay be taught if time allows. They are not
designed to be taught at the end of the coursej; rather

they should be inserted at appropriate points in the course,
The decision as to which of these topics should be taught
and when they should be taugnt will be left to the
instructor,

A. TFour Color Problem
Meserve & Sobel, Introduction to Mathematics,
chapter 1, sectlonﬁh, p. 19,

Mesiﬁge & Sobel, Mathematics for Secondary Teachers,
p. [

ybthematics Teacher, May 1967, pp. 516-519

‘B: Negative Number Bases
Mathematics Teacher, November 196 pp. 723-726,

C. Fermat's Last Theorem and Goldbach's Conjecture
Meserve & Sobel, Introduction to Mathematics,
chapter 1, section 4, p. 18-19,

D. History of Mathematis
Film: Donald Duck in Mathemagic Land, avallable
from I.U. Audio-Visual Department.
Mathematics Teacher, March 1967, pp. 264-278.

E. Geonetry
See book by Abbott, Flafland.

F. Secret Codes
Peck, Secret Codes, Remainder Arithematic and
Matrlces, NCTM, 1961

Gs How To Lie With Statistics
| See book of same name by Huff.

H. Matrices (2 x 2) |
Introduction to Matrix Alzebra, SHSG.

I. Applications of Probability To Games
Mathematics Teacher, lMarch 1967, pp. 210-21k,




L,

M,

Priendly Numbers
Mathematics Teacher, February 1967, pp. 157-160.

Mathematics and Music
Mathematics Teacher, March 1968, pp. 258-271.

Digital Problems |
Mathematics Teacher, February 1968, pp. 18i-189.

Magic Squares
- 27th NCTM Yearbook, pp. 207-220

Mathematics Teacher, January 1968, p. 18.
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1.

3.

To facilitate uniform grading in T10% it is suggested that
a "C" grade should require mastery of the following objectives.

b)
c)
d)

Grading Standards for T10Y

Be able to write any given real number in expanded
notation.

Convert numbers to scientific notation and the reverse.
Work problems with exponents, l.e. | ‘

?
32 . 3h = 2 3(32)2 = 3’+

Convert integral numerals in other bases into numerals
in base 10,

Be able to perform simple addition, subtraction,
multiplication, and division in the various bases.

Be'able to write definition of union, intersection of
sets, complement of a set, relation, function, and
properties of equivalence relation., .
Determine union, intersection of certain sets and the
complement of a set. WU

Given information about a particular set, list the
elements or describe the set. -
Determine whether a given relation satisfies properties
of an squivalence relation and maybe determine equiva-
lence classes.

Be able to tell if two sets are in 1-1 correspondence.

Be able to write definitions of closure, commutativity,
and associativity. o |
Compute cardinal number of finite sets.

Plot solution sets on number line,

Write definition of identity and inverse properties.
Determine whether a given number system satisfies the
five above properties, |

Fill in th« reasons in the steps in the addition,
subtraction, multiplication and division algorithms,

Write definition of addition, subtraction, multiplication

and division for whole numbers.

Do computation in integers. Therefore, must know laws
concerning addition and multiplication. |
State Fundamental Theorem of Arithmetic.

Find GCD and LCM.

|
|
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Do computation in rational numbers using equivalence
class definition, -

Order any given set of rational numbers.

Determine if a given number is irrational or not.
Work problems in percent, i.e., 204 of 10 = ___ ,

36 is what percent of 407

Know that there exists a number for every point on the

. "line.

Convert rational numbers to decimal expanded form
(1/3, .33) and back the other way.

Give definition of probability, mean, median, and mode,
Compute probahility of any event that can be determined

by simple counting procedures.
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INTRODUCT ION TO LOGIC

Prepared for T104
Ralph Seifert, Jr.

INTRODUCT ION
Mathematiclans spend most of their time discovering new
mathematical facts:;and creating arguments (or proofs) to show

why these facts should be accepted, We hope that in this

course you will discover many mathematical facts which are
new to you, In this mimeographed material we shall éxplore
the activity of proof construction by trying to answer the
question, "What is a convincing argument?"

Arguments use language, of course, and some arguments
may use sentences which are structurally quite complex, such
as: "If both the cost of soap and the cost of detergent go up,
then the laundries will either raise rates or stop free deliv-

véries; but if the cost of soap stays the same, or if the cost of

detergent stays the same, then the laundries can be run as before,
unlessS....." Whether or not an argument is convincing depends
on whether or not certain sentences used in the argument are
true, It may be hard to tell whether or not a long, complex
sentence is true. In the first part of this unit we will learn
how to determine the truth or falsity of a long, complex sen-
tence by looking at shorter, simpler sentences. As a means
toward this end we will analyze certain logically important
English words like "and", "or", and '"not", with a view toward
determining their exact méanings in everyday speech. |

Next, we will discuss different kinds of arguments and.
get some practice in telling good ones from bad ones. Finally,

~-we will look at some special arguments used in mathematics

(and show that they are convincing).

- 2L EF -
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In this study of everyday arguments we will use mathematical
methods. Therefore the very first section of this material
explains how mathematics can be used to study real everyday
situations. (You may also have use for this information when
you study problem sclving.)

HOW MATHEMATICS IS USED

Mathematics, as practiced today, can be defined as che
study of ahstract structures. Despite this, our maln nse of
mathematics is in the study of real objects; as one grade-school
student put it, "Because of numbers, we can figure out what
nappens if we have ten apples and do sometning." Exactly how
do we "figure out what happens"?

Suppose we have *“en apples and do something; say e dacide
to throw away the three smallest apples and cut each of the
remaining ones into halves. I ask how many pileces of apple
we will then have. Instantly you think, "ten minus three, multi-
plied by two." You have taken the first step in solving the prob-
lem, namely that of abstraction. That is, you have correctly

‘noticed that the solution tc the problem does not depend on the

fact that the objects involved are particular apples, or on
the fact that: :the discarded apples-are-to be the smallest ones
(the -answer would be the same’ for any other ten apples, or for
peanuts, or kumquats, or sponges); the answer only depends on
the abstract concepts of (in this case) ten-ness, three-ness,
throwing-away, and cutting-in-two. At the same time, you have
given names to these concepts; you might even have written
dovn symbols to help you keep things straight, e.g.

(10 = 3) x 2 =2
This is the step of formalization, or the representation of
abstract ideas by means of symbols or words.

The next step is computation, or the reduction of complex
formal expressions to simpler ones. You know that "three from
ten is seven" and that "seven times two is fourteen". Notice |
that if you wish, you can perform this step without reference

Y




to the abstract concepts you were thinking about a moment agos-
for you know that in this system the symbol "(10 «~ 3)" can
simply be replaced by the symbol ngn, and that "7 x 2" can be
replaced by "ih".

The final step is interpretation. 7Ycu interpret the formal
symbol MU4" as denoting the abstract concept of fourteen-ness,
and then you interpret this concept in terms of the original
physical situation and announce that the answer 1s "fourteen
pleces of apple". Probably the entire four-step process took only
a few seconds, and you were not aware of the individual steps.,
This is because the problem was so simple.

REALITY ’ | ABSTRACT ] FORMAL
| CONCEPIS SYSTEM
N e\

Problem Abstractloa/ Thougbts | Formalization> Complex

! V| Expression
Cnmputation~*’”;E]
A é

Answer {Interpretation| Thoughts {(Interpretation Sinple

\\J \N‘ Expression

~are carried out when solving more difficult problems, like:

THE LOGIC OF EVERYDAY LANGUAGE

whether or not it is true. You might not have thought this was

EXERCISE. Think of how the four steps mentioned above

(1) Filling out an income-tax form., (2) Designing a suspension
bridge.

Let us apply the ldeas of the preceding section to a study
of the following problem: given an English sentence, we ask

a mathematical problem, since it does not involve numbers.,
But languages have structure, so they are to that extent capable
of mathematical analysis. | |

Statements. English sentences fall into two classes,

~306 -




namely the class of sentences that are neither true nor false,
and the class of sentences which are eitner true or false.
The first class contains such sentences as:
Come beck tomorrow.
Where are you?
Help!
The next sentence is false.
- The preceding sentence is true,
The second class contains such sentences as:
Gold is a metal. )
 George likes cake,
2+ 6 =8,
2+ 8B =9,
" If I fall in the lake, I will get wet,
Everyday logical reasoning uses only sentences from the second
class., Thus we deflne a statement to be a sentence which is
elther true or false, and we confine the rest of our discussion
to the class of statements. A statement which ig true will be
sald to have truth-value T; false statements have truth-value F.
A statement may contain simpler statements within 1tself;
for example, the statement "John is downstairs and Fred is outside"
contains the simpler statements "John is dovmstairs" and "Fred
1s outside". In such cases the truth-value of the entire statement
clearly depends both upon the truth-values of the simpler state-
ments and upon the nature of the word or words used to connect
them (in this case, "and"). Words iike "and", which have no
substantive meaning themselves but are used only to join two
statemeats together, are called connectives. For example, the
words "and", "but", "either...or", "neither...nor", and "if,..
Xthen" can be used as connectives, A statement which isy or can
be rewritten as, a combination of two or more statements by
using connectives is called a compound statement; statements
which are not compound are called simple. The simple statements
which make up a given compound statement will be called 1ts atoms.
The truth-value of some statements just cannot be decided;
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for instance, consider "Exactly 10% Sioux Indians were born in
1487.," Therefore the problem we first mentioned (that of deter-
mining the truth-value of any given statement) cannot be solved
by mathematical methods. Suppose, however, that our given
statement is compound, and that the truth-velue of each of its
atoms is knowvn. Then the truth-value of the entire statement
depends only on what the connectives are, and in what order they
occur, This problem begine to look like a mathematical onej
that is, we can conceive of a mechanical computation which will

‘tell us the truth-value of the compound statement, given the
truth-value of each of its atoms. To decide how to do this
computation, we must consider each connective individually and
decide how it is used (i.e. what its use means) in everyday
speech.

The connective "and'". We begin our analysis of connec-
tives by deciding how to ¥ind the truth-value of a statement of
the form "A and B", where "A" and "B" are statements whose truth-
values are known. Suppose you are sitting in an office and your
friend Sam suddenly points to two of the desks in the office and
- shouts, "There is a flamingo sitting on this desk, and that other
desk is on firel" You carsfully® anmlne both desks and see that
%Ehere is indeed a flamingo sitting on the first desk, and that
the second desk is actually on fire. TYou would then certalnly
agree that Sam's statement was true, and you would call the firemen
to come put out the fire, and tell the zoo tc come catch the
flaminge., On the other hand, suppose you saw no flamingoes
sitting on the first desk, and the secomd desk was pot on fire.
You would then say that Sam's statement was false (or even
"totally false"), and you would call neither the firemen nor the -
zoo. (You might ecall a psychiatrist for Sam.)
What would you say (regarding Sam's statement) if there was

a flamingo sitting on the first desk, but the second desk was

not on fire? What would you say if the second desk was on fire,
but the first desk bore no flamingoes? = In each of these situa-

tions you would probably say that Sam's statement was at best
\

-3 L —

ER&C

Aruitoxt provided by exic [




"only half true", "only partly true", or "partly false". That
is, although you would call the zoo (in the first case) or the
firemen (in the second case), you would say that Sam's statement
was not entirely true; you might say that it was "technically
false" or "false, in the broadest sense of the word". 1In logic,
"false" means '"not entirely true"; we do not distinguish between
the everyday notions of "partly false" and "totally false'.
So mathematicians would say that Sam's statement was just false.
The decisions we have reached can be conveniently summarized
in a table, such as the following:

then the truth-value
If the truth-value and the truth-value [of "There 1ls a

of "There is a of "Tne second desk |flamingo sitting on
flamingo sitting on | is on fire" is the first desk, and
the first desk" is . | |the second desk is

on fire" is

R
N
g o w3

A table of this sort, which gives the truth-value of some
statement for each possible combination of truth-values of its
atoms, is called a truth tsble for that statement. ;

A completely similar dlscussion applies to any other statement
involving '"and'"j; that is,

If "X" is any and "Y" is any then the truth-value
statement whose statement whose of the statement
truth ;value is truth-value is "X and Y" is

T T T

T F F

F T F

F F F

In vords, the statement "X and ¥Y" is true when both "X" and "Y"

i | - —33;,
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are true, and "X and Y" is false jin all other cases.

Formulas. The expression "X and Y" is am example of a
formula. In gensral, a (logical) formula is zn expression, ]
containing variables (like "XV, "Y", etc.) ant connectives,
which would become a statement if statements were put in where
the variables are. The distinction bevween statements and
formulas is like the distinction between numbsrs (2, 3, etc.)
and variable terms (x+y, 4z, etc,). Formulas can be thought
of as abbreviations for statements, in the semse that we use
single letters (variables) to stand for tThe atems of the statement,
When computing the truth-value of a compound statement from the
truth-values of its atoms, we ignore the actual content of the
~wtoms wnd vonsider onty vwhat the connectives sre and how they
connect the atoms (i.e. in what order). An appropriate formula
can give all this information, so we can work with formulas
instead of statements. Since each formula abbreviates thousands
of different statements, we can thus analyze 2kl these thousands
of statements at once. This is the advantage of using |
formulas. ' ’

The truth table of a formula is a table 1ike the last one
given above, in which we can look up the truth-value of any
statement abbreviated by the formula, given the truth-values
of the statements represented by the variables in the formula.

The connective "qr'". We proceed to analyze other
connectives; next we look at "either...or". Huppose Jack says,
"Either smoking is pronibited or drinking is grohibited." What
woild you say (regarding the truth-value of this statement) 1if
it turned out that smoking was not prohibited, but drinking was?
If suwoking was prohibited, but drinking was mot? If neither one
was .~onhibited? If both were prohibited? Malke a truth table ’
for the formula "X or Y" which summarizes yomr decisions.

In the above problem you may have had trouble deciding what
to say if both smoking and drinking were prohibited. Just
what Jack meant to say about this possibility is not entirely
clear. This is because the word "or" is used in English in
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two different ways. Jack might have meant "Either smoking is
prohibited or drinking is prohibited (or possibly both); this
usage of "or" is called the inclusive usage. On the other hand,
he might have weant, "Either smoking is prohibited or drinking
is prohibited (but not both)"; this usage is called the
exclusive usage. So we have

~
>

X or Y (inclusive) X or Y (exclusive)
T T T F
T ¥ T T
F T T T
FI1F P F

In everyday speech we often have uo determine from the context
which way the word "or" is being used. If a man says; "I have
lots of things to buy, so I will go downtown today or tomorrow",
you would probably agree that he might actually go on both

days, or at least that he had not said he would not. So this
%s an inclusive usage. On the other hand, if a man says, "By
this time tomorrow I will either be rich or bankrupt", he is
obviously using "or" in the exclusive sensej for wealth and
bankruptey cannot occur at the same time.

When a mathematician says "or", he always means the inclusive
usage (unless he says otherwise). This agreement is made under
the general principle that in mathematics a given word should
have only one meaning. Thus from now on "or" means "inclusive
or", regardless of the context; and we write the table

XorY

I o I I

o A e e e e e e -

e -
Y
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Negation. The word "not" is not used to join two state-
ments together, but it is like the other comnectives we have
studied in that the truth-value of the statement "not A" is
completely determined by the truth-value of "A"., In fact
we have the truth table |

X not X
P
F T

Therefore we shall call "not" a connective also. |
Gombinations of connectives. When using more than one
connective, it is necessary to indicate precisely which state-
ments are connected by which connectives, You recall that
in arithmetic we cannot write just "3 x 4 + 2" without being
-ambiguous; we must either use parentheses or else come to
some agreement about the order in which X and + are to be con-
sidered (usually we agree to consider x first), The problems '
are similar herej; what does "A and B or C" mean? In writing
English statements we avoid this sort of ambiguity by using
punctuation and various literary devices. In writing logical
fo:rmulas,‘ we use parentheses. As in algebra, when interpreting
an expression involving parentheses we work outwards frcm the
innermost pair(s) of parentheses.

' Statement: Either both Tom and Jim will go, or Bill W111.,.
Formulsa: (X and Y) or 2

Statement: Tom is going, and either Jim or Bill is going.
Formula: X and (Y or 2)

Statement: Jack and Fred are not both going. K
Formula: not (X and Y)

i ——. Statement. Jack 1s not going, but Fred is.
- Formula: (not X) and Y
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The connective "if,..then'. Suppose that at 11:00 a.m.
Leo says, "If you wind your watch now, then it will still be
running at noon." If you immediately wind your wateh and it is,
in fact, still running at noon, you wcﬁia'éertainly say that
Leo's statement was true. On the other hand, if you immediately
wind your watch but find at noon that it has stopped, you would
certainly say that Leo's statement was false. The same sort cf
discussion applies to other "if...then" statements; so on the
basis of everyday experience, we all agree that the following
truth table (so far as it goes) is accurate:

X| Y |if X, then Y

TI]T T
T | F F

What shall we put in this truth table when "X" has truth-
value F? To return to the above example, what would you say
about Leo's statement 1f it happened that you did not wind your
watch at 11:007?

Suppose first that the watch was still running at noon. You
might say that since the wateh is running anyway, it certainly
would still'be running even if you had wound it; so Leo's state-
ment was true. But this argument is not convineing. For 'onenthing,
if you had wound the watch you might have wound it too tightly,
making it stop; or i1t might have stopped for some other reason,
not connected with your winding it. For example, if you had
wound the wateh at 11:00, you might have been run over by a herd
of elephants at 11:30, causing the watch to.stop. You really
cannot know what would have happened if you had wound the watch
at 11:00, simply because you did not do so, However, this does
not prove that Leo's statement was false, for it is still possible
that your watch would have been running at noon if you had wound

St.

Similarly, if your watch is in fact not running at noon,

vys vy §
» ' T
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following remarks attempt to justlfy the ch01ee Whlch mathe-

you still cannot know what would have happened if you had wound
it at 11:00. So we have not yet settled the guestion of whether
Leo's statement was true or false if you did rot wind the watch
at 11:00. By now you may be thinking that it does not matter
whether we call Leo's statement true or false, since it is
irrelevant(or has no useful content) in this situation (in
which the watch was not wound). For computational purposes,
however, we want "if X, then Y" to have a truth-value when "X"
has truth-value F; so we must choose a reasonzble oie. The

maticians have agreed to nake.
Consider the following pairs of otatements.

"If I don't pass T104, I will have to leave school."
"Either I pass T104% or I will have to leave school."

"If I am not here at 6:00, then I will be at home,"
"At 6:00 I will be either here or at home."

"If I am not crazy, then you must be."
"One of us is crazy." |

In each pair you should agree that the first ctatement
and the second statement have the same import or contqu, or that
they convey the same information; that is, if‘jou were in a |
position to use one of them, it would not matier much which
one you used. We could also say that the two statements in
each palr have the same meaning., As a consequence of this, the
two statements in each pair have the same truth-value. Now notice
that the first statement in each pair is of the form "if (not 2),
then Y"; and the second statement 1s of (or camn be expressed in)
the form "Z or Y", where of course each of "Z* gnd "Y" stands
for the same statement in both formulas. (For example, in the
third pair "Z" is "I am crazy" and "Y" is "Yom are crazy".)
Thus we have some support for the assertion that if "Z" and "Y"

are statements, then "if (not 2), then Y" meaws the same thing as

\
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%“Z or ¥". In particular, letting "Z" be the statement "not X",
we see that "if(not(not X)), then Y" means the same thing as
"(not X) or Y¥". But to say "not (not X)" is to say "X"; so
"if X, then Y" means the same thing as "(not X) or ¥".
We have already studied "or" and "not", so we can make the
following computation:
If "X" and "Y" are both true, then '"not X" is false and "Y"
1s true; so "(not X) or Y" is iruc.
- If "X" is false and "Y" is true, then "not X" is true and
"Y" is true; so "(not X) or ¥Y" is true.
(You can finish this computation.):

Since "if X, then Y" means the same thing as "(not X)

WA SN b ke

or Y", we can use this computation to write the following
-—-truth table:

X | Y ! if X, then ¥

T | T T :
T | F F ‘
F|T T :
F|F T |

Notice that the first two rows of this table agree with the
partial table we put down before.

When writing formulas, we often write "X 4‘!" as an abbre-
viation Zor "if X, then Y". Thus we have the table

X | Y| XY i
T | T T |
T F F |
F T T ?
FP|F| T ,

In words, "X - Y" is false just when "X" 1is true and
"Y"* is false., Thus (and this is very important) the truth of
the statement "if A, then B" does not, by itself, imply any

S T e TR TR e z
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sort of connection (logical or causal) between the contents of the
statements VA" and "B", For example, the statement "If cows

give milk, then birds fly" is true, since "Cows give milk" and
"Birds fly" are both true. But we cannot deduce "Birds fly"

_ from "Cows give milk"; nor can we say that the flight of birds

is caused by the giving of milk by cows.

EXERCISES. - 1. Find the truth-values of the following
statements: (a) 2+ 4% = 5and 2+ 5= 73 or else 3 + 1 =k,
(b) If 3 < 2, then both 3 <% and 3 <1, (c) Either 4 < 6
or 6 < 4; and furthermore, 10+ 5 =12,

2. Find a number x such that the following statement

ds true: x s 20rx > 5; apd also.x >0 and x < 1.

3. Assuming that Joe, Sam, and Jane are going to the
party and that Mary and Fred are not golng to the party, which
of the following statements are true? (a) Joe is going to the
party and Mary is not going to the party. (b) If Sam is not
going to the party, then neither Fred nor Jane will go.

(¢) If either Mary or Jane goes to the party, then Sam will
not go to the party.

4, How did you (or how could you) use abstraction, formali-
zation, and interpretation in obtaining your answers to Ex. 3?

Tables for comubinations of connegtives, A good way to

compute the truth table of a formula containing several connectives,
such as "X and Y, or not X", is to make a table with several
columns (see the table below). In the first two (or more) columns
we place all the possible combinatlons of truth-values for "{" and
ny" (and any other variables which appear). For esch such combine
ation (reading norizontally) we then compute, one step at a time,
the truth-value of the entire formula (in this case "X and Y, or
not X"), writing down each step in the appropriate column. In
this particular case we proceed as follows in each row: (a) in

the third column, we put the result of applying "and" to the

given values for "X" and "Y"4 (b) in the fourth column, we put
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the result of applying "not" to the given value of "X'"j and
finally (e¢) to fill the fifth column, we apply "or" to the
previously computed values of "X and ¥" and "not X". To better
understand this process, compare it with the process of computing
(x x y) + (-x) for varlous numbers X,¥. |

x| ¥ | Xxand Y | not X | (X and Y) or (not X)
T T T F T
‘T F F F F
F| T ) T T
P F F T T

Thus, for example, we can use the table to see that if MAY
and "B" are both false statements, then "A and B, or not A" 1s
true statement.

Two more examples:

1, Truth table for "if X, then not (X and Y)".
X | Y| Xand Y| not (Xand ¥Y) | X - not (X and Y)
T T T F F
T F F T T
F T F - T T _
F |F F T T
2, Truth table for "(X and Y) or (Z and Y)".
x| v!1 2 | Xand Y| Zand ¥ | (X and ¥) or (2 and Y)
T| T | T T T T
T| T} F T F g
T F| T F F F
T| F| F F F F
F|{ T | T T T I
F|{ T | F F F F
F F T F F F
F F F F F F
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In the preceding section we remarked that if twe statements had %

‘the same meaning, then the (last columns of) the truth tables

of the corresponding formulas would be the same. This remark
works both ways. For example, the following shows that "X or Y
has the same truth table as 'not ((not X) and (not Y))".

X 1Y | not X!notY | (not X) &hot ¥) | not((not X) &hot ¥Y))| Xery

vy
I
H oo g
I R

o 33
e I o= B I
H 3

133

In other words, if "A" and "B" are statements, then the statements
"A or B" and "not ((not A) and (not B))" will have the same
truth~value, regardless of the actual truth=-values of "A" and

of "B". Thus we can say that "A or B" and "not ((not A) and

(not B))" mean the same thing, or that "or" can be expressed in
terms of "not" and "and", Two formulas containing the same

- varlables are sald to be equivalent if (the last columns of)

their truth tables are the same.

EXERCISES., 1. Show that "not (A and B)" means the same
thing as "if A, then not B", for any statements "A" and "B",

2. Decide what the truth table of the connective "neither...
nor" should be, and then show that "neither A nor B" means the -
same thing as "(not A) and (not B)". i

3. Snow that "A and B" means the same thing as "B and A",and |
that "A and (B or C)" means the same thing as "(A and B) or (A and
C)". What algebraic laws do these remind you of?

4. Show that "and" can be expressed in terms of "not" and "or";

l.e. show that "X and ¥Y" is equivalent to some formula whose only

-connectives are "not" and "or" (possibly used more than once).

5. Is "X and (if X, then Y)" equivalent to any simpler (i.e.
shorter) formula?
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6. Find a formula (the last colum. of) whose truth table
contains only T's. What can you say about a statement that i1s
represented by such a formula?

The ¢onnective "if and enly if’'. Statements of the form
"A if and only if B" are used Ifrequently in mathematicsj so
frequently, in fact, that mathematiclans have taken to abbreviating
such statements by "A iff B". However, the connective "if and
only 1f" is seldom used in everyday speech; so we shall discuss
its meaning, Now “A, if B" means "if B, then A"; and "A only if
B" means "A only holds if B also holds", or "whenever A holds,
then also B holds", or just simply "if A, then B". So "A if and
sonly 4 B* means "{¢if A, then B) -and (if B, then A)', The ¢
table for the corresponding formula is

R T

X |Y | XY |¥-X (XY and (¥ = X)

T | T T T T
T | F F T F
F|T T F F
F | F T T T

Hence the truth table for "iff" is

<l v lxieey 7 -
T| T T
T| F F
F| T F
F|F T

Thus the statement "A iffB" can be teken to mean that "A
and "B" have the same truth-value, or that the situatlons described
by "A" and by "B" always occur together; that is, if elther “
occurs, then the other also occurs. Example: "A polygon has

[N

three sides 1ff it has three corners". Again, however, the truth
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of "A 1ff B" does not carry with it any claim of a logical connec-
tion between "A" and "B"., For example, "Birds have legs iff lce
floats on water" is a true statement.
If "A" and "B" are statements describing conditions and
"i{f A, thenB" happens to be true, then we say that the condition
described by "A" is a sufficient condition for the¢ presence off the
condition described by "B", and that "B" is a necessary condi%ion
for "A". That is, "if A, then B" says that for "B" to be true,
it is sufficlent for "A" to be true; it also says that if "A" is
true, then it is necessary that "B" be true. If "A 1ff B" is true,
then each of "A" and "B" is called a necessary and sufficient
condition for the other. These terms were more widely used
Pack “in: the days when long words were preferred fo .shori ones.
Inverse, gonverse, and contrapositive. Suppose "C" 1s the
statement "if A, thenB". Then the gonverse of "C" 1s the
Statement "if B, then A"5 the inverse of "C¥ is "if (not A),
then (not B)"; ari the gcontravositive of "C" is "if (not B),
then (not A)". '

EXERCISES. 1. Make up two Englisnh "if...then" statements

and write their converses, inverses, and contrapositives.
2. Show that an "if...then" statement means the same thing -

as its contrapositive.
3. Show that the converse and the inverse of an "if...then"

statement mean the same thing.
h ~ Show that an "if...then" statement does not always

mean the same thing as its converse,

duantifiers. We have seen that statements containing connec-
tives can be broken down into simpler staterents, aml that the
truth-value of the original statement can be computed from the
. truth-values of the simpler statements. At the same time, we have
analyzed the "meanings" of the various connectives, There are |

"
J o
?
|
£ ,
i.
|

ments, but which might not involve explicit occurrences of connec-
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tives. These are the statements involving such words as "every",
"each", "any", "some", and so on,used to express one of the two
ideas | |

"Every P is a Q" or

"Some P is a Q",
where P and Q are names or descriptions of objects. The words
"every" and "some", when used in this way, are called guantifiers.

The meaning of each quantifier is clear. "Every ¢ is a Q"

means "y is a Q, and p, is a Q? and Py is a @, and ...", and

"Some P 1is a Q" means "py is a Q, OT Py is a @, or ...", where
Pyy Ppy Pyyeces is a list of all the P's. This list could be
quite lcng, or even infinite; so we do not attempt to write
general truth tables for "every" or "some',

The important thing to know about quantifiers is that
(1) "Not every P is a Q" means the same as "Some P is not a Q";
and (2) "Not (some P is a Q)" means "Every P is a non-Q",or
"No P is a Q", (Convince yourself of this.) Therefore, one
may (for example) show that "Every P is a Q" is false by showing
that some P is not a Q.

" EXAMPLE. Suppose the algebraic equation x + yz = (x+y)(x+z)
is presented as an alleged algebraic rule, and we are asked to
prove or dlsprove it. The fact that the equation is being
proposed as a rule means that the proposer is really asserting
the statement "For all numbers x, y, and z, we have

x + yz & (x+y)(x+z)." Some ingenuity may be required to trans-
form given English statements into quantifier statements with the
same meanings, In this case we can rewrite the "rule" as
"Every three numbers X, y, and z are numbers for which |
x + yz = (x+y)(x+2)." A little experimentation with various
numbers shows that this statement is falsej; for example,
— 1+ (1x1) # (1+1) x (1+1). So we can assert that "Some three
nur-ers (namely x=1, y=1, and z2=1) are not numbers for which
=X 4+ yz = (x+y)(x+z)." By the above remarks, this is the same as
saying that "Not every three numbers x, y, and z are such that

\




x + yz = (x+ty)(x+z)." BSo we have disproved the rule. However, |
we may not now just write x + yz # (x+y)(x+z), since this could eé
be taken to mean that every three numbers x, y, and z are such

that x + vz # (x+y)(x+z), which is not what we want to say.

(In fact 1+(0X0) = (1+0) % (1+0) and °P(3 6) = (2 3 ) X ( 6) )

Ao gyt

EXERCISES. Express the negations of each of the following
statements in good English. Avoid ambiguity.

1« A rolling stone gathers no moss.

2. Someone here has a book.

3., Someone here does not have a book.

4. The sun will shine every day next week.

5. All rulers in the U.S. are marked off in inches,

.
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THD NATURE OF ARGUMENT
N An argument can be defined as a discourse whose purpose is to
convince people that some given statement is true. The state-
ment whiceh the argument triles to prove 1s called the gonclusion of
the argument, and the statements which claim to support the
conclusion are called premises. An argument is convincing
- 1f people who believe the premises to be true agree, after
reading the argument, that its conclusion is also true. There
are two major types of argument, called inductive and deductive. |
Inductive arguments., Suppose a zoologist wants to prove ;;
. the statement "Koala bears eat only eucalyptus leaves". He gets 1.
a government grant, goes to Australia, and observes a total of
5684+ different koala bears, none of whom he sees eating anything
but eucalyptus leaves. He then says, "Each of the 5684 koala
bears I saw ate only eucalyptus leaves while I was watching; . ' !:
therefore all kcala bears eat only eucalypfus leaves." Assuming ff?
that we belleve his: premises to be true, just how convineing this N
argument is depends on how many koala bears there are in the
world, and on how thoroughly this zoologist observed the ones he
saw, If we knew that there were only 6000 koala bears in the
world, and if the zoologist had observed each of his samples for
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an entire year, then we would tend to accept his argument. If we
knew that 1,000,000 koala bears existed, or if the zoologist had
only watched each animal for five minutes, we would probably

not be convinced. But in no case are we completely convinced

that all koala bears limit their diets to eucalyptus leaves. We
are willing to believe at most that it 1s a good bet that the next
time you see a koala bear eating, he will be eating eucalyptus
leaves. An argument of this kina, which attempts to prove some
general statement by citing a long (but not exhaustive) 1ist of
specific cases, is called an inductive argument. As the above
example indicates, we can never be 100% sure that the conclusion
of an inductive argument is true, even 1f we are 100% sure that
each of the premises 1s truej; rather, the conclusion of such an
argument must be interpreted as a statement that something is a
"good bet". (Of course sclientists do interpret thelr conclusions
in this way, even vhen they are expressed as universal asser-
tions,) Even though inductive arguments do not lead to absolute
truths, they are the best arguments we can get for many statements
about the real world, |

Deductive arguments. A deductive argument is one which

" takes all its force from the linguistic structure of its premises,
. pather than from their content. Thus the power of a deductive
.argument to convince is the same,_regardless of the meanings

given to its individual words. Tt is possible to write deductive
arguments which are absolutely convinecing, in the sense that
mature, rational people wil® agree that if the premises are 100%
true, then the conclusion must be 100% true. Such arguments are
called valid. Non-convincing deductive arguments (in which it
1s possible for the conclusion not to be 100% true even when
the premises are 100% true) are called invalid.

~ There are many kinds of deductive arguments used in everyday
life, and we will not try to list all of them here. Most college
students can accurately classify a deductive argument as valid
or invalid if thney can ignore the content of the argument and
look only at its linguistic structure. We will give some examples

_.715..,




and show how arguments can be tested by mathematical methods,
EXAMPLE. "If I go to the party, I will see Mary. I will
go to the party. Therefore, I will see Mary." Let "A" be the
statement "I will go to the party" and let "B" be the statement
"I will see Mary". Then the premises of this argument are
"if A, then B" and "A", and the conclusion is "B". If this is
a deductive argument, then its strength lies only in-its struc-
ture and thus we can establish its validity or invalidity Just
by looking at the premises and conclusion in this abbreviated form.
That is, we ask "If both 'if A, then B' and 'A' are true, must
'B' be true?" By the meaning of "if,..then", this.is the same
as asking 1f the following statement is true: "If ((if A, then
B) and A), then B"., Consider the following truth table:

X1Y | X-Y (X - YY) and X ((X - Y) andX)-oYV
T T T T T
T F ¥ F T
F T T F T
F F T F T

BEvery entry in the last column is T. This means that for any

o,

statements "A" and "B", be they true or false, the statement
"if ((if A, then B) and A), then B" is true:. Consequently, by
the meaning of "if,..then", we see ‘that "B" mugt be true
whenever "if A, then B" and "A" are both true. So the quoted
argument is completely convincing, and by virtue of 1its
structure alone {since that was 21l we looked at). Hance the
argument %s deductive and wvalid.

It 1s very important to note that the valldity of an argument
does not by itself imply that the condlusion.gi,that argument is
true. Validity Just means that if the premises are true, then
the conclusion must be true. If one of the premises is false,
then the conclusion need not be true, even though the argument
1s valid. Thus in the above example, the speaker may be lying
when he says he will go to the party; if this 1s the case, then
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he might not see Mary. But his argument is still yalid. Similarly,
the fact that some argument is invalid does not imply that the
conclusion of that argument is false.

EXAMPLE, "If I go to town, I will buy something, If I buy
something, I will come home with less money. Therefore, if I
go downtown, I will come home with less money." The validlty
of this argument depends on the truth of statements of the form
"If ((if A, thenB) and (if B,then C)), then (if A, then C)."
The truth table

(X - 1) ((X - ¥) and
X Y|2({X2Y{Y~Z2|and (¥ -2) | X =2 |Y ~2)) = (X = 2)
T|T|T T T T T T
TIT|F® T F F F T
T|F|T F T F T T
TP |F F T P ) T
FIT(T T T T T T
FITF T F F T T
PIPIT T T T T T
PIF|F T T T T T

shows that such statements are always true. So the argument
is valid.

EXAMPLE, "If Jones were a Communist, he would have voted
for thls measure. Jones did vote for this measure. Therefore

- Jones is a Communist.!" The validity of thi: argument depends on

the truth of statements of the form "If ((if A, then B) and B),
then A". The truth table

X 1Y | X=-Y| (X=-Y¥)and ¥ [ ((X -Y) and ¥) =X

T
H 3 = 3
g v3 Y A
Mg K3+

T
T
F
F

shows that such statements need not be true; that is, it 1is
possible that "if A, then B" and "B" can both be true at the same
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time that "A" is false (namely in case "A" is false and "B" is
true). Therefore this argument is not valid. (But again, this
doss not in itself mean that the conclusion of the argument 15
false.)

The axlomatic meihed. As we have seen, the conclusion of
a valid deductive argument is accepted as true if it is agreed
that its premises are true. If someone doubts that the premi-es:
are true, it may be possible to produce another valid deductive
argument which has as its conclusion the premises of the preceding
one, and has as its own premises statements which the doubter is
wiiling to believe. If these new premises are not accepted by
the skeptic, it may be possible tn repeat this process again

‘gnd again until the original conclusion is shown to follow (by

a very complicated deductilve argument combining several simpler
ones) from some set of premises which the skeptic accepts,
Suppose now that we have a very large body of knowledge
which we have obtained by direct observation and/or inductive
arguments., Suppose it also happens that various facts In this
body follow from various others by (valid) deductive arguments.
Finally, suppose we want to present this knowledge to the world
and have everyone accept it as true. In such situations it makes

.sense to try to organize the known facts so that as few of them

as possible can be verified only by observation and experiment,
and the rest follow from these few by valid deductive arguments.
If this is done, then to convince the skeptic that all our
results are true, we need orly convince him that those few
basic cnes are true, and that our arguments are valid. This
simplifies matters, since verifying a statement by experiment
can be difficult, tedious, and/or expensive, while verifying
the validity of an argument is easy. |

The classic example of this kind of organization is the work

of Euclid, 2 Gfeek mathematician working in Rgypt around
,}90“3‘C° Euclid arranged all the mathematics which was then

knowvn so that 1t followed deductively from simple premises like

L ]
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"things equal to the same thing are equal to each other", "a
straight line may be drawn through any two points", and so on,
which he thought everyone would believe on the basis of everyday
experlence,

Now when Euelid said "point" or "straight line", he meant
to indicate those objects or concepts which everyone ordinarily
thinks of when he hears the words "point" or "straight line";
and we might say not just "Euelid's results are true if you
accept his premises", but rather "Euclid's results are true
1f you accept his premises and interpret the words he uses in
'the,way everyone ordinarily does." You may think this ldea is
too trivial to bring up, since obviously the truth of a statement
depends on how we Iinterpret the words in the statement. But
suppose we Iinterpret the words "point" and "straight line" to
- mean '"polnt on the Earth's surface" and “great circle on the
Earth's surface". (A great circle is the intersection of the
surface with a plane passing through the center of the Earth;
the Equator, for example.) Experimentation convinces us that
most (though not all) of Euclid's premises are still true under
this interpretation of the words. " Any of Euclid's results
which were proven only from those premises are therefore true
under the new interpretation. (This is because deductive argu-

ments take their force only from the arrangement. of the connectives

and quantifiiers in a sentence, rather than from the meanings

of the nouns.) Consequently) without additional experimentation
we have learned a great many new facts about points and great
circles on the Earth; and in doing so we have used Fuclid's work,
even though when he did the work Euclid was not thinking about
great circles, but about straight lines. Thus we see that we
can often get new knowledge by taking old deductive arguments
and interpreting the words in them in new ways. Modern mathe-
maticians encourage such multiple interpretations by using words
like "group", "ring", and so on which have no relevant everyday
interpretations. At the same time, modern mathematicians leave
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their basic terms (like "set", "point", etc.) undefined. This
1s mostly because it is really impossible to define all words.
(For example, we could define a "set" as a "eollection of objects';
but then we would have to define "collection" and "object". We
could define a "collection" to be an "aggregate" and an "object"
to be a "thing"; but someone could ask what naggregates" and
"things" were, Clearly there is no end to this.) However,
leaving our basic terms undefined also helps encourage multiple
interpretations of the words.

For the reasons outlined above, modern mathematicians oftenr
. present collections of mathematical knowledge in the follocwing
form. First there are some statements, written in terms of
undefined words, which are not proven. These are called axioms.
Then come the rest of the statements, together with deductive
arguments showing that these statements are true under any inter-
pretation of the undefined terms which makes tihe axioms true.
These latter statements are called theorems, and the arguments
are called proofs. (We will say more about proofs later.)
The whole collection of axioms and theorems is called a theory,
or a formal or axiomatic theory. This way of organizing and
presenting mathematical results is called the axiomatic method.

Two visws of mathematies. It is now possible to think of
mathematics in two different ways. First, we can think of
mathematics as the study of (abstract*properties of) real objects.
From this viewpoint the mathematical statement "2 + 2 = L
would be interpreted as saying "When you put two objects with
two other cbjects, you have four objects." Being statements
about the real world, mathematical statements must be established
by inductive arguments, or by deductive arguments whose premises
were established by inductive arguments. Consequently we cannot
be absolutely sure that mathematical "truths" are in fact true;
although there is universal agreement on "2 + 2 = 4", there is
often a difference of opinion regarding statements about the
very small or the very large, é.g. "Every number can be divided
by twe® or "Infinite sets exist". Let us call mathematics as
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conceived in this way intultive matnematics.

Mathematics can also be viewed as the comstruction of
axlomatic theories. From this viewpoint "2 + 2 = 4" would be
interpreted as saying, ‘If certain axioms are true nder some
interpretation of certain basic words, and if '2', '+', and 'W!
are defined in terms of the basic words in such-and-such a way,
then '2 + 2 = 4' is true under that interpretation of the basic
words"; or, more simply, just "'2 + 2 = k' is a theorem of
such~-and-such an axiomatic theory" (the particular theory
being fixed by the context in which this statement appears).
~ Thus a mathematical statement merely says that there 1is a valid
deductive argument leading from certain premises to a certain
conclusion; we are not claiming that this conclusion is itrue,
but only that it is provable from the (previously given) axioms,
i.e. that it would be true if the axioms were true. Consequently
we can be absolutely certain that mathematical "truths" are true,
since they only assert the validity of deductive arguments, and
the validity of a valid deductive argument can be checxed beyond
doubting. Call this system of mathematics formal mathematics.

To summarize: In intuitive mathematics; words have meanings
(though these meanings cannot be rigorously and absolutely
defined) and thus statements tell us something about reality;
but truths are not absolute. In formal mathematics, words have
no meanings (i.e. they are undefined) and statements tell us
nothing about reality (but only about what reality would be llke
if we already knew certain things to be true; tha is, formal
mathematics is uncommitted about the true nature of reality);
but truths are absolute. You may take your choice.

PROOF'S

Nature of proof., In formal mathematics, a proof can be
defined as a sequence of ctatements, each of shich 1s the conclu-
sion of a valid deductive argument all of whose premises are axioms,
previous theorems, or earlier statements in the sequence. The

|
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last statement in the sequence is the theorem proved by the proof.

It should be clear, for example, tha if (4,B,C,D) 1s a proof

of the theorem D, then (A,B,C) is a proof of the theorem C.

In intuitive mathematics we can use the above definition with

| Waxioms and previous theorems” replaced by "statements previously

; accepted as true'.

3 Regardless of which view of mathematics we adopt, the
techniques used ir. proofs are the same. The best way to learn
what proofs are is to'ﬁee lots of proofs. (Recall how you

~learned vwhat a '"nhorse" was.) The rest of this course will

of fer many opportunities for this. Many sorts of deductive

arguzents will be seen. We shall now describe some of the most

commonly used ones. We shall talk in very general terms;
specific examples will be seen in the rest of the course.

Proving "if...then" gtatements. Suppose we want to prove
the statement "if A, then B". To do this, a mathematician

might assume that "A" is true (that is, he adds "A" to his axioms

or his collection of accepted truths) and then prove just "BY.

Having done this, ne says that "if A, then B has been proven.

Why is this legitimate? What we have shown by our proof is that

if you accept the axioms and "A" as all true,
then you must accept "B" as true. |

This is the same as saying that

if you accept the axioms as true, and also
accept "A" as true, then you must accept
"B" as true,

| This, in turn, says that

if you accept the axioms as true, then you
must admit that if you were to also accept
MAY as true, then you would have tgo accept
"B" as true.

But by the meaning of "if...then", this is to say that

if you accept the axioms as true, then you
mist accept that "if A, then B" 1s true.

This discussion should convince you that if "B" can be proven
from "A" and some other statements, then "if A, then B" can be

ez
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proven'from those other statements alone.

It is very important to realize, however, that the
assumnption in such proofs that "A" 1s true is only a temporary
one. At no time are we asserting that "A" actually iz true.

In fact, "A" might actually ".e false (we know that "if A, then
B" is true when "A" is false). The temporary aséﬁmption that

WA" is true has no connection with the actual truth-value of AN,
but is just a device used inside the proof of "if A, then B".

The argument above shows that this device can produce convincing
proofs., But after the proof is over, the assumption that VA"

is true must be discarded. (0f course you can re-make the
assumption in later proofs of "if A, then..." statements.)

Sometimes it is easier to prove "if (not B), then (not A)"
by the above method than it is to prove "if A, then B". This
**** “is a legitimate and useful method, since the two quoted state~

ments mean the same thing (as you showed in the discussion of

the contrapositive).
Proving "and" statements. To prove "A and B", one must .
simply prove one of "A" and "B", and then prove the other.

It may be possible to use "A" in the proof of "B"; this is all

right (and may save time) if and only if you did not use "B"

-- in the proof of "A"., If neither of two statements is yet accepted
as true, then proofs of both, each of which uses the other as

a premise,; will not be convincing. This error is called
" eircular reasoning. It is easler to commit this error in

intuitive mathematics than in formal mathematics, because in

the former different workers may not agree on what has previously

been accepted as true; one man might prove "A" using "B", another

might prove "B" using "A", and a third might say (reading only
the results of the first two) that together they had proved

"A and B". But he would be wrong.

- Proving "or" statements. Suppose we want to prove the

. statement "A or B". This can be done by proving just "A", or

Just "B", since "A or B" is true if either "AM™ or "B" is true.

@  ..5i%u.




But sometimes we may not see how to prove just "A", or .just "B",
directly. We can also prove "A or B" by proving "if (not A),
then B", which can often be done by using the device discussed
in the section on proving "if...then" statements. This method
1s legitimate since "A or B" means the same thing ‘as "if (not
A), then B", as you can {and should) show using truth tables.
Indirect proof. Suppose we were to construct a valid deductive
argument, with "A", "B", and "C" as premises (their number ‘
is irrelevant), whose conclusion was known to be false. Then
we would know that at least one oo "A", "B", and "C" was false, |
since if they were all true the conclusion would have to he o
true. Suppose further that we know that all the premises other
than "A" are in fact true. Then "A" must be falss. Thus the given
argument serves as a proof of the statement "not A". This
method of proof is called indirect proof, proof by contradiction,
or reductio ad absurdum (reduction to an absurdity). | §
Proof by cases. Suppose we have as our premise "A or B" p
and want to prove "C", If the premise is true, it means that
either the situation described by "A"™ holds, or else the situation
described by "B" hclds (or both). The proof must convince
people that "C" holds in either case. Thus the proaf of "C"
must consist of two parts; first, we must prove "C" from MAY,
and then we must prove "C" from "B". Then we can say: '"Either
'A' or 'B' is true. If 'A' is true then the first argument
proves C', If 'B' is true then the second argument proves 'C',
Therefore 'C' is true." This is.called a proof by cases.
If it 1is hard to prove "C" from "B" we can instead try
to prove "C" from "B and (notA). If we succeed in this and
have already proved "C" from "A", then we can say: "Either
'A' or 'B' is true. Also, either 'A' or 'notA' is true. If f
'A' 1s true, then the first argument proves 'Cf, If 'not A'is
true, then 'A' is false, so 'B' is true (since one of 'A', 'B!
1s true); thus 'not A' and 'B' are both true and the second
argument proves 'C'., So 'C!' is true.' | |
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EXERCISES., 1. To say that the first proof-by-cases method

described above is valid is to say that the statement
If ((A or B) and (A - C) and (B = C)), then C"

is always true. Use truth tables to show that this statement
1s always true. |

2, Describe the validity of the second proof-by-cases
method given above by means of a single statement similar to
that in Ex. 1, and show that it is always true.

3. Suppose "A or B" is true and that we can prove ncr from
ng and (not B)" and also from "B and (not A)". Does this prove ngn,

4. Show that the statement "If ((A or B) and (not A)), then
B" is always tiue and describe the method of proof suggested by it.
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PROBABILITY

i

I. INTRODUCTION

The weatherman says, "The probability of rain 1s about
1 out of 10", He could have said 1/10. If you had heard this
report,would you be likely tec carry an umbrella or'perhaps
weaf a raincoat? Can yﬁu explain what the report means?

Purdue and Indiana both have good football teams. In a

football game with Purdue, Indiana has a 50-50 chance of winning,
Would you understand what we mean if we said, "The probability

- of Indiana winning is 1 out of 2 or 1/2"?

Riverboat Sam has a standard deck of 52 playing cards. He
draws a card randomly from the deck. How likely 1s it that the
card is red? How likely is it that it is a heart? How likely

15 it that it is the king of heartis? If‘Sam drew four more

hearts out of the deck in succession, would you consider playing

cards with Sam?

Ih the paragraphs aboﬁe the wdrd "probability" is mentioned
several times. What does "prbbability" mean to you? Something
uncertain! An element of chance! In other words, we talk about
probability when an event could occur in more than one way, and
no one could tell beforehand what will occur.

For example: Toss a coin. The coin could land heads or
tails., You are not sure ﬁhich wili occur. However, the proba-
_bility of it landing on tails is 1 out of 2, or 1/2. What
1s the probability of it landing on heads? | | % %
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Thus, we have the following
Definition: The probability of success of an event 1s defined

S A
a - number of ways the event can succeeu

P = ¥potal rumber of ways the event can occur

Exploration

1. Find the probability of getting a 4 on one toss of a
die. '
2. Find the probability of not getting a 4 on one toss of
a die. " | |
1In the following four thouglt-provoking questions consider the
set, { 1,2,%,5,8,10,11 } .
3. What is the probability of drawing an even number from
this set?
4, What is the probability of drawing an odd number from
this set?
5. What is the probability of drawing a number which is
divisible by 37 |
6. What is the probability of drawing a positive integer?
7 If p 1s the probability of success of an event
and gq 1s the probability of failure of that event,
then what is the relationship between‘ p and ¢ ¥

II. EXPERIMENT *k

We know that the probability of getting heads when tossing
a coin is 1/2. Does this mean that when tossing 100 coins we

will get exactly 50 heads?




1. Toss a 2oin 10 times and record the results in Table 1.

e T o

RN SR

Toss

1

2 13 1% 151617 81910

Heads

Talls

Ratio of heads

Ratio of taills

a TN phash cos i -

Percent of heads

e ra———r

‘Percent of tails

2., Plot the cumulative percents of heads and of tails on

Tabie .1

the graph in Figure 1.
100 <«
Percent -
of 4
Heads 50
or <+ = -
Tails <
1
0 +—t—t+——t+—F—F—F—+—+—+
*» 1 2 3 4% 5 6 7 8 9 10

3. Wha%t do you notice about the percent of heads obtained
as the number of tosses increases?

4, What do you notice about the percent of tails obtained

Number of Tosses

F;gure L Heads
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5.

6.

as the number of tosses increases?

Whaf do you think would happen in the graph if you
tossed the coin 100 times? 1000 times?

Then what do we mean when we say the probability of

gettlng neads is 1/2 "in the long run"?

ITI. SAMPLE SPACES

e

2.
3.
.

Write down the set of all th: possible outcomes of
throwing twe dice. List the outcomes as ordered pairs
in which the first component is the number on the
first aie and the second component is the number on

the second die, Note that each outcome is eguallv

likely.
(C3) () Cy) () (y) ()
) ) -
(,) C,) >
C,)
Cy) Y,

How many different ordered palrs did you get?
How do you know there are no other outcomes? * %

Plot these outcomes on the graph on the next page.

Put a dot for each ordered palr.




L |

6
5
Second o
Die 3 4
2
1 <
- + ' z } it
1 2 3 4% 5 6
First Die
Filgure 2
5. You ﬁave just drawn a picture of the SAMPLE SPACE
for throwing two dice. Thus the sample space is a
representation. of all possible ways an event can occur,
The sample space is used to aid in determining the
probability for an event to succeed.
6. What is the sample space for the sums obtained when
tossing two dice? Is each outcome equally likely?
7. How many ways can you ge. a sum of 8 when tossing
two dice?
8. What is the probability of getting a sum of 8 when
tossing two dice?
Exercises
1. What is the probability that the next person you meet was

not born on a Sunday? | * K

List the somple space for tossing three coins. The outcomes

will be ordered triples. Find the probability of getting

a. exactly 2 heads.




b, no heads. | , , | _ | ;
¢. at least one head.
B d. at most one tail.
3. Mark-éach statement as true or falses
T F a., A student can either pass or fail a course,.
Therefore the probability of passing is 1/2.
T F ﬁ. When'tossingFZ dice, the probability of getting

a sum of 9 is the same as the pfobability of
getting a sum of 5. |
T F e¢. Ina room containing 30 people, the probability
that at least two persons in the room h;ve the
same birthday is greater than 1/2.
4. Consider drawing 2 cards from a deck consisting of the
2,3,4904.410 of hearts.
a. What 1s the probability that the product of the
numbers on the cards 1s even? |
b. What is the probability that the product of. the
numbers on the cards is odd?

¢. Do parts a. -and ~bs considering the sum of .the

numbers on the cards as being even; being odd.




STATISTICS

I. MEASURES OF CENTRAL TENDENCY

Consider 1.,

Listed below are the salaries of a random sample of

persons cmployed by Utopian State University.

'?888 ~ Janitors

$7000

$8000 |
%}?:888 Professors
%12,000
$14,000
17,000 Lean
$18,000 President
$75,000 Football Coach

What would you consider to be a realistic "average"

of the salariles paid to persons employed at U.S.U.? 1In
other words, what single number would most accurately

"represent the salary of an employee of U.S.U.? ' * k

Consider 2.

Janet Schmalz received the followlng grades on her
mathematics tests: 60, 60, 60, 90, 98, 100 .
What would you estimate as her "average" grade? Again,
what single number would most accurately represent her

grade in the course? , | * K

Consider 3.

The class sizes at Sweet William College are as follows:
C

— -

-
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'2’3a397a8a8a12;13a25a25$251253251175 .
What would be considered a wvalid approximation of the

"average" class size? , * ¥

IT. MEASURES OF DISPERSION

Conéider the following sets of scores:
A= {4,6,8,10,12,1%,16 }
B = {4,7,9,10,11,13,16 }
The scopés in A range from % to 16.' Likewise, the scores
in B range from 4 to 16. So we say that the range Tor “hotn

A and B is 12. How is this found? Note the following:

o

1. The mean of scores in A is °

O

2. The mean of scores in B 1is 10.
3. The median for A 1is 10,
4. The median for B 1is.10, |
But how do these set of scores differ? Notice that the
scores in B seem to be more closely clustered ground 10.
| than those ih A. Wé wiii'ﬁsé.thisifACfmté.distingui;h between
A and B, | o
Since 14+ is above the mean (¥ = 10) for both A and B ,

i i1s a positive deviation from the mean. With 6 below the mean,

then 6 is a negative deviation from the mean, Thus'the-devia-

tion of o score from the mean is either positive or negative

or zei d.
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For example:

Score Deviation from the Mean

X X=X
L -6
6 "
8 -2 _ |
10 0 X = Mean of

- 12 2 the
14 L Scores
16 5
0

mwif wé”add é}l thé deviations together we will get O. Why?

This 1s not very useful. So by squaring each deviation, each
squared deviation becomes a non-negative number, and then
dividing by the number of scores, we find an average squared
deviation, which is called the variance of the set of scores.
In ofder to apply this measure in practical situations we will

find the square root of the variance. This measure is called

'”the standard deviation of a set of scores. The standard

deviation is represented by s.

X 1is the mean | |
Xi is the izg-score in the list of scores
Zis & summation symbol

n 1s the number of scores

/ n
Y (X~ ¥)2
=1

S =
n
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EXAMPLE 1
Consider the set of scores:

‘A= {4,6,8,10,12,14,16 }

D=7
n
R
¥ = & =2 = 10
n
A (x, - ) (%, - B2
4 -6 36
6 N 16
8 = Y
10 0 0
(D 12 +2 4
14 +1 16
7 . 5 6. 4 36
1;x1 = 70 1_‘3‘0{1 -D=o0 4;(1(1-:{)2 = 112 ]

SO : s = 1=1
. ' n

i
+

iy ‘,\
.




EXAMPLE . 2

Considef the set of scores:
‘ | B={4,7,9,10,11,13,16 }
‘Here again the mean is 10 and n is 7.
X (X, - %) (X, - %2
g i i i
b -6 36
: .7 T3f  9”
| ’9 -1 1
,/ 10 o O |
11 1 1
13 3 9
7 16 7‘ 6 z , 36
YKy =70 (X)) = 0 ) (XX = 92
1=1 =1 =1
56" Y (5 -T2
s = [i=1
= . j-92_
_ Ny 7
= dﬁi‘3.1)+
= 3.62 B ok
Eiercises

v ——

Find the mean, median, mode, range and standard deviatioﬁ of the
- following sets of numbers, |

1. {4,8,10,10,12,16 }

Ly -




"2' {2$3,5’2’1?5$7919296’1’1 }
3. { 954,947,943,951,949,951,946,943,945,951 1}

(Hint for #3: Try to find any easier way to obtain
L the mean.)

I1I. NORMAL DISTRIBUTION

Consider the following IQ scores from Upper Gooseneck ,

,Regional High School.

¥ 78 G 56 3160 - Xg10) 108 119
82 92 97 101 105 110 123
84 92 98 102 105 111
86 ol 98 - 102 106 113
87 95 100 102 107 1L
89 96 100 103 107 116

Let us now group these scores into intervals with a

length of 5.

Interval Frequency of scores

6- 80

1- 85
86- 90
- 95
96-100
101-105
106-110
111-115
116-120
121-125

- NI LI\R OO\ N =

Now put these values on a graph by placing a dot on the
- graph for each ordered pair, (a,b), where a is the interval

and b is the number of scores in that interval. (Figure 3,

page 13)
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Frequency

i L ! ] 1 b L. |
R | ] i 1 ] 1 ’ '

76 81 86 9 96 101 106 111 116 121
to to to to to to to to to to
80 85 90 95 100 105 110 115 120 125

- Seores

E

Figure 3

" Now connect thez points on the graph with a smooth curve,
.Notice that the curve is shaped like a bell. IHor this |
reason it is sometimes called "a bellfshaped curve."

Intelligence is one of the characteristics of human |
being which is "distributed" in this way. Other character-
istics which tend to be "normally distributed" are height
aﬁd weight for human beings of the same sex,.

Let us consider the graph below as a graph of a normally
distributed characteristic.




score in the indicated range. This says, for example, that
within one standard deviation above or below the mean. It also 15

two standard deviations below or above the mean.
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The mean of this distribution is designated by X. The
standard deviation is giVen by s. The percentages given on the

graph Indicate the percent of persons one would expect to

68% of the population would be expected to achiéve scores

indicates that 96% would be expected to achieve -scores within

x i b -
e s

EXAMPLE
On an IQ test the mean is 100 and the standard deviation i‘
1s 10. Therefore, we would expect aboﬁt 68% §f the scores
to lie between 90 and 110. We would expect only 2% of the

scores to lie below 80. What percent of the scores would

you expect to find between 80 and 110? (ans. 82%)

-7/ -
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IV. CORRELATION
You as a'teacher have administered two tests. The

students and their scores are listed below.

Student Pirst test - Second test
Abe 75 92
Bob 87 85
Conrad 77 95
pevia 2
| Elmer 80 75
| Frank | 82 97
Gerald 9% - 82
Homer 97 80
Tke 90 90
Jerome 85 | 87

Note that although the test scores for the class are
identical, the scores for individual students are not
identical except in one case. Thu33 the mean and median on
the first test are the same as the mean and the median on the
second test., Can you conclude that the tests were equally
difficult? To find now the scores on first test are related

to the scores on the second test we use a coefficient of

correlation.
There are several kinds of coefficients of correlation.

The one we will consider is called the coefficient of rank

correlation,




.
This number r 1is defined in the following way:
pwm g o 6245
T - 2 b/
n(n®-1)
where one assigns ranks to the scores on both tests and then
finds the differences (d) in the ranks for each student, as
follows:
| ‘ SCORES RANKS
! .o g8 ond 88 om0
Student test test test test 1 he
A 75 92 10 3 7 49
B 87 85 5 6 -1 1
C 77 95 9 2 7 49
D 92 77 R 9 -6 36
E 80 75 5 10 -2 L
F 82 97 7 1 6 36
G 95 82 2 7 =5 25
H 97 80 1 8 -7 49
1 90 9n 4 L o 0
J 85 87 6 5 L 1
£d% = 250 | n =10 4, the number of students
n(n - 1) = 10(100 - 1) = 990
10
2 .
6 ),d3 -
. r=1-a- 1-12
n(n“-1)
- 1 - 6 . 2 0
990
=1 - 1\«5
= =0.5

—73—
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Notice that students who ranked high on the first test
tended to getllow scores cn the second and that students who
ranked low on the first test tended to receive high scores on
the second test., This is also indicated by the negative value
of r . If students who score hlgh on the first test also
score high on the second test and those who score low on the

first also score low on the second test, then r will be a

‘positive number. The highest possible value for r 1s 1.03

this indicates that each student had the same rank bn both

tests. The lowest value for r 1is -1.0. o kX

Bxercises

1. Suppose you know that a distribution of scores is normel
and you know that the mean is 75. What is the median? What |

1s the mode?

2., The mean on an IQ test is 100 and the standard deviation
1s 15. Wnhat percentage of the population would be exﬁécted
to have I scores above?
a. 130
« b. 119
| c. 100
d, 85
e. 70 |
What percent of the population could be expected to have IQ

scores between: f. 85 and 115

. 8. 70 and 130
h. 85 and 130




% -
"

3. On a standardized schievement test the mean is 62 and the |
standard deviation is 7. Two-thirds of ﬁhe persons that took
this test should have achieved scores in What range? You would

expect 2% to achieve above what score?

h._ On a test which you have constructed for your class, which
has a normal distribution, the mean is 50. Ynu decide to
assign grades on the following basis:

A - more than 1% s.d. above the mean’

B ~% s.d, to 1% s.d, above the mean
C - 4+ s.d. below the mean to % s.d. above the mean .
D - 1% s.d., to %+ s.d. below the mean
F - less than 1% s.d. below the mean

It turns out that the lowest score for an A is 77.
" Determine the range of scores for B, C, D, and F.

A - 77 or above

B-___ to___

C ~___ to___ B
. D=-___ to___

F - or below

PE—

5. The following chemistry students at Hardtimes Pyrotechnic
Institute were ranked by their lecture instructor and their

laboratory assistant as follows:




Student Lecture Lab
A 9 8
B ] 3
C 10 9
D 1 2
E 8 7
F 7 10

- G 3 4
H L 6
I 2 1
J 6 5

- How do these rank asslgnments correlate with each other?

What does this number mean?

6. You have just gilven two tests in arithmetic to your class
of twenty students. Find the rank correlation between the two

tests. What does this number mean?

SCORES RANKS
Students Test 1 Test 2  Test 1 Test2 d d°
i B 8
3

C 8L 76 -
D 82 71

E 91 65

F 79 58

G 93 73

% 161 hg

00 7

J o4 29

K 89 67

L 65 L2

M 99 72

N 71 50

0 96 77

1% 79 59

Q 46 33

"R . 80 63

S 74 51

T 86 62




COMMENTARY FOR INSTRUCTIORS

Section 1

1. Bring out that probability ranges from O to 1.

[

»
ible ev

Thus O~impossi

ent 1=sure event., You might use

sets and subsets to develop concept. Give many more

examples. If you wish to use sets, you could develop:

it it in the following way. Loocking at this definition

of probqbility, we can relate it to set notation.

| U univ» sal set - Sample space

A 2 subset of U - all ways event succeeds

For example, let U be the set of all American coins

U= { penny,nickel,dime,quarter,half-dollar }

' The event A

then p(A)

-—
-

{

{
P

2
5

any American coin whose value 1s
greater tnan 20 cents }

quarter, half-dollar }

robability of A being a success event

= BLAL

If we let event B

/’{ all American coins whose value
is greater than zero } = { penny,
nickel, dime squarter,half-quarter }

Then p(B) =-§ = 1., This is the largest value p can =

take,

vaevent D=

(

g

S e g(D) = 2(13% -

= @g. Thus, values of p can range from O to 1.

Or A=1T Sure Zvent

all American coins whose value 1s
greater than 60 cents }

.% = 0 This is an lmpossible event,

-77—



If you know what A 1s, what about A' or when A fails? 2
A UA'=TU soP(AUA") = B(U)

But P(A UA') =1 forAnA'=¢g.

Event A' = { an American coin whose value is equal
to or less than 20 cents }

{ penny,nickel,dime ]
p(A') = 3/5  Thus P(4) + P(A') =1
or p(A) + p(A') = p(A UA') =1
Thus P(A') =1 - P(4) |
Could show by Venn diagrams,

Then, locok at these ideas with Venn diagrams.,

2. Do this experiment in class to show the Law of

Large Numbers-which states informally, by choosing

the sample size n sufficiently large, the probability
" that the value of the sample mean differs from the
population mean by at mest ¢ can be made as small
~as or as close to 1 as we like, |

An example of table 1 is below.

Toss 1 2 3 L 5 6 7 8 9 10
Heads °o 1 o0 o 1 1 1 o 1 0
Tails 1 0 1 1 0O 0 0 1 0
Ratlo of |
heads o1 1/2 1/3 /% 2/5 3/6 %/7 W4/8 5/9 5/10
Ratio of - '
| tails /1 172 2/3 3/M 3/5 3/6 3/7 W/8 W/9 5/10
| Percent - |
of heads O 50 33 25 20 50 57 50 55 50
Percent |
of tails 100 50 67 75 80 50 W3 50 W5 50




Thus as the number of tosses increase the
cumulative percentage of heads will approach 3,
However, stress one does not always get.exactly one

half number of heads in any specific number of tosses.

3, Make students aware of the fact that by listing

the sample space, outcomes will not be excluded.

i”Always ask how can tﬁis event happen. Also at this

time use the.tree diagram or position blanks to
develop a counting procedure,

Example 1. |

BEvent: Electing a president and vice president out |
of the set { Ann,Bob,Jim } |
Sucessful event: Selecting a boy for President and
a girl fbr vice presidént.

By branching (tree diagram):

After that choice

First choice for President What choice for = Sample
vice pres. ' point
‘zr_ﬂd_ﬂ__,,__ﬂaﬂ~—Boh~-—~‘—~-(Ann, Bob)
ANn —=—— . | |
‘ Jim—- — — — (Ann, Jim)
—Ann — — — —(Bob, Ann)
Bob —= o | |
Jim — — — — (Bob, Jim)

Jil e

Ann— — — — (Jim, Ann)

\




By position:

number of choices then how many for
for pres. vice pres.

Either way we get six different outcomes. Brahching;

is a good beginning, then use positions.

So the counting principle states that if there

_are m ways to do the first thing and n ways to the

r
diie Xt LTl o B

second thing and r ways to do the third thing, then

the total number of different ways that the event

ol o LB 4

canoccur is s m* n *r .

2

_m n r = .mnr
Thus, successful évént is 2 1 21 =2
e " pres. Vice
boy girl

‘Then, P(successful event) = 2/6.

Example 2.

.. Bvent: Forming three letter words from { a,b,d,e 1,

1.6. ) ade ,bea‘o

Successful event: All words beginning with a

LR R LT R P

Event: t n - - W 3 2 14 total words
1 S1 2.0. 3]? . '

letter




*d.ooo(
rf b “"'e'oao(
. d o
o |
b«E::::::::::;N-d'. etc.
/ €
/a
/
d b
<\e
a
_ -
d
Successful Event: 1 3 2 =6
o .
T (ayb,d)
(a,b,c)
(a,d,b)
| (a,d,e)
x (a,e,b)
é (a,e,d)
You could also work out different telephone numbers

or license plate numbers.,




0
4. Assume each day is equally likely. p = 6/7
On question 3a you don't need to know the correct
answer but imply that the two events are not equally
likely; many things determine the probability.
On exercise 3c, same birthday means same day
ol &ear, not exact birth date, i.e., May 9. True
To justify the above question cor.sider the
following reasoning:
With r-people Sample space would have 365r elements
365 365 365 «e.s 365 r blanks or 3657
For successful event: at least two among the r people
have the same birthday. Easier to look at E! where
n(E) + n(8') = 3657
BE': number of ways of selecting r different birthday
365 364 363 362 361 360 ... 365 -1 + 1
S0 n(E) = 3657-(365 x 364 X 363 X eu. X 365 = 7.4+1)

Sd P(E) = }651._(11;5 x 36% X 163 X eee X 365 = T + 1) |
| 3657
So vhen r = j
T 10 20 22 23 oL 30 Le 50 ] |

P(E) | .12 .M L8 51 5% .71 .89 .97

Section 2
5. The student should choose a number close to
11,000 wnich is the median or middle score of the
distribution. Define and write on board the median




as the middle score, after the students have worked
on the exercise. Note tnat médian is not affected
by extreme scores as the other kinds of averages.

‘Also a quick estimate.

6. Tne student should choose = number close to 78
which is the mean. Define and write on board : Mean
;s the sum of the scores divided by the number of
scores, After the student has completed the
exercise, note that the median would not be an

appropriate average for these scores.

7. The student should choose 25 which is the mode.
Define and write on the board. Mode: the most
frequent occurring number in the distribution. Why
would the mode be the most appropriate here?

8. Be sure to go through examples with students.,
On exercise 3, by subtracting 943 or any other score
from each score, averaging the cbnverted scores |
then adding 943 or the score you choose on to the

converted average, one obtains the mean of these scores.,

Score X=-943

95k 11

L
0
8
6
8
946 3
0
2
N
.50




~

Sectlon 3

9. Also show correlation by scatter diagrams as

discussed below.

A s . e”. oy

,"3. a"" P "6.
% "."“"’ ‘; » [ ,3 ‘.
t ; ” » -" 9 .‘ M LY
rr ’f u." o - w w ¢ ‘: .
t » - .
E "{‘v :la :: .‘ 9:0..'..
§‘ ."l» .‘O M’ ""’..’

o . ° 0'.9
]
r is close to +1 r 1s close to O r 1s close to -i

- . i —————— ———r" 41t 08 p ot 1 s b0 HOTTTRA et | SOt > ot s -
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COURSE OUTLINE - T106

Required Textbooks

r-ryr I‘Cﬁmvtml An T ‘F‘

- ae

S Info
ole Publishing Co., Be

S Smart, J. R., Introduct
Approach Brooks~C
. California, 1967.
Y National Council of Teachers of Mathematics,
Enrichment Mathematics for the Grades, Twentv-
Seventh Yearbook, National Council of Teachers
of Mathematics, Washlngton, D. C., 1963.

mal
lmont,

Optional Textboocks (available in Swain Hall Library)

A Adler, C., F., Modern Geometry: An Integrated First |
Course, "McGraw Hill Book ¢o., Inc,, New York, 1958.
B Brumfiel, C F., Eicholz, R. R., and Shanks, M. E.,

Geometrv Addlson-Wesley Publlshing Co., Ine.,
Reading Maseachusetts 1960.
Coxeter . S M, , Introduction to Geometry, John .
iey and Sonc Inc.,, New York, 1961.
E Eves, Howard An Introduction to the History of
"Mathema ics, Holt, Rinehart, and Winston, Inc.,
New York, 1953.
K Keedy, M. L. and Nelson, C. W., Geometry, A Modern
Introduction, Addison-Wesley Publishing Co.,
Inc., Readlng Massachusetts, 1965.
M Meserve, B. E, and Sobel, M. A., ntroduction to
Mathematics, PrenticeAHall Inc., Englewcod
Cliffs, N. J. 1964,
Nevman, J. R., The "World of Mathematlcs, Simon ‘and
Schuster New York, 1956, S
Ringenberg, L. A., Informal Geometry, thn Wiley and
sSons, Inc., New York, 1967.

To The Student

In recent years there has been a revolution in school-
mathematics. A quick glance into some newer elementary
school textbooks will show that skill in computation is no
longer sufficient criteria for teaching elementary school
mathematics. The sequence of courses consisting of T104,
T106, T108 is designed to give prospective elementary
teachers the background in mathematics that they must have
in order to teach mathematics successfully to elementary
school pupils. /

The courses T104, T106, T108 are concerned with mathe-
matical ideas of two types. "those which will be taught to _
elementary pupils and those vwhich will give the prospective
teacher a deeper understanding of the concepts he will teach.,




!

These courses are strictly mathematical in nature; a
companion course, E343, will instruct the prospective
teacher in the techniques of the actual presentation of
the mathematical ideas to her pupils. o

In order that the students may benefit maximally
from the lectures, it is strongly recommended they study
beforehand the ma%erial to be presented in each lecture.

The texts required for T104 will also be used in this
course., With the additional required texts for T106, the
student will have the foundation of a reference library
which will probably be of great use while teaching.

Course Content
1. Introduction
A. 'Nature of Geometry
S: pp . 1-3
‘R: 1,1
A: pp. 3-5
B: 1,1
Y: Chapter 9 .-
B. Origin of Geometry
81 pp. W=5
R: 1.2
B: 1.2
E: 2.)'+, 2.9, 302, )+o1 - L"o""
C. Informal approach to Geometry
S: pp. 3-5
D. Logic
Y: pp. 291-301
2. Basic Concepts
| A. Review of Sets
B. Points S |
C. Angles e
D. Lines and Planes S
E. Parallelism
S: Chapter 2
R: 2.1
K: 30)"‘
3. Measurement of line segments and angles
S: Chapter 3 | |
R: 2.2, 2.3 o
4. Simple Closed Curves, Polygons, and Polyhedra
A, Simple Closed Curves - | |
S: Chapter L
R: 2.1, 5.1
K: Po )+3"")+5
B. Quadrilaterals
S: Chapter 4+
R: ’ 2.2, 3.1, 3.2’ 3.5’ 5.3
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L. Slmple Closed Curves, Polygons, and Bolyhedra (cont.)
C. Parallelism
R: 3.1 - 3.5
D. Additional Topics
K: Theorem 6.7
5. Circles
S: Chapter 5
6. Geometric Conctructions -
| S: Chapter 6 R: 12.1 - 12.9
7. Congruence
A. Triangle Congruence v
B. General Concept of Congruence

S: Chapter 7 1

R: 2.3, 2.%, D

K: L. L ’

Math Teacher, April 1968
C. ~Similarity
-~ 8: p. 9%

R: 292 - 2.3

8. Area of Plane Figures
S: Chapter 8

R: h.1 - 4,7
9. Errors in Meaourement
R: 2.8

S: Chapter 9 | - | ' |
10. Similarity Lo
. S: Chapter 10 -
R: 2.6, 2.7
11. Algebraic Representation of Geometric Figures | 7
S: Chapter 11 (omit trlgonometrlc ratios) o
M: Chapter 8 - | %
-12. Geometry of Selected Space Figures S -
A. Theorems on Lines and Planes
| S: Chapter 12
- R: 5.2 - 5.4
B. Dihedral and Polyhedral Angles
S: Chapter 12 ‘
R: 5.5
C. Polyhedra
S: Chapter 12
R: 6.1 - 6.""
K: L.12
13. Locating points in space ‘
& S: Chapter 13 (omit coordinates for polnts in space)
14, WVolume and Surface Area
B Chapter 1k
: t 6.5 - 6.13
15. Formal, Informal, and Experlmental Geométry
+ Chdpter 15
¢t 1.3
- K: Chapter 1




16. Modern Geometry
A. Topolongy
B. Finite Geomecry
M: 1005
C. Non-Euclidean Geometry
S: Chapter 16
. M: 10.1 had 10.3

‘f?f’..
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The following time outline has been include@d so that the
teaching associate can plan his teaching effectively. We
recommend that the teaching associate follow the sequence
shogn,tsince much of the content depends on pregeding
content,

2
=
n

CHA?TER NUMBER
2
Quiz and Review
3
L
Test #1
5
6
Quiz and Review

7
Unit #1
8

9

Test #2
10
11

Quiz and Review

12
13 P

Test #3
1k

15
16
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Full Tt Provided by ERIC.

ERIC

I. Introduction

Objectives of the Course

1,

2.

3.

e

Toc help prospective elementary teachers develop an
understanding of the fundamental ideas which are the
core of geometric knowledge for all who have occasion
to work with mathematics. This includes such concepts
as congruence, measurement, parallelism, and similarity.

To develop geometric intuition and insight. To this end,
the students should be allowed to participate in the .
formulation of axioms which are based on intuitive plaus-
ibility arguments, , |

To develop an appreciation of a deductive system. While
no single body of axioms is developed for all of
Buclidean geometry, several deductive subsystems should

‘be formulated and should be developed. In addition,
several other deductive systems should be examined. If

it is not possible to elaborate upon the details in the
classroom, the student should be assigned the task of .
constructing the necessary arguments. The formulation of
such arguments is a necessary part of any mathematics course.

To develop the ability to apply geometric ideas and to
identify some practical applications of geometry. Of the

.. several mathematics courses proposed for the elementary

education curriculum, geometry perhaps liends itself best
to exercise in problem solving and to the development of
techniques of problem solving; full advantage of this
should be taken. -

To show that certain geometric systems can, with varying

~degrees of accuracy, describe properties of the physical

world.

»7/-




II. Course Outline

Note: Added refer¢nces are background material to be used
at the discretion of the TA.

e Introduction

A:. Nature of G¢ometry ,
The st ident should be shown the difference between
geometry ars the study of physical space and geometry
as a deduc’.ive system.  Thus discuss why geometry is
studied ar! some of the practical applications of it.

Reference ;

S: pp. 1-3

¥ 11

A: pp. -5 Good introduction ideas
B .
Y: Che' .er 9 Gives guide lines for course

se 50 o8

B. Origin of Geometry |
D .scuss some of the more important aspects of the
history of geometry including the contributions of
Euclic , Pythagoras and some of the modern geometers.
In arl ;i1tion to the references provided here much
infor 1ation can be found in books on the history of
mathe ":atics.,

Refe rences
| S:  9p. 4-5
g . . R: 1.2
Be 1.2 Good introduction
E: 2‘)"', 2.9, 3.2, 1‘{';1 - l‘+.l+

C. Irformal approach to Geometry

Look at the framework of geometry to develop
¢ frame of reference in studying geometry.

ieferences
S: pp. 3=5

D. Logic (for students who had T10% before September 1967)
Discuss the nature of proof and proof procedures,

References
Y: pp. 291-301




2. Basic Concepts

The primary purpose of thils section is to inftroduce
or reinforce the student's knovwledge of the language of
geometry, some of the basic concepts relating to i
geometric figures, and the relationships between geometric ;
figures. Defenltlons of terms need not be made absolutely '
precise at this time and there is no need to prove theorems
in this section. More rigorous definitions and proofs of
theorems will be provided later. An effort should be made
to lead the students to state definitions and properties
in their own words. The '"discovery" approach should be
used extensively in teaching this section.

A. Review of Sets
Develop the relationship -between set notation and

£geometric terms in order to have more precise
definltlons.

B. Points

The concept of a poiwt should bve introduced as a |
position or a location. Thus sets of points are ‘
considered which lead to the deflnltlons of space as
the set of all points. | i

C. Angles i

Define an angle as the union of two distinet rays
with a common endpoint. Then investigate vertical
angles, adjacent angles, separation of a plane by an
angle, and the interior and exterior of an angle.

D. Lines and Planes

A plane and a line are subsets of space. We can
define a line as the intersection of two planes and a
point as the intersection of two lines. With this in
mind, consider open and closed segments, rays, and
half lines as subsets of a line.

E. Parallelism

j ~ Two lines in the same plane are parallel if they - B
-~ -~ ..do not intersect and two planes in space are parallel | R
if they do not intersect. If two distinct planes. o
intersect then their intersection is a line and if
-two distince lines intersect then their intersection
i1s a point. Discuss skew lines and intersection and
parallelism between lines, planes, segments, and rays.

\

— 13—




3.

E.

Measurement of line segments and angles,

and discuss measure of segments, considering different
"sizes" of unit measure. Then discuss and convert \
English measures so that they will become acquainted wit
meters. A unit of measure for angles can then be consid--
~ered and measure of angles. Discuss the relationships
between measure of angles and segments.

References
S: Chapter 3
R: 2.2, 2.3

Simple Clesed Curves, Polygons, and Polyhedra

A.

B.

Parallelisn (cont.)

References

S: Chapter 2
R: 2.1

K: 3.4

Let the students determine a unit for linear measure

Simple Closed Curves

Define a simple closed curve as a closed curve
which does not intersect itself., Then a polygon is
a simple closed curve which is the union of a finite
number of straight line segments. Briefly consider
the topic of convex sets. Mention the names of some
speclal polygons and the difference between regular and
non-regular polygons., A polygonal region can be
defined as the union of a polygon and its interior, and
a poiyhedron as a closed surface consisting entirely
of polygonal regions., Discuss some of the regular
polyhedra and how to construct them. Actual models
would be nice to used for demonstration.

References

S: Cunapter L
R: 2.1, 5.1

K: po L"3"l'¢5

Quaderilaterals

Two lines are perpendicular if they intersect in
such a way that the four angles formed are congruent.
Disc¢uss perpendicular lines and planes, Make the
following definitions: a trapezoid is a quadrilateral
with at least one pailr of parallel sides, a parallel-
ogran is a quadrilateral with opposite sides parallel,

9y~




5,

6.

B.

D.

Circles

e.g., chords, central angles, and arcs., Omit the section

Parallelism

Quaderilaterals (cont.)

a rectangle is a parallelogram with four congruent
angles, a rhombus 1s a parallelogram with four
congruent sides, and a square 1s a rectangle with
four congruent sides. '

References
S: Chapter 4
R: 202, 3.1’ 302, 305’ 503

Discuss the parallel axiom. Briefly introduce the
concept of a transversal and derive the properties of
the angles associated with two parallel lines and =&
transversal. Prove -the exterior angle theorem and
discuss parallelograms and their properties.

References
R: 3.1 - 3.5

Additional Topics

[P P YRS

Prove that the sum of the measures of the angles
of any triangle is 180°, Note proof in outline.
Prove that the midpoints of the sides of any quadri-
lateral determine a parallelogram.

References
K: Theorem 6.7

8 AR MRS P S AR V.

Introduce and discuss some of the properties of clrcles,

on circumference and select some theorems from the following
section, o

References

S

Geometric Constructions

of any angle (other than particular examples) 1is impossible,

References
S: Chapter 6
R: 12.1 - 1205

Chapter 5

Give the basic constructions., Show that the trisection

£
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7. Congruence

A.

B.

c.

. same ideas for other plane figures. Show that con-

Triarngle Congruence

Develop the definition of congruence for triangles.
Take SAS as an axiom and then prove the ASA and 555 are
sufficient conditions for triangle congruence., The ASA
theorem can be proved directly, but it is necessary to
jntroduce the isosceles triangle and prove that the
base angles are congruent before proving S55. Note that
SAA is also a sufficient condition for congruence but ‘
do not prove it. ] , o

General Concept of Congruence

Redefine congruence as a one-to-one distance
preserving correspondence between seis of noints.
Give examples of translations, rotations, and
reflections and show that congruence of triangles is
preserved under these transformations. Develop the

gruence is an equibalance relation and glve some
examples of equivalence classes. Then use the unit
from Math Teacher to lead into a discussion of
simllarity.

References

ol 2PN b, 32

g [ ® p. ime
K: h.h’ ’

Math Teacher,April 1963

Similarity

Discuss symmetry of figures with respect to a
point or line and give several examples of symmetric
figures, Briefly discuss symmetry of space figures

"~ on your own. Two figures are sald to be similar if

they have the same shape but not necessarily the same
size. Discuss similarity for polygons, polyhedra,
circles, and spheres, o

References

S: p. 9
R: 2.2 = 2.3

X




8.

Qe

10.

11,

Area of Plane Figures

Use a square unit as a basis for area. Show that the
area of a rectangle can be found as a ¢« b where a
and b -are the lengths of two adjacent sides of the
rectangle and nay be any positive real numbers., Standard
units should be stressed. Determine the area of triangles,
parallelograms, trapezoids, and convex polygons. A
triangulation process is convenlent for the latter, Con-
sider the measurement of circumference, area, and arc’
length in circles. An experimental verification that =n
is a constant is a good exercise.

References
S: Chapter 8
R: L"¢1 - L”'.?

Errors in Measurenent

Consider briefly approximate measurement, relative
error, indirect measurement, and applications,

“References
S: Chapter 9
R: 2.8

Similarity

Before giving a rigorous definition of similarity,
discuss scale drawvings whieh is the basis for studying
similarity. Give some sufficient conditions for simllarity
of triangles, e.g. SAS, SSS, AAA. Discuss similaricy for
other plane figures and space figures and application of
indirect measure. o R - |

References
S: Chapter 10
R: 206, 207

Algebraic Represeﬁtation of Geometric Figures

Introduce the concept of coordinatization of the line
and plane, The graph sets of ordered pairs in the plane.
After developing the equation of a straight line, discuss
linear inequalities in the plane. S |

References »
S: Chapter 11 (omit trig. ratios)
- Mg Chapter 8 : N -




12,

13.

1,

Ge vnotry of Selected Space Figures
A. . Theorems on Lines and Planes

. " Show how a plane 1s determined;' Discuss parallels
and perpendiculars to planes. . o

References
~8: Chapter 12
R: 502 nd 50""

~B. Dihedral and Polyhedral Angles

Provide illustrated definitions of a halfplane,
dinedral angle, plane angle, measure of a dihedral
angle, polynedral angle, face angle, and congruence
of the above., Numerous examples from the physical
world should be given, -

Reference
S: Chapter 12
R: 5.5

C. Polyhedra

State Euler's Formula and give a number of
examples. Also prisms are defined. Develop the ..«
analogy of simple closed surfaces to simple closed
curves in a plane. A great circle is defined.

References
S: Chapter 12
R: 6.1 - 6,4 e
K: .12 .
Locating pointslin‘space

Using the concept of great circle, discuss briefly

vlongitude and latitude. Omit coordinates for points in
‘space. ' |

References | |
S: Cnapter 13 (omit coordinates for points in space)

Volume and Surface Area

Define the surface area of a polyhedron as the sum
of the areas of its faces. Use a cubic unit as a basis

 for volume. Provide some justification for the formulas

given for the volumes of polyhedra and cones. Discuss

s,qy_
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14, Volume and Surface Area (cont.)

surface area and volume of a sphere. The instructor

should try to justify the formulas given in this section
in an informal way and it is not desirable to provide
‘proofs. Do not require excessive memorization of formulas,

References
S; - Chapter 1k
R: 6.5 - 6.13

15. Formal, Informal, and Experimental Geometry

A formal development proce=zding from undefined terms
through axioms to theorems is pot the primary intent of
thig course., However, a discussion is in order which com-
pares elements of informal geometry and problems which may
be solved by ohservation or trial and error to a body of
knowledge which results from an organized logical develop-
ment of geometry. The former deals with certailn properties
of objects which can be seen and touched in the physlcal
world. The latter involves properties of objects which
can only be imagined and it utilized deductive reasoning
| to derive relationships between postulates and theorems.
| From this framework we can develop the nature of proof.
| in geometry and how this leads to other geometries besides
| Buclidean geometry. |

:

| References

| S: Chapter 15
| R: 1.3

K: Cﬁapter 1
16. Modern Ceometry

A. Topology

The student need only to become acquainted with
some of the terms and concepts contained in Topology.

B. Finite Geometry

Omit Projective Geometry. The students should
see & completely axiomatic system. Thus for intro-
duction into finite geometry, state axioms, definitions,
and theorems, | - ‘

- References
M: 10.5
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Modern Geometry (cont.)

C.

Non-Euclidean Geomeiry

. Discuss the evolution of geometry from ancient
times to the present thus inciuding hyperbolic and

elliptic geometry. Consider Buclid's contributions

to the subjzet in particular his fifth postulate.

- fPpus the alternatives to Euclid's fifth postulate
lead to two different non-Euclidean geometries, If

time permits consider some of the properties of
projective geometry for prospective. FPor more discus-
sion on non-Euclidean Geomeiry see Measure,and Sobel. .

References
S: Chapter 16




Grading Standards for T106

For insuring standard grades in T106, the following should

be mastered for a grade of "CU,

1.
2.

6.
7.
8'

9.
10,

T

ERIC

Aruitoxt provided by Eic:

Be able to use protractor to measure an angle.

Be able to define angle, acute angle, right angle, obtuse
angle, triangle, acute triangle, right triangle, obtuse
triangle, median of a triangle, exterior angle, quadri-
lateral, parallelogram, rectangle, rhombus, and square.

Find perimeter of any polygon, given lengths of sides.’

Find circumference of a circle,

Construct line segment, midpoint of a segment, perpendicular
to a line at a given point, bisector of an anglej copy given
angles and triangles (all with straightedge and compass).
Determine if two triangles are congruent or similar.
Recognize symmetry.

FPind area of a triangle, rectangle and square.

Make scale drawings of plane figures.

Define surface area and volume of pelyhedrons, cylindrical
figures, cones, pyramids, and spheres.

Be able to use Pythagorean Thecrem.

~/{o |—
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Congruence Geometry

Explorations that add to puplls’
understunding of geometric facts
prior to geometric proofs

- FOR JUNIOR HigH SCHOOL"

e

By WALTER J. SANDERS
and J. RICHARD DENNIS

University of lilinols
Urbana, lilinols

BECAUSE Euclid did such a superb

__job in organizing the geometry of the

plane, the practice has been to follow his
example almost exclusively in preparing
elementary and high school materials.
The results at the elementary and junior
high ievels have been Hmited 10 a presen-
tation of point-set definitions, with at
best a minimal exploration of the geomet-
ric properties of the figures defined. This
reluctance to include the study of rela-
tionships between figures may be a conse-
quence of difficulties inherent in the
standard organization.

Several mathematicians have presented
postulational orguanizations of geometry
based on the isometries of the planet
While none of these formal developments
are suitable for junior high students, they
have shown the mathematical feasibility of
such an approach. To muake this approach
pedagogically feasible, the ideas must be
prescnled in such a way as to be readily
understood by youngsters. The presenta-

* Thae ideay piasented in this paper arose out of the
authors’ work with UICSM in developing materials
w culturally disudvantaged junior high achool stu-
~ents under a grunt feom the National Seience Foun-
dation,

L An irometry is n distance-preserving function of
the spnce. See, for cxnmple, L'enseignement dr la
géomctric by G. Choquet (Paris: Hermuann).
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tion should also give each pupil a founda-
tion on which to base conjectures con-
cerning possible relationships and, even-
tually, to verify assertions.

In this paper we shall show an approach
to plane geometry Lased on isometries
which is suitable for junior high young-
sters. First, tracings are used to establish
a notion of congruence. Second, three
types of motions—slides, turns, and flips—-
are described. With just these motions, &
tracing can be moved from a position of
coincidence with one figure to a position of
coincidence with any other congruent
figure. Third, the tracing motions are used
to define and study tne three basic isom-
etries——-translations, rotations, and re-
flections. Finally, properties of these
isometrics are used to establish the con-
ventional congruence geometry properties.

Congruence

Intuitively, two geometric figures are
congruent if they are the same size and
shape. One way to show that two figures
are congruent is to make one of them fit
exactly on the other, that is, to use super-
position. Ro, if the figures are drawn on
paper and it is possible to separate the
figiires by cutting the paper, make such a
cut and then place one figure over the
other to see if they fit.

The triangles in Figure 1 are congruent.
But, since they overlap, it is not possible to
separate them by cutting the paper. The
trinngles can be shown to be coungruent,
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Fraurs 1 (a) Trace one triongle

however, by making a tracing of one of the
triangles and using it to do the matching,
ifigure 2 shows this process: first to trace
one triangle, then to match the tracing
~with the other triangle.

Children become aware of the basie
propertics of congriuence through con-
siderable practice in using tracings to com-
puarefigures. To be congruent, figures must
be alike in size and shape. I'igures which
differ in at least one detail of size or shape
are not congruent. (The tracing test shows

this within the accuracy of the tracings.)

For ecach property of comparison by
tracings there is a corresponding property
of congruence. Table 1 .S].‘IO'..‘VS this corre- (b) Motch the tracing with the ofher
spondence for three familiar properties of triongle.
congruernce.

Relations that are reflexive, symmetric,
and transitive are called equivalence rela-
tions. Since congruence has these proper- puarts of congruent figures are congruent.
ties, congruence is an equivalence relation. Iigure 3(a) shows a pair of congruent

Another fundamental property of con-  trinngles. The altitude to the base of tri-
gruence that can be made clear through angle T must be congruent to the corre-
the use of tracings is that corresponding  sponding altitude of triangle II, since a

Figune 2

TABLFE 1
Comprarrson or TraciNG ProrErTIES witH CONGRUENCE PROPERTIES
Tracing Property | Congruance Property

1. A tracing of o figure matches that figure. 1. A figure is congruent to itself (reflexivity).

2. If a tracing of u first figure matches a second 2, If a first fignre iy congruent to a second,
figure, then o tracing of the second will then the second is congruent to the first
match the frst, (saymmetry).

3. If o tracing of a first figure mutehes a second 3. If a firat figure is congruent to a second and
and o tracing of the second matches a third, the second is congruent to a third, then the
t‘.{:enl u tracing of the first will match the first is congruent to the third (transitivity).
third.
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tracing of triangle I that includes this
altitude must match triangle II. See Iig-
ures 3(b) and (c).

() aI & a1

b1

&
7~

25| Lo

/I

(b) Trace AT with altituds

I Pl
|7

I /7o /
" (e} Match tracing with ATL

Froyng 3

Three Basic Mbtion:

A piston in a gas engine slides up and
down; shadows slide along the ground; a
gear in a clock furns on a shaft; stars an-
pear to turn around the North Star. Slid-
ing and turning motions occur again and
again in the world about us. Many appli-
cations of mathematies, including many of
a geometric nature, are concerned with
these two motions.

A sliding motion is a motion along a
straight line without any accompanying
twisting or turning. A sliding motion can
be made with a sheet of paper by using a
guideline as shown in Figure 4.

A turning motion is & motion along a
circle with the center of the cirele fixed
(keeping its position). To make a turning
motion with a sheet of paper, hold one
point fixed by using something pointed,
such as a pencil, as shown in Figure 5.

A slide is o sliding motion of specified

(c) Slide sheet using guide line

Fxounﬁ 4

distance and direction. Both distance and
direction can be indicated conveniently
with an arrow. Figure 6 shows how to
slide a sheet of paper as indicated by an
arrow, . , ]

A turn is a turning motion of specified

‘amount and direction. Amount and direc-

tion of turn and location of turn center can
be given by a curved arrow and a dot.
Figure 7 shows how to turn a sheet of
paper as indicated by a turn arrow and
dot. ,

In Figure 8, one figure is drawn with a
pattern as in (a); then, without lifting the
pattern from the page, it is moved to o new
position and used to draw a second figure
as shown in (b). The two figures, shown
in (¢), must be congruent, since they were
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{a) Hold down with pencil point

(b) Turn sheet, kesping point
stotionory

Figure 5

drawn from the same pattern. The pattern
is like a tracing in this case.

I'igure 9 shows how a tracing can be
moved from a position of eoincidence with
one of the figures of Figure 8 to a position
of coincidence with the other by first
making a slide, then a turn.?

The tracing can also be moved from a

position matching the first figure to one
matching the second iigure with just a
single turn, without sliding. I'igure 10
shows how a turn about & point between
the two figures will do this.

This raises a general question: Given
two congruent. planc figures, ean a tracing
of one of them be moved by just a slide or
by just & turn so that the tracing exactly
matehes the other figure? To answer this
question, consider the two figures in Fig-
ure 11. In this case, after one of the figures

—————

* There are, of course, many other combinations of
slides and turns that will move the tracing from coin-
cidenice with one figure to coincidonce with the other.
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was made with a pattern, the pattern was
flipped over, 8o that the other side faced
up. Then the second figure was drawn. A
little experimentation moving a tracing
around appropriately is all that is needed
to convince one that a tracing which is
lined up with one of the figures cannot be

el

{a) Given crrow

(b) Drow guide line

N
AN
N

oA

'(c) Trace guide line and mark tail of
errow

e

v
”

PR

(d) Stide tracing until mark is at tp
of arrow

Fiaure 6




/ A If you now mark dots on the paper at

each end of the mirror and draw a line
through the dots, a fold along the line will
match the two figures, as shown in Figure
13. We can use this “fold line” to describe
a motion which will move a tracing of cne
of the figures to a position matching the
other. This motion, which we will call a
Aip, is shown in Vigure 14, in which a
tracing of one figure is flipped to match a
second figure. The “line of fold” will be
called the flip line.

" \ WE CAN now finish the discussion of
\X NN

types of motions which are sufficient for
moving a tracing of one plane figure to
s, H J. '. “t (2 L) {. ‘ e.
(8) Moark tail of arrow . conpmde with a second congruent figur
- : It is always possible to accomplish such a
move by performing one of the following

/ motions:
~

s 1. a single slide
o . 2. » single turn
\\\\\\ AN

(¢) Fix turn center and turn until mork
is ot tip of arrow

- L

() Given tum urrow and turn center

N

Fiaunre 7
moved to a position matching the other / ‘
figure unless the tracing is fipped over.

Since slides and turns do not reverse sides - (o) Draw first figure
of the tracing, no combination of slides '
and turns can be found that will move a
tracing from a position matching one of
the figures to a position matching the
other.?

If you place a mirror appropriately be-
tween the two figures of IMigure 11, as
shown in Figure 12, and look into the
mirror, what you see in the mirror will be
the other figure. For this reason, we call

the figurcs mirror images. () Draw sscond figure
* Although one cannot, in general, use just slides k 7
and turns to move a tracing of a figure to coincide s

with another congruent figure, it is the case that whoen-
ever a combination of slides and turna will move a
tracing from one powition to another, there iy either u

single siide or a single turn that will accomplish the (¢) Resulting congrusnt figures
' «  change in position. (This result is not beyond the reach -
R of junior high students.) Figure 8
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(c) Arrow showing slide 1o make

Va0
o e NN x 9

N

B

.,

(¢) Siido tracing

N 2N
NN
| ' E ‘\
NS AN
AN N s\/\/D

(b) Trace first figure, guide line,
and tcil of arrow

(o) Turn tracing to match second

figure

Frcore 9

3. a single flip followed by a single slide
4. a single flip followod by a single turn

Of course, there are many other combinn-
tions of slides, turns, and flips which will
also work. The more interesting of these
are concerned with flips: a tracing of any
plane figure can be noved to a position of
eoincidence with any other congruent
figure by one flip, or by.two flips, or by
three flips- no other motion is necessary.
To see this, one need only convinee him-
self that any slide can be accomplished by
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two suceessive flips, and any turn can also
be accomplished by two successive flips.t

Isometries
Transiotions, rotations, and refiections

The slide indicated in Iigure 15(a) will
move a tracing sheet so that a tracing of

o

¢ The authors were pleased to discover that at least
one high school geometry text suggests imagining a
combination of slide, turn, and flip motions to carry
out the standard superposition arguinents in triangle
congruence theorems. See Barnes and Hendrix, Plune
Geomctry and Its Reasoning (New York: Harcourt,
Brace & Co., 1637).




Flaure 10

Figure 11

Fiuurg 12

AABC matches AXYZ. As the slide is
made, the tracing of vertex A moves from
A to X, asshown by the guideline in Figure
15(b). Similarly, the tracings of vertices B
and C move from B to Y and from ¢ to
“Z, ‘respectively. The map arrows in Fig-
ure 15(¢) show the pairing of the points

i —————" -
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(@) Moark dots ot ends of mirror

Ny

(b) Draw line

(¢) Fold along line

‘Fiaure 13
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(o) Trcce one figure and tha flipline, (b} Hold tracing ot ends of flip line
ond mark o reference point on and flip
the fllp line

(¢) Line up flip lina and reference doi.
-When finighed, the tracing will match
the second figura.

Fraune 14

A, B, and C with points X, 1", and Z. one way of pairing each point of AABC
Sliding a tracing in this manner shows  with a unique point of AXYZ. It also
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(a) Given AABC, AXYZ, slide

X
Y

(¢) Poiring of verticas datermined -
by the slide

shows how to pair other points. To loeate
the point which pairs with any point P,
see where o tracing of I is moved to by
the slide. The map arrows in Figure 15(d)
show several such pairings. Point )/, the
midpoint of side AB of AABC, pairs with
the midpoint U of side XY of AXVZ.

Point F, an interior point of AABC, pairs

with point F, which is interior to AXYZ.

The set of all ordered pairs of points
determined by o slide is a one-to-one
function called a translation. For each
ordered pair, the first component is ealled
the original, and the sccond component is
ealled the image of that original. I'or the
trunslation shown in Figure 15, we see that
X is the image of A, U is the image of J/,
and 8 is the image of R. Also, the set of
images of the points of a given figure is

" called the image of that figure. So, for the

translation shown in Figure 15, AXYZ is

~the image of AABC, and the image of

segment. AB is segment XY,

FI1cURE 156

(d) Soms other poirings determinad
" by the siide

The one-to-one function determined in a
similar way by a turn about a point is
called a rotation. Figure 16 shows a rota-
tion about point 7. Under that rotation
AXYZ is the image of AAB(C. The map
arrow shows that point 7 is the image of
D, while the “loop” map arrow shows that
point 7' is its own image.

Figurs 16

Fach one-to-one function determined by
a flip about a line is enlled a line refleciion.

The map arrows in Figure 17 show some
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of the original-image pairs for the reflec-
tion about line I. Under a flip about line |
a tracing of AABC will be moved to coin-
cide with AXYZ. So AXYZ is the image
of AABC under the reflection about 1.

n<;;~s

4

Fiaure 17 ;

The map arrow from R to S shows S to
be the image of R, while the map arrow
from & to K shows R to be the image of S.
That is, R and 8 are images of each other.
The loop arrow at @ shows that  is its
own image. Because of the way flips work,
we see that if M is the image of N, then N
is also the image of M. So AABC is the
image of AXYZ. Also, each point of line ]
is its own image. .

For cach translation, rotation, and line
reflection, any figure will be congruent to
its image. This follows from the way trae-

~ings were used to define these functions.

In particular, the image of a segment will

c/’_-‘
—
el
—

(o) Translation

‘(b) Rototion

be a congruent segment. Stated another
way : The distance between any two points
is the sume as the distance between their
image points, For this reason, translations,
rotations, and line reflections are called
distance~preserving functions. Distance-pre-
serving functions of the plane are some-
times called 7somefries of the plane; so
translations, rotations, and line reflections
are isometries of the plane.

Fixsd polnts

A point which is its own image (with
respect to a given function) is referred to
as a fized point. A map arrow for a fixed
point starts and ends at that point. Figure
18 shows several pairings for a translntion,

& rotation, and a reflection.

There are no fixed points for the transla-
tion in Figure 18(a). To see this, think of
sliding a tracing as indicated by thc slide
Arrow; every part of the tracing would
slide the same distance and direction.
Therefore. the distance between a point
and its image is constant; it is the same as
the length of the slide arrow. Finally, if a
translation ‘has at least one fixed point,
all points must be fixed, and the transla-
tion is the identity function.

The only fixed point of the rotation in
[Figure 18(b) is the turn center. In fact,
the turn center is always a fixed point for a
rotation. However, there may be other
fixed points, as in a 360-degree rotation.
But, if there are two fixed points, then all
points are fixed and the rotation is the
identity function. (These results are most

~ easily seen by thinking of tracings. As a

tracing is turned, the turn center is held

(¢) Line reflection

Frayre 18
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fixed. If » sccond point of the tracing turns
back to where it started, the entire tracing
will be back to where it started.)

By considering a flip of a tracing sheet
about a line, one ean see that the fixed
points for a line reflection are exactly the
points of the flip line.

Invariance.

A figure which is its own image under a
function is said to he inrariant under the
given fur.ction. Under the refection abhout
the line shown, as in Figure 19(a), the
image of the regular hexagon is the hexa-
gon itself. In Figure 19(b) the hexagon is
invariant with respect to a 60-degree rota-
tion about its center. The only translation
which Ieaves 2 hexagon invariant is the
(trivial) identity translation.

The distinction between fixed points
-end invarianes can he ssen hy referring
to Figures 19(a) aina 19(b). In both illus-
trations, the hexagon is invariant. For the
line reflection the hexagon has exactly two
fixed points. These are the two points

- .

(a) Invarionce unider a line reflection

{b) Invarionce undsr o rotation

Fiaure 19

where the hexagon crosses the flip line.
For the rotation, the hexagon has no fixed
points.

Now consider the translation shown in
Figure 20. A tracing of line n “slides
along” line n. This means that the eorre-
sponding translation pairs each point of
line » with a point of line n, i.e., the line n
is <neariant (mapped onto itself) under
this translntion. Notice, however, that no
point of line n is fixed.

- -~ A
\\
~e—. \
- .‘-~~.‘

Fiauvar 20

Goeometry

We are now in a position to tackle the
conventional theorems of plane geometry.
Our tools will be properties of translations,
rotations, and reflections. In the following
sections we offer some sampies of this
analysis.

Parallel lines

After examining the effect of transla-
tions upon various lines in the plane, stu-
dents formulate the following generaliza-
tion:

For each line in the plane and for each

. translation, either the iranslation maps the

line onto itself, or else the line and its image
have no points in common (Fig. 21).

With this observation, we are in a posi-
tion to define “parallei lines.”” We say
that lines are parallel whenever there is a
translation that maps one line onto the
other. With this definition a line is parallel
to itself.

Vertical anglas

An important property of all 180-degree
rovations is that they map any line onto a
parallel line and, specifically, map any line
through the center of rotation ontn itsclf.
See Figures 22(a) and 22(b).

This property plays a central role in the
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Line mapped onto itself

No points common to line ond image

Fioure 21

study of vertical angles. Two lines that
intersect at a point P (see Fig. 23) form
four angles, opposite pairs of which are
called vertical angles. A 180-degree rota-
tion about point P maps each of the lines
onto itself. In partisular, it maps ray PA
onto ray PD and ray PB onto ray PC;
Le., it maps ZAPB onto £DPC. There-
fore, these vertical angles are congruent.
This same rotation also maps £ APC onto
£DPB, so these vertical angles are also
congruent.

\mogs otiin®

Parallel l'lnu-ﬂrunsvorwl theoreams

Given a pair of parallel lines, the trans-
lation which maps any point of the first
line onto some point of the second line
maps ull of the-first line onto the second
line. Also, each translation preserves the
order of points along a line, and each trans-
lation maps a set onto a congruent set.
These properties give us tools for exploring
the standard parallel lines-transversal
theorems.

() Image of line under 180 rotation is o parallel tine

-
-

-
-

center of
rotation

(b) Line through turn center invoriant

under 160° rotation

Fiaoure 22
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Ficure 23

Suppose that line AC i parallel to line
BD (Fig. 24), and that line n ¢rosses cuch
as shown, Consider the translation that
maps A to B. This translation maps line
AC onto line BD. In particular, this
translation maps ray AC onto ray BD
and ray AB onto ray BE; i.e., it maps
LZCAB onto £DBE. Therefore, £LCAB
is congruent to £ZDBE. This same trans-
iation establishes the congruence of the
other pairs of corresponding angles,

E
”»

1
i
!

FiGURE 24

At first it is best to illustrate arguments
like this with the use of tracings, Students
who trace £Z0CAB and slide the tracing
from A to B readily sce that the tracing
then matches ZDBE. Although initial
arguments of this type should be discussed
with the help of tracings, eventually stu-
dents should be encouraged to make their
arguments on a more verbal basis, with a
minimum of direct help from the tracings.
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Perpendicvliar lines

Invariance plays an important role in
the development of geometrie ideas. Some
lines are invariant under refleetion about
another line, and somec lines are not, In the
case where u iine is invariant under reflec-
tion about another line (L'ig. 25, upper),
not only are the pairs of vertical angles
congruent, but because of pairings under
the reflection, we can deduee that all the
involved angles must be congruent, This
situation does not occur in the other case
(I'ig. 25, lower).

iip
Line
[
]
]
Flip
Line
¢'
H
[
qu'nn 25

This observation motivates the follow-
ing definition. Two lines are perpendicular
whenever one is invariant under reflection
about the other. (The word “two’’ is im-
portant here.) With this definition and an
appropriate system of angle measure, one
is ready to argue that perpendicular lines
form four 90-degree angles.

Symmatry

Another example of the role of invari-
ance is found in the study of symmetry.
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A figure is said to have line symmetry
whenever it is invariant under a reflection
about some line, A triangle may have no
line symmetries, one line symmetry, or
three line symmetries. There are no trian-
gles with exactly two line symnietries.

Consider any triangle with just one line
of symmetry, Any such triangle must have
one of its vertices on the symmetry line
(see I'ig. 26), Furthermore, its other ver-
tices will be reflected images of each other
(points B and ().

-
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Triangls with one symmaetry lins.

Fraure 26

Therefore the triangle has a pair of
sides that are reflected images of each
other, i.e., has two congruent sides (side
AB =¢side AC). The triangle also has a
pair ot angles that are reflected images of
each other, so they are congruent (£ B
= £('). Since point B is the image of
point C, line BC is invariant under the
reflection, and the symmetry line biscets
segment BC. This means the symmetry
line is the perpendicular bisector of the
side included between the congruent
angles (angles B and (*). The usual proper-
ties of medians, altitudes, and angle bisee-
tors yield to this form of analysis equally

o
-* yi
[
'
]

Ficurr 27

well. (The term “isosceles” can be intro-
duced at the appropriate time.)
If a triangle has two line symmetries,

hen it must have three, In Figire 27, linies
and m are lines of symmetry; so side
AB == side AC, side AB == side BC, and
hence all three sides are congruent. That
is, the triangle is equilateral. It can be
shown that equilateral triangles have
three line symmetries, In this case, the
altitude from (7 lies along the third line

of symmetry of the triangle,

t
1]
v

Queadrilaterals

The study of quadrilaterals and their
properties ean parallel that of triangles,
proceeding from quadrilaterals with no
line symmetries to those with four lines of
symmetry. One interesting difference be-
tween quadrilaterals and triangles is that
the quadrilaterals can have symmetry
lines which do not contain a vertex, while
triangles cannot. As a result, we make n
distinction between diagonal symmelries
and mediator symmetrics. A polygon has
diagonal symimetry if the linc containing
one of its diagonals is a line of sym-
metry. It has mediator symmetry if one
of its medians is a line of symmetry. (A
median of a quadrilateral joins the mid-
points of opposite sides of the figure.)
Each »f a quadrilateral’s line symmetries
will be either a diagonal symmetry or a
mediator symmetry.

The reader may wish to verify that a
quadrilateral with just one line of sym-
metry is either a kite or an isosceles trape~
zoid; with just two lines of symmetry is
either a rectangle or a rhombus; with four
lines of symmetry is a square, Just as we
have shown in the case of isosecles and
equilateral trinngles, it is possible to de-
rive the usual properties of the special
quadrilaterals from their symmetry prop-
erties (see Fig. 28).

There is an important class of quadri-
laterals that is not covered by the line-
symmetry classification. These quadrilat-
erals are ordinarily not invariant under
line reflection but are invariant under
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180-degree rotation. To have this invari-
ance it i8 necessary for a quadrifateral to
have its vertices arranged generally as
shown in Figure 29. In this case A and €
are images of cach other, as are B and D.
As was mentioned earlier, a 180-degree

Fraunx 20

rotaticn maps a line onto a parallel line.
So, in this case, since the rotation maps
line AB onto line €D, we iufer that seg-
ment AB and segment (D must be
parallel. Similarly for segment BC and
segment AD; and, of course, the segments
in each of these pairs are congruent, be-
cause we have used another congruence

- mapping. F'or the same reasons, the diag-

onals of this quadrilateral bisect each other
and opposite pairs of angles arc congruent.
These are the standard properties of
parallelograms.

Constructions

An isometry-based context for geometry
is rich with opportunities for students to
discover construction techniques. As a
simple example, take the problem of con-
structing a perpendicular to a line
through a point P not on line [. Students
who have an understanding of the map-

368 The Mathematics Teacher | April 1968 . .

pings discussed in this article have sug-
gested the following methods:

1. TFold along line ! and mark the point
that corresponds with P under this fold.
This point together with P determines the

desired perpendicular.

2. Fold line [ onto itself so that the fold
line goes through point P. The erease de-
termines the desired perpendicular.,

3. Place a square-cornered card with

~one edge along line [ and an adjacent vdge

running through P. Draw the desired line
along the latter edge.

4, Use a flat, transparent, reflecting
sheet (such as a stiff sheet of plastic or a
thin piece of glass). Stand this sheet erect
along line I, and mark the reflected image
of point P in its apparent position ‘“on the
other side’” of line .

5. Again with a transparent reflecting
sheet, stand the sheet erect so that its
bottom edge determines a line through
point P. Now rotate this sheet about,
keeping the bottom on a line through P.
As you do this you will find a position .
where the reflected image of the part of
line ! in front of the sheet coincides with

b
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that part of [ behind the shecet. In this po-
sition, mark the ends of the reflecting
sheet. These points determine the desired
line.

6. The usual ecompass construetion (Fig,
30).

7. A varintion on the usual construction
technique (I'ig. 31). Points X and ¥ arc
arbitrarily chosen,

'
i
'
%
-
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Fraure 31

With this range of possibilities, the
chances of each student’s finding ‘‘his
own’’ techniques are greatly incrensed. In
addition, his knowledge of the mappings
will promote more understanding of the

vurious techniques than is achieved in
the usuul compass-straightedge context.

Although only one construction problem
has been discussed in this paper, all of the
standard plane-geometry constructions
yield to attacks similar to those described
ahove, :

. Summary

The isometry context, as deseribed in
this article, provides a wealth of oppor-
tunities to explore topics in geometry,
"This exploration is earried out in o setting
that is accessible to students with a broad
range of ability. Furthermore, innumer-
nble opportunities arise for the student to
gain_expericnee in making arguments to
verify or refute conjeetures, ‘I'he methodds
of attuck presented here would not inter-
fere with a Iater conventional (deductive)
organization of geometry. Rather, they
tend to strengthen the student’s intuitive
grasp of geometrie faets so that ae is
hetter able to devote his attention to for-
mal proofs and to appreciate the subtle
relations among axioms, definitions, unde-
fined terms, and theorems,

- Two courses now available

-t
S

The Secondary School Mathematies Currieu-
lum Improvement Study has completed one
year of experimental study of a new curriculum, . e
Course I, intended for Girade 7. On the basis of '
this year of study, this course has now been pub-
lished in revised form iu two parts, each part
approximately 375 pages. A Course IT for Grade
8 has been published in an experimental version
and consists of two parts, each approximately
350 pages. The textbooks for both of these
courses are available in limited supply for re-
view by interested persons. For information on
cost and delivery duates write

Howard F, Fehr, Director
SSMCIS, Box 120

- Teachers College, Columbia University
New York, New York 10027
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SYLLABUS

E343

Teaching Mathematics in the Elementary Schools
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E343

é Teacher Competencies in Mathematics Methods
for the Elementary School

The semester's work in E343 is planned and executed in such a way that
every attempt is made to help teachers develop the following competencies
for their work with children in the mathematics program:

1. The ability to use their knowledge and understanding of the real
number system to provide a meaningful mathematics program for children.

2, The ability to use their knowledge and understanding of intuitive
geometry to provide a more complete, meaningful mathematics program
for children.

3. The ability to use their knowledge and understanding of the history
-and development of mathematics to provide a broad cultural foundation
for a meaningful mathematics program for children.

4. The ability to provide meaningful experiences in mathematics for
children, consistent with their knowledge and understanding of the
social and quantitative aspects of their environment.

5. The ability to use their knowledge and understanding of the principles
of child growth and development in planning and executing learning
experiences in mathematics for children.

i 6. The ability to use their knowledge and understanding of the psychology
7 of learning in planning and executing learning experiences in mathe-
‘g matics for children.

7. The ability to select content in mathematics for different grade
levels consistent with the principles of child growth and development
and research in the psychology of learnings.

8. The ability to use their knowledge and understanding of all areas of
g the curriculum in order to integrate and correlate these areas with
f mathematics.

9, The ability to examine and use past and present methods and techniques
used in teaching mathematics in accordance with existing research.

10, The ability to use different kinds of instructional materials in
providing learning experiences in mathematics for children,

11. The ability to make and use a variety of cocperative techniques for
the purpose of evaluating individual and group performance in the
mathematics program.

12, The ability to use professional books and periodicals to further

professional growth in the area of mathematics. .
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FOREWORD

When constructing this guide, programs currently used in the public
schools were the frames of reference for the outlines., No attempt was made
fo fit these outlines to any one methods textbook, As a consequence, some
of the toplces are treated in greater detail than the treatment furnished in
the present Eextbook used in E343, Seldom will you find something included
in the textbook but not included in the syllabus.,

Using curriculum guides, pupils textbooks, scope and sequence rharts,
methods textbooks, and the experiences of mathematics education experts, the
syllabus outlines were constructed, Obviously, the sequence of events in the
outline do not exactly follow the present basic methods textbook, Thisg is
especially true in the sections dealing with number sentences, factors and
multiples, and geometry. In several instances the ideas are widely separated
in the book. In a few cases, the topics are treated under one heading in the
syllabus and under two or more headings in the methods textbook,

Under existiﬁg planning and policies, mathematics content, as such, is
left up to the mathematics department. The emphasig in the E343 syllabus is
intended to be upon methods and materials. Again this is an area ;f disagree-
ment between the methods textbook and the syllabus outlines. Most methads
textbooks include a considerable amount of content, as such, prior to intro=
duction of methods using that content. Our present textbook is no exception.

Persons using this syllabus should be aware of the differences between
the content of the textbook and the program offered in E343. With this aware- .
ness, assignments will make sense when they are‘based upon the program as
outlined by the syllabus rather than just the next 10 or 20 pages in the
textbook. TFor certain topics supplementary reading will be necessary. Salected

‘

assignments from other resources will meat this need. .




The present syllabus should be used as a guide in developing the scope
XS any
and sequence of the progrem. It is not a Régscription 8 more than is the

textbook. Rather it is a rnad maY for the E343 course for both instructor

and. student.
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I.

II.

I1I.

PART I

OBJECTIVES AND PHILOSOFHY

Basic tenets of a modcul. mathematics program

A. General objectives of education

B. General objectives of mathematics education
C. Specific objectives of mathematics educatlon

1. -Process goals

8. Acquire

b. Interpret

c. Evaluate

d, Communicate
2. Behavioral goals

Historical antecedents of current mathematics programs

A, Pre-history

8, Historical beginnings
l. Roman~-Greek perio
2. Mayan

C. Dark Ages

D. Renaissance

E. Colonial Period to 18

F. 1821-1892

G, 1892-1935

H. 1935 = present

d

21

Characteristics of modern programs in mathematics
A. Unifying themes of modern mathematics program
l. Greater Cleveland Mathematics Program

2, Mddison Project
SMSG
Minnemath

University of Illinois Arithmetic Project

3.
4,
5. Stanford Project
6.
P

- Ry~

rinciples of learning used in modern mathematlcs programs



I.

Tea  hing

Strategy

11,

III,

IV,

PLAMNING AND ORGANIZING THE CLASSROOM FOR (NSTRUCTION

Rationale for Teac@igg,___

Ob’ectlves

Evaluation

Teaching Strategies

A.
B.
c.
D.
E.
F.
G.

Inquiry method ~

Discovery method (lnductlve-deduct ive)

Problem solving

Expository method

Spaced repetition

Pupil involvement

Homework

1. Fallacy of typical homework

2, Principles underlying the correct use of homework
3, Examples of desirable homework ass ignments

Long range planning

A.
B.
c.
D,
E.

Scope and sequer e

Time allotments and pacing

Unit planning without textbook

Unit planning with textbook ,
Planning for use of instructional resources

Short range planming

A.

B.
C.
D.
E.

Steps in planaing U e
l. Objectives |

2. Readiness

3. Approach

4. Procedures

3. Materials

6. Summary

7. Evaluation

Initiating a new concept

Practice and drill lessons

Use of textbook and workbook '

Iransitions from topic to topic and lesson to lesson
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PART II

SETS

In each of the following sections emphasis first is placed upon
the use of concrete materials for introduction of the concepts., The
concepts are then further developed through pictorial and diagramatic
get representations. '

I.

1I.

I11.

Iv.

V.

VI.

VII.

VIII.

I1X.

How to help children identify and describe sets,

Using equivalences to help children establish cardinal
number names.

Using non-equivalence to establish the idea of ordinal
number names,

How to present the idea of the empty set,

‘How subsets are used to develop concepts related to
operations with whole numbers.

The importance of disjoint sets in fundamental operations.

Relationships between set operations and operativne on
numbers,

How to present concepts of metric and non-metric geometry
through the use of sets,

Problem solving through the use of Venn diagrams,

— ) oy e




/ NUMBER SENTENCES

I. Mathematics as a language
A Relationship to the English language
B. Punctuation

C. Precision of vocabulary

D. Statements and Open Sentences: Their application and interpretation
- 1. Frame arithmetic . S
2. Simple and compound open sentences
3. One variable and more than one variable
4, Graphing solution sets on a number line

1I. Using number sentences to solve verbal problems

A. Translaiing verbal sentences and phrases into mathematical
language.

B. Expressing verbal problems as open sentences.

C. Finding solution sets for equations and inequalities.
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FACTORS AND MULTIPLES

I. How to develop meanings and interrelationships between factor,
multiple, and divisor,

I1. Helping Children Discover Prime Numbers, Composite Numbers, and
the Role of One (Eratosthenes sieve, twin primes, etc.)

I11. Discovering Divisibility Tests and Why They Work
IV. Methods of Factoring~~Division, factor tree, etc.

V. Greatest Common Factor (Greatest Common Divisor)
A. Determined through the use of sets (understanding)
B. Determined through prime factorization (speed)
C. Use of GCD in working with fractions~~expressing in
simplest form, '

VI. Least Common Multiple
A. Same as A above
B. Same as B above
C. Use of LCM in working with fractions-~addition and
subtraction of unlike fractions.

VIiI. Enrichment Activities
A. Patterns
B. 0dd and Even Number’,
C. Square and Triangular Numbers
D. Expomnents
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PART I1I1

ADDITION AND SUBTRACTION*

I. Relaticuship to counting

A.
B.

Use of sets
Use of number line

II. Basic facts for addition and subtraction

A.
B.

C.
D.

E.

Use of concrete materials~~sets, examples of semi-concrete
materials

Inverse relationship~~putting together and taking apart
Writing the horizontal and verticsl algorithmws~~use of frames
How basic principles help us teach and learn basic facts
(identity element, commutative principle, principle of one
more, doubles, near doubles)

Activities for develnping automatic mastery

IIl. Addition

A.

B.

C.

D.

Single-~digit column addition

l. Use of concrete materials-~~sets, examples of semi-
concrete materials

2. Horizontal and vertical algorithms-~use of parentheses
(associative prineciple)

3. Teaching the unseen numeral

4. Checking addition

Multi-~digit addition without regrouping

1. Activities with concrete and sew.-concrete materials to
build understanding of place value-~counters, place value
charts, abacus, place value grids, pictorial and graphic
representations. '

2, Relationship to basic facts

3. Use of expanded notation

4. Use of mature form of algorithms

Multi-digit addition with regrouping

1. Pictorial representations of sets of ten and sets of ¢ne

2. Horizontal algorithm-~expanded notation using principles

3. Vertical algorithm--expanded notation (Heavy emphasis on
place value charts)

4, Activities to develop efficiency and speed in column
addition
a. Higher decade addition .
b. Addition of multiples of ten

Additional ways to check column addition

1. GCheck of nines

2. Rule of compensation

3. Regrouping addends

. /1,7._.




ADDITION AND SUBTRACTION
(Continued)

IV, Subtraction
A. Types of subtraction situatlons
1. How many left
2, How many more are needed (look for missing addend)
3. Comparison (find the difference between two numbers)
B. Multi-digit subtraction without regrouping
1. Activities with concrete and semi~-concrete materials to
’ build understanding of place~value-~counters, place value
charts, abacus, place value grids, pcitorial and giaphic
representaticns :
2. Relationship to basic facts
3. Use of expanded notation
%. Use of algorithms
C., Multi-digit subtraction with regrouping
l, Same as B, l. above
2. Muthods of subtraction
a., Decomposition
b, Equal=-additions
: c, Complementary
i} D. Methods of checking subtraction
. 1., Addition method
2. Subtraction method
3. Checl of nines
4. Approximation

V. Enrichment in addition and subtraction
1, Games
: | 2, Magic Squares
; . 3. Cross Number puzzles
| 4, Mental arithmetic
| 5. Madison Project materials
6. Row-~Peterson booklets
7. Operations using number bases other than ten

i

{ * Vocabulary stressed--addend, sum, missing addend, plus, minus,
| subtrahend, minuend, and remainder or difference.

l
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I.

I,

IIT.

MULTIPLICATION AND DIVISION#*

Relationship to addition and subtraction and ultimately to counting
A. Use of sets
1. Multiplication
a, Repeated addiiion
b. Cartesian products
2, Division
a, Partitive
b. Quotative
B. Use of number line

Basic facts for multiplication and division
A. Use of concrete materials-~sets, examples of semi-concrete
mater.als

. Bs Inverse relationship-~putting together and taking apart

C. Writing the horizontal and vertical algorithms~-use of frames

D. How basic principles help us teach 2nd learn basic facts
(Ydentity element, commutative principle, distributive
principle of multiplication over addition, principle of
multiplying by zero, squaring)

E. Activities for developing automatic mastery

Multiplication
A. Single~digit multiplier without regrouping
l. Use of concrete materials~-sets, examples of semi~concrete
materials
2. Relationship to basic facts
3. Horizontal and vertical algorithms--use of parentheses
(expanded notation using associative and commutative
. principles)
4. Position of product numerals--extensive use of place
wvalue charts and counting men
5. Checking multiplication-~repeated addition
B Single-digit multiplier with regrouping
l. Activities with concrete and semi~concrete materials to
build understanding of place value-~counters, place value
charts, abacus, place value grids, pictorial and graphic
representations ,
2. Use of expanded notation stvessing the distributive
principle
3. Use of algorithms (mature form)
Ce Multi-digit multiplier and multiplicand
1. Use cf arrays
2. Expanded notation and use of distributive principle
3. Placement of partial products

. be Role of 0 in multiplier and multiplicand

5. Use of algorithm (mature form)
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MJLTIPLICATION AND DIVISICN
{Continued)

I1I. (Continued)
D. Methods of checking mathematics
1. Division
2. Casting out nines
3. fxpanded notation
4, Reversing factors

IV. Division

A. Uneven Division--handling remainders

l. As a whole number

[ ' 2. As a fraction

3. As a rounding off process
B, Multi~Digit Dividends with Single Digit Divisors in Division

1., Use of arrary patterns

2. Expanded notation -

3. Subtractive method | -
r . 4. TImmature method of placement of quotient
| | 5. Mature method

6. Checking division by repeated subtraction
C. Multi-Digit Divisors in Division
: 1, Use of array patterns
§ 2. Expanded notation
‘ 3. Subtractive method~~mature method

4. Estimating quotients

8. apparent method of trial divisors
b, increase~by~one method of ¢rial divisors

D. Checking in Division ‘

1. Multiplication

2. Apprcximction

3. Check of nines

V. Enrichment in Multiplication and Division

1. Doubling method

2. Gelosia method

3. Galley method

4, Front-erid method

5. Egyptian division method

6. Permutations and combinations
(Arrangements and selections)

) 7. Operations using bases other than ten

% Vocabulary stressed: factor, product, missing factor, times,
multiply, divide, multiplicand, multiplier, partial product,
- --product, Jdivisor, dividend, quotient, and remainder..




PART IV
FRACTICNAL, NUMBERS

i. Foundational Program for Fractional Numbers
A. Different Situations in which Fractions Are-Used
i. To represent parts of 3 whole
2.. To represent one of a group of units
3. 7To represent division of a whole number
4. To represent a ratio
B. Developing the Concept of Fractional Numbers
1. Use of concrete and semi~concrete materials~-e.g., parts
»f real objects, number line xepresentations, fraction
charts, and fractional cutouts
2, Representation of fractiomal numbers with emphasis placed
upon the relationships which exist among them
a, Common fractions
b. Decimal fractions
c. Percents
" 3, Ordering fractional numbers
4, Learning to read and write fra:tior,, decimal, and
percent numberals
C. Equivalent Fractions
1. Determine the meaning of equivalent fractions through
the use of pictorial and graphic representations
2, Use of factors, multiples, and the multiplicative
identity to express fractional rumbers in different
terms

II. Addition and Subtraction of Common Fractional Humbers
A, Foundation Activities
l. Joining and separating congruent and discrete regions
through the use of concrete objects
2, Use of number lines and other graphic representatinns to
solve addition and subtraction situations
3. Relating the basic principles of whole numbers to
fractional numbers--e.g,, commutative, associative, etc.
B. Development of Formal Procedures in the Addition and Subtracticn
of Proper and Improper Fractions and Mixed Numbers
1. Proper Fractions
a, 7rizontal and vertical algorithms
(1) Like denominators
(2) Unlike denominators
b. Checking by pictorial and graphic representations and
inverse relationships
¢. Oral and mental activities
2. Improper fractions and mixed numbers -
a. Renaming improper fractions and mxxed numbers
b. Horizontal and vertical aloorxthms '
(1) Like deonominators ‘
(2) Unlike deonominators | \
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FRACTIONAL NUMBERS
(Continued)

II. (Continued)
2, (Continued)
c. Regrouping
d. Other ' numérical checking activities

IIT. Multiplication and Division of Common Fractional Numbers
A. Foundational Activities
l. Use of models to develop fractiowal multiplicative concepts
a, Pictorial representations
b. Unit regions
¢es Number lines
2, Use of models to develop fractional divisive concepts
a. Pictorial representations
b. Number line
3. Determinational the relationship between division and
multiplication of fractional numbers
. &4, Determination >f the basic principles which pertain to
each of the two operations upon fractional numbers; i.e.,
closure, commutativity, associativity, multiplicative
identity, distributivity, pm0, and reciprocal
B. Development of Formal Procedures in the Multiplication and
Division of Fractional Numbers
1. Multiplication
a. Basic horizontal algorithm used with common fractions
b. Variations involved when working with whole numbers
and mixed numbers
(1) Use of vertical algorithm
(2) Expressing all factors in conmon frdction form
cs Kenaming products
2. Development of the concept of “Cancellation" through the
use of reneming, the associative and commutative principles,
and the multiplicative identity
3. Division
a. Equal-denominator method
b. Inversion method
4, Checking multiplication and division by pictorial and
graphic representations and by inverse relationships

IV. Decimals and Per Cents . -

A, Foundation Program., 8See Part I of Fractional Numbers

B, Situations which require the extension of place value and
their interpretations through decimals end per ceits

Ce Operations with Decimal Fractions-=-Additicn, Subtraction,
Multiplication, and Division
l. Relating the basic principles of fracticnal wumbers to

computations with deciunal fractions,
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Iv,

v.

VI.

FRACTIONAL NUMBERS
(Continued)

{Continued)

C.

D.

(Continued)

2. Computation with decimal fractions through the use of
common fractions, powers of ten, number lines, diagrams,
algorithms, etc.

3. Applications of decimal approxzimation of fractional numbers

4, Applications of repeating decimals

Rate-pair intexpretation of per cent

l, See 7.1lle of Peterson and Hashisaki

2, Approaching the solution of per cent problems through

the use of proportions

Fractional numbers as ratios

Ae
B.

Jdentification of ratio and rate
Use of equ¢l ratios in equations

Enrichment Activities
Graphing on a number line
Different number bases
Historical development
Puzzles and games

A.
B.

C.

D.
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.PART V Ly

GEOMEIRY

(Metric and Non~metric)

I. Introduction to Geometry in the Elementary School
A, Overview
" 1, Historical orientation
2. Current trends
B. Rationale for teaching geometry
1. General objectives
2, Speqlflc objectives

II. Concept Development
A, Intuitive Apnroach
B. Environmental Orientation
C. Teacher-pupil Dialogues

II11, Essential Primitive Concepts
A. Non-metric Geometry
B. Metric Geometry

IV, Teaching of Geometrie Terms and Symbols
A. Perception Activities
B. Vocabulary Activities
l Hearing

2, Saying
3. Seeing
4. Writing

C. Activities with Geometric Symbols : -

V. Teaching of Linear Figures and Linear Measurement
A. Activities with representations of linear figures
B. Elementary Concepts of congruence
1, Slides~Translations
2, Turns-Rotations
3. Flips~-Reflections
C. Measurement activities with linear figures

1. Length
2. Angle
3. Area

b, Pythagorean Theorem
D. Sketching of Linear figures and fo;mal constructlons
of linear figures :
E. Classification of linear figures through set relationships
F. Ordering by Size--primitive concept of comparison
G. Similarity--Intuitive introductory activities
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GEOMETRY :

(M2tric and Non-metric)
(Continued)

V. (Continued)
H. Symmetry--Intuitive introductory activities
I. Porallelism and Perpendicularity
l. Paper folding and cutting activities
2, Construction activities o
J. In depth approach to the sequence of geometric atudy

LA AT W AR TR AN ¢ W S W W
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VI. Teaching of the Common Solids
. A. Activities with representations of common solids
Bs Measurement Activities with Common Solids
l, Surface Areas
2, Volumes
C. Constructing models of solids
D. Compari- s of solids

O T

P S

VII. Additional Measurement Topics ;
A. English, Troy, Metric Systems ' .
B. Liquid and dry measurement - | k.
C. Time . ' .
D. Weight , | : .
E. Temperature

e w -

VII1. Graphing
: A. Reading and constructing graphs , . o ;@w

1, Bar graphs :
2, Line graphs , i
3. Pictorial graphs | - S | !
4, Circle graphs - ' |

B. Graphing on a number line

C. Cartesian coordinates
l. Ordered pairs o .
2. Plotting points : , . '
3. Graphs of functions T
4. Graphing inequalities

XI. Enrichment Activities
A. Geometric illusions
B. Topology
C. Paperfolding ‘ : ‘
D. Mobiles {
E. Activities relating to the historical development of = A %
measurement; e.g. dramatizations and making models, | o
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II.
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PART VI

VERBAL PROBLEM SOLVING

Definition of a problem
A. Psychological
B. Verbal mathematics problemg

Purpcses of problems
A. Relationship to physi:al environment
B. Relationship to mathematics program
1, Practice
2. Motivation
3. iInitiation

Issues in Lﬁe teaching of problem solving
A. Settings
B. Factors azsociated with high achievement

~C. Reading skills related to problem solving
D, Operations related to problem solving

E. Readiness related to problem solving
F. Procedures related to problem solving

Types of Problems

A. Single step

B. Multi-step

C. Non~numerical

D. Insufficient data
E. Superfluous data

Methods of Teaching Problem Solving
A. Mathematical sentences :
B. Oral and mental problems

C. Diagrams, graphs, drawings

D. Restatement or analogies

E. ©Pupil formulation of problems
F. Too much, too little data

G. Problems without numbers

B, Set representations

I. Logic

J. Analysis

K. Estimation

~ |3F -
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PART VII

EVALUATING AND PLANNING IN ELEMENTARY SCHOOL MATHEMATICS

I. Role of measurement in evaluation
II. Relationship of evaluation to objectives

IIT. Informal methods of evaluation
A. Anecdotal record
B. Rating scale
C. Observation
D, Interview

IV. Formal methods of evaluation
A, Standardized tests
1. Advantages and disadvantages
2. Types available
: a. Diagnostic
b. Inventory
c. Achievement
d ° tt itU.d inal
e. Meaning and Understanding
£. Readiness
3. Uses to be made of them
B. Teacher-made tests
1. Advantages and disadvantages
2. Construction of items
a. Interesting
b. Varied
ce Clear
3., Uses to be made cf them
C. Textbook tests

V. Characteristics of a good test:
A, Valid
B. Reliable
C. Proper format
D. Easily scored

VI. Planning for individual differences
A. Grouping for instructicn

1. Small group
b. Diagnosed need
¢. Interest

, d. Committee

2. Whole group
8. Levels of procedure
b. Levels of content

~13G-




VI.

. VII.

_EVALUATING AND PLANNTNG IN ELEMENTARY SCHOOL MATHEMATICS

(Continued)

(Continued}

B. Differentiation of assignments
1. On the basis of ability

2., On the basis of diagnosed need
3. On the basis of interest

Planning the learning environment
A, Useful seating arrangements
B. Useful traffic patterns

C. Effective bulletin boaxds

D. Mathematics corner

E. Mathematics library




