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RECOMMENDATIONS FROM THE EDC PROJECT

For the past two years, the EDC Project at Indiana University

has involved members of the Mathematics Department and the School of

Education in a caperative study of the question: How should pros-

pective elementary school teachers be prepared to teach mathematics

to children?

During the summer of 1967, three members of the Mathematits

Department, and three members of the School of Education worked together

to revise the existing mathematics and mathematics education curricula

for elementary teachers. Every 41ffort was made to correlate the contents

of the two curricula. Unnecessary'duplications of content and instruc-

tional materials were eliminated. Syllabi were prepared for the

courses T104, T106, and E343, and texts and supplementary materials

for these courses were chosen.

These syllabi and materials were used during the Spring semester

of 1967-68. Matters were arranged so that two sections, made up of

students who had taken T104 the preceding semester, were enrolled in

both T106 and E343. For each of these sections, the two courses were

taught in the same classroom during two adjacent class periods. One

of the mathematics teachers evaluated the effectiveness of this program

by comprehensive testing of these two sections. The other instructors

involved in the program conducted informal evaluations with their

sections. Each instructor was asked to suggest needed revisions in

the prepared syllabi.

During the summer of 1968, a team constituted similarly to that

of the previous summer revised the syllabi and textbook choices for

T104, T106, and E343, for use in 1968-69. A syllabus was also prepared



A

for an integrated mathematics course, described in Recommendation 1

below. Copies of these syllabi and related materials are appended to

this report. In the recommendations the two parts of the integrated

mathematics course just mentioned are denoted by "Int I" (5 credits)

and "Int II" (3 credits).

On the basis 6f objective and. 6Ubjective evEden-Oe gathered during

the two years of the Project, the team members make the following

recommendations:

1. Elementary school programs clearly reflect an integration of

arithmetic, geometry, and algebra into a single course of study.

The mathematics education course content reflects the elementary

school curriculum. Yet in the three matheMatics content courses

T104 (arithmetic) , T106 (geometry), and T108 (algebra), these

three streams of thought are still separated. Thus it is

RECOMMENDED that beginning in 1969-70 (the earliest practical

date), the courses T104, T106, and T108 be replaced by the

one-year, eight-credit, integrated mathematics course here called

Int II (see syllabus, appended).

2. Evidence seems to point to the need for keeping the mathematics

content courses as close as possible to the mathematics education

course. It also seems clear that the content course should not

be taken after the education course9 although current policy allows

this. In the existing Education program, the mathematics education

course is taken just prior to student teaching. Milt

RECOMMENDED that the mathematics content courses be removed from

the 100 (Freshman) level and placed at the 200 or 300 level. It

is further RECOMMENDED that T104 (or Int I) be made a =requisite

for T106 (or Int II) and E31+3, and that E343 be made a cc_2:22.2aisit2.

for T106 (or Int II). Students should also be strongly urged to

take T104 and T106 (or Int I and Int II) in adjacent school terms'

(i.e. either Fall-Spring, Spring-Summer, or. Summer-Fall) .



3, It is felt that additional attention should be given to the

deelopment of instructional materials to supplement the basic

texts in the various courses. Members of the mathematics team

have so far prepared two supplementary unite for T104, covering

material not included in the basic T104 text (copies of these units

appended). Members of the mathematics education team have worked

'------towards preparing packages of materials to supplement each unit-

of the E343 syllabus (some of this material is appended). It is

RECOMMENDED that additional supplementary instructional materials

be produced for use in both the mathematics and mathematics edu-

cation programs. Additional monies and personnel will be needed

to develop this aspect of the project further. For the most effective

use of the materials developed for E343, it is RECOMMENDED that

a learning laboratory be set up for E343 students, and that a

diagnostic mathematics examination be given at the beginning of

E343 to determine which students still need work on which topics.

4. It is felt that a student who receives a grade of D in T104

or T106 is not sufficiently prepared to teach mathematics in

the elementary schools; yet it is possible, under current policies,

for such students to attain certification. Thus it is

RECOMMENDED that grades of C or above in T104 and T106 (or

Iht I and Int II) be required of all candidates for certification.

Further, a grade of C or above in Int I should be a prerequisite

for Int II. To make this requirement meaningful, it will be neces-

sary to have more or less uniform grading standards for all sections

-cf a given course. The Tearghing Associates on the team, however,

are opposed to the idea of giving all students the same examina-
ow44,./.....Vic%

tions. Thus the team has prepared, for eachAcourse, a list of

topics and skills which they feel a student should master in order

to receive a grade of C or above; these lists are appended to the

syllabipand Teaching Associates will be encouraged to use them

as standards.



5. An increasing (though still small) number of students entering

the Education program have been so well prepared in high school

that they already know the material covered in T104 and/or T106.

Thus it is RECOMMENDED that a comprehensive mathematics exami-

nation, covering the material of T104 and T1061 be offered during

Registration Week each semester, and that students who score

sufficiently high on this examination be given credit for T104

_and/or Tl06 (or Int I and possibly_Int II), and allowed (and

encouraged) to take more advanced mathematics courses. (If

Recommendation 4 is adopted, things should be arranged so that

a student with a previous D grade in one of the courses can

satisfy certification requirements and/or prerequisites for the

next course by scoring sufficiently high on the examination.)

6. it is RECOMMENDED that the present policy of choosing T104

and T106 Teaching Associates mostly from the Mathematics Education

program be continued, and maintained for Int I and int II.

7. It is RECOMMENDED that the Teaching Associates for T104 and

T106 (or Int I and Int II) be given considerably more supervision

and advice than they presently receive. In particular:

a) Thr, Teaching Associates for each course' should be divided

into groups of not more than six, each group teaching under the

close supervision of a .faculty member of the Mathematics De.

partment. This is current policy, but since the faculty

member must now perform his supervisory duties ia addition to

his full-time regular teaching job, super -ision is not now

adequate. Thus it is STRONGLY RECOMMENDED that sufficient

faculty be hired to allow the su ervision of six Teaching

Associates to count as one-half* of the faculty supervisor's

total work load. Two additional faculty members should be

given, as their total work load, the overall supervision of

all the sections of T104 and T106 (or Int I and Int II), one

course for each of them. A supervisor would visit at least

one section meeting each day and would hold frequent conferences

with his Teaching Associates, both individually and in groups,

to discuss teaching problems and strategies, construction of

tests, and so on.

..... ...._



b) The Teaching Associates in each course should be given desk
space in the same office, and reference materials relevant to
their course should be placed in that office.

c) All Teaching Associates should be given copies of the

Teaching Associate's Handbook which will be produced by
the staff of the Summer Seminar for Prospective Teaching
Associates which was held in the Mathematics Department
during the summer of 1968.

d) Teaching Associates should be encouraged to visit each
other's classes.

e) Visual :beaching aids, such as abaci, should be purchased
and made available to the Teaching Associates. The Teaching
Associates should also be encouraged to exploit the resources
of the Audio-Visual Center.



COURSE OUTLINi!J FOR THE ONE-YLAR INTIZRATLD MATHEMATICS COURSE

FOR PROSPXTIVE ELi;;IitZTARY SCHOOL Ti:ACHERS

Main Textbook: Garstens and Jackson, Mathematics for Elementary Schoola. sa ..,.v.rt,..
Teachers , Macmillan, 1967.

Supplementary Textbook:

, Toplas in Mathematics for Elementary School Teachers
.

(Twenty -Ninth Yearbook), National Council of Teachers

of Mathematics, Washington, D.C., 1964.

Teacher's References:

13terson and Hashisaki, 2122a of Arithmetic, 2nd ed., .

John Wiley and Sons, 1967.

Smeltzer, Man and Number, Collier Books, 1962.

Most of the topics to be stressed in each part of this course

are excellently summarized in the final sections (entitled "Terminal

Tasks") of each chapter of the main text, and in the Teacher's Manual

accompanying the main text. Thus the lists of "Terminal Tasks" are

to be used as the basic course outline. The following material is

to be regarded as an amendment to the outline given by the "Terminal

Tasks". For each unit of instruction, we here give: '1) remarks which
-

can (and should) be made to motivate the study of the material, beyond

those remarks made in the first section of each chapter of the main

text (which should also be' use(T); 2) remarks on methods of teaching

the material, beyond those given in the Teacher's Manual; and 3) in

structions to make various changes in the succession of topics covered

in the text, either to include new topics or to omit given ones.

Units of instruction not based on the text.are described in full detail.

:Unless specifically omitted below, all sections of the text are

to be covered in this course, even those about which no remarks are

made below about motivation or methods.
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INTRODUCTION

Discuss goals of the, course, method of grading, testing schedule,

and so on. Learn students, names as quickly an possible. Have students

introduce themselves to each other, and encourage them to work drfa

study together outside of class. Good introductory films exist; one

may be made available for showing to your class during this first week.

Bring one or two sets of elementary-school mathematics textbooks to

class and pass them around to let students see what they are ging to

be teaching.

The text will treat whole numbers as given, but the class should

be given some motivational background. Develop the idea that a (whole),.

number is at concept associated with the size of a set of objects. At

first numbers were not named, but only compared. A caveman might test

whether he had more stone axes than his neighbor by pairing off the

two sets of axes and seeing which pet ran out first. A shepherd might

put one pebble in his pocket for every sheep leaving the fold; later,

he could tell if all had returned. Commerce eventually required men

to name numbers larger than could be indicated by just holding up fingers.

(E.g."How many stones will be needed to build this pyramid?") How are

we to name the various numbers? We could simply give separate, mutually

unrelated names to each number; but this would be impractical. Get the

class to think of grouping the set to be counted into groups of ten'

(or other small number), then grouping the groups of ten into groups

of ten, etc. Study various numeratJeon systems: Egyptian, ;Babylonian.,

Chinese, Mayan (see Smeltzer,, pp. 29-55; Peterson te Hashisaki, Chap. 1)..

Make up a simple numeration systcm yourself, using funny, symbols, and

have the students try to decode it from five or six given examples.

Show the students how to write numbers in different bases (using

Hindu-Arabic numerals) , and have them translate some numbers from

base ten to' other bases and back again. (See 29th Yearbook, pp.' 111-132.)

CHAPTER 2

We defer Chapter 1 until later since its material will be new and

alien to the student, while that of Chapter 2 is familiar. Also, students

should be more willing to study logic per se if the need for such a

systematic study is previously impressed upon them by exposure to a few

(mysterious) proofs. Some teachers may even wish to defer Chapter 1



until after Chapter 3.

The text treats addition.andmultiplication of whole numbers, and

their basic properties, as known, and leaps directlyinto an axiomatic

developMent. Again, additional background and motivation should be

given. DPrine addition of whore numbers m and n as putting m objects-

together with n other objects and counting the resAlting set. Define

multiplication of m and n as putting together m different sets of n

objects each and counting the resulting set. PoimL out that having

. done this once for each m and n, we can put down the results in a table

Which we can then memorize without further thought, but that the way

we got the table _hould be kept in mind in case wo forget part of the

table. The set of whole numbers, together with the operations of

addition and multiplication, form an example of a mathematical system.

Go over the axioms of Sections 2.2--2.6 and convince the students of

the truth of these axioms by means of experimentation and picture-

drawing.

Motivate the axiomatic development of number systems'as follows:

We know two ways of convincing ourselves that a given true statement

is true. We can verify it by experimentation, or we can deduce it

logically from known facts. The first method is difficult, and not

entirely convincing; the second method is comparatively easy and is

completely convincing in the .sense that .the conclusions of a valid

argument. must, be accepted if its .premises are. So in developing a

large collection of facts it makeb sense tol verify as few of them as

possible by experiment and prove the others from these few; this is

what we shall do.

Having made these remark's, do some of tho proofs in the Exercises

of Sections 2,2--2.6. Introduce the number line (whole numbers only)

and view addition and (where defined) subtraction in terms of moving

back and forth on the line. Cover Sections 2.8 and 2.9.

Now study the addition, subtraction, 'multiplication, and diviSion

algorithms (use the 29th Yearbook, pp. 133--166) . It is crucial that

elementary teachers know exactly Why these computational method work,

and not think of them as magic rituals which will give the right answers

if only one can remember how to perform them correctly. (The same goes

for all other algorithms to be covered later, e.g. multiplication of

fractions.) To' test understanding of these algorithms, spend a day



_doing.Computations in other number baSes. This will force the students

to experience the same problems which their own students will later

have with base-ten computation.

To motivate Section 2.10, present the whole numbers under.multi-

jilication as a structure in which the various numbers are "Put together"

from basic building blocks, namely the primes. State and illustrate

the Fundamental Theorem of Arithmetic. Find some prime factorizatit,as,

g.c.d.'s, and 1.c.m.'s. Give examples of systems in which factoriza-

tions into primes are not unique. Present some of theclassical unsolved

problems of number, theory, 1) Goldbach's Conjecture--Is every

even number greater than 2 equal to a sum of two primes? 2) Twin

Prime Problem--Are there an infinite number of twin primes (primes 2

such that ID + 2 is also prime)? 3) Fermat's Last "Theorem"--Does
'405e

xn yn = zn have any integral solutions x, y, and z if n.is a whole number

-greater than 2? 4) Perfect Number Problem--Are there any odd perfect

numbers (numbers equal to the sum of their proper divisors)?

Ask "How many primes are there?"; then prove Theorem 2.14, which

does not answer this question but shows that the answer is not a finite

lumber. Use this to lead into the question of how the sizes of infinite

sets are to be compared. Propose the text's definition. Be prepred

to counter the objection that since there are obviously more whole

.numbers than even whole numbersi'the two sets cannot be the same size;
,

Cover Section 2.12.

,CHAPTER 1

Motivation. Having explored the territory by sturibling through

.a few proofs, we will now study proof techniques generally.

Methods. In Section 1.4, the text does not state the truth-value

of P7-3.,Q when'P and ow are statements and P is false; this should be done.

To convincestudents that P-->9, should betrue-when P is false, show

by examples that in evert day speech "Either R or qu means the same

*-thing as "If not R, then r. Then substitute "not P" for "R" and

eliminate the double negation to see that "If P, then Q" means the

srnae thing as "Either (not P) or Q". The truth-values of P.-iQ can.

then be computed from knowledge of "or" and "not". Stress that the

mere truth of PE÷Q does not imply a logical or causal connection

between P and q (the word "implication" in the text is misleading and

should probably be replaced by "conditional").



CHAPTER 3

'Motivation. So far we have applied mathematical methods only to

the study of numbers. But there are other structures in everyday life

which can be studied by mathematical methods.

Methods. Lead into Section. 3.2.via clock arithmetic. Abstract

the properties of a group from those of mod 3 arithmetic. Point out

that'anything we prove from the group axioms will be true of any structure

which satisfies those axioms. Give an example of a non numerical group,

such as tha group of rotations of a cube (use a real cube).

CHAPTER 4

Methods. Section 4.4. is just an, example of a deductive system;

the actual content of the theory there developed is oflittle importance..

So do not stress this section too heavily. In Sections 4.6-4.7,

get the students to come up with definitions of the various defined

terms, based on their experience, and work with the class to get these

definition into precise form (agreeing with those in the text). Do

not .go through all the pioofs in detail; knowledge of the content of

the:montent of the theorems is more important than memorizing proofs.

An instructive practical exercise in set theory can be found in Peterson

and Hashisaki (p. 55, #13).

CHAPTER 5

Methods. Try to, get the students to come up with properties which

the congruence .correspondences should have; thus develop the axioms

CS15 - -CS7. Go 'through the first proofs slowly, but speed up later.

Again, the content of a theorem is more important than its proof.

Students should learn from this course what a good proof is, and how

to write simple ones, but they should not have to memorize hard proofs

from the text. At the end of the chapter, briefly treat the reflection-

rotation-translation approach to congruence. Use the article "Congru-
au.nlee

ence,Geometry for,,,High School Students" by Dennis and Sanders (Mathe-

limatics Teacher, April 1968). Review the classical cdmnass-and-straightedge

constructions, showing how they are consi.,tent w4ththe axioms of

Chapter 5.



'CHAPTER 6

Motivation. I had 5100 and I spent (on credit) 11200; how much money

do I have now?, I started three miles east of town and moved five miles

*westward; how far -east of town ,am I now? I want to solve the equation

x 6 =4; what can I do? Answering these questions requires the creation

of new numbers. What is the -relationship these new numbers must hold

to the known (whole) numbers? Trying to solve x + 6 =4 in whole numbers,

I see that any whole.number is too hiE to be x. Thus we want our new

numbers to be less than zero. We want, e.g., 4-6 to be equal to some

number, but we must create a new number for this purpose. Why not just

call this new number (4- 6)?. Plotting several such new numbers on an

extension of the number line (e.g. (4-6) goes 6 units left of 4), we

see that we want, e.g (4-6) and (5-7) to be the same number.

How can we identify such numbers with each other in a neat, formal way?

Having settled on the definitions of the new numbers, how shall we add

and multiply them? How shall we relate them to the old numbers?

Methods. Make the above remarks at the beginning of the chapter,

so that the students will know whir we do what we later do.

CHAPTER 7

Motivation. I am counting the number of basketfuls of grain

.harvested on my farm and I come to a basket which is only partially

full; how do I count it? I am measuring my field with a stick and I
.

find that the field is more than 103 sticks long, but less than 104

sticks long; how long is my field? I want to solve the equation

3x = 5, but I see that 1 and all smaller integers are too small to be x,

and 2 and all larger integers are too big; what can I do? We need

to create more new numbers which lie in between the integers. We will

do this in the same sort of way we created the integers.

Chartres. After Section. 7.7, spend a day doing story problems

j.nvolving 22=12E2E, such as the students will later be teaching

to their own students. Also teach "scientific notation" for writing

rational numbers, e.g. 2.45 x106 L.97 x 10-5. Section 7.8 may be
9

omitted if time is short.

11



CHAPTER 8

Motiviation. In Section 8.6, after introducing infinite decimals

ask: May should we grant all infinite decimals the status of numbers?

Reasons: 1) They fork a nice ordered pattern in which we can embed the

rational numbers such that the two orderings agree. 2) Under certain

definitions of addition and multiplication of infinite decimals, not

only do these operations agree with those of the rational numbers wh...n.

the latter are embedded, but equations like x
2
=2 now have solutiwAs.

But this equation did not, have a solution in the rational numbers.

(Prove this now.) 3) We want 2 to have a number as a square root, for'

later when we talk about measurement we will want a number for every

distance measurable along the number line; and we can measure a distance

Whose square is "2.

Methods. Any proof that we can "measure a distance whose square

is 2" will be a fudge at this point, since we have not yet studied area,

the Pythagorean. Theorem, etc. The simplest

way is to argue that the dotted square in

the figure must have area 2 since it is obvi-

ously half of the large square, which has area

4.

Additions. After Section 8.4, define commensurability and ask, if

any two line segments are commensurable. After showing Ar2 is irrational,

retufnto this question and answer it.

CHAPTER 9

plaulE. Study Appendix A right after Section 9.8.

CHAPTER 10

. Motivation. For Section 10.2: Throughout mathematics, it has

often, been found that a non-numerical structure (in this case, the

plane) can be more effectively studied if we associate numbers to its

various points in some clever way. For Sections 10.3-10.4: Giyen

two figures which have the same shape, what sort of transformation can

we perform on it to get it to coincide with the other? We must expand

or shrink it, and then move it rigidly (translate, rotate, or reflect).

How can we rigorously describe "expanding" and "shrinking"?



chaarlm. Omit Sections 10.6 and 10.9. The interested student

may wish to read the article "Rotations, Angles, and Trigonometry" by

Troyer (Mathematics Teacher, Feb. 1968)

APPMDICES B--D

Methods. The teacher may assign the better students to lecture

on these sections.

PROBABILITY AND STATISTICS

This topic is not covered in the text. Mimeographed text materials

and teaching outlines will be distributed.

CALENDAR

To insure that each class covers all the material of this course,

and that all the sections finish the first semester at the same point

'(so that students can change sections to accomodate their schedules),

it is recommended that Teaching Associates follOw this schedule:

SEMESTER (75 days of class)

Introduction . 5 days

Chapter 2 15 days

Test 2 days.

Chapter 1 5 days

`Chapter 3 6 days

Test 2 days

Chapter 4 7 days

Chapter 5 11 days

Test 2 Says

Chapter 6 9 dais

Test: 2 days

Chapter 7 7 days

Test and review 2 days



SECOND SEMESTER (45 days of class)

Chapter 8 11 days

Test 2 days

Chapter 9 10 days

Test '2 days

Chapter 10 6 days

Appendices B--D 4 days

Test 2 days

Probaill.Ity/Statistics .5 days

Review (whole couriJe) 3 days

Two days are allotted for tests so that the test may be discussed the

day after it is given. It is also suggested that short quizzes (10-15

mdh.) be given frequently, as time permits.



COURSE OUTLINE - T104

Moutred Textbooks

P Peterson, 3. A, and Hashisaki, Jo, Theou of Arithmetic,
(second edition) John Wiley anc1773fis;-rn-677WITYUrk,
1967.

Y National Council of Teachers of Mathematics, Enridhment
Mathematics for the Grades, Twenty-Seventh Yearbook,
National Council of Teachers of MathematiciTWErrigton,
,D, Co, 1963.

Optional Textbooks (available in Swain Hall Library)

E Eves, Howard, 1.12,InIroducILam to the Eiltory of Mathematics,
Holt Rinehart, and Winston, New York 1953.

M Meserve, B. E. and Sobel, M. A., Introduction to Mathematics,
Prentice-Hall, Inc., Englewood Cliffs, N. Jo, 1964.

MS Meserve, B. E. and Sobel, Me A., Elements of Mathematics,
Prentice-Hall, Inc., Englewood. Cliffs7N. J., 1968.

R Rees) Paul K., Principles of Mghematics, Prentice-Hall, Inch,
Englewood Cliffs, N. J., 1959.

S Smeltzer, D.
,
e Man and Number, Collier Books )

New York, 1962.
T Terry, G. S., Duodecimal Arithmetic, Longman, Green and Co.,

New York, 1938.

To the Student:

In recent years there has been a revolution in school
mathematics. A quick glance into some newer elementary school
mathematics texts will show that skill in computation is no
longer sufficient criteria for teaching elementary school mathe-
matics. The sequence of courses consisting of T-104, T-106,
and T-108 is designed to give prospective elementary teachers
the background in mathematics that they must have in order to
teach mathematics successfully to elementary school pupils.

The courses T.7.104, T-106, and T-108 are concerned with
mathematical ideas of two types: those which will be taught
to elementary pupils and those which will give the prospective
teacher a deeper understanding of the concepts he will teach.
These courses are strictly mathematical in nature; a companion
course, E-343, will instruct the prospective teacher in the
techniques of the actual presentation of the mathematical
ideas to his pupils,

In order that the students may benefit maximally from the
lectures, it is strongly recommended they study beforehand the
material presented in each lecture.

The texts required for T-104 are also used in T-106 and
the students will probably have occasion to use them as personal
referenCes.



Course Content

1. History and Foundations
P: 1.1 - 1.41 1.5e, 1.51
M: 1.1
E: selected topics
S.: selected topics

2. Logic
M: 9.1 - 9.4
Y: 282 - 290 (required reading)
Y: 291 -301
Wimorntinn RygtemA
P: 1.5a, bl el d, 1.6
P: Chapter 5 (complete)
M: Chapter 2 (required reading)
Y: pp. 41 - 49, pp. 234 - 239
T: selected topics

4. Set Theory and Relations
P: Chapter 2 (complete)
M: Chapter 4
P: Chapter 3 (complete)
Whole Numbers
P: Chapter 4 (complete)
Y: Chapter 5

6. Intergers
P: Chapter 6 (complete)
M: pp. 18 - 19
Y: pp. 73 . 91

7. Rationals
P: Chapter 7

8. Real Numbers
P: Chapter 8 (omit 8.14a)

9. Probability and Statistics
MS: Chapter 8

Test 1

Test 2

Midterm Exam

Test i+

Test 5

Final Exam
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AND

SEACHING GUIDE

T104

General Mathematics

for

Elementary Teachers

July 1968



I. Introduction

This course is primarily for students with one year
of study in each of high school algebra and high school
geometry. Students with such preparation should be able
to take the course with profit and without major difficulty.
Students who have not had the equivalent amount of prior
study may need to be supplied some background material.
A person with a good command of the concepts, proofs, and
techniques presented in the course should have the under-
standing of arithmetic necessary to teach in the elementary
school.

Since it is intended that the course be thoroughly
Jnaoterg4s$4 supe,pficial acquaintance with the concepts and
techniques presented here will not be sufficient. A large
part of the mathematics of the elementary school is arithmetic;
consequently the preparation must assure that a teacher. have
understanding and skill in arithmetic and confidence in his
knowledge of the basic concepts of the subject.

Although familiarity with the natural numbers might seem
to make unnecessary any attempt to define these numbers, we
have sought to go a little deeper and to relate the fundamental
notion.of numbers to the correspondence between sets. The real
numbers are introduced by successive extensions of the set of
natural numbers. In each extension, the associative, commuta-
tive9 and distributive properties are required to hold. The
rules for performing operations are obtained by use of these
properties and definitions.

The use of simple equations and inequalities should be
a prominent feature of the course, and the student should have
extensive practice not merely in solving equations and
inequalities, but also in formulating them to solve word pro-
blems.

It should be understood that this course guile is merely
a brief sketch of the content of the topics that should be
covered in the order we believe that they should be studied.
The brevity of the sketch creates an impression of logical
austerity. It is, however, an essential part of the task of
the teacher to avoid suchausterity by filling in an intuitive
background and furnishing illustrations at every opportunity.
A bare sequence of definitions, theorems, and proofs is un-
acceptable for two reasons. In the first place, it would be
pedagogically quite hopeless at the level, and for the audience,
that we have in mind. In the second place, the prospective
elementary teacher needs to become aware of ways to bridge the
gap between mathematical ideas as they appear In -formal,
theories and the various intuitive forms in which these same
ideas may be introduced to young children.

There is an instructor's manual for Theory of Arithmetic
which may help the instructor to decide what material. to .

emphasize. Sample quizzes and answers to problems are included
in this manual.

F-



II. Course Outline

1. History and Foundations

A. Content
This introductory section includes a brief summary
of the history of numerals and systems of numeration.
Consider the Egyptian hieroglyphic, Roman, Ionic
Greek, Chinese-Japanese, Mayan, and Babylonian
systems. It is not necessary for ',,he students to
memorize the various symbols, since the emphasis
should be on recognizing the characteristics of
each system. Discuss the counting board and the
abacus as examples of early computing instruments.
Examine finger multiplication, patterns of numbers,
and geometric patterns. Introduce the tally system
as the first system of representing numbers. There
is no need to assign exercises in this section.
This section will not be tested.

B. References
P: 1.1-1.4,
M: 1.1
E: selected
S: selected

1.5e, 1.5f,

topics
topics

C. Recommended Time: 2 lectures

2. Logic

A. Content
Discuss t ,a difference between simple statements and
compound statements. Discuss the meanings of the
connectives, and construct simple truth tables.
Introduce the idea of implication. Show how a
statement, its inverse, its converse, and its con-
trapositive diffe,r. Briefly discuss quantifiers
with emphasis on how to negate quantified statements.
Discuss different kinds of everyday logical arguments.
Then discuss the nature of proof and various common
proof procedures.

B. References
M: 9.1-9.4
Y: 282 -2O (required reading)
Y: 291-301

C. Recommended Time: 5 lectures



3. Numeration Systems

A. Content
Discuss the Hindu-Arabic system, exponents, decimal
system, standard notation, and scientific notation.
Introduce systems with bases other than ten. Show
some examples of computation in other bases, but do
not give students too much of this to do on their
own. Aim for understanding rather than computational
skill. Show how decimal fractions may be written in
other bases. Some students may be interested in
'looking at negative number bases on their own. Such
material may be found in the Mathematics Teacher.

References
P: 1.5a, 1.5b i ,5c,s1.5d, 1.6
P: Chapter 5 (complete)
N: Chapter 2 (required reading)
Y: pp. 41-49, pp. 234-239
T: selected topics

C. Recommended Time: 5 lectures

Note: Test 1 follows this section.

4. Set Theory and Relations

A. Content
Do not assign an excessive number of exercises in
this section. Discuss sets, subsets, intersection,
union, universal set, empty seta complement, and
cartesian product. Discuss relations, One-to-one
Correspondence, and cardinal numbers. Introduce
the concept of a function and show how to graph
relations and functions.

B. References
P: Chapter 2 (complete)
N: Chapter 4
P: Chapter 3 (complete)

C. Recommended Time: 8 lectures

Note: Test 2 follows this section.



5. Whole Numbers

A. Content
In this section we show the relation between the
cardinal number of a set and the corresponding whole

number. Discuss binary relations and the various
properties of the whole numbers. Define the system
of tr,hole numbers. Show examples of the addition and
multiplication algorithms, but do not require the
students to do more than one of each. Discuss the
-order relations for the whole numbers, lbading
into the notion of an upper bound on a set. Define
LUB and GLB in the appropriate manner, Show students
how to graph the examples in section 4.16b on the
number line. If the students want to look at short-
cuts in computation, read Yearbook.

B. References
P: Chapter 4 (complete)
Y: Chapter 5

C. Recommended Time: 10 lectures

Note: Midterm Examination follows this section.

6. Integers

A. Content
Introduce the set of integers as an extension of the
set of whole numbers. Define the system of integers.
Show distinction between a prime number and a com-
posite number. Prove that the number of primes is
infinite. Discuss prime factorization and state the
Fundamental Theorem of Arithmetic. Give an example
of a system without unique factorization, such as the
set of even positive integers. State and give
examples of the division algorithm and define GCD and
LCM. Discuss order relations among the integers.
Distance on the line is given by a discussion of
absolute value. Use clock arithmetic to introduce
congruence. Another example of a system without
unique factorization can now be shown. The set of
positive integers congruent to 1 modulo 3 does not
have unique factorization. Consider some unsolved
problems.of number theory.

7B, 'References
P: Chapter 6 (complete)
M: pp. 18-19
Y: pp, 73-91 (optional)

C. Recommended Time 12 lectures

Note: Test 4 follows this section.

-- .2.



7. Rationals

8.

A. Content
Define a rational number as an equivalence class of
ordered pairs of integers. Define the system of
rational numbers, Discuss the various interpretations
of rational numbers. Discuss the order relations
in the rationals and derive the various properties
of order. Discuss the property of denseness and
plot solution sets of inequalities. Introduce the
Irrational numbers by looking for a number whos
square is two. Prove that the square roots of
2, 3, and 5 are not rational. Ask students to try
to prove that the square root of 4 is irrational.

References
P: Chapter 7

Iteporamend,ada i me ! 1 l Prbt.nrta c

Note: Test 5 follows this section.

Real Numbers

A. Content
Discuss the real number line. Consider decimal
approximations of rational and irrational numbers.
Define the system of real numbers. Discuss square
roots, omitting the square root algorithm in section
8.14a, and consider Newton's method. While talking
about the complex numbers, keep the discussion as
simple as possible.

B. References
P: Chapter 8 (omit section 8.14a)

C. Recommended Time: 7 lectures

9. Probability and Statistics

A. Content
Define probability and give examples that can be
solved by counting methods. Do not introduce
permutations ani combinations. Show the difference
between mean, median, and mode. Give examples of
different distributions to show this. Show how
the standard deviation can be found. Discuss
correlation intuitively by means of graphs of points.
Show the standard normal curve and its characteris-
tics. Give examples of how statistics can "lie",



Reference
MS: .Chapter 8

C. Recommended Time: 5 lectures

Note: Final Examination follows this section

10. Optional Topics

These topics taay be taught if time allows. They are not
designed to be taught at the end of the course; rather
they should be inserted at appropriate points in the course.
The decision as to which of these topics should be taught
and when they should be taught will be left to the
instructor.

A. Four Color Problem
Meterve & Sobel, Introduction to
chapter 1, sectio774,777q7
Meserve & Sobel. Mathematics forp. 348.
Mathematic Teacher May 1967, pp. 516-519

NegatiVe Number Bases
Mathematics Teacher, November 1967, pp. 723-726.

C. Fermat's Last Theorem and Goldbach's Conjecture
Meserve & Sobel, Introduction to Mathematics,
chapter 1, sectio74-757TS79.

D. History of Mathematbs
Film: Donald Duck la Mathemagic Land, available
from I.U. Audio-Visual Department.
Mathematics Teacherl March 1967, pp. 264-278.

E. Geometry
See book by Abbott, flatland.

e

Mathematic s,

Secondary. 'Teachers,

F. Secret Codes
Peck, Secret Codes, Remainder Arithematic and
Matrices, NCTM, 1961.

Go How To Lie With Statistics
See book of same name by Huff.

/J. Matrices (2 x 2)
Introduction to Matrix Algebra, SHSG.

I. Applications of Probability To Games
Mathematics Teacher, arch 1967, pp.. 210-214.



J. Friendly Numbers
Mathematics Teacher

K. "Mathematics and -kusic
Mathematics Teacher

L. Digital Problems
Mathematics Teacher

M. Magic Squares
27th NCTM Yearbook,
Mathematics Teacher

February 1967, pp. 157-160.

March 1968, pp. 258-271.

February 1968, pp. 18i-189.

pp. 207-220
January 1968

9
p. 18.



Grading Standards for T10+

To facilitate uniform grading in T104 it is suggested that

a "C" grade should require mastery of the following objectives.

1. a) Be able to write any given real number in expanded

notation.
b) Convert numbers to scientific notation and the reverse.
c) Work problems with exponents, i.e.

? 4
3
2

3 = ? (32)) = 3

d) Convert integral numerals in other bases into numerals
in base 10.

e) Be able to perform simple addition, subtraction,
multiplication, and division in the various bases.

2. a) Be%able to write definition of union, intersection of
sets, complement of a set, relation, function, and
properties of equivalence relation.

b) Determine union, intersection of certain sets and the
complement of a set.

c) Given information about a particular set, list the
elements or describe the set.

d) Determine 'whether a given relation satisfies properties
of an equivalence relation and maybe determine equiva-
lence classes.

e) Be able to tell if two sets are in 1-1 correspondence.

3. a) Be able to write definitions of closure, commutativity
and associativity.

b) Compute cardinal number of finite sets.
c) Plot solution sets on number line.
d) Write definition of identity and inverse properties.
e) Determine whether a given number system satisfies the

five above properties.
f) Fill in thy.; reasons in the steps in the addition,

subtraction, multiplication and division algorithms.
g) Write definition of addition, subtraction, multiplication

and division for whole numbers.

4. a) Do computation in integers. Therefore, must know laws
concerning addition and multiplication.

b) State Fundamental Theorem of Arithmetic.
c) Find GCD and LCM,



5. A) Do computation in xational numbers using equivalence
class definition.

b) Order any given set of rational numbers.
c) Determine if a given number is irrational or not.
d) Work problems in percent, i.e., 20% of 10 =

36 is what percent of 40?

a) Know that there exists a number for every point on the
line.

b) Convert rational numbers to decimal expanded form
(1/31 .33) and back the other way.

a) Give definition of probability, mean, median, and mode.
b) Compute probability of any event that can be determined

by simple counting procedures.
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INTRODUCTION TO LOGIC

Prepared for T104
by

Ralph Seifert, Jr.

INTRODUCTION

Mathematicians spend most of their time discovering. new

mathematical facts.:iand 9222-11mamuraulta (or kroofs) to show

why these facts should:be accepted. We hope that in this

course you will discover many mathematical facts 'which are

new to you. In this mimeographed material we shall explore

the activity of proof construction by trying' to answer the

question, "What is a convincing argument?"

Arguments use language, of course, and some arguments

may use sentences which are structurally quite complex, such

as: "If both the cost of soap and the cost of detergent go up,

then the laundries will either raise rates or stop free deliv-

eries; but if the cost of soap stays the same, or if the cost of

detergent stays the same, then-the laundries can be run as before,

unless. ...." Whether or not an argument is convincing depends

on whether or not certain sentences used in the argument are

true. It may be hard to tell whether or not a long, complex

sentence is true. In the first part of this unit we will learn

how to determine the truth or falsity of a long, complex sen-

tence by looking at shorter, simpler sentences. As .a means

toward this end we will analyze certain logically important

English words like "and", "or", and "not", with a view toward

determining their exact meAnings in everyday speech.

Next, we will discuss different kinds of arguments and.

get some practice in telling good ones from bad ones. Finally,

-we will look at some special arguments used in mathematics

(and show that they are convincing).



In this study of everyday arguments we will use ma_ thematical

methods. Therefore the very first section of this material

explains how mathematics can be used to study real everyday

situations. (You may also have use for this information when

you study problem solving.)

HOW MATHEMATICS IS USED

Mathematics, as practiced today, can be defined as ,he

sti.Ai1 of abstract structures. Despite this our main use of

mathematics is in the study of real obits; as one grade-school

student put it, "Because of numbers, we can figure out What

happens if we have tea apples and do something." Exactly how

do we "figure out What happens"?

Suppose we have 4".en apples and do something; say we decide

to throw away the three smallest apples and cut each of the

remaining ones into halves. I ask how many pieces of apple

we will then have. Instantly you think, "ten minus three, multi-

plied by two." You have taken the first step in solving the prob-

lem, namely that of abstraction. That is, you have correctly

noticed that the solution to the problem does not depend on the

fact that the objects involved are particular apples, or on

the fact that :the discarded apples'are-to be the smallest ones

the .9.nswer Would be the same: for any other ten apples, or for

peanuts, or kumquats, or sponges); the answer only depends on

the abstract concezts of (in this case) ten -mess, three-ness,

throwing-away, and cutting-in-two. At the same time, you have

given names to these concepts; you might even have written

down symbols to help you keep things straight, e.g.

(10 - 3) x 2 = ?

This is the step of formalization, or the representation of

abstract ideas by means of symbols or words.

The next step is comat5/19/1, or the reduction of complex

formal expressions to simpler ones. You know that "three from

ten is seven" and that "seven times two is fourteen". Notice

that if you wish, you can perform this step without reference



to the abstract concepts you were thinking about a moment ago;"

for you know that in this system the symbol "(10 - 3)" can

simply be replaced by the symbol "7", and that "7 x 2" can be

replaced by "14".

The final step is interpretation. Ycu interpret the formal

symbol "14" as denoting the abstract concept of fourteen-ness,

and then you interpret this concept in terms of the original

physical situation and announce that the answer is "fourteen

pieces of apple". Probably the entire four-step process took only

a few seconds, and you were not aware of the individual steps.

This is because the problem was so simple.

REALITY .ASST PACT

! ,...*1.11.

CONCEPTS

Problem ribstractiollr> Thoughts

.111.01101,1.1011.41.00*

Formalization

FORMAL
SYSTEM

Complex
Expression

Computation
/1 ./7

Answer <ilrlterpretationj Thoughts (Interpretation Simple
Expression

EXERCISE. Think of how the four steps mentioned above

are carried out when solving more difficult problems, like:

(1) Filling out an income-tax form. (2) Designing a suspension

bridge.

THE LOGIC OF EVERYDAY LANGUAGE

Let us apply the ideas of the preceding section to a study

of the following problem: given an English sentence, we ask

whether or not it is true. You might not have thought this was

a mathematical problem, since it does not involve numbers.

But languages have structure, so they are to that extent capable

of mathematical analysis.

Statements. English sentences fall into two classes,

- 3 -



namely the class of sentences that are neither true nor false,

and the class of sentences which are either true or false.

The first class contains such sentences as:

Come beck tomorrow.

Where are you?

Help !

The next sentence is false.

The preceding sentence is true.

The second class contains such sentences as:

Gold is a metal.

George likes cake.

2 + 6 = 8.

If I fall in the lake, I will get wet,

Everyday logical reasoning uses only sentences from the second

class. Thus we define a statement to be a sentence Which is

either true or false, and we confine the rest of our discussion

to the class of statements, A statement Which is true will be

said to have truth-value T; false statements have truth-value F.

A statement may contain simpler statements within itself;

for example, the statement "Jam is downstairs and Fred is outside"
contains the simpler statements "John is downstairs" and "Fred
is outside". In such cases the truth-value of the entire statement
clearly depends both upon the truth - value' of the simpler state-

ments and upon the nature of the word or words used to connect

them (in this case, "and"). Words like "and", which have no

substantive meaning themselves but are used only to join two

statements together, are called connectives. For example, the

words "and", "butu, "either...or", "neither...nor", and "if...

then" can be used as connectives. A statement which is, or can
be rewritten as, a combination of two or more statements by

using connectives is called a comnound statement; statements

Which are not compound are called =212,. The simple statements
Which make up a given compound statement will be called its toms.

The truth-value of some statements just cannot be decided;

3 I



for instance, consider "Exactly 104 Sioux Indians were born in

1487." Therefore the problem we first mentioned (that of deter-

mining the truth-value of any given statement) cannot be solved

by mathematical methods. Suppose, however, that our given

statement is coound, and that the truth - value of each of its

atoms is known. Then the truth-value of the entire statement

depends only on what the connectives are, and in what order they

occur. This problem begins to look like a mathematical one;

that is2 we can conceive of a mechanical computation which will

tell us the truth-value of the compound statement, given the

truth-value of each of its atoms. To decide how to do this

computation, we must consider each connective individually and

decide how it is used (i.e. that its use means) in everyday

speech.

The connective "and". We begin our analysis of connec-

tives by deciding how to rind the troth-value of a statement of

the form "A and B", where "A" and "B" are statements whose truth-

values are known. Suppose you are sitting in an office and your

friend Sam suddenly points to two of the desks in the office and

ehouts, "There is a flamingo sitting on this desk, and that other

desk is on fire!" You carefully'examine both desks and see that

lhiere is indeed a flamingo sitting on the first desk, and that

the second desk is actually on. fire. You would then certainly

agree that Sam's statement was true, and you would call the firemen

to come put out the fire, and tell the zoo to come catch the

flamingo. On the other hand, suppose you saw no flamingoes

sitting on the first desk, and the second desk was not on fire.

You would then say that Sam's statement was false (or even

"totally false"), and you would call neither the firemen nor the

zoo. (You might call a psychiatrist for Sam.)

What would you say (regarding Sam's statement) if there was

a flamingo sitting on the first desk, but the second desk was

not on fire? What would you say if the second desk was on fire,

but the first desk bore no flamingoes? In each of these situa-

tions you would probably say that Sam's statement was at best



"only half true", "only partly true", or "partly false". That

is, although you would call the zoo (in the first case) or the

firemen (in the second case), you would say that Sam's statement

was not entirely, true you light say that it was "technically

false" or "false, in the broadest sense of the word". In logic,

"false" means "not entirely true"; we do not distinguish between

the everyday notions of "partly false" and "totally false".

So mathematicians would sai that Sam's statement was just false.

The decisions we have reached can be conveniently summarized

in a table, such as the following:

If the truth-value and the truth-value
of ".There is a of "The second desk
flamingo sitting on is on fire" is
the first desk" is.1

T

F
F

F

T

F

then the truth-value
of "There is a
flamingo sitting on
the first desk, and
the second desk is
on fire" is

F

F

F

A table of this sort, which gives the truth-value of some

statement for each possible combination of truth-values of its

.toms, is called a truth table for that statement.

A completely similar discussion applies to any other statement

involving "and"; that is,

If "X" is any and "Y" is any then the truth-value
statement whose statement whose of the statement
truth value is truth-ve.ue is "X and Y" is

T

T

F
F

T

F
T

F

T

F

F

F

In words, the statement "X and Y" is true when both "X" and "Y"

Ow. s



are true, and "X and Y" is false in all other cases.

Formulas. The expression "X and Y" is an example of a

formula. In general, a (logical) formula is an expression,

containing variables (like "X", "Y", etc.) and connectives,

which would become a statement if statementl vere ,hut in Where

the variables are. The distinction be',6ween statements and

formulas is like the distinction between numbers (2, 3, etc.)

and variable terms (x+y, 4z, etc0). Formulas can be thought

of as abbreviations for statements, in the sense that we use

single letters (variables) to stand for the atoms of the statement.

When computing the truth-value of a compound statement from the

truth-values of its atoms, we ignore the actual content of the

--atoms -and -c-onsIder .only -what the -e-ormeetives. --are and how th

connect the atoms (i.e, in what order). An appropriate formula

can give all this information, so we can work with formulas

instead of statements. Since each Tormula abbreviates thousands

of different statements, we can thus analyze ell these thousands

of statements at once. This is the advantage of using

formulas.

The truth table of a formula is a table like the last one

given above, in which we can look up the truth-value of any

statement abbreviated by the formula, given lbe truth-values

of the statements represented by the variables in the formula.

The connective "or". We proceed to analjze other

connectives, next we look at "either...or". Suppose Jack says,

"Either smoking is prohibited or drinking is prohibited." What

would you say (regarding the truth-value of this statement) if

it turned out that smoking was not prohibiteds but drinking was?

If smoking was prohibited, but drinking was not? If neither one

was -ohibited? If both were prohibited? Male a truth table

for the formula "X or Y" which summarizes your decisions.

In the above problem you may have had trouble deciding what

to say if both smoking and drinking were prohibited. Just

What Jack meant to say about this possibility is not entirely

clear. This is because the word "or" is used in English in



two different ways. Jack might have meant "Either smoking is

prohibited or drinking is prohibited (or possibly both); this

usage of "or" is called the inclusive limm. On the other hand,

he might have meant, "Either smoking is prohibited or drinking

is prohibited (but not both)"; this usage is called the

exclusive usage. So we have

X Y X or Y (inclusive X or Y (exclulive)

T

T

7
JP

T

F

T

.F

T ,

T

T

.F

F

T

T

F

In everyday speech we often have f6o determine from the context

Which way the word "or" Is being usecL "If 4a man says, "I Piave

lots of things to buy, so I will go downtown today or tomorrow",

you would probably agree that he might actually go on both

days, or at least that he had not said he would not. So this

its an inclusive usage. On the other hand, if a man says, "By

this time tomorrow I will either be rich or bankrupt", .he is

obviously using "or" in the exclusive sense; for wealth and

bankruptcy cannot occur at the same time.

When a mathematician says "or", he always means the inclusive

usage (unless he says otherwise). This agreement is made under

the general principle that in mathematics a given word should

have only one meaning. Thus from now on "or" means "inclusive

or", regardless of the context; and we write the table

X Y X or Y

T

T

F

F.

T T

F T

T T
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u:119. The word "not" is not used to join two state-

ments together, but it is like the other connectives we have

studied in that the truth-value of the statement "not A" is

completely determined by the truth-value of "A". In fact

we have the truth table

X not X

T F

F T

Therefore we shall call "not" a connective also.

Q2m14.1=ons of connectives. When using more than one

connective, it is necessary to indicate. precisely which state-

ments are connected by which connectives. You recall that

in arithmetic we cannot write just "3 x 4 2" without being

,ambiguous; we must either use parentheses or else cote to

some agreement about the order in which x and + are to be con-:-

sidered (usually we agree to consider x first). The problems

are similar here; what does "A and B or C" mean? In writing
English statements we avoid this sort of ambiguity by using

punctuation and various literary devices. In writing logical

formulas, we use parentheses. As in algebra, when interpreting

an expression involving parentheses we work outwards from the

innermost pair(s) of parentheses.

Statement: Either both Tom and Jim will go, or Bill will.

Formula: (X and Y) or Z

Statement: Tom is going, and either Jim or Bill is going.
Formula: X and (Y or Z)

Statement: Jack and Fred are not both going.

Formula: not (X and Y).

Statement. Jack is not going, but Fred is.
Formula: (not X) and Y

- 35a-



ILItturgactiflif...then". Suppose that at 11:00 a.m.

Leo says, "If you wind your watch now: then it will still be

running at noon." If you immediately wind your watch and it is,
,

in fact, still running noon, you would certainly say that

Leo's statement was true. On the other hand, if you immediately

wind your watch but find at noon that it has stopped, you would

Certainly say that Leo's statement was false. The same sort rf

discussion applies to other "if...then" statements; so on the

basis of everyday experience, we all agree that the following

truth table (so far as it goes) is accurate:

X Y if X, then Y

T

T

T

F F

What shall we put in this truth table when "X" has truth-

value F? To return to the above example, what would you say

about Leo's statement if it happened that you did not wind your

watch at 11:00?

Suppose first that the watch was still running at noon. You

might say that since the watch is running anyway, it certainly

would still%be running even if you'had wound it; so Leo's state-

ment was true. But this argument is not convincing. Fdronerithing,

if you had wound the watch you might have wound it too tightly,

making it stop; or it Might have stopped for some other reason,

not connected with your winding it. For example, if you had

wound the watch at 11:00, you might have been run over ,12z a herd

elephants at 11:30, causing the watch to .:stop. You really

cannot know what would have happened if you had wound the watch

at 11:00, simply because you did not do so, However, this does

not prove that Leo's statement was false, for it is still possible

that your watch would have been running at noon if you had wound
..it

Similarly, if your watch is in fact not running at noon,
11'#'11.



you still cannot know what would have happened if you had wound

it at 11:00. So we have not yet settled the question of whether

Leo's statement was true or false if you did not wind the watch

at 11:00. By now you may be thinking that it does not matter

Whether we call Leo's statement true or false, since it is

irrelevant(or has no useful content) in this situation (in

which the watch was not wound). For computational purposes,

however, a, want "if X, then Y" to have a truth-value when '76"

has truth-value F; so we must choose a reasonable one. The

following remarks attempt to justify the choice which mathe-

maticians have agreed to :lake.

Consider the following pairs of statements:

"If I don't pass T104, I will have to leave school."

"Either I pass T104 or I will have to leave school."

"If I am not here at 6:00, then I will be at home."

"At 6:00 I will be either here or at home,"

"If I am not crazy, then you must be."

"One of us is crazy."

In each pair you should agree that the first statement

and the second statement have the same Imator content, or that

they convey the same information; that is, if you were in a

position to use one of them, it would not matter much which

one you used. We could also say that the two statements in

each pair have the same meaning. As a consequence of this, the

two statements in each pair have the same truth-value. Now notice

that the first statement in each pair is of the form "if (not Z),

then Y "; and the second statement is of (or tan be expressed in)

the form "Z or Y ", where of course each of "Z" and "Y" stands

for the same statement in both formulas. (For example, in the

third pair "Z" is "I am crazy" and "Y" is "Yon are crazy%)

Thus we have some support for the assertion that if "Z" and "Y"

are statements, then "if (not Z), then Y" means the same thing, as



"Z or Y". In particular, letting "Z" be the statement "not X",

we see that "if(not(not X)), then Y" means the same thing as

"(not X) or Y". But to say "not (not X)" is to say "X"; so

"if X, then Y" means the same thing as "(not X) or Y".

We have already studied "or" and "not", so we can make the

following computation:

If "X" and "Y" are both truel then "not X" is false and "Y"

is true; so "(not X) or Y" is tom.

If "X" is false and "Y" is true., then "not X" is true and

"Y" is true; so "(not X) or Y" is true.

(You can finish this computation.)%

Since "if X, than Y" means the same tbira.Aq "(not

or Y", we can use this computation, to write the following

truth table:

if X. then Y

T

T F

F T

F F

Notice that the first two rows of this table agree with the

partial table we put down before.

When writing formulas, we often write "X 4Y" as an abbre-

viation for "if X, then Y". Thus we have the table

In words, "X 4 1.11 is false just when "X" is true and

"Y" is false. Thus (and this is very important) the truth of

the statement "if A, then B" does not, by itself, imply any



sort of connection (logical or causal) between the contents of the

statements "A" and "B". For example, the statement "If cows

give milk, then birds fly" is true, since "Cows give milk" and

"Birds fly" are both true. But we cannot deduce "Birds fly"

from "Cows give milk "; nor can we say that the flight of birds

is caused by the giving of milk by cows.

EXERCISES,. .1. Find the truth-values of the following

statements: (a) 2 + 4 = 5 and 2 + 5 = 7, or else 3 + 1 = 4.

(b) If 3 < 2, then both 3 44 and 3 < 1. (c) Either 4 < 6

or 6 < 4, and furthermore, 10 + 5 = 12.

2. Find a number x such that the following statement

trues _X 2 .max > 5; sad AlAP ,x > 0 and x < 1.

3. Assuming that Joe, Sam, and Jane are going to the

party and that Mary and Fred are not going to the party, which

of the following statements are true? (a) Joe is going to the

'party and Mary is not going to the party. (b) If Sam is not

going to the party, then neither Fred nor Jane will go.

(c) If either Mary or Jane goes to the party, then. Sam will

not go to the party.

4. How did you (or how could you) use abstraction, formali-

zation, and interpretation in obtaining your answers to Ex. 3?

110,1u0K,9.0,:,../biaj.tapa91,9,1Agood way to

compute the truth table of a formula containing several connectives,

such as "X and Y, or not X", is to make a table with several

columns (see the table below). In the first two (or more) columns

we place all the possible combinations of truth-values for "X" and

"Y" (and any other variables which appear). For each such combin-

atioh (reading. horizontally) we then compute, one step at a time,

the truth-value of the entire formula (in this case "X and Y, or

not X"), writing down each step in the appropriate column. In

this particular case we proceed as follows in each row: (a) in

th., third column, we put the result of applying "and" to the

given values for "X" and "Y" (b) in the fourth column, we put

31-



the result of applying "not" to the given value of "X"; and

finally (c) to fill the fifth column, we apply "or" to the

previously computed values of "X and Y" and "not X". To better

understand this process, compare it with the process of computing

(x x y) f (-x) for various numbers xly.

X Y X and Y
(---

not X X and Y) or (not X)

T T T F T

T F F F .F

F T F T T

F F F T T

Thus, for example, we can use the table to see that if "An

and "B" are both false statements, then "A and B, or not A" is

true statement%

Two more examples:

1. Truth table for "if X, then not X and Y)".

X and Y not (X and Y) -. not (X and Y)

T

T

F

F

T

F

T

F

T

F

F

F

F

T

T

T

F

T

T _

T

2. Truth table for "(X and Y) or (Z and y) tt.

X and Y Z and Y X and Y) or (Z and "Y)

T T T

T T F T F T

T F T F F F

T F F F F F

F T T F T
. _

T

F T F F F F

F F T F F F

F F F F F F

W." 6



In the preceding section we remarked that if two statements had

the same meaning, then:the (last columns of) the truth tables

of the corresponding formulas would be the same. This remark

works both ways. For example, the following shows that "X or Y"

has the same truth table as "not ((not X) and (not Y))".

X Y not X. notlY (not X) ec(not Y). not( (not X) 8c(not Y) ) X orY

T

T

F

F

T

F

T

F

F

F

T

T

F

T

F

T

F

F

T

T

T

T

F

T

T

T

F

In other words, if "A" and "B" are statements, then the statements

"A or B" and "not ((not A) and (not B))" will have the same

truth-value, rftgarlless of the actual truth-values of "A" and

of "B". Thus we can say that "A or B" and "not ((not A) and

(not B))" mean the same thing, or that "or" can be expressed in

terms of "not" and "and". Two formulas containing the same

variables are said to be equivalent if (the last columns of)

their truth tables are the same.

EXERCISES. 1. Show that "not (A and B)" means the same

thing as "if A, then not B", for any statements "A" and "B",

2. Decide what the truth table of the connective "neither...

nor" should be, and then show. that "neither A nor B" means the

same thing as "(not A) and (not B)".

3. Show that "A and B" means the same thing as "13 and A "" ,and

that "A and (B or C)" means the same thing as "(A and B) or (A and

C)". What algebraic laws do these remind you of?

4. Show that "and" can be expressed in terms of "not" and "or";

i.e. show that "X and Y" is equivalent to some formula whose only

.connectives are "not" and "or" (possibly used more than once).

5. Is "X and (if X, then Y)" equivalent to any simpler (i.e.

dhorter) formula?



6. Find a formula (the last colum. of) whose truth table

contains only T's. What can you say about a statement that is

represented by such a formula?

Thy, ccnnectiv,,- " "if ustAlsj,zw. Statements of the form

"A if and only if B" are used frequently in mathematics; so

frequently, in fact, that mathematicians have taken to abbreviating

such statements by "A iff B". However, the connective "if and

only if" is seldom used in, everyday speech; so we shall discuss

its meaning. Now "A, if B" means "if B, then A"; and "A only if

B" means "A only holds if B also holds", or "Whenever A holds,

then alio B holds", or just simply "if A, then B". So "A if and

ixe:y ±f B" ans. " (if A, then ) _and (if :B, then A)J'.i The truth

table for the corresponding formula is

3 .. 1 - 5 ) and (y -9 :20

T

T

F

F

T

F

T

F

T

F

T

T

T

T

F

T

T

F

T

Hence the truth table for "iff" is

X X iffY

T T T

T F

F T

F F

Thus the statement "A iff.B" can be taken to mean that "A"

and "B" have the same truth-value, or that the situations described

by "A" and by "B" alzmu occur /gather; that is, if either

occurs, then the other also occurs. Example: "A polygon has
three sides iff it has three corners". Again, however, the truth

11



of "A, iff B" does not carry with it any claim of a logical connec-

tion between "A" and "B". For example, "Birds have legs iff ice

floats on water" is a true statement.

If 4*A" and "B" are statements describing conditions and

"if A, then B "" happens to be true, then we say that the condition

described by "A" is a sufficient condition for the presence of the

condition described by "B", and that "B" is a necessary, condition

for "A". That is, "if A, then B" says that for "B" to be true,

it is sufficient for "A" to be true; it also says that if "A" is

true, then it is necessary that "B" be true, If "A iff B" is true,

then each of "A" and "B" is called a mom= and_ sufficient

condition for the other. These terms were more widely used

Irackillthe -days when long words were preferred to _short ..ones,e

Itslysut, 9sayse, and co/1=9a1Ilm. Suppose "C" is the

statement "if A,thenB". Then the converse of "C" is the

Statement "if B, then A"; the inverse of "Cr' is "if (not A),

then (not B) "; ar the contraDositive of "C" is "if (not B),

then (not A)".

EXERCISES. 1. Make up two English "if...then" statements

and write their converses, inverses, and contrapositives.

2, Show that an "if...then" statement means the same thing

as its contrapositive.

3. ..1.how that the converse and the invelze of an "if...then"

statement mean the same thing.

4,, Show that an "if...then" statement does not always

mean the same thing as its converse.

aoauslza, We have seen that statements containing connec-

tives can be broken down into simpler statements, ani that the

truth-value of the original statement can be computed from the

truth-values of the simpler statements. At the same time, we have

analyzed the "meanings" of the various connectives. There are

many statements which are,. in a. senset.made_up of simpler state-

ments, but Which might not involve explicit occurrences of connec.



fives,

"each",

ideas

These are the statements involving such words as "every",

"any", "some", and so' on, used to express one of the two

"Every P is a Q" or

"Some P is a Q",

Where P and Q are names or descriptions of objects. The words

"every" and "some", When used in this way, are called quantifiers.

The meaning of each quantifier is clear. "Every id is a Q"

means "pi is a Q, and p2 is a Q, and p3 is a Q, and ...", and

"Some P is a Q" means "p1 is a Q, or p2 is a Q, or ...", where

pi, p2, p3,.... is a list of all the P's. This list could be

quite long, or even infinite; so we do not attempt to write

general truth tables for "every" or "some".

The important thing to know about quantifiers is that

(1) "Not every P is a Q" means the same as "Some P is not a Q";

and (2) "Not (some P is a Q)" means "Every P is a non --Q1', or

"No P is a Q". (Convince yourself of this.) Therefore, one

may (for example) show that "Every P is a Q" is false by showing

that some P is not a Q.

EXAMPLE. Suppose the algebraic equation x + yz = (x+y)(x+z)

is presented as an alleged algebraic rule, and we are asked to

prove or disprove it. The fact that the equation is being

proposed as a rule means that the proposer is really asserting

the statement "For all numbers x, y, and z, we have

x + yz = (x+y)(x+z)." Some ingenuity may be required to trans-

form given English statements into quantifier statements with the

same meanings. In this case we can rewrite the "rule" as

"Every three numbers x, y, and z are numbers for which

x + yz = (x+y)(x+z)." A little experimentation with various

numbers shows that this statement is false; for example,

-- 1+ (1 x1) / (1+1) x (1+1). So we can assert that "Some three

num' ers (namely x=1, y=1, and z= 1) are not numbers for which

---x + yz = (x+y)(x+z)." By the above remarks, this is the same as

saying that "Not every three numbers x, y, and z are such that



x + yz = (x+y)(x+z)." So we have disproved the rule. However,

we may not now just write x + yz (x+y)(x+z), since this could

be taken to mean that .9,v_my three numbers x, y, and z are such

that x + yz / (x+y)(x+z), which is not what we want to say.
1 1

(In fact 1 + (0 x 0) = (1 + 0) x (1 + 0) and -2- +
1 1

x =
1 x 1 1

EXERCISES. Express the negations of each of the following

statements in good English. Avoid ambiguity.

1. A rolling stone gathers no moss.

2. Someone here has a book.

3. Someone here does not have a book.

4. The sun will shine every day next week.

5. All rulers in the U.S. are marked off in inches.

THE NATURE OF ARGUMENT

An argument can be defined as a discourse whose 9.3.9.saul is to

convince .0.019. that .ome Liao statement is true. The state-

ment which the argument tries to prove is called the conclusion of

the argument, and the statements which claim to support the

conclusion are called arsratagi. An argument is cony:Luling.

if people who believe the premises to be true agree, after

reading the argument, that its conclusion is also true. There

are two major types of argument, called inductive and deductive.

IsLtraj som,u,. Suppose a zoologist wants to prove

the statement "Koala bears eat only eucalyptus leaves". He gets

a government grant, goes to Australia, and observes a total of

5684 different koala bears, none of whom he sees eating anything

but eucalyptus leaves. He then says, "Each of the 5684 koala

bears I saw ate only eucalyptus leaves while I was watching;

therefore all koala bears eat only eucalyptus leaves." Assuming

that we believe his: premises to be true, just how convincing this

argument is depends on how many koala bears there are in the

world, and on how thoroughly this zoologist observed the ones he

saw. If we knew that there were only 6000 koala bears in the

world, and if the zoologist had observed each of his samples for



an entire year, then we would tend to accept his argument. If we

Imow that 1,000,000 koala bears existed, or if the zoologist had

only watched each animal for five minutes, we would probably

not be convinced. But in no case are we cgmlLeitel, convinced

that all, koala bears limit their diets to eucalyptus leaves. We

are willing to believe at most that it is a zood bet that the next

time you see a koala bear eating, he will be eating eucalyptus

leaves. An argument of this king, which attempts to prove some

general statement by citing a long (but not exhaustive) list of

specific cases, is called an inductive argument,. As the above

.

example indicates, we can never be 100% sure that the conclusion

of an inductive argument is true, even if we are 100% sure that

each of the premises is true; rather, the conclusion of such an

argument must be interpreted as a statement that something is a

"good bet". (Of course scientists do interpret their conclusions

in this way, even When they are expressed as universal asser-

tions.) Even though inductive arguments do not lead to absolute

truths, they are the best arguments we can Rat for many statements

about the real world.

P.O.Wilmassatusil A deductive argument is one which

takes all its force from the linguistic structure of its premises,

rather than from their content. Thus the power of a deductive

.
argument to convince is the same, regardless of the meanings

given to its individual words. It is possible to write deductive

arguments which are absolutely: convincing, in the sense that

mature, rational people wiF, agree that if the premises are 100%

true, then the conclusion must be 100% true. Such arguments are

called valid. Non-convincing deductive arguments (in which it

is possible for the conclusion not to be 100% true even When

the premises are 100% true) are called invalid.

There are many kinds of deductive arguments used in everyday

life, and we will not try to list all of them here. Most college

students can accurately classify a deductive argument as valid

or invalid if they can igknore the content of the argument and

look only at its linguistic structure. We will give some examples



and show how arguments can be tested by mathematical methods.

EXAMPLE. "If I go to the party, I will see Mary. I will

go to the party, Therefore, I will see Mary." Let "A" be the

statement "I will go to the party" and let "B" be the statement

"I will see Mary". Then the premises of this argument are

"if A, then B" and "A", and the conclusion is "B". If this is

a deductive argument, then its strength lies only in'its struc-

ture and thus we can establish its validity or invalidity just

by looking at the premises and conclusion in this abbreviated form.

That is, we ask "If both 'if A, then B' and IA' are true, must

1BI be true?" By the meaning of "if...then", this.is the same

as asking if the following statement is true: "If ((if A, then

B) and A), then B". Consider the following truth table:

X -6 Y) and X ((X - Y) and X)

T

T

F

F

F

T

F

T

F

T

T

T

F

F

F

T

T

T

T

Every entry in the last column is T. This means that for an

statements "A" and "B", be they true or false, the statement

"if ((if Al then B) and A), then B" is true, Consequently, by

the meaning of "if...thenP, we see that "B" must be true
A whenever "if A, then B" and "A" are both true. So the quoted

argument is com21.etelz convincing, and by virtue of its

structure alone (since that was all we looked at). Hance the

argument 4,s deductive and valid.

It is very important to note that the validity of an argument

does not 12:j.tself imply that the conclusion of that argument is

true. Validity just means that if the 'premises are true, then

the conclusion must be true. If one of the premises is false,

then the conclusion need not be true, even though the argument

is valid. Thus in the above example, the speaker may be .1.ikz,

when he says he will go to the party; if this is the case, then



he might not see Mary. But his argument is still yang.. Similarly,

the fact that some argument is invalid does not imply that the

conclusion of that argument is false,

EXAMPLE. "If I go to town, I will buy something. If I buy

something, T will come home with less money. Therefore, if I

go downtown, I will come home with less money." The validity

of this argument depends on the truth of statements of the form

"If ((if AthenB) and (if B,then C)), then (if A, then C)."

The truth table

X Y Z X .4

(x -4 Y)
and (Y -4 Z) X - 4 Z

((X . Y) and
Y -4 Z)) -* (X ..- Z)

T T T T T T T T
T T F T F F F T
T F T F T F T T
T F F F T F F T

F T T T T T T T
F T F T F F T T
F F T T T T T T

F F F T T T T I T

shows that such statements are always true. So the argument

is valid;

EXAMPLE. "If Jones were a Communist, he would have voted

for this measure. Jones did vote for this measure. Therefore

Jones is a Communist." The validity of this argument depends on

the truth of statements of the form "If ((if A, then BY and B),

then A". The truth table

(X Y) and Y ((X and Y) -4X

T

shows that such statements need not be true; that is, it is

possible that "if A, then B" and "B" can both be true at the same



r

time that "A" is false (namely in case "A" is false and "B" is

true). Therefore this argument is not valid. (But again, this

does not in itself mean that the conclusion of the argument is

false.)

DIJLIgamIAR,meiala. As we have seen, the conclusion of

a valid deductive argument is accepted as true if it is agreed

that its premises are true. If someone doubts that the premi-es

are true, it may be possible to produce another valid deductive

argument which has as its conclusion the premises of the preceding

one, and has as its own premises statements which the doubter is

willing to believe. If these new premises are not accepted by

the skeptic, it may be possible to repeat this process again

and again until the original conclusion is shown to follow (by

a very complicated deductive argument combining several simpler

-ones) from some set of premises which the skeptic accepts.

Suppose now that we have a very large body of knowledge

Which we have obtained by direct observation and/or inductive

arguments. Suppose it also happens that various facts in this

body follow from various others by (valid) deductive arguments.

Finally, suppose we want to present this knowledge to the world

and have everyone accept it as true. In such situations it makes

sense to try to organize the known facts so that as few of them

as possible, can be verified prily by observation and experiment,

and the rest follow from these few by valid deductive arguments.

If this is done, then to convince the skeptic that all our

results are true, we need only convince him that those few

basic ones are true, and that our arguments are valid. This

simplifies matters, since verifying a statement by experiment

can be difficult, tedious, and/or expensive, while verifying

the validity of an argument is easy.

The classic example of this kind of organization is the work

of Euclid, a Greek mathematician working in egypt around

300 B.C. Euclid arranged all the, mathematics which was then

known so that it followed deductively from simple premises like



"things equal to the same thing are equal to each other", "a

straight line may be drawn through any two points", and so on,

Which he thought everyone would believe on the basis of everyday

experience.

Now when Euclid said "point" or "itraight line"1 he meant

to indicate those objects or concepts which everyone ordinarily

thinks of when he hears the words "point" or "straight line";

and we might say not just "Euclid's results are true if you

accept his premises", but rather "Euclid's results are true

if you accept his premises and interpret the words he uses in

the way everyone ordinarily does." You may think this idea is

too trivial to bring up, since obviously the truth of a statement

depends on how we interpret the words in the statement. But

suppose we interpret the words "point" and "straight line" to

mean "point on the Earth's surface" and 'great circle on the

Earth's surface". (A great circle is the intersection of the

surface with a plane passing through the center of the Earth;

the Equator, for example.) Experimentation convinces us that

most (though not all) of Euclid's premises are still true under

/11,11 interpretation of the words. 'Any of Euclid's results

which were proven only from those premises are therefore true

under the new kititrantLItigno (This is because deductive argu-

ments take their force only from the arrangement of the connectives

and quantifiers in a sentence, rather than from the meanings

of the nouns.) Consequently1 without additional experimentation

we have learned a great many new facts about points and great

circles on the Earth; and in doing so we have used Euclid's work,

even though when he did the work Euclid was not thinking about

great circles, but about straight lines. Thus we see that we

can often get new knowledge by taking old deductive arguments

and interpreting the words in them in new ways. Modern mathe-

maticians encourage such multiple interpretations by using words

like "group", "ring", and so on which have no relevant everyday

interpretations. At the same time, modern mathematicians leave



their bbasic terms (like "set", "point", etc.) undefined. This

is mostly because it is really impossible to define all. words.

(For example, we could define a "set" as a "collection of objects";

but then we would have to define "collection" and "object". We

could define a "collection" to be an "aggregate" and an "object"

to be a "thing"; but someone could ask what "aggregates" and

"things" were. Clearly there is no end to this.) However,

leaving our basic terms undefined also helps encourage multiple

interpretations of the words.

For the reasons outlined above, modern mathematicians often

. present collections of mathematical knowledge in the following

form. First there are some statements, written in terms of

undefined words, which are not proven. These are called axioms.

Then come the rest of the statements, together with deductive

arguments showing that these statements are true under any inter-

pretation of the undefined terms which makes the axioms true.

These latter statements are called theorems, and the arguments

are called proofs. (We will say more about proofs later.)

The whole collection of axioms and theorems is called a /hem.,

or a formal or axiomatic theori. This way of organizing and

presenting mathematical results is called the axiomatic method.

y9t)rjzaclugmal It is now possible to think of

mathematics in two different ways. First, we can think, of

mathematics as the study of (abstract properties of) real 211.9111.

From this viewpoint the mathematical statement "2 2 = 4u

would be interpreted as saying "When you put two objects with

two other objects, you have four objects." Being statements

about the real world, mathematical. statements must be established

by inductive arguments, or by deductive arguments whose premises

were' established by inductive arguments. Consequently we cannot

be absolutely sure that mathematical "truths" are in fact true;

although there is universal agreement on "2 2 = 4", there is

often a difference of opinion regarding state-nts about the

very small or the very large, e.g. "Every number can be divided

by two" or "Infinite sets exist". Let us call mathematics as



conceived in this way intuitive mathematics.

Mathematics can also be viewed as the construction of

axiomatic theories. From this viewpoint "2 + 2 = 4" would be

interpreted as saying, "If certain axioms are true under some

interpretation of certain basic words, and if '2', 1+1, and 0-0

are defined in terms of the basic words in such- and -such a way,

then '2 + 2 = 4' is true under that interpretation of the basic

words"; or, more simply, just "'2 + 2 = 4' is a theorem of

such-and-such an axiomatic theory" (the particular theory

being fixed by the context in which this statement appears).

Thus a mathematical statement merely says that there is a valid

deductive argument leading from certain premises to a certain

conclusion; we are not claiming that this conclusion is true,

but only that it is psol_rable from the (previowdy given) axioms,

i.e. that it wo4ld be true if the axioms were true. Consequently

we can be absolutely certain that mathematical "truths" are true,

since they only assert the validity of 'deductive arguments, and

the validity of a valid deductive argument can be checked beyond

doubting. Call this system of mathematics formal mathematics.

To summarize: In intuitive mathematics; words have meanings

(though these meanings cannot be rigorously and absolutely

defined) and thus statements tell us something about reality;

but truths are not absolute. In formal mathematics, words have

no meanings (i.e. they are undefined) and statements tell us

nothing about reality (but only about what reality would be like

if we already knew certain things to be true; tht is, formal

mathematics is uncommitted about the true nature of reality) i

but truths are absolute. You may take your choice.

PROOFS

NAIllzalusstt. In formal mathematics, a 2roof can be

defined as a sequence of statements, each of which is the conclu-

sion of a valid deductive argument all of whose premises are axioms,

previous theorems, or earlier statements in the sequence. The
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last statement in the sequence is the theorem proud by the proof.

It should be clear, for example, that if (A,B,C,D) is a proof

of the theorem D, then (A,B,C) is a proof of the theorem C.

In intuitive mathematics we can use the above definition with

"axioms and previous theorems" replaced by "statements previously

accepted as true".

Regardless of which view of mathematics we adopt, the

techniques used in proofs are the same. The test way to learn

what proofs are is to see lots of roofs. (Recall how you

learned what a "horse" was.) The rest of this course will

offer many opportunities for this. Many sorts.of deductive

arguments will be seen. We shall now describe some of the most

commonly used ones. We shall talk in very general terms;

specific examples will be seen in the rest of the course.

ER0Ing,"1;/..tlwe Ltwt,e,p,,,tar.1:a. Suppose we want to prove

the statement "if A, then B". To do this, a mathematician

might assume, that "A" is true (that is, he adds "A" to his axioms

or his collection of accepted truths) and then just "B".

Having done this, he says that "if A, then B" has been proven.

Why is this legitimate? What we have shown by our proof is that

if you accept the axioms and "A" as all true,
then you must accept "B" as true.

This is the same as saying that

if you accept the axioms as true, and also
accept "A" as true, then you must accept
"B" as true.

This, in turn, says that

if you accept the axioms as true, then you
must admit that if you were to also accept
"A" as true, then you would have to accept
"B" as true.

But by the meaning of "if...then", this is to say that

if you accept the axioms as true, then you
must accept that "if A, then B" is true.

This discussion should convince you that if "B" can be proven

from "A" and some other statements, then "if A, then B" can be



proven from those other statements alone.

It is very important to realize, however, that the

assumption in such proofs that "A" is true is only a temporary

one. At no time are we assertinP that "A" actually is true.

In 'fact, "A" might actually 'Je false (we know that "if A, then

B" is true when "A" is false). The temporary assumption that

"A" is true has no connection with the actual truth-value of "A",

but is pi.st a device used inside the proof of "if A, then B".

The argument above shows that this device can produce convincing

proofs. But after the proof is over the assumption that "A"

is true .must be discarded. (Of course you can re-make the

assumption in later proofs of "if A, then..." statements.)

Sometimes it is easier to prove "if (not B), then (not A)"

by the above method than it is to prove "if A, then B". This

---is a legitimate and useful method, since the two quoted state-

ments mean the same thing (as you showed in the discussion of

the con/Lampittm).

zoalm,"u02 ;,..taIonlj, To prove "A and B", one must

simply prove one of "A" and "B", and then prove the other.

It may be possible to use "A" in the proof of "B"; this is all

right (and may save time) if and only if you did not use "B"

in the proof of "A". If neither of two statements is yet accepted

as true, then proofs of both, each of which uses the other as

a premise, will not be convincing, This error is called

circular reasoning. It is easier to commit this error in

intuitive mathematics than in formal mathematics, because in

the former different workers may not agree on what has previously

been accepted as true; one man might prove "A" using "B", another

might prove "B" using "A", and a third might say (reading only

the results of the first two) that together they had proved

"A and B". But he would be wrong.

wing, "9,/f WI.ements. Suppose we want to prove the

statement "A or B". This can be done by proving just "A", or

just "8", since "A or B" is true if either "A" or "B" is true.



But sometimes we may not see how to prove just "A", or just "B",

directly. We can also prove "A or B" by proving "if (not A),

then B", which can often be done by using the device discussed

in the section on proving "if..,then" statements. This method

is legitimate since "A or B" means the same thing-as "if (not

A), then B", as you can (and should) show using truth tables.

Inc.iItettpLQ91. Suppose we were to construct a valid deductive

argument, with "A", "B", and "C" as premises (their number
is irrelevant) , whose conclusion was known to be false. Then
we would know that at least one z),:" "A", "B", and "C" was false,

since if they were all true the conclusion would have to be
true. Suppose further that we know that all the premises other
than "A" are in fact true. Then "A" must be false. Thus the given
argument serves as a proof of the statement "not A". This
method of proof is called indirect mool, plclolit. contradiction,
or reductio ad absurdum (reduction to an absurdity).

RK9911m9Aus. Suppose we have as our premise "A or B"
and want to prove "C". If the premise is true, it means that
either the situation described by "A" holds, or else the situation

described by "B" holds (or both). The proof must convince

people that "C" holds in either, case, Thus the proof of "C"
must consist of two parts; first, we must prove "C" from "A",
and then we must prove "C" from "B", Then we can say: "Either
'A' or 'B' is true. If 'A' is true then the first argument

proves 'C', If 'B' is true then the second argument proves ICti
Therefore 'C' is true." This is called a _proof la cases.

If it is hard to prove "C" from "B" we can instead try
to prove "C" from "B and (not A).. If we succeed in this and
have already proved "C" from "A", then we can say: "Either
'A' or 'B' is true. Also, either 'A' or TnotAl is true. If
'A' is true, then the first argument proves 'C'. If 'not A'' is

true, then 'A' is false, so 'B' is true (since one of 'A', 'B'
is true); thus 'not.A4 and 'B' are both true and the second
argument proves 'C'. So 'C' is true."



EX ERCISES. 1. To say that the first proof-by-cases method

described above is valid is to say that the statement

"If ((A or B) and (A -P C) and (B -4 C)), then C"

is always true. Use truth tables to show that this statement

is always true.

2. Describe the validity of the second proof-by-cases

method given above by means of a single statement similar to

that in Ex. 1, and show that it is always true.

3, Suppose "A or B" is true and that we can prove "C" from

"A and (not B)" and also from "B and (not A)". Does this prove "C"

4. Show that the statement "If ((A or B) and (not A)), then

B" is always true and describe the method of proof suggested by it.
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PROBABILITY

I. INTRODUCTION

The weatherman says, "The probability of rain is about

1 out of 10". He could have said 1/10. If you had heard this

report,would you be likely to carry an umbrella or perhaps

wear a raincoat? Can you explain what the report means?

Purdue and Indiana both have good football teams. In a

football game with Purdue, Indiana has a 50-50 chance of winning.

Would you understand what we mean if we said, "The probability

of Indiana winning is 1 out of 2 or 1/2"?

Riverboat Sam has a standard deck of 52 playing cards. He

draws a card randomly from the deck. How likely is it that the

card is red? How likely is it that it is a heart? How likely

is it that it is the king of hearts? If Sam drew four more

hearts out of the deck in succession, would you consider playing

cards with Sam?

In the paragraphs above the word "probability" is mentioned

several times° What does "probability" mean to you? Something

uncertain! An element of chance! In other words, we talk about

probability when an event could occur in more than one way, and

no one could tell beforehand what will occur.

For example: Toss a coin. The coin could land heads or

tails. You are not sure which will occur. However, the proba-

bility of it landing on tails is 1 out of 2, or 1/2. What

is the probability of it landing on heads? **



Thus, we have the following

Definition: The probability of success of an event is defined

as L. number of wA s the event can succeeci
total number of ways the event can occur

Exploration

1, Find the probability of getting a 4 on one toss of a

die.

2. Find the probability of not getting a lk on one toss of

a die.

In the following four thouet-provoking questions consider the

set, { 1,2,4,5,8,10,11 .

3. What is the probability of drawing an even number from

this set?

4. What is the probability of drawing an odd number from

this set?

5. What is the probability of drawing a number which is

divisible by 3?

6. What is the probability of drawing a positive integer?

7. If p is the probability of success of an event

and q is the probability of failure of that event,

then what is the relationship between p and q y

II. EXPERIMENT
**

We know that the probability of getting heads when tossing

a coin is 1/2. Does this mean that when tossing 100 coins we

will get exactly 50 heads?



Toss a coin 10 times and record the results in Table 1.

Toss

11111111

10

Heads

Ill

Tails

Ratio of heads

Ratio of tails

Percent of heads IIIIII _
Percent of tails

Table 1

2. Plot the cumulative percents of heads and of tails on

the graph in Figure 1.

100

Percent
of

Heads
Or

Tails

1 2 3 1+ 5 6 7 8 9 10

Number of Tosses

Figure 1

......1
Tails

---- Heads

3. What do you notice about the percent of heads obtained

as the number of tosses increases?

4. What do you notice about the percent of tails obtained

0 41111111.*



as the number of tosses increases?

5. What do you think would happen in the graph if you

tossed the coin 100 times? 1000 times?

6. Then what do we mean when we say the probability of

getting heads is 1/2 "in the long run"?

III. SAMPLE SPACES

Write down the set of all th- possible outcomes of

throwing two dice. List the outcomes as ordered pairs

in which the first.. component is the number on the

first aie and the second component is the number on

the second die. Note that each outcome is equally

( 1 ) ( 1 ) ( ) ( ) ( ) (

( ) ( )

( 1 ) ( )

( )

( )

( )

2. How many different ordered pairs did you get?

3. How do you know there are no other outcomes?

4. Plot these outcomes on the graph on the next page.

Put a dot for each ordered pair.

**



6-

Second
4-

Die 3

2

1

2 3 4 5 6

First Die

Figure 2

1 /OM

5. You have just drawn a picture of the SAMPLE SPACE

for throwing two dice. Thus the sample space is a

representation of all possible ways an event can occur,

The sample space is used to aid in determining the

probability for an event to succeed.

6. What is the sample space for the sums obtained When

tossing two dice? Is each outcome equally likely?

7. How many ways can you ge,_ a sum of 8 when tossing

two dice?

8. What is the probability of getting a sum of 8 when

tossing two dice?

Exercises

1. What is the probability that the next person you meet was

not born on a Sunday?
**

2. List the spmple space for tossing three coins, The outcomes

will be ordered triples. Find the probability of getting

a. exactly 2 heads.



no heads.

c. at least one head.

d. at most one tail.

3. Mark4ach statement as true or false.

T F a. A student can either pass or fail a course.

Therefore the probability of passing is 1/2.

T F b. When tossing 2 dice, the probability of getting

a sum of 9 is the same as the probability of

getting a sum of 5.

T F c. In a room containing 30 people, the probability

that at least two persons in the room have the

same birthday is greater than 1/2.

Consider drawing 2 cards from a deck consisting of the

213141.910 of hearts.

a. What is the probability that the product of the

numbers on the cards is even?

b. What is the probability that the product of the

numbers on the cards is odd?

c. Do parts a. .and nb. considering the sum of tithe

numbers on the cards as being even; being odd.



STATISTICS

I. MEASURES OF CENTRAL TENDENCY

Consider 1.

Listed below are the salaries of a random sample of

persons employed by Utopian State University.

V000000

$7000
$8000

$10,000
$11,000 Professors

$112,000
34,000

t171000 Lean

318,000 President

$75,000 Football Coach

Janitors

What would you consider to be a realistic "average"

of the salaries paid to persons employed at U.S.U*? In

other words, what single number would most accurately

represent the salary of an employee of U.S.U.?

Consider 2.

Janet Schmalz received the following grades on her

mathematics tests: 60, 60, 60, 90, 98, 100

What would you estimate as her "average" grade? Again,

what single number would most accurately represent her

grade in the course?

*lc

**

Consider 3,

The class sizes at Sweet William College are as follows:



213,317,818,12,13,25,25,25,25,25,175 .

What would be considered a valid app oximation of the

"average" class size? **

II. MEASURES OF DISPERSION

Consider the following sets of scores:

A = f 4,6,8,10,1204,16 )

B = t 4,7,9,1601,13,16 3

The scores in A range from 4 to 16. Likewise, the scores

in B range from 4 to 16. So we say that the range for 'both

A and B is 12. How is this found? Note the following:

1. The mean of scores in A 4 " 11
.1..P 1W0

2. The mean of scores in B is 10.

. 3. The median for A is 10.

4. The median for B is.10.

But how do these set of scores differ? Notice that the

scores in B seem to be more closely clustered around 10.

than those in A. We will use this fact to distinguish between

A and B.

Since 14 is above the mean ( R = 10) for both A and B

14 is a nosive deviation from the mean. With 6 below the mean,

then 6 is a negates deviation from the mean. Thus the devia-

tion a score from the mean is either positive or negative

or zero.



For example:

Score Deviation from the Mean

X -

4 -6
6 .4
8 -2
10 0 X= Mean of
12 2 the
14 4 Scores .

16 6
0

If we add all the deviations together we will get 0. Why?

This is not very useful. So by squating each cletiation, each

squared deviation becomes a non-negative number, and then

dividing by the number of scores, we find an average squared

deviation, which is called the variance of the set of scores.

In cider to apply this measure in practical situations we will

find the square root of the variance. This measure is called

the standard deviation of a set of scores. The standard

deviation is represented by s.

3E is the mean

th
X
i

is the t-- score in the list of scores

is a summation symbol

n is the number of scores

In
(Xi ) 2

i=1

2



EXAMPLE 1

Consider the set of scores:

A = 4,6,8,1o,12,14,16

n = 7

Xi

n
zo
7

xi

6

10

12

14

7
16

7
1 xi = 70 7(xi

i=1 1=1

SO

(Xi

= 10

-6

-2

0

+2

36

16

0

16

7 36

- 2) = 0 (X2 = 112

1=1

7

(Xi - X)2

112
7



EXAMPLE .2

Consider the set of scores:

B = [ 4,719,10,11,13,16 )

Here again the mean is 10 and n is 7.

.7

9

10

11

13

7 16411=orre

/X. = 70

= 1

6
3
-1

0

1

3

6

1(xirc) = 0 7(ci-7)2= 92
irp1 1=1

's
n

7

= 4-13 14

3.62

Exercises

**

rind the mean, median, mode, range, and standard deviation of the

following sets of numbers.

1. (498,10,16,12,16



6'
4:

2. ( 213,51211,517,11216,1.1

3. ( 954,947,943,951,949,951,9467943,945,951 3

(Hint for #3: Try to Mid any easier way to obtain
the mean.)

**

III. NORMAL DISTRIBUTION

Consider the following IQ scores from Upper Gooseneck

Regional High School.

18 -91 -96 1 A.7%)
4 nn I AL,.1-y-r i nS11-y, -11.9

82 92 97 101 105 110 123

84 92 98 102 105 111

86 94 98 102 106 1i 3

87 95 100 102 107 114

89 96 100 103 107 116

Let us now group these scores into intervals with a

length of 5.

InIarval

76- 80
Si- 85
86- 90
91. 95
96-100
101-105
106-110
111-115
116-120
121-125

Frequency of scores

1

2

3
5
8
8

3
2
1

Now put these values on a graph by placing a dot on the

graph for each ordered pair, (alb), Where a is the interval

and b is the number of scores in that interval. (Figure 3,

page 13)

1

a.



A

8
7

6

5--
0
O 4--
of

3

2

1

76 81 86 91 96 101 106 111 116 121

to to to to to to to to to to

80 85 90 95 100 105 110 115 120 125

Scores

Figure 3

Now connect the points on the graph with a smooth curve.

Notice that the curve is shaped like a bell. or this

reason it is sometimes called "a bell-shapcd curve."

Intelligence is one of the characteristics of human

being Which is "distributed" in this way. Other character-

istics which tend to be "normally distributed" are height

and weight for human beings of the same sex.

Let us consider the graph below as a graph of a nomaLla

¢.....1....,...butedisti characteristic.

70



The mean of this distribution is designated by Y. The

standard deviation is given by s. The percentages given on the

graph indicate the percent of persons one would expect to

score in the indicated range. This says, for example, that

68% of the population would be expected to achieve scores

within one standard deviation above or below the mean. It also

indicates that 96% would be expected to achieve scores within

two standard deviations below or above the mean.

EXAMPLE

On an IQ test the mean is 100 and the standard deviation

is 10. Therefore, we would expect about 68% of the scores

to lie between 90 and 110. We would expect only 2% of the

scores to lie below 80. What percent of the scores would

you. expect to find between 80 and 110? (ans. 82%)



IV. CORRELATION

You as a teacher have administered two tests. The

students and their scores are listed below.

Student First test Second test.W.....0......

Abe 75 92

Bob 87 85

Conrad 77 95

David 92 77

Elmer 80 75

Frank 82 97

Gerald 95 82

Homer 97 80

Ike 90 90

Jerome 85 87

Note that although the test scores for the class are

identical, the scores for individual students are not

identical except in one case. Thus, the mean and median on

the first test are the same as the mean and the median on the

second test. Can you conclude that the tests were equally

difficult? To find how the scores on first test are related

to the scores on the second test we use a coefficient of

correlation.

There are several kinds of coefficients of correlation.

The one we will consider is called the coefficient of rank

correlation.



This number r is defined in the following way:

6E d2
1 n(n2.1)

where one assigns ranks to the scores on both tests and then

finds the differences (d) in the ranks for each student, as

follows:

SCORES RANKS
st nd nd.",

... 1 2-- 1st 2 2

Student test test test test di di
A 75 92 10 3 7 49
B 87 85 5 ,

6 -1 1

C 77 95 9 2 7 49
D 92 77 3 9 -6 36
E 80 5 6 / 0 -2 47
F 82 97 7 1 6 36
G 95 82 2 7 -5 25
ii 97 80 1 8 -7 49
1 90 9n 4 4 0 0
J 85 87 6 5 1 1

E d2 = 250
n(n2

n = 10 the number of students

- 1) = 10(100 - 1) = 990

r = 1

10
6
i=1

n(n2-1)

= .. 6 250
990

1 - 15



Notice that students who ranked high on the first test

tended to get low scores on the second and that students who

ranked low on the first test tended to receive high scores on

the second test. This is also indicated by the negative value

of r If students who score high on the first test also

score high on the second test and those who score low on the

first also score low on the second test, then r will be a

positive number. The highest possible value for r is 1.0;

this indicates that each student had the same rank on both

tests. The lowest value for r is -1.0. **

Exercises

1. Suppose you k:iow that a distribution of scores is normn1

and you know that the mean is 75. What is the median? What

is the mode?

2. The mean on an IQ test is 100 and the standard deviation

is 15. What percentage of the population would be expected

to have IQ scores above?

a. 130
b. 115
c. 100
d. 85
e. 70

What percent of the population could be expected to have IQ

scores between: f. 85 and 115

g. 70 and 130

h. 8 5. and 130



3. On a standardized achievement test the mean is 62 and the

standard deviation is 7. Two-thirds of the persons that took

this test should have achieved scores in what range? You would

expect 2% to achieve above what score?

4. On a test which you have constructed for your class, which

has a normal distribution, the mean is 50, You decide to

assign, grades on the following basis:

A - more than 1 s.d. above the mean

B s.d. to s.d. above the mean

C s.d. below the mean to I s.d. above the mean

D 1 s.d. to * s.d. below the mean

F - less than s.d. below the mean

It turns out that the lowest score for an A is 77.

Determine the range of scores for B9 C9 D9 and F.

A - 22 or above

B to

C - to

D - to

F - or below

5. The following chemistry students at Hardtimes Pyrotechnic

Institute were ranked by their lecture instructor and their

laboratory assistant as follows:



Student Lecture dab,

A 9 8
B 5 3
C 10 9
D 1 2

E 8 7
F 7 10

- G 3 4
H 4 6

I 2 1

J 6 5

How do these rank assignments correlate with each other?

What does this number mean?

6. You have just given two tests in arithmetic to your class

of twenty students. Find the rank correlation between the two

tests. What does this number mean?

SCORES RANKS

Students Test 1 Test 2 Test 1 Test 2 d d2

A 77 60
B 93 65
C 84 76
D 82 71

E 91 69
F 75 58
G 8 7
H

9
6 4361 0

I 100 75
J 54 29
IV 89 67
L 65 42
M 95 72
N 71 50
O 96 77
P

46
79 55

Q 33
R 80 63
S 74 51

T 86 62

7'



COMMENTARY FOR INSTRUCTORS

Section 1

le Bring out that probability ranges from 0 to 1.

Thus 0-impossible event 1-sure event, V"ol
111.0%.1. might use

sets and subsets to develop concept. Give many more

examples. If you wish to use sets, you could develop.

it it in the following way. Looking at this definition

of probability, we can relate it to set notation.

U uniwi,'sal set - Sample space

A & subset of U - all ways event succeeds

For example, let U be the set of all American coins

U = ( pennylnickelldimelquarterlhalf-dollar

The event A = [ any American coin whose value is
greater than 20 cents 3

[ quarter, half-dollar

P(A) = probability of A being a success event

2-

13112.
n(u)

If we let event B =

then

Then p(B) =

take.

1
1

( all American coins whose value
is greater than zero ) = penny,
nickel,dimelquarterlhalf-quarter,}

This is the largest value p can

Or A = U Sure Event

If event D = ( all American coins whose value is
greater than 60 cents 1

0

p(D) =
111",1M 0

3 = 0 This is an impossible event.

A = O. Thus, values of p can range from 0 to

- 7 7-



If you know what A is, what about A' or when A fails?

A U Al = U so P(A U Al) = P(U)

But P(A = 1 for A n At -7: 0 .

Event A' = ( an American coin whose value is equal
to or less than 20 cents )

= [ pennylnickelldime )

P(At) = 3/5 Thus P(A) + P(A') = 1

or p(A) + p(A') = p(A U Al)

Thus P(A') = 1 - P(A)

Could show by Venn diagrams.

Then, look at these ideas with Venn diagrams.

2. Do this experiment in class to show the Law of

1...ja.me Numbers-which states informally, by choosing

the sample size n sufficiently large, the probability

that the value of the sample mean differs from the

population mean by at most c can be made as small

as or as close to 1 as we like.

An example of table 1 is below.

Toss 1 2 3 4 5 6 7 8 9 10

Heads 0 1 0 0 1 1 1 0 1 0

Tails 1 0 1 1 0. 0 0 1 0 1

Ratio of
heads 0/1 1/2 1/3 1/4 2/5 3/6 4/7 4/8 5/9 5/10

Ratio of
tails 1/1 1/2 2/3 3/4 3/5 3/6 3/7 4/8 4/9 5/10

Percent
of heads 0 50 33 25 20 50 57 50 55 50

Percent
of tails 100 50 67 75 80 50 43 45



Thus as the number of tosses increase the

cumulative percentage of heads will approach

However, stress one does not always get exactly one

half number of heads in any specific number of tosses.

3. Make students aware of the fact that by listing

the sample space, outcomes will not be excluded.

Always ask how can this event happen. Also at this

time use the.tree diagram or position blanks to

develop a counting procedure.

Example 1.

Event: Electing a president and vice president out

of the set ( Ann,Bob,Jim

Sucessful event: Selecting a boy for President and

a girl for vice president.

By branching (tree diagram):

After that, choice
First choice for President What choice for Sample

vice pres. point

nn

Bob

Jim

(Ann, Bob)

Jim (Ann, Jim)

Ann

Jim

-7f-

Ann --

(Bob , Ann)

(Bob , Jim)

(Jim, Bob)

(Jim, Ann)



By position:

number of choices then how many for
for pres. vice prey,

Either way we get six different outcomes. Branching:

is a good beginning, then use positions.

So the cmtnting principle states that if there

.are m ways to do the first thing arid ways to the

second thing an.d.; r ways to do the third thing, then

the total number of different ways that the event

can occur is m n r .

1111.rieffiriewes mnr

Thus, successful event is -2--- -ice
vice

boy girl

Then, P(successful event) = 2/6.

1 = 2

...13E40122.

Event: Forming three letter words from a,b,d e 3,

i.e., adelbea4

Successful event: All words beginning with a

Event: 4 3 2 14 total words
1st 2nd

letter

P.

4



Successful Event: 1 a. 2

or

e. .(a7dle)
b."(a,d1b)
e...(a2d1e)

b
d

etc:.

(a,b,d)

(alb,c)

(ald,b)

(aidle)

(a7e7b)

(aold)

You could also work out different telephone numbers

or license plate numbers.



lr

4. Assume each day is equally likely. p = 6/7

On question 3a you don't need to know the correct

answer but imply that the two events are not equally

likely; many things determine the probability.

On exercise 3c, same birthday means same day

of year, not exact birth date, i.e., May 9. True

To justify the above question consider the

following reasoning:

With r-people Sample space wou2.d have 365" elements

161 3.6.1 315. .... 653... r blanks or 365"

For successful event: at least two among the r people

have the same birthday. Easier to look at E' where

n(E) + n(E') = 365r

E': number of ways of selecting r different birthday

361+. .312 161 311 ... 165 r + 1

so n(E) = 365r-(365 x 364 x 363 x x 365 -

4,5r=l3i1l' a..364 x

365"

So when r =

r 10 20 22 23 24 30 4C 50

P(E) .12 .41 .48 .51 .54 .71 .89 .97

Section 2

5. The student should choose a number close to

11,000 which is the median or middle score of the

distribution. Define and write on board the median



as the middle score, after the students have worked

on the exercise. Note that median is not affected

by extreme scores as the other kinds of averages.

Also a quick estimate.

6. The student should choose a number close to 78

which is the mean. Define and write on board: Mean

is the sum of the scores divided by the number of

scores. After the student has completed the

exercise, note that the median would not be an

appropriate average for these scores.

7. The student should choose 25 which is the mode.

Define and write on the board. Mode: the most

frequent occurring number in the distribution. Why

would the mode be the most appropriate here?

8. Be sure to go through examples with students.

On exercise 3, by subtracting 943 or any other score

from each score, averaging the converted scores

then adding 943 or the score you choose on to the

converted average, one obtains the mean of these scores.

Score, X-943
954 11

947 4
943 0
951 8
949 6
951 8

6 3
943 0
945 2

951 8
50 X = 10 = 5 Then X = 943 = 948



Section 3

9. Also show correlation by scatter diagrams as

discussed below.

1. .
Aor0

A
b r yf

4 0
4

411 44

P 1P
I9.04

4 11

9V

r is close to +1 r is close to 0 r is close to -1



COURSE OUTLINE - T106

Required Textbooks

-Shr.gTt, S. R. 221:1122:Goometry: An Informal.
Approach, Brooks-Cole Publishing Co; , Belmont,
California, 1967.

Y National Council of Teachers of Mathematics,
- Enrichment Mathematics for the Grades, Twenty-

Seventh Yearbook, National Council of Teachers
of Mathematics, Washington, D. C., 1963.

Opt_ional Textbooks (available in Swain Hall Library)

A Adler, C. F., Modern Geometry: An Irratect First
Course, McGraw Hill fiTE Co., Inc., New York, 1958.

B Brumfiel, C. F., Eicholz, R. R., and Shanks, M. E.,
Geometry, Addison-Wesley Publishing Co., Inc.,
Reading, Massachusetts, 1960.

C Coxeter, H. S. M., Introduction to Geometry, John
Wiley and Sons, Inc., New York, 1961.

E Eves, Howard, An Introduction to the History of
Mathematics, Holt, Rinehart, and Winston, Inc.,
New York, 1953.

K Keedy, M. L. and Nelson, C. W., Geometry, A Modern
Introduction, Addison-Wesley Publishing Co.,
Inc., Reading, Massachusetts, 1965.

Meserve, B. E. and Sobel, M. A., Introduction to
Mathematics, Prentice-Hall Inc., Englewood
Cliffs, N. J., 1964,

N Newman, J. R., The World of Mathematics, Simon and .

Schuster, New York, 1956.
R Ringenberg, L. A., Informal. Geometry John Wiley and

Sons, Inc., New York, 1967.

To The Student
In recent years there has been a revolution in school

mathematics. A quick glance into some newer elementary
school textbooks will show that skill in computation is no
longer sufficient criteria for teaching elementary school
mathematics. The sequence of courses consisting of T104,
T106, T108 is designed to give prospective elementary
teachers the background in mathematics that they must have
in order to teach mathematics successfully to elementary
school pupils.

The courses T104, T106, T108 are concerned with mathe-
matical ideas of two types: those which will be taught to
elementary pupils and those which will give the prospective
teacher a deeper understanding of the concepts he will teach.
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is Concepts
A. Review of Sets
B. Points
C. Angles
D. Lines and Planes
E. Parallelism

S: Chapter 2
R: 2.1
K: 3.4

3. Measurement of line segments and angles
S: Chapter 3
R: 2.2, 2.3

Simple Closed Curves, Polygons, and Polyhedra
A. Simple Closed Curves

S: Chapter 4
R: 2.1, 5,1
K: P. 43-45

B. Quadrilaterals
S: Chapter 4
R: 2.2, 3.1, 3.2, 3.5, 5.3



4. Simple Closed Curves, Polygons, and Polyhedra (cont.)

C. Parallelism
R: 3.1 - 3.5

D. Additional Topics
K: Theorem 6.7

5. Circles
S: Chapter 5

6. Geometric Constructions
S: Chapter 6 R: 12.1 - 12.5

7. Congruence
A. Trian&Congruence
B. General Concept of Congruence

S: Chapter 7
R: 2.3, 2.4, p. 32
K: 4.4
Math Teacher, April 1968

C. Similarity
5: p. 94
R: 202 - 2.3

Area of Plane Figures
S: Chapter 8
R: 4.1 - 4.7

9. Errors in Measurement
R: 2.8
S: Chapter 9

10. Similarity
S: Chapter. 10
R: 2.6, 2.7

11. Algebraic Representation of Geometric Figures
S: Chapter 11 (omit trigonometric ratios)
M: Chapter 8

12. Geometry of Selected Space Figures
A. Theorems on Lines and Planes

S: Chapter 12
R: 5.2 - 5.4

B. Dihedral and Polyhedral Angles
S: Chapter 12
R: 5.5

C. Polyhedra
S: Chapter 12
R: 6.1 - 6.4
K: 4.12

13. Locating points in space
S: Chapter 13 (omit coordinates for points in space)

14. Volume and Surface Area
Chapter 14

R: 6.13
15, Formal, Informal, and Experimental Geometry

S: Chapter 15
R: 1.3
K: Chapter 1



1:6. Modern Geometry
A. Topology
B. Finite Geomecry

M: 10.5
C. Non-Euclidean Geometry

8: Chapter 16
M: 10.1 - 10.3



COURSE OUTLINE

AND

TEACHING GUIDE

T106

Geometry for Elementary Teachers

August 1968



The following time outline has been included so that the
teaching associate can plan his teaching effectistely. We
recommend that the teaching associate follow the sequence
shown, since much of the content depends on prec43ding
content.

CHAPTER NUMBER OF SAYS
1 1

2 2
Quiz and Review 1

3
4

./
Test #1 1

5 3
6 2

Quiz and Review 1

7 3
Unit #1 2

8 2
9 2

Test #2 1

10 3
11 2

Quiz and Review 1

12 3
13 1

Test #3
14
15
16

1

3
2
3



I. Introduction

Objectives of the Course

1. To help prospective elementary teachers develop an
understanding of the fundamental ideas which are the
core of geometric knowledge for all who have occasion
to work with mathematics. This includes such concepts
as congruence, measurement, parallelism, and similarity.

2. To develop geometric intuition and insight. To this end,
the students should be allowed to participate in the
formulation of axioms which are based on intuitive plaus-
ibility arguments.

3. To develop an appreciation of a deductive system. While
no single body of axioms is developed for all of
Euclidean geometry, several deductive subsystems should
be formulated and should be developed. In addition,
several other deductive systems should be examined. If
it is not possible to elaborate upon the details in the
classroom, the student should be assigned the task of
constructing the necessary arguments. The formulation of
such arguments is a necessary part of any mathematics course.

To develop the ability to apply geometric ideas and to
identify some practical applications of geometry. Of the
.several mathematics courses proposed for the elementary
ea cation curriculum, geometry perhaps lends itself best
to exercise in problem solving and to the development of
techniques of problem solving; full advantage of this
should be taken.

To show that certain geometric systems can, with varying
degrees of accuracy, describe properties of the physical
world.



II. Course Outline

Note: Added references are background material to be used
at the disc :etion of the TA.

1. Introduction

24.6 Nature of G(ometry
The stadent should be shown the difference between

geometry as the study of physical space and geometry
as a deduc.dve system. Thus discuss why geometry is
studied ex! some of the practical applications of it.

Reference
S: pp. 1-3

1.1
A: pp. 3-5 Good introduction ideas
B: 1.1
Y: Che'.;er 9 Gives guide lines for course

B. Origin of Geometry
D.scuss some of the more important aspects of the

histori of geometry including the contributions of
Eucli( Pythagoras and some of the modern geometers.
In ariition to the references provided here much
inforLation can be found in books on the history of
mathf.latics.

Refe c'ences
S: ..?p. 4-5
R: 1.2
B: 162 Good introduction
E: 2.4, 2.9, 3.2, 4.1 - 4.4

C. Irformal approach to Geometry

Look at the framework of geometry to develop
E frame of reference in studying geometry.

deferences
S: pp. 3-5

D. Logic (for students who had T104 before September 1967)
Discuss the nature of proof and proof procedures.

References
Y: pp. 291-301



2. Basic Concepts

The primary purpose of this section is to introduce
or reinforce the student's knowledge of the language of
geometry, some of the basic concepts relating to
geometric figures, and the relationships between geometric
figures. Definitions of terms need not be made absolutely
precise at this time and there is no need to prove theorems
in this section. More rigorous definitions and proofs of
theorems will be provided later. An effort should be made
to lead the students to state definitions and properties
in their own wordso The "discovery" approach should be
used extensively in teaching this section.

A. Review of Sets

Develop the relationship' between set notation and
geometric terms in order to have more Drecise
definitions.

Points

The concept of a point should be introduced as a
position or a location. Thus sets of points are
considered which lead to the definitions of space as
the set of all points.

C. Angles

Define an angle as the union of two distinct rays
with a common endpoint. Then investigate vertical
angles, adjacent angles, separation of a plane by an
angle, and the interior and exterior .of an angle.

D. Lines and Planes

A plane and a line are subsets of space. We can
define a line as the intersection of two planes and a
point as the intersection of two lines. With this in
mind, consider open and closed segments, rays, and
half lines as subsets of a line.

E. Parallelism

Two lines in the same plane are parallel if they
-do not intersect and two planes in space are parallel
if they do not intersect. If two distinct planes
intersect then their intersection is a line and if
-two distince lines intersect then their intersection
is a point. Discuss skew lines and intersection and
parallelism between lines, planes, segments, and rays.

-- 9,3-



.61

E. Parallelism (cont.)

References
8: Chapter 2
R: 2.1
K. 3.4

3. MeasureMent of line segments and angles.

Let the students determine a unit for linear measure
and discuss measure of segments, considering different
"sizes" of unit measure. Then discuss and convert
English measures so 'chat they will become acquainted with
meters. A unit of measure for angles can then be consid-
ered and measure of angles. Discuss the relationships
between measure of angles and segments.

References
8: Chapter 3
R: 2.2, 2.3

4. Simple Closed Curves, Polygons, and Polyhedra

A. Simple Closed Curves

Define a simple closed curve as a closed curve
Which does not intersect itself. Then a polygon is
a simple closed curve which, is the union of a finite
number of straight line segments. Briefly consider
the topic of convex sets. Mention the names of some
special polygons and the difference between regular and
non-regular polygons. A polygonal region can be
defined as the union of a polygon and its interior, and
a polyhedron as a closed surface consisting entirely
of polygonal regions. Discuss some of the regular
polyhedra and how to construct them. Actual models
would be nice to used for demonstration.

References
8: Chapter 4
R: 2.1, 5.1
K: p. 43-45

B. Quaderilaterals

Two lines are perpendicular if they intersect in
such. a way that the four angles formed are congruent.
Discuss perpendicular lines and planes. Make the
following definitions: a trapezoid is a quadrilateral
with at least one pair of parallel sides, a parallel-
ogram is a quadrilateral with opPosite'sides. parallel,



B. Quaderilaterals (cont.)

a rectangle is a parallelogram with four congruent
angles, a rhombus is a parallelogram with four
congruent sides, and a square is a rectangle with
four congruent sides.

References
S: Chapter 4
R: 2.2, 3.1, 3.2, 3.5, 5.3

C. Parallelism

Discuss the parallel axiom. Briefly introduce the
concept of a transversal and derive the properties of
the angles associated with two parallel lines and a
transversal. Prove -the -exteriox- -angl-e theorem-and
discuss parallelograms and their properties.

References
31 - 3,5

D. Additional Topics

Prove that the sum of the measures of the angles
of any triangle is 180°. Note proof in outline.
Prove that the midpoints of the sides of any quadri-,
lateral determine a parallelogram.

References
K: Theorem 6.7

Circles

Introduce and discuss some of the properties of circles,
e.g. chords, central angles, and arcs. Omit the section
on circumference and select some theorems from the following
section.

References
S: Chapter 5

6. Geometric Constructions

Give the basic constructions. Show that the trisection
of any angle (other than particular examples) is impossible.

References
S: Chapter 6
R: 12.1 - 12.5



7. Congruence

A. Triangle Congruence

Develop the definition of congruence for triangles.

Take SAS as an axiom and then prove the ASA and SSS are

sufficient conditions for triangle congruence. The ASA

theorem can be proved directly, but it is necessary to

introduce the isosceles triangle and prove that the

base angles are congruent before proving SSS. Note that

SAA is also a sufficient condition for congruence but

do not prove it.

B. General Concept of Congruence

Redefine congruence as a one-to-one distance
preserving correspondence between sets o± points.
Give examples of translations, rotations, and
reflections and show that congruence of triangles is
preserved under these transformations. Develop the
same ideas for otner plane figures. Show that con-
gruence is an equibalance relation and give some
examples of equivalence classes. Then use the unit

from at Teacher to lead into a discussion of
similarity.

References
S: Chapter 7
Rg 2.3, 2.4, p. 32
K: 4.4
Math Teacher,April 1968

C. Similarity

Discuss symmetry of figures with respect to a
point or line and give several examples of symmetric

figures. Briefly discuss symmetry of space figures

on your own. Two figures are said to be similar if
they have the same shape but not necessarily the same
size. Discuss similarity for polygons, polyhedra,
circles, and spheres.

References
S: p. 94
R: 2,2 - 2.3



8. Area of Plane Figures

Use a square unit as a basis for area. Show that the
area of a rectangle can be found as a b where a

and b 'are the lengths of two adjacent sides of the
rectangle and may be any positive real numbers. Standard
units should be stressed. Determine the area of triangles,
parallelograms, trapezoids, and convex polygons. A
triangulation process is convenient for the latter. Con-
sider the measurement of circumference, area, and arc'
length in circles. An experimental verification that
is a constant is a good exercise.

References
S: Chapter 8
R: 4.1 - 4.7

lorxiars JOasurPment

Consider briefly approximate measurement, relative
error, indirect measurement, and applications.

References
S: Chapter 9
R: 2,8

10. Similarity

Before giving a rigorous definition of similarity,
discuss scale drawings which is the basis for studying
similarity. Give some sufficient conditions for similarity
of triangles, e.g. SAS, HS, AAA. Discuss similarity for
other plane figures and space figures and application of
indirect measure.

References
S: Chapter 10
R: 2.6, 2.7

11. Algebraic Representation of Geometric Figures

Introduce the concept of coordinatization of the line
and plane. The graph sets of ordered pairs in the plane.
After developing the equation of a straight line, discuss
linear inequalities in the plane.

References
S: Chapter 11 (omit trig, ratios)
14 Chapter 8



12. G(Tetry of Selected Space Figures

A. Theorems on Lines and Planes

Show 'how a plane is determined. Discuss, parallels
and perpendiculars to planes.

References
`S: Chapter 12
R: 5.2 - 5.4

Dihedral and Polyhedral Angles

Provide illustrated definitions of a halfplane,
dihedral angle, plane angle, measure of a dihedral
angle, polyhedral angle, face angle, and congruence
of the above. Numerous examples from the physical
world should be given.

Reference
S: Chapter 12
R: 5.5

C. Polyhedra

State Eulerts Formula and give a number of

examples. Also prisms are defined. Develop the
analogy of simple closed surfaces to simple closed
curves in a plane. A great circle is defined.

References
S: Chapter 12
R: 6.1 - 6.4
K: 4.12

13. Locating points in space

Using the concept of great circle, discuss briefly
longitude and latitude. Omit coordinates for points in
space.

References
S: Chapter 13 (omit coordinates for points in space)

14. Volume and Surface Area

Define the surface area of a polyhedron as the sum
of the areas of its faces. Use a cubic unit as a basis
for volume. Provide some justification for the formulas
given for the volumes of polyhedra and cones. Discuss



14. Volume and Surface Area (cont.)

surface area and volume of a sphere. The instructor
should try to justify the formulas given in this section
in an informal way and it is not desirable to provide
'proofs. Do not require memorization of formulas.

References
S; Chapter 14
R: 6.5 - 6.13

15. Formal, Informal, and Experimental Geometry

A formal development proceeding from undefined terms
through axioms to theorems is not the primary intent of
this course. However, a discussion is in order which com-
pares elements of informal geometry and problems which may
be solved by observation or trial and error to a body of
knowledge which results from an organized logical develop-
ment of geometry. The former deals with certain properties
of objects which can be seen and touched in the physical
world. The latter involves properties of objects which
can only be imagined and it utilized deductive reasoning
to derive relationships between postulates and theorems.
From this framework we can develop the nature of proof.
in geometry and how this leads to other geometries besides
Euclidean geometry.

References
S: Chapter 15
R: 1.3
K: Chapter 1

16. Modern Geometry

A. Topology

The student need only to become acquainted with
some of the terms and concepts contained in Topology.

B. finite Geometry

Omit Projective Geometry. The
see a completely axiomatic system.
duction into finite geometry, state
and theorems.

References
N: 10.5

students should
Thus for intro-
axioms, definitions,



16. Modern Geometry (cont.)

C. Non-Euclidean Geometry

Discuss the evolution of geometry from ancient

times to the present thus including hyperbolic and

elliptic geometry, Consider Euclid's contributions

to the subjact in particular his fifth postulate.

Thus the alternatives to Euclid's fifth postulate

lead to two different non-Euclidean geometries. If

time permits consider some of the properties of

projective geometry for prospective. For more discus-

sion on non-Euclidean Geometry see Measure and Sobel.

References
6: Chapter 16

10.1 - 10-13



Grading Standards for T106

For insuring standard grades in T106, the following should
be mastered for a grade of "C".

1. Be able to use protractor to D/easure an angle.

2. Be able to define angle, acute angle, right angle, obtuse
angle, triangle, acute triangle, right triangle, obtuse
triangle, median of a triangle, exterior angle, quadri-
lateral, parallelogram, rectangle, rhombus, and square.

3. Find perimeter of any polygon, given lengths of sides.'

4. Find circumference of a circle.

5. Construct line segment, midpoiht of a segment, perpendicular
to a line at a given point, bisector of an angle; copy given
angles and triangles (all with straightedge and compass).

6. Determine if two triangles are congruent or similar.

7. Recognize symmetry.

8. Find area of a triangle, rectangle and square.

9. Make scale drawings of plane figures.

10. Define surface area and volume of polyhedrons, cylindrical
figures, cones, pyramids, and spheres.

11, Be able to use Pythagorean Theorem.
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Congruence Geometry

FOR JUNIOR HIGH SCHOOL*

By WALTER J. SANDERS
and J. RICHARD DENNIS

University of Illinois
Urbana, Illinois

BECAUSE Euclid did such a superb
job in organizing the geometry of the
plane, the practice has been to follow his
example almost exclusively in preparing
elementary and high school materials.
The results at the elementary and junior
high levels have been limited to a presen-
tation of point-set definitions, with at
best a minimal exploration of the geomet-
ric properties of the figures defined. This
reluctance to include the study of rela-
tionships between figures may be a conse-
quence of difficulties inherent in the
standard organization.

Several mathematicians have presented
postulational organizations of geometry
based on the isometrics of the plane.'
While none of these formal developments
are suitable for junior high students, they
have shown the mathematical feasibility of
such an approach. To make this approach
pedagogically feasible, the ideas must he
presented in such a way as to be readily
understood by youngsters. The present a-

* The ideas pscsented in this paper arose out of the
authors' work with tif(1:4M in developing materials

culturally disadvantaged junior high seismal
,,ents under a grant from the 'National Seience Foun-
dation.

An isometry is a distance - preserving function of
the Armee. See, for esamln, nseignetnerd de la
gewheirie by G. Choquet (Paris: Hermann).

Explorations that add to pupils'
understanding of geometric facts

prior to geometric proofs

tion should also give each pupil a founda-
tion on which to base conjectures con-
cerning possible relationships and, even-
tually, to verify assertions.

In this paper we shall show an approach
to plane geometry based on isometrics
which is suitable for junior high young-
sters. First, tracings are used to establish
a notion of congruence. Second, three
types of motions--slides, turns, and flips
are described. With just these motions, a
tracing can be moved from a position of
coincidence with one figure to a position of
coincidence with any other congruent.
figure. Third, the tracing motions are used
to define and study the three basic isom-
etries--translations, rotations, and re-
flections. Finally, properties of these
isometrics are used to establish the con-
ventional congruence geometry properties.

Congruence

Intuitively, tmo geometric figures are
congruent if they are the same size and
shape. One way to show that two figures
are congruent is to make one of them fit
exactly on the other, that is, to use super-
position. So, if the figures are drawn on
paper and it is possible to separate the
figures by cutting the paper, make such a
cut and then place one figure over the
other to see if they fit.

The triangles in Figure 1 are congruent.
But, since they overlap, it is not possible to
separate them by cutting the paper. The
triangles can be shown to be congruent,

354 The Mathematics Teacher I April 1964



10

FIG tam 1

however, by making a tracing of one of the
triangles and using it to do the matching.
Figure 2 shows this process: first to trace
one triangle, then to match the tracing
with the other triangle.

Children become aware of the basic
.properties of congruence through con-
siderable practice in using tracings to coin-
-pare-figures. To be congruent, figures must
be alike in size and shape. Figures which
differ in at least one detail of size or shape
are not congruent. (The tracing test shows
this within the accuracy of the tracings.)

For each property of comparison by
tracings there is a corresponding property
of congruence. Table 1 shows this corre-
spondence for three familiar properties of
congruence.

Relations that are reflexive, symmetric,
and transitive are called equivalence rela-
tions. Since congruence has these proper-
ties, congruence is an equivalence relation.

Another fundamental property of con -
grnciice that can be made clear through
the use of tracings is that corresponding

(a) Trace one triangle

(b) Match the tracing with the other
triangle.

FIGURE 2

parts of congruent figures are congruent.
Figure 3(a) shows a pair of congruent
triangles. The altitude to the base of tri-
angle I must be congruent to the corre-
sponding altitude of triangle H, since a

TABLE I
COMPARISON OF TRACING PROPERTIES WITH

Tracing Property

1. A tracing of a figure matches that figure.

2. If a tracing of a first. figure matches a second
figure, then a tracing of the second will
match the first.

3. if a tracing of a first figure matches a second
and a t racing of the second matches a third,
then a tracing of the first will match the
third.

CONGRUENCE PROPERIIES

Congruence Property
_ .

L A figure is congruent to itself (reflexivity).

2. rf a first figure is congruent. to a second,
then the second is congruent to the first
(symmetry).

:3. If a first. figure is congruent to a second and
the second is congruent to a third, then the
first is congruent to the third (transitivity).
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tracing of of triangle I that includes this
altitude must match triangle II. See Fig-
ures 3(b) and (c).

(a) AI 21- All

(b) Trace AI with altitude

(c) Match tracing with an
yw.upz,.3

Three Basic Motions

A piston in a gas engine slides up and
down; shadows slide along the ground; a
gear in a clock turns on a shaft; stars ap-
pear to turn around the North Star. Slid-
ing and turning motions occur again and
again in the world about us. Many appli-
cations of mathematics, including many of
a geometric nature, are concerned with
these two motions.

A sliding motion is a motion along a
straight line without any accompanying
twisting or turning. A sliding motion can
be made with a sheet of paper by using a
guideline as shown in Figure 4.

A turning motion is a motion along a
circle with the center of the circle fixed
(keeping its position). To make a turning
motion with a sheet of paper, hold one
point fixed by using something pointed,
such as a pencil, as shown in Figure 5.

A slide is a sliding motion of specified
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(a) Draw guide line

(0) Trace guide line

\

or.
of° 0ro

(c) Slide sheit-iising guide lint

FIGURE 4

distance and direction. Both distance and
direction can be indicated conveniently
with an arrow. Figure 6 shows how to
slide a sheet of paper as indicated by an
arrow.

A turn is a turning motion of specified
amount and direction. Amount and direc-
tion of turn and location of turn center can
be given by a curved arrow and a dot.
Figure 7 shows how to turn a sheet of
paper as indicated by a turn arrow and
dot.

In Figure 8, one figure is drawn with a
pattern as in (a); then, without lifting the
pattern from the page, it is moved to a new
position and used to draw a second figure
as shown in (b). The two figures, shown
in (c), must be congruent, since they were
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(a) Hold down with psncil point

(b) Turn shut, keeping point
stationary

FIGURE 5

drawn from the same pattern. The pattern
is like a tracing in this case.

Figure 9 shows how a tracing can be
moved from a position of coincidence with
one of the figures of Figure 8 to a position
of coincidence with the other' by first
making a slide, then a turn.2

The tracing can also he moved from a
position matching the first figure to one
matching the second figure with just a
sin it turn, without sliding. Figure 10
shows how a turn about a point between
the two figures will do this.

This raises a general question: Given
two congruent plane figures, can a tracing
of one of them be moved by just a slide or
by just a turn so that the tracing exactly
matches the other figure? To answer this
question, consider the two figures in Fig-
ure 11. In this case, after one of the figures

2 There are, of course, many other combinations of
slides and turns that, will move the tracing from coin-
cidence with one figure to coincidence with the other.

was made with a pattern, the pattern was
flipped over, so that the other side faced
up. Then the second figure was drawn. A
little experimentation moving a tracing
around appropriately is all that is needed
to convince one that a tracing which is
lined up with one of the figures cannot be

(a) Given arrow

(b) Draw guide lino

(c) Trace guide line and murk toil of
arrow

(d) Slid, tracing until mark It at tip
of arrow

FIGEIRJ 6
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(a) Given turn arrow and turn center

(b) Mark tail of arrow

(e) Fix turn center and turn until moll
is at tip of arrow

FIGURE 7

moved to a position matching the other
figure unless the tracing is flipped over.
Since slides and turns do not reverse sides
of the tracing, no combination of slides
and turns can be found that will move a
tracing from a position matching one of
the figures to a position matching the
other.'

If you place a mirror appropriately be-
tween the two figures of Figure 11, as
shown in Figure 12, and look into the
mirror, what you see in the mirror will be
the other figure. For this reason, we call
the figures mirror images.

Although one cannot. in general, use just slides
and turns to move a tracing of a figure to coincide
with another congruent figure, it is the OM that when-
ever a combination of slides and turns will move a
tracing from one position to another, there is either a
inglr slide or a single turn that will accomplish the
change in position. (This result is not beyond the reach
of junior high students.)

If you now mark clots on the paper at
each end of the mirror and draw a line
through the dots, a fold along the line will
match the two figures, as shown in Figure
13. We can use this "fold line" to describe
a motion which move a tracing of one
of the figures to a position matching the
other. This motion, which we will call a
flip, is shown in Figure 14, in which a
tracing of one figure is flipped to match a
second figure. The "line of fold" will be
called the flip line.

WE CAN now finish the discussion of
types of motions which are sufficient for
moving a tracing of one plane figure to
coincide with a second congruent figure.
It is always possible to accomplish such a
move by performing one of the following
motions:

1. a single slide
2. a single turn
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(o) Draw first figure

(b) Draw second figure

(c) Resulting congruent figures

FIGURE 8



(a) Arrow showing slide to make

(0) Slide tracing

(b) Trace first figure, guide line,
and tail of arrow

(d) Arrow showing turn to make

(s) Turn tracing to match second
figure

FIGURE 9

3. a single flip followed by a single slide
4. a single flip folio` A by a single turn

Of course, there are !flatly other cotnhina-
Cons of slides, turns, and flips which will
also work. The more interesting of these
are concerned with flips: a tracing of any
plane figure can be moved to a position of
coincidence with any other congruent
figure by one flip, or by. two flips, or by
three flips- no other motion is necessary.
To see this, one need only convince him-
self that any slide can be accomplished by

t wo successive flips, and any turn can also
be accomplished by two successive flips.'

Isametrles
Translations, rotations, and reflections

The slide indicated in Figure 15(a) will
move a tracing sheet so that a tracing of

4 The authors were pleased to discover that at least,
one high sellout geometry text suggests imagining a
combination of slide, turn, and flip motions to carry
out the standard superposition arguments in triangle
congruence theorems. See Barnes and Hendrix, Plane
Geometry and Its Reasoning (New York: Harcourt.
Brace dc Co., 1937).
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FIGURE 10

FIGURE 11

FIGURE 12

A BC matches AXYZ. As the slide is
made, the tracing of vertex A moves from
A to X, as shown by the guideline in Figure
15(h), Similarly, the tracings of vertices B
and C move from B to Y and from C to

-respectively. The map arrows in Fig-,

ure 15(c) show the pairing of the points
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(a) Mark dots at ands of mirror

(b) Draw line

(a) Fold along line

FIGURE 13



(a) Trace one figure and this flip line,
and mark a reference point on
the flip line

(b) Hold tracing at ends of flip Hne
and flip

(c) Line up flip Ilna and reference dot.
.Whon finished, the tracing will match
the second figure.

Fiauns 14

A, 13, and C with points X, Y, and Z. one way of pairing each point of A4IBC
Sliding a tracing in this manner shows with a unique point of AX }'Z. It also
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(c) Given AABC, AXYZ, slide

(c) Pairing of vertices determined
by the elide

(b? Trace &ABC and slide

S

T

(d) Some other pairings determined
by the slide

FIGITRE 15

shows how to pair other points. To locate
the point which pairs with any point F,
see where a tracing of P is moved to by
the slide. The map arrows in Figure 15(d)
show several such pairings. Point if, the
midpoint of side AB of A A BC, pairs with
the midpoint U of side X Y of A XYZ.
,Point R, an interior point of AA BC, pairs
with point F, which is interior to AX YZ.

The set of all ordered pairs of points
determined by a slide is a one-to-one
function called a translation. For each
ordered pair, the first component is called
the original, and the second component is
called the image of that original. For the
translation shown in Figure 15, we see that
X is the image of A, U is the image of It,
and S is the image of R. Also, the set of
images of the points of a given figure is
called the image of that figure. So, for the
translation shown in Figure 15, AX YZ is
the image of AABC, and the image of
aegment AB is segment XY.

The one-to-one function determined in a
similar way by a turn about a point is
called a rotation. Figure 16 shows a rota-
tion about point T. Under that rotation
AXYZ is the image of AABC. The map
arrow shows that point. U is the image of
0, while the "loop" map arrow shows that
point. 7' is its own image.
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T

FIGURE 16

Each one-to-one function determined by
a flip abOut a line is-called a line reflection.
The map arrows in Figure 17 show'some



of the original-image pairs for the reflec-
tion about line 1. Under a flip about line 1
a tracing of A ABC will be moved to coin-
cide with AXYZ. So A X YZ is the image
of AA BC under the reflection about 1.

Flaunt: 17

The map arrow from R to shows to
be the image of R, while the map arrow
from S to t? shows I?, to he the image of S.
That is, R and 8 are images of each other.
The loop arrow at Q shows that Q is its
awn image. Because of the way flips work,
we see that if 14f is the image of N, then
is also the image of M. So 4ABC, is the
image of ZSXYZ. Also, each point of line 1
is its own image.

For each translation, rotation, and line
reflection, any figure will be congruent to
its image. This follows from the way trac-
ings were used to define these functions.
In particular, the image of a segment will

'°...°4.1
(a) Translation

be a congruent segment. Stated another
way: The distance between any two points
is the same as the distance between their
image points, For this reason, translations,
rotations, and line reflections are called
distance-preserving functions. Distance-pre-
serving functions of the plane are some-
times called isometrics of the Wane; so
translations, rotations, and line reflections
are isometrics of the plane.

Pined points

A point which is its own image (with
respect to a given function) is referred to
as a fixed point. A map arrow for a fixed
point starts and ends at that point. Figure
18 shows several pairings for a translation,
a rotation, and a reflection.

There are no fixed points for the transla-
tion in Figure 18(a). To see this, think of
sliding a tracing as indicated by the slide
arow; every part of the tracing would
slide the same distance and direction.
Therefore, the distance between a point
and its image is constant; it is the same as
the length of the slide arrow. Finally, if a
translation has at least one fixed point,
all points must be fixed, and the transla-
tion is the identity function.

The only fixed point of the rotation in
Figure 18(b) is the turn center. In fact,
the turn center is always a fixed point for a
rotation. However, there may be other
fixed points, as in a 360-degree rotation.
But, if there are two fixed points, then all
points are fixed and the rotation is the
identity function. (These results are most
easily seen by thinking of tracings. As a
tracing is turned, the turn center is held

(b) Rotation

Ftointm 18

(c) Line reflection
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fixed. If a second point of the tracing turns
back to where it started, the entire tracing
will he hack to where it started.)

By considering a flip of a tracing sheet
about a line, one can see that the fixed
points for a line reflection are exactly the
points of the flip line.

Invariance.

A figure which is its own image under a
function is said to he invariant under the
given function. Under the reflection about
the line shown, as in Figure 19(a), the
image of the regular hexagon is the hexa-
gon itself. In Figure 19(b) the hexagon is
invariant with respect to a 60-degree rota-
tion about its center. The only translation
which leaves a hexagon invariant is the
(trivial) identity translation.

The distinction between fixed points
Or IA frocror;ninian nnn hn vnnn hit nn
to Figures 19(a) anti 19(h). In both illus-
trations, the hexagon is invariant. For the
line reflection the hexagon has exactly two
fixed points. These are the two points

(a) Invariance under a line reflection

(b) Invariance under a rotation

nouns 19

364 The Mathematics Teacher I April 1968

where the hexagon crosses the flip line.
For the rotation, the hexagon has no fixed
points.

Now consider the translation shown in
Figure 20. A tracing of line n "slides
along" line n. This means that the corre-
sponding translation pairs each point of
line n with a point of line n, i.e., the line n
is invariant (mapped onto itself) under
this translation. -trot ice, however, that no
point of line n is fixed.

FineliE 20

Geometry

We are now in a position to tackle the
conventional theorems of plane geometry.
Our tools will be properties of translations,
rotations, and reflections. In the following
sections we offer some samples of -this
analysis.

1Tnes

After examining the effect of transla-
tions upon various lines in the plane, stu-
dents formulate the following generaliza-
tion:

For each line in the plane and for each
translation, either the translation maps the
line onto itself, or else the tine and its image
have no points in common (lig. 21).

With this observation, we are in a posi-
tion to define "parallel lines." We say
that lines are parallel whenever there is a
translation that maps one line onto the
other. With this definition a line is parallel
to itself.

Vertigo; anates

An important property of all 1SO-degree
rotations is that they map any line onto a
parallel line and, specifically, map any line
through the center of rotation onto itself.
See Figures 22(a) and 22(b).

This property plays a central role in the



Line mapped onto itself No points common to line and image

Flour; 21

study of vertical angles. Two lines that
intersect at a point P (see Fig. 23) form
four angles, opposite pairs of which are
called vertical angles. A 1RO-degree rota-
tion about point I' maps each of the lines
onto itself. In particular, it maps ray PA
onto ray PD and ray PB onto ray PC;
i.e., it maps ZAPB onto .LDPC. There-
fore, these vertical angles are congruent.
This same rotation also maps Z .4PC onto
L DPB, so these vertical angles are also
congruent.

Parallsi linostransversal Mecums

Given a pair of parallel lines, the trans-
lation which maps any point of the first
line onto some point of the second line
maps all of -the-first line onto the second
line. Also, each translation preserves the
order of points along a line, and each trans-
lation maps a set onto a congruent set.
These properties give us tools for exploring
the standard parallel linestransversal
theorems.

(a) Image of line under 180° rotation is a parallel line

center of
rotation

(b) Line through turn center invariant
under 160° rotation

nal= 22
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FIGURE 23

Suppose that line AC is parallel to line
RD (Fig. 24), and that line n mosses each
as shown. Consider the translation that
maps A to B. This translation maps line
AC onto line BD. In particular, this
translation maps ray AC onto ray BD
and ray AB onto ray BE; i.e., it maps
L CAB onto L DBE. Therefore, Z CAB
is congruent to L DBE. This same trans-
lation establishes the congruence of the
other pairs of corresponding angles.

L

S

/
I

FIGURE 24

At first it is best to illustrate arguments
like this with the use of tracings. Students
who trace L CAB and slide the tracing
from A to B readily see that the tracing
then matches L DBE. Although initial
arguments of this type should be discussed
with the help of tracings, eventually stu-
dents should be encouraged to make their
arguments on a more verbal basis, with a
minimum of direct help from the tracings.

Perpendicular lines

Invariance plays an important role in
the 'development of geometric ideas. .Some
lines are invariant under reflection about
another line, and some lines are not. In the
case where a line is invariant, under reflec-
tion about another line (Fig. 25, upper),
not only are the pairs of vertical angles
congruent, but because of pairings under
the reflection, we can deduce that all the
involved angles must be congruent. This
situation does not occur in the other case
(Fig. 25, lower).
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FIGURE 25

Flip
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This observation motivates the follow-
ing definition. Two lines are perpendicular
whenever one is invariant under reflection
about the other. (The word "two" is im-
portant here.) With this definition and an
appropriate system of angle measure, one
is ready to argue that perpendicular lines
form four 90-degree angles.

Symmetry

Another example of the role of invari-
ance is found in the study of symmetry,



A figure is said to have line symmetry
whenever it is invariant under a reflection
about some line. A triangle may have no
line symmetries, one line syxnmtry, or
three line symmetries. There are no trian-
gles with exactly two line symmetries.

Consider any triangle with just one line
of symmetry. Any such triangle must have
one of its vertices on the symmetry line
(see Fig. 26). Furthermore, its other ver-
tices will be reflected images of each other
(points B and 0).

e
SI
Triangle with one symmetry line.

Front 26

Therefore the triangle has a pair of
sides that are reflected images of each
other, i.e., has two congruent sides (side
AB side AC). The triangle also has a
pair of angles that are reflected images of
each other, so they are congruent ( L B
at.a1 L C). Since point B is the image of
,point C, line BC is invariant under the
reflection, and the symmetry line bisects
segment BC. This means the symmetry
line is the perpendicular bisector of the.
side included between the congruent
angles (angles B and C). The usual proper-
ties of medians, altitudes, and angle bisec-
tors yield to this form of analysis equally

FIGURE 27

well. (The term "isosceles" can be intro-
dueed at the appropriate time.)

If a triangle has two line symmetries,
then it must, have three. In Figure 117, lines
I and m are lines of ,symmetry; so side
A B side AC, side 11B 2--s: side BC, and
hence all three sides are congruent. That
is, the triangle is equilateral. It can be
shown that equilateral triangles hm e
three line symmetries. In this case, the
altitude from C lies along the third line
of symmetry of the triangle.

Clumfritaterals

The study of quadrilaterals and their
properties can parallel that of triangles,
proceeding from quadrilaterals with no
lute symmetries to those with four lines of
symmetry: One interesting difference be-
tween quadrilaterals and triangles is that
the quadrilaterals can have symmetry
lines which do not contain a vertex, while
triangles. cannot. As a result, we make a
distinction between diagonal symmetries
and mediator symmetries. A polygon has
diagonal symmetry if the line containing
one of its diagonals is a line of sym-
metry-. It has mediator symmetry if one
of its medians is a line of symmetry. (A
median of a quadrilateral joins the mid-
points of opposite sides of the figure.)
Each A a quadrilateral's line symmetries
will be either a diagonal symmetry or a
mediator symmetry.

The reader may wish to verify that a
quadrilateral with just one line of sym-
metry is either a kite or an isosceles trape-`
zoid; with just two lines of symmetry is
either a rectangle or a rhombus; with four
lines of symmetry is a square. Just as we
have shown in the case of isosceles and
equilateral triangles, it is possible to de-
rive the usual properties of the special
quadrilaterals from their symmetry prop-
erties (see Fig. 2S).

There is an important class of quadri-
laterals that is not covered by the line-
symmetry classification. These quadrilat-
erals are ordinarily not invariant under
line reflection but are invariant under

Congruence geometry for junior high school 367



e
s

FIGURE 28

180-degree rotation. To have this invari-
ance it is necessary for a quadrilateral to
have its vertices arranged generally as
shown in Figure 29. In this case A and C
are images of each other, as arc B and D.
As was mentioned earlier, a 180-degree

c--.-44r4* of altstice

0

Flaunt 29

rotation maps a line onto a parallel line.
So, in this case, since the rotation maps
line AB onto line CD, we infer that seg-
ment AB and segment (D must be
parallel. Similarly for segment BC and
segment AD; and, of course, the segments
in each of these pairs are congruent, he-
cause we have used another congruence
mapping. For the same reasons, the diag-
onals of this quadrilateral bisect each other
and opposite pairs of angles are congruent.
These are the standard properties of
parallelograms.

Constructions

An isometry-based context for geometry
is rich with opportunities for students to
discover construction techniques. As a
simple example, take the problem of con-
structing a perpendicular to a line 1

through a point P not on line 1. Students
who have an understanding of the map-

pings discussed in this article have sug-
gested the following methods:

1. Fold along line 1 and mark the point
that corresponds with P under this fold.
This point together with P determines the
desired perpendicular.

2. Fold line 1 onto itself so that the fold
line goes through point P. The crease de-
terines the desired perpendicular.

3. Place a square-cornered card with
one edge along line 1 and an adjacent edge
running through P. Draw the desired line
along the latter edge.

4. Use a flat, transparent, reflecting
-sheet (such as a stiff sheet of plastic or a
thin piece of glass). Stand this sheet erect
along line 1, and mark the reflected image
of point P in its apparent position "on. the
other side" of line 1.

5. Again with a transparent reflecting
sheet, stand the sheet erect so that its
bottom edge determines a line through
point P. Now rotate this sheet about,
keeping the bottom on a line through P.
As you do this you will find a position
where the reflected image of the part of
line 1 in front of the sheet coincides with

363 The Mathematics Teacher April 1968 .

PS

t

FIGURE 30



that part of / behind the sheet. In this po-
sition, mark the ends of the reflecting
sheet. These points determine the desired
line.

6. The usual compass construction (Fig.
30).

7. A variation on the usual construction
technique (Fig. 31). Points X and I' are
arbitrarily chosen.

OM too aro
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With this range of possibilities, the
chances of each student's finding "his
own" techniques are greatly increased. In
addition, his knowledge of the mappings
will promote more understanding of the

various techniques than is achieved in
the usual compass-straightedge context.

Although only one construction problem
has been discussed in this paper, all of the
standard plane-geometry constructions
yield to attacks similar to those described
above.

Summary

The isometry context, as described in
this article, provides a wealth of oppor-
tunities to explore topics in geometry.
This exploration is carried out in a setting
that is accessible to students with a broad
range of ability. Furthermore, innumer-
able opportunities arise for the student to
gain experience in making arguments to
verify or refute conjectures. The met buds
of attack presented here would not inter-
fere with a later conventional (deductive)
organization of geometry. Rather, they
tend to strengthen the -student's intuitive
grasp of geometric facts so that Ale is

better able to devote his attention to for-
mal proofs and to appreciate the subtle
relations among axioms, definitions, unde-
fined terms, and theorems.

Two courses now available

The Secondary School Mathematics Curricu-
lum Improvement Study has completed one
year of experimental study of a new curriculum,
Course I, intended for Grade 7. On the basis of
this year of study, this course has now been pub-
lished in revised form in two parts, each part
approximately 375 pages. A Course II for Grade
8 has been published in an experimental version
and consists of two parts, each approximately
350 pages. The textbooks for both of these
courses are available in limited supply for re-
view by interested persons. For information on
cost and delivery dates write

Howard F. Fehr, Director
SSMCIS, Box 120
Teachers College, Columbia University
New York, New York 10027
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SYLLAEUS

E343

Teaching Mathematics in the Elementary Schools



Teacher Competencies in Mathematics Methods
for the Elementary School

The semester's work in E343 is planned and executed in such a way that
every attempt is made to help teachers develop the following competencies
for their work with children in the mathematics program:

1. The ability to use their knowledge and understanding of the real
number system to provide a meaningful mathematics program for children*

2. The ability to use their knowledge and understanding of intuitive
geometry to provide a more complete, meaningful mathematics program
for children.

3. The ability to use their knowledge and understanding of the history
-and -development of mathematics to provide a broad cultural foundation
for a meaningful mathematics program for children.

4. The ability to provide meaningful experiences in mathematics for
children, consistent with their knowledge and understanding of the
social and quantitative aspects of their environment.

5. The ability to use their knowledge and understanding of the principles
of child growth and development in planning and executing learning
experiences in mathematics for children.

6. The ability to use their knowledge and understanding of the psychology
of learning in planning and executing learning experiences in mathe-
matics for children.

The ability to select content in mathematics for different grade
levels consistent with the principles of child growth and development
and research in the psychology of 'earnings.

8. The ability to use their knowledge and understanding of all areas of
the curriculum in order to integrate and correlate these areas with
mathematics.

9* The ability to examine and use past and present methods and techniques
used in teaching mathematics in accordance with existing research.

10. The ability to use different kinds of instructional materials in
providing learning experiences in mathematics for children.

11. The ability to make and use a variety of cooperative techniques for
the purpose of evaluating individual and group performance in the
mathematics program.

12. The ability to use professional books and periodicals to further
professional growth in the area of mathematics.



FOREWORD

When constructing this guide, programs currently used in the public

schools were the frames of reference for the outlines. No attempt was made

to fit these outlines to any one methods textbook. As a consequence, some

of the topics are treated in greater detail than the treatment furnished in

the present textbook used in E343. Seldom will you find something included

in the textbook but not included in the syllabus.

Using curriculum guides, pupils textbooks, scope and sequence r%arts,

methods textbooks, and the experiences of mathematics education experts,* he

syllabus outlines were constructed. Obviously, the sequence of events in the

outline do not exactly follow the present basic methods textbook. This is

especially true in the sections dealing with number sentences, factors and

multiples, and geometry. In several instances the ideas are widely separated

in the book. In a few cases, the topics are treated under one heading in the

syllabus and under two or more headings in the methods textbook.

Under existing planning and policies, mathematics content, as such, is

left up to the mathematics department. The emphasis in the E343 syllabus is

intended to be upon methods and materials. Again this is an area of disagree-

ment between the methods textbook and the syllabus outlines. Most methods

textbooks include a considerable amount of content, as such, prior to intro-

duction of methods using that content. Our present textbook is no exception.

Persons using this syllabus should be aware of the differences between

the content of the textbook and the program offered in E343. With this aware-

ness, assignments will make sense when they are based upon the program as

outlined by the syllabus rather than just the next 10 or 20 pages in the

textbook. For certain topics supplementary reading will be necessary. Selected

assignments from other resources will meet this need.

/el



The present syllabus should be used as a guide in developing the scope

a.tv

and sequence of the program. It is not a cription ika more than is the

textbook. Rather it is a road mat for the E343 course for both instructor

and. student.
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PART I

OBJECTIVES AND PHILOSOPHY

I. Basic tenets of a modc:A mathematics program
A. General objectives of education
B. General objectives of mathematics education
C. Specific objectives of mathematics education

1, Process goals
a. Acquire
b. Interpret
c. Evaluate
d, Communicate

2. Behavioral goals

II. Historical antecedents of current mathematics programs
A. Pre-history
B. Historical beginnings

1. Raman-Greek period
2. Mayan

C. Dark Ages
D. Renaissance
E. Colonial Period to 1821
P. 1821-1892
G. 1892-1935
H. 1935 - present

III. Characteristics of modern programs in mathematics
A. Unifying themes of modern mathematics program

1. Greater Cleveland Mathematics Program
2. Madison Project
3. SNSG
4. Minnemath
5. Stanford Project
6. University of Illinois Arithmetic Project

B. Principles of learning used in modern mathematics programs



PLAUNING AND ORGANIZING THE CLASSROOM FOR 1NSTAUCTION

I. Rationale for TeacItaze
Ob"ectives

II. Teaching Strategies
A. Inquiry method
B. Discovery method (inductive-deductive)
C. Problem solving
D. Expository method
E. Spaced repetition
F. Pupil involvoment
G. Homework

1. Fallacy of typical homework
2. Principles underlying the correct use of homework
3. Examples of desirable homework assignments

III. Long range planning
A. Scope and sequerle
B. Time allotments and pacing
C. Unit planning without textbook
Do Unit planning with textbook
E. Planning for use of instructional resources

IV. Short range planning
A. Steps in planning

1. Objectives
2. Readiness
3. Approach
4. Procedures
5. Materials
6. Summary
7. Evaluation

B. Initilting a new concept
C. Practice and drill lessons
D. Use of textbook and workbook
E. Transitions from topic to topic and lesson to lesson



PART II

SETS

In each of the following sections emphasis first is placed upon
the use of concrete materials for introduction of the concepts. The
concepts are then further developed through pictorial and diagramatic
set representations.

I. How to help children identify and describe sets.

II. Using equivalences to help children establish cardinal
number names.

III. Using non-equivalence to establish the idea of ordinal
number names.

IV. How to present the idea of the empty set.

911. 'How subsets are used to develop concepts related to
operations with whole numbers.

VI. The importance of disjoint sets in fundamental operations.

VII. Relationships between set operations and operations on
numbers.

VIII. How to present concepts of metric and non-metric geometry
through the use of sets.

IX. Problem solving through the use of Venn diagrams.



NUMBER SENTENCES

Mathematics as a language

A. Relationship to the English language

B. Punctuation

C. Precision of vocabulary

D. Statements and Open Sentences: Their application and interpretation

I. Frame arithmetic
2. Simple and compound open sentences
3. One variable and more than one variable

4. Graphing solution sets on a number lire

II. Using number sentences to solve verbal problems

A. Translating verbal sentences and phrases into mathematical

language.

Expressing verbal problems as open sentences.

C. Finding solution sets for equations and inequalities.



*15,14i. ,

FACTORS AND MULTIPLES

I. How to develop meanings and interrelationships between factor,
multiple, and divisor.

II. Helping Children Discover Prime Numbers, Composite Numbers, and
the Role of One (Eratosthenes sieve, twin primes, etc.)

III. Discovering Divisibility Tests and Why They Work

IV. Methods of Factoring--Division, factor tree, etc.

V. Greatest Common Factor (Greatest Cowan Divisor)
A. Determined through the use of sets (understanding)
B. Determined through prime factorization (speed)
C. Use of GCD in working with fractions--expressing in

simplest form.

VI. Least Common Multiple
A. Same as A above
B. Same as B above
C. Use of LCM in working with fractions--addition and

subtraction of unlike fractions.

VII. Enrichment Activities
A. Patterns
B. Odd and Even Number,
C. Square and Triangular Numbers
D. Exponents

0



PART III

ADDITION AND SUBTRACTION*

I. Relationship to counting
A. Use of sets
B. Use of number line

II. Basic facts for addition and subtraction
A. Use of concrete materialssets, examples of semi-concrete

materials
B. Inverse relationship--putting together and taking apart
C. Writing the horizontal and verticrl algorithms--use of frames
D. How basic principles help us teach and learn basic facts

(identity element, commutative principle, principle of one
more, doubles, near doubles)

E. Activities for developing automatic mastery

111. Addition
A. Single-digit column addition

1. Use of concrete materials--sets, examples of semi-
concrete materials

2. Horizontal and vertical algorithms--use of parentheses
(associative principle)

3© Teaching the unseen numeral
4. Checking addition

B. Multi -digit addition without regrouping
1. Activities with concrete and sear.-concrete materials to

build understanding of place value--counters, place value
charts, abacus, place value grids, pictorial and graphic
representations.

2. Relationship to basic facts
3. Use of expanded notation
4. Use of mature form of algorithms

C. Multi- digit addition with regrouping
1. Pictorial representations of sets of ten and sets of one
2. Horizontal algorithm-..expanded notation using principles
3. Vertical algorithm--expanded notation (Heavy emphasis on

place value charts)
4. Activities to develop efficiency and speed in column

addition
a. Higher decade addition
b. Addition of multiples often

D. Additional ways to check column addition
1. Check of nines
2. Rule of compensation
3. Regrouping addends



ADDITION AND SUBTRACTION
(Ccintinued)

IV. Subtraction
A. Types of subtraction situations

1. How many left
2. How many more are needed (look for missing addend)
3.' Comparison (find the difference between two numbers)

B. Multi -digit subtraction without regrouping
1. Activities with concrete and semi-concrete matetials to

build understanding of place-value--counters, place value
charts, abacus, place value grids, pcitorial and graphic
representations

2. Relationship to basic facts
3. Use of expanded notation
4. Use of algorithms

C. Multi-digit subtraction with regrouping
1. Same as B. 1. above
2. liwthods of subtraction

a. Decomposition
b. Equal-additions
co Complementary

D. Methods of checking subtraction
1. Addition method
2. Subtraction method
3. Check of nines
4. Approximation

V. Enrichment in addition and subtraction
1. Games
2. Magic Squares
3. Cross Number puzzles
40. Mental arithmetic
5. Madison Project materials
6. Row-Peterson booklets
7. Operations using number bases other than ten

* Vocabulary stressed--addend, sum, missing addend, plus, minus,
subtrahend, minuend, and remainder or difference.



MULTIPLICATION AND DIVISION*

I. Relationship to addition and subtraction and ultimately to counting
Use of sets
I. Multiplication

a, Repeated addition
b. Cartesian products

2. Division
a. Partitive
b. Quotative

Pi* Use of number line

II. Basic racts for multiplication and division
A. Use of concrete materials--sets, examples of semi-concrete

materials
B. Inverse relationship--putting together and taking apart
C. Writing the horizontal and vertical algorithms--use of frames
D. How basic principles help us teach /2nd learn basic facts

(Identity element, commutative principle, distributive
principle of multiplication over addition, principle of
multiplying by zero, squaring)

E. Activities for developing automatic mastery

III. Multiplication
A. Single-digit multiplier without regrouping

1. Use of concrete materials--sets, examples of semi-concrete
materials

2. Relationship to basic facts
3. Horizontal and vertical algorithms--use of parentheses

(expanded notation using associative and commutative
principles)

4. Position of product numerals--extensive use of place
value charts and counting men

5. Checking multiplication--repeated addition
B. Single-digit multiplier with regrouping

1. Activities with concrete and semi-concrete materials to
build understanding of place value--counters, pace value
charts, abacus, place value grids, pictorial and graphic
representations

2. Use of expanded notation stressing the distributive
principle

3. Use of algorithms (mature form)
C. Multi-digit multiplier and multiplicand

I. Use of arrays
2. Expanded notation and use of distributive principle
3. Placement of partial products
4. Role of 0 in multiplier and multiplicand
5. Use of algorithm (mature form)



FMLTIPLICATION AND DIVISION
(Continued)

III. (Continued)
D. Method of checking mathematics

I. Division
2. Casting out nines
3. Expanded notation
4. Reversing factors

IV. Division
A. Uneven Division--handling remainders

I. As a whole number
2. As a fraction
3. As a rounding off process

B. Multi-Digit Dividends with Single Digit Divisors in Division
1. Use of arrary patterns
2. Expanded notation
3. Subtractive method
4. Immature method of placement of quotient
5. Mature method
6. Checking division by repeated subtraction

C. Multi-Digit Divisors in Division
1. Use of array patterns
2. Expanded notation
3. Subtractive method--mature method
4. Estimating quotients

a. apparent method of trial divisors
b. increase-by-one method of trial divisors

D. Checking in Division
1. Multiplication
2. ApprcximLtion
3. Check of nines

V. Enrichment in Multiplication and Division
I. Doubling method
2. Gelosia methoJ
3. Galley method
4. Front-esid method
5. Egyptian division method
6. Permutations and combinations

(Arrangements and selections)
7. Operations using bases other than ten

* Vocabulary stressed: factor, product, missing factor, times,
multip11., divide, multiplicand, multiplier, partial product,
product, divisor, dividend, quotient, and remainder.



PART IV

FRACTIONAL NUMBERS

1. Foundational Program for Fractional Numbers
A. Different Situations in which Fractions Are.Used

1. To represent parts of a whole
2., To represent one of a group of units
3. To represent division of a whole number
4. To represent a ratio

B. Developing the Concept of Fractional Numbers
I. Use of concrete and semi-concrete materials -e.g., parts

of real objects, number line representations, fraction
chartsr and fractional cutouts

2. Representation of fractional numbers with emphasis placed
upon the relationships which exist among them
a. Common fractions
b. Decimal fractions
c. Percents

3. Ordering fractional numbers
4. Learning to read and write fratior., decimal, and

percent numberals
C. Equivalent Fractions

1. Determine the meaning of equivalent f7 actions through
the use of pictorial and graphic representations

2. Use of factors, multiples, and the multiplicative
identity to express 'fractional rumbera in different
terms

II. Addition and Subtraction of Common Fractional Numbers
A. Foundation Activities

1. Joining and separating congruent and discrete regions
through the use of concrete objects

2. Use of number lines and other graphic representations to
solve addition and subtraction situations

3. Relating the basic principles of whole numbers to
fractional. numberse.g., commutative, associative, etc.

B. Development of Formal Procedures in the Addition and Subtraction
of Proper and Improper Fractions and Mixed Numbers
1. Proper Fractions

a. Tvizontal and vertical algorithms
(L) Like denominators
(2) Unlike denominators

b. Checking by pictorial and graphic representations and
inverse relationships

c. Oral and mental activities
2. Improper fractions and mixed numbers

a. Renaming improper fractions and mixed numbers
b. Horizontal and vertical algorithms

(1) Like deonominators
(2) Unlike deonominators
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FRACTIONAL NUMBERS
(Continued)

II. (Continued)
2. (Continued)

cf 'Regrouping
d. Other ..numbrical checking activities

III. Multiplication and Division of Common Fractional Numbers
A. Foundational Activities

1. Use of models to develop fractional multiplicative concepts
a. Pictorial representations
b. Unit regions
c. Number lines

2. Use of models to develop fractional divisive concepts
a. Pictorial representations
b. Number line

3. Determinational the relationship between division and
multiplication of fractional numbers
Determination of the basic principles which pertain to
each of the two operations upon fractional numbers; i.e.,
closure, commutativity, associativity, multiplicative
identity, distributivity, pm0, and reciprocal

B. Development of Formal Procedures in the Multiplication and
Division of Fractional Numbers
1. Multiplization

a. Basic horizontal algorithm used with common fractions
b. Variations involved when working with whole numbers

and mixed numbers
(1) Use of vertical algorithm
(2) Expressing all factors in common fraction form

c. Renaming products
2. Development of the concept of "Cancellation" through the

use of renaming, the associative and commutative principles,
and the multiplicative identity

3, Division
a. Equal-denominator method
b. Inversion method

4. Checking multiplicatibn and division by pictorial and
graphic representations and by inverse relationships

IV. Decimals and Per Cents
A. Foundation Program. See Part I of Fractional Numbers
B. Situations which require the extension of place value and

their interpretations through decimals and per cents
C. Operations with Decimal Fractions-Addition, Subtraction,

Multiplication, and Division
1. Relating the basic principles of fractional numbers to

computations with decimal fractions.



FRACTIONAL NUMBERS
(Continued)

IV. (Continued)
C. (Continued)

2. Computation with decimal fractions through the use of
common fractions, powers of ten, number lines, diagrams,

algorithms, etc.
3. Applications of decimal approximation of fractional numbers
4. Applications of repeating decimals

D. Rate-pair interpretation of per cent
1. See 7.11e of Peterson and Hashisaki
2. Approaching the solution or per cent problems through

the use of proportions

V. Fractional numbers as ratios
A. Identification of ratio and rate
B. Use of equal ratios in equations

VI. Enrichment Activities
A. Graphing on a number line
B. Different number bases.
C. Historical development
D. Puzzles and games



.PART V

GEOMETRY

('Metric and Non-metric)

I. Introduction to Geometry in the Elementary School
A. Overview

1. Historical orientation
2. Current trends

B. Rationale for teaching geometry
1. General objectives
2. Specific objectives

II. Concept Development
A. Intuitive kInroach
B. Environmental Orientation
C. Teacher-pupil Dialogues

Essential Primitive Concepts
A. Non-metric Geometry
B. Metric Geometry

IV. Teaching of Geometric Terms and Symbols
A. Perception Activities
E. Vocabulary Activities

1. Hearing
2. Saying
3. Seeing
4. Writing

C. Activities with Geometric Symbols

V. Teaching of Linear Figures and Linear Measurement.
A. Activities with representations of linear figures
B. Elementary Concepts of congruence

1. Slides-Translations
2. Turns-Rotations
3. Flips-Reflections

C. Measurement activities with linear figures
1. Length
2. Angle
3. ArPa
4. Pythagorean Theorem

D. Sketching of Linear figures and fomal constructions
of linear figures

E. Classification of linear figures through set relationships
F. Ordering by Size'- primitive concept of comparison
G. Similarity--Intuitive introductory activities



GEOMETRY

(Metric and Non-metric)
(Continued)

V. (Continued)
R. Symmetry--Intuitive introductory activities
I. Parallelism and Perpendicularity

1. Paper folding and cutting activities
2. Construction activities

J. In depth approach to the sequence of geometric study

VI. Teaching of the Common Solids
A. Activities with representations of common solids
B. Measurement Activities with Common Solids

1. Surface Areas
2. Volumes

C. Constructing models of solids
D. Compar: As of solids

VII. Additional Measurement Topics
A. English, Troy, Metric Systems
B. Liquid and dry measurement
C. Time
D. Weight
E. Temperature

VIII. Graphing
A. Reading and constructing graphs

1. Bar graphs
2. Line graphs
3. Pictorial graphs
4. Circle graphs
Graphing on a number line
Cartesian coordinates
1. Ordered pairs
2. Plotting points
3. Graphs of functions
4. Graphing inequalities

XI. Enrichment Activities
A. Geometric illusions
B. Topology
C. Paperfolding
D. .Mobiles

E. Activities relating to the historical development of
measurement; e.g. dramatizations and making models.



PART VI

VERBAL PROBLEM SOLVING

I. Definition of a problem
A. Psychological
B. Verbal mathematics problems

II. Purposes of problems
A. Relationship to physical environment

B. Relationship to mathematics program
I. Practice
2. Motivation
3. Initiation

III. Issues in the teaching of problem solving
A. Settings
B. Factors associated with high achievement
C. Reading skills related to problem solving

D. Operations related to problem solving
E. Readiness related to problem solving
F. Procedures related to problem solving

IV. Types of Problems
A. Single step
B. Multi-step
C. Non-numerical
D. Insufficient data
E. Superfluous data

V. Methods of Teaching Problem Solving
A. Mathematical sentences
B. Oral and mental problems
C. Diagrams, graphs, drawings
D. Restatement or analogies
E. Pupil formulation of problems
F. Too much, too little data
G. Problems without numbers
E. Set representations
I. Logic
J. Analysis
K. Estimation



PART VII

EVALUATING AND PLANNING IN ELEMENTARY SCHOOL MATHEMATICS

I. Role of measurement in evaluation

II. Relationship of evaluation to objectives

III. Informal methods of evaluation
A. Anecdotal record
B. Rating scale
C. Observation
D. Interview

IV. Formal methods of evaluation
A. Standardized tests

1. Advantages and disadvantages
2. Types available

a. Diagnostic
b. Inventory
c. Achievement
d. Attitudinal
e. Meaning and Understanding
f. Readiness

3. Uses to be made of them
B. Teacher-made tests

1. Advantages and disadvantages
2. Construction of items

a. Interesting
b. Varied
c. Clear

3. Uses to be made of them
C. Textbook tests

V. Characteristics of a good test

A. Valid
B. Reliable
C. Proper format
D. Easily scored

VI. Planning for individual differences

A. Grouping for instruction
1. Small group

a. Ability
b, Diagnosed need
c. Interest
d. Committee
Whole group
a. Levels of procedure
b. Levels of content
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.EVALUATING AND PLANNING IN ELENENTAR SCHOOL MATHEMATICS
(Continued)

Vi. (Continued)
B. Differentiation of assignments

1. On the basis of ability
2. On the basis of diagnosed need
3. On the basis of interest

VII. Planning the learning environment
A. Useful seating arrangements
B. Useful traffic patterns
C. Effective bulletin boards
D. Mathematics corner
E. Mathematics library

111. /


