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PREFACE
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ANALYSIS COURSE

INTRODUCTION:

The main purpose of this course is to develop a logical

development of the number systems from the naturals through the

real number system. Starting from primitives, the material will

motivate the definition of the natural numbers ad their extensions

to the integers, the rational numbers and then to the reals.

Besides exposing students to the specific content of the course,

the development hopes to enable the student to become more

familiar with the spirit of a formal body of mathematics.

A second purpose of this course is to develop pedagogic

strategies which will enable the naive mathematics student to

cope with its content. For the ultimate pedagogical goal of

these materials is to use the revised versions of the course

with future teachers of the elementary school not only in

programs offered at Teachers College but at other institutions

where undergraduate teacher training is in full bloom.

1

For these reasons, the material developed for this course

will be sensii_ve to the feedback of the students. While the

course's goals are approximately fixed, the pace, strategy,

problem sessions, and methodology are not. Whenever possible,

students are urged to direct their commentary about the course

directly to the instructor or the assistant. The content is

more or less pre-determined, the pedagogy remains experimental.

The major question in this latter area is: what methods can be

devised to teach the subject matter, given the normal conditions

which surround a course offering?



Given the pragmatic conditions of a course offerint59 what

methods can be devised to enable the students to master the

subject matter?

One of the main pursuits of mathematics Is generaliza lon.

This pursuit has led to vast systematization and structure

throughout all fields of mathematics during the past 75 years.

What do these objects have In common? What are the properties

that define these objects? The numbers of our daily lives otter

us a good exampl4 of some very familiar objects whose properties

are studies in different groups. The integer +3 and the rational
2

number 1. belong to different sets with different underlying

structures. We shall examine these structures as we go along

for they are at the heart of the distinctions among number

systems.

Our work will begin with definitions and development of the

natural numbers through the basic notion of sets. Using the

naturals as the basic ingredients, we shall build the set of

integers; then the latter set becomes the building block

upon which we erect the rational number system; and finally we

extend the rationale to the real numbers. A final map will

look like thies PO At.
-#4er4.4irrs m Ayers a,

e 0* 0

p
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For years the study of the set of real numbers was relegated
to the senior high school where it received cursory treatment at
best, certainly not in any systematic way. All that has changed
during the last 10 years and, now, the development of the real

numbers starts in the elementary school In some programs. A
recent repo& of the Cambridge Conference on School Mathematics
proposed that serious consideration be given to the introduction
of integers and rational numbers before grade 3, and irrational
numbers by grade 6. Infinite sequences of real numbers, it was
proposed, can be given "intuitive consideration" at grade 6c,

Because of the changes which are taking place not only in
our teachnologioal world, but also in the fields of early
education) the Cambridge Conference on School Mathematios has
recommended that serious emphasis be placed on the training of
teachers who can deal with the new oontento

1The Cambridge Conference on School Mathematics, Goals for School
Mathematics. Boston: Houghton Mifflin, 1963.
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CHAPTER 0: Elementary Logical Concepts

In mathematics we study collections of objects and thrir

properties. To facilitate this study we must have a langlinge to use

in talking about these collections and properties. Two very ii

terms in this language are 'and' and'oe. These terms have specific

meanings so different individuals will receive similar meanings from

interpreting a given statement.

As normally used in mathematics, the conjunction `and' will

mean "both". Consider the example;

It is cloudy today and it is raining.

The conjunction'and' is interpreted to mean both events are occuring,

i.e.,°it is cloudy today; and:lit is raining.

Examine the following statement;

The road is open and I drove to town.

This sentence means that both conditions,"the road is open" and

#1 drove to town", are satisfied.

We are frequently interested in the truth value of compound

mathematical sentences. Mathematicians use a two alternative system

of logic. By this we mean a given statement is either true or it

is false; we have no use formaybe% According to the commonly

accepted definition, the compound sentence formed by two statements

connected by 'and' will have a truth value of true.iff both statements

have truth values of true. Therefore, the statement

The road is open and I drove to town,

will have an affirmative truth value iff is true that the road

is opeeand it is true that °I drove to town". The symbol commonly

used to represent 'and' is Al
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As normally used in mathematics the disjunction 'or' is given

an inclusive meaning. Consider the statement;

"It is raining today or the sun is shining."

This statement will have an affirmative truth value when glIhia

It is raining today" or "the sun is shining° have affirmative truth

values, or both statements have affirmative truth values. The symbol

commonly used to represent 'or' is 41/1 0

In much of everyday life 'or' is used to have the exclusive

meaning. Consider the statement made by a mother to a child.

"You may have a piece of candy or a cookie."

The mother undoubtedly means the child can have one or the other but

he can not have both the candy and the cookie. Study the two uses

carefully as they will arise in the mathematics to be discussed during

the remainder of these materials.

Another compound statement frequently used in mathematics is

the°conditional"or °if Ap., then 4k. "statements, when and *denotes
statements of some nature. Once again,the truth value of such

statements is of upmost importance.

Consider the following conditional statement as a contract

and we shall attempt to arrive at the usual truth value by deciding

when the contract is upheld and when it is broken,

Example: If I go to the store, then I will buy you a coat.

Case 1) If I do indeed go to the store and I do indeed buy you
a coat, the contract is certainly upheld. (Assign a
truth value of true)

Case 2) If I do indeed go to the store and I don't buy you a coat,
the contract is obviously broken. (Assign a truth value
of false)



Case 3) If j (o(1't go to t;!c, ona I clo ;',11; a o.yi,t,
the contrrt st,:trA tine o t
must come from t1ic (A,ssIzn fl truth IPCIlle of true )

09.se /) If I don't Go to the ;;tore and I don't buy yo a;coot,
the contr'-tot YTutta't broken, (Assipm a truth v7:.1ile of true)

To surmarize these results we h9ve for p;;,4?;,(1

F

Colwider the following example;

.1. ..+1...l.ron.*

If n divided by L. loaves a rrnraind(zr of zero, then
n divided by 2 lerives a rer.inder of %t3ro,

We leave it to the reader to the .k the trath vfalue of this exaTple.

Another form Of a. oenpond stateiuent is the°biconditlionel

This form Com be broken into' two oonr1ition9.1 stqtements. The not;;tion
for biconditional is p<pr?q, rec4 I) if end only if q, The st.ltement
pq. can be transformed into p, then q god if q, then p4'. A
brief form commonly used is 'p iff

The reader can use a combination of previous' inforwRtion to

determine the truth value of a biconclitional statement.

The properties discussed herein will be used extensively in
the remainder of the materials.



CHAkTEa It Sots and Operations on alio

1.1 Introductica

In this ohaptor trw develop a numb:tr a definitions and

proliminaxv notions nooessary to thfl entire work* Thoge fundamental

Ideas of mathematics (=our and recur thronctbou thlm raterial* Thoy

give rise to bnai* structux.cs or patterns uhich hoip to Intenrate

and, stron3then mnthcmltioal ideas* Tho omphnsis on mathematical

stvuoUwo luovciave0 omyAlas10 muol3 caN%yn o ometi

basic principles wad patterns as those, inhoroot in numlm and

numor4Atien systemp and to tho propwtles of oporatioltr3 from Mich

abatreot gonoralizationo. All o4er these aro integrated by suoh

concepts as,th.notica of sate notion of.a number systemp the notion

of looloal systomp end the notion of a relation*

1.2 lot,a N
We begin by assertin3that tho idoa of a set is familiar

to all students* !J shall not attoulp to dofino sot* Wo should,

use it ao a primitive or undofinod term to dofina other terms* A

set of numbars0 a sot Of lotto a oolloOtien of booho in a 11braryp

a class of ctudontsp a sot of dishes, arc all examplon of sets*

The objdoto maltinz up a cot aro call0a. 212 ,e or aet...11zza

of the set* In tho oxamplon of nets given in the previous paragraphp

the indIvidunl numbersp Xetternp b0oli,n0 pit :r. or dinhen in n, set

aro the oloments or members of the set* The e%oments or members

belongin5 to a cot aro dotormined by the dictinvishing characteristic

of the set*

Por exc6plop oonsider all the boolto in A library w a set*

Each boat in the library ray b3, Ara scmo reopootcp different from

or similar to all other book In the library* Houovorp in this

situation the property' used to form the scot is tho fact that the

b00% is in the library* This proporty civet) ua a Mlleoetattagil
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collection of objects. When the set's property is sufficient to

determine NThother or not Rny given ohjcct is a member of our set,

the set is a well-defined collection of objects.

To indicate set mPrbershir we shall use the standard notation,

i.e. e; for non-membership we shall use pl.f The symboreis read,
0
is an element of" or 'is a member of"; the symbol fe is read,

is not an element of" or is not a member of

Consider the following situation to demonstrate the use of

these two symbols. Suppose *Bill° is a member of the mathematics

class but *Valinda" is not a member of the mathematics class. If

we denote the mathematics class by the symbol N, "Bill~ by the

symbolY and "Valinda" by the symbol, "v; we can express the facts of

the previous sentence in the following abbreviated form:

b C M, and v .

These abbreviated forms are read "Bill is a member of the mathematics

class", and "Valinda is not a member of the mathematics ()lass:

Note: In almost every case in these materials sets shell be denoted
by Capital letter (A,B,C, ...) while lower case letters
(a,b,e,d, ...) will be used to denote members or elements of
sets.

When discussing a set the question should arise as to what

objects we can consider for membership in the set. The objects we

can use are called permissible elements, and taken together, they

form a set called the universe of discourse or simply the universe.

Consider for example, the set of names of the months of the calendar

year which have %J° as their initial letter. The universe of

discourse, in this instance, would be the 12 names of the months of

the calendar year. The set defined would contain three names;

January, June, and July.

Now that we can define sets, there is a need for a procedure

to communicate efficiently this concept. We use braces (...J to

include the elements of a set. Thus t2,4,6, 3 is the set of
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EXtUiCISE 1

erers; the set i0,112,3,4) is the sr!t of ,nil natural

n 5. In the first example, note the use of "...I to

he established rattcrn continues indefinitely. These

numbers are equivalent to 'etc' in the Enraish language.

occasions it is possible to specify a set by listing

all its elements. When all the elements are listed

, or indicated by we are using the rostPr or

od for dislayinq sets. For example, sul)pos the members

tee are:Jane, Bob, Ted, and Mary. This set could be

by: (Jane, Bob, Ted, Mary] . This would be read the

members are Jane, Bob, Ted, and Mary

Write i

(1)

( 2

n set notation using the roster method:

The set of all whole numbers between 90 and 100 (do not

include 90 and 100).

) The set of all whole numbers which when added to 10 give a

sum of 17.

(3) The set of all whole numbers whose squares are greater than 9.

(4) The set of individuals who are president of your college.

(5) The set of authors of your mathematics textbook.

1.3 Alternative Notation

Often it is awkward to list all the members of a set. For

instance, the set of all public school teachers in New York City.

For convenience, we express this set and others like it in the

following manner:

[xlx is a public school teacher in New York City]
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To emphasize the meaning of this expression, consider the

following dissection, showing how it may be rend:

f 41 x

the set of all elements
x

such that

x is a public school

teacher in New York

City.

The mathematical stotement:

x e A and xe 191 may be read as follows:

the set of all elements x such that x is an element of set A and

x is an element of set B", This method of defining the membership

of a set is called " descriptive method".

EXERCISE 2

Rewrite the sets of Exercise I using the descriptive method.

1.4 Finite and Infinite Sets

Throughout your mathematical endeavors you will be.00nfronted

with sets containing a great variety of elements. Some of these sets

will have finite membership while others will have infinite member

ship. The following sets are examples of sets with finite membership:

(1) the set of players on a basketball team;
(2) the set of quarterbacks on a baseball team;
(3) the set of residents of New York City; and
(4) the set of natural numbers less than 10,000.



Definition: A t is flnito if it is empty or if its verbers can
be counted by a mtural number.

Consider the set t2,416,8010, .0.3, the membership of this

set can not be co,inted by a natural number. This set is called

infinite.

Definition: A set is,infinite, if it is not finite.

1.5 ations between Sets

Suppose we have two sets, A and B. To be specific 2et A

denote the set of all race horses and B denote the set of all horses.

It should be rather obvious that all members of A are also members

of B. That is the elements A are elements of B and A doec not have

elements which fail to be elements of BO When this duality of members

occurs A is called atsubsettof B.

Definition* A set A is a subset of set B, if and only if emu
element of A is an element of B.

We write ACB to denote A is a subset of B. The st$,tement B:)A

stands for the same idea as Ac:B. Making use of the notation introduced

to this point, the definition of subset can be stated as

(ACB) ( xcs A .>xe B) .

Some other examples are

1) X {1,2,3943 and X (1,2,314,5]

XC Y

2) X = [car, truck, motorcycle} and truck, car,

motorcycle]

C °

3) The set of 'squares is a subset of the set of

rectangles
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We write AceB whenever A is not. a subset of B. Another 5jnnortant

relcItion thet oan exist between sets is equality, Let M = fhouse,

garsge, table] and N = (table, garage, house] By examining these

sets carefully the rearler should observe that 1) licN, since every

element of M is an element of N; 2) 11* m, since every element of N

is an element of E. When both the relations occur, set N is said

to be equal to set N.

Defint6: Let A and B be sets. Set A eeuals set B if and only
if set A is a subset of set TrTgrset B is a subset of
set A.

In short, A 13@::P B and, Bc:A9 Another example of equality of

set is the following:

M = (xix is a state of the U.S. which borders on the

Pacific Ocean], and

N = [California, OreEan, Washington, Alaska, Hawaii) .

The reader will observe that McN and NC M.9 henoe M = N. Also one

can reason M = N thus M must' be a subset of N and N must b a subset

of M.

From time to time in discussing sets And set relation a very

particular set'with crucial properties will arise, For exifinple one

might mention"the set of all humans in a room who are 7"6" to l
Upon examining the persons in the room he finds no one satisfying

the Stated condition. Thus the set defined contains no elements,

such a set is refer to as a'null setvorlempty set:

'Definition: The null, set or empty set is a set which contains no
elemnn.

The null set is usually deioted by 0 9 a letter of the Swedish

alphabet or ( 1, a pair of braces void of elements.

tip
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(1) State the relationships among these set:

A = t1,213, 101

B = (2,4,6,8,10]

C = (1,3,51701

D = (2,4,6]

(2) Is A a subset of A? explain

(3) Show that the empty set is a subset of any set, including itself.

(4) Show that the empty set is unique.

1.6 Cartesian Products

There are several methods for combining sets to yield a new

set, The first method we shall consider is fundamental in the under-
standing of many of the early ideas studied in elementary mathematics.

The idea is very closely related to the directions given for finding

a location on an ordinary road map. Suppose the index shows the

location of your destination is K-4. This means you locate your

destination by following the vertical boundary until you locate section

K; then follow the horizontal boundary until you find section 4.

Thus the pair K-4 locates a position on the map,

Given two sets, e.g., A = 31i1, Bob, Joe) and B = (movie,

swimming) we can form a new set composed of all possible pairings

of boys to activities. Bach element of the new set will be composed

of two objects or ideas. In the case under consideration the first

entry in the pair will be the name of a boy and the second entry will

be one of the activities. The elements for this particular ease are;

movie), (Bill, swimming), (Bob, movie),
(Bob, swimming), (Joe, movie), (Joe, swimming3.
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This new aet is called the Cartesian Product or Cross Product

of sets A and Bo It should be observed that the elements of the

°artesian product are not elements from either set but are what

we call 22:119.2191Mtos.

pefinitlon: The gartesiandupt of sets A and B, symbolized
by A x B, is defined as the ar2r,.t of all ordered pairs
(a,b) such that a is a.member of set A and b is a
member of set Bo

Making )1se of our notation, we write:

B = [(a,b) a c, A and be Bj
We read A B as "A cross B."

Example 1: An example of a ofirtesian product that nany
students have had experience with is commonly called the carte

plane. This set is usually indicated by:

where X and Y.' are both, the set of real numbers. Some elcT.ents
of the cross product would be (2,3), (0,1), (-1,5)0 (403), ( 2,0).
In general we :write: X g = [(x, x 6 X rand y a Y , thb
set of all equal pairs ( ty) such that x X and ye, Y.

Example 2: A = tx,y B (1,2,3J
AgB = ((x,1),(x12),(x,3),(y,1),(yo2)9(y,3),(z,1) (z,2),(z,3)3
Bx A = U1,x),(2,x),(3,x)0(1950)(2,57'),(3 1),(1,z),(29z)9(3,2)1

Notice in the above example that A x B Bk4A in general. Also,
that A g B and B AA are sets.

Exercise

(1) When AxB B
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(2) If A has m elor!ents rind B ha.; n elements, how many elements

are there in A )-1: B ? in B;4 A?

(3) How tin.ny elements in 9J-K Z where Z is any set? in Z xi)?

(4) Let n(A) stand. for the number of elements in A. SuppOse

n(A) = q; n(A g.A.) ?

1.7 - 07)ertions on Sets.

As indicated in the previous section, °artesian product is

6904k iq
not the only way of t4,444/two sets to form a -Nrar set, In this section

we shall study two more procedures, those of intersection and union.

Sometimes two sets have elements in common, for exariple, let

A = (9.0),c) and B = [c,d]. You should observe thaticils an element

of set A and c is an element of set B. A new set is formed by

taking all the elements in common to both sets. This new set is

celled the intersection of the original two sets. The symbol used

to indicate the operation of. forming a new set is In

kfinUion: Let A and. B be sets. The intersectAsn of A and B
(AnB) is the set of all elemen17; thra. belong to
both set A and B.

Symbolically, ArIB = x A and xG B) or xe (An B)<:t xe A and

xe B. A, tiB is read "A intersection B" orebhe intersection of A and B"

The reader should observe the close relation existing between the

definition of intersection and the meaning of the conjunction *and',

Examples: 1) X = (orange, apple, pear, lemonl

I = (peach, orange, plum, fig]

xny = (oranges

2) N = 1-939517,9.1

N = Cx j x is a positive number)

N =
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To emphasistethe relation between intersection of sets end

the meaning of the conjunction 'and', as well as placing emphasis

on the interpretation of the definition of Intersection, reconsider

example 2) above;

lvi inN = C x' M and xe

In example 2), we observe that when x is replaced by 3,

3c k and 3E N'

is true, therefore 3c rinN. On the other hand, if x is replaced by

12, we have

412c 14 and 12c le

which is false. Why? Thus 1211111N.

If the two sets have no common elements, they are said to be dialant.

This fact is often indicated by, stating that the intersection of

the two sets is empty.. Symbolically for sets A and B, A(113 = 0.

A third procedure for forming a new set from two given sets

is union. The reader should see that the union of sets is closely

related to the meaning of the word "or".

If set A = fa,b01 and B = [1,3,5] we can form a new set by

taking the element of set A, together with the elements of set B.

This new set is called the union of A and B.

Definition: Let A and B be sets. The uniou of A and B CLUB),
is the set consisting of all elements in set A or in
set B.

Symbolically, AUB = tx1 xi A or xi kJ. The word'orf in the previous

definition means "inclusively", i.e., at least one of the statements,

x( , 'xi /et is true.

To emphasize the relation between union of sets and the

meaning given to the disjunction 'or', as well as placing emphasis

on the interpretation of the definition of union, consider the

following example;

3) A al t1,2,3] B (5,74

AUB (1,2,3,5,7,81,



By the defiflition AUB

In example 3), we obsc

'5 4 A or 5 B

is true, therefore 56 AU B

'2 A or 2c
is true, therefore 2c AU

substitute something fo

111 A o

which A As false. Thus

To emphasis a

of a set formed by

this example,

It should be ob

set B are not

not listed as

symbolism th

or ideas wh

1.8 Vcnn

w

includi

xlxCA or xc,

rve that when x is replaced by 5,

Also, 9.f x Is replaced by 2,

B'

B. On the otherhandvif we randomly

r x, say 149 we have

r o:, 13°

0. AUB

point about the notation of list'ng the elements

tale th the union of two arbitrary sets consider

= (a,1, 2,b3 B Clv2,3941

AUB = ta,1,2,3,hl',bj

served that elements which occur in both set A and

listed in a repeated fashion in AU)3, i,e,, AVB is

(a,1,2,b,1,2,3143, It is part 'of the meaning of the

at we are to consider as elements of this set, the objects

ich the symbols name,

pluspms

e consider the representation of sets as circular regions,

ng the boundaries:

t



The dark shaded portion of the above diagram represents AfIB.

IA; 00 IIre.

44#11
A

The shaded portion of the a s ove diagram represents AUL

EXERCISE I
Characterize each of the following as true or false. sake

sure you make an honest check either from the definitions, or from

Venn diagrams, or from other representations:

(1) AIJB = BUA

(2) A/1B = BAA
(3) Ac(AAB)
(4) BC(AtIB)
(5) (AUB)a A
(6) A (A/1B)

(7) Ac (AUB)

(8) ADB314* Af113 = A

(9) AB=0Af1B = B
(10) Ala=tP AUB = A

(11) A 132:01 A UB = B

(12) (AllB)/1C= AA(BAC)
(13) (AUB)v C = Au (BUC)

(14) AUce = A

(15) Ar1(BUC) = (AnB) U (tine)
(16) An9I = A

(17) (AUB) n (Auc)- Au(Bnc)

(18) AUA = A

(19) AnA - A
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1,9

If one has a fixed set of objects to which the discussion

is limited and all sets to be discussed are subsets of this fixed

set, this overall or fixed set is refer to as the Universe. As

mentioned in section 1.2 this fixed set is frequently called the

Universe of dlscourse, since it is subject to change as different

problems and situations are considered.

Let's consider the situation where the universe of discourse

is the set of all dogs. A very popular breed Of dogs is the toy

poodleo This special collection of dogs would form a subset of

the entire collection of dogs. We can use a Venn diagram to illustrate

the situation.

It is rather common practice to represent the universe by

a rectangular region and particular subsets by circular regions.

For example if we let 'U denote the set of all dogs and p denote

the set of toy poodles the diagram would become

One should observe that not all dogs are toy poodles, hence

we can form a set of all dogs which are not toy poodles. This

new set is the complement of P with respect to the Universe(4

Deft ition: If AC:X, the complement of A in MY or `X 4 is the
set of all elements in X which are not in A.

Symbolically we can write

%X - A l (x I xe X and x0 Ai



The shaded region in the following diagram represents A

Example: 1) Let X c1,203,401

A (1f3,

X-A = A! = [204,51

2) Let X = I x is a whole number.)

A (x 1 x is an even whole number]

X-A ~ Af = x I x is an odd whole number]

Note: Sometimes the expression X-A is defined as the complement of

A relative to X. The reader should observe that the comple-

ment of a given set is always relative to some Universe of

definitions

EXERCISE 6

Using the above model for each exercise, shade the following sets:

(1) A'

(2) (AUT)'

(3) U

( +) (An B)n

(5) n
(6) (Arti 131 )11C°

(7) e
(8) X'



CHAPTER Relations and the Equivalence Theorem

2.1 Relations.

Another very powerful and useful concept In mathematics is

that of relation. Its power comes from its simplicity while its

usefulness comes from its generality. We introduce the concept

of relation early because special instances of relations are

helpful in procuring a clear understanding of the abstract idea

of number. Two very fundamental relations which will facilitate

the development of the concept of number are equal and equivalenoe

relations. Before discussing these relations in particular,, we

shall attempt to give a general notion of what we mean by a relation.

You are already familiar with a number of relations which

you use regularly. for example, "Is better than" is a relation

you might use to compare the abilities of players of a football

team, the content of textbooks, the instruction of professors,

etc. Although, your meaning of the word better may differ

from your friends, you are pairing objects of some set by making

the various comparisons. Another relation "fie the oousin of" might

be a relation you can employ to compare members of your family.

Some other common relations are:

1) "is longer than" in comparing rooms, tables, etc.

2) "is taller than" in comparing buildings, people, horses, eta.

3) "is brother of" j In comparing people, dogs, etc.
4) "is father of

5) "is a subset of" in comparing sets.

As you should begin to see there have been many instances in your

pass experiences where you have used the concept of a relation.

You should also observe that these relations were oomparisons

between objects 'of a set or possible objects of two different sets.

These sets, for the most part, are well-defined. For example, when

considering the relation "is taller than" the set of people under
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consideration might be the enrollment of your math class. In

most instances, this set is well-define.

Let's look at a relation which is not new to most of you

and which we will consider in greater detail later in the book.

The relation is "is greater than" for the set of whole numbers,

W [091,293, ....I We can state that 7 is greater than 4,

9 is greater than 2, and many additional statements comparing

two whole numbers with this relation. For brevity, we can

symbolize this relation by4G; i.e., 0 represents the relation

"is greater than". Then we can write 704, 902, and so on. These

statements will be read 7 is greater than 40 9 is greater than 2,

respectively.

In general when given a relation R we can write xRy, for x

and y members of the set(s) under consideration, and we shall

mean that x is related to y by the relation H.

Another way to symbolize a relation is by using ordered

pairs. Consider again the relation "is greater than" defined on

the set of whole numbers, W (0,1,2,3,4, ...). Mathematically

we can define "is greater than" (denoted by G) as a set of ordered

pairs (x,y) such that for x and y members of W, x is greater than

Y. Symbolically, G 1(x,y)1 xGy, for x, ye Observe that

the ordered pair (9,2) is a member of 09 i.e., (9,2)E G; similarly,

(7,4)e G, (14,5)EG. But, (2,9) G and (10,20) 0 G. As indicated

above we can state (x,y)e G whenever x and ye W and x is greater

than y&

In summary, given a set X and a relation R defined on set

X, the relation will be a subset of the °artesian product of the

set cross itself. We can designate the members of this relation R

by either of the previously mentioned methods:

1) for x and y members X9 xRy or

2) for x and y members X (x, y) E R.
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More generally, a relation compares objects from two sets

X and Y (such as X a set of galvanized pipe, and Y a net of boards

for the relation "has the same length as") . In this case the

relation is a subset of Xx Y. Much of the work in this book will

rent on relations which are subsets of the Cartesian Produot of

the same set.

2.2 BaampdaumBalaIlm
To this point we have been discussing relations in general,

but many relations have characteristics or properties which allow

categorization of the relations according to the properties they

possess. Among the important properties of relations is the

reflexive property.

Definit i Let X be a set, A el t on R on X in Ealtn3 if
and only if xRx, for all x e X,

tiv fin A relation H on X is =awn if and
only if (x,x)e- B. for all xa X.

What this definition states is that mu element of the given

set has the given relationship with itself. The relation "the

same age as" defined on the set of students in your math class

clearly satisfies the reflexive property. For example if Jack

is a member of your math class, he is obviously the same age as

himself. A similar statement can be made about aza member of

the class. Thus, the relation "the same age as" defined on the

roster for your math class possess the reflexive property. We

say the relation is reflexive on the defined set.

Some other examples of reflexive relations ares

1) "attends the same school an"

2) "congruent"

3) " is as strong as"

4) "is equal to"

5) "is subset of"

on the set of U.S. citizens

on the set triangles of a plane

on the set of horses

on the set of whole numbers

on a collection of sets
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There are many more which could be listed, but there are also

some relations which are not reflexive. To establish when a

relation is not reflexive we must produce an element of the net

which does not have the gwen relation with itself. Consider the

relation "is tho father of" defined on the set of living and

dead human beings. George Wdshington is obviously an element of

the set but clearly George Washington is not his own father.

Some other relations which are not reflexive are:

1) "is greater than"

2) "is taller than"

)) "Is perpendicular to"

on the set of whole numbers

on the membership of your math class

on the net of line in a plane

The symmetric property is another common characteristic of

many relations.

planalaa: Let X be a set. A relation on X i.e tf an k..

only if when xRy then yEx.

t ativ finition: A relation on X is s tr c if and only
if when (x,y) e. R then y, R.

What this definition states is that whenever two elements

are paired in one order they must also be paired in the reverse

order. Suppose you have a relation which has two elements, one

of which is (Jim,Bill) if the relation is to be symmetric the

other element must be (Bill, Jim). Remember, there is nothing

in the definition stating that x and y must be distinct.

Some examples of relations which are symmetric are:

1) "has the same birth date as"
1 ......

defined on the members of
your math class2) "the same age as"

3) "is parallel to"

4) "is perpendicular to"

5) "is equal to"

......... on the net of lines in a
plane

on the set of whole numbers40 /0 0 80 rwwww Nom



This listing is not

which are not symmetric.

1) "is subset of"

2) "is older than"

3) "is taller than"

4) "is less than"
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cxtt4.$4%0-e.
Gonaluslve but there are also relations

Some examples of these relations are:

on a collection of sets

.,... defined on the members of your
math class

on the set of whole numbers

The third property of extreme importance is that of transitivity.

Definition: Let X be a set. A relation R on X is transitive if
and, only if when xlly yRz then xRz.

Alternative Definition: A relation a on X is transitive if and
only if when (xly R then
(x,z)c R.

A warning remark is also in order pertaining to the meaning of

this definition. There is nothing in the definition requiring

that the three elements be distinct* i.e., x might equal y or z.

What is stated is that Ala you find two elements of the relation

which are of the form ( , of )* (of 91) then in order for the

relation to be transitive you must find the element (A. 1 ) in

your relation. The interpretation of this property rest heavily

on the logical of implication (conditional) statements. It may

be useful to review the brief discussion in chapter 0.

Some examples of relations which are transitive are as follows:

1) "is a subset of" on a collection of sets

2) %s younger than"

3) "seated in the same row as"
on the members of your math ()lass

4) "less than" .... on the set of whole numbers
5) "equal to"

Examples of relations which are not transitive:

1) "has a different height than" on the members of your
2) "has a different first initial" math Class



3) "perpendicular to" on the set of lines in a plane

4) xRy iff x-y40 on the set of whole numbers.

Finally, relations may possess all three of the aforementioned

properties. One of the most common relations whioh possesses all
three is equality. Any relation which possesses all three is called
an equivalence relation.

Definitions Let X be a set. A relation R on X is an Ilatilmt
relation If and only' if R is reflexive, symmetric, and
transitive.

EMELEELZ

(1) Give an example of a

relation.

(2) Give an example of a

but not transitive.

(3)

(4)

(5)

(6)

( 7 )

reflexive, symmetric and transitive

relation that is reflexive, symmetric

Give an example of a relation that is re

but not symmetric.

Give an example of a re

reflexive nor symmetric.

'fie trans ve

ion that is transitive but neither

Let X and Y. be disjoint sets, and BC X% Y.

equivalence relation? Explain your answer.

Can H be an

Let H be the relation: ABB 04, AAR 4 0. What properties

does R possess?

Let H be the relation ARB4pli* A11/3 0. What properties

does FL possess?

2,3 glanknalThl=ta
We shall now examine a basic property of an equivalence

relation. This property will be used at several signifioant points
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in the development of the real numbers. While this property

may seem rather obvious, we must convince ourselves that it has

this "obvious" behavior. We first need a preliminary definition.

Definition: A partition, P, of
of X: A,B,C,
element of one and

a set X is a collection of subsets
such that each element of X is an
only one of the subsets.

This means that Any two of the subsets A,B in the partition, P,

are disjoint, i.e., AAB = 0; and X is the union of the subsets

in the partition.

Here's a diagram of % partition:

X

A B C D

E

I

P C H

I J K L

Note: We shall use the notation e.%0 to denote an equivalence relation.

Let [a] = x I x e X and x e- 9. Thus (e is the set of all

elements in X which are related to a.

Definition: N is called the saamisnat class musatta la a.

For the relation "is congruent to" and for. the specific

triangle I ABC = a, c41 is the set of all triangles which are

congruent to & ABC. The equivalence class generated by A ABC

is the set of all triangles congruent to d, ABC.

In an attempt to make the previous notion more realistic

let's consider a relation defined of the members of your class.

Let R be the relation "has the same birth month as"; You should

check whether R is an equivalence relation. If' we apply this

relation to the class we find that the class has been divided into
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at most twelve subsets. Further more, these subsets are disjoint

and every member of the class is a member of some one of the

subsets. Hence if you review the definition of partition you

should observe that this relation partitioned the class.

Now let's find the equivalence class which 'you' generate.

Recall by definition this will be the set of all members of the

class whose birthday falls in the same month aP yours, §112.22122

Betty is another classmate and her birthday is in the same month

as yours, what is the relationship between the equivalence class

generated by 'you' and the class generated by4Betty41 What is the

relationship between the class generated by'youland the subsets

contained in the partition.

Before attacking the key theorem we show what relationship

holds between equivalence classes generated by elements of X

which are related by an equivalence relation R. It is claimed

that for a and b e X a R b iff [a] = [6]. Recall from

Chapter 0 this biconditional statement can be written as two

conditional statements connected by a conjunction.

Thus we have a) aRb = = [b] and

b) [al m 031 => aRb,

Let's oonsider b) first:

By hypothesis [a] a [b) and by definition a [a.).

Since ;It3 m Cb3,by definition of equality of sets

a 6 [13] . Hence it follows by definition

of equivalence class aRb.

Secondly,we wish to show that tat3 = [b] . Recall that to prove

these two sets are equal, one must show that VAC M and MC: Cal.

Let o be an element of [a]; Then cc Note have that eRa by

definition of equivalence class. Now aRb by hypothesis. Taking

oRa and aRb since R is an equivalenoe relation we use the



transitive property which implies that alb. Again by definition

of equivalence class c e [b] . Each element of [a] is an

element of [b], so by definition of subset, [a]

In a similar fashion we prove [b] c [a1 Let d be api,

element of [b3. Hence dRb. By hypothesis R is an equivalence

relation so R is symmetric. Thus since aRb we have bRa. Now

dRb and bRa using the transitive property of R we conclude dRa.

Therefore d c tab Hence, each element of (b] is an element of

[a] . So [13] c: Ceg

[a] C [b], and c: [a] =4 (ix) m

These concepts are often stated formally in what is know

as the Equivalence Theorem.

Theorem: If X is a set and H is an equivalence relation defined
on X, then X is partitioned into non-overlapping
equivalence classes, and conversely.

We are assuming that R is an equivalence relation,

on set X. We would like to show 1) every element

of X is in some equivalence class of X which is

created by the relation H, and 2) the equivalenoe

()lasses are either equal or disjoint,

Let's consider condition 1) first.

Proof of 1):

Let xe X, x will belong to an equivalence class. In

particular, x e [x] since by definition Cr] = (y E XI xRy] and

R is given as an equivalence relationlhenoe H Is reflexive, i.e.,

xRx.

Now the second part of the problem; that of showing "two equivalenoe

()lasses, are either identical or disjoint, i.e., for a and b e X,

Dal = [11] or [a3 A [b]al 0.
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Suppose 1-.61] n [b] 9i 0 then there exists x 6 X such that

x e Di) and x eN. But then xRa and xRb this implies aRb (why).

Now since aRb we can conclude that [a] = (why?),

We state the converse of the equivalence theorem withoutr17

its proof.

Theorem: If a set X is partitioned into non-overlapping classes,
then there exists precisely one equivalence relation
for which the given classes are equivalence classes.

EXERCISE 8

(1) Consider the set of all integers: [... '3, ft2, -1t, 0, 1, 2, 3,,,

and the relation Rs x y is divisible by 3 where x and y

are integers. For example, 7R4 since 7 m 4 is divisible by

3, Also, (13,10), (25,22), (60,30) e A? . Show that R is an

equivalence relation.

(2) What are the equivalence classes of (1)?

(3) Show that the equivalence theorem is satisfied for example (1).

(4) Let X = (a,b) a,b are integers 0 Define a on X by

(a,b) R (0,d)44a+d Ice b+0.

(a) Show that R is an equivalence relation.

(b) What are the equivalence classes/



ChAl-TLA III: Functions

We now turn our att

As you will observe, the

exit ion to relations between sets X and Y.

sets X and Y need not be the same.

We will live the definition and an elementary treatment of

one of the most imnortant concerts in modern mathematics - the

function. Think of a relation as a way of relating the elements

of two sets and you almost have the idea of a function, except

that a function is a special kind of a relation. When we defined

a relation R we said that R was a set of ordered pairs. For

example, if R is the relation "is less than" over the set of whole

numbers, then (3,4) G. R, (9,10)4 R and (14,400) E R.

Consider t

is made up of i(

of this relati

Th

corresp

is to

form

par

his relation: the number "squared". This relation

1,1),(2,4),(3,9),(4,16), 04We can draw a "map"

n:
1 1.

2 )04

49

-o
16

0

e arrows in this map indicate that 1 corresponds to 1,2

onds to 4, 3 corresponds to 9, etc. What we have done

match elements of one set with elements of another set to

ordered pairs.

If we were to draw a map of the relation "is less than,"

of the map would look like this:

3

4

5



One important difference marks the two relations shown above.

In the case of the squaring relation each of the first numbers

corresponds to one and only one second number,while for the "is less

than" relation, each of the first numbers corresponds to more than

one second number (in fact, an infinite number). The first relation

is a function; the second relation is not because of this difference.

We shall define a function as a special subset of XnY.

Definition: A function, f, from X into Y is a subset of XxY such
that: 1,) d xeXa* Y Y.xty)e. ft

2) (x,y), (x,z) t f y = z.

As a relation, 4 function is a subset of Xx 'X' where the first

elements of the ordered pairs of the function are from X and the

second elements are from Y. Observe the important fact that a

function is a relation such that no two distinct ordered pairs

have the same first elements. Often X and Y are equal.
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Example: Let X = f1,213,4,51

= t213,4,5,63

F= {(1(1,L4.),(2,5),(3,6),(4,2),(5,5)} is a function

while R = t(1,4) (1,6) , (2,4)9 (394) is not a function,

however, it is a relation.

Often, the idea of matching elements from two sets is determined

by a rule such as the squaring rule above or the rule that associates

each whole number with the number tripled. Then we think of a

function displayed as a map, we often call the function a mapping.

Thus, the rule: associating each whole number with itself tripled

results in this mapping: 1- 3

4

6

9

In general, a mapping from set X to set Y looks like this:

F consists of all ordered pairs (x0y), where x a X and ye, Y.

Another way of demonstrating a function is to portray a

"machine" whose "input" is x e X and whose "output" is ycY:
L

F

A
In this portrayal, F is supposed to be acting on x to produce y.



Again, the ordered

In the exnmpl

and Y is called th

is often used in d

is called the ran

Definition: If
th

The defin

of determining

an element of

rule (the squ

a formula (e

"function" r

be clear is

easily iden

If

b ms f(a).

Le

We some

X into

air (x, y) F.

e discussed, X is called the domain of F

e ga=400,14 of F. A very special subset of Y

iscussing a mapping or function» This subset

' is a function from X into Y, the ran e of F is
e set of all y E Y such that (x,y) E ? for sore xfi X.

ition of "function" states that we have a method

exactly one element of the range whenever we choose

the domain. The method may be given by a clear

are of each element of the domain as shown above) or

,g*, A = n re), but nothing in the definition of

equines that it be specified by a formula. What should

that given an element of the domain, then one can

tify the corresponding amp .= of the range.

a,b) is an element of a function f, then we usually write

We read these symbols as "b is f of a" or "b is f at a".

t X and Y be the domain and co-domain of f, respectively,

imes write f: X--,Y to indicate. the function f from set

set Y.

Examples: (1) X 1,0,2,4063

t1,3,5,71

f [(0,3),(2,1),(4,7),(6,50

f(2) 1

f(4) 7

f(6)

Domain f = X

Range f = Y co-domain f
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(2) X = 10,2,4,61

= 11,35,71

f = (Q01),(20),(495),(60)
Domain of f = X

Range of f t1,5,71 c: Y

0o-domain of f = Y

Definition: The set of elements of the range is often called the
set of AmmtE under fi

In the first example above, 3 is the image of 0 under fo

1 is the image of 2 under f; and so forth.

Example0X = Y = (1,2,3, ,,,I

f: X--*Y

f = f(a,b)1 b = 2a 4. 11

f = [(1,3),(2,5),(3,7),()+09), ...]

r(i) = 3, f(2) = 5; etc.

Range of f = (3,5,7,9, ..]

Co-domain of f =

Range of f C Y

33 is the image of 16; 101 is the image 50.

Definition: A function, f, from X to Y is onto <ffs the range
f = Y,

Symbolically, f: X-21212.---mirY

Definition: A function, f, from X into Y is one o-one 46=du, v'tX,
u 94 v :ao f(u) f(v).

Alternate Definition: A function, f, from X into Y is one-to-one
.41pio 411 u, veXt (u) = f (v) 014 u = v

Examples of one-to-one aril onto functions are found on pages

31 and 32.

Notice that Example (1) on page 31 is both one-to-One and

onto, while
(

Example (2) on page 32 is neither one-to-one or onto.

The examplemn page 32 is one-to-one but not onto.
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Note that if f is one-to-one we say that f sets up a one-to-

one correspondence between the dorain and. ram of f. Under a

one-to-one function, each element of the domain is paired with

exactly one element of the range; and each element of the range

is paired with exactly one element of the domain.

Suppose we have two sets A and B. We say set A io in a

one-to-one correspondence with set B if there exists a one-to-one

function from A onto B; f: A
onto B.

The relation one-to-one

correspondence is a relation whose domain and range are collections

of sets; one-to-one function is a relation whose domain and range

are set of elements.

Example: A = ta,b,q/

B = tx,y,4

A is in a one-to-one correspondence with B because

there exists a one-to-one function, f, whose domain

is A, and whose range is B. Note that this f is

not unique. One of these functions, f, is:

f = (a,x),(b,y),(ofq

The existence of one function is all that is required.

Another function, fl, which would also suffice is:

ft = t(a,y), (b,z),(c,x}i.

If a function is one-to-one then it is possible to interchange

within each order pair the domain element with the range element

and obtain a new function. Notice that this interchange with

functions which are not one-to-one produces relations which are

not functions.

Examples: X ,305,7] and Y 12,4,683 with f : X *Y.

(1) f1 = (1,2),(3,4),(5,6),(7,8).1

f
1

is one-to-one
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Interchanging the coordinates of each of the ordered

pairs in fl produces this relation:

((291), (43),(695), 0,74

which is also a function.

(2) f2 = (1t2),(3,4),(5,4),(7,8)

f
2

is a function which is not one-to-one.

Interchanging the coordinates of each of the ordered

pairs in f2 produces this relqtion:

[(291),(4,3),(4,5),(897g

which is not a function.

In the following example the domain and co-domain will

be changed«

(3) f3 = I( 301 y = 7x) = [(197),(2,14),(3,21),

(4,28),

f
3

is a one-to-one function if the doma,in is

the set of counting numbers.

Interchanging the .00rdinates of each of the ordered

pairs in f
3
produces this relation:

1.(7111) (1492) (210)1(28,4) . . .) _ ((xily') ( y

which is also one-to-one from the range of f
3

onto

domain of f3.

This example demonstrates an important mathematical concept.

Definition: The upversQ of a function is the relation which results
when the elements of the domain and range are interchanged.

Definition: If the converse of a function is also a function we
call the converse the inverse of the function.

Alternative Definition: f: X-Y has an inverse iff f is one-to-one.



In the examples above, f3 hi.s an Inverse, but f2 does not.

Notice that the inverse of f3 contains those elements obt'1ned

by ddin while fn itself contains elements obtained by

multiplying. We shall have more to say about this relationship

later.

We denote the converse of f by f

In the examples, above, for instance:

f
.1

2

.1
f
3

((2,1),(4,3),(4,5),(8,7)j

[(x0Y)/ Y =

3.2 amsalt1219121anstlaaa

We now examine the important property of functions. Suppose

we have a function, f, from X onto Y and another function, g, from

X into Z:

A natural question to ask would be; Is there a single function

from X into Z which has the same effect as f and 0 The answer

to the question is yes.

To gain some insight as to why the answer is affirmative,

let us consider a straight forward example:

Let X m Y Z m positive integers

Define: f: X-45: by f(x) x 3

Define: g: YJZ by g(y) m by

Now consider 2 X. Observe that f(2) ex 5. Since g is

defined for each element of Yo we evaluate g at 5: g(5) 30.
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To represent this pictorially we have:

The element 2 in X corresponds under the "combination" of

f and g to 30 in Z. Likewise, eacn element of X can be shown to

correspond to a particular element of Z. We use this example

to generalize about the notion of "combined" functions.

Definition: If f is a function with domain X Rnd range Y, and g
is a function with domain Y and co-domain Z, then
the composition of f and g, denoted by go f, is
defined on the domain X and E;41 (x) = g(f(x)).

Observe that the composite of two functions is only defined if

the range of the first function to be applied is the domain of

the second function to be applied.

What is the single function that will take you from X to

Z in the example on the previous page?

f(x) = x + 3 and g(y) = 6y

rg 0 fJ (x) = g(f(x))

Hence, g(f(x)) = g(x +3) = 6(x + 3) = 6x + 18.

Li3o (x) = 6x + 18.

Note that [g f] (x) does not map X onto Z, but it is 1-1.

suppose f: X--.Y and g: Y--oZ are each 1-1 and onto; then go f

will also be 1-1 and onto. This fact will not be proven in general

but let's consider a very simple example to help visualize this fact.

Let X = (1,2,3,4), Y = f6,12918,24j, Z = 19,15,21,27]

Define f: by f(x) = 60);



: Y--+Z by g(y) = y + 3

X

Notice go f is a 1-1 and onto function from X to Z.

EXERCISE

Let X = [1,2,3] Y = [alb,o3 and Z = Ca,b0,41

fi = (,(10), (2,a), (3,4

f2 = ((1,a), (1,b), (2,b), (3,bg

f
3

f

f
5

= gi,a), (2,b), (3,d)g

= ((1,b), (2,a)}

= (1,a), (2,b), (3,c)J

(3)

(4)

(5)

(6)

(7)

Which of the above

For those which are,
co-domains?

Which are one-to-one functions?

Which functions are onto?

Which functions have inverses?

relations re

find their

functions?

domains, ranges and

Represent tilt', inverse

Which of the above are functions from X into Y? X into Z?

Let 1162 X
4K be defined by f6 = [(x,Y)1 y = 2x + 7/

where X is the set of all counting numbers.

(a) Is f6 one-to-one?

(b) Is f6 onto?

(8) Let f7 be defined in the same wfty ns f6 in (7) except let

X be the set of all integers, too*, 3, -2, -1, 0, 1, 2, 3,
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(a) Does f6 = f7? Why? Or why not?

(b) Is f
7

one-to-one?

(o) Is f7 onto?

(9) Let g: X--40X be defined by g = {(x,y) y = x2 + 7]

where X = (... -3, -2, -1, 0, 1, 2 3, ...J

(a) Is g one-to-one?

(b) Is g onto?

(10) Define equality for two functions.



CHAPTER IV: Operations

4.1 Binary Operations,.

We give a special name to

as addition, subtraction, multi

these functions =mums.
occurring is that two number

with a third, number, For e

2 and 3 are paired togethe

2 and 3 are paired togeth

Por addition we 43

it with 5:

(2,3)

The pair (2,3) is

an, element of the

example of the ru
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a familiar class of functions such

plication and division, We call

In these operations what is generally

s are paired together and associated

xample, in addition of whole numbers,

r and associated with 5; in multiplication,

er and associated with 6,

an form an ordered pair (2,3) and associate

5

an element of the domain of addition and 5 is

range of additIon. For multiplication, one

le can be portrayed as follows:

(2,3) 6

Here, (2,3) is an element of the domain of multiplication and 6

is an element of the range of multiplication. These examples

lead to this.definition.

fin tio

all

con

li

n: A .....bizasstAktp21.tion on a set A is a function whose
domain is a subset of Ax A and whose range is some
set, B. If BcA then A is closed under the operation,
and the operation itself is said to be closed.

If A is the set of whole numbers, then AxA is the set of

ordered pairs of whole numbers. For addition, the domain

siats of AwA completely. A map of addition, in part, looks

ke this:



(20,0)
20

(0,20)//4

Suppose G Is the operation addition. We can write such statem

meats as G((2,3)) 5, G((7,8)) 15, and G((0,20)) n 20. But a

better symbol for G is "+" and if we drop the use of double

parentheses our statements become: +(2,3) se 5, +(7,8) m 15, and

+(0,20) m 20. Xou should be aware that a partial domain is

(2,3), (7,8), and (0,20)(ordered pair) and that the images are 59

15, and 20, respectively (single elements). The word "binary" in

the definition above indicates that the operation acts on pairs

of numbers which makes up each element of the domain. Of course,

conventionally, we use the symbol "+" in this manner: 2 3 5.

An operation on a net (a,b,o,d) can be completely specified

by a table. By examining the table we can see how the operation

acts on any two elements of the set:

a a

b b a d a

a d a

d d a

a * a m a
a * b se b
a * vs a

a *dud
o *owe,
o * b d
b * d a
O *deb

b * b vs c
b * a ras b
o to. a o
d *aysd

d 4i.d o
bo-o ne

d obres a
d *osvb



Another, less abstract example of an operation that is often

exhibited by a table in addition of the natural numbers. It should

be observed that it is not practical, for the sake of space, to

specify completely the result of addition of an natural numbers,

but a clear idea of this operation can be given by examining a

finite number of entries;

4,
U 1 2 3 4 . . b 4".

o U 1 2 3 4 . . . 0+b

1 1 2 3 4 5 . . . 1.0.b

2 2 3 4 5 6 . . 2 +b

3 3 4 5 6 7 . . 3+b

4 4 5 6 7 8 . 4+b*III00 0 0

0 100
a 0 a+1 a+2 a+3 a+4 . a+b

0 0 0 0O 00006000
FinisouQ,

(1) Convince yourself that "+" is an operation.

(2) Convince yourself that W, the set of whole numbers, is closed

under '1+%

(3) Convince yourself that 4.(a,b) +(boa) for all a, be:W.

(4) a) Consider ordinary subtraction on the whole numbers, W, such

that for x, y W, X 0. y exists only when x. y. Show that

it is an operation on W.

b) What is the domain, range, and oomdomain of "m"?

o) Is W olosed under "-"?
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42 Eszos1194912atratisna

We now consider a set X of objects which has a binary operation

defined on it. This section is concerned with defining some of

the properties of the operation which permits manipulations of

the elements of the eiet. The first property of an operation is

inherit from the definition given in section one of this chapter.

This property is the "uniqueness follows from the fact that an

operation is defined as a function. Why does this require

uniqueness of the results?

We shall list three important and frequently used properties

of a mathematical system. In general, at operation will be denoted

by NO

Definition: A binary operation s whose domain is Ax A is commutative

if 4(a,b) ***(b,a) for all a, be A. (Alternate)
asb bsa.)

This is saying that the result of the operation is independent

of the element considered first.

pefinktim: A closed binary operation .0. whose domain is A x A is

associative if m(*(a,b),c) *(a,*(b,o)), (Alternately,
so sly as(bso) ),for all atboo A.

Definition: A closed operation,* is distributive with respect

to a second closed operation,4,471/4-# both have domain

A x A and ao(bso) ar. (a0b)s(a00).

For the whole numbers multiplication is distributive with respect

to addition; e.g., 6*(2 + 4) -.6.2 + 6.4.

EXERCISE 11

(1) Examine "+", "-", "x", and "+" for oommutativety over W.

(g) Examine which of the operations +, -9 x, + over W are associative.

(3) Convince yourself that multiplication is distributive over

addition.



(4) ?Ind two operations such that one is not distributiTe over

the othe

(5) If awl) represents a, does * represent an operation? What

properties if any does it possess?

(6) Consider the operation addition in net '4, again the set of

whole numbers. Is this function one-to-one? Why, or why

not?

(7) Again, stud the operation of addition in W # Does this

operation have an inverse? Why, or why not?

(8) Consider n and Vas relations on the collection of sets. What

properties does eaoh of these relations possess?

4.3 Ymtx2attallena

Not all operations which confront us are binary operations,

One such operation is demonstrated in the following map from 14 intoVi.

4

1-4 5
2--+ 6

7

Clearly, the range elements of this funotion are obtained by

adding 4 to each element of the domains We might call this

function "adding 4." Observe that it is not a binary operation,

but a man operation (the elements of the domain are single,

elements, not ordered pairs.) We may write this function in this



way:

+4 = ((a,4), (1,5), (2,6), (3,7),

EXERCISE 12
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(1) Xs +4 a one-to one correspondence from its domain to its range?

(2) Does +4 have an inverse? (Demonstrate y lr answer.)

(3) What conclusions can you draw about the relations +4 and PO

(4) Consider the operation "x4" in W. Does it have an inverse?

What can you conclude about the relations "x4" and "4.4"?

(3) Define a relation "*" in 111,1 by:

x*y = xi, x and y are not simultaneously zero.

Does this define an operation in Nfti ? What are some of its

properties (closed, commutative, associative, eta.)?

(0, Define * in \A/ by:

30y = X
2

y
2

Does this define an operation in\d?

(7) Define * in Ctio. 3 ..2, ml, 0, 1, 2, 3, 4,04 (the set of

integers) by:

oy 1

Is * a binary operation in the set of integers?
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CHAPTER V: Natural Numbers

Consider the set of fingers on a normal right hand; the set

of toes on a normal left foot: the set u,v,x,y,z q.nd the set of

players on a basketball team. All of these sets are laRlyalant, i.e.,

they are in a one-to-one correspondence with each other. For example,

there is a one-to-one function from the set of fIngers onto the set

(u,v,x,y,z3 hence, a one-to-one correspondence between the two sets.

There are many sets which are in a one-to-one correspondence

with any one of the sets above. (Can you think of any? Avoid using

the word "five.") Al]. of these sets have one thing in common which

distinguishes them from other sets - they are all in a one-to-one

correspondence with any one of the sets above; for instance, the

set of fingers on a normal left hand. We are going to define the

cardinal number five as the class of all these sets.

Recall that a one-to-one function from A onto 13 creates a

one-to-one correspondence between A and B. In the collection of

setsolt, we define a relation, r, to mean a one-to-one correspondence.

To show that r is an equivalence relation on we have to prove that:

I) ArA, for all sets A f. V.

ii) A.rE3w+BrA for any two sets A and B e 14

iii) ArB, BrC-0 ArC, for any three sets A.,B, and C d14

Proof: For each of these properties all that is necessary is to

exhibit a one-to-one function from the first get onto the

second set.

1) In the case of reflexivity, we see that the identity function,

fl, such that f1(a) m a, for each element a in A, is a one-

to-one function from A onto A.



ii) By hypothesis, ArB means there exists a one-to one

function, g, fron A onto B. Thus, for each ae A, there

exists 1)4 B such that g(a) = b and b, of course, is

unique. (Why?) Since g is one-to-one, and onto, g1

is a one-to-one function from B onto A. g is the

one-to-one, onto function that will serve to show that

BrA.

iii) ArB means there exists a one-to one function, gi, from

A onto B; BrC meant there exists a one-to-one function,

g2, from B onto C. For each Etat", there exists be B such

that gi(a) = b; and for each be Bp there exists 016C such

that 82(b) = o. All we have to do is consider the

composite g2o gi from A onto C.

C

If we examine De gill (a) for each element ac A, we note that

this image yields a unique element c of C. One way to see that

this composite function from A to C is one-to-one onto
1

prove that the converse is a function. But g2 is a

and so is gi
.1

4

0 So the composite function gi
.1

a g2

on c E C yields a unique element a of A. Notice that
.1

gl ° g2
is the inverse function of ge g1. Also, if ArB,

we say simply that A and B are equivalent sets.

C is to

function

1 acting
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EXERCISE 13, ( Use set equivalent to u vostypz to answer
the following questions

(1) Show by means of a mapping diagram a one-to-one correspondence

between any tw- of the sets above.

(2) How many different one-to-one correspondences are there between

any two of the sets described above?

The relation "one to one correspondence" defined on the

collection it of sets is an equivalence relation (see page 45)

Application of the equivalence theorem will partition this collection

of sets into non-overlapping equivalence classes. Each of the

equivalence classes will consist of all sets which are in a one o one

correspondence with each other, and no others. Every set will be

in exactly one of the eqtivalence classes. Thus the equivalence

theorem creates an array of classes which may be portrayed as follows:

sts

Eel

fa]

The universe of sets has been "neatly" categorized by the relation

one-to-one correspondence. We shall define each one of these categories

or classes as a cardinal number. However, we will actually confine

our attention for the time being to finite sets.
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We begin by defining what is meant by a standard set which will

serve as a reference set for'each class.

Definition: The immediate successor of set A is AV EA] .

Example: The immediate successor of [II is (1) U f 113} ti u

the immediate successor of (11 is the union of Wand

U111 There are two elements in the successor of [q.

The effect of the immediate successor of a set is to "add" an element

to a set.

Definition: We define gkanaftEd sets, as follows:
(1) The empty set is a standard set.
(2) The immediate successor of 0 is a standard set.
(3) Any set which is obtained from the empty set by

repeated application of the immediate successor
operation is a standard set.

From this definition, let's examine some standard sets.

0 is a standard set by (1) of the definition.

By (2) of the definition the immediate successor 0 is a

standard set.

The immediate successor of 0 is 0 U t951 which is equal to tOl. So

ia is a standard set. 0/ contains one element, the empty set.

For convenience let a = [03.

By (3) of the definition, the immediate successor ofsa' is a

standard set. The immediate successor of a is iaLl

Let b = (a V The successor of b is also a standard

set. This set is jb U 1.141 . In this manner we generate a series

of standard sets:

0

a = OJ

b =
a

U

0 = tb

d = te u le)}
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Each set of this series contains one more element that its immediate

predecessor.

Consider all the sets which are in a one-to-one correspondence

with each of the standard sets. We end, up with this array which is

identical to the previous array:

(

102 ©1

e

c.

6-1 60

a

ci

0

e

0

Definition: Each of these classes is a cardinal number

Definition: The cardinal number of a set A is the class which
contains A.

Example: Zero is the cardinal number of the empty sett,

One is the cardinal number of (*I

Two is the cardinal number of &t ,e]

Three is the cardinal number of t*oropi

And so forth'

0 0

Definitions A finite set is one which can be put in a one -'to -one
correspondence with a standard set.



Definitiga:

Definition:

A natural nurbor is the cardinal numbr.r of a finite set.
LeTTRWrstand for the cardinal number of set A.

If n(A) = p and n(B) = q, then p q41.-4 A is in a one-
to-one correspondence with B.

The numerals 0,1,2,3, are common ways of naming the natural

numbers. Several ways of naming the natural number five are: 5,

Air and'five, These symbols are not the number five. These

numerals for five are ways of representing the idea or abstraction

of five.

If m = n as in the definition above, we interpret this statement

to mean that two different symbols (or numerals) m and n stand for

the same idea, the natural number associated with a particular

equivalence class.

Definition: A is a Rmaavz subset f B4040 A c B and B vid A.

Definition: If n(A) = A and n(B) = b, then a is greater than b4,=B
is equivalent to some proper subset of A. The symbol
is read "is greater than" while the symbol 4 :.s read
"is less than", a y b b 4 a.



CHAPTER VI: Operations on Natural Numbers

6.1 Addition

Children are taught to add two numbers, say 2 and 3, by

means of a number of examples in which they witness or manipulate

the combining ox two sets. They observe two sets, a set of 2

objects and a set of 3 objects, and after these sets are joined

together, they are asked to specify the total in the new set.

These children are taught how to add by meat3 of the concept of

union of sets, in a manner which is identical to the definition

of addition of two natural numbers. Of course the two sets

must have no' elements in common, The student should notice that

any two naturals oaf, always be represented 'by disjoint sets. (Why?)

leginium If n(A) = a and n(B) b, where AAB mg 0, then'a +
the sum of a and b, is the natural number of AVB$
In short, a + b n(AUB). This operation is called
agaita

(We assume, in the definition, that the sets A and B are finite

Because of the sequential development of the materials the

student should be able to prove most of the commonly accepted

properties of the natural numbers, So that the student has one

example of a proof we shall write out in detail the proof of

commutativity of addition. Al]. the needed properties and definitions

have been studied earlier in the text. Thus the problem is one

of organizing the proper information to formulate a proof of

oommutativity of addition,

)

problems Prove the commutative property of addition on the set
of natural numbers. i.e., for a and b natural numbers,
+(a,b) +(b,a) or a+b = b+a,

Proof: Since a is a natural number there exists a finite set A

such that a = n(). Similarly there exists a finite set

B such that b = n(B)o



Now we would like to prove the equality of two numbers

(natural numbers, problem 4 in the exeroises), The Questions

you should be asking yourself is "when are two natural

numbers equal"? and "what are the two natural numbers"?

The two numbers are "a+b" and "b+a". They are received

from the definition of addition of natural numbers. Namely

a + b = n(AVB) and b + a = n(BU A).

These two numbers will be equal according to the definition

on page 50 iff AUB is equivalent to BOA. But we know AU B RUA

by commutativity of union of sets proven in CHAPTER 1. Hence we

can conclude AU B is equivalent to BU A, and so n(AUB) n(BU A)

or a+b b+a Thus the problem is completed.

This proof can be written in fewer words but at this point

we feel it is important for the student to observe the analysis

of the problem simultaneous with the writing of the proof. The

reader should attempt to shorten the proof, but be sure every

step follows logically from its predecessors.

F.).2.49.1..8j.

(1) Show that 2 + 3

(2) What does mean in the statement "2 + 3 5"?

(3) The definition of addition (above) produces an operation'+:

Since an operation is a function, then each element of the

domain (a,b) must be associated with one and only one

element of the range, (a + b):

(a,b) a+b=h(AUB).

How do we know that we get one and only one element in the

range for each element of the domain?

(4) Is Nu 1p11,2,3, #,0,1 the set of natural numbers, closed

with respect to +?
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(5) Prove the associative property for ifs

(a b) 4 o 22 a (b o).

6.2 AW11121114.14921

The way multiplication is defined is related to this example:

Think of two boys and three girls at a party, A rule of the night

is that each boy must dance at least once with every girl. How

many different dancing couples are there? Let the set of boys be

[Jim, Mike] and the set of girls be {Carol, Jane, Beth.), Couples

for dancing can be formed in the following manners (Jim, Carol) r

(Jim, Jane), (Jim, Beth), (Mike, Carol), (Mike,Jane), (Mike, Beth).

Thus, we find there are 6 couples for dancing.

itaa1119W If n(A) a, n(B) b, where A, B are finite, then
a b, the product of a and b, is n(AAB), This
operation is called mulnusaum.

alatIgn: If a, b, and o are natural numbers and if amb as 0,
then o is a matko4 of a or b; a and b are Factors
of o.

aalatjal,4 The binary operation subtraction, "-", is defined
as follows: For natural numbers, a and b, with

a b if there exists a natural number o such that
o b m a$ then a - b c.

2011=s2n: The binary operation division, "+", is defined as
follows: For natural numbers, a and b, if there
exists a natural number d such that d-b m a, then
a .11.1) db0 00

Both subtraction and division are binary operations in IN because

we have already observed that if o,d (above) exist they are

unique. However their domains a e not, equal to the whole set,

IN x0,1, but proper subsets of IN x1)40

Subtraotion and division are restrieted operations. For

example,

(4,1)e "..."



but

furthermore,

but

(1,4) e"-"

(1204)c. " +"

(.2,5)0, ft+ (4,12)1"+".

UMW-1/
(1) Prove 4.6 24.

(2) See =RCM 14, above, example 2. Answer tLe same question

for multiplication.

(3) Prove: ab m ba (Alternately, (a,b) as (b,a) ). This is

called the ....co tvallatlaszsatz= of paLtlat,ssita.
(4) Is 44, the set of naturals, closed with respect to ?

(5) Show that (ab) o a a(b0).

(6) Show that Ev(b o) 3* ab

(7) Prove the glasalatIpn azatEm for

a + b m a 4- comPb

(8) Prove the zag.e.1.11..a4tIco property for multiplication, a pi 0:

ab EvoimiPb m 0.

(9) Prove the converse of the cancellation property for +.

(10) Prove the converse of the oanoellation property for

(11) Prove: 0 + x a x, for any x 4J

(12) Prove: 00x a 0, for any xel)44

(13) Prove: X.1 al x, for any x E N



6.3 Theorem

We now prove a theorem of extreme importance in mathematics.

This algebraic property of our number system is that e product

of two numbers can only be zero if at least one of the factors

is zero. The student uses this fact constantly, perhaps without

realizing it. This property is used when you colved a polynomial,

equation (High School Algebra I) by means of factoring. For

instance, the quadratic equation x
2

-,x 6 wit 0 can be expressed

as (x 3) (x 2) 0 by factoring the polynomial x2 *0 5x + 6,

From this we can conclude that x 3 * 0 or x 4- 2 0. Hence,

the possible values for x are 2 and 3.

Theorem: If a and b are natural numbers, and if LW) then
either a 0 or b 0 O.

The statement:

If a and b are natural numbers, and if a b

then either a mg 0 or b mg 0,

is logically equivalent to the statement:

If a and b are natural numbers, a 4 0 and

b 0 then a b 0.

We shall prove the alternate statement of the theorem which,

in turn, proves the original statement since the two are logically

equivalent.

Proof: a mg n(A) fox' some set A

b 0 n(B) for some set 11

Since a 4 0 and b 0, then A 4 0 and B pf

Now ab n(Ax B); but A 0 and B aino A B 0.

Thus, n(A KB) 4 0.

Hence, aob 4 0.

At this point we shall not generate any more theorems about

the natural. numbers. Suffice to say that given the definitions
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and statements already proved (especially those in the exeroises:),

we are in a position to prove all the well-know theorems or

"facts" about the natural numbers. We conclude with several

definitions and more exercises.

EXERCISE 16

( 1 ) Prove the statement: if atbo 1 t 4 then a >134iiiP 3o ti 0 6/14 d a b+o.

(2) Prove: a >b and b o, then a a o.

(3) Prove: a> but a + a b o.
(k) Prove: a b se+ aeo >boo, o 0.



CHAPTER VI

7, 1

THE INTEGERS

Introduotion to t Inte ers

We developed the set of natural numbers by starting from

fundamentals-sets and operations on sets. By means of the relation

of one-tomone correspondence between sets, we Alma each natural

number. We whowed that onem.tomone correspondence is an equivalence

relation and applied the equivalence theorem. By means of the

equivalence theorem we were able to sort sets into different classes.

The equivalence classes which resulted became the natural numbers.

The operations of addition and multiplication of natural

numbers were defined as the natural number which resulted from

operations on geig. For addition, union was employed; for

multiplication, Cartesian product. Subtraction and division were

also defined, in terms of addition and multiplication, respectively.
The major part of the development of the natural numbers was

concluded with an inspeotion of the structural properties of the

operation

The reader has seen that the naturals are closed with respeot

to addition and multiplication; that both of these operations are

commutative and assoolat.ve, and that multiplication is distributive

over addition. ?urthermore, the reader will observe that the set

of naturals has an attntat alma for each of the nperations

addition and multiplication.

Zero is the ataltat lams= glit12a because x 0

for all x e, , the set of natural numbers. One is the Waltz

Ill for malkipallataga because x I x, for all x e IN goth

0 for addition and i for multiplication do not "affect" the

identity of the natural number x when the operate on xo

The reader already has observed that the system of natural
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numbers has certain restrictions - subtraction and division are

not closed operations in Another way of saying that subtraction

is restricted is to assert that the ordered pair (1,4), for example,

does not have an image in the natural mimbers under subtraction.

Or, to put this specific example in another form, the equation

x + 4 =

has no solution in W. More generally, the ordered pair (a,b)

does not have an image whenever a<b; or the equation

(1) x b a

oannot be solved in (N whenever a4b. The restriction on division

is that (mon) has no image if m Is not a multiple of n. As an

equation, this restriction is translated into the insolvability of

(2) nx = m

in the set of natural numbers whenever m is not a multiple of n.

To be able to solve equation (1) above, we must "enlarge" 114.

This "enlargement" is the set of integers. A further "enlargement"

of the integers will result in the set of rational numbers which

will enable us to solve equation (2)%

Throughout 'Ole development of the natural numbers, we asked

the reader to rely on his prior acquaintance with those numbers

to help him move through the abstract treatment of familiar

territory. Again!, we ask the reader to make use of his experience,

this time with the integers, to assist him in reading through this

chapter, In constructing the integers, we shall again define the

objects (integers) of the system, define two operations (addition

and multiplication) on them, and prove some fundamental properties

of these operations. We take the set of natural numbers as our

point of departure, for this set is all we know up to this point.
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7.2 f4

Consider the set Ng IN (a, b) ILO) E (KJ} , the Cartesian

product of IN with itself, We define the relation e among these

ordered pairs by this equation:

(a,b) e (0,00610a d = b o.

Note that aD is a relation between ordered pairs of natural numbers.

As an aid to understanding the motivation behind the use

of ordered pairs to define integers, the reader should thin* of

(a,b) as'a - Viand (cod) as c - d. Thus, (7,2) can be thought

of as %7 m 2'and (207) as /2 - Pe

7)41.41:02 = 4 4.

In the above definition, alb,c,de. IN and + is the operation,

addition already defined for IN 0 As the note above hints, ordered

pairs will represent integers, and ordered pairs such as (2,4)

and (5,7) will represent the same integer, G*2 (negative 2). The

pairs (2,4) and (5,7) will be equivalent pairs or elements

because they will belong to the same equivalence class,

The temptation is great to ask the reader to develop the

system of integers with these hints, by using only the available

machinery at his command. By "develop" we mean define the set

of integers, the operations on integers, and the properties of

these operations. We shall resist the temptation, but perhaps

the reader can try, as a mental exercise, to anticipate the next

few pages. We shall assume that these meager hints serve as a

map of where we are going, not as a device for you to do our work.

Again we shall use the equivalence theorem to get the "right"

ordered, pairs ofiNKIN into ()lasses. Thus, we must first prove that
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the relation 0 for ft\IXONI is an equivalence relation. This

result, part of Excrcise 17, is the reader's contribution to

this development«

Arl)lication of the equivalence theorem to #4 x PJ produces

classes of non-overlapping sets of ordered pairs - equivalence

classes of ordered pairs 4- equivalence classes of ordered pairs

of natural numbers. Each element of each class is equivalent to

all other elements in that class.

For standard elements of these classes we choose these ordered

pairs: (0,0), (1,0), (2,0), (3,0), (4,0), *. and (0,1), (0,2),

(093) , (0,4), ...

Analogous to the portrayal of the classes for the natural

numbers we have this table for the integers:

(0,3)

(1,4)

(2,5)

(3,6)

(4,7)

(0,2)

(1,3)

(294)

(3,5)

(496)

(0,1) (0,0)

(1,2) (1,1)

(2,3) (2,2)

(3,4) (3,3)

(4,5) (4,4)

(1,0)

(2,1)

(3,2)

(4,3)

(5,4:

(2,0) (3,0)

(3,1) (4,1)

(492) (5,2)

(5,3) (6,3)

(6,11) (7,4)

Each of these columns represents an equivalence class generated

by QD Not that each column is headed by a standard ordered

pair. As before, each of these classes will define a number, in

this case an integer. The column headed by (0,0) will be called

the integer 0; the classes to the right of 0 are +1, 4'3, *OM

(positive 1, positive 2, positive 3, 9.0); the columns to the

left of 0 are "1, '2, '3, ... (negative 1, negative 2, negative 3, .1.).



These classes define the set of integers,

41410 .113, -2, -1, Op 1, 2, 3, 004o

The standard elements which we chose are the ones which seem to

be the simplest-9

Of course we saved ourselves a good deal of detailed work

by having the equivalence theorem available for pa titioning of

the ordered pairs of Nix, (4 into the requisite classes. The

relation 0 was created by mean of hindsight - we knew where

we wanted to go and designed dr) accordingly.

di 3 erat io s on

An integer has been defined as an equivalence class of

ordered pairs. Let [a,b] be the equivalence class containing

(a,b) and let 25 stand for the set of integers. We drop the

parenthesis inside the brackets to simplify notation.

Alanitiow Let p be the integer generated by (pi , p0 i.e.,
p [pi, po], and let q be the integer generated by

(q q; ) Or q q.A p ® q is the equivalence
clAss generated by tpl * q1, p2 + q2), or p Gd q

P1 lb (IV P2 44. q2

According to this definition,

operation on equivalence classes of

numbers. The reader should observe

is symbolized by 0 to distinguish

on the natural numbers.

the operation is an

ordered pairs of natural

that addition of integers

it, temporarily, from addition

In order to insure that the above definition is well -defined,,

we must guarantee that tiol + q1, p2 + q27 is an equivalence class,

i.e., an integer. That Cp1 + q1, p2 + q2] is an integer follows

from the facts that p1, p2 qi, and q2 are all natural numbers



and so are pl. + ql and p2 +q2. (Why?)

We must also show that the name (ordered pair) used for the

generator of the equivalence class does not affect the results

of the operation. There is if p = [1)1 , p/2] and 5 na 1pp p2

while q = q01 and q q2 J then the sum obtained

p +q is exactly the same class no matter which generators are

used in the operation. When we say p = [VI p'23 and p = tpi,p2]

what Is really being said is that (p;,, p) OD (pp P2). Likewise,

q s qj and q [ ql , 42 implies that (c4 , 42 ) OD

(q1 q2). Now using the definition of ® we have pi t p2 =

p2 + pi and q" q2 (LI (11

These are statements of equality between natural numbers,

no we can use any property developed for the set of natural numbers.

If we look ahead at the desired result, we would like to say that

p (9 q = ( q q 3 as well as equaling [ +

P2 42 )0 "e" ( P1 41 , p2 + 42 ) e (PI + 41 p2 + 42),

Now using the facts that pi + p2 p2 + pi cli! q2

+ gl, and the well defined, property of addition of naturals

we obtain (pi + p2) + (q1 + q2) = + pl) + + q1).

Using commutativity and associativity of addition of naturals,

this statement can be written as (PI )
(p2 q2)

(pl q1), Now examine the definition of e we

conclude that (iq + pi' ) ED (p1 + ql p2 q2).

Since these ordered pairs are equivalent they generate the

same equivalence class pogo thus completing the proof. What

has been shown is that the same sum will be received no matter



what names for a number are being used, i.e., the numbers are

important when performing the operation not the names.

ufapzL.e s,: ( 1 ) [2,33 c3,11 [501

(2) [20,103 (f) [15,201 [35,30].

In both of these examples, we could save represented each

integer in simpler terms by using standard ordered pairs or

elements to represent the classes. Example (1) could read:

(1' ) (903 0) PO] m [2,1] ,0]

Example (2) would then become:

(21) x.001 6) [4951 ' 'P'51 =

In conventional notation, these examples becomes

(1" ) 1 ® +2 tl

(2* ) +10 e '5 = +5

By the definition of addition, the integers are closed under

addition (see Exercise 17). Furthermore, the operation of addition

is commutative and associative; the integer DO10.] is the zero

or identltit element forrAZ (see Exercise 17).

In any mathematical system, we define the inverse

element by using the identity element. Suppose z is the identity

element for a general mathematical system, 34 is an operation, and

ta' any element of that system. If there is an element of the

system, a, such that

a Et Se mg

then a is called the inverse of a with respect to 0.
For the integers, we know that

4.
4 110 0



so that -4 is the inverse of
+4 with respect to GD 4 Since 60

Is commutative,

4 6D +4 0

and 4 Is the inverse of 4 with respect to e As equivalence

classes the integers [a,bJ and 1)),a] are inverses of each other

with respect to 6D because:

[alb] il9) [boa] NE [a 4. b, b a] [0O]

Example,: Vor the integer [7,j3 the inverse is t'?,] because

t7,31 ® m 010,163 1m DI,0]. Of course, the

inverse of [3,1 with respect to addition is

If an element s is the inverse of a with respect to addition,

we often call s the agglaxl Lamm of a.

In simpler form, every Integer can be expressed in one of

these three forms: [a, 01 orip,a) ortP,01, where a p( 0. It should

be clear that the inverse under $ of [Rod] is Opal and vice

versa; and the inverse of po,O] is itself.

orations on me e u ti I ioation

We remind the reader that he should translate the symbol

&A to either +2 or'4 . 2' in thinking about this number. In

general, [a,bil can be thought of as'a

analkkaat It p mit a, b) and q [p,4] where apb,o,d are natural
numbers. poq is the equivalence class generated by'
(ac bd, ad + be), or poq (ac + bd, ad + be).

Example: [6,230 [3,43 3 + 2.4, 6.4 + 2.3]

[6,21 0[3,411 1260301 [0,42

This example asserts, in conventional notation, that

(+4).(%) (-4) . We have used a different symbol for multiplying
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integers than we used to multiply natural numbers. This

distinction is only a temporary one.

The definition of multiplication of two integers depends

solely upon the natural numbers and operations on them. The

product in the definition, peq = [act bd, ad + bd.], is an

equivalence class of ordered pairs of natural numbers, and hence

an integer. We observe this since the ordered pair (ac bd, ad + be)

is a result of products and sums of natural numbers, andpq is closed

with respect to + and

We must also show that if (al, b )9 (a, b) and (c/ d') e

(0,4) , then poq [a°0 c# b' Le* d' b(c']; in short

we must also show that:

(a' a" d' , al, dl be. c' ) e (ac bd, ad + be).

This equivalence results directly from the definition of (R). The

student should study this brief proof carefully; use the one for

addition to supply needed assistance.

As with addition, the operation is a binary operation, and.

IScommutative and associative, the set has an identity element

with vespeot to 0 Xt is 94.19 or Ci,01 because [0:1] 0 [10.1

[a. + b°, aO bi] ca, b

?or an element, m, of the integers to have an inverse with

respect to 0 there must exist an element n E,7 such that:

nom= monsu It It is clear that +4, for instance, does not

possess an inverse with respect to 6),

in general, integers do not have inverses with respect to

multiplication, i.e., do not have multiplicative inverses. The

only except;Lons are [lopj and [0,1] .

To show why the integer [44 does not have a multiplicative

inverse, let us assume that it does and show that this assumption



leads to a contradictio

of [4,4] is to,d], i.e.

[.)9]

If such an integer [

which means that:

[4e

(4

4
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n. Suppose that the multiplicative inverse

0 [cod.] 10]

el d3 existed, then 4# 43 0#4, 4md 00c] [1 0],

4d1 0,0], or

o, 4d) CD (1,0) or

+ 0 * 4d + 10 or

ifo IN 4d + 1, which is impossible for natural numbers old.

It is impossible to solve this equation because it states

that a multiple of 4 is equal to one more than a multiple of 4.

So, no such [64 can exist as an inverse of r4,61. As a problem,

we ask the reader to prove this result for any integer except

1,().] and [04] (See EXERCISE 170

As with the set of natural numbers, there is a distributive

property for the integers involving multiplication aril addition.

Here's a statement of the distributive property for the integers:

where

prope

of ED

(see

643 0 (jp,cia] e 0.9,44) w (pi06 0 [0,qi) e @too] lo [04
Ca,tg, [4,d.] and [eaj are integers. The proof of this

rty involves merely the application of the two alinitions

and 0), and this, too, is left to the reader to complete

EXERCISE 1.7).

(1) Does the set of natural numbers have an identity element

for subtraction and division?

(2) Prove that ® is an equivalence relation.



(3) Prove that Z is closed under addition,

(4) Prove that 0 is commutative and associative.

(3) Prove that tp,0] Is the identity element for under (D.

(6) Prove that every integer has an additive inverse.

(7) Does zaz natural number have an additive Inverse?

(8) Show that $ and() are both binary operations.

(9) Show that Z. is closed under 0.

(10) Prove that 0) Is commutative and assoolative

(11) Prove that [1101 is the identity element for z under 4)

(12) Prove that 0 Is distributive over 0) for the set of integers.

(13) Prove that every integer except CLO] and DA does not

have a multiplicative inverse.



CHAPTER VIII

8.1 Notation for Intestu.

At this point, having defined and 0 , we shall drop

the cumbersome notation for the integers. (This is not to infer

that the student can not use the ordered pair notation, as a

matter of fact, we shall use it to prove sore properties.) Instead

of writing [a90] we shall write
4.
a. Thus, t20001 becomes +

20

and [4,0] becomes +4. Instead of writing U0,a wa shall write

a. E0, 203 becomes "20; I0, 33 becomes '30 [MI is simply

denoted by O.

The integers +19 +1, +3, are called the positive integers;

"1, 29 39 are negative integers; 0 is the integer zero.

Notice that the symbol 0 Is the integer zero, Notice that the

symbol 0 is the same for both the natural number zero and the

integer zero. No confusion will result as long as the context

is clear. Observe that every integer is both an additive inverse

and has an additive inVerse: +10 and "10 are additive inverses

of each other 4s are +20 and "20. We can write +10 El) ("10) - 0

and +20 ED ("'20) o; in general +a ED ("a) = O.

We shall now use the ordered pair notation for integers to

prove that the additive inverse of any integer is unique. As

should be expected by "unique", we mean there is one and only one

additive inverse for a given integer. Let rxlyg be an arbitrary

integer and suppose Ea,b3 and [CO] are distinct integers each

of which is an additive inverse of rxlij We shall show that

our assumption that Ia,b3 and [Cod] are distinct is in error

and actually these integers are the same.

Since [a9i] is assumed to be an additive inverse of Expyi)

we have



Henoe

La x,
b 4.7.3 00*

But since told] is also assumed to be an additive inverse

of tx,y) 0 similarly we have;

M 6) VPOAQ

Henoe

[3 3, d y] r
1.1

Since
1 0 is an equivalenoe relation we oan oonolude

[a + x, b Vs) + X, d y]

Now if two integers are equal the generator r must be related by

the relation e. Thus

(a + x, b + y) ® (0 x, d + y)

Therefore

(a x) (d y) s (b + y) (3 x)0

This is a state about natural numbers thus any properties of

.oan be applied. Using oommutativity, associativity, and

oanoelation of we have

a +dmb+ o,

Thus implies (a,b) 00 (o,d). .1. Those pairs generate the same

integer, henoe

0a,b1 m r041

PuA.thermore, sinoe a is the additive inverse of at and

vioe versa, we write "("ma) to mean the additive inverse of ""a,

So, sinoe the additive inverse is unique we oan oonolude that,

'("a) +a. And if x 610 y Op where x and y are integers

then x m "7 and y a e"xo

When we write that x and y are integers we mean that x and



-70-

y may be positive, negative, or zero. We deliberately omit any

Indication of their signs. But, if x is positive, then mix

is negative; if x Is negative, then "lc is positive; and if

x is 0, then "x is 0. in short, the symbol means the apoutt

(or negative, or additive inverse) of x and does not necessarily

stipulate that "x is a negative integer, This can best be

summari;ed by writing:

x ® for all

8.2 Some AdditionaUmustltasarIntaors

We know that I 0) r1) = 0 and that 00 a = 0 (a c Z),

Putting these two results together yields:

(1) [*1 e (-1)] 0 a = 0,

By the right distributive property (see EXERCISE 18), (1) becomes:

(( *l) 0 a) CD (r1) 0 a) 0, or

(2) a + (Cl) a) = 0

Equation (2) states that a and [n1) o ci:Jare dditive Inverses of

each other, Therefore,

("1) 0 a a ""a0

Another well-known result for integers is this one:

"(a Or) b) a ("a) ( b)

for any integers a and b. This fact states that the negative

of a sum 18 the sum of the negatives. The proof uses the previous

result, namely:

"(a b) us ("1) 0 (a b)

Which becomes, by application of the distributive property:
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**)(a b) [(%) C) a] 69 B -1 ) 0 bj ,

which results in the following because of the result above:

"(a b) "a d9 -b

Other common results employing the additive inverse are

easily obtainable. These would include (See EXERCISE 18, Number 2):

(1) ("a) 0 b = a 0 (..b) = "(a b)

(2) ("a) E) ("b) maob,

By virtue of the presence of an additive inverse for each

integer, it is possible to solve this equation:

x e a m bo

for anz two integers a and b. Recall that the comparable

equation is not generally solvable over the naturals. In fact,

the insolvability of the analogous equation for certain naturals

is a limitation or restriction in that system of numbers. The

integers do not have :Wig limitation.

EXERCISE 16

(1) Prove that the ri ht distributive property holds for the

integers:

(a b) 0 0 112 (a 0 c) 6) (b o)

( ) Prove these results:

(a)
("a) obmao(""b) = "(a b);

(b) ("4) 0 mi a 0 0.

Some of the following may be found easier by using ordered pair

notation.

(3) Prove that the sum of two positive integers is a positive



integer; and that the sum of two negative integers is

a negative integer.

(4) Prove that the produot of two positive integers is positive;

and that the produot of two negative integers is a positive

integer.

(5) Prove that the product of a positive and a negative integer

is a negative integer.

8.3 8ubtraotion and Division of Iritt,,Et

Definition: The binary operation, " 0" is defined as follows:
For integers, a and b, if there exists an integer
o such that a = b 6) c, then a e b = 0.

Definition: The binary operation, "0", is defined as follows:
Ior integers, a and b, if there exists an integer
o such that a = b o of then a eb = a, (b yi 0).

Clearly, the domain of 6D is 2rxx , while the domain of

6D is a proper subset of ZxZ. This latter idea means that

division is a restricted operation for 'X

8.4 Gyar....icej.. jss.`orInto ars

These two cancellation laws hold for the integers:

(1) a ED b = a 6) c=4,1b = c, and

(2) a 0 b a 0 ciat4Pb = c a 91 0.

Both of these appear as problems in EXERCISE 19.

To assist in proving the second cancellation law, we first

prove this well-know fact:

act b = Oda = 0 or b = 0.
The student should give this proof very careful study, as it may

seem tricky if you don't check every reference and answer each "why"?
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If a cob 0, then ("a) 0 ("b) = 0, by a problem of

EXERCISE 18. Also, we know that: ("a) 0 b = a 0 ("b) = "(a 0 b),

also from EXERCISE 18. Since a b = 0, then "(a 0 b) = 0, why?

and ("a) 0 b = 0, a 0 ("b) = 0. We now have that all four products,

"(a 0 b), ("a) 0 b, a 0 ("b) , and ("a) 0 ("b) = O. One of these

four products must then be made up of positive integers since all

combinations of positive and negative integers are represented

in the products. But, all the products equal zero, so one of the

integers, a "a, b, "b, must be zero. (Why?) This means that

either a or b is zero.

From the statement, the cancellation law for multiplication

of integers can now be proved. In fact, for the set of integers,

the cancellation law and the above theorem about the product of

two factors equaling zero are equivalent statements.

If we had deferred a proof that the additive inverse of an

integer x is unique until we had prove the cancellation law,

it can be written as follows. To prove this, i.e., the additive

inverse, "x, of x is unique, we use an indirect proof: by

assuming that x has two additive inverses we shall be led to

a contradiction.

Assume that "x and "xi are two different additive inverses

of x, These equations are then true:

x ® ""x m 0 and x 43) "x' 0,

Therefore, x 6) mx = x e "x°,
which, by the cancellation law, becomes:

X IS X

This last statement gives the contradiction. We assumed that

x and x' were different and found that x = x # Our

conclusion is that mx is unique.
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For natural numbers xa, and z, the following result has

already been proved:

(1) x a y=mir. zfxaz y

This result is the eonverse of the oancellatton property for

natural numbers. This conclusion is now applied to prove a

similar statement about integers:

(2) b = o=r4 a 6) b= a 0 et for all

integers, a, b, c.

To prove (2) we separate the hypothesis into three eases:

b = o = 0, b and e ara positive; and b and e are negative.

For b = a a 0, it is clear that (2) holds by virtue of the fact

that zero is the identity element for addition of integers.

If b and e are positive, then b Eb'oqand e = &I,0]

where to/ and el are natural numbers. Furthermore, a a taf,0j,

where a' is a natural number. Since b = c, then D)",ga

or b" o' The sum a CAD b = Ea' b' 00] and a 6) e

[a/ + (11 10]. But a' + b' = a' + ea" because of (1), above, for

natural numbers. Therefore, [a" $0] a + of 119]and

a Q b = a 65 a.

For b and c negative, b = [0,b1.1 and e a [00!) Since

b e, b' = of

But, [a' bi]

The sum a 6) b , b'J and a E9 e La'

= 5e , cd and, therefore, a 6) b a a ee. This

concludes the proof of (2), the converse of the cancellation law

for the integers.

The definition of subtraction is equivalent to the faot that

all equations of the form x 6) a a b can be solved ,tr ,allx in

the set of integers. The solution of this equation, according

to the definition of subtraction, is x = b e a. It should be

apparent that x 6D a = b can also be solved by adding the negative

of a to the value of both sides of the equation:



$ a] ED ( a) b ra).

the associative property ford

x (a 6) ( a)) b ( a)

Using the property of additive inverses:

x 6) 0 = b ( a).

Finally, the identity element 0 yields:

x m b 6) ("a)

which is a statement that subtraction is the same as adding

opposites, or inverses. This statement is not uncommon to junior

high school students, now.

8.5 Pro e of 0 de

We have already defined the positive integers Formally,

these are the integers of the type Eia,0] where a is a non 'zero

natural number. This integer was denoted by In In EXERCISE 18,

we proved that thot sum and vroduet of two positive integers is

again a positive integer - the positive integers are alata under

69 and 0 e Also, we know from our construction of the integers

that for a given integer, x, x is either positive, negative, or

x = 0. This latter property is called the taw of Talutzaz

Definition: The integer a is greater than the integer b
(written Ele)b) if and only if a e b is positive.
If a0 b, then we can also write b4D a, which is
read "b is less than a."

Immediately, from this definition, the reader should observe

that if a is positive, then aa 0 since a a 0 is positive;

and that if b is negative, then 0 P b or be) 0 ,sinoe 0 p b
is positive.
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With this definition of "greater than" we can state the

trichotomy property in another form:

Laut.11191212mx For any a, b EZ, one and only one of

the following holds:

e)b beDa , or a= b

We now give a proof of this form of the trichotomy law:

Because of the definition of inteeers as ordered pairs of

naturals and the equivalence relation, t defined on these

ordered pairs, we see that at east one of the above statements

must hold. If one desires a detailed proof of this he shall

work with a and b in the form of ordered pairs of naturals

This is a good exercise) .

With this in mind, the problem reduces to one of showing

that only one of the above statements holds true at a time:

I. Assume a J b anl b © a. We shall show that these

two statements cannot hold simultaneously.

If agDb then (b e a)eZ""(set of positive integers)

by definition on page 75; Now that (b a) e 2Z4*,

then ""(b » a) = (a b)G '"`(set of negative integers).

As the second part of our assumption states that b 40a =-4,

(a 0. Clearly, (a b) eZIL and

(a w b) e Zwi cannot hold simultaneously, since this

would indicate that the integer (a b) is a member

of two distinot equivalence clqsses. One would be of

the form [ic,(5], with x naturals, and the other would

be of the form C009, with y e naturals. This is the

required contradiction in this part of the proof.

II. Assume aQb and b a. If these two statements hold



-77

true, then:

I ) a Qb ( boa) e'°'

2) b = 9 1"1`, (b ea) xis 0

These two statements are dissonant since (1) implies

that (b a) is a member of an equivalence class of

the form Extql, while (2) implies that (b a) is

a member of an equivalence class of the form [0,07.

Again, recalling our equivalence relation, CD

(b a) cannot be a member of two distinct equivalence

classes.

III. Assume be a and

proof for this ease,

The student can supply a

Thus we see that no two of these can hold simultaneous

so, clearly, all three of these cannot hold simultaneously,

Therefore, it must be the case that exactly one holds in any

given case.

8.7 AhaalatJelna

For every integer x, its absolute value, denoted by Ixl

is the non-negative number of the pair x and "x. Notice the

absolute value of an integer is never a negative number. One

can think of "absolute value" as of function defined from the

set of integers onto the set of non-negative integer.

This concept can be defined formally as,

De inition: For any integer x,
I) Ix1 = x when x0

and
II) lad x when x©O

It should be observed that the absolute value of zero is

zero. When you represent integers as points on a number line,
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lx1 is the distance of the graph of x from the origin or

graph of 0.

According to the definitions

( ) 14421 m *2

(b) 1"2I
+2

(0) r3541= +354

(d) 1446 0 -51 =.41

(e) 1.1.5 $ "6 I = *1

(r) 1+2 -31 sit 4.6

(g) 1-2 0 "31 si 6

WARIEE1.2

(1) Prove the cancellation law for addition of integers.

(2) Prove the cancellation law for multiplication of integers.

(3) Show that ED is a restricted operation In;E:.

(4) Prove the transitive property for

(5) Prove, for integers a, b, c, that: aebei#Pa 6 oob p a.

(6) Prove, for integers a, b, c, that: a 01) and, oa sum>

a 0 Geb0 c.

(7) Prove, for integers a, x, y, that: If a00, then xODY

a 0 x soy.

(8) prom the definition of "greater than" "given in this chapter,

prove that the standard definitions

a --.0,J c e da OD 0= b, a, b, oeZp
is a true statement.

(9) Prove the converses of (5) and (6) above.
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(10) Prove that the equation: x
2 1 0 0, has no solutionno

for x E .

8.8 Iso nor.hism Between Naturals and Non ne ative Inte ers

We have discussed two number systems, the set of naturals

and the set of integers. You have seen how the elements of each

of these sets are defined, how operations on these sets are

defined, and what some of the fundamental properties of these

operations are. We are now going to examine a relation which

exists between the non-negative integers and the naturals«

You should first recall that the non-negative integers

are closed with respect to 6D and 0 In fact, to return

to our formal notation for this discussion:

(1) [i,61 e 5,6] [?..f. boo], and

(2) [a,03 4) [13,0] = ta,12, 0]

where a, b e IN

We are now going to show that the non negative integers

"behave" the same way as the naturals, a statement which should

be somewhat apparent from (1) and (2) above. To clarify

this we start with the following obvious one-to-one correepondence

between naturals and non-negative integers:

Naturals Plo=nftEltaliLattfitta

2 [2 0]

3 r3 , oj

[4 03



Notioe that under this correspondence the sum of two naturals

corresponds to the sum of the integers. For instants:

2 3 at 5 (Naturals)

'P,0') [3,0 a r5,6.1 (Integers) 0

Or, in general

b = a + b (Naturals)

I I
[t 90] E 0b),§] a,,4.139 0] (Integers)

The name is true for products:

2 * 3

I I
[2,6.1 0 r3 °3 32

In general, we have:

(Natural )

(Integers)

a b ab (Naturals)

I
Ea ol 0 [?,05.] Ea. b, 0 (Integers)

It is possible to say that under the one to one correspondence

(which means the existence of a one-to-one function and its inverse)

from the naturals onto the set of non-negative integers:

(a) the image of the sum of two naturals is the same as

the sum of the images of the two naturals, and

(b) the image of the product of two naturals is the same

as the product of the "images of the two naturals."



Pi torially, this can be seen as the o lug:

ADDITION

e [2 0]

BUM
5 in*,,..)a. Jas....*

cp
j SUM

JNEL,3 [3
3 < of

product

MULTIPLICATION

6 --4nLctat---->' [6 6]

2 l 0

product

When two sets are in a one-to...one correspondence and possess

properties (a) and (b) above, we say the correspondence is an

kanahlm, and the two sets are latar ?hla. prom the mathematical

point of view, since these two systems (the naturals and the non

negative integers) "behave" the same way, they can be considered

as indistinguishable for all practical purposes. Therefore, it

is not necessary to specify whether we are dealing with naturals

of non-negative integers in the following statement:

2 + 7 m 9.

Indeed, in practice we drop the positive signs if we mean



integers. It is because of the isomorphism that the distinctions

between tike naturals and the non-negative integers fade. Because

these distinctions fade, the naturals are considered to be a

subset of the integers, or the negative integers are an extension

of the naturals.

EXERCISE 20

This table shows the sums obtained when

adding even numbers (E) and odd. numbers

(0). For example, the sum of an even

(1)

0

0 0 E number and an odd number is an odd number

(E + 0 m 0).

+ 0 1 This table shows the addition facts for

0 0 1
the modules system -(9, 1:1. For example,

1 + 1 me 0. For the operation "+", are

1 1 0 the two systems isomorphio? Explain your

answer.

(2) The multiplication tables for both systems of problem 1,

above, are:

Are the systems isomorphic, for the operation of multiplica-

tion ("x")? Explain your answer.

What can you say about a general isomorphism between these

two systems?

(3) Prove: a m -a ==isa Is O.



(4) Show that the correspondence;

(5) Prove: The quotient o

the quotient

integer is a

a positive

negative

(Assume that

(6) Given T = [2,

3n, ...1; show that T is isomorphic) to T with respect to
addition.
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0

1

2

3

411MillaWMWM.1....> 0

-2

1.3

is not an

isomorphism.

f two negative integers is positive;

of a negative integer by a positive

positive integer; the quotient of
integer by a negative integer is a

integer.

the quotient exists.)

4, 6, , 2n, ...3 and Tt = {3, 6, 9, 009

(7) Prove that

multiplio

T and T1 are isomorphic with respect to
ation.



CHAPTER IX: Rational Numbers

9.1 Introduction to Rational Numbers

The isomorphism between the non-negative integers and the

naturals (see pp, 79-81 ) allowed us to think of these integers

and naturals as being indistinguishable from each other. Because

of the structural bond between these two sets, for all practical

purposes the statements:

(a) 2 3 = 5

(b) (+2) ® (+3) me +5

are one and the same. Defined in quite different ways, the set

of naturals and the set of non-negative integers, and their

respective operations of addition and multiplication, turn out

to be duplications of one another. For this reason, we, too,

shall drop the distinguishing characteristics which we have

preserved up to this point. We shall use the simpler "1." and

"if" to denote addition and multiplication for any two naturals

or integers, wad we shall omit the distinction between a positive

integer and a natural. When we write, 7 we shall mean the natural

or the positive integer,

The reader has observed that the naturals were limited since

we could not subtract an two natural numbers or divide an two

natural numbers. The set of integers was restricted by the fact

that while subtraction was possible, division was not possible

for aaz two integers. Because of this restriction, we shall now

define and examine the set of rational numbers, a number system

in which division will be possible for any two non-zero numbers.

By means of an isomorphism between the integers and a subset of

the rationale we shall see that the latter set can be thought of

as an "extension" of the integers.
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Another way to state the limItation of the integers is to

say that we cannot always find an integer x which solves the

equation:

x b a,

for any two integers a and b. The set of rationals will permit

solution to this equaUon as long as b )1( 0.

9.2 Definition of Rationals

We begin with the integers from which we define the

rationals. Consider this subset of ZgZ: 7r x T ((a,b) a, b6 Z'

and b 03. Notice that T is the set of non-zero integers.

We choose this subset for reasons which will be apparent

later. Again, we define a new relation ED

(a,b) (170 (o,d) acd b.°

where cm is the definition of equality for any two ordered pairs

of Z x T. Note that the definition of ca is equivalent to a.d bco

where a,b,c,de 2Z

Azatae8

(1) (2,3) ail (4,6)4ft 26 mg 344 ,

(2) (-2,5) om (61,-15)4*= ("2).("15) (5),(6)

The reader should think of (2,3) as and (4,6) as so

that he can see the motivation behind the ordered pair development.

The ordered pairs (2,3) and (4,6) will belong to the same equivalence

olass and, thus, we shall be able to say that (2,3) is equivalent

to (4
2 4

,6); i.e., that is equivalent to - a phrase common

3 6

to some third grade children.
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Having given you the definition of when two ordered pairs

of integers are equivalent, the temptation is again great to ask

you (see page 59) to develop the system of rational numbers from

this definition. Again, we resist the temptation but perhaps

you can give a thought to the way you would define the rationale

and operations on them. We shall offer the details with yotv help.

First we shall ask you to do what is the next obvious step

prove that UB is an equivalence relation (see EXERCISB 21-A).

As you have seen earlier with the natural a and integcs, the

equivalence relation generates the numbers in question. You

should be aware that the equivalence theorem is an important

cornerstone in our development. Application of this theorem

to Zg To once we have the equivalence relation GO , partitions

zxT into non-overlapping subsets called equivalence classes.

The elements of each class are equivalent to each other, and

are not equivalent to any elements of any other al: ss.

The gandazg.asomata of each class are those ordered

pairs whtoh one might expect - those which represent the fractional

form in lowest terms. Thus, (2,3) is the standard, element of the

class containing (2,3), (4,6), (8,12), etc. In short, the

akelawasmat of each equivalence class is that ordered pair

whose two e'lements have the integer *1 and "1 as their only

common divisors. Since two ordered pairs qualify for standard

pairs, according to this criterion (such as (2,3) and (""2, 3),

or (-2,3) and (2,"3),) this rule shall be adopted:

(1) Both elements will be positive, or

(2) The first element will be negative and, the

second element will be positive,

In the oaee of the olass containing (0,1), (0, 1) , (0,2),

(0 3), (0,-3), eta., the standard element will be (0,1).



O 0

O 00

Now we can present a table o

( 1,2)

(1,2)

(-204)

(29-4)

(-3,6)

(39..6)

( 2,5)

(21-5)

( 4,10)

(4,-10)

( 6,15)

(6,'"15)

( 1,3)

(1,-3)

( 2,6)

(2, 6)

( 3,9)

(3,-9)

1 w 1 w 1

some

( '3,10)

(3,-10)
(-6020)

(6,f420)

( 9,30)

(9,"30)

87

equivalence classes:

(0,1) (3,10)

(0,-1) (-3,-10)

(0,2) (6,20)

(O, 2) ( 6,'"20)

(003) (9,30)

(0 3) 9,-430)

(1,3)

( 1, 3)

(2,6)

( 2, 6)

(3,9)

30.4'9)

Eaoh of the columns or classes generated by IJ over at x T

is a rational number. We define each rational number to be a

different class. The set of rationals is the set of all these

classes. The rational number two-thirds is: 1:(a,b)1 (a,b) UR (

the rational number one-half is: ((m,n) j (m,n) OW (1,2)J We

shall shorten this set notation again and use 11.(2,3)] to stand

for the class of all ordered pairs of integers equivalent to (2,3),

Remember, although we use the brackets, [...] , to denote an

equivalence class as when we defined the integers, we are now

speaking of equivalence classes of ordered pairs of integers, not

ordered pairs of naturals. Although we chose to denote positive

two thirds by [3294 we can also use, among others ( 2, 3)jor

(4,6)J to represent the same rational number. Thus, can write

these statements:

( 20 3) gi+,6)1

[(2,4

where the equality sign is used to denote equality of set

*00

0
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ordered ILLLEE.

We shall call the equivalence class [(1,2);} positive one-

half; E( -1,2)] negative one-half; (2,5):1 positive two-fifths;

and r2, 5)3 negative two-fifths; g3,10)1 positive three-tenths;

and gs-3,101 negative three-tenths. Note, also, that there will

be equivalence classes such as [(1,q, (2,1)] , 1332q , 000

and [r1,1)] , B-2,1)] [3-3,1):1 We shall call those

rational numbers positive one, positive two, positive three, etc.

and negative one, negative two, negative three, etc. The class

[0,15) will be called the rational number O.

It we let IA stand for the set of rational numbers, then

i

f 141a.t.

ba (a,b) is a standard elementl.

x - 13a,b0 and y [30, dg be two rational

numbers. The sum of x and y, denoted by x GB 7,

is defined by:
ylo Rid+ be., bidg

In short, (a,b):I E9 (0,dg = [a, d, + b o, bd)]

According to the definition, we are "adding" equivalence

classes that is, the operation 69 is a binary operation on

04 x el. The operation 90 is defined quite differently from

+ for naturals and for integers. Note that (a d. + b4o, bad)

is a result of multiplying and adding =Im.

Recall that a binary operation is a function from a set A

into a set B. To insure that the operation BIB is a bona fide

binary operation the following property must be proven for

arbitrary rational numbers:

Let rp sp

if r so
and t be rational numbers such that

then r EB t EV t



In order to prove this property consider r, s, and t as

the rational numbers defined by the equivalence classes Ra,b)I

go,d)3 and Beff)J , respectively,

Consider the following sumss

r J t 11a, b [(e,r)j Baf 4. bee, b.t)J

and s C t Be,dg 133 (ea)) (e »f dee, clef)].

In order to prove the desired property these two sums must

be equal. The proof will start with the desired conclusion and

work to a point where equality of known facts is reached. This

procedure is acceptable since each step in the proof can be

reversed, lie., if one so desires he can copy the steps of the

proof in the reversed order and be able to supply a legitimate

reason for each step.

Zroofs

(3.) Baef + bee, be )) eBef dee, dill
(al" b), bet) ED clef 4. de d f)

Now by definition (page 8,5,

(ii) ( 4. bee) clef (cf 4. dee) bet"

It should be recognized that (ii) is an equality in 7Z Hence,

all the known properties of elements and operations pertaining

to integers can be used. Also, observe that bpd, and f are

nonzero integers; thus, (ii) can be written in the following form.

(iii) adef f bdef = becff bdef

By the cancellation properties of the integers (iii) beet) s:

(iv) aed be()

Statement (iv) is known to be true by hypothesis, since:

(v) r =34 Ba,b Bo,4%-vel-o (a,b) Ea (:44).24 ad bo.



This proves the propert

binary operation. But, by t

you could begin with statem

merit (1)*

(1) B213 133 B1,3

[(213)3 133 ail

[(203)]

(In eve

(2) B 1,4 fa
remi,2)3

(In

As an

show that fQ

oommutativ

to show t

will sho

rationa

that

RCI

y in question, so 0 is a bona fide

he remarks made earlier if so possessed

en: (v) and work backward to state-

= B2.3 3.1, 3.3g or

3)] = [0,9a or

3 or 131,1U

ryday language we would write: (f2)
+1).' 4.1 ) .

1-S 3
i"'5 4- 2v 3, 2.5i1 or

3,51j mg 11, 10)].

everyday language we would write: (m1) (ma) ( 1

5 1

exercise (see EXERCISE 21 A) the reader is asked to

is closed with respect to addition and that ED is a

e and associative operation. Also, we ask the reader

hat 10,1 g is ma ktlutures

w that for each rational number, &,b8
1 number 30,03 such that

Furthermore, he

there is a

ga,b)1 130A 1,0,1)]

that each rational number has an additive inverse.

(1) Prove that 0 is an 2aumilmal,relation,

(2) Show that Qis closed with respect to 133

(3) Prove that E9 is ammulaum and associative.

(4) Prove that ao,ia ie the additive identity for Q.

j. )



(5) )And the additive =mg for an arbitrary rational number,

Ba,,b)].
(6) Show how the additive inverse is needed and used to solve:

4. x 35

94 Additive ses

In EXERCISE 21.A it was shown that go,ig ts the additive

identity for the set of rational numbers, toe', for each gettlq

b)) 110,1S1 Ba,b)]

Does each rational number have an additive inverse, or a negative?

We found the additive inverse for each rational number in EXERCISE

211-A and thus we have this theorem:

Theorem,: An additive inverse of (a,4

The proof is accomplished by means of actual computation,

recalling that "a stands for the negative of the integer a.

E(a,b)J EB r"11,4 [(web b q M*E4, 1)0)3

*itch is equivalent to B0,18 This can be recognized by using

properties of Z to simplify the first element of the ordered pair,

i.e., b(a+-a) which is bb0 0. Thus,

gett14 93 g et,14 E0,1y

The uniqueness of the additive inverse will be proven on page 100.

9*5 1 cat o of Rational Numbe

Definition: Let x (Ita,ba and y go,d0 be two rational
numbers. The product of x and y, denoted by
x 0 y is defined by:

x O Y 4m1, b.d)
In short, Uatba Q golda [(ago, bcq



(Again, we remind the reader to think of (a,b) as Ira:;. and (cod) as

d

Ex,..a.,,a1,32.41.q

8 3,4g El B2,3] a 546.3029 403g or

B."3,4)] 0 2,3)) [ 1, 2)]

As was the 00.00 with the operation of 8i) it is necessary

to examine the following property for !

It r, s, and t are rational numbers such that

r m to, then tasnit

The reasoning behind the proof will parallel that described

for the similar property of GO given on page 89

Prop

Let r, s, and t be the rational numbers defined by the

equivalence classes [(a,14 go,col , and [(ea)] respectively.
Consider the following products:

r 1 t Ba,b11 0 ne,fq Bae, b f)".1
e J t [(o,d)] Q [(e,f)] a [(ce,

We claim) that

c(ae, 1)1)1 [oet dfl] that is,
(ae, b.f) am ( ce, d.f),1+ aedef m ceibef

Now, this is a statement about integers, with e, and

f being non-zero Iubegers. Thus,'

aedf m oftebf

by the cancellation property of the product of integers yields

(i) ad = ob



Statement (i) is known to be true from the

hypothesis, since r = s => [(a,b) Bo,dq=1

(a,b) (ofd) =lp a.d

Since this process can be reversed see page 89 to construct a

rigorous line of reasoning, we have proven the property in question.

Hence, 03 is a binary opera tion.

The read. again will inspect the properties of this new

operation,10 He will show (see EXERCISE 21 B) that QZ is plata

with respect toll) , that 0 is 22mmu/aIlat ;mod, a iative, and

that Rivii] is a u t cat ve 142alty:

C(a,b)J ti [(1,1)1 [(a.1, bolg (a,14

The distributive property of multiplication over addition,

which the reader may wish to verify (see EXERCISE 21mB), also

holds for the rational numbers:

Be., 14C1 [(c,01 ES Beor)]

(gas1q3aBoodg f(a,b)J CI 13°4 )

EXERCISE 21ftB

(1) Show that oeZ is closed with respect to El.

(2) Prove that CI is ammaatat and (associative.

(3) Show that B1,1g is the munnliptive lea= for ezo

(4) Verify the distributive property for ez:

Batbjj a ( (c,da Real ) Ra,b2 [(e,d17

ffl getoq Re;f0

9.6 Multi licative Inverses for Rational Numbers

The number PA is the multiplicative identity for el

because Bee,bg o 8.111t = 1:L,b)] for any rational number Baob)]

Although the only integers for whioh there were multiplicative
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inverses are +1 and 6.10 all rational numbers except [(0,1)]

have multiplicative inverses. To show this consider the

definition of multiplicative inverse for any rational number, ga,bj] :

Vat14 Bc,d)] = R1,1).1.

The rational number Bc,d)] will be a multiplicative inverse for

[(a,b)] if this equation holds. This equation is equivalent to:

bdij = [(1,1)).

These two sets are equal if and only if the ordered pairs (ago, bd)

and (1,1) are equivalent.

(ao, b.d) MI (1,1) ;:p (a-o).1 = (b-d) 1p or ac = bd
Clearly, an instance when these pairs will be equivalent is when

c s b and d a. Thus a multiplicative inverse of Es.,14 is

Vb,a)].

Examples;

(1) The multiplicative inverse of 3)J is [(3,..4 or

1C302)] in standard form.

(2) Each rational number except [(0,1)] is a multiplicative
inverse and has a multiplicative inverse.

(3) The multiplicative inverse of [(a,1).1 is [OA

We shall call the multiplicative inverse by a special name the

z_aelpraail - just as we gave a special name the negative - to

the additive inverse. The fact that Bo,ig does not have a

reciprocal is left for the reader to show (EXERCISE 21-C)«

The uniqueness of the multiplicative inverse will
be proved on page 100-101.

Thus, the nationals have one property which the integers

do not poasess - each rational number, except zero, has a

multiplicative inverse. This additional characteristic allows
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division to be a non-restrictive operation since division is

just multiplication in reverse. It is this property which permits

the solution of such equations as:

7. x m 84,

since the multiplicative inverse allows us to "isolate" x to

yield the equivalent equation:

1.7x = 1. 084 , or
7 7

1 x m
1- 84 , or
7

84
x m

The use of the multiplicative inverse with rational numbers to

solve equations is known to many 7th and 8th graders.

EXERCISE 21-C

(1) Prove that every rational number, except [(0 ,1)] , has a

manalsatim inverse.

(2) Show how the multiplicative inverse is used to solve:

23 x m 72.

(3) Show how the additive and multiplicative inverses are

used to solve: 3x 8 = 73.

(4) Why doesn't gomj have a multiplicative inverse?

9.7 Isomorphism BetweemIntegera and Subset of Rationals

Consider all rationals in the standard form C(a01)1 . We

can set up an obvious oneuotomone correspondence between this

subset of qam the set of integers:
Subset of

Integers Rationa9a

P 4 ;-"TwiTi



Because of our definition of addition and multiplication

of rationalst

gPtla Eti Ic9,1)) Bp + q, 1)3 , and

[(p, 1)".1
a [(q,1$3 [(p. q, 1)] 0

Thus we see that under the above correspondence the sum of,two

integers p + q corresponds to the sum of the respective rational

numbers:

p + q gp + q, 1)] 6

Similarly, for multiplication:

pq Eq $
1))

We can now conclude that under the one-to-one correspondence

above, the sum of the images of two integers is equal to the

image of the sum of two integers; the product of the images of

two integers is equal to the image of the product of two integers.

Here are the results in a diagram:

Integers

ADDITION

Subset of
Rat ionals

*Iimmillmmerwillmmommommmoolowwwwimmilloommummiftwommarmiromprmwmommommo
gP918

SUM

q

MULTIPLICATION

.

produot p.q BP P g product

lkolg



-97-

What these diagrams show is that the correspondence; pet---+Epolii

from the set of integers into q is an isomorphism. Because of

the isomorphism, the integers and a subset of ez, gp,la 1 P is

an integer] , behave in the same manner. For all practical purposes

the integer '3 and the rational [r3,1a are indistinguishable.

For this reason, in practice, the symbol "'3" is suffiolent for

both the integer and the rational number. In fact, as the reader

will detect, because of the previous isomorphism he studies

between the naturals and the non-negative integers, the symbol "5"

can stand for a natural, an integer, or a rational number. We

can't tell what "5" stands for, but the two isomorphisms say that

it doesn't matter.
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CHAPTER X: Properties of Rationals

10.1 Notation for Rat .orals

We shall again drop the cumbersome notations which was

useful in our theoretical work, but will only get in the

way in our practical work. We shall denote the rational

number Ra,b3 by 11 Furthermore we shall again

drop the special symbols for bhe operations ES and

and use simply, 4. and

The isomorphisms allow us to think of the integers as

a subset of the rationals, and the naturals as a subset of

the integers. Thus, and will serve all numbers.

The operations on two rationals now become:

xb

x a xa

The reciprocal of is . In particular, the

reciprocal of x is 1. and vice-versa. We have this
x

equation:

1

This equation tells us that every rational number is the

product of an integer and the reciprocal of an integer.
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We call a a fraction, which means that a fraction stands

for a rational number or an equivalence class. A fraction is

a s nbol not a number. Wo call a the numerator of this

symbol and b the denominator; that is, numerators and

denominators are symbols, too.

The symbol -a means the negative of the rational number

(--x) means the negative of the rational number

represented by x Both of these equations will be true:

a 4. (a)

(YI
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10.2 Uniqueness

We now prove the uniqueness of the addit1ive inverse of

each rational number, r Suppose r, and r" are rational

numbers, and are two different additive inverses of r that

is:
r

+ xi"

Therefore,

r rf m r r",

If we add r' (r" would do, also) to both sides of this

last equation, we obtain:

(r' r) 4- r' - (r' r) + r" or

0 4- r' - 0 -I- r", which is equivalent to

- r"

This proves our assertion that r' (or r") is the unique

additive inverse,

Likewise, we prove the uniqueness of the multiplicative

inverse, Suppose that 0 and I are two rational numbers

and they are different multiplicative inverses for the

(nonzero) rational number xi, Therefore,

r

and

r st m r aft



Multiply each side of this last equation by

do, also) to obtain:

IP 1

S

lent to

1011.

would

Or

0 which is equiva

st su

Hence, the multiplicative inverse is unique,
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10.3 Subtraction and Division

We shall define these operations a little differently

from before.

Definition: For any two rational numbers, a and b

a an b is defined by:

an b a ED ( b)

Thus, we define subtraction by the addition of a negative.

Definition: For any two rational numbers, a and b

a(g b is defined by:

a Gj

We define division by the multiplication of a reciprocal.

It is clear that by the definition of division:

NOTE: Igain we shall drop the particular symbols U-1) and

Eu for subtraction and division of two rationals,

respectively. From now on, we shall use - and

to stand for subtraction and division of rationale.

Examples:

(i) 2

(2)

( 3 )

"5
ES'

6 12
5 15

The only rosbriction imposed upon division is that,



division by 0 is impossible (see Exercise 22.) As

mentioned earlier we can now solve these equations:

ax = b,

where a and b are rational numbers, and a 0.



10.4 Ordering the Rational

We define the

rationals Ua,b)]

means the integer

in standard form

Definition: T

Note that if

r The

Ea,b3

Note tha

rg10

numb

set of positive rationals as all those

in standard form, such that a > 0

a is greater than 0. Recall that

b is always greater than 0 «

e rational number x is greater than y (in
ymbols, xED y) if and only if x y is
positive. The expression yffix is equivalent
to xD5y , and is read "x is greater than y."

the rational number r is positive, then

negative rationals are those in standard form

where adc 0 (as an integer«)

t if r, a rational, is negative then 00ar or

r is less than 0).

It should be clear from the formation of rational

ers and their standard forms that a rational is either

positive, negative, or zero (Law of Trichotomy«)

Again, we shall drop the new notation GO and ca and use

he symbols <a , > again because of the isomorphisms«
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EXERCISE 22

(1) Use the definition of division to show why division by

0 is impossible.

(2) Prove the cancellation laws for addition and multip ca-

tion of rationals:

( a) For ab,c e b a f a ) b = a Q c ma* b c ;

(b ) For a, b, c a F4 0 al3b=a Ca c Inc+ b c

(3) Show that the definitions of subtraction and division

of rationale are equivalent to previous definitions

used with integers and natural

(4) Convince yourself that Numbers 4, 5, 6, 7, 8, and 9 of

Exercise 19 also hold for the rationale.

(5) Show that there is no smallest positive rational number

(6) Show that if ,.>0 then there exists a natural number,

n, such that:

a0<n1
45"

*(7) Define the absolute value of r as follaws:

Iri = r , if r A: 0,,

if r L 0.

(a) Show that 101 0. (d) jrsJ IrJ 1 1

(b) If 14 m 0 billm* r - 0, (e) + Isj.

(Triangle lnequali

(c) jr1

y)
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*(8) Why is this equation not solvable for rationals:

x2 = 2 ? (Look up a proof in a textbook)

(9) (a) Prove that the sum of two positive rationals is

positive.

(b) Prove that the sum of two negative rationals is

negative.

(10) (6.) Prove that the product of two positive rationals

is positive.

(b) Prove that the product of two negative rationals

is positive.

(c) Prove that the product of a positive rational and

a negative rational is negative.

10.5 Converse of Canellation

If the proofs that binary operations e and Ca are

well defined (pp. 89 and 92 ), are examined, it will be

discovered that the properties under consideration are

precisely the converses of the cancellation laws.

The converses of the cancellation laws are:

For r, s, and t rational numbers such that:

(a) If r

(b) If r

OMNI
=NM

SOM.

s, then r t = s t, and

s then r Ca t= s r.3 t

Hance, there is no need to give proofs of these converses

since they follow from the definitions of the binary operations

of 03 and Cl
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10.6 Furtherproayties of the Rational Numbers

Theorem: Let a and b be rational numbers. If a < b

there exists a rational number c such that

a < c < b

Proof: We shall show that Ia a suitable choice

+ b
for

a
First, show that --17--<b . We must

prove that b - is is positive OR that 4-1-

is positive. But, b a is positive, by hypothesis.

a b

The rational number i is also positive. Thus, the

product i (b - a) = 127-2-=-04 is positive (see

a + b a 4- b

Exercise 22, Number 10, Now, a <=)

is positive. The number a is equal to

b a which we have just shown to be positive.

+ + b
Therefore, -a 2b- -

a
a is also positive and >a.

2

a a
Thus, we have shown a<

+ b and b
44. b So

let c
a b

and we have shown the existence of

a (rational) c such that a c < b.

It follows from the above theorem that there are an

infinite number of rational numbers between any two rationals

(Why?)

10.7 Decimal raaLmlEampf Fractions

The reader is familiar with the decimal equivalent of

fractions. For example, to determine the decimal equivalent

for 16 we interpret this fraction as
7

,111111111111111
Jaw,

I



1617:
2.285714

776-775bo
14

'70
1467

56

35
50
49

7

28

It is clear from this process of long

has a non-terminating decimal equivalent,

equivalent does not have a zero remainder.
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division that
16
.7.

i.e., this decimal
16

But, while T does

have a non-terminating decimal equivalent, the decimal repeats

after every six decimal places. The digits 285714 repeat

indefinitely. The reader is already familiar with decimal

equivalents of fractions which terminate and with those

which repeat, For example, is a non-terminating repeating

1
decimal, while zr s a terminating decimal.

A little inspection of the long division process will

reveal that all rational numbers can be represented by either

terminating decimals or by non-terminating repeating decimals

(Do you see why?)

On the other hand, all repeating non-terminating decimals

and terminating decimals represent rational numbers. Here are

two examples which will indicate how this statement can be
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proved generally,

Consider the decimal 28.143 . If we multiply this
1 000 1 000 28 143

decimal by 1,000 then 28.143 = 28.143 1,000 0 ,
a rational number.

Next, examine the decimal: 24.1234 1234 1234 ,...0 a

repeating non-terminating decimal, Let N denote this

number, i.e.:

(a) N = 28,1234 1234 1234

If we multiply this decimal by 10,000, then:

(b) 10,000 N = 241,234.1234 1234 1234

Subtract (a) from (b) 9,999 N = 241,210

(c)
9,999

N is now expressed as a fraction which represents a rational

number. We call the students attention to the link between

the number of decimal places which repeat (4 in the number, N,

above) and the power of 10 used to multiply this decimal (4 to

get 104 or 10,000). To show that the number N can be

expressed in fractional form, it is necessary to multiply

using this rule.

The conclusion that we reach upon inspection of decimal

equivalents for rational numbers is that every rational can

be represented by a decimal equivalent which is periodic

(non-terminating) or is terminating, and conversely.



10.8 Geometric ConsConstruction

Given a straight line L, it is possible to represent

the rational number 0 (at any point called the origin of

the line,) the positive rationals (to the right of the origin),

and the negative rationals (to the left of the origin) on L

To accomplish this job of identifying points for rational

numbers, one needs a unit of length and an orientation (choose

one of the half-lines to be positive, the other to be negative).

By this process of measurement, each rational number can be

associated with a point P of L. We shall soon see that

each point P of L is not (generally) associated with a

rational number. What we have is a one-to-one correspondence

from Q, into L The range of this correspondence from

into L is the set of points whose distances from the origin

are measurable by ruler methods.

10.9 Field Properties of the Rationals

The reader may be familiar with the properties of a

field. He should realize that g? satisfies all these

properties for and "

(1) Closure, uniqueness for + and

(2) Commutative Properties for + and 0

(3) Associative Properties for + and

(4) Identity Elements (Additive and Multiplicative)

(5) Distributive Property for over +

(6) Inverse Elements (Additive and Multiplicative)
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The set of integers 2t satisfies all these except the

possession of a multiplicative inverse for each of its

non zero elements, The presence of these elements among

the rationals makes division possible,

The set of rational numbers (co) satisfies these

properties:

(1) Trichotomy: for any given rational -0) is

positive, or § is positive, or f)4 is O.

(2) The sum of two positive rational3 is positive,

(3) The product.of two positive rationals is positive.

The student may wish to verify (1) as an exercise; the

student has verified (2) and (3) in Exercise 22, Numbers 9

and 10.

10.10 Well Ordered

Any set containing these properties is called an

ordered set. Thus, Z is an ordered set, is an ordered

set. Since Q is a field,

q is called an ordered field,

Definition: If every non-empty subset S1 of set S contains
a smallest element, then S is well-ordered.

From this definition, one can see that the set of positive

integers,is well-ordered, The set of negative integers is

not well-ordered. Nor is the set of positive rationals or

negative rationals.



Note that the well ordering property is a property

which describes the nature of (infinite) sets. It is a

property which is "outside" of the elements and hence is

non-algebraic, as opposed to, say, the commutative property

which deals with the structure of the set and is an algebraic

property.



CHAPTER XI: Real Numbers

11.1 Introduction to the Real Numbers

By now the student is familiar with the method which

wuu omployod 1,0 gonoraLo I,ho dirVeroni, number oyoGomo. Flr

an equivalence relation is defined using only those elements

which have been previously defined. The equivalence theorem

applied to the elements of the equivalence relation parti-

tions these elements into equivalence classes. These classes

are defined to be the numbers.

We shall again use this procedure to arrive at the set

of real numbers, although there will be some modifications

enroute. The set of rational numbers satisfies many proper-

ties. Subtraction and division are possible as long as we

do not divide by zero. Another way of saying this last

statement is to state that additive and multiplicative inverses

exist for each rational number, except that 0 does not have

a multiplicative inverse.

Rational numbers are usually represented by fractions

and quite often by decimal numerals, or decimals. Every

rational number can be expressed either as a terminating

decimal (such as .75) or as a repeating non-terminating

decimal (such as .743743743. And vice-versa, each

terminating decimal and each repeating, non-terminating
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decimal stands for a rational number. As we shall soon see,

non-repeating non-terminating decimals do not represent

rational numbers. They represent numbers which are called

irrational numbers, some of which are familiar to school

children such as Tr VT and IT . Fach of these numbers

cannot be represented by repeating decimals. The irrational

numbers, in a sense, serve to "enlarge" the rational number

system, just as the non-integral rational numbers enlarged

the set of integers. Together, the rationale and the

irrational numbers comprise the real number system. Our goal

in this chapter is to define the real numbers and show

(through an ismorphism) how the rational numbers can be

thought of as a subset of the real numbers.

At this point, we would like to leave the reader with

an additional thought concerning the decimal equivalents for

rational and irrational numbers. The set of irrational

numbers consists of all numbars which can be represented by

non-terminating, non-repeating decimals. It can be shown

that this set has more elements in it than the set of rational

numbers go (see Appendix B for a proof.) By "more elements"

we mean that it is impossible to find a one-to-one

correspondence between the set of irrational numbers and 9

From the results in Appendix B, it will be noticed that

neither set is finite.

A further property of g) is that each rational number

can be represented on a straight line, or number line. But



not all points of the line represent rational numbers. For

example the length of KU in the diagram below is not a

rational number. When this segment is marked off on the

number line with one endpoint on the origin, the other

endpoint does not coincide with a rational point on the

line,
)1'

//

/

,/

//
/

A
/

The distance from A to C (by the Pythagorean Theorem)

is equal to a number whose square is 2, or 47. In an

earlier exercise (Exercise 22, No. 8) the student showed

that (2 is not a rational number. It is an irrational

number. The proof that a is not a rational number is worth

repeating here because it is derived from a similar proof

known to ancient Greek mathematicians.

Theorem: The equation x2 = 2 is not solvable by a rational

number,

Proof: Assume that the equation were solvable by a

rational number represented byil where t is a

standard element (see pp, 86-87). Therefore,

a
x = 7)- or:

(1) a2



From equation (1):

(2) a2 = 2b
2

which implies that a2 is even. Thus, a is also

an even number. If a is even, a = 2m, where

m is an integer. Thus, from equation (2):

So,

a2 (2m)2 4m2 =2.2.D

2m
2

Therefore, b is even. We deduce that since a

Uand b are even, 7, is not in lowest terms (i.e.,

not a standard element), which is a contradiction.

Thus, we conclude that a is not rational.

This theorem also asserts that there is at least one

point on the number line that does not represent a rational

number. A proof equivalent to this one can be used to show

that 13" 47, 470 etc., are also irrational numbers.

The theorem also implies that the decimal equivalent of a
must be non-terminating and non-repeating. Recall that a

previous examination of the decimal equivalents of rational

numbers allowed this generalization: each rational number

can be represented by a terminating decimal or by a repeating

non-terminating decimal, and conversely.



.417-

Exercise 3

(1) Prove this statement: The square of an integer is

divisible by 3 if and only if the integer itself is

divisible by 3.

(2) Prove that 47 is irrational,

(3) Prove that ir is irrational.

(4) Prove that a 47 is irrational.

(5) Prove that if ( is irrational, then -Yis irrational.

(6) Prove or disprove: the sum of two irrational numbers

is irrational (closure under addition.)

(7) Prove or disprove: the product of two irrational numbers

is irrational (closure under multiplication.)

(8) Suppose s is an irrational number. Prove that 3. is

also irrational.

(9) Suppose )(is an irrational number and r is a non-zero

rational number. Prove that y r is ,r ational, and

that r°- r is irrational.

(10) See problem (9). Prove that r and are irrational.

(11) Prove that if y is irrational, then fir is also irrational.

(12) Prove: If a' and p are irrational numbers and +p is

rational then -p is irrational.
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11.2 Limitations of the Rationals

Previously, we attempted to cite the limitations of the

natural numbers and the integers. These limitations served

as motivation to extend these systems. The limitation of

the rational numbers is somewhat more obscure, but no less

important than those indicated earlier for other number

systems.

Definition: A number, .x, is an upper bound of set S if and

only if for each s e 7U7 x2t s.

Examplel: For S = x 04X < 1, and x is rational]

an upper bound is 4. Some other upper bounds of S

are 3, 2, and 1, In short, all numbers greater than, or

equal to 1 are upper bounds.

Example 2: The set W (0, 1, 2, 3, ...J has no upper bound.

Definition: The least of all upper bounds is called the least

upper bound (l.u.b.).

Example 3: The least upper bound of S (see Example 1, above)

is 1, which is not a member of S.

Example 4: The set W (see Example 2, above) has no 1.u.b.

Example 5: Let T = ix) o< x 14 1 and x is rational)

The l.u.b. is 1, a member of the set, T.

Example 6: For Z = (1, 1"2, -3, -4, ...] , the least upper

bound is 1, an element of the set.

Example 7: The least upper bound of F =
0.1

is 0, which is not an element of the set.



Consider next the set P x2.< 2, and x is

rational/ This set consists of all rational numbers whose

squares are less than 2, such as 1, 1/2, 1.4, 1.41, and 1.414.

It has many upper bounds: 1.5, 2, 21, 3, 4, and 7. In fact,

all rational numbers greater than 1.5 will serve as upper

bounds of Po although there are others. But P does not

have a least upper bound which is a rational number. For the

least upper bound of P is not a rational number; it is the

irrational number VT.

The set P serves to point out that the set eiof rational

numbers does not possess the least upper bound property«

Definition: A non-empty set, H, satisfies the least u!i_ipteery

bound 21222.9.Ly7tL if and only if each subset' of
H wfinh-has an upper bound, has a least upper
bound which is an element of H.

Although CI does not possess the least upper bound

property, the set of real numbers does. Our work in the

next section begins a development which leads to this

conclusion.



-120-

11.3 Definition of Real Numbers

For a definition of a real number, we can use only

previously defined numbers. Specifically, we shall use the

rational numbers to avnive at the real numbers.

Consider the sequence of rational numbers:

al =l

a2 = 1.4

a3 = 1.41

= 1.414

a5 = 1.4141

aa = 1.41413
.1/41

When we square each of these numbers, we find that the square

gets closer and closer to 2. By continuing this sequence of

numbers in tnis manner, we can arrange for the squares of

each of these numbers to get as close to 2 as we like.

Although, in practice, the actual computation of each decimpa

place is laborious, the reader should appreciate that

theoretically, at least, the job can be done. By means of

a sequence lal, a20 a3, a4, ...3 off' rational numbers, the

irrational number g will be defined. All real numbers will

be defined .th:E212E.h.siataiaag. of rational numbers.

Let us begin by defining what is meant by a sequence of

rational numbers. Although a sequence is rarely indicated
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as such, it is a set of ordered pairs; in other words, a

relation. The first elements of the ordered pairs of any

sequence are the positive integers.

Definition: A IDEaange of elements of set Y is a function
frolfe-7617-61957s-TED-77-integers, into Y,
such that the ordered pairs of the function
retain the same order as that of the positive
integers, i.e., there is a first element, a
second element, etc.

Note 1: All sequences are functions whose domains are

Note 2: A sequence of rational numbers, which is the type
of sequence whIFTIBTFrests us most at present, is
defined by replacing Y by Q in the definition.

Note 3: We use the symbol < > to enclose a sequence.

Example 1: The sequence <(101), (20i),(33), '4), 000>

is a sequence whose range is a subset of the rational

numbers* The range of the sequence, then, is (10

3 47 , I

Note 4: Since the domain of all sequences is e, we denote

a sequence writing only its range. Thus, the

sequence of Example 1 is wriioten:

1 1, 1
7, fit', >

Example 2: The sequence 0- > consists only Of

one element in the range.

Example 3: The sequence <0, 1, 2, 0, 1, 2, 0, 1, 2, .>

consists of three elements in the range.

Note 5: The elements of tho raw of n sequence nre cnlled
the terms of the sequenca, The definition or a
sequence requires that a sequence be an infinite set.
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1 1 1
Example 4: The terms of the sequence <1, 0. ,

consist of the reciprocals of the odd positive

integers. The general or nth term of the sequence is
1

expressed by 711-=-1- Thus, if n = 7, the 7
th

term

The number n represents the corresponding

positive integer of the domain.

Consider the sequence:

<17Y)175(7 --1"M` 4'/'
1 1

It is apparent that if we "go out far enough" in this

sequence, the difference (in absolute value) between any two

consecutive terms of the sequence can be made as small as

we like. For instance, the absolute difference can be made

smaller than lo 0 or on6-millionth If we check the

absolute difference between the sixth and seventh terms, it
1

a-±56 NTrir = lor which is less than After
10

the fifth term of the sequence, the absolute difference be

tween am
in fact,

tween

two consecutive members is also less than
10

atter the fifth term, the absolute difference be.
1

two members is less than 57.0

For example, the absolute difference between the eighth

and 20th terms is

1 1

108 10
2

which is less than 1

12
10

1

- 99,999)$99 ;999

10
20

10
20



12 3.

lastead of choosing the eighth and 20th terms, this can

be generalized for two arbitrary terms, occurring beyond the

fifth term. Suppose we choose the mth and n
th

terms,

i.e., 6eim and 64;n . Since we are choosing natural

numbers m and n, we know from earlier work, m<n, or

m = n, or n<m. We take m n, since two arbitrary terms

beyond the fifth term must be considered. It is unimportant

whether we have n < m or rn < n, so choose m<n0 We would

like to show:

where 644 1114n
1

10a 10

Clearly, lOn-m - 0 Since n > m, it

10
m

10 10n

lOn'm 10n."'m
follows that 7-- 0 Hence, the problem

10 10
n

n-m
becomes one of showing 10 4 -7---- 0

10n

-1 -1
10°

n-m

Now
10 -1 ,,, 1 if6 04,

1 n-/11 lO< n"6 but

10
n 10 10n 10

this is true provided 1011411 -1 .4:10n-6; this will follow if

-1 4:10
n-6

- 10 0

n-m

We observe this last inequality is true since it can be

written as -14( 10
n
,10

-6
- 10

n
°10-m = 10n 4 -

1

10 10m
1 1 1

Now observe that ----6" in> 0, since -P-46 1,----'1---/i for m;t6.

lo lom 10 io
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1 I

Thus, the right-side of -14(101(106 TT 1.6 non-negative

because it is the product of positive rational and a non-

negative rational. Hence, the right-side is greater than -1.

m .;'t 6 and V n
7 3/ 1,101-1 10:1.6.

1
We could have proposed a number smaller than

lob
'with

which to test the sequence, but we would find that it is

possible to find a term of the series such that from that

term on, the difference between as
two terms is less than

any test number.

We are going to use sequences which satisfy the property

shown above to define real numbers. We shall always be using

sequences of rational numbers. We now generalize this

property of these special sequences.

Definition: Given the sequence 4a1, ae,5, a3, eye, re and
any positive rational number, r, (however small),
if it possible to find a term of the sequence,
for instance am, such that lap ad 4 r, for
all p > N anU q > N, then 4a l, a2, ooe, aN,
...> is a 9..aLugaseu..1.1p...ce of rational numbers.

Note: These sequences are special cases of Cauchy sequences

of real numbers.

This property means that regardless of how small a number

one starts with, it is possible to find a term in the sequence

such that the difference between any two terms of the sequence

after that term is less than the given number. In the above

example, aN = 1 N = 5, and r =
10



7

12,5

Example 1: Here are examples of Cauchy sequences:

Cc) <

_33 333
100 1000

k pn

9, 99, .999, V

I>

(d)<1.40 1.410 1,41, 1.4145,

Example 2: Here are examples of sequences which are not

Cauchy sequences:

(a) <1., 2, 3, 40 5, 0.

(b) <0, 1, 0, 1, 0, 1,

) <50 10, 5, 10,

(a) 41 2, 3, 1, 2, 30

"
0 0

1, 2, 3,

Note: In examp4 1, sequence (a) is made up of terms which

approach 4; ; sequence (b) consists of terms which

approach 0 0; the terms of c) approach 1 and

the terms of (d) approach IT The application of

these ideas will become more evident when we discuss

equivalent Cauchy sequences.

Observe that if, from a Cauchy oequence, we delete or

add a finite number of terms, the sequence remains a Cauchy

sequence, i.e., the criterion for a Cauchy sequence is not

affected by the deletion or addition of a finite number of

terms. What we wan do is remove the first 100 terms, for

example, and the new sequence would still be a Cauchy sequence.



Consider next the sN.uence:

4, 1/2, 1/3, 1/4, **op 1", O00;

By inspection, it is clear that this sequence approaches 0,

that is the difference between each term of the sequence and

0 gets smaller and smaller. To gsate this idea in another

way, the difference between any term of the sequence and 0 ,

from some term on, is smaller thann, any positive rational

number. Choose any positive rational number, such as 1/100;

then all terms after the 100th term are smaller than 1/100.

Similarly, the sequence <1, -1/2, -1/3, -1/40 has

the same property if we consider the absolube value of the

terms. These examples lead to this definition:

is a
Definition: A sequence al ap a ,.2 000, a", ...I>

null sequence Xf afid ()lily if giVen any positive

rationa num er r it is possible to find a
term of the sequence, NT, such that

lan-
0! 4:, r, for all ±1.>N.

Note: This definition
of the sequence
all terms after
number, r.

states that one can, find a term, aN,
such that the differencela 01 for

aN
is less than any preassTgned

Next, consider two Cauchy sequences 4 p2, p3 1)4,

pn, and <ga, q2, q3, q40 qn, .00> The

sequence formed by the difference of corresponding terms of

the sequences can be represented by:

<P1 (11, P2' p3- q3, °"' Pn qn
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If this sequence formed by the term-by-term difference of

to Cauchy sequences is a null sequencer, then it can be

expected that the Cauchy sequences are 22uivalent to each

other, In other words, the expectation is that since an - bn

approaches 0 then the two Cauchy sequences can be treated

as i.pdistinfeltilable sequences, Thus, it is quite natural

to define the relation, 4e0 between the Cauchy sequences:

Definition: The sequence 01, p2,

4gl0 q2, q3, , qn,
<Pi - qi, P2 - q2, P3

is a null, sequence.

P3, .., ply :>. 4S0
.,0> if and only if .

(13, Pn w qn, 0>

Before we prove that eis an equivalence relation, we

give an example of two Cauchy sequences whose term-by-term

differences form a null sequence. Consider the sequence:

(1) <2.9, 2.99, 2.999, 2.9999, >

and the sequence

(2) 3.1, 3.01, 3.001 .0001, 0..

Recognize, first of all, that each of those sequences is a

Cauchy sequence, i.e., fox each sequence, the absolute

difference of any two terms after some term is less than any

preassigned positive rational' number. Let's look at the

sequence formed by term -by -term differences:

(3) -. 2.9, 3.01 2.99, 3.001 - 2.999, 3.0001 .
2.999, )"
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Note that we could have subtracted sequence (2) from

sequence (1), but the result, in absolute value, would be

the same. The difference sequence is:

(4) K.2, .02, .002, .0002, ...>

which is clearly a null saampe. It should be observed

that the Cauchy sequences (1) and (2) both approach 3 and

in that sense are equivalent.

To show that is an equivalence relation, we must show

that it is a reflective, symmetric, and transitive relation.

Before we prove these properties, we introduce the

notation <a> to represent the sequence 4a a2,
2' '

a, >. Thus, we use 17?to denote the entire sequence

<1, 1/2, 1/3, .00, 1,4), ...> , and < 2P > to denote the

entire sequence <2, 22, 23, ..., 2p,

Proof:

(1) Reflexivity:' ap: ap

This result follows trivially from the defini-

tion of equivalent sequences; notice that the se-

quence formed of the difference of corresponding

terms is composed entirely of zeroes.

(2 Symmetry: If 4:1.41 )E-3><.b > then4b >ED 4a>
P P P P

If a p> 6
1:)

%. , then by definition of

equivalent sequences, 4!.a
P

- b
P

is a null sequence.

Therefore, by definition of a null sequence, for any

positive number r , there exists a positive
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integer N such that for all n > N ,

n
bd- 01 =

1

(an -b n)1 < r Now,

recalling the conclusion of Problem 7 -c on page

105, Ian - bnI 1bn

a null sequence,

positive number.

an Thus, A<bp ap> is

since 4. r, for r any

lience <b > 4 a "")

(3) Transitivity: If 4a > b > and (b >

then c *>

The first thing to decide is exactly what must

be established in order to prove the statement.

It must be shown that given any rational number, r1,

it is possible to find a positive integer, N , such

that for all n > N , (an - cn ) - 0 = 1(an cn )14 /I

If this can be shown, then 41,
P

will

be a null sequence and <a, > <c

The triangular inequality (page 105, Problem 7-

e) will have a central role in this proof. Before

attempting the proof, we demonstrate the form that

the triangular inequality will take. Suppose we

have lx
zl where x, zC 4. This can be

written as lx + 0 - zi without changing its vaa.ae*

Since 0 = -y + y , for all y CQ then Ix ZI

Ix
+0 -zI= y y zl * By closure of 4)

under subtraction, the expression Ix y y zl m

(x - y) (y z)1 is actually the absolute value
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of the sum of two rational numbers. This is

exactly the form of the triangular inequality as

stated on p. 105. Hence, Ix - z1 45

ly I

z_ This will be used by arriving at the

right side of the inequality and replacing it by

the left side of the inequality.

We are ready to construct a proof for the

transitive property. It is given that flapse-oz40>

thus, b > is a null sequence.

So, for an given rational number, r, there exists

a positive integer Ni such that for all n> N1,

Ian bnl r Since this statement is true for

az:given rational number r , it will be true for

a particular one, namely where r1 is the same

rational referred to above at the beginning of this

proof (the reason for wanting to look at -- will

become obvious later in the proof.)

Likewise, 4D)p) .4c,) :=4P' 44.191) "41 cp> is

a null sequence; so for au given rational number,

rt there exists a positive integer, N2 (usually

not equal to N1 above), such that for n;),N2 ,

ibn Cni 4: r! Again, this will be true for a

particular rational number, namely the same
2

number mentioned above.

Now, if it is known that I an bnk xi
. for

ri
n > s and bn en) 4 for n > N2, then both
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these statements will be true if we choose for

our value of N the larger of N1 and N2

Hence, we have that \ari w bnl .-2.r. and

bn 4 rl
for all n> N

2
Consider next the sum of these two expressions,

1 rl ri
(1) is bnl bn n14-ff- ---a-'

If we apply the traingle inequality to the left-

side of (1) and perform the suggested addition on

the right-side of (1) , we can conclude that

Ian cnkr1 for all n > N. This is our

desired result. Therefore, it has been established

that the relation between Cauchy sequences is

an equivalence relation.

We have shown that is an equivalence relation on the

set of all Cauchy sequences of rational numbers. By the

equivalence theorem, (ED partitions this set of Cauchy sequences

of rational numbers into non-overlapping classes whose union

is the entire set. Each of these classes contains all

sequences of rational numbers which are equivalent to each

other. The equivalence class of all sequences equivalent to

the Cauchy sequence <an> will be denoted by [an]

Definition: A real number is an equivalence class of Cauchy
sequence-i=rational numbers.



Thus, every Cauchy sequence of rational numbers defines

a real number. The sequence <an> defines the real

number [an]

Theorem: Every sequence 4, r, r, where

r is a rational number, defines a real

number.

Since the sequence <r, r, r, .0.0> is a Cauchy

sequence, it defines the class of all Cauehy sequences

equivalent to it.

Every rational number generates a sequence of the type

in the theorem. A terminating decimal, for instance, gene-

rates a Cauchy sequence in which all the terms are the

same. The rational number represented by 6.25 yields

the sequence <4-'0 no6., 0.> , Non-terminating
go=

decimals which represent rational numbers also generate

Cauchy sequences.

The decimal 6,24999... represents 6,25. This decimal

generates the sequence 100 1000 10000
...>which is

a Cauchy sequence. This sequence is equivalent to

/§2.2 .621 Q.U. 0 . To see that these two sequences

100 100

are equivalent, we compute the absolute value of the term-

by-term differences

62
54 I radU

625 - R41
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The absolute value of the term-by-term differences

yield this sequence .

5. l0000 '
--1> , which

is clearly a null sequence.

Both of these sequences are in the equivalence class

625
which definco the real number °r 6,25.

Similarly, from the representation of by by .333'",

we have the sequence i76,7i6, , :> wWch is

3 >4-111
equivalent to the sequenc%. <.`,

t. of

these sequences are in the same equivalence class defining.;

1
the real number Of course, both 6.25 and are

also rational numbers,
r %I

A non-repeating, non-terminating deciwal also generates

z, _
a sequence of rational
a,..;.411. P.t, *.t ''.1 '

decimal 24447217m
der, lvl] ..;%

numbers.

produces

For example, the nOl-reppano

the sequence:

which defines a real number. As indicated earlier, this

lp A

number is irrational.
I

The decimal equivalent of is 3.14159250..

5

decimal generates 6i,
31

lc.,

sequence of rational numbers which defines It

0 0
$ a

NOTE: in these last two sequences,, the three dots, . 0,

have been used to indicate that the terms of the

OtiqUenco follow the digits of the decimal, not

that-the tends follow a special pattern.
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Both numbers shown above, 2,1347 17... and It' are

irratf,onal numbers. Recall that any nosh -terminating, non-

repeating decimal generates an irrational number. The set

of real numbers consists of the set of rational numbers and

the set of irrational numbers.

As an additional example, the irrational number VT is

defined by means of a Cauchy sequence, each of whose terms,

when squared get closer and closer to 2 One such sequence

is<1, 1.41, , 1.414, 1,4142 " °:)>(non-repeating).

Cauchy sequences based upon (relatively) familiar decimal

equivalents of irrational numbers, such as\F and 17,,

provide the basis for the definition of these numbers.

Observe how once again the theoretical foundation in,

mathematics depends upon experience.

11.4 22EEPAEML2a21iLi2M32M1

Let p be the real number generated by the Cauchy

sequence (pr)p i.e., p = [PO , and let q be the real

number generated by the Cauchy sequence <,V , q = C'q
n

We now define addition for these two classes rpn) and rqn)

Pefinition:

Note:

p q Can qn:3

We should, of course, use another symbol instead

of *1-1 for the sum p q as we did for the sum

of two integers and two rational numbers, but as

long as the student recognizes that s4J stands

for addition of real numbers p and q when we

are using real numbers, we will not need a special

symbol.
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To show that the definition has validity, it is

necessary to prove that:

(a) <lon + qn> is a Cauchy sequence, and

(b) If<pl>and 4!qt)are two Cauchy sequences
n n

difference from (p
n
> and eqn> , respective.

ly, but defining p and q, respectively,

then<pl + qt> is equivalent to4Cp
n

+ q
n

Proof of (a):

qn.%)is a Cauchy sequence if and only if for

any positive rational A$ it is possible to find

a positive integer N such that

j(p + q ) (p q )J4.4.for all m> N and all n> N.
m m n n

Further, 4:1? and z(as are both Cauchy sequences,

so that it is possible to find terms of the two

sequences, p
N1

and q such that;
N2

IPm Pnl < Id for m>N1 and n > N1 ; and

106 1* q111 4: it for m> N2 and n > N2

But,

(Pm ci) (pn, cin)1 j(Pm- pn) (qm gni

m pni lqm qr)

This inequality is a result of an application of

the triangular inequality.

If N equals the maximum of N1 and N2, i.e.,



max (Ni N2), then

l(P., (Pni- qn, )1 .4. IP. Pn qr.)

for all zniI and n,,N. This is the required

statement for On -I- qn> to be a Cauchy sequence.

Proof of (b) ;

We must show that the sequence (1)
n

qn) q: )> or

4p
n

q
n

pl - 0 is a null sequence, We must prove that

n
for any rational number A-, one can find a positive integer

N such that;

(1) Pri+cin - - girl) 4. A. whenever n >1\4.

But ipil)491.pl>, and .c0 Q > so that <pn pn! and

<qn > are null sequences. Thus, for each sequence,

given an arbitrary rational number one can find positive

integers N1 and N2 such that;

- 14n 10
ni

and

Ian c1:11

From (1), by using the triangle inequality, we have;

pn
qn (4"pt ;11 "Pin ) +(qn-qin) n( IP "VI+ lqn n n'

Finally, we are able to conclude that by choosing N = max

(NI, N2),

Pn+ qn Pln In' Pn pint + cl qtn n
A. for

all n > N.
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qn pin - 0 is a null sequence and

On+ qy> <IDIn + gin>

NOTE: In the definition, p + q = + q , we could

describe this sum by writing
n n

P q =

f09 kzn", is a Cauchy sequence and 4zr),"'"eat,pn

We now turn our attention to the definition of multi-

plication of two real numbers

Definition: It p and q be real numbers generated by

the Cauchy sequences 4:1), and <q n`>

respectively; then,

P q [Pn gn]

NOTE: it.comment similar to that on page 134applies to the

symbol

A6ain, we must shown that p q is well-defined, i.e.,

c) gia> is a Cauchy sequence; and

a) I f <pril > and 7cill):> are two Cauchy sequences

generating p and q, respectively, then

gin> ZPn qn

We prove (c) but leave (d) as an exercise for the reader

(See Exercise 24) 0 To prove (c) we must show that for any

positive rational number there exists a positive integer

N such that

ii) 1pm gm- pn gniz,,ig. for all m:N and all n > N.

The aboolute value of the inequality (ii) can he



expressed as follows;

iii) fpm qm"Pn, Pmvqm"Pm qn 4* Pm q -41

iv) km qm- Pa qrdu IP:m (96 -qd qn (n Pn)I

Now applying the triangle inequality to the right-hand

side of statement (iv), we have

v) p ,fin
cini }Pm (cirri-qn)) 4" 1% (Pin di

NO' soppy** point (744) ova pa21 to each term of

the right side of statement (v)0 we have

vi) IP. qm Pn AIL lqa gni 9n1
IP' 1

It vii be shown (*) that since<pn>exId460, are Cauchy

sequences than there exisbs positive rationals Ky and K2

such that 1p1410 Ki and Igni K2 (Ki and K2 are upper

bounds of these sequences) The inequal ty (vi) becomes

vIt)

Bat sintle

4 g2, 141/4

rational numbers

gal + K2 1 P Pal
and 4$0, are Ca by sequences, then for

integers WI and N2 such that

1Pm" Pni

(*) See Appendix C

3

there exists positive

and I cia qn1



-139"

Again choose N max (N1, N2). Thus for m > N and

n > N using inequality (vii) we have

Pm ci,xn*-Pri, gni K A" k2 e42-

which is the desired statement.

lema.

Definition: Let a and b be real numbers, then a-b is the
real number defined by <an - br;) ; i.e.,

a b [an
b 0

Definition' Let a and b be real numbers and b 0,

Exercise 24

then a is the real number defined by
/an \B" b 0), i.e.,

13 4°

nr--/ a

1. If <an> and b > are Cauchy sequences of rational

numbers, show that a:a bn) is also a Cauchy sequence.

2. Prove that <an - bn> is Cauchy.

3. Prove that 4% bn) is Cauchy.

Li. Prove that an is Cauchy (bn 0).

5. Let a be defined by <an> and b be defined by <bn> ;

<an>e4ant> and 4bsz)d4on> Prove <an + bean bir>

Prove: 1) tn, bn)941n bln> 2) an bi>e(;In VII.>

3) /
bn/

7 Prove that the set of real numbers has all the properties

of the set of rational numbers.


