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PREFACE
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I personally assume responsibllity for any deficits.
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ERIC

ANALY SIS COURSE

INTRODUCTIONS

The main purpose ol this course ls o develop a loglcal
developnent of the number systems from the naturals through the
real number system, Starting from primitives, the materisl will
motivate the definition of the natural numbers si thelr extensions
to the Aintegers, the rational numbers and then to the reals,
Begides exposing sgtudents to the specifle content of the course,
the development hopes to enable the student vo beocome more
familiar with the spirit of a formal body of mathematics.

A second purpose of this course ls to develop pedagogioal
strategles which will enable the nalve mathematics student to
cope with its content, For the ultimate pedagogical goal of
these materisls 18 to use the revised versions of the coulrse
with future teachers of the elementary school not only in
programs offered at Teachers College but at other institutions
where undergraduate teacher training ie in full bloom,

Por these reasons, the material developed for thls course
will be sensii .ve to the feedback of the students., While the
course’s goals are approximately fixed, the pace, strategy,
problem sessionsg, and methodology are not. Whenevexr possible,
gtudents are urged to direct their commentary about the course
directly to the instructor or the assistant, The content is
more or less pre~determined; the pedagogy remains experimental.
The major question in this latter area 1s3 what methods ocan Dbs
devised to teach the subject matter, given the normal oonditlons
which surround a oourse offering?

(14 )




Given the pragmatic conditions of a course offering, what
methods can be devised to enaeble the students to master the
subjeot matter?

One of the main pursults of mathematlcs 18 generalization,
This pursuit has led to vast systematlzatlon and structure
throughout all fields of mathematics during the past 75 years.
What do these objects have in common? What are the properties
that define these objects? The numbers of our dally lives oiffer
us a good exampls of some very famlillar objects whose properties
are studles Ain different groups. The integer 43 and the rational
number + %» balong to different sets with different underlying
structurea, We shall examine these structures as we go along
for they are at the heart of the distinctions among number
systems,

Our work will begin with definitions snd development of the
natural numbers through the basgloc notion of sets., Using the
naturals as the basic ingredients, we shall bulld the set of
integers; then the latter set becomes the bullding bloock
upon which we erect the rational number system; and flinally we
extend the rationsls to the real numbers., A final map will

look 1like thist Posdlve
" ——y R _Na dur !
Integers . Zemo _J‘
_Rational _____ :
NUM6Q"3 -—ds—”ﬁgﬁ%
Rey/ | Non = Integrad . yisipou
eg Ratienals
Numbers Zr 5 '"/
Numébers
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Por years the study of the set of real numbers was relegated
to the senlor high school where it received cursory treatment at
best, ocertainly not in any systematic way. All that has changed,
during the last 10 years and, now, the development of the real
numbers starts in the elementary school in some programs, A
recent report* of the Caubridge Conference on School Mathematics
proposed that serious consideration be given to the introduction
of integers and rational numbers before grade 3, and irrational
numbers by grade 6, Infinite sequences of real numbers, it was
proposed, can be given "intultive consideration” at grade 6.

Because of the changes which are taking place not only in
our teachnological world, but also in the fields of early
education, the Cambridge Conference on School Mathematios hag
recommended that serious emphasis be placed on the training of
teachers who can deal with the new content.

3The Cambridge Conference on School Mathematics, Goals for School
Mathematios. Boston: Houghton MAfflin, 19673,
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CHAFYTER O: Elementary Logical Concepts

In mathematics we study collections of ohjiects and their
properties., To facllitate thls study we must have a language to use
in talking about these collections and properties, Two veqylnnortant
terms in this language are ‘and’ and ‘or’. These terms hnve specifilc
meanings so different individuals will recelve similar meanings from
interpreting a glven statement,

As normally used in mathematlics, the conjunction ‘and’ will
mean "both". Conslder the exampley

It is cloudy today and it is raining.

The conjunction‘and’ 1s interpreted to mean both events are occuring,
1.e.,'it 1s cloudy today® and "1t 1s ralning’

Examine the following statement;
The road is open and I drove to town.

This sentence means that both conditions, "the road is open” and
*I drove to town”, are satisfied,

We are frequently interested in the truth wvalue of compound
mathematical sentences. MNMathematlclaris use a two alternative system
of logic., By this we mean a given stacement 1s elther true or it
is false; we have no use for '‘maybe’s According to the commonly
accepted definition, the compound sentence formed by two statements
connected by ‘and’ will have a truth value of true.iff both statements
have truth values of true. Therefore, the statement

The road 1ls open and I drove to town,

will have an affirmative truth value iff 3t is true that "the road
is open”and it is true that "I drove to town’. The symbol commonly
used to represent ‘and’ is A .




‘or’ 1s given

As normally used in matnematics the disjunction
an incluslve meaning. Consider the statement;

"It is raining today or the sun is shining.”

This statement wlll have an affirmative truth value when either

"It 1is raining today” or "the sun is shining” have affirmative truth
values, or both statements have affirmative truth values., The symbol
commonly used to represent ‘or’ is ‘v’ .

In much of everyday life ‘or’ 1s used to have the exclusive
meaning. Consider the statement made by a mother to a child.

“You may have a piece of candy or a cookie,”

The mother undoubtedly means the child can have one or the other but
he can not have both the candy and the cookie. 8tudy the two uses

carefully as they will arise in the mathematics to be discussed during
the remalnder of these materials,

Another compound statement frequently used in mathematics is
the “conditional” or 1f .#,, then .Jf."statements, when $ and ¢ denotes
statements of some nature., Once again,the truth value of such -
statements is of upmost importance.

Conslilder the following conditional statement as a contract
and we shall attempt to arrive at the usual truth value by deciding
when the contract 1s upheld and when it is broken.

Example: If I go to the store, then I will buy you a coat,
Case 1) If I do indeed go to the store and I do indeed buy you

a coat, the contract 1s certainly upheld. (Assign a
truth value of true)

Case 2) If I do indeed go to the store and I don’t buy you a coat,
the contract is obviously broken. (Assign a truth value
of false)




Case 3) If 1 con’t go Lo the atore end 1 Ao inrdecd buy you o coat,
the contrach wren’t broken., Hothing stoted 5.3 Lhe cost
must come fromw Lhe shore, nBElan A truth volae of true) -

. (A

Case 4) If I don’t go to the store and [ don’t buy you a cont,
the contract wana’t broken. (Assirn a truth v=lue of TUE )

To summarize these results we have For pasuq

Mml:v)nommv wl"*"l’"ﬂg pﬁs’i’? q ”e
T T L
i i F
i i) i
B 2 7,

Consider the following exanple;

If n divided by 4 leaves a repainder of zero, then
n dilvided by 2 leaves a rersinder of zero.

We leave 1t to the reader to check the trath value of this exarple.

Another foim of a compornd statenent is the "bioconditional’
This form can be broken into two oonditiohal statements, The notgtion
for biconditional 18 p&pa, read » L and only if g, The statement
pe=y @ can be transformed into "if p, then q and if q, then p%. A
brief form commonly used is *p 1ff q*. )

The reader can use a combination of previour information to
determine the truth value of a biconditional statement,

The properties dilscussed herein will be used extensively in
the remailnder of the materials.




CHAVTER I: Sats and Operations on Sebe

1.3 Inbroduchica

DLUSRATAMPIAT M5 R w0 AP

In ©hic chapbor we develop a numbar of dofinitions and
preliminaey nablens neoesaary to the cntbive work. Those fundemonicl
ddecs of matheuntles oacur and roour chroughous this wmoterial. They
give risc to basie styuctures or patterns which holp ¢o intesrate
and stronzthon mathonavionld ideas. Tho omphasisc on mathomatlical
BHNGTUYO uus&aaﬁé Ohin® uctoased ciwhaslt muos be given Lo suel
baszic prinociplics and patlerns os thoso inhoront in numbor ond
nunaraticn systens, end to the pwopowrtics of oporaviens from vnieh
we abatroct gownsralizntions. - AlL of these aro integrated by such
- oonecpLs o8 ths nobtion of cet, notlen of o number nystom, the notion
of lopical syotonm, and the notion of a ¥olablon.

1.2 gobn

| Wa bogin by amaextins.tha% tho ddoo of o set As famdiliay

to o)l studcnbo. Vo chall not atvoupt to define set. Wo ghould
uge it s o primitive oy undefinod torm to define other torms. A
get of numbers, a 6ob of lotters, a collodticn of bools in o Library,
a 6lass of studonto, o g6t of dishes, arc all oxamploeos of sets.

. The objcoto moking up o cot are onlled: glements or membexs
of the mob., In the ozauples of sois given in the previous paragraph,
the individual nombers, letters, books, pernons, or dishen in n sob
arc the clomonts oy nembers of Cha pet, The eloments or members
belonging to a oot ave dotorminod by the dlstiaguiching charasteristle
of tho B80% o

Por cxomple, consider all tho books in g libroxy as e set.
Each book in tho 1ibrary nay bo, in gcac respoots, differcnt from
or similar to all other books in tho 1ibrary. Howevoer, in this
gltuntion the proparty used to form the oot is the faot thet the
book 16 in tho library. This proporty gives ua o y\le~defined
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collection of objects. When the set’s property is sufflclent to
determine whether or not any given object is n menber of our set,
the set is a well-defined collection of objects.

To indicate set merbership we shall use the standard notatlon,
L.e.,€; for non-membership we shall use & . The symbol'€’ls read,
*15 an element of” or "is a member of“; the symbol ¢ is read,
*is not an element of” or “is not a member of.

Consider the following situation to demonstrate the use of
these two symbols. ®Suppose “Bill” is a member of the mathematics
class but "Valinda” is not a member of the mathematics class, If
we denote the mathematics class by the symbol M, *B111” by the
symbol't and "Valinda” by the symbol'v, we can express the facts of
the previous sentence in the following abbreviated form:

b€ M, and v & M.

Thege abbreviated forms are read YB111l is a member of the mathematles
class?, and “Valinde is not a member of the mathematlics clags’
Note: In almost every case in these materials sets shall be denoted

by Capital letter (A,B,C, ...) while lower case letters
(8,0,0,d, ose) Will be used to denote members or elements of

gets.,

When discussing a set the aquestion should arise as to what
objects we cen consildexr for membershlp in the set., The oblects we
can use are called permissible elements, and taken together, they
form a set called the universe of discourse ox simnly the universe.
Consider for examnle, the set of names of the months of the calendar
year which have ‘J’ as thelr initial letter. The universe of
discourse, in this instance, would be the 12 names of the months of
the calendar year. The set defined would contaln three namess
January, June, and July.

Now that we can define sets, there 1ls a need for a procedure
to communicate efficiently this concept. We use braces {...} to
include the elements of a set. Thus {2,&,6, ...} is the set of




positive even interers; the set {0,1,2,3,4} is the set of nll natural
nurbers less thon 5. In the first example, note the use of ‘...’ to

{ indicate that the established nattcrn continues indefinitely. These

| three dots for numbers sre equivalent to 'ete’ in the Enelish language.

On many occasions 1t 1s nossible to speclify a set by listing
the nares of all its elements. When all the elements are listed
specifically, or indicated by '...”, we are using the roster or
listing method for disnlayinez sets., For examnmle, sunpos~ the members
of a committee are: Jane, Bob, Ted, and Mary. This set could be
specified by: {Jane, Bob, Ted, Hary}. This would be read the '

set whose members are Jane, Bob, Ted, and Mary .

EXZRCISE 1

Write in set notation using the roster method:
(1) The set of all whole numbers between 90 and 100 (do not
include 90 and 100).,

(2) The set of all whole numbers whicli when added to 10 give s
sum of 17.

(3) The set of all whole numbers whose squares are greater than 9.

(4) The set of individuals who are president of your college.
(5) The set of authors of your mathematics textbook.

1.3 Alternative Notation

Often it is awkward to list all the members of a set, For
instance, the set of all rublic school teachers In New York City.
For convenlence, we express this set and others like it in the
following manner:

{xlx 1s a public school teacher in New York Citx} :

b




To emphasize the meaning of this expression, consider the
following dlssection, showing how it may be rend:

{...} X ' X 48 a public school
teacher in New York
the set of all elements such that City.
X

The mathematical stetement:
{xl x€ Aand x€ B}, may be read as follows?

"the set of all elements x such that x 18 an element of set A and
x is an element of set BY, This method of defining the membership

of & set 1s called 'descr;nt;xg‘mgxhgd".

EXERCLSE 2

Rewrite the sets of Exercise I using the descriptive method.

1.4 Finite and Infinite Sets

- Throughout your mathematlcal endeavors you will be- confronted
with sets contalning a great variety of elements., Some of these sets
will have finite membership while others will have infinite member-
ship. The followlng sets are examples of sets with finite membership:

(1) the set of players on a basgketball teams
(2) the set of quarterbacks on a baseball team;

(3) the set of residents of New York City; and
(4) the set of natural numbers less than 10,000.




Definition: A sot is findte if it 1s emrty or if its rerbers can
be counted hy & natural number.

Conslder the setl {2,4,6,8,10, ..2}, the membershin of this
set can not be counted by a natursal number. Th;s set is called
"infinite,

Definltiont A set is . infinite, Af it is not finite,

1.5 Rd&atiops between Sets

éuppose ve have two sets, A and B. To be specific let A
denote the set of all race horses and B denote the set of all horses,
It should be rather obvious that all menbers of A are also members
of B, That 1s the elements A aré elements of B and A doer not have
elements which fall to be elements of B. When this duality of members
occurs A is called a'‘subset’ of B. |

Definitiont A set A is a subset of set B, 1f and ocnly if every
element of A 15 an element of B

We write AC.B to denote A is a subset of B, The stutement Boa
stands for the same ldea as ACB., Making use of the notation introduced
to this point, the definitlion of subset can be stated as:

(AGB)@wﬂ( xrAw?yeB)
Some other examples are!

1) X = {1,2,3,4) enda ¥ = {1,2,3,4,5]
XC ¥
2) X = {car, trucle, motoxcyole} and Y {truok, car,
motovoycle}

Xy

3) The set of 'squares 1s a subset of the set of
rectangles

*




We write A¢B whenever A is not o subset of B, Another imvortent
relatlon that can exlst between sets 1s equallty., Iet N = {house,
garage, table] and N = {table, parage, hovse} . By exarining these
sets carefully the rearder should obserﬁg that 1) M Ny since every
-element of I is an element of N; 2) N#M, since every element of N
ls an element of M. When both the relatlions occur, set M is sald
to be equal to set N,

Definition: Let A and B be sets, BSet A equals set B AL and only
1P set A 18 a subset of set B end set B is a subset of

set A,

In shoxt, A = Bé&=p A< B and BC A, “ Another exanple of equallty of

set 1s the following:

M= {x|x is a state of the U.8, which borders on the
Pacific Ocean}, and

N = {California, Oregan, Washington, Alnska, Haw&i@}.

The reader will observe that NeN and N<lM, hence M = N, Also one:
can reason M = N thus M must be a subset of N and N must bz a subset
of M.

From time to time in discuseing setes and set relation a wvexry
particular set with crucial propertlies wlll arlise., For example one
might mention"the set of all humens in a room who are 7' 6" tall’
Upon examining the persons in the room he finds no one gatisfying
the stated conditlon. Thus the set defined contains no elements,
such a set is refer to as a'null set' or'‘empty set!

Definitiont The null get or empty set 1y a set whlch contalns no
elenentcs ,

The null set is usually depoted by @, 8 letter of the Swedish
alphabet ox { }, a palr of braces vold of elements, '

L]




EXIKCISE 3

(1) State the relatlionshlps among these set:

A= 11,2,3, ... 10§
B = {2,4,6,8,10}

C = {1’335’7’9}

D= {2,4,6]

(2) Is A a subset of A? Explain
(3) Show that the empty set i1s a subset of any set, including itself,

(4) Show that the empty set is umique.

1.6 Carteslan Products

There are several methods for combining sets to yleld a new
set, The first method we shall consider is fundamental in the under-
standing of meny of the early ideas studled in elementary mathematlcs.
The idea is very closely related to the directions given for finding
e location on an ordinary road map. Suppogse the index shows the
location of your destination is K-4%. This means you locate your
destination by following the vertical boundary until you locate section
K3 then follow the horizontal boundary until you find section A,
Thus the palr K~-4 locates a posltlion on the map.

Given two sets, €.gey A = {Bill, Bob, Joe} end B = {movie,
swimming} we can form a new set composed of all possible palrings
of boys to activities. BEach element of the new set wlll be composed
of two objlects or ideas, In the case under consideration the first
entry in the palr will be the name of a boy and the second entry will
be one of the activities. The elements for thls particular case are;

{(Bill, movie), (Bill, swimming), (Bob, movie),
(Bob, swimming), (Joe, movie), (Joe, swimming}.




This new set'is cnlled the Carteslan Product or Cross Product
of sets A and B. It should be observed that the elements of the

carteslan product are not elements from elther set but are what
we call ordered palrs,

S PIAP AT PRA AR o 111 B

by A% B, is defined as the geb of all ordered palrs
(a,b) such that a is a member of set A and b is e
member of set B,

Definition: The Carteslian Xroduect of sets A and B, symbolized

Moking nwse of our notatlon, we write:

AxB = {(a,b) | ae s end be B},

i

We read AxB as "A cross RB,"

Fromple 1¢ An example of a carteslan product thal rany
students have had experlence with 1s commonly called the oarteslan
plane., Thisg set is usually indicated by: '

where % and ¥ are both the set of real numbers. Soma elerents

of the cross product would be: (2,3), (0,1), (~1,5), {2%,3), ( 2,0).
In general we write!: X« ¥ = {(x,y)|=x6éX and ye ¥J, 4.0., the

set of all equal palrs (» ,y) such that xc¢X and ye ¥,

Example 2! A = {x,7,2} B = (1,2,3}
cAXB = (1), (2,2)y (%,3) 5 (FsL) s (742) 5 (¥93) 5 (2y1) 4 (2,2) 4 (2,3)F
BrA = £(1,2),(2,%),(3,%), (1,5),(2,8),(3,¥) 4 (1,2),(2,2),(3,2)}

Notice in the above example that A% B # BXKA, in general. Also,
that A% B and B A are gets.
: [

Exercise U

(1) when is AXB = BMA,




]2

(2) If A has m elements and B has n elements, how many elements
are there in A» B ? in Bx A?

(3) How wnny elounents in ## Z where 2 is any set? in 2 xg%

(%) Iet n(A) stand for the number of elements in A, Surpbse
n{A) = q; tuen w(AxA) = 7

1.7 ~ Owerations on Sets

As indicated in the previous sectlon, carteslan product is

Combinm .
not the only way of u&&ﬁéftwo sets to form a wew set. In thls sectleon

we shall study two more procedures, those of intersection and union,

Sometimes two sets have elements in coumen, for examnle, leb
A= {a,b,c} and B = fc,al. You should obscrve that'c’is an element
of set A and ¢ ls an element of set B. A new set is formed by
taking all the elements in common to both sets. This new set 1is
celled the intersection of the original two sets. The synbol used
to indlcate the operation of forming & new set 150, '

Definition: Let A and B be sets. The interseotion of A and B
(ANB) 1s the set of all elements that belong to
both set A and B.

Symbolically, ANB = {x| xe A and xa B} or x€ (A/1B)&> x& A and

xe B, AAB is read "A intersection B" or 'the intersection of A and B,
The reader should observe the close relation existing between the
definition of intersection and the meaning of the conjunction ‘ena’.

Exsmples: 1) X = {orange, apple, pear, 1emon}

Y = {peach, orange, pilum, fig}
XNY = {orange}

[ ]
2) M = {,193959719}
" N= {x]x is a positive numberf
MAN = N,




To emphasigethe relation between intersection of sets and
the meaning of the conjunction ‘and’ , as well as placing emphasls
on the interpretation of the definition of intersection, reconsider

example 2) above;
MAN = {x| x€ M and x6 N} .

In example 2), we observe that when x is replaced by 3,
'3€ M and 3€ N’
is true, therefore 3€ MAN. On the other hand, 1if x 1s replaced by
12, we have
‘12€ ) and 12€ N’
which is false. Why? Thus 12¢ MAN,
It the two sets have no common elements, they are sald to be disjoint.
This fact 1s often indicated by, stating that the intersectlon of
the two sets 1s empty. Symbolically for sets A and B, ANB = .

A third procedure for forming a new set from two glven sets
18 union. The reader should see that the union of sets 1ls closely
related to the meaning of the word "or".

If set A = {a.b,c} and B = {1,3,5} we can form a new set by
teking the element of set A, together with the elements of set B,
This new set 1s called the unlon of A and B.

Definition: Let A and B be sets. The unlon of A and B (AUB),
is the set consisting of all elements in set A or 1n

set B.

Symbollcally, AUB = {x]| x€ A or x€ B}, The word‘or’ in the previous
definition means "inclusively”, i.e., at least one of the statements,
‘x€ A, 'xe€B’, 18 true,

To emphasize the relation between union of sets and the
meaning given to the disjunction ‘or’, as well as placing emphasis
on the interpretation of the definition of union, oonsider the
following example} .

3) A= {1,2,3f B= {5,7,8
AUB = {1o203959798}-




By the definition AUB = {x| x€ A or xa B},

In example 3), we obscrve that when x is replaced vy 5,

‘se por 5€B

is true, therefore 56 AUB., Also,1f x is replaced by 2,
'‘2¢ A or 2¢ B’

is true, therefore 2€ AUB. On the otherhand,if we randomly

substitute something for x, say 3, we have

| ‘11 ¢ A or B’

E which hs false. Thus #¢¢ AUB,

To emphasis & point about the notation of list'ng the elementis
of & sct formed by taking the unlon of two arbltrary sets conslder

this example.,

k A= {a,1,2,b} B = {1,2,3,4

| AUB = {8,1,2,3,/,b}]

It should be observed that elements which occur in both set A end

set B are not listed in a repeated fashlon in AVB, l.e.; AUB is
not listed as {a,i,z,b,lgz,B,M}g It is part of the meaning of the
symbolism that we are to consldel as elenmentes of this set the objects

or 1ldeas which the symbols nane,

1.8 Venn Diagrams

We consider the representation of sebs as ¢lreular reglions,

including the boundarles:




EXERCISE 5

Characterize each of the followlng as true or false,
sure you make an honest check either from the definitlons,
Venn diagrams, or from other representations:

(1) AYB = BUA

(2) ANB = BNA

(3) Ac(ANB)

(4) B (ANB)

(5) (AUB)c A

(6) AD(ANB)

(7) Ac(AVB)

(8) ADB=» ANB = A

(9) ADB=>ANB = B

(10) ADB=» AUB = A

(11) A>B=» AUB =B

(12) (ANB)AC = AN(BNC)

(13) (AUB)VC = AV (BVYC)

(14) AVUE = A

(15) An(Buc) = (ANB) U (ANC)
(16) Ang = A .
(17) (AUB) N (AVC) = AU(BNC)
(18) AVA = A

(19) ANA = A

Make




1.9 -« Complement

If one has a fixed set of objects to whlch the discusslion
15 1imited and all sets to be discussed are subsets of this fixed
set, this overall or flxed set is refer to as the Universe, As
mentioned in section 1.2 this fixed set is frequently called the
Universe of discourse, since 1t is subject to change as different
problems and sltuatlons are considered.,

Let’s consider the sltuatilon where the universe of dlsconrse
1s the set of all dogs. A very nopular breed 6f dogs 18 the toy
poodle, Thls special collectlon of dogs would form s subset of
the entire collection of dogs. We can use a Venn diagram to illustrate

the situatlon.,
'
-
o,

Tt is rather common practice to represent the unlverse by
a rectangular region and particular subgets by circular regions,
For examnle if we let 2 denote the set of all dogs end P denote
the set of toy poodles the dlagram would become

“
/
a
One should observe that not all dogs are toy poodles, hence

we can form a set of all dogs which are not toy poodles. This
new set is the complement of P with respect to the Universe(Wk

Dogs

Definition: If ACX, the complement of A in X(4’ or'X - K) is the
get of all elements in X which are not in A.

Symbolically we can wrlte
W - A=A = {x' x€ X and x#A}




The shaded region in the following dlagram represents A §

Example: 1) Let X = 1,2,3,4,5
A= 1,3
XeA = A = {2:“’:5}

2) Let X = {x] x is a whole number}
A= {x| x 1s an even whole number}

X-A = & ={x|x is an odd whole number}

Note: Sometimes the expression X-A 1s defined ag the complement of
A relative to X. The reader should observe that the comple~

ment of a gilven set 1s always relative to some Universe of
definition,

:‘EXERCISE 6 ~ X
LA
C ¢

Using the above model for each exercise, shade the followlng sets?

(1) A/ (5) A’ N B
(2) (aUBY (6) (AN B )nc’
(3) A4V B’ (7) 8%

(4) (AnBY (8) x’




F
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CHAPTER II: Relations and the Equivalence Theorem

2.1 Relations

Another very powerful and useful concept in mathematics 1s
that of relation. Its power comes from its simplicity while 1its
usefulness comes from its generality. We introduce the concept
of relation early because special instances of relations are
helpful in procuring a clear understanding of the abstract idea
of number. Two very fundamental relations which will facllltate
the development of the concept of number are equal and equivalence
relations. Before discussing these relations in particular, we
shall attempt to give a general notion of what we mean by a relation.

You are already famlliar with a number of relations which
you use regularly. For exsmple, "is better than” 1s a relation
you might use to compare the abilities of players of a football
team, the content of textbooks, the instruction of professors,
etc, Although, your meaning of the word better may differ
from your friends, you are palring objects of some set by making
the various comparisons, Another relation™s the cousin of" might
be a relation you can employ to compare members of your famlily.
Some other common relations are:?
1) "is longer than" in comparing rocms, tables, eto.
2) "is taller than" in comparing bulldings, people, horses, eto.
3) "is brother of" :}
k) "is father of"
) "is a subset of" in comparing sets.
A8 you should begin to see there have been many instances in your
pass experiences where you have used the ooncept of a relation,
You should also observe that these relations were oomparisons
between objects of a set or poasible objects of two different sets.
These sets, for the most part, are well-definsd. For example, when
oconsidering the relation "is taller than" the set of people under

in oomparing people, dogs, eto,




consideration might be the enrollment of your math class. In
most Ainstances, this set 1s well-define.

Let’s look at a relatlon which 18 not new to most of you
and whioch we will consider in greater detall later in the book,
The relation is "ia greater than" for the set of whole numbers,
W= {0,1,2,3, ...] . We can state that 7 is greater than &,

9 18 greater than 2, and many additlonal statements comparing

two whole numbers with this relation, For brevity, we can
symbolize this relation by 'Gy i.e., G represents the relation

"1g greater than"., Then we can write 7G4, 9G2, and so on., These
statements will be read 7 is greater than 4, 9 1s greater than 2,
respectively.,

In general when given a relation R we can write xRy, for x
and y members of the set(s) under consideration, and we shall
mean that x ig related to y by the relation R,

Another way to symbolize a relation 1s by using ordered
pairs. Consider again the relation "is greater than" defined on
the set of whole numbers, W = {0,1,2,3,4, ...}. Mathematically
we can define "is greater than" (denoted by G) as a set of ordered
palrs (x,y) such that for x and y members of W, x 18 greater than
y. Symbolicelly, G = {(x,y)| xGy, for x, y& W}, Observe that
the ordered pair (9,2) is a member of G, 1.e., (9,2)€ G} similarly,
(?7,4)e G, (14,5) € G. But, (2,9)¢ G and (10,20)¢ G, As indicated
above we can state (x,y)€ G whenever x and ye W and x is greater
than y.

In summary, given a set X and a relation R defined on set
X, the relation will be a subset of the cartesian product of the
set cross itself. We can designate the members of this relation R
by either of the previously mentioned methods:

1) for x and y members X , xRy or

2) for x and y members X, (x,y)€ R.




-20

More generally, a relation compares objects from two seis
X and ¥ (such as X a set of galvanized pipe, and X a set of boards
for the relation "has the same length as")., In this case the
relatlon 1s a subset of Xx Y, Much of the work in this book will
rest on relations which are subsets of the Cartesian Product of
the same set,

2,2 Equivalence Relation

To thls point we have been discussing re.ations in general,
but many relations have characteristlcs or properties which allow
categorization of the relatlions according to the properties they
possess, Among the lmportant properties of relations is the
reflexive property.

pefinitions Iet X be a set, A relation B on X 1s reflexive 1if
and only if xRx, for all x€ X,

Alternative Definition: A relatlon R on X 48 reflexive if and
only if (x,x)é R, for all xe X,

Wwhat this definition states is that every element of the glven

get has the given relationship with itself. The relation "the -
same age as" defined on the set of students in your math class

oclearly satisfies the reflexive property. For example Af Jack

is a member of your math class, he is obvliously the same age as
himself. A similer statement can be made about gvery membeyr of
the class. Thus, the relation "the same age as" defined on the
roster for your math class possess the reflexive property. We

sey the relation is reflexive on the defined set.

Some other exsmples of reflexive relations ares:

1) "attends the same sohool as" on the set of U,8. oltlzens

2) "oongruent" on the set trilangles of a plane
3) " is ag strong as" on the set of horses

4) "is equal to" on the set of whole numbers

5) "is subset of" on a collection of sets




There are many more which could be listed, but there are also
gsone relations which are not reflexive, To establish when a
relation is not reflexive we must produce an element of the set
which does not have the gwen relation with itself. Conslder the
relation "1s th2 father of" defined on the set of living and
dead human beings., George Washington is obviously an element of
the set but clearly George Washington is not his own father,
Some other relations which are not reflexive are:

1) "As greater than® on the set of whole numbers
2) "As taller than" on the membership of your math class
3) "is perpendiocular to" on the set of line in a plane

The symmetric property is another common oharasteristic of
many relations,

Definition: Iet X be a set., A relation on X is gymmetric if an.
- only Af when xRy then yRx. | |

A relation on X is gxgggtr%c if end only
1f when (x,y)€ B then (y,x)€ R.

What this definition states is that whenever twn elements
are paired in one order they must also be palred in the reverse
order., Suppose you have a relatlon which has two elements, one
of which is (Jim,Bil1ll) Af the relation is to be symmetric the
other element must be (Bill, Jim)., Remember, there 1s nothing
in the definition stating that x and y must be dlstinot.

Some examples of relations whioh are symmetrlc are:

" "
1) "has the same birth date ““MZ ...... defined on the members of
2) "the same age as" your math olass

" "
3) "is parallel to eevow.. oOn the set of 1lines in a
k) "1 perpendicular to" plane

5) "is equal to" - —— on the set of whole numbers
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This listing is not égggiﬁs&ve but there are also relations

which are not symmetric., Some examples of these relatlions are?

1) "48 subset of" on a collection of sets

" " "
2) "is older than®™ ) defined on the members of your
3) "is taller than" math olass

k) "is lesg than" on the set of whole numbers
The third property of extreme importance is that of translitivity,

pefinition: Iet X be a set., A relatlon R on X is trensitive if
and only if when xRy and yRz then xRz,

Alternative Definition: A relatlon R on X is transitlve 1f and

cgnly)if when (x,y)€ B and (¥,z)€ R then
XeZ)E R

A warning remark 1s also in order pertaining to the meaning of
this definition. There is nothing in the definition requiring
that the three elements be distinoct, l.e., X mlight equal y or z.
What is stated is that when you find two elements of the relation
which are of the form ( = , % ), (% ,/) then in order for the
relation to be transitive you must find the élement (e, 1) in
your relation. The interpretation of this property rest heavily
on the logical of implication (conditional) statements, It may
be useful to review the brief discussion in chapter O.

Some examples of relations which are transitive are as follows:

1) "is a subset of" cewem-  ON 8 COllection of sets
2) ".s younger than"
3) "seated in the same row as”
k) "less than"

J?~... on the set of whole numbers
5) "equal to"

Examples of relations whioh are not transitive:
1) "has a different helght than"
2) "has a different first initial"”

on the members of your
math olass

:}on the members of your math olass
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3) "perpendicular to" on the set of lines in a plane
b) xBy Aff x~-y <5 on the set of whole nunmbers,

Filnally, relations may possess all three of the aforementioned
properties, One of the most common relations whioh possesses all
three 13 equallty. Any relation which possesses all three is called
an equivalence relation,

Definition: Let X be a set. 4 relation R on X is an equivalence
| relation 1f amloniy if R is reflexive, symmetric,
transitive,

EXERCISE 7

(1) Give an example of a reflexive, symmetric and transitive
relation,

(2) Give an example of a relation that is reflexive, symmetrio
bat not transitive.

(3) Give an example of a relation that is reflexive, transitive
but not symmetric.,

(4) Give an example of a relation that is transitive but neither
reflexive nor symmetric.

(5) Iet X and ¥ be dis)oint sets, and Re XX ¥. Can R be an
equivalence relation? Explain your answer.,

(6) Let R be the relation: ARB 4=>AnB ¥ ¢, What properties
does R possess?

(7) Iet R be the relation ARBe=» ANB = ¢, What properties
does R possess?

2.3 Equivalence Theorem

We shall now examine a baslo property of an equivalence
relation. Thls property will be used at several significant points
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in the development of the real numbers. Whlle this property

may seem rather obvious, we must convinoe ourselves that At has
this "obvious" behavior. We first need a preliminary definition.
Definition: A partition, P, of a set X is a collectlion of subsets

of X: A,ByCy ee..y such that each element of X 18 an
element of one and only one of the subsets.

This means that any two of the subsets A,B in the partition, P,
are disjoint, i.e., ANB = @3 and X 1s the union of the subsets
in the partition, .

Here’s a disgram of a partition:

A B c D
N—| = | ¢ | c |3
I J K L

Note: We shall use the notation ~ to denote an equivalence relatlon.

Ilet [a] = {x l x€X and x~al. Thus [e] is the set of all
elements in X which are related to a. '

Definition: ([a] 1s called the equivalence class generated by a.

For the relation "is congruent to" and for the specific
triangle A ABC = a, [a] is the set of all triangles which are
oongruent to A ABC. The equivalence class generated by A ABC
13 the set of all triangles ocongruent to AABC.

In an attempt to make the previous notion more realistic
let’s consider a relation defined of the members of your class.
Iet B be the relation "has the same birth month as"; You should
ocheck whether R 1s an equivalence relation., If we apply this
relation to the olass we find that the olass has been divided into

LR TR LT Em R ont
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at most twelve subsets. Further more, these subsets are disjolint
and every member of the class 1s a member of some one of the
gubsets. Hence Aif you review the definition of partition you

( should observe that this relation partitioned the classg.

Now let’s find the equivalence class whlch ‘vou’ generate.
Recall by definition this wlll be the set of all members of the
class whose birthday falls in the same month ap yours, Suppose
Betty 18 enother classmate and her birthday 1s in the same month
as yours, what is the relationship between the equivalence claess
generated by ‘you’ and the class generated by ‘Betty? What is the .
relationship between the class generated by ‘you’ and the subsets |
contained in the partition.

Before attacking the key theorem we show what relationshlp
holds between equivalence classes generated by elements of X
which are related by an equlvalence relation R. It is claimed
that for a and b€ X aRDb iff [a = (b]. Recall from
Chapter O this biconditional statement oan be written as two
conditional statements connected by a conjunction.

Thus we have a) aBRb=>(s] = [b] and
b) [a] = [b] = aRb.
Let’s oonsider D) flrst:
By hypothesis f[a] = [b] and by definition ae€ (a],

since fa] = [b],by definition of equality of sets
a € [b]. Hence it follows by definition
of equivalence olass aRb.

Secondly,we wish to show that [al = [b]. Recall that to prove
these two sets are equal one must show that fa) C [b) and [b] C [a].
Let o be any element of [a]s Then ce€ (a] , we have that oRa by
definition of equivalence class. Now aRb by hypothesis. Taking
oRa and aRb since R 1s an equivalence relation we use the
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transitive property which implies that cRb. Again by definition
of equivalence olass c€& [bl. Each element of [a] 18 an
element of [b], so by definition of subset,[a] c [bl

In a similar fashion we prove [b]l < [al ILet d be any
element of [b)}. Hence dRb. By hypothesis R 18 an equlvalence
relation so R is symmetric. Thus since aBb we have bRa, Now
dRb and bRa using the transitive property of R we conclude dRa.
Therefore d € [a]. Hence, each element of [b] 1s an element of

[h]. so [b] c [4d.

[a] c (bl ana (] ¢ [a] = [a] = [b].
These conocepts are often stated formally in what 1s know
as the Equlvalence Theorem,

Theorem: If X iz a set and R is an equivalence relation defined
on X, then X is partitioned into non~overlapping
squivalence classes, and conversely.,

We are assuming that R is an equivalence relatlion.
on set X. We would like to show 1) every element
of X 18 in some equivalence oclass of X which is

created by the relation R, and 2) the equivalence

olasses are elther equal or disjoint.

let’s consider condition 1) first.
Proof of 1):

Iet x€ X, x will belong to an equivalence class., In
particular, x € [x] since by definltion (x] = [y'f xl ny] and
R 1s given as an equivalence relation,hence R is reflexive, l.0,,
xhx.

Now the second part of the problemjthat of showing "two equivalence
oclasses, are either identical or disjloint, 1i.e., for a and b € X,

(@) = (] or ] N [v]= 4.




Suppose [a] N1 [b] # # then there exists x e X such that

x e [a] and x € [b]. But then xRa and xRb this implles aRb (why).

Now since aRlb we can conclude that [a] = [b] (whyd.

We state the converse of the equivalence theorem without qwing

its proof,

Theorem: If a set X is partitioned into non~overlapping classes,

then there exists precisely one equivalence relation
for which the given oclasses are equivalence oclasses,

EXERCISE 8

(1) Consilder the set of all integers: {... ~3, =2, =1, 0, 1, 2, 3,...}'
and the relation Bt x = ¥y 1is divisible by 3 where x and ¥
are integers. For example, 7R4 since 7 =~ 4 1a divislble by
3. Also, (13,10), (25,22),(60,30) € R . Show that R is an

equivalence relation.

(2) What are the equivalence classes of (1)?

.(3) Show that the equivalence theorem 1s satisfied for example (1).

(4) Let X = (a,b) a,b are integers . Define R on X by
(a,b) R (¢,d)s=> at+d = b+o.

(a) Show that R is an equivalence relation,
(b) What are the equivalence classes?

i




ChArTiR IIT: Functions

We now turn our attention to relations between sets X and Y.
As you will observe, the sets X and ¥ need not be the same.

We will glve the definition and an elementary treatment of
one of the most immortant concents in modern mathematlics -~ the
function. Think of a relation as a way of relating the elements
of two sets and you almost have the ldea of a function, except
that a function is » speciai kind of a relation, When we defined
a relation R we saild that R was a set of ordered palrs. For
example, 1f R is the relation "is less than" over the set of whole
numbers, then (3,4%) € R, (9,10)€ R and (14,400) € R.

Consider this relation: the number "squared", This relation
is made up of‘%1,1),(2,4),(3,9),(4,16), .».}.We can draw a "map"
of this relatlion!

1 .y
2 vq'
3 + 7
L _, 16

The arrows in this map indicate that 1 corresponds to 1,2

corresponds to 4, 3 corresponds to 9, etec. What we have done
is to match elements of one set with elements of another set to

form ordered palrs.

If we were to draw a map of the relation "is less than,"
part of the map would look like this:
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[ [ ]
L] L]

One Ainmportant difference marks the two relations shown above.
In the case of the squaring relation each of the first numbers
corresponds to one and only one second number,while for the "is less
than" relation, each of the first numbers corresponds to more than
one second number (in fact, an infinite number). The first relation
is a function; the second relation is not because of thls difference,

We shall define a function as a speclal subset of XnY,

Definition: A function, f, from X into ¥ is a subset of X% Y such
that: 1) V xeX=» Jye Y3 (x,y)ef,
2) (x,5)y (x,2)6 L =y = 2z,

As a relatlion, d function is a subset of XX Y where the flrst
elements of the ordered pairs of the functlon are from X and the
second elements are from ¥, Observe the lmportant fact that a
function 1s a relation such that no two distinct ordered palrs
have the same first elements., Often X and Y are equal.




Example: ILet X = {1,?,3,4,5}
= {.2:3’4;5’6}
Fo= {(1,4),(2’5),<3s6),("h2)1(5’5)} is a function
while R = f{(1,4),(1,6),(2,4),(3,4)} is not a function,
however, it is a relatlon,

Often, the 1ldea of matching elements from two sets is determined
by a rule such as the squaring rule above or the rule that assoclates
each whole number with the number tripled. Then we think of a
function dlsplayed as a map, we often call the function a mapping.
Thus, the rule: assoclating each whole number with itself tripled

results in this mapping: 1 » 3
2 , > 6
3~ - 9
Y » 12

o e

L

In general, a mapplng from set X to set ¥ looks like this.:

F

X

F consists of all ordered pairs (x,y), where x € X and ye€ Y.

Another way of demonstrating a function 1ls to portray a

"machine" whose "input" is x € X and whose “"output" is ye€X:
L2l

!

F

l

| ‘A
In this portrayal, F 1s supposed to be acting on x to produce y.
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Again, the ordered pair (x,y) € F.

In the example discussed, X 1l called the domain of P
and Y 18 called the go=domaln of F. A very speclal subset of p 4
is often used in discugsing a mapping or functlon. This subset
is called the range of F.

Definition: If P is a funotion from X into ¥, the range of F 1s
the set of all y € Y such that &,y) € f for sore xé€ X.

The definition of "function" states that we have a method
of determining exactly one element of the range whenever we choose
any element of the domain. The method may be given by a clear
rule (the square of each element of the domain as shown above) or
a formula (e.g., A = m ©?), but nothing in the definition of
"punction" requires that it be specified by a formula. What should
be clear is that given an element of the domain, then one can
easily identify the corresponding glement of the range.

If (a,b) is an element of a function f, then we usually wrlte
b = f(a)., We read these symbols as "b is £ of a" or "b is f at a".

Iet ¥ and Y be the domain and co~-domain of f, respectively.
We sometimes write f: X—»Y ¢to indicate the function f from set
X into set YQ

Examples: (1) X = {Q,Z,h,6}

L= {193,537}

£ = {(0,3),(2,1),{4,7),(6,5}
£(0) = 3
£(2) = 1
£() =
£(6) =
Donmain £ = X

Range £ = Y = co=-domain f

H o N3

’
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(2) X 10’2’“'76}
Y = {1,3,5,%

f = {(0,1)’(2’5)’("*95)’(6’7)]
Domain of £ = X

Range of £ = {1,5,7c¥
Co=domain of £ = X

it

Definition: The set of elements of the range is often called the
set of images under f,

In the first example above, 3 18 the image of 0 under f,
1 is the image of 2 under £} and so forth,

Exemple(3: X = ¥ = {1,2,3, ...}
f: XY
£ = {(a,b)| b = 2a + 1}
£ = {(1,3),(2,5),(3,7),(4,9), ...}
£(1) = 335 £(2) = 5; ete,

Bange of £ = {3,5,7,9, ...}
Co~domain of f = Y
Range of £ C ¥
33 A8 the image of 16; 101 is the image 50.

Definition: A function, f, from X to ¥ 1lg onto &b the range
f = Yo

Symbolically, fi: X-20EO oy

Definition: A functlon, f, from X into Y is one~to-one 4.-==§Vu, veX,
u#v o= flu) £ (v,

Alternate Definition: A function, f, from X into ¥ is one-to-one
<= WU, vex, f(u) = f(v) =» u = v,

Examples of one-to=one aml onto functions are found on pages
31 and 32,

Notice that Example (1) on page 31 is both one-to-one and
onto, whlleaExample (2) on page 32 is nelther one-to=-one or onto.
The exampleAPn page 32 1ls one~-to-one but not onto.




Note that if £ 1s one-to-one we say that f sets up a one-~to-
one corresypondence between the dorain and ranpe of f. Under a
one~-to~one function, each element of the domaln 1s nalred with
exactly one element of the range; and each element of the range
is palred with exactly one element of the domain,

Suprose we have two sets A and B., We say set A ilan in a
one~to~one corresrondence with set B if there exists a one~to-one
function from A onto B; f: An%%%3958« The relation one~to~one
correspondence is a relation whose domain and range are collectlions
of sets; one~to~one function 1s a relation whose domaln and range

are set of elements,

Example: A = {a,b,c}
B = {x’y’z}
A 18 in a one~to~one correspondence with B because
there exists a one~toe~one function, f, whose domain
is A and whose range is B, Note that this f 1is
not unigque. One of these functions, f, 1is:

£ = {a,x),(b,y),(c,2)}.

The existence of one functlon ils all that 1s required.
Another function, f’, which would also suffice is:

£ = {(a,y), (b,z),(c,x)].

If a function ls one~to-one then it is possible to interchange
within each order pailr the domaln element with the range element
and obtain a new function. Notlce that thls interchange with
functions which are not one-to~one produces relatlons which are
not functlons.

Examples: X = {1,3,5,7} and ¥ = §{2,4,6,8] with £ : X—>Y,
(1) £, = {(1,2),(3,4),(5,6),(7,8)

f1 is one~to=-oOne




Interchanging the coordinates of each of the ordered
palrs in fl produces this relation:

{(2,1),(%,3),(6,5),(8,7)}

which 1is also a function.
(2> fz = {(1,2),(3,4),(5,4),(7,8&
fz 18 a function which is not one~to~one,

Interchanging the coordinates of each of the ordered
pailrs in f2 produces thils relatlon:

&2,1),(“,3),(“,5),(8,73

which 4is not a function,

In the following examnle the domain and co-domain will

be changed.
(3) f3 " {(X’Y)l y.= 7x} = {(1a7)9(291u)’(3921)’

(u’28)’ ooo}

f3 is a one~to~one function if the domgln 1s
the set of counting numbers,

Interchanging the coordinates of each of the ordered
palirs in fB produces this relation:

f(7,1), (1%,2),(21,3), (28,4), e ={=y) | v = 3.;-}

which is also one~to-one from the range of f3 onto
domain of f3.
Thls example demonstrates an important mathematlcal concept.

Definition: The gopverse of a function ls the relatlion which results
when the elementsg of the domsain and range are interchanged.

Definition: If the converse of a function is also a function we
call the converse the inverse of the functlon.

Alternative Definition: f: X—»Y has an inverse iff f 1s one=to-one,




In the examples above, f‘3 has an inverse, but fz does not,

Notice that the inverse of f3 contains those elements obtained

by dividing, while f3 itself contalns elements obtained by
multiplying, We shall have more to say about thls relationship
later,
We denote the converse of f by £~
In the examples, above, for instance?

r,"t = {(2,1),(4,3),(4,5),(8,7)}

£, = {(x,9)| v = 5]

1

3.2 Composgition of Functlons

We now examine the important property of functions. Suppose
we have a function, f, from X onto ¥ and another function, g, from
Y into Z:

A natural questlon to ask would be; Is there a single function
from X into Z which has the same effect as f and g? The answer
to the question is yes.

To zain some Inslght as to why the answer is affirmative,
let us consider a stralght forward example?

Iet X =Y = 7 = positive integers
Defines £3 X=»Y by £(x) = x + 3
Define: g: Y—»% by aly) = 6y

Now consilder 2& X. Observe that £(2) = 5, 8Since g is
defined for each element of Y, we evaluate g at 5: g(5) = 30,
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To represent thils pictorially we haveq

£
77 )
X Y z

The element 2 in X corresronds under the "combination" of
f and g to 30 in Z. Llkewlse, each element of X can be shown to
correspond to a particular element of Z. UYWe use thils exammle
to generalize nbout the notion of "combined" functlons.

Definition: If f is a function with domain X ~nd range ¥, and g
is a function with domain Y and co~domain Z, then
the composition of £ and g, denoted by ge f, 1is
defined on the domain X and [ge f] (x) = g(f(x)).

Observe that the composite of two functions is only defined 1f
the range of the first function to be applied 1s the domsln of
the second functlon to be applied.

What is the single function that wlll take you from X to
Z in the example on the previous page?
f{x) =x+ 3 and g(y)
[Bof] (x) = g(f(x))
Hence, g(f(x)) = g(x +3)
S [Be ] (x) = 6x + 18,
Note that [gef] {x) does not map X onto Z, but it is 1-1.

6y

6(x + 3) = 6x + 18,

Suppose f¢ X—*Y and g: ¥Y—»2Z are each 1-1 and onto, then geo f .
will also be 1-1 and onto. This fact will not be proven in general s
but let’s oconsider a very simple examnle to help visualize thls fact.

Let X = {1,2,3,4}, ¥ = {6,12,18,24}, 2z = {9,15,21,27]

Define f: X-—— Y by f(x) = 6x
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g: Y—2Z by gag(y) =y + 3

X Y Z
1 9
2( ¥ 7 15
3 21
b 27
g

Notice go f is a 1-1 and onto function from X to Z.

EXERCISE 9

Let X = {1,2,3} , ¥ = {a,b,¢} and 2z = {a,b,c,d]
{(1,2), (2,a), (3,a)

f{i1,a), (1,0), (2,b), (3,0}

{(1,2), (2,b), (3,4}

f1,0), (2,2}

{(1,2), (2,b), (3,c)

fl""‘

(1)
(2)

(3)
(&)
(5)
(6)
(7)

(8)

Wwhich of the above relations re functions?

For those which are, find their domalns, ranges and
co~domalins?

which are one-~to=~one functlons?

Which functions are onto?

Which functions have inverses? BRepresent the inverse
Which of the above are functions from X into ¥? X into 2%
Let fg2 X—s) be defined by fg = {(x,y)] ¥y = 2x + 7}

where X is the set of all counting numbers,
(a) Is f6 one-to-one?
(b) Is f6 onto?

Let f7 be defined in the same way as fg in (7) except let
x be the Set of all lntegers, {ooo, "3, "'2, -1, 0, 1, 2, 3,-5




(a) Does fg = f7? why? Or why not?

(b) Is f7 one-to-one?

(c) Is f7 onto?

(9) Let g X—»X be defined by g = {Kx,y)l y = x2 + 7}
‘Vhere X = {ooo "3, "'2, "1, 0, 1, 29 3, ooo}

(a) Is g one~to=-one?
(b) Is g onto?
(10) Define equality for two functions.




CHAPTER IV: Operations

4.1 Binary Operations

We give a speclal name to a famlllar class of functlions such
as addition, subtraction, multiplication and division. We call
these functions operations. In these operations what 1s generally
occurring ls that two numbers are palred together and associated
with a third number., For example, in addition of whole numbers,
2 and 3 are paired together and assoclated with 5§ Ain multipliceation,
2 and 3 are palired together and associated with 6,

For addition we can form an ordered palr (2,3) and associate

it with 5S¢
+

(2,3) 5
The palr (2,3) is an element of the domain of addition and 5 is
an element of the range of addition, For multiplication, one
example of the rule can be portrayed as follows:

(2,3) X 6

Here, (2,3) i8 an element of the domain of multiplication and 6
is an element of the range of multiplioation. These examples
lead to this definition,

DPefinition: A binary operation on a gset A is a function whose
domain is a subset of Ax A and whose range 1s some
set, B, If BC€A then A is closed under the operation,
and the operation itselfl 1s sald to be closed.

If A is the set of whole numbers, then Ax A is the set of
all ordered pairs of whole numbers. For addition, the domain
consists of Ax A completely. A map of addition, in part, looks
like this:

e L




Suppose G is the operation addition, We can write such state=-

ments as G((2,3)) = 5, G((7,8)) = 15, and G((0,20)) = 20, But a
better symbol for G is "+" and Af we drop The use of double
parentheses our statements become: +(2,3) = 5, +(7,8) = 15, and
+(0,20) = 20. You should be aware that a partial domain is

(2,3), (7,8), and (0,20) (ordered pair) and that the images are 5,

15, and 20, respectively (single elements). The word "binary" in
the definition above indloates that the operatlon acts on palrs

of numbers whioch makes up each element of the domain. Of course,
conventionally, we use the symbol "+" in this manner: 24 3= 5,

An operation % on a set {a,b,c,d} can be completely specified
by a table, By examining the table we can see how the operation
aotz on any two elements of the set:

* | a b c d axa=a b*b=o
- a*xb=b braw=b

8 a . ® ° d a#d 0 =0 o% 8 =20
+) b c | a a* d=4d d»xa=4d
° ° d a b o % O =@ d +d=o0
a d a b o c+«b=d D ¢ =4d
Dd=a Ad# b=a

o%*d=D Aa*xo=Dbd




Another, less abstraot example of an operation that is

exhiblted by a table is addltion of the natural numbers.

It

be observed that it 1s not practical, for the sake of space,

specify completely the result of addition of any two natural
but a clear ldea of this operation can be given by examining

finite number of entries:

+ 0

often
should
to
numbers,
a

W N = O
FTWVWUDN = 0

L »

L L

al{atd atl a+t2 a+3 ath

L L4
[ L
L .

EXERCISE 10

(1) Convinoce yourself that "+" is an operation.

WM E W=

[ ]

L]

NN oo F W W

(4

@~ o\ F F

L]

0+b
1+b
24D
3+b

(2) Convince yourself that W, the set of whole numbers, is oclosed

under "+",

(3) Convince yourself that +(a,b) = +(b,a) for all a, be W,

(k) a) Consider ordinary subtraction on the whole numbers, W, such
Show that

that for x, Yy W, x « y exists only when x> y.
it is an operation on W,

b) What 18 the domain, range, and co=domain of “="?

o) Is W closed under "."?




h,2 properties of Operations
We now conslder a set X of objects which has a binary operation

defined on it. This sectlion is concerned with defining some of

the properties of the operation whioh permits manipulations of

the elements of the set, The first property of an operation 1is

inherit from the definition given in sectlon one of thils ochapter.

This property is the "unlqueness follows from the fact that an

operation is defined as a function., Why does this requlre

uniqueness of the results?

We shall 1ist three important and frequently used properties
of a mathematical system. In general, amu operation will be denoted
by "»",

Definition: A binary operation x whose domain 1s Ax A 1s commutative
ir %(a,b) =#(b,a) for all a, DEA. (Alternately,

axb = bxa,)

This 18 saying that the result of the operatlion is Aindependent
of the element considered first.

Definjition: A oclosed binary operation » whose domaln 1s A X A ig
agsoclative if *x(x(a,b),c) = #(a,%(b,c)), (Alternately,

‘a“bjﬂ'c = a*(bNO) )’ for all a,bgo € Ao

Definition: A olosed operation,e , 1s distributive with respect

to a second closed operation, % ,<> both have domain
Ax A and ac(bwo) = (acb)*(acc).

For the whole numbers multiplication is distributlve with respeot
to addition] @.8., 6°(2 + &) = 6.2 + 6:U4,

EXERCISE 11
(1) Examine "+", "=", "x", and "+" for oommutativety over W.

(3) Examine which of the operations +, =, X, + over W are assooclative,

(3) Convince yourself that multiplication is dlstributive over
addition.
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(4) Find two operations such that one 1s not distributive over
the other,

(5) If axb represents a, does #* represent an operation? What
properties if any does it posgess?

(6) Consider the operation addition in get W, agaln the set of
whols numbers, Is this function one-to~one? Why, oxr why
not?

(7) Again, study the operation of addition in W , Does this
operation have an inverse? Why, or why not?

(8) Consider N and U as relations on the collectlon of sets. What
properties does each of these relations possess?

lt,3 Unary Operations

Not all opgratlona whioh confront us are binary operatlons.
One auch operation is demonstrated in the following map from W intoW.

0 w W
—
ey §
=
Feed 7

’

Clearly, the range elements of this function are obtalned by
adding 4 to each element of the domain. We might call this
funotion "adding 4." Observe that it 1s not a Dbinary operation,
but a unary operation (the elements of the domain are single
elements, not ordered pairs.) We may write this funotion in thils

Y D




way.

+4 = {kO,“)p (1,5), (2,6)y (357), ...}

EXERCISE 12

(1) Is +4 a one-to-one correspondence from its domain to 1ts range?

(2) Does +4 have an inverse? (Demonstrate y ir answer, )

(3) What conclusions can you draw about the relations +4 and -l

(k) Consider the operation "x4" in W, Does 1t have an inverse?
what can you conclude about the relations "x4" and "y ?

(5) Define a relation "x" inW by:

XXy = xy, x and ¥ are not simultaneously zero.

"

Does this define an operation in'W ? What are some of 1its
properties (closed, commutative, associative, eto,)?

(6) Define % in W by:

Iy = xz . }'20
Does this define an operation inW 7

(7) Define * 4in (eoe=dy =2, =1, 0, 1, 2, 3, +oo} (the set of
. Aintegerd) by:

xX¥y = 1

Is % a binary operation in the set of integers?
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A rimext provided by R

ERIC

CHAPTER V: Natural Numbers

Consilder the set of fingers on a normal right hand; the set
of toes on a normal left foot: the set u,v,x,y,z and the set of
players on a basketball team, All of these sets are gquivalent, i.e.,
they are in a one~-to-one correspondence with each other. For example,
there is a one~to-one function from the set of fingers onto the set
{u,v,x,y,@} hence, a one~to~one correspondence between the tro sets.

There are many sets whlch are in a one~to-one correspondence
with any one of the sets above, (Can you think of any? Avoid using
the word "five.") All of these sets have one thing in common which
distinguishes them from other sets ~ they are all in a one~to-~one
correspondence with any one of the sets above; for instance, the
gset of fingers on a normal left hand. We are golng to defline the
cardinal number five as the class of all these sets,

Recall that a one~to~one function from A onto B creates a
one~to~one correspondence between A and B, In the collection of
sets, W, we define a relation, r, to mean a one-to-one correspondence.,
To show that r is an equivalence relation on we have to prove that:

1) ArA, for all sets A e U .
11) ArB =» BrA, for any two sets A and B ¢ U,
111) ArB, BrC =» ArC, for any three sets A,B, and C €U ,

Proof: For each of these properties all that is necessary l1ls to
exhibit a one-to-orie function from the first set onto the
second set,

1) In the ocase of reflexivity, we see that the identity function,
f4» such that fl(a) = a, for each element a in A, 1s a one-
to-one function from A onto A.
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11) By hypothesis, ArB means there exlsts a one-to-one
function, g, from A onto B. Thus, for each a € A, there
exists b€ B such that g(a) = b and b, of course, 18
unique. (Why?) Since g is one~to-one, and onto, g~
is a one-to~one function from B onto A. @"1 1s the
one~to~-one, onto function that will serve to show that
BrA.

)

111) ArB means there exists a one-~to-one function, B4 fronm
A onto B} BrC means there exlsts a one~to-one function,
829 from B onto C. For each a € A, there exlsts beB such
that p;l(a) = by and for each beB, there exists o€ C such
that gz(b) = o, All we have to do 18 consider the
composite 8,0 8 from A onto C.

@ B
A

If we examine [gza gll‘(a) for each element a€ A, we note that
thig image ylelds a unique element ¢ of C., One way to see that
this composite function from A to C 1s one~to~one onto C is to

prove that the converse is a function. But g, -1 45 a function
1 -]

and so is gl" . 8o the ocomposite function g; "o &y =l
on ¢ € ¢ yilelds a unique element a of A. Notlce that
84 -1, &, -l 45 the Anverse function of 8,0 8y+ Also, if ArB,

we say simply that A and B are equivalent sets.

acting




EXBRCISE 13 ( Use set equivalent to u,v,x,y,z to answer

the following questionss

(1) Show by means of a mapping diagram a one-to-one correspondence
between any twe of the sets above,

(2) How many different one~to~-one correspondences are there between
any two of the sets described above?

The relation "one~to-one correspondence” defined on the
collection U of sets 1s an equivalence relation (see page 45)
Application of the equivalence theorem will partition this/oolleotion
of sets into non~overlapping equivalence classes, Each of the
equivalence classes will consist of all sets which are in a one-to-one
correspondence with each other, and no others. Every set will be
in exactly one of the equivalence classes. Thus the equivalence
theorem creates an array of classes which may be portrayed as follows:

¢ ["3 [A,G} {",5;“3 e s
{#] {p,o} {e,0,+

(el (es0f {os=s %}
{ﬂ}. {”o-] | t*)"of}

The unlverse of sets has been "neatly" categorized by the relation
one~to-one correspondence. We shall define each one of these categories
or oclasses as a cardinal number., However, we will actually confine

our attention for the time being to finite sets,
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we begin by defining what 1is meant by a standard set which will

serve as a reference set for each class.

Definition: The immediate successor of set A 1s AU {A}.

Example: The immediate successor of [1} 1is (uvfidl={1v (111 ;
the immedlate successor of {1} 1is the urion of {1} and
{1} . There are two elements in the successor of {11 .
The effect of the lmmediate successor of a set is to "add" an element

to a set.

Definition: We define gtandard sets as follows:

(1) The empty set is a standard set,

(2) The immediste successor of # is a standard set.

(3) Any set which is obtained from the empty set Dby
repeated application of the lmmedlate successor

operation is & standard set,

From thls definition, let’s examine some standard sets,
d is a stendard set by (1) of the definition.
By (2) of the definition the irmedlate successor g is a

standard set.
The immediate successor of # is ¢ v {#} which is equal to {gt. so
Wﬂ 13 a standard set. {f} contains one element, the empty set,.

For convenience let a = {#}.

By (3) of the definition, the ilmmedlate successor of*a’ is a
standard set. The immediate succesgsor of a 1s {a\l idﬂ .

Iet b= {av (a]] . The successor of b is also a standard
set. This set is {b v {bp}] . In this manrer we generate a series
of standard sets:

g

a = {f}

b = {av {a}}
c = {bv (B}
ad={cv fc}}

]
[

[ [ ]
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Each set of this series contains one more element that 1lts lmmedlate
predecessor.

; Consider all the sets which are in a one-to~-one correspondence
' with each of the standard sets. We end up with thils array which 1s
identical to the previous array:

¢ [ Q. b C d e « o o
(-1 | -} [{%c.p] ' .
{x} | (=@ |{-.0.} , .
{of {o, %} (v, 5,0} , .

ICJ} {'JO} [QnQ:V}

. ’ g

Definition: Bach of these classes 18 a cardinal number

Definition:! The cardinal number of a set A s the class which
contains A.

Example: Zero is the cardinal number of the empty set,

One ig the cardinal number of {%}

Two is the cardinal number of (x,@]}
Three is the cardinal number of {,e, p}
And so forth.,

Definiticns A finite set is one which can be put in a one~to-one
corregpondence with a standard set.
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Definition: A natural nurber is the cardinal number of a finite set,
Iet n{hA) stand for the cardinal number of set A,

Definition: If n(A) = p and n(B) = q, then p = gé A 1s 1n a one~
to~one correspondence with B,

The numerals 0,1,2,3, ... Are common ways of naming the natural
numbers, Several ways of naming the natural number five are: 5,
v, Mt , and ‘five’, These symbols are not the number five. These

numerals for five are ways of representing the ldea or abstraction
of five,

If m = n a8 in the definltion above, we interpret this statement
to mean that two different symbols (or numerals) m and n stand for

the same ldea, the natural number asscclated with a particular
equivalence class,

Definitiont: A is a proper subset of B&é=» A < B and B ¢ A,

Definition: If n(A) = a and n(B) = b, then a is greater than b<=p B
1s equivalent to some proner subset of A. The symbol
1s read "is greater than" while the symbol < is read
"i8 less than", a > bep b < a.




CEAPTER VI: Operations orn Natural Numbers

6.1 Addition

Children are taught to add two numbers, say 2 and 3, by
means of a number of examples in which they witness or manipulate
the combining of two sets., They observe two sets, a set of 2
objlects and a set of 3 objects, and after these sets are joined
together, they are asked to specify the total in the new set,
These chlldren are taught how to add by mear 3 of the concept of
union of sets, in a manner which 1s identical to the definition
of addition of two natural numbers, Of course the two sets
must have no elements Iin common, The student should notice that
any two naturals gan always be represented by disjoint sets, (Why?)
Definition: If n(A) = a and n(B) = b, where ANB = @, then'a + b

the sum of a and b, 18 the natural number of AU DB,

In short, a + b = n(AUB), This operation is called
&ddltionu

(We assume, in the definition, that the sets A and B are finite,.)

Because of the sequentlal development of the materials the
gtudent should be able to prove most of the commonly accepted
properties of the natural numbers, 8o that the student has one
example of a proof we shall write out in detall the proof of
commubtativity of addition. All the needed properties and definitions
have been studied earller in the text, Thus the problem is one
of organlzing the proper information to formulate a proof of
commutativity of addition.

Problem: Prove the commutative property of addition on the set
of natural numbers. 1l.e., for a and b natural numbers,
+(a,b) = +{b,a) or atb = b+a,

Proof: Since a 1s a natural number there exists e finite set A
such that a = n(A). Similarly there exists a finite set
B suoh that b = n(B),




Now we would like to prove the equality of two numbers
(natural numbers, problem 4 in the exercises), The Questions
you should be asking yourself is "when are two natural
pumbers equal”? and "what are the two natural numbers”?

The two numbers are "a+b" and "b+a". They are recelved
from the definition of addition of natural numbers, Namely
a+b=n(AUB) and b+ a = n(BUA),

These two numbers will be equal according to the definltion
on page 50 Aff AUB 1g equlvglent to BNA., But we know AUB = BUA
by commutativity of unlon of sets proven in CHAPTER I, Hence we
can conclude AU B is equivalent to BUA, and 80 n{AUB) = n(BY A)
or atb = b*a, Thus the problem is completed.

Thia proof can be written in fewer words buv at this point
we feel it 1s important for the student to observe the analysla
of the problen simulbaneous with the writing of the proof., The
reader should attempt to shortem the proof, but be sure every
step follows logleally from 1lts predeocessors,

EXERCISE 14

(1) 8how that 2 + 3 = 5
(2) What does "=" mean in the statement "2 3 m 577

(3) The definition of additlion (sbove) produces an operation’+
ginse an operation 1g a funotion, then each element of the
domain (a,b) must be assoolated with one and only one
element of the range, (a + b)?

(&,b) ' ath = h(AU B

How do we know that we get one and only one element in the
renge for eamoh element of the domaln?

(4) Is N = 59,1,2,3, +vs] the get of natural numbers, closed
with respect to +%




() Prove the sssoclatlve property ror +i

(a 4+ b) +06=a-+(b+ o)

6,2 Multiplication

The way multiplication is defined ls related to thia examples

Think of two boys and three girls at s party. A rule of the night
48 that each boy must dance at least once with every girl, How
many different dencing couples are there? Let the set of boys be
{Jim, Mike} and the set of girls be {carol, Jene, Beth} . Couples
for dancing can be formed in the following manners (Jim, Carol).
(Jim, Jane), (Jim, Beth), (Mike, Carol), (Mike,Jane), (Mike, Beth),
Thug, we find there are 6 couples for dancing.

pefinition: If n(A) = a, n(B) = b, where A, B are finite, then
a°+ b, the product of a and b, 18 n(AXB)s This
operation is called multiplicabion.

Definitiont If a, b, and ¢ are natural numbers and if a-b = o,
then o 18 a multiple of a or b} a and b are factors

o e e )
of ¢,

Definition: The binary operatlon gubtraction, "-", is defined
as follows: For natural numbers, a and b, wlth
a D Af there exlsts a natural number ¢ such that
¢+ bm=a, thena -~ b = C,

pefinitiont The binary operation dlvision, "', iz defined as
followst For natural numbers, a and b, 1f there
exigts s natural number 4 such that d-b = a, then
a,’i-bmd b?‘Oo

Both subtraction end divislou are binary operations in N because
we have already observed that if ¢,d {above) exist they are
unique, However thelr domalns ars not equal to the whole set,
IN x [\, but proper subsets of NN

subtraction and divislon are restricted operations, For
example,
(‘4’:1) € "




but
(L,4) ¢"=" 3
: furthermore,
(12,4) e "+"
but

(12,5)¢ "+" ,  (4,12)d "+",

EXERCISE 15
(1) Prove U6 = 24,

(2) Bee SXERCISE 14, above, example 2, Answer the same guestlon
for multiplicatlon,

(3) Prove: a-b = bea (Alternately, <(a,b) = (bya) )o This 1is
called the commutative property of multiplication.
(4) Is N, the set of naturals, closed with respect to °* ?

(5) Show that (asb)+0c = as(bsc),
(6) Show that a+(b + ¢) = asb + a0,

(7) Prove the gancellation property for i

e

a+bb=a+ cmph = o,
(8) Prove the gancellatlon property for multiplication, a # 03
aebh = a«c =»b = 0,
(9) Prove the oconverse of the cancellation property for +.
[ (10) Prove the converse of the cancellatlon property for .
(11) Prove: O + x = x, for any Xx € N .

(12) Prove: Oex = 0, for any x&MN .

(13) Prove: x+1 = x, for any x€ N ,
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6.3 Theorem

S S

We now prove a theorem of extreme importance in mathematics.

This algebralc property of our number system 18 that e product

of two numbers can only be zero if at least one of the factors

48 zero, The student uses this fact constantly, perhaps without
realizing it. This property is used when you solved a polynomial
equation (High School Algebra I) by means of factoring, For
instance, the quadratic equation xz ~5%x + 6 = 0 can be expressed
ag (x - 3) (x =~ 2) = 0 by factoring %he polynomisl £° - 5x + 6,
From this we can conclude that x = 3 = 0 or x = 2 = O, Henoe,
the possible values for x are 2 and 3.

Theorem: If a and b are natural numbers, and if a.b = 0, then
elther a = 0 or b = 0,

The statement:

If a and b are natural numbers, end if a b = 0,
then elther a = 0 or b = 0,

is logloally equivalent to the statement:

If a and b are natural numbers, a ¥ 0 and
b# 0, then a b # 0.

We shall prove the alternate statement of the theorem which,
in turn, proves the original gtatement sinoce the two are logloally
equivalent,

Proof: a = n(A) for some set A
b = n(B) for some set B

Since a £ 0 and b ¥ G, then A ¥ # and B ¥ ¢
Now a*b = n{AXB)s but A ¥ # and B ¥ ¢ =» AxB # f,

Thus, n(AxB) # 0.
Henoce, a<b # 0.

At this point we shall not generate any more theorems about
the natural numbers. 8uffice to say that given the definitions




and statements already proved (especially those in the exercisessi),
we are in a position to prove all the well-known theorems ox
"racts" about the natursl numbers, We oonclude with several
definitions and more exeroises,

EXERCISE 16

(1) Prove the statement: Af a,b, € /N then a>bep Jo £ 0N 3 a = bto,

(2) Prove: a»b and b»o0, then a>o,
(3) Prove; a>b=>a + o>b + c,

(4) Prove: a>b=» aco>b0c, o ¥ O,




THE INTEGERS

CHAPTER VII

7.1  Introduction to the Integers

We developed the set of natural numbers by gtarting from
fundamentals-sets and operations on sets. By means of the relatlion
of one-to~-one correspondence between sets, we defined d each natural
number., We whowed that one-to~cne correspondence 1s an equivalenoce
relation and applisd the equivalence theorem, By means of the
equivalence theorem we were able to sort sets into different classes,
The equivalence classes which resulted became the natural numbers,

The operations of addition and multipllication of natural
numbers were defined ag the natural number which resulted from
operations on gets. PFor addition, union was employed; for
multiplication, Cartesian product. Subtraction and division were
also defined, in terms of addition and multlplication, respectively.
The major part of the development of the natural numbers was
ooncluded with an inspeotion of the structural properties of the
operations,

mhe reader has seen that the naturals are closed with respeot
to addition and multiplication; that both of these operatlions are
commutative and assoclat .ve, and that multiplication is distributive
over addition., Murthermore, the reader will observe that the set
of naturals has an identity element for each of the nperations -
addition and multiplication,

Zerc is the identity element for addition because x + 0 = X,
for all xe [N, the set of natural numbers. One is the identity

element for mulbtiplication because x 1 = x, for all xé N . #Hoth
0 for addition and 1 for multiplication do not "affect" the
identity of the natural number x when the operate on X,

The reader already has observed that the system of natural
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numbers has certain restrictions - subtractlion and dlvision are

not closed operations in [N . Another way of saying that subtraction
ig restricted is to assert that the ordered pair (1,4), for example,
does not have an image in the natural numbers under subtractlion.
Or, to put this specific example in another form, the equation

x 4 4 = 1

has no solution in N. More generally, the ordered pair (a,b)
does not have an image whenever a<b; or the equation

(1) x+b=ag

cannot be solved in [N whenever a<h, The restriction on division
13 that (m,n) has no image 1f m is not a multiple of n. As an
equation, this restriction is translated into the insolvabllity of

(2) Nex = m
in the set of natural numbers whenever m is not a multiple of n.,

To be able to solve equation (1) above, we must "enlarge” N.
This "enlargement” i1s the set of integers, A further "enlargement"
of the integere will result in the set of rationel numbers which
will enable us to solve equation (2).

Throughout the development of the natural numbers, we asked
the reader to rely on hils prior acquaintance with thoss numbers
to help him move through the abstract treatment of famlliax
territory. 4gain, we ask the reader to make use of his experience,
this time with the integers, to asslst him in reading through this
chapter, In constructing the integers, we shall agaln define the
objects (integers) of the system, define two operations (addition
and multiplication) on them, and prove some fundamental properties
of these operations. We take the set of natural numbers as our
point of departure, for this set 1s all we know up to this point.




7.2

Definition of Integers

Consider the set N« N= {ia,b)| a,b €N}, the Cartesian
product of N with itself. We define the relation & among these
ordesred pairs by thils equation:

(a,b) & (o,d)ésa +d =Db + ¢,

Note that & 1s a relation between ordered pairs of natural numbers,

As an ald to understanding the motivation behind the use
of ordered palrs to define integers, the reader should think of
(a,b) as‘'a = b and (c,d) as ‘c -~ d% Thus, (7,2) can be thought
of as '7 = 2’and (2,7) as ‘2 « 7

Example: (2,‘4) @ &:’;,7)4—%2 + 7 =lb+5

In the above definition, a,b,c,de /N and + is the operation,
addition already defined for N . As the note above hints, ordered
pairs will represent Antegers, and ordered palrs such as (2,4)
and (5,7) will represent the same integer, 2 (negative 2), The
pairs (2,4) and (5,7) will be equivalent pairs or elements
because they will belong to the same equivalence class,

The temptatlion is great to ask the reader to develop the
gsystem of integers with these hints, by using only the available
machinery at his command. By "develop" we mean define the set
of integers, the operations on integers, and the properties of
these operations. We shall resist the temptatlion, but perhaps
the reader can try, as a mentel exerclse, to anticlipate the next
few pages. We shall assume that these meager hints serve as a
map of where we are going, not as a device for you to do our work.

Again we shall use the equivalence theorem to get the "right"”
ordered pairs of [Nx |\ into classes. Thus, we must first prove that
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the relation ® for INX*MN 18 an equivalence relation. This
result, part of Excrcise 17, 1s the reader’s contribution to
this development.,

Arplication of the equivalence theorem to IN * IN produces
classes of non-overlapping sets of ordered palrs - equlvalence
classes of ordered palrs - equivalence classes cof ordered palrs
of natural numbers. Each element of sach class is equivalent to
all other elements in that class.

For standard elements of these classes we choose these ordered
pairs: (0,0), (1,0), (2,0), (3,0), (4,0), ... and (0,1), (0,2),
(093)9 (O,U), se 4 .

Analogous to the portrayal of the classes for the natural
numbers we nave this table for the integers:

coe (0,3) (0,2) (0,1) (0,0) (1,0) (2,0) (3,0) | ooo
(1,4) (1,3) (1,2) (1,1) (2,1) (3,1) (4,1)
(2,5) (2,k) (2,3) (2,2) (3,2) (4,2) (5,2)
(3,6) (3,5) (3,%) (3,3) (4,3) (5,3) (6,3)
(4,7) (4,6) (4,5) (byk) (5,4, (6,4) (7,4)

L]

°

¢

“

[ ]

o

¢

[

.

Each of these columns represents an equivalence class generated
. Not that each column 18 headed by a standard ordered
A8 before, each of these classes will define a number, in
this case an lnteger,

by &
pair.

The column headed by (0,0) will be called

the integer 0} the classes to the right of 0 are 1, "2, *3, ...
(pasitive 1, positive 2, positive 3, ceo))
left of 0 are 1,

the columns to the

"2, "3, ... (negative 1, negative 2, negative 3, ...).




These olasses define the set of integers, &
sao =3y w2y -1, O, 1’ 2y Dy oo v

The standard elements which we choge are the ones which seem to
be the simplest.

Of course we saved ourselves a good deal of detalled work
by having the equivalence theorem avallable for pa titloning of
the ordered pairs of [N x [N into the requisite classes. The
relation (@ was created by mean of hindsight =~ we knew where
we wanted to go and designed (@ accordingly.

7.3 Operatlons on Integers: Addition

An integer has been deflned as an equivalence class of
ordered palrs. let [g,b] be fhe equivalence class contalning
(a,b) and let % stand for the set of integers. We drop the
parenthesis inslde the brackets to simplify notatlon,

Derinitions: Let p be the Integer gonerated by (p, » P,) i,
p = %pl p~], and let q be the integ%r geﬁerated by
(a.y a 5, a4 q= [ag,y a,]+ P @ q is the equivalence
ol&ss éenerated by %pl Z Q49 Pp + qz). orp®qm=
Pq + d4» P2 + oy o

According to this definition, the operation @ 1is an
operation on equlvalence classes of ordered pairs of natural
numbers. The reader should observe that addltion of Antegers

\s symbolized by @ to distinguish it, temporarily, from addition
on the natural numbers.

Tn order to insure that the eabove definition 1s well~def'ined,,
we must guarantee that (pi + G4y Py *+ qz] 18 an equivalence class,

1.e., an integer. That [p1 * qqy Py * q,] is an integer follows
from the faots that p,y b » dg» and q, are all natural numbers
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and so are p, + q, and p, +a,. (Why?)
1 1 2 2

We must also show that the neme (ordered palr) used for the
generator of the equivalence class does not affect the results
of the operation, There is Af p = [p} , p5] endj = [pyr P2 ]

while g = [qj , a3] end a= [ay , q3] Vthen the sum obtained
p+q 18 exactly the same class no matter which generators are
used 1n the operation. When we say p = [p} » pp] and p = [‘pl,pzl

what 1s really being sald 1s that (pg, py) @ (pyy Py)s Likewlse,
qw=[ay»a3] osnda= [a3,9 ] implies that (q{ , a; ) @
(a4 » q,)e Now using the definition of & we have p{ + p, =

p/ +py sndaqy *+aq,= q;/ * qy o

These are statements of equality between natural numbers,
80 we can use eny property developed for the set of natural numbers.
If we look shead at the desired result, we would like to say that

p®a= [p{ *af » Py + qf] a8 well as equaling [y *+aq s
p2+q2]’ l.0., (P{ *Q{’le *Q£) ) (pi*qlrpz"’QZ)v

Now using the faots that p{ + Py = p7 *+ Py s af *+ dp =

qj + a4, and the well defined property of addition of naturgls
we obtain (p} + pp) *+ {4} +ap) = (py +py) *+ (a5 +ay).

Using commutativity and associativity of addition of naturals,
this statmment can be written as (pi + ‘11' ) *+ (p2 - qz) -

(s + Qp) + (py + dqq). Now examine the definition of we
conclude that (p{ + q{ » Pt qé’ ) (py *+ a4 » Py ¥ ay)e
Since these ordered palirs are equivalent they generate the

same equivalence olass p @ q, thus completing the proof, What
nas been shown 18 that the same sum will be received no matter




63

what nemes for a numbsr are being used, 1.,e,, the numbers are
ymportant when performing the operation,not the nameS.

Exgmples: (1) [2,3] ® [3:1] = [5,4].
(2) [20,10] @ [15,20] = [35,30].

In both of these examples, we could have represented eaoh
integer in simpler terms by using standard ordered pairs or
elements to repressnt the classes, Example (1) could read:

(1) [0,1] ® [2,0] = [2,1] = [1,0].
Example (2) would then hecome:

(2) Y10,0] @ [o,5] = Qo,5] = [5,0].
In Gonventional notatilon, these examples becomes

(1) 1 @ T2=N

(2¢) M0 @ "5= "5

By the definition of addition, the integers are closed under
addition (see Exeroise 17). Furthermore, the operatlion of addltlon
1s ocommutative and assoclative; the integer {0,0] is the zero
or Adentity element for'Z (see Exercise 17). |

In any mathematical system, we define the inverse of an
element by using the ldentity element. Suppose z 18 the 1d3§t1ty
elenent for a general mathematical system, % is an operation, and
‘a’ any element of that system., If there 15 an element of the
system, 8, sSuch that

gra = ans = 2
then 3 is oalled the inverse of a with respect to %,
For the integers, we know that
*y @ “h =0




8o that 4 18 the Anverse of "4 with respeot to @ . Since @
is oommutative, |
" @ "4=o0

and T4 18 the inverse of "4 with respect to @ . As equivalence
classes the integers [a,b] and [b,a] are inverses of each other
with reapect to because:

[a,b] ® [b,a] = [a + b, b+ a]= [0,0]
Example: For the integer [7,3] the inverse is [3,7] because
7,3l ® [3,7] = [10,10] = [0,0]. Of course, the
inverse of [3,7] with respect to addition s {7,3].

If an element 8 18 the inverse of a with respect to addition,
we often call 8 the gdditlive inverse of a.

In ginpler form, every integer can be expressed in one of
these three formss [a,0] or [0,a] or[0,0], where a # 0. Xt should
be olear that the inverse under @ of [a,0] is [0,8] and vice~-
versa; and the inverse of [0,0] is itself.

7.4 Operations on integerss Multiplication

We remind the reader that he should translate the symbol
[‘_u,z] to either *2 or'h - 2'1in thinking about this number. In
general, [a.b] can be thought of as'a =~ b

pefinitions Iet p = [a, D] and q = [o,d] where a,b,0,d are natural
numbers.  poq is the equivalence olass generated by
(a¢ + bd, ad + be), or peq = (ac + bd, ad + bo).

Example: [6,2] © [3,4] = (643 + 2:4, 64 + 243
6,2] © [3,4]=126,30] = [0,4]

This example asserts, in conventional notation, that
("'b) (1) = ("), We have used a different symbol for multiplying
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integers than we used to multiply natural numbers. This
distinction is only a temporary oOne.

The definition of multiplication of two integers depends
solely upon the natural pumbers and operations on them, The
product in the definition, pEq = (a0 + bd, ad + be] 4 48 an
equivalence clasg of ordered pairs of natural numbers, and nence
an integer., We observe this since the ordered pair (ac + bd, ad + bo)
18 a result of products and sums of natural numbers, andﬂd is closed
with respect to + and <+ .

We must also show that if (a’, )@ (a, b) and (o, ) @
(0,d4) , then poq = [a’ o’ + v-a’ , ava’ + V¢’ ]; in short
we must also show that? '
(a0 +1.a" ,ad + v-c’ ) ® (ac + bd, ad + bo).

This equivalence resulbts directly from the definition of & . The
student should study this brief proof carefully; use the one for
addition to supply needed agsistance,

As with addition, the operation 18 a binary operation, and
1gcommmtative and assoclative, the set Z has an ldentity element
with respect to © « It is *1, or [1,0] because [a,b] © [1,0] -
[0°1 + b+0, 80 + be1] = [a, ]

Por en element, m, of the integers to have an inverse with
respeot to ©® there must exist an element n € Z such that?
nom=maoii= *1. It 1s clear that *u. for instance, does not
possess an inverse with respect to ® .,

In general, Integers do not have inverses with regpect Lo
multiplication, d.e., do not have multiplicative 1nverses. The
only exceptions are [1,0] and [0,1]

To show why the integeXx EQ,Q] does not have a multiplicative
inverse, let us assume that i1t does and show that this aessumption

. "




lecds to a contradiction, Suppose that the multiplicative inverse
or[“‘,O] is [c,d.], l.€.,

[#,0] ® [o,d] = [1,0].
If such an integer {c,d] existed, then \&4+.0 + 0:4, 4-d + O-d] - [1,0],
whioch means that:

[4e, ba] = [1,0], or
(bo, 4a) (1,0) or
ho + 0 = hha + 1, or

ho = 4d + 1, which is impossible for matural numbers c,d.

It 18 impossible to solve this equatlion because 1t states
that a multiple of 4 is equal to one more than a multiple of 4,
So, no such [b;d} can exlst as an inverse of [h,d]. As a problemn,
we ask the reader to prove this result for any integer except
[1,0] ana [0,1] (8ee EXERCISE 17,)

As with the set of natural numbers, there is a distributive
property for the integers involving multiplleatlion and addlition,
Here'’s o statement of the distributive property for the integers:

[a,b] (0 ([c d] @® [e, t‘]) ['a,‘ti] ® ["o,d]) ([a b] ® [e,f_p
where [a,b], [o,d] and [e,r] are mtagam. The proof of this
property involves merely the appllisation of the two dufinltions

of ® and ® , and this, too, 18 left to the reader to complete
{see EXERCISE 17).

EXERCISE 17

(1) Does the set of natural numbers have an identity element
rfor subtraction and division?

(2) Prove that ® 48 an equivalence relation.




(3)
(%)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
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Prove that Z is closed under addlition,

Prove that @ 1is commutative and assoclablve,

Prove that [0,0] 1s the identity element for Z under @® .
Prove that every Ainteger has an addltive lnverse,

Does any natural number have an additive inverse?

Show that @ sand ® are both binary operatlons,

Show that Z is closed under @ .

Prove that ® is commutative snd assoclatlve.

Prove that [1,0] is the identity element for z under @ .

Prove that © i3 dlstrlbut:lvey over ® for the set of integers.

Prove that every integer except [i,0] and [0,1] does not
have a multiplicative inverse.
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CHAPTER _VIII

8.1 Notation for Integers

At this point, having defined (® and @ , we shall drop
the cumbersome notatlon for the integers, (Thla is not to infer
that the student ocan not use the ordered palr notation, ag a
matter of fact, we shall use it to prove some properties.)Inatead
of writing [a,Q] we shall write "a, Thug, 120,0] becomes *20
and [h,o] becomes *4. Instead of writing {bwqg we shall write
“a. [0,20] becomeas "20; {0,3] becomes “3. [0,0] 1s simply
denoted by O,

The integers *1, *3, +3, +eoe are called the pogitive integers;
"1, "2, "3, ... are negative integers; O 1s the integer zero,
Notice that the gymbol 0 1s the integer zero, Notlce that the
aymbol 0 1is the same for both the natural number zero and the
integer zero, No confusion wlll result as long as the context
is olear. Obhserve that every integer is both an additive Iinverse
and has an additive inverse: T10 and "10 are additive inverses
of each other gs are *20 and "20. We can write 110 @ (T10) = 0
and Y20 @ (720) = 0 in general Ya @ ("a) = 0,

We shall now use the ordered palr notation for integers to
prove that the additive inverse of any integer 1s unique. As
should be expected by "unique", we mean thereis one and only one
additive inverse for a given integer. Iet [x,¥] be an arbitrary
integer and suppose [a,b] and [c,4] are distinct integers each
of which 18 an additlve inverse of [x,¥] . We shall show that
our assumption that [a,b] and [0,d] are distinct is in error
and actually these integers are the same.

Since [a,b] is assumed to be an additive inverse of [x,y]
we have

(s8] @ [xyv] = [0,
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Henoce

[ﬁ + X, b +g] - [0,0],

But since [c,d| 1s also assumed to be an additive inverse
of [x,y] , 8imilarly we have;

[b,d} ) Ex,&] x ‘p’O]o
Henoce
o +x, a+y]= [o,0].
Since '=' 13 an equivalence relaticn we can conclude
B+x,b+y] =forx a+ryl
Now if two integers are equal the genersator must be related by
the relation @ , Thus
(a+x, D+ y) & (0+ x, &+ ¥)o

Therefore
(o x) + (d+yg)=(b+y)+ (c+x)

Thie is & state aboub natural numbers thus any propertles of

.oan be applied. Using commubtativity, assoclatlvlity, and
cancelation of -+ ,we have

a+ d=Db+ 0,

Thus Amplies (a,b) @& (0,d). .. Those palrs generate the same
integer,; henoce

[.ﬁ"b] - f“vd] .

Furthermore, since a 18 the additive inverse of *a, and
vice versa, we write "("a) to mean the additive inverse of "a.
S0, since the additive inverse 18 unique we can conclude that,
“(Ta) = *a. And Af x &® ¥y = 0, where x and ¥y exe integers
then x = "y and ¥ = X,

when we write that x and y are integers we mean that x and
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¥ may be positive, negatlive, or zero, We deliberately omit any
indication of their signs. But, if x 4is positive, then “x

is negatlve; 4f x 18 nesative, then “x 1is positive; and if

x is 0, then "x is 0. In short, the symbol “x means the opposite
(or negative, or additive inverse) of x and does not necessarily
stipulate that ~x 18 a negative integer, This can best be
summarized by wrilting: |

e g i s o0

z ® "z =0, for all =* o A, I

|

8.2 JBome Addltional Properties of Intsgers f

We know that T1 @ (1) =0 and that 0® a = 0 (a € 72). %

Putting these two results together ylelds:

1) ["1 ® (1] e a=o.

By the right distributive property (see EXERCISE 18), (1) becomess

((*1) e a)® (("1) @ a) =0, or l

(2) a ((m1}<a a) = }

Equation (2) states that a andl}"l) © é]ara additive inverses of 1

eaoch other. Therefore, l

("1) © a =™ mao

Another welleknown result for integers is thls one: \
(e ® DY) = (Ta) ® ("b) i

for any integers a and b, This fact states that the negative
of a sum i# the sum of the negatives, The proof uses the previous
result, namely;

"o ® b)) = (L) ©(a+Db),

whioh beocomas, by appliocation of the distributive property:
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“(a ® b) = [("Mea] ® [("1) o],
which results in the followlng beocause of the result above:?
“"(a + b)) = "a @ “b.
Other common results employlng the addltive inverse are
easily obtalnable, These would include (See EXERCISE 18, Number 2):
(1) (Ca) @ b= a®{b) = "(aob)
(2) ("a) ® ("d) =aob,
By virtue of the presence of an additlve inverse for eaoh
integer, it is possible to solve this equationt
X @ a=D,

for any two integers a and b, BRecall that the comparable
equation is not generally =2olvable over the naturals. In fact,
the insolvability of the anslogous equation for certalin naturals
is a limitation or restriction in that system of numbers. The
integers Ao not heve that limitatilon. '

EXERCISE 18

(1) Prove that the right distributive property holds for the
integers?

(a @ bD)oo=(a®@o) ® (b ® o)
(2) Prove these results:
(8) ("a) ® b = a ® ("b) = "(a ® b);
(b) (&) ® ("b) = a @ v,

Some of the following may be found easier by using ordered pair
notation.

(3) Prove that the sum of two positive integers 1s a positive
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integer; and that the sum of two negative integers ls
a negative integer.

(4) Prove that the product of two poslitive integers 1s posltive;
and that the produst of two negative integers is a posltlve
integer,

(5) Prove that the product of a positive and a negatlve integer
18 a negative integer.

8.3 Subtraction and Divisilon of Tnteugo: e

Definition: The binary operation, "®" , is defined as follows!
For integers, & and b, if there exlsts an integer
o guch that a = b & ¢, thena & b = ¢C,

Definition: The binary operation, "(® ", is defined as follows:
For integers, a and b, 1f there exlists an integer
¢ such that a = b ® ¢, then a b = ¢, (b # 0).

Clearly, the domain of & 18 ZxZ , while the domain of
@ 18 a proper subset of ZxZ. This latter ldea means that
division is a restricted operation for Z .

8.4 Cancellation Laws for Integers

These two cancellation laws hold for the integers:
(1) a ® b=a @ c=Pb = o, and
(2) s ® bmg O o=»b =0, a# 0,
Both of these appear ag problems in EXERCISE 19.

To assist in proving the second cancellation law, we first
prove this well-know fact:

aO®Db=0=>a=0o0rb=0,

The student should glve this proof very careful study, as it may
geem tricky Af you don'’t oheok every reference and answer each "why"?




If ao®bs=0, then (Ta) © ("b) = 0, by & problem of
EXERCISE 18. Also, we know that: (“a) @ b = a @ ("b) = "(a @ D),
also from EXERCISE 18, Since a ® b = 0, then (a ® b) = 0, why?
end ("a)® b = 0, a ® (") = 0. We now have that all four products,
“"(a®b), (a) b, a © ("), and (Ta) © ("b) = 0., One of these
four products must then be made up of positive integers gince all
ocombinations of positive and negatlive integers are represented
in the products. But, all the products equal zerc, 80 one of the
integers, a ~a, b, b, must be zero, (Why?) This means that
either a or b 1is zero.

Prom the statement, the cancellation law for multiplication
of integers can now be proved. In fact, for the set of Integers,
the cgncellation law and the above theorem about the product of
two factors equaling zero are equlvalent statements,

If we had deferred a proof that the additive inverse of an
integer x is unique until we had prove the cancellation law,
it oan be written as follows. To prove this, i.e., the additive
inverse, X, of x 1z unlque, we use an indirect proof: by
agsuming that x has two additive lnverses we shall be led to
a contradlotlion,

Asgume that “x and “x‘/ are two different additive inverses

of x. These equations are then true:

- /4

x ® "x=0 and x @ x =0,
Therefore, x ® x=x @& “x’
which, by the cancellation law, becomes:

onx x mx,‘

This last statement gives the contradiction, We assumed that
“x and ~x’ were different and found that x = x’, oOur
oonclusion 18 that “x 1s unique.
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For natural numbers x,y, and z, the following result has :
already been proved?

(1) X = JapZ 4 X = 2T Y

This result 18 the converse of the cancellation property for
natural humbers. This conclusion is now applied to prove a
gimilar statement about Aintegers:

(2) b=o=3a @@ b=a & c, for all
integers, a, b, C.

e T T s D’

To prove (2) we separate the hypothesls intu three cases:
bxoc=0,band ¢ ara positive; and b and ¢ are negative.,
For b = ¢ = 0, 1t 18 clear that (2) holds by virtue of the faoct |
that zero 18 the identity element for additlon of integers, Q

If b and ¢ are positive, then b = [b',0]and o = [b’,o] ,
where b and o/ are natural pumbers, Furthermore, a = [a’,0],
where a’ 18 a natural number, Since b = c, then [p',d]w {@’,Ql
or b’ = ¢’ . The sum a ® bw[a'-l-b' ,0] and & @ o =
[ + o ;0] But a' + b = a’ + o because of (1), above, for
natural numbers. Therefore, [a’ + D ,0] = [h’ + o' ,Q]and
a ® b=38 & o,

For b and o negative, b = [O,bﬂ and ¢ = [b,oﬂ +  Since
bmo,b'ao’.Thesuma@bu[a’,b’] and.a@cza[a’,c':].
But, [a' ’ b'] == [a' ’ o'] and, therefore, a ® b=a ®o¢. Thils
conoludes the proof of (2), the converse of the cancellation law
for the ilntegers.,

The definition of subtraction is equivalent to the fact that
all equations of the form x @® & = b can be solved uniquely in
the set of integers. The solution of thls equatlon, according
to the definition of subtraction, iz x =b & a. It should be
apparent that x ® a = b can also be solved by adding the negative
of a to the value of both sides of the equatlion:




k@ a]l® ("a)=b @ (Tal.

By the associative property for Z &

x @ (a6 ® (Ta)) = ® ("a).
Using the property of additive inverses.
x® 0=b @ (Ta).
Finally, the Aidentity element 0 ylelds:

x=b @ (7a)
which 18 a statement that subtractlion is the same as addlng
opposites, or inverses., This statement 1s not uncommon to junior

high school students, now.

8.5 Properties of Ordexr

We have already defined the positive integers, Formally,
these are the integers of the type EA,Q] where &a 18 a non-zero
natural number. This integer was denoted by *a. In EXERCISE 18,
wa proved that the sum and ¢roduct of two positive integers 1s
agailn a positive integer -~ the posltive integers are glosed under

@ and ® . Also, we kncw from our construction of the integers
that for a given integer, x, x is elther positive, negatlive, or
x = 0, This lattexr property is called the lLaw of Trichotomy.

Definition: The integer a is greater than the integer D
(written a®b) Af and only if a & b is positive.
If a®b, then we can also write b & a, which 1s
read "b is less than a."

Immediately, from this definition, the reader should observe
that Af a As positive, then a® 0 since a ® 0 1s positive;
and that Af b 18 negative, then 0®b or D@0 . since 0 & b
is positive,




8.6 Trichotomy

With this definition of "greater than" we can state the
trichotomy property in another form:

Law _of Trichotomy: For any a, b €Z, one and only one of
the followlng holds:

a@b , P& a , or & =b ,
We now give a proof of this form of the trlchotomy law’

Because of the definition of integers as ordered palrs of
naturals and the equivalence relation, & , defined on thesse
ordered palrs, we sese that at least one of the above statements
must hold., If one desires a detalled proof of this he shall
work with a and b 4in the form of ordered palrs of naturals

(This is a good exercise.).

With this in mind, the problem reduces to one of showing
that only one of the above statements holds true at a time:

I, Assume 2@®@b and b &a. We shall show that these
two statements cannot hold simultaneously.

I a®b then (b ® a) e Z¥(set of positive integers)
by definition on page 78, Now that (b ~ a)e Z2*,
then "(b =~ a) = (a =« b)e Z~(set of negative integers).
As the second part of our assumption states that b @a =%

(a =~ b)ezZ*, Clearly, (a - b)eZ*and

(o =~ b)eZ™ cannot hold simultaneously, since this
would indicate that the integer (a « D) 1s a menber
of two distinot equivalence classes, One would be of
the form [x,0], with x naturals, and the other would
be of the rorm [0,y], with y ¢ naturals, This 1s the
required ocontradiotion in this part of the proof,

II. Assume a@bP and b = a., If these two statements hold




true, then:
1) a@b=>(bo®a)eZ”
2) b=g = (b®@a) =0

These two statements are dlssonant since (1) implles
that (b ~ a) 18 a member of an equivalence class of
the form [x,0] , while (2) implies that (b =~ a) is

a member of an equivalence class of the form [D,Q].
Again, recalling our equilvalence relation, & ,

(b ~ a) cannot be a member of two distinct equlvalence
classes, |

III. Assume b@a and a = b, The student can supply a
proof for thls case,

Thus we see that no two of these can hold simultaneously;
so, oclearly, all three of these cannot hold simultaneously.
Therefore, 1t must be the case that exactly one holds in any
given ocase,

8,7 Absolute Value

For every integer x, its absolute value, denoted by | %]
is the non-negative number of the pair x and ~x. Notice the
absolute value of an integer is never a negative number. One
can think of "absolute value” as of funotion defined from the
set of integers onto the set of non-negative integer.

This concept can be defined formally as,

Pefinition: For any ilnteger X,
1) |x| = x when =x@O0
and

11) |x| = "x when x®0.

Tt should be observed that the absolute value of zero is
zero, When you represent integers as points on a number line,




|x| 18 the distance of the graph of x from the origin or
sraph of O,

According to the definitions
‘ (a) ‘*2' - t2

(b) |"2] = *2

(¢) |™354l= T35k

(@) |Y6 @ "s5| =™
(o) |"s @ "6|=™1
(r) Y2 @ "3| = %6
(8) |72 © 3| =6

EXERCISE 1

(1) Prove the cancellation law for addition of integers.

(2) Prove the cencellation law for multiplication of integers.

(3) Show that (® 1g a restricted operation inZ .

(4) Prove the transitivs property for @ .

(5) Prove, for integers a, b, ¢, that! a @ be=pr a @ cdb @ o.

(6) Prove, for integers a, b, ¢, that: a ©b and c®@0 =
a®c@d oo,

(7) Prove, for integers a, x, y, that: If a®0, then xy
aO®x® abdy.

(8) From the definition of "greater than" "given in this ohapter,
prove that the standard definitliont

b@a]cefa'a ® o=b, a, b, c€Z,
is8 a true statement.

(9) Prove the converses of (5) and (6) above.




(10) Prove that the equation: x° + 1= 0, has no solution
for x€ Z.,

8.8 Isomorphism Between Naturals and Non-negetive Integers

We have discussed two mumber systems, the set of naturals
and the set of integers. You have seen how the elements of each
of these sets are defined, how operations on thece sets are
defined, and what some of the fundamental properties of these
operations are. We are now going to examlne a relation which
exists between the non-negative integers and the naturals.

You should first recall that the non~negative integers
are closed with respect to @® and ® . In fact, to return
to our formal notation for this dlscussion:

(1) [:8:,01 @ Eb,O] = [a + b,O] y and
(2)  [a,0] © [b,0] = [a-b, 0],
where a, e N .
We are now going to show that the non-negatlve integers
"behave" the ssme way as the naturals, a statement which should
be somewhat apparent from (1) and (2) above. To clarify

this we start with the followlng obvious one=~to-one corretpondence
between rnaturals and non-negative lntegers:

Naturals Non-negative Integers
0 < ; » [0,0]

> [1,0]
[2,0]
> [3,0]
» [4,0]

&

“
<
<
€

E W NN e

[ ] ®
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Notice that under this correspondence the sum of two naturals
corresponds to the suu of the integers. For instance:

2 + 3 = 5 (Naturals)

!

[2,0) ® [3,0] = [50 (Integers) .

Or, in general:

a + b - a+hb {Naturals)
.0 ® [b0 = [a+b, O] (Integers) .
The same 1s true for produocts:
2 . 3 - 6 (Naturals)

)

[-2,Q-] ® [3,0] = [_'6,0] (Integers) .
In general, we have:

a . b = a*db (Naturals)

[3,0] ® [b,()] - [a-b, (ﬂ (Integers) .

1t 48 possible to say that under the one-to-one correspondence
(whioh means the existence of a one-to-one function and its inverse)
from the naturals onto the set of non-negative integers.

(a) the image of the sum of two naburais 18 the same as
the sum of the images of the two naturals, and

(b) the image of the product of two naturals is the same
as the product of the "images of the two naturals,”
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Pistorially, this can be seen as the followlng:

ADDITION

2 4 imase — [2,0]

sun 5 (_ygg_g_e_____.> [5,0] / aum
N

37 imege > [3.0]

MULTIPLICATION

2 (ﬁ image

<

2,0]

product 6 AmBES.., (65 0] product

i > 0]

When two sets are in a one«to=~one correspondence and possess
properties (a) and (b) above, we say the correspondence 1s an
ysomorphism, and the two sets are isomorphic. From the mathematiocal
point of view, since these two systems (the naturals and the none
negative integers) "pehave" the seme way, they can be considered
as indistinguishable for all practlcal purposes. Therefore, 1t
48 not necessary to specify whether we are dealing with naturals
of non-negative integers in the following statement:

2 + 7= 9.

Indeed, in praotice we drop the poeltilve signs Af we mean
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integers. It is because of the isomorphism that the distinctions
between tie naturals and the non-negative integers fade., Because
these distinotions fade, the naturals are consldered to be a
subset of the integers, or the negative lntegers are an extension
of the naturals.

EXERCISE 20

(1) + E 0 This table ghows the sums cbtained when
E 3 0 adding even numbers (E) and odd numbers
(0), For example, the sum of an even

0 E number and an odd pumber is an odd number
(E+ 0 =0),
4+ 0 1 This table shows the addition facts for
0 0 1 the modules system {0, 1}. For example,
1 + 1 = 0. For the operation "+", are
1 1 0 the two systems isomorphic? Explain your

answer.

(2} The multiplication tables for both systems of problem 1,
above, are:

7

X BE 0 X 0 1
E E B 0 0 0
B 0 1 \ 0 1

Are the systems isomorphic for the operation of multiplica-
tion ("x")? Explain your answer.

What can you say about a general isomorphism between these
two systems?

(3) Prove: a = a =>a = 0,

e e et it

o il i



(4) Show that the correspondence: 0 <=———> 0 138 not an
1 < > =1 lsomorphism,
2 &> "2
J &e—— 73

® L]

(5) Proves The quotient of two negative integers im positive;
the quotient of a negative integer by a positive
integer 1is a positive integer; the quotient of

a poslitive integer by a negative integer 18 a
negative integer,

(Assume that the quotient exista,)

(6) Glven T = {2, 4, 6, ..., 20, Lo ] and 2’ = {3, 6, 9, ...,
3n, @eo}‘ show that T 1s isomorphic to T with respect to
addition.

(7) Prove that T and T’ are isomorphic with respect to
multiplication,

Full Tt Provided by ERIC.
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CHAPTER IX: Rational Numbers

9.1 Introduction to Rational Numbers

The isomorphism between the non-negative integers and the
naturals (see pp. 79~81 ) allowed us to think of these integers
and naturals as being indistinguishable from each other. Because
of the structural bond between these two sets, for all practical
purposes the statements?

(a) 2+ 3=a)b

(b)  (*2) @ (*3) = *5
are one and the same, Defined in quite different ways, the set
of naturals and the set of non-negative integers, and thelr
respective operations of addition and multiplication, turn out
to be duplications of one another. For this reason, we, too,
shall drop the distinguishing characteristics which we have
preserved up to this point. We shall use the simpler "+" and
"." to denote addition and multiplication for any two naturals
or integers, aud we shall omit the distinction between a positive

integer and a natural. When we write, 7 we shall mean the natural
or the positive integer.

The reader has observed that the naturals were limited since
we could not subtract any two natural numbers or divide any two
natural numbers. The set of integers was restricted by the fact
that while subtraction was possible, division was not possidle
for any two integers, Because of thls restriction, we shall now
define and examine the set of rational numbers, a number system
in whioch division will be possible for any two non-zero numbers,
By means of an lsomorphism between the integers and a subset of
the rationals we shall see that the latter set ocan be thought of
as an "extension" of the integers.
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Another way to state the limitatlon of tThe integers 18 to
say that we cannot always find an integer x which solves the

equations

X‘b = a'
for any two integers a and b. The set of rationala will permit
golution to this equatlon as long as b ¥ 0.

9.2 Definition of Ratlonals

We begin with the integers from which we dsfine the
rationals. Conslder this subset of ZxZs Zx T = {(a,b) a, D6 Z
and b # 0]. DNotlce that T 1is the set of non-zero integers.,

We choose this subset for reasons which will be apparent
later. Agsin, we define a new relation =

(a,b) [E (o,d)e=p a-d = b0,

where [ 1s the definition of equality for any two ordered palrs
of Zx T, Note that the definition of (& 1s equivalent to a-d = b-c,

where a,h,c,d e Z .

Examples
(1) (2,3) & (“’16)(%"315> 2:6 = ek ,

(2)  (72,5) @ (6,715)= (72)+(T15) = (5)-(6) .

The reader should think of (2,3) as % and (4,6) as % 80O

that he can see the motivation behind the ordered palr development,
The ordered pairs (2,3) and (4,6) will belong to the same equivalence
olass and, thus, we shall be able to say that (2,3) 1s equivalent

to (4,6)3 4i.e., that 2 is equivalent to z - g phrase common

3
to some third grade children.
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Having glven you the definitlon of when two ordered palrs
of integers are equivalent, the temptation 1s agaln great to ask
you (see page 59) to develop the system of rational numbers from
this definition. Agaln, we reaist the temptation but perhaps
you can give a thought to the way you would define the rationals
and operations on them. We shall offer the detalls with your help.

Pirst we shall ask you to do what 1s the next obvious step =
prove that [=] 1s an equlvalence relation (see EXEBCISE 21«A),
As you have seen earlier with the naturals snd integers, tne
equivalence relation generates the numbers in question., You
should be aware that the equlvalence theorem 1s an important
cornerstone in our development. Application of thls theorem
to Zx T, once we have the equivalence relation & , partitions
ZXx T into non~overlapping subsets called equivalence classes,
The elements of each class are equivalent to each other, and
are not equivalent to any elements of any other classg.

The standard elements of each cless are those ordersd
palrs which one might expect = those which represent the fractional
form in lowest terms, Thus, (2,3) is the standard element of the
oless containing (2,3), (4,6), (8,12), etc. In ghort, the
gtandard element of each equivalence class 18 that ordered paly
whoge two e.emente have the integer *1 and "1 as their only
common divisors. 8ince two ordered palrs quallfy for standard
palrs, according to this orlterion (such as (2,3) and (72, "3),
or ("2,3) and (2,73),) this rule shall be adopted:

(1) Both elements will be posltive, ox

(2) The first element will be negative and the
gecond element will be posltlve.

In the oase of the class containing (0,1), (0,"1), (0,2), (0,72),
(0,3), (0,73), eto., the standard element will be (0,1),
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Now we can present a table of gome equivalence classes:

voo | (71,2)
eoe | (1,72)
eee | (T2,H4)
vos | (2,7H)
veo | (73,6)
vee | (3,76)

("2,5)
(2,75)
(T4,10)
(%,710)
(T6,15)
(6,715)

.
I

L]

(71,3)
(1,73)
(72,6)
(2,76)
(73,9)
(3,79)

»
®

(73,10)
(3,710)
(76,20)
(6,720)
(79430)
(94=30)

[
®

(0,1)
(0,7 1)
(0,2)
(0, 2)
(043)
(0,73)

.
L]

¢

(3,10)
("3,710)
(6,20)
(76,720)
(9,30)
(79,730)

L]

(1,3)
("1,73)
(2,6)
("2,76)
(3,9)
("3,79)

L

L]

Eaoh of the columns or clagses generated by over ZXT

is a rational numbexr,
different class,

We define each rational number to be a
The set of rationals is the set of all these
olasses, The rational number two~thirds is: {(a,b)] (a,b) (2,32};

the rational number one~half is: {(m,n) l (m,n) & (1,2)} . Ve
shall shorten this set notation again and use [(2,3)] to stand

for the class of all ordered palrs of integers equivalent to (2,3).

Remember, although we use the brackets, [...] , to denote an
equivalence class as when we defined the integers, we are now
gpeaking of equlvalence classes of ordered palrs of integers, not

ordered palrs of naturals.

Although we chose to denote poslitlve

two-thirds by [(2, 3)] , Wwe can also use, among others, [(“2,“3)] or

ﬂu,ei} to represent the same rational number. Thus, we can write

these statements:

[2,3] = [("2,73)] = [(4,6)] , ana
[1.2] = [2o4]] = [("1,72)]

where the equality sign is used to denote equality of

gets of
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ordered palrs.

We shall call the equivalence class {(1,2)] positive one-
half} [("1,2)] negative one-half; [(2,5)] positive two-fifthsj
and [(72,5]] negative two-fifths; [(3,10)] positive three-tenths;
and [("3,10)) negative three-temths. Note, also, that there will
be equivalence olasses sush as [(1,1)], [{2,1)], [(3,1)] 5 eve 3
and [("1,17], [("2,1)], [("3,1)]s +.. We shall call those
rational numbers positive one, positive two, positive three, etc.}
and negative one, negatlve two, negative three, etec, The olass
[(0,1)] will be called the rational number O.

If we let Q) stand for the set of rational numbers, then:

Q = {[(a,b)] \ (a,b) 18 a standard elemn’b}.

Definition: Let x = [(a,b)] and y = [(o,a) be two rational
numbers . The sum of X and y, denoted by x (& ¥,

is defined bys
» x [ y = k‘:(ﬂ“d. + b"c, b’d)] .
In ﬂhort, [’(ayb)] m [(ng.n L [(a"d. + b“O’ b'd)] »

According Yo the definitlon, we are "adding" equivalence
classes =~ that iz, the operation [ is a binary operation on
Q x Q . The operation M 1is defined quite differently from
+ for naturals and @ for integers. Note that (asd + bec, bed)
18 a result of multiplying and adding lntegers.

Reoall that a binary operation is a function from a set A
into a set B, To Ansure that the operation B Ais a bona fide
binary operation the following property must be proven for
arbitrary rational numbers:

Iet r, 8, and t be rational numbers such that
if rw=g, then r W t =8 W ¢t.
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In order to prove this property consider r, §, snd t a8
the rational numbers defined by the equlvalerice classes [Za,bi], |
[(°-d)] y and [(e,r)] , respectively.

Consider the followlng sumsi I
r 4 t = Ba,b)] I [(e,f)] = [(a,»:t' + bee, b-r)] ’ ‘
and s @ b= [(c,a)] @ [e,0f] = [(cet + a-e, d-1)] .

In order to prove the desilred property thege two sums must
be equal, The proof will gtart with the desired conclusion and
work to a point where equality of known facts is reached., This
procedure 1is acceptable since each satep An the proof can be
reversed, 1.6.; Lf one 8o desires he can copy the steps of the
proof in the reversed order and be able to supply a legitimate

reason for each step.

Proofs

(1) [(asf + bee, berf] = [oor + d-e, a:1)
(aef + bee, bef) [E (o°f + d-e, d-tf)

Now by definition (page 85,
(44) ( a<f + bee) def = (gef + dee) bef

It should be recognized that (i1) iz an equallty in Z . Hence,
all the known properties of elements and operations pertaining
to integers oan be used. Also, observe that b,d, eand  are
non=zexro Antegerss thus, (44) ocan be written in the following forms

(111) acdef.f + Dbedeesf = Dbecefef + bedref

By the cancellation properties of the integers (114) becomess

(1V) av‘d »~ b'c M
statement (iv) 18 known to be true by hypothesis, ginoe?
(v) r == (a,b] = [o,a]=> (a,d) @ (0,d)=> a.d = beo.,




This proves the property in question, so [H] 1s a bona fide
binary operation. But, by the remarks nade earlier if B8O possessed
you could begin with statement (v) and work backward to state~

ment (1),

Examples

(1) [2,3] @ [(1,3] = [2-3+ 31, 3:3)] or
[(z,3) B [1,3] = [(9,9)] or
[2,3] & (1,31 = K1) .
(In everyday language wWe would writel (" %) + (*1)_ *1 ) e

2) [("1,2)] @ ["3,5) = [T1-5+ 2:"3, 2+5)] or
[(“1,2)] @& [(73,50 = ["11, 10)].
(In everyday language we would write: ("%) + ("%) x ("%%) )
Az an exercise (see EXERCISE 21-4) the reader is asked %o
show that @) 18 closed with respect bo addltion and that (B is a
commutative and assoclatlve operation. Also, we ask the readeXx

to show that [(0,1)] 18 an edditive identity. Purthermore, he
will show that for each rational number, [(a,b)] , there is a
rational number {(o,d)] such that ¢

Ka,b)] H {(Qad)] = [(001)] ’

that is, that each rational number has an additive Ainverse.

EXERCISE 21=A

W
(1) Prove that {(E] 1s an ed ulvalence relation.
(2) Show that QQis glosed with respect to B .

(3) Prove that [ is commutative and associative.

(4) Prove that f0,1)] 1s the aaditive jdentity for Q) .




(5) Find the additive inverse for an arbitrary rational number,
Bavbﬂ . .

(6) Show how the additive inverse 1s needed and used to solve:

!-u o
7 + x = 35,

9.4 Additive In

In EXERCISE 21~A 1t was shown that [(0,1)] is the additive
jdentity for the set of rational numbers, i,e,, for each [{a,b)]e Qz

[(a,p)] @ [o,1] = [a0)].

Does each rational number have an additlve lnverse, or a negative?
We found the additive inverse for each rational number in EXERCISE
21«A and thus we have this theorem:

| Theorem: An additive lnverse of iza,b) is E“a{bﬂ .

The proof 1s acoomplished by means of actual computation,
recalling that ~a stands for the negabtive of the integer a.

[a,)] ® ["a,b)] = [{arb + bea, b1,

whioch is equivalent to IZO,lﬂ . 'This can be recognized by using
properties of Z to simplify the first element of the ordered palr,
1000, b(ﬂ*-a) which 48 be0 = 0. Thuﬁg

Ba,’bﬂ ® E“a’b):] - Eo’l.)]‘

The uniqueness of the additive inverse will be proven on page 100,

Lonal Numbers

pefinition: lLet x = {{a,b]] ana y = [(6,d] ve two rational
numbers. The product of x and ¥, denoted by
XxX@ y , is defined by:
X y= (E‘og b'd) . ;




2
b

(Again, we remind the reader to think of (a,b) as T and (¢,d4) as

g

Example:

[(_3’4)] El BZ,B)] = [("302, u,.a)] o )
[(“3,4]] @ [i2,3] = [(76,12)] = ["1, 2)],
A8 waB the case with the operation of H , 1t 1s necessary

to examine the following property for & 3

It v, 8, and t are rational numbers such that
r=8, then » Dt =g @t ,

The reasoning behind the proof will parallel that described
for the similar property of [ given on page 89 .

E Proof's

Iet ry 8, eand t be the rational numbers deflned by the
equivalence classes [(a,b]], [c,a]], and [(e,f)], respectively.
Consider the following productss

r@t= [a,b] @ [e,£] = [(a-e, ber)] , and
s @t = [(c,d)] @ [(e,r)] = [(cre, a:1)].

We olaim that

(a-e, bef] = [(cre, d-r)] , that is,
(ace, bef) ( 0+e, d+f)mp aceed-f = cresbf

Now, this 18 a statement about integers, with b, ‘4, e, and
f being non-zero iutegers, Thus,’
ase+d-f = cegeb.f
by the cancellation property of the product of integers yields
(1) ard = o°<b . |




statement (1) 4is known to be true from the
hypothesis, since I = 8 => [(a,b)] = [(o,d,)]...—.—‘.;-
(a,b) (cyd) =p a-d = bhet ,
Since this process can be reversed see page 89 to construct a

rigorous line of reasoning, we have proven the property in question.
Hence, [ is a binary operation.

The reader again will inspect the propertles of this new
operation, @ , He will show (see EXERCISE 21+B) that ) 18 glose
with respect to B , that @ is gommutative and assoclative, and
that [(1,1)] 1s a multiplicative identitys

[a,p)] @ [(’1,1)] = [ta-1, p2] =[a,p).

The distributive property of multiplication over addition,
which the reader may wish to verify (see EXERCISE 21-B), also
holds for the rational numberss

[e,0)]@ ( [e,a)] = [e,£] ) =
([(a.bﬂn[(c.dﬂ ) 8 ( fla,2]8 [(opt)] ) o

EXERCISE 21-B

(1) Show that @ is closed with respect to H .
(2) Prove that [ is gommutative and assoclabive.
(3) Show that [(1,1)] 1s the multiplicative identity for &.

(4) Verify the distributive property for /AR
[(a,b)] @ < fe,a] @ [e,r] ) = ( f(a,p)] B [(c,a)] )
B ( [a,p)) B [Kesrd) .

9.6 Multiplicative Inverses for Rational Numbers

The number [(1,1)] 1s the multiplicative ldentity for &
because [(a,b)] @ [(1,1)] = [(a,b] for any rational number [(a,b)] .
Although the only integers for which there were multiplicative
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inverses are *1 anda "1, all rational nnumbers except {}0,1ﬁ
have multiplicatlve lnverses. To show this consider the
definition of multiplicative inverse for any rational number, [(a,b)]:

f(a,0)] © [e,a)] = [(1,9].

The rational number Bc,di} will be a multiplicative lnverse for
Ea,bﬂ if this equation holds. This equation 18 equivalent to:

a0, b-a)] = [1,1)].
These two sets are equal if and omly if the ordered pairs (asoc, bed)

and (1,1) are equivalent.

(asc, b-d) & (1,1) = (a-0)-l = (bed)»1, or asc = b+d .
Clearly, an instsnce when these pairs will be equivalent is when
c=b and & =a, Thus & multiplicative inverse of [a,b)] 1s

fe,a)] .

Examples:

(1) The multiplicatilve inverse of [("2,3)] is [(3,'2)] or
\:('3,2)] , in standard form.

(2) Each rational number except Bo,lil is a multipliocative
inverse and has a multiplicative inverse.

(3) The multiplicative inverse of [}a,lﬁ 18 IKl,aﬂ .

We shall call the multiplicative inverse by a special name = the
reciprocal - just as we gave & gspecial name = the negative = to
the additive inverse., The fact that {}0,1i§ does not have a
reciprocal is left for the reader to show (EXERCISE 21=C)e

The unigueness of the multiplicative inverse will
be proved on page 100~101,

Thus, the ratlonals have one property whioch the integers
do not poassess = each rational number, except zero, has a
multipliocative lnverse. This additional charaocteristic allows
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diviesion to be a non-restrictive operation since division 18
just multiplication in reverse. It is this property which permits
the solution of such equatlions as3

7‘ X » 8“’,

gince the multiplicative lnverse allows us to "isolate” x to
yield the equivalent equations

%-»7-'1 - %'°84 y OF
1ex n'% «84 , or
.- B

The use of the multipllicative inverse with rational numbers to
solve equations 18 known to many 7¢h and 8th graders.

EXERCISE 21-~C
(1) Prove that every rational number, except RO,iﬁ], has &
multiplicative inverse.

(2) Show how the multiplicative inverse is used to solve:
23012720 ‘

(3) Show how the addlitive and multiplicative inverses are
used to solve: 3x + 8 = 73,

(4) why doesn’t [(0,1)] have a multiplicative inverse?

9.7 JIsomorphism Between Integers asnd Subsetb of Rationals

| Consider all rationals in the standard forn [a,1)] . We
! can set up an obvious one-to-one correspondence between thls
| subset of & and the set of integers:

Subset of
Integers ﬁatlonais

P ¢ _____*Po]




Because of our definition of sddition and multiplication
of rationalss

((p,1)] ® [a,2] = [p+a, 1)] , and
[tp, 1] ® [a,1)] = [p-a, 1)].

Thus we see that under the above correspondence the sum of .two
integers p + q corresponds to the sum of the respective rational
numbers:s

P+a y Op+a, 1] .
Similarly, for multiplications

Ped s [pea, 1) .
We can now conclude that under the one-~to=-one correspondence
above, the sum of the images of two integers is equal to the

image of the sum of two integersj the product of the images of
two integers is equal to the 1mage of the product of two integers.

Here are the results in a dlagrams

Subset of
Integers Rationals
ADDITION
P ¢ — fSP,i)]
sum )P *d¢_ s (p + a, 1) sum
q¢ € —> “fay1)]
MULTIPLICATION

‘ ? Bpglﬂ |
product peq é—————>[(p.q, 1) < preduct

! ———————— ) [(Q:“]

p & . —




what these dlagrams show 1s that the correspondence:} pw[}p.l)]
from the set of integers into @Q 1is an 1somorphism, Because of
the isomorphism, the integers and a subset of @, {Ir,1l] | p 18
an mteger], behave in the same manner., For all practical purposes
the integer °~3 and the rational [("3,1)] are indistinguishable,
Por thls reason, in practice, the symbol ""3" 35 guffioient for
both the integer and the rational number, In fact, as the reader
will detect, because of the previous isomorphlsem he studles
between the naturals end the non-negative integers, the symbol "5"
can stand for a natural, an integer, or a rational number., We
can’t tell what "5" stands for, but the two isomorphisms say that
it doesn’t matter.
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CHAPTER X: Properties of Ratlionals

10,1 Notation for Rationals

We shall again drop the cumbersome notations which was
useful in our theoretical work, but will only get in the
way in our practical work. We shall denote the ratlonal
number [(a,,b)'_l oy %— . TPurthermore, we shall again
drop the specilal symbols for the operations A and 2
and use simply, <+ and -,

The ilsomorphisms allow us to think of the integers as
s subset of the rationals, and the naturals as a subset of

the integers, Thus, + and ° wlll serve all numbers.

The operations on two rationals now become:

X 8 = Xb 4+ ya
X ,a = Xa
y b yo

The reciprocal of %’ 18 %-. In particular, the
reciprocal of x 1s %. and vice-versa, We have this
equation:

x o, L X
T ¥y ¥

This equation tells us that every rational number 1s the

product of an integer and the reciprocal of an ilnteger,
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We call %. a rrection, which means that a fraction stands

A fraction 18

for a rational number or an equivalence clast.

a_symbol, noli s number., We call a the numeralor of this

symbol and b the denominatorj; that 1is, numerators and

denominators are symbols, too,

The symbol =5 means the negative of the rational number
a } H'(ﬁ) means the negative of the rational number

represented by ﬁ'. Poth of these equations will be true:

a + (&) =0

i “"(2&)50
g t 7

R T e




10.2 Uniqueness of Inverses

We now prove the uniqueness of the additive inverse of

each rational number, r . Suppose r'! and r" are rational
numbers, and are two different additive inverses of r ; that

is¢

r 4+ 1! =0

r 4+ r'" =0

Therefore,
r 4 v =1 41",
If we add r' (r" would do, also) to both sides of this
last equation, we obtain:
(r' + 1) + vt = (v +r) F r" , or

O+ 1r'=0+41r", which 18 equivalent to

! = rll
This proves our assertion that r' (or r") is the unique
additive inverse.

Likewlse, we prove the uniqueness of the multiplicative

inverse, Suppose that s' and s" are two ratlonal numbers
and they are dlfferent multiplicative inverses for the
(non-zero) rational number I, Therefore,

r ¢+ g' =l

r ¢+ " =1, and

r « g! myy « 8",




wlQle
Multiply each side of this last equation by g!' (8" would

do, also) to obtain:
(s * ) * 8" = (8" *r)* 8" ,o0r
1°* s!' =21 ° 8", which 1s equiva~
lent to
g! = ",

Hence, the multiplicative inverse 1s unique,




|
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10,3 Subtraction and Division

We shall define these operations a little differently

from before,

Definition: For any two rational numbers, & and b ,
S a 5 b is defined by:

Thus, we define subtraction by the addition of a negative,

Definition: For any two rational numbers, & and b,
- a@ b 1is defined by:

ambnaﬂ%.

We define divisilon by the multiplication of a reciprocal,
Tt 1s clear that by the definitlon of division:

aE-]bn%.

NOTEs Agailn, we shall drop the particular symbols and
for subtraction and division of two rationals,:

respectively. From now on, we shall use - and
to stend for subtractlon and division of rationals

»
L d
[
L4

Examples ¢

I T ) "5”‘164‘"1 = Ll
BB a2 .8 oai2al
® 3+8"3 5715 3

AR RRT

)
U'!");CQ‘\’I win W
| |
00 o]
<1

T"he only restrletlon imposed upon division 1ls that
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division by O is impossible (see Exercise 22.) As

mentioned earlier we can now solve these equations:

ax = b,

where & and b are rational numbers, and a # O.




10.4 Ordering the Rationals

We define the set of positive rationals as all those

rationals ga,bZ] , in standard form, such that a > 0

means the integer a is greater than O, Recall that

in standard form b is always greater than O .

Definition: The rational number x 1s greater than y (in
symbols, xB) y) if and only if x - y is

positive, The expression yMEx 1is equivalent
to xBy , and is read "x is greater than y."

Note that if the rational number r is positive, then
rB0 . The negative rationals are those in standard form
[(2,b] where a<0 (as an integer.)

Note that if r, & rational, is negative then ORlr or
r@0 (r i1s less than O0).

Tt should be clear from the formation of rational
numbers and theilr standard forms that a rational 1s either
positive, negative, or zero (Law of Trichotomy.)

Again, we shall drop the new notation [4 and [F and use

the symbols < , > agein because of the isomorphisms.,
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EXERCISE 22

(1)

(2)

(3)

(%)

Use the definition of division to show why division by
0 is impossible,
Prove the cancellation laws for addition and multiplica~

tion of rationals:

(a) For a,b,ceq, & B b=a [ c=»b=cC;
(b) For a,b,c€Q, a # 0 , a Bp =a@c=pb = C,

show that the definitions of subtraction and divisilon
of rationals are equivalent to previous definitions
used with integers and natureals,

convinece yourself that Numbers 4, 5, 6, 7, 8, and 9 of
Exercise 19 also hold for the retionals.,

show that there 18 no smallest posltive retlonal number,
Show that if %)Q then there exlsts a natural number,
n, such that:

L a,
O<H<B-,

pefine the absolute value of r as follows:
|ff =z, if »20,

] = -r, I r< O,

(a) Show that [0l = 0. (@) |vel = |l ‘sl -
(b) I£ || = O=>xr =0, (e) |r 4 sl € [xl + I8k
() |l = I=l.

(Triangle Inequality)




~10&
*(8) Why is this equation not solvable for rationals:

x° = 2 72 (Look up a proof in a textbook)

| (9) (a) Prove that the sum of two positive rationals is
’ positive.

(b) Prove that the sum of two negative rationals is
' negative.

» (10) (&) Prove that the product of two positive rationals

(b) Prove that the product of two negative rationals

l is positive,
F is positive.

N (c) Prove that the product of a positive rational and

F a negative rational 1s negative,

10.5 Converse of Canellation

If the proofs that binary operations @ and 3 are
well defined (pp. 89 and 92 y, are examined, it will be
discovered that the properties under consideration are
precisely the converses of the cancellation laws.,

The converses of the cancellation laws are:

5f For r, S, oand t rational numbers such that:

- () If r =3s, thenr |t s B t, and

s B t.,

(b) If r =35, thenr B ¢

Hance, there 1s no need to give proofs of these converses

since they follow from the definitions of the binary operations

of ( and B .

:
i
[
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10.6 TPFurther Properties of the Rational Numbers

Theorem: ILet a and b Dbe rational numbers., If a<b =»

there exists a rational number ¢ such that

a <c<b .,

Proof:  We shall show that ﬁ_géﬁ is & suitable choice

b
for c. TFirst, show that Z—p—<b ., We must

a+ b . . b - 9
prove that b - s 18 positive OR that 5

is positive, But, b - a 1is positive, by hypothesis.

e At e

The rational number % is also positive. Thus, the

product % ¢ (b - a) h_g"& is positive (see

I a+tb ,a+?®
Exercise 22, Number 10,) Now, a<™ p <» 5 =~ &

is positive. The number ﬁ“%“h - a 1s equal to

b - & which we have just shown to be positive.

2
a + b . a + b
Therefore, —z—= ~ & is also positive and 5 >a.

Thus, we have shown a<?‘-—-’é*l-]-°- and 9‘_%‘;—]9- ¢ b, So
let c = E—%?E and we have shown the existence of
a (rational) ¢ such that a < c < b,
T+ follows from the above theorem that there are an
infinite number of ratlonal numbers between any two rationals

(Why?)

10.7 Decimal Iguivalence of Fractions

The reader is familiar with the decimal equivalent of

fractions, For example, to determine the decimal equivalent

for iﬁ , we Interpret this fraction as

7
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16 = 7:

2,285714
7 Y16, 000000
1}
20
14
“60
56
40
35
~50
ko
—10

L
30
28
2

Tt is clear from this process of long division that %g

has a non-terminating decimal equivalent, 1.,e., this decimal
equivalent does not have & zero remainder, But, while %g does
nave a non-terminating decimal equivalent, the decimal repeats
after every six decimal places. The digits 2857L4 repeat
indefinitely., The reader is already famililar with decimal
equivalents of fractions which terminate and with those

which repeat. For example, %- is a non-terminating repeating
decimal, while 3 1is a terminating decimal.

A little inspection of the long division process will
reveal that all rational numbers can be represented by either
terminating decimals or by non-terminating repeating decimals
(Do you see why?)

on the other hand, all repeating non-terminating decimals

and terminating decimals represent rational numbers. Here are

two examples which will indicate how this statement can be
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proved generally,

Consider the decimal 28.143 , Tf we multiply this
decimal by %j%%% then 28,143 = 28,143 - %f%%% = g%f%%% 5
a rational number,

Next, examine the decimal: 24,1234 1234 1234 ,..., a
repeating non-terminating decimal, TIet N denote this

number, i.e,:
(a) N = 28,1234 1234 1234 ,,,,
If we multiply this decimal by 10,000, then:
(b) 10,000 N = 241,234,1234 1234 1234 ...,

Subtract (a) from (b) : 9,999 N = 241,210 ,

241,210
_ etl,210
(¢) N="795,9% -
N 1is now expressed as a fraction which represents a rational
number, We call the student's attention to the link between
the number of decimal places which repeat (4 in the number, N,
above) and the power of 10 used to multiply this decimal (4 to

get lOLL

or 10,000). To show that the number N can be
expressed in fractional form, it is necessary to multiply
using this rule.

The conclusion that we reach upon inspection of decimal
equivalents for rational numbers is that every rational can
be represented by a decimal equivalent which is periodic

(non-terminating) or is terminating, and conversely,
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10.9

Geometric Congtruction

Given a straight linc L, it is posuible Lo represent
the rational number O (at any point called the origin of
the line,) the positive rationals (Lo the right of the origin),
and the negative rationals (to the left ol the origin) on L .
To accomplish this Job of identifying points for rational
numbers, one needs a unit of length and an orientation (choose
one of the half-lines to be positive, the other to be negative),
By this process of measurement, each rational number %- can be
associated with a point P of L., We shall soon see that
each point P of L is not (generally) associated with a
rational number. What we have is a one~to~cne correspondence
from @ into L . The range of this correspondence f{rom Z}
into L i1s the set of points whose distances from the origin

are measurable by ruler methods,

Field Properties of the Rationals

The reader may be familiar with the properties of a

field, He should realize that @ satisfies all these
properties for + and *

(1) Closure, uniqueness for + and *.,

(2) Commutative Properties for + and <.

(3) Associative Propertles for -4 and °.

(4) Identity Flements (Additive and Multiplicative)

(5) Distributive Property for ° over + .

(6) Inverse Elements (Additive and Multiplicative)




10,10

~111l=

The set of integers 2 satisfies all these except the
possgession of a muliiplicative inverse for cach of its
non-zero elements, The presence of these elemenls among
the rationals makes division possgible,

The set of rational numbers (@) satisfies these
properties:

(1) Trichotomy: for any given rational %~, m(%) is

poslitive, or %-is positive, or %’is O.

(2) The sum of two positive raticnals ils positive,

(3) The product .of two positive rationals is positive,
The student may wish to verify (1) as an exercise; the
student has verified (2) and (3) in Exercisc 22, Numbers 9
and 10, |

Well Ordered

Any set containing these properties is called an
ordered set, Thus, Z 1is an ordered set, @ i1s an ordered
set, Since @ is a field,

@ is called an ordered field.

Definition: If every non-empty subset Sy of set S contains
a smallest element, then S is well-ordered,

From this definition, one can see that the set of positive
integers is well-ordered. The set of negative integers is
not well-ordered. Nor is the set of positive rationals or

negative rationals.
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Note that the well~ordering property 1s a property
which describes the nature of (infinite) sets, It is a
property which is "outside" of the elements and hence is
non-algebraic, as opposed to, say, the commurtative property

which deals with the structﬁre of the set and is an algebraic

property.
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CHAPTER XI: Real Numbers

11.1

Introduction to the Real Numbers

By now the student 1s familiar with the method which
was employed Lo generale Lhe difl'erent number sysbems,  1lreot,
an eguivalence relation is defined using only those elements
which have been previously defined. The equivalence theorem
applied to the elements of the equivalence relatlon parti-
tlions these elements into equivalence classes, These classes
are defined to be the numbers,

We shall agaln use thils procedure to arrive at the set
of real numbers, although there will be some modifications
enroute, The set of rational numbers satisfiles many proper-
ties., Subtraction and division are possible as long as we
do not divide by zero. Another way of saying this last
statement ls to state that addltive and multiplicatilve inverses
exlst for each rational number, except that O does not have
a multiplicative inverse,

Rational numbers are usually represented by fractions
and quite often by decimal numerals, or decimals, Every
rational number can be'éxpressed elther as a terminating
decimal (such as ,75) or as a repeating non-terminating

decimal (such as ,743743743...). And vice-versa, each

terminating decimal and each repeating, non-terminating
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decimal stands for a rational number, As wc shall soon see,
non~repeating non~terminaving decimals do no® represent
rational numbers. They represent numbers which are called

irrational numbers, some of which are familiar to school !
children such a8 T , V2 and V3 . Fach of these numbers

cannot be represented by repeating decimals, The irrational

|
|
numbers, ir. a sense, serve to "enlarge" *‘he rational number J
system, just as the non~integral rational numbers enlarged f
the set of integers. Together, the rationals and the f
irrational numbers comprise the real number system, Our goal !
in this chapter is to define the real numbers and show §
(through an ismorphism) how the rational numbers can be |
thought of as a subset of the real nunbers. %
At this point, we would like to leave the reader with |
an additional thought concerning the decimal equivalents for |
rational and irrational numbers, The set of irrational
numbers consists of all numbers which can be represented by

non-terminating, non-repeating decimals., It can be shown

that this set has more elements in it than the set of rational

numbers @. (see Appendix B for a proof.) By 'more elements’

we mean that it is impossible to find a one~to-~one

correspondence between the set of irrational numbers and @.
From the results in Appendix B, it will be noticed that
nelther set is finite.

A further property of @ is that each ratlonal number

can be represented on a straight line, or number line, But
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not all points of the line represent rational numbers, For
example the length of AC in the dlagram below is not a
rational number, When this segment is marked off on the
number line with one endpoint on the origin, the other
endpoint does not coincide with a rational point on the

line, B —C

A D
The distance from A to C (by the Pythagorean Theorem)
is equal to a number whose square 1s 2, or V2 . In an

earlier exercise (Exercise 22, No, 8) the student showed

that y2 1s not a rational number, It is an irrational

number, The proof that V2 1s not a rational number is worth

repeating here because it 1s derived from a similar proof

known to ancient Greek mathematicilans,

Theorem: The equation x® = 2 1s not solvable by a rational

number,
Proof': Assume that the equation were solvable by a

rational number represented by %-, where %» is a

standard element (see pp. B§6-87). Therefore,

x='~5‘ or:




a
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From equation (1):

(2) a2 = 2b”

which lmplies that ae

is even, Thus, a 18 also
an even number, If a 1s even, a = 2m, where

m is an integer. Thus, from equation (2):

a = (Em)2 = Um® = 2b%,

SO, bg = 2m29

Therefore, b 1is even, We deduce that since a
and b are even, %’is not in lowest terms (l.e.,
not a standard element), which 1s a contradiction.
Thus, we conclude that V2 is not rational,
This theorem also asserts that there is at least one
point on the number line that does not represent a rational
number, A proof equivalent to this one can be used to show
that y3 , V5, V7 , etc., are also irrational numbers.
The theorem also implies that the decimal equlvalent of N2
must be non~terminating and non-repeating. Recall that a

previous examination of the decimal equivalents of ratilonal

numbers allowed this generalization: each rational number

can be represented by a terminating decimal or by & repeating

non-terminating decimal, and’conversely.
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(1)

(2)
(3)
(%)
(5)
(6)

(7)

(8)

(9)

(10)

(11)
(12)

Exercise 23

Prove this statement: The square of an integer 1s
divisible by 3 1f and only i1f the integer itselfl 1s
divisible by 3.

Prove that {3 1s irrational.

Prove that Jgu is'irrational.

Prove that {2 + {3 is lrrational,

Prove that if X is irrational, then ~¥ is irrational,
Prove or disprove: the sum of two irrational numbers

1s irrational (closure under addition,)

Prove or disprove: the product of two lrrational numbers

1s irrational (closure under multiplication,)

=

Suppose 8 1s an irrational number, Prove that is
also irratlional,

Suppose t’is an irrational number and r 18 a non~zero

rational number, Prove that ¥ + r 1s irrational, and
that ¥ - r is irrational.

See problem (9)., Prove that rY and %are irrational,
Prove that if ¥ is irrational, then ¥¥ is also irrational,

Prove: If ot and p are irrational numbers and e + p is

rational then & -p is irrational.
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11.2 ILimitations of the Rationals

previously, we attempted to cite the limitations of the
natural numbers and the integers. These limitations served
as motivation to extend these systems, The limitation of
the rational numbers is somewhat more obscure, but no less
impor tant then those indicated esrlier for other number
systems,

Definition: A number, X, 1s an upper bound of set S if and
only if for each & € S, then xZs,

Examplels For S = { x\ O<x < 1, and x 'is ra,tional} s
an upper bound is ., Some other upper bounds of S
are 3, 2, and 1, In short, all numbers greater than, or

equal to 1l are upper bounds.

Example 2: The set W = {0, 1, 2, 3, ...} has no upper bound.

Definition: The least of all upper bounds is called the least
upper bound (l.u.b.). |

Exemple 3: The least upper bound of S (see Example 1, above)
is 1, which is not a menker of 8.

Exemple 4: The set W (see Example 2, above) has no l.u.b,

Example 5: Let T = {xl 0<s x=<1 and x is rational} .

The 1.u.b. is 1, a member of the set, T,
Fxample 6: For Z = {"l, 2, "3, 4, ...} , the least upper

bound 1s —1, an element of the set.
Example T7: The least upper bound of P = {"%~, n%., "%,, ..:}

is O, which is not an element of the set.
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»l
Consider next the set P m[x ‘ x~ & 2, and x 1s

rational} . This set consists of all rational numbers waose
squares are less than 2, such as 1, 1/2, 1.4, 1.41, and L.A4LL,
Tt hasg many upper bounds: 1.5, 2, 2%, 3, 4, and 7. In fact,
all ratjional numbers greater than 1.5 will serve as upper
bounds of P, although there are others. But P does not
have a least upper bound which is a rational number, For the
least upper bound of P 1s not a rational number; it is the

irrational number Vﬁn.

The set P gerves to point out that the set @ of rational

numbers does not possess the least upper bound property.

Definition: A non-empty set, H, satisfies the least upper
bound roperty if and only if each subset G of
T which Das an upper bound, has a least upper
bound which is an element of H.

Although @ does not possess the least upper bound

property, the set of real numbers does. Our work in the

next section begins a development which leads to this

conclusion,
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11.3 Definition of Real Number s

For a definition of a real number, we can Use only
previously defined numbers. Specifically, we shall use the
rational numbers to arvive at the real numbers.

Consider the sequence of rational npumbers :

a; =1
ap = Lok
ag = 141
ay = N
ag = L4141
ag = 1, 41413

® [
v L]

When we square eagh of these numbers, we find that the square
gets closer and cloger to 2. By continuing this sequence of
numbers in tnls manner, we can arrange for the squares of
each of these numbers to get as close to 2 as we like.
Although, in practice, the actusal computation of each decimal
place is laborious, the reader should appreciate thotb
theoretically, at least, the job can be done. By means of

a sequence faj, 8, 8gs ) ...}of rational numbers, the

{rrational number 2  will be defined. All real numbers will

be defined through sequences of rational numbers.

Iet us begin by defining what is meant by a sequence of

rational numbers, Although a sequence is rarely indicated

b e e " e s Em T 2 el it 0 ARl
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as such, it is a set of ordered palrs; in other words, a
relation. The first elements of the ordered palrs of any

sequence are the positive integers.

Definition: A sequence of elements of set ¥ is a function
from % . the set of positive integers, into L,
such that the ordered pairs of the functlon
retain the same order as that of the positive
integers, iL.e., there is a first element, a
second element, etc.

Note 1: All sequences are functions whose domains are 2_Z+.
Note 2: A sequence of rational numbers, which is the type

of sequence which interests us most at present, 1s
defined by replacing Y by @ in the definition.

Note 3: We use the symbol {.»s > To enclose a sequence.

1
Example 1: The sequence < (1,1), (2,%),(3,7), b £), ..,:>
is a sequence whose range ls a subset of the ratlonal

numbers, The range of the sequence, then, 1s {l, %,

93-.. b eee ]

Note 4: Since the domain of all sequences i&:z+, we d2note
s sequence writing only its range. Thus, the
sequence of Example 1 1ls wriliten:

<1, %,%,%F, >

Example 2: The sequence <g~, 2—, g-, ...> consists only of

one element in the range. ‘

Example 3: The Sequen(}e <O‘, 1’ 2, O’ ls 23 O', l’ 2, D00>
consists of three elements in the range.
Note 53 ‘The elementn of the range of n soequence are called

the terms ol the sequence. ''he delinltlon of a
sequence requires that a sequence be an infinite set.
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Example 4: The terms of the sequence'<:l, 32 52 cers mE—r
cos :> consist of the reciprocals of the odd positive
integers. The general or n®l  term of the sequence 1s
expressed by ?ﬁ;éfr" o Thus, if n = 7, the Vth term
isI%m . The number n represents the corresponding

positive integer of the domain.

Consider the sequence: -

<f 1, .1 1 U SR
IG® Too ° "I000 * CtUUION ttt ot

It is apparent that if we "go out far enough" in this
sequence, the difference (in absolute value) between any two
consecutive terms of the sequence can be made as small as

we like, For instance, the absolute difference can be made
smaller than “I%G“", or one-millionth, If we check the
absolute difference between the sixth and seventh tenms, it

18 i%s' - ﬁ%?? \=x'fﬁ%?“ which 1s less than ”"5' After

the fifth term of the sequence, the absolute difference [l=
tween any two consecutive members 1s also less than 3%6‘.
In fact, after the fifth term, the absolute difference be-
tween any two members is less than “”6"

For example, the absolute difference between the elghth

and aoth terms 1s:

1 . _1 | =20 -1_ 99,99,999.999
ﬁ -1 o

10° 10

L . 1
which ls less than 566_ .

20 | 1020 102
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Tnstead of choosing the eighth and 20tlrl terms, this can
be generalized for two arbitrary terms, occurring beyond the

th and nth terms,

fifth term. Suppose we choose the m
i.e., 6=<m and 6<n ., Since we are choosing natural
numbers m and n, we know from earlier work, m<n, Or
m=n, or n<m, We take m ¥ n, since two arbitrary terms
beyond the fifth term must be considered, It is unimportant
whether we have n<m or m<n, 8o choose m<&n, We would

like to show:

1 1
Lo - 1on , '10'6"" where 6<€m<n .

Clearly, ~+ . 2 ,=

1oP-Mm 1), Since n>mn 1t
10™ 10% l ’

10"
10°%7% -1 107%™ g
follows that ’ N, = n . Hence, the problem
10 10
n~-m .
becomes one of showing 10 — -1 ¢ 4 "
10 10
N~
_ n-m nwb
Now 1°n1<—i‘-6—~,if 100 -1 10 ; but
10 10 10" 10™
this is true provided 109%™ 11 & 10n~6 ; this will follow if
-1 421.0n -6 T
We observe this last inequality is true since it can be
- L
written as -1 & 10™+10 6 _ 10 "lo = 107 ("‘g‘* - l)..

10 10
1 1 1

Now observe that '3'36' - 1om > 0, slace I(—)-g }13) for m>6.
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11
Thus, the right-side of l<:10n(lo6 “"lom/)is non~negative

because it is the product of positive rational and a non-
negative rational., Hence, the right-side ig greater than ~l.

. \/ m=6and ¥V n > m, \Eﬁ%ﬁ ~ 3%?; ¢£i%6-.

We could have proposed a number smaller than I%B“’with
which to test the sequence, but we would find that 1t 1s
possible to find a term of the series such that from that
term or, the difference between any two terms is less than
any test number,

We are going to use sequences which satisfy the property
shown above to define real numbers. We shall always be using
sequences of ratilonal numbers. We now generalize this
proeperty of these speclal sequences.,

Definition: Given the sequence Laj, as, 835 e, Oma .o o> and
B e o o tor o the sequense,
for instance ay, such that |a, - a,[ < r, for

all p> N and q > N, then 2. ’ &
eee > 1ls a Cauchy sequence of ra%io

Pa enep aol\]',
nal numbers.

’

Note: These sequences are specilal cases of Cauchy sequences

of real numbers,

This property means that regardless of how small a number
one starts with, it is possible to find a texm in the sequence
such that the difference between any two terms of the sequence

after that term is less than the given number, In the above

1 | 1
example, ay = N =5, and =65 .
R T ’ 10




Example 1l: Here are examples of Cauchy sequences:

3. 33 333
(a')<lo 5 :Loo." 1.000 s ooo>
1T 1L 1 1 1
(b)<"§: T aTaoI6 ‘-'9';1:1'9 -”>

(C)<¢9, '999 09993 veuw >

(d)<l»4, 1oL, L.41h4, 1,4145, >

Example 2: Here are examples of sequences which are not

Cauchy sequences:

(8;) 2, 3, Ll‘, 5, aoo>

(b) 1’) 0.’ 1.9 O.a l,a ooq>

(c) lQ, 5,9 lOg (R >

(a) 2, 3, 1, 2, 3, 15 25 35 ee)
In examplﬁ 1, sequence (a) is made up of terms which
approach z ; sequence (b) consists of terms which
approach © 03 ‘the terms of (¢) approach L , and

the terms of (d% approach . The application of
these ideas wlll become more evident when we dilscuss

equlvalent Cauchy sequences,

'

Obgerve that 1f, from a Cauchy iequence, We delete or
add a finite number of terms, the sequence remains & Cauchy
sequence, l.e., the criterion for a Cauchy sequence is not
affected by the deletlon or addition of a finite number of
terms. What we :an do ls remove the first 100 terms, for

example, and the new sequence would still be a Cauchy sequence.
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Consider next the &:3quence:
2y 1/2, 1/35 L/%s eeey 1/0; cos>

By inspection, it is clear that this sequence approaches O,
that is the difference between each term of the seqﬁence and
0 gets smaller and smaller. To scate this idea in another
way, the difference between any term of the sequence and O ,
from socme term on, is smailer than any positive rational
number., Choose any positive ratlonal number, such as 1/100;3
then all terms after the 1002 term are smaller than 1/100.

Similarly, the sequence <:"l, ~1/2, 1/3, 1/4, .es» has
the same property if we consider the absolub e value of the
terms. These examples lead to thils definition:

pefinition: A sequence &aq, 8py By eeey By ess>» 1B B
null sequence %f a%d oﬁly 1f gi@em any positive
Tational number r L1t 1ls possible to find a
term of the sequence, a such that

la,n- ol ¢ r, for all NS w.

Note: This definition states that one can find a term, aN.
of the sequence such that the differencefa_ = O] for
all terms after i is less than any preassﬁgned
number, T

Next, consider two Cauchy sequences ‘<?l’ Pos Pgs Py
esey Pps 0oo> and <ql3 q2, Q3, qu, enr ey q,n, o¢o> . The
sequence formed by the difference of corresponding terms of

the sequences can be represented by:

{p1 - @s P2s P3 = 35 e Pn " Gy >
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Tf this sequence formed by the term-by~term difference of

to Cauchy sequences 1s a null seguence, then it can be

expected that the Cauchy sequences are equivalent to each

other, In other words, the expectation 1s that since a, - [
approaches O , then the two Cauchy seguences can be treated

as indistinguishable sequences, Thus, it is quite natural

to define the relation & bevween the Cauchy sequences:

Definition: The sequence P, Po, p3, ciis Pps 0> @D
<q19 qr"_a, Q3, RN qn, -4¢> if and Only if .

{P1 = 915 Pp = Gs Pg = Ggs cees Py = Qs 0ec)
1s a null sequence,

Before we prove that @ 1s an equivalence relation, we
give an example of two Cauchy sequences whose term~by-~term

differences form a null sequence, Conslder the sequence:

(1) <2.9, 2,99, 2.999, 249999, +os>

and the sequence
(2) <3ol_, E;QO:L’ 3:001, 300001‘, QCO>0

Recognlze, first of all, tha% each of thuse sequenc3s 1s &
Cauchy sequence, l.e,, for each sequence, the absolute
difference of any two terms after some term 1ls less than any
preassigned positive rational number, Iet's look at the

sequence formed by term~by-term differences:

(3) B.l - 2.9, 3.0L = 2,99, 3.001 = 2,999, 3.000L -
20999, see > ™
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Note that we could have subtracted sequence (2) from

sequernce (1), but the result, in absolute value, would be
the same. The difference seguence is e

(1) &2, .02, 2002, 0002, .u2)

which is clearly a null sedquence. Tt should be observed

that the Cauchy sequences (1) and (2) both approach 3 and

in that sense are equivalent.

To show that @& is an equivalence relaticn, We must show
that it is a reflective, symmetric, and transitive relation.

Before we prove thesc properties, we introduce the
notation <ap> to represent the sequence <Lag, 8ps eees

1
ap, cos > Thus, we use <'§>to denote the entlre sequence

{1, 1/2, 1/35 eees 1/Ps ves> 5 and {2P> to denote the
entire sequence <2, 22, 23, coes 2p, ...> .

Proof':
(1) Reflexivity:: La,> & Loy -

This result follows trivially from the defini=-
tion of equivalent sequences; notice that the se-
quence formed of the difference of corresponding

terms is composed entirely of zeroes.

(2) sSymmetry: If (ap> @(bp) then(bp)@ <ap'> .
If <a,p>@ <’bp> , then by definition of

equivalent sequences, <a,p - bp) is a null seguence.

Therefore, by definition of a null sequence, for any

positive number I , there exists a positive
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integer N such that for all n > N »

\(a'n - bn)““ Ol = ‘(acn ol bn)l < AN NOW,
recalling the conclusion of Problem T-c on page
105, |a, - b,| = \bn - a |+ Thus, Loy = agy 1s
a null sequence, since \bn - a,nlz.r, for r any

positive number. Hence, (bp7 @) 4ap7 .

(3) Transitivity: If <ap> o) <bp> and ¢ bp)@ LEp7,
then <a,p> (2] <cp> o

The first thing to declide is exactly what must
be established in order to prove the statement,
Tt must be shown that given any rational number, 7,
it is possible tec find a positive integer, N, such.
that for all =n > N , l(% -~ c,) - O‘ = '@n - cn)ll. I,.

If this can be shown, then (&p - e, will

pe a null sequence and <ap> & Lo, > .

The triangular inequallty (page 105, Problem T =
e) will have a central role in this proof. Before
attempting the proof, we demonstrate the form that
the triangular inequality will take. Suppose we
have |x - z\ , where x, z¢ @. This can be
wrltten as Ix + 0 - zl without changing 1lts va.ue.
Since O ==y +y , for all ¥ & Q, then \x - zl =
\‘:x:-i-o- z{= lx-y-i—y- zI . By closure of @
under subtraction, the expression ‘x e zl -

l(x -y) + (y - z)l is actually the absolute value
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st e g

of the sum of two rational numbers. This is
exactly the form of the triangular inequality as
stated on p. 105, Hence, \x - z\ £ |x - y] +
|y - z| . This will be used by arriving at the
right side of the inequality and replacing 1t by

the left side of the inequality,
We are ready to comnstruct a proof for the

transitive property. It is given that (ap)@d b,,)

thus, <ap . bp“) is a null sequence,

So, for any given rational number, r, there exists
a positive integer Ny such that for all n > Nl,
|ay, - b | < r . Since this statement is true for
any given rational number r , 1t will be true for
a particular one, namely %% > where r, 1s the same
rational referred to above at the beginning of this
proof (the reason for wanting to look at é}- will
become obvious later in the proof,)

Likewise, {bp> D Lev =y Loy - cp> is
a null sequence; so for any given ratlonal number,

r! , there exists a positive integer, N, (usually
not equal to N , above), such that for n>N, ,
Ibn - cnj.c r' ., Again, this will be true for a
particular rational number, namely %% , the same
number mentioned above, |

Now, if it is known that [a, - byl fé:l: for
n>N 5 and by - cy) ¢ = for n>Np, ther both
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these statements will be true if we choose for
our value of N the larger of Nl and N2 .
r
Hence, we have that \a, - b \ ¢ —L and
" n 1. 2
- 1
lbn cnl4__§_ for all np»N .
Consider next the sum of these two expressions,

i.€.,
T
|a—b\+\b-c!4 T

If we apply the traingle inequality to the left-
side of (1) and perform the suggested addition on
the right-side of (1) , we can conclude that

‘a - C l(,rl for all n » N. This is our
desired result. Therefore, it has been established

that the relatlon pbetween Cauchy sequences 1s

an equivalence relation.

We have shown that @ is an equivalence relation on the

set of all Cauchy sequences of rational numbars. By the

equivalence theorem, & partitions this set of Cauchy seguences

of rational numbers into non-overlapping classes whose union

18 the entire set, Fach of these classes contains all

sequences of rational numbers which are equivalent to each

other. The equivalence class of all sequences equivalent to

the Cauchy sequence < a,> Will be denoted by [a,n] .

Definition:

A real number is an equivalence class of Cauchy
sequences of rational numbers.
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Thus, every Cauchy sequence of rational numbers defines
a real number. The sequence <an‘> defines the real

number  [a ] .

Theorem: Every sequence &I, T, ¥, eeeep , Where
r is a rational number, defines a real

number,

since the sequence <r, T, ¥, ...o» 15 a Cauchy

sequence, it defines the class of all Cauchy sequences

equivalent to it.

Every rational number generates a sequence of the type
in the theorem. A terminating decimal, for instance, gene-
ratées a Cauchy sequence in which all the terms are the

same. The rational number represented by 6.25 yields

the sequence <§6‘8"‘, %8‘, {?%8‘5 “~> .,  Non-terminating

decimals which represent rational numbers also generate

Cauchy sequences,

The decimal 6,24999... represents 6.25, This decimal

1] L
generates the sequence <%’b’t s iggg y g%ggg ) ...> which 1s

a Cauchy sequence, This sequence is equivalent to

§§~5~ 625 s 625 s s .> . To see that these two sequences
100 ° 100 ° 100
are equivalent, we compute the absolute value of the term-

by-term differences

625 - 6241 o 1
| T00 T00 100

% - 88l o

% - B8l oo
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The absolute value of the term~by~tenm differences

yield this sequence <:"T66" 15%5" l@OOO :> which §

1s clearly a null sequence,

Both of these sequences are in the equivalence class

. o e 625
which defines the rcal number sgEE  OF (425,

similarly, from the representation of %- by .333°°°*,

we have the sequence <10 "J%D-’ 1(3)00 s Wi which is

equivalent to the sequenc\ <; 3., % , %.a . .:> ,
the same equivualence clags defining

Both of

QA..I

these sequences are in

1
the real number %—. Of course, both 6,25 and = are

also rational numbers.

M.l S T A o Tw
A nonnrepeating, nonnterminating deciwal also generates

A

a sequence of rational numbers. For example, the non-repeating

a, Srapler.
decimal 2 1347217... produces the sequence-

decimal
(B BB

which defines a real number. As indicated earlier, this

ire

number 18 irrational.
| - The decimal equivalent of T 1is 3,1415925¢¢¢ o Tuls

decima,l genera.tes <§.0- %’G‘O‘ %:é% %%g%—g—-: L ‘> , &

Bequence of rational numbers which defines M .
SO

NOTE- In these last two sequences, the three dotsS, . « «
Yo have been used to indlcate that the terms of the

sequence follow the digits of the decimal, not
that the terms follow a specia‘ pattern.
Bt PO U I
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Both numbers shown above, 2,1347217... and t , are

[~ AU S U S NS N G S

irrestonal numbers, Recall that any nou~terminating, non-

repeating decimal generates an irrational number, The set

: of real numbers consistes of the set of rational numbers and

the set of irrational nUMbeErs »

As an addltional example, the irrational number V2 is

defined by means of a Cauchy sequence, each of whose terms,
when squared get closer and closer to 2. One such sequence
161, L., AL, Lk, 1.2, *> (non-repeating).
Cauchy sequences based upon (relatively) familiar decinmal
equivalents of irrational numbers, such as V3 and V5,
provide the basis for the definition of these numbers,

Observe how once agaln the theorctilcal foundatlon in

mathematlcs depends upon experience.

11,4 Operations on Real Numbers

Tet p bhe the real number generated by the Cauchy
Le€s, P = [pn] , and let q be the real

sequence < pn‘) s
aumber generated by the Cauchy sequence‘chﬁ} , Q= [qﬁ] .
Wwe now define addltion for these two classes [pﬁj and [qﬂ}.

=

Definition: p + ¢ = {pn + qﬁ] |

Note: We should, of course, use snother symbol instead
of ‘4 for the sum p + ¢ a8 We did for the sum
of two integers and two pational numbers, but as
long as the student recognizes that ‘-4 stands
for addition of real numbers p and g when we
are using real numbers, we will not need a special

| symbol.
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To show that the definition hasg validity, it 1s

necessary to prove that:

(a) {pn + qn>‘is a Cauchy sequence, and
(b) If <pr'1) and (qé) are two Cauchy sequences
difference from (pn> and (q > , respective~
n
ly, but defining p and ¢, respectively,
thenp'!' + q! is equivalent to + v
<pn qn> q (pn 1>

Proof of (a):
(pn + qn) is a Cauchy sequence 1if and only if for
any positive rational &g it is possible to find
a pogitive integer N such that
l(pm . qm) . (pn + qn),wb:ﬁ'or all ms» N and all n>N.

Further, (pn> and qr} are both Cauchy sequences,
so that it is possible to find terms of the two

sequences, p and (¢ such that;

N1 N
Pm"Pn|< ._éu for m»N1 and n»Np ;5 and

iqm“qn\C < for m>Np and n>Np .
But,
kpm ta) - By ¥ ?n)l

Il

CRERENCREER
L b + - .
<o P | ]qm qn\

This inequality is a result of an application of

the triangular inequality.
If N equals the maximum of Np and Np, i.e.,




N = max (Np, No), then

o+ 0 = (Pt gl fpy - ) \%"qn\" = 4=

for all m>»N and n>N. This is the required
+ v .
statement for <pn + qn> £to be a Cauchy sequence.

Proof of (b) ;

We must show that the sequence (p, + a,) - B' + Q) ) or

- ! -y ‘ ~ r‘j .i« . 8t 3 -
4pn+ qn pn’ qn> is & null sequence, We must prove that
for any rational number A, one can find a positive Integer
N such that}
-l -t |

(1) lpn»i-qn P, qnl"/" whenever n > N,
But (P, >@Lpyy and £ay® L] > 5 so that {z, - p&} and
<qn - qx'1> are null seguences, Thus, for each sequence,
given an arbiltrary rational number f’, one can find positive

integers Np and N, such that;

Py, - gl<« & end

From (1), by using the triangle inequallty, we have;

-l - ! - - - o~ - -
‘pn + q‘l’). pl’l qﬂi \(pn pn ) y (qn qn)‘“"' |pn pn,+ ‘qn qn\'

Finally, we are able to conclude that by choosing N = maX

(Nl-"NZ):
o+ a4, = By - |« [y~ Pyl +fa - d B
n 1 n nt= n. n n n 2

all n>N.

2o
5 = A for
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Thus , <pn +q - P - qfn> is a null seguence and
G O, * 1Y -

NOTE: Tn the definition, p + ¢ = [p +q ], we could
describe this sum by writing ™ B g =
{<zn7 lézn‘7 is a Cauchy sequence and (zn‘;@Lpn + g >

We now turn our attention to the definition of multi~

plication of two real numbers.

Definition: Tet p and g be real numbers generated by
the Cauchy sequences <p,> and <apd> »
respectively; then,

P‘q;'[Pn‘qn"] v

NOTE: A -comment similar to ithat on page 134 gpplies to the

\.I

symbol .
Agoin, we must shown that p ° d is well-defined, 1l.€.,

c) v, ° a,> is & Cauchy sequence; and
e ! ' ,
d) Tf P,y end L4} > are two Cauchy sequences
generating p and d, respectively, then

Py q‘n>@(pn caq,>

We prove (c) but leave (d) as an exercise for the reader

(see Exercise 24), To prove (c) we must show that for any
positive rational number A-, there exists a positive integer
N such that
11) |pm * Gy P q[< 4 for all m>N and all n > .
The aboolute value of the inequality (1) can be
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expressed as follows;
111) [Py * Gy =Pp ° 1, = ]pm"qm-mm "ap * Py "B, 'q,,‘
1V) lpm . qm.- pn . n'a Ipm (%‘ -qn) + qn (pn w pn),
Now applying the triangle inequality to the right-hand
side of statement (iv), we have:

V) |By ¢ G- Py " %|e |7 (qm-wq,,)] + |a, (my-Pq)] -

" Now applying problem (7ed) from Excroise 22 to each term of
the right side of statement (v), we have

) Byt %Pt S| [P ot 1 [P P

Tt can be shown (*) that since {p ) axd (qn\, are Cauchy
sequences, then there exists positive rationals Kj and K,
such that |pn\4 Xy and "‘n\ ¢ K, .+ (K and Kp are upper
bounds of these sequences) ' The inequality (vi) becomes

vit) oy * a Py W< B fmc W * R |- Rl

But, since £P> and 4:,qn’) are Cauchy sequences, then for

rational numbers and A there exists positive
ot -’

1
integers Ny and Np such that;

‘pu" pn\" -ﬁq end ]qn" qn)‘ "2{%1 ‘

(*) 8ee Appendix C
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Again choose N = max (Ni, Np). Thus for m >N and

ny N using inequality (vil) we have
A - . o A . (2 = ../.r_’.— ..4...‘ =
L I R A s T2 %

which is the desired statement,

Definition: Iet & and b Dbe real numbers, then a~b is the

real number defined by apn - bﬁ>', le€ay

g - b = [a - D ] )
n 1q)

Definition: 1Iet a and b be real numbers and D # O,

then & 1is the real number defined by

&y, \ P (all b 0), i.e.
o A
T =1 .

Exercise 24

1.

2,

3
4.

5e

Te

If La, > and (br;) sre Cauchy sequences of rational
numbers, show that 48‘;1 -+ bn> i8 also a Cauchy sequence,
Prove that <:an - bn:’ 1s Ceuchy.

Prove that <i&n . bn:> is Cauchy.

Prove tha§<:ahfj>is Cauchy (bn # 0).
o

Iet a be deflned by <an> and b bpe defined by ‘<bn>3

’ ! .

<o >@&,> and Lo d@L0,> . Prove Lo+ b?@@}l TS
prove: 1) (o, - PO@E - P> 2) L3¢ bSO, ¢ D

RES

Prove that the set of real numbers has all the properties

of the set of rational numbers.




