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Preface
KENNETH B. HENDERSON
JOSEPH M. SCANDURA
HAROLD C. TRIMBLE
Research Publication Committee

UESTIONS about research in education and its special case of research
in mathematics education are timely.

For one thing, leading citizens believe in research as never before. They
have long since noted that research in the physical and biological sciences
has paid off in technological and medical advances that are everywhere
evident. Why not give more support to research in education? In answer
to this query, Congress has voted more financial assistance for education
than ever before in history.

For another thing, many teachers are asking for evidence to support or
deny the current crop of claims demanding changes in curriculum and
pedagogy. There is a growing feeling that change for the sake of change
is suspect. Recommendations for change should be based on research.

Yet many thoughtful people are critical of the quality of research in
mathematics education. They look at tables of statistical data and they
say "So what!" They feel that vital questions go unanswered while
means, standard deviations, and t-tests pile up.

What should the National Council of Teachers of Mathematics do?
Should it help identify questions on which research is needed? Should it
serve as a critic of current research? Should it assist in the dissemination
of results? Should it sponsor research projects? Should it encourage pro-
grams for training research workers to meet the demands that seem to
be emerging? These are some of the questions the Research Advisory
Committee is discussing.

The purposes of this special publication are conceived as follows:
(1) to provide a rationale for both basic and applied research in mathe-
matics education, (2) to exhibit significant research efforts, (3) to clarify
the complementary nature of "information-oriented" (basic) and "prod-
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uct-oriented" (applied) research, (4) to demonstrate the potential impact
of research and the implementation of research on the teaching of mathe-
matics, and (5) to sample the reactions of members of the profession to a
research-oriented journal in mathematics education.

The Curriculum Committee and the Board of Directors of the NCTM
approved these purposes as proposed by the Research Advisory Com-
mittee. Then, the Board created the Research Publication Committee
to get the job clone. The task of collecting and editing manuscripts fell
to Dr. Joseph M. Scanclura.

Surely no two persons, nor even two committees, would come up with
the same set of manuscripts. The Research Publication Committee made
its own selections, and it does not apologize for its choices. But it wants
the reader to think of these papers as samples. In fact, it hopes the
Council may want to sponsor further research publications and, perhaps,
to create a journal for those of its members who have a special interest
in research.

In Paper I, Suppes makes a case for basic research in mathematics
education. He views theory construction as an essential guide to data col-
lection. In Papers II, III, and 1V, the authors report studies designed to
increase understanding about the teaching and learning of mathematics.
Gagne is concerned with "The Acquisition of Knowledge" and the im-
portance of prior learning in its acquisition. Dienes introduces "Some
Basic Processes Involved in Mathematics Learning" and outlines the
results of some of his recent collaborative research with Jeeves. Suppes
and Groen describe "Some Counting Models for First-Grade Performance
Data on Simple Addition Facts." The phrase "information-oriented" is
used to describe these studies, studies which seek information leading to
the development of theory about mathematics learning, teaching, and/or
curriculum.

Paper V, "A Comparison of Discovery and Expository Sequencing in
Elementary Mathematics Instruction," by Worthen, provides an example
of basic information-oriented research which also has rather direct im-
plications for classroom practice. In the latter sense, it is "product-
oriented." The next paper (VI), "Evaluation of Experiences in Mathe-
matical Discovery," by Berger and Howitz, is illustrative of the many
problems confronted by the researcher in evaluating a new instructional
product, Experiences in Mathematical Discovery.

In Papers VII and VIII, the authors describe new technologies, based
partially on the analysis described by Gagne, for constructing instruc-
tional material and curricula along with the evaluation of sample cur-
ricula which were devised using these technologies. Lipson describes
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his group's efforts to individualize instruction and presents some
very interesting results. hersh's title, "Engineering Instructional Se-
quences for the Mathematics Classroom," adequately reflects his accom-

plishment and intent. The phrase "product-oriented" is used to describe
these studies. Such research may utilize theory or technology to devise
a new process or product and then, almost necessarily, evaluates the
process or product with an eye towards its improvement.

In Paper IX, Becker and McLeod summarize the research over the
past 75 years on "Teaching, Discovery, and the Problems of Transfer of
Training in Mathematics." Then, Holum reports a sampling of current
activities in, and concerns about, mathematics education research in
Paper X. In the last paper (XI), the editor points up some of the high-
lights of the earlier papers while attempting to provide a perspective in
which they might be viewed. Finally, we wish to acknowledge the efforts
of several other authors whose excellent manuscripts could not be printed

due to space limitations.
The Research Advisory Committee hopes you will read this publication

and find in it some helpful ideas.
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The Case for Information-oriented
(Basic) Research in Mathematics
Education

PATRICK SUPPES
Stanford University
Stanford, California

THE marvelously clear and definite structure that is characteristic of
most parts of modern mathematics can be misleading when problems of
mathematical instruction are considered. The very clarity of the struc-
ture of mathematics itself can lead to the mistaken view that nothing
beyond this structure need be considered in analyzing and deciding how
mathematics should be taught.

Yet anybody who has taught mathematics knows how far from the
truth this claim is. It is not a straightforward or simple matter for the
average student to learn mathematics! And there is no doubt that the
ordinary student finds that he has to think harder in learning mathe-
matics than in learning just about any other subject in the curriculum.

The case for basic research in mathematics education can be stated
quite simply in terms of these well-known difficulties of students. It is the
ultimate objective of basic research in mathematics education to under-
stand how students learn mathematics, and to use this understanding to
outline more effective ways of organizing the curriculum. It is probably
also agreed, on all sides, that we are still very far from realizing this
objective. Without question, we do not yet understand in any reasonable
degree of scientific detail what goes on when a student learns a piece of
mathematics, whether the mathematics in question be first-grade arith-
metic, undergraduate calculus, or graduate-school algebraic topology.

In this brief article I want to survey some of the more important rea-
sons for' having a vigorous program in basic research in mathematics
education.

1
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DEFECTS OF INTUITION

Many teachers, who would admit that the logical structure of mathe-
matics alone is not sufficient to determine the mathematics curriculum
and how it is to be presented to students, would still maintain that the
remaining gaps can be closed by appropriate use of intuition.

The first puzzling thing about this claim for intuition is that most of
us have only a vague idea of what another person means when he talks
about knowing something by intuition. What is intuition? We all rec-
ognize the role of experience in the training of teachers. As a rule, the
teacher who has taught several years is able to do a better job than the
beginner. Intuition is involvedintuition as the acquisition of knowl-
edge and information in an inexplicit and nonformalized way on the
basis of teaching experience. No one faced with the complex problems
of teaching mathematics or any other part of the curriculum would want
to belittle the importance of experience and practice in the training of
good teachers.

Yet many examples exist in the mathematics curriculum to show that
it is not sufficient to leave the curriculum to the intuition of curriculum
writers and the experience of teachers. The extensive research by
Brownell and others on methods of subtraction has made everyone deal-
ing with the curriculum in arithmetic sensitive to the analysis of the
actual steps that must be taught children in learning the subtraction
algorithm. Another example is the evidence that in the learning of a
sequence of mathematical concepts, the important problem is often to
minimize negative transfer rather than to facilitate positive transfer. The
existence of negative transfer in passing from one concept to another is
the sort of thing that is noticed by the very good teacher; it is also the
kind of phenomenon that needs to be pinned down, in terms of research,
and made part of the objective evidence presented to all teachers in
telling them about learning difficulties. Another example that goes
contrary to the formal structure of our standard teaching of geometry is
found in the clear results concerning children's perceptions of rotations
and stretches of standard geometrical figures in the plane. Although
Euclidean geometry uses the fundamental notion of congruence that is
invariant under rotations of figures, but not under stretches in their size,
at the perceptual level this notion of congruence is more difficult for
young children than perceiving the relation of similarity between figures
that have the same orientation and shape but different sizes. Because
teachers have themselves been taught Euclidean geometry and are
familiar with the concept of congruence, it is all too easy for them to



CASE FOR INFORMATION-ORIENTED (BASIC) RESEARCH / 3

infer that this is the more natural concept for children. Without support-
ing research, it would be difficult to convince many teachers of the true
state of affairs.

DEFECTS OT SHEER EMPIRICISM

It is al .° important to emphasize, in discussing the role of basic re-
search in mathematics education, that simple applied empirical research
will not answer all the many questions that confront us. For example,
if we hope to determine by experimental research the optimum sequence
of topics in the first two grades of elementary school (or, with equal
pertinence, in the first two years of university mathematics), it is easy
enough to show for either of these cases that the mathematical constraints
that are placed on the possible sequences of topics are not sufficient to
reduce the number of possible sequences of concepts to a manageable
number of experiments. The number would be greater than all persons
now working in mathematics education could perform in the next ten
or fifteen years, even if they devoted themselves wholly to this question.
The sort of mathematical constraint I have in mind is that the intro-
duction of multiplication would, from a mathematical standpoint, have
to be preceded by the introduction of addition, if multiplication is
initially to be talked about in terms of repeated addition. On the other
hand, there is no real reason why we could not experiment with the
introduction of subtraction before addition.

Examples of a more practical nature center around questions of the
following sort. Should addition and subtraction be introduced simul-
taneously? If not, should addition be carried to sums not greater than
five, not greater than six, not greater than seven, etc., before subtraction
(or at least the notation for subtraction) is introduced? Such purely
empirical questions are endless in number, and I emphasize once again,
there is no purely mathematical answer to them. Because there is no
purely mathematical answer, the importance of a psychological theory
of mathematics-learning is crucial, in order ultimately to provide appro-
priate answers to problems of curriculum organization.

Another way of putting the matter is that purely empirical research
lacks conceptual power, because the absence of any theory prohibits us
from making extensive generalizations to other situations and broader
classes of problems.

From this standpoint, I would emphasize that the demands for a
psychological theory of mathematics-learning, and thus for theoretical
basic research as well as empirical basic research, are practical demands.
Without such theory it is impossible for us to answer in any scientific way
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many substantive questions of curriculum organization. The vast litera-
ture on readiness, drills, practice, and overlearning in arithmetic and
other subjects has made all of us aware of the complex and subtle nature
of the empirical problems. Anyone who thinks that he can answer these
problem either by intuition or by any simple experimental program,
without facing the theoretical problems of weaving into one coherent
theoretical pattern the many kinds of results already obtained, is surely
daydreaming.

In this discussion of empirical problems I have emphasized the kind
of questions that have arisen in elementary-school mathematics. The
reason for this is simply that a greater body of research already exists in
this area. The problems of mathematics-learning at the university level
are certainly more complex and difficult, and may demand even more
of an effort in basic research in order to begin to understand them.

ANALYSIS OF LEARNING DIFFICULTIES

Given a particular organization of the curriculum in terms of the
concepts to be taught and the sequence in which these concepts will be
presented, it is still a major task of basic research to analyze and provide
a theory for the kind of learning difficulties students encounter as they
progress through this curriculum. It is again important to emphasize
that the learning difficulties students encounter cannot be predicted by a
nonpsychological mathematical analysis of the mathematical content of
the curriculum itselfat least no one has proposed such a theory, and
there are good reasons for thinking that no such theory shall be proposed.

It is not a part of arithmetic proper or of geometry proper to make
psychological predictions about the difficulties students will have with the
different concepts in these disciplines. It is the task of a psychological
theory of mathematics-learning to predict and to offer an analysis of the
kinds of difficulties that are encountered. The success of mathematics
teaching depends upon understanding and providing successful practical
remedies for the difficulties that students do encounter. In our increas-
ingly technological age it is of greater importance than ever before that
we, as educators, recognize the need for clear analysis of students' learn-
ing difficulties and the pressing need to develop theories that adequately
deal with these difficulties. I have tried to emphasize in this brief dis-
cussion that neither intuition nor sheer empiricism is able to provide
adequate answers to our problems. I have rested the case for basic re-
search on the overwhelming practical importance of the solutions one
hopes to find. I would like to conclude with some remarks in a some-
what different direction.
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PSYCHOLOGY OF LEARNING

AND THE NATURE OF MATHEMATICS

It is my own conjecture that as we are able to dig deeper into the
development of an adequate psychological theory of mathematics-learn-
ing, the results will have an impact on our conception of the nature of
mathematics itself.

It is not possible here to defend this conjecture in a detailed way, but
there is reason to think that concentration on mathematical thinking and
the difficulties students have in learning to think mathematically will lead
to a new conception of invariance, a conception that goes beyond that
now encountered in the various parts of mathematics. Historically, the
standard philosophies of mathematics have emphasized differing attitudes
toward the nature of mathematical objects, but it is perfectly obvious that
in most domains of mathematics the exact nature of the mathematical
objects studied is not essential. What is of more central concern are the
patterns of thought applied by mathematicians in reaching new results,
or by students in finding for themselves solutions of problems or proofs
of known theorems.

As yet, theories of learning have little to offer in providing insight
into how one learns to think mathematically. The nature of abstraction,
or the processes of imagery and association that are surely essential to
thinking in any domain of mathematics, have as yet scarcely been studied
from a scientific standpoint.

Like mathematics itself, research in mathematics education will neces-
sarily have both basic and applied components. Research that is con-
cerned with particular pieces of curriculum and particular learning
difficulties of students will continue to occupy a major portion of re-
search efforts, but it is also to be hoped that the kind of problems I have
just been mentioning, problems that represent fundamental puzzles about
the nature of human thinking, will come to occupy a larger place in
research about mathematics learning.
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The Acquisition of Knowledge"
ROBERT M. GAGNE
University of California
Berkeley, California

HE growing interest in autoinstructional devices and their component
learning programs has had the effect of focusing attention on what may
be called "productive learning." By this phrase is meant the kind of
change in human behavior which permits the individual to perform suc-
cessfully on an entire class of specific tasks, rather than simply on one
member of the class. Self-instructional programs are designed to ensure
the acquisition of capabilities of performing classes of tasks implied by
names like "binary numbers," "musical notation," and "solving linear
equations," rather than tasks requiring the reproduction of particular
responses.

When viewed in this manner, learning-programming is not seen simply
as a technological development incorporating previously established
learning principles, but rather as one particular form of the ordering
of stimulus-and-response events designed to bring about productive
learning. It should be possible to study such learning, and the conditions
which affect it, by the use of any of a variety of teaching machines,
although there are few studies of this sort in the current literature (cf.
Lumsdaine and Glaser, 1960). In the laboratory, the usual form taken by
studies of productive learning has been primarily that of the effects of
instructions and pretraining on problem solving (e.g., Hilgard, Irvine,
and Whipple, 1953; Katona, 1940; Maltzman et al., 1956).

When an individual is subjected to the situation represented by a
learning program, his performance may change, and the experimenter

* This article originally appeared in Palieholookal Review, LIX (1962), 355.65, and is reprinted
here with the kind Permission of the author and the American Psychological Association.

1 This study was made possible In part by funds granted by the Carnegie Corporation of New
York. The opinions expressed are those of the author, and do not necessarily roftct the views of
that corporation.

6
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then infers that lie has acquired a new capability. It would not be ade-
quate to say merely that he has acquired new "responses," since one
cannot identify the specific responses involved. (Adding fractions, for
example, could be represented by any of an infinite number of dis-
tinguishable stimulus situations, and an equal number of responses.)
Since we need to have a term by means of which to refer to what is
acquired as a result of responding correctly to a learning program, we
may as well use the term "knowledge." By definition, "knowledge" is
that inferred capability which makes possible the successful performance
of a class of tasks that could not be performed before the learning was
undertaken.

Some initial observations

In a previous study of programmed learning (Gagne and Brown, 1961)
several kinds of learning programs were used in the attempt to establish
the performance, in high school boys, of deriving formulas for the sum of
n terms in a number series. Additional observations with this material led

us to the following formulation: In productive learning, we are dealing

with two major categories of variables. The first of these is knowledge,
that is, the capabilities the individual possesses at any given stage in the
learning; while the second is instructions, the content of the communi-
cations presented within the frames of a learning program.

In considering further the knowledge category, it has been found pos-
sible to identify this class of variable more comprehensively in the
following way: Beginning with the final task, the question is asked, what
kind of capability would an individual have to possess if he were able
to perform this task successfully, were we to give him only instructions?
The answer to this question, it turns out, identifies a new class of task
which appears to have several important characteristics. Although it
is conceived as an internal "disposition," it is directly measurable as a
performance. Yet it is not the same performance as the final task from
which it was derived. It is in some sense simpler, and it is also more
general. In other words, it appears that what we have defined by this
procedure is an entity of "subordinate knowledge" which is essential to
the performance of the more specific final task.

Having done this, it was natural to think next of repeating the proce-
dure with this newly defined entity (task). What would the individual
have to know in order to be capable of doing this task without undertak-
ing any learning, but given only some instructions? This time it seemed
evident that there were two entities of subordinate knowledge which
combined in support of the task. Continuing to follow this procedure,



J

TASK

Finding formulas for sum of
u terms in a number series

1. Supplying symIts and operations
for general equations between
numerical quantities having particular
spatial relations in a table

I

11A. Using symbols to identify
spatial relationships between
numbers hi different rows and
columns of a table

IVA. Using symbols
to locate vertical
position and identify
numbers in columns
of tables

IVA2. Using symbols,
subscripts to locate
and identify numbers
in rows of tables

I
Ila. Supplying numbers and
operations for specific equations
between hiMillbefi having particular
spatial relations in a table

IVA& Identifying
spatial patterns of
symbols and numbers
in a table

ti
II In. Supplying numbers and
operations for specific
equations between numerical

_quantitius

Mil. Supplying IVa2. Supplying
operations to make missing digits in
equalities for specific specific statements
numerical statements of numerical equality

FIGURE I.HIERARCHY OF KNOWLEDGE FOR THE TASK OF FINDING FORMULAS FOR THE

SUM OF ti TERMS IN A NUMBER SERIES
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we found that what we were defining was a hierarchy of subordinate
knowledges, growing increasingly "simple," and at the same time in-
creasingly general as the defining process continued.

By means of this systematic analysis, it was possible to identify nine
separate entities of subordinate knowledge, arranged in hierarchical
fashion (see Fig. 1). Generally stated, our hypothesis was that (a) no in-
dividual could perform the final task without having these subordinate
capabilities (i.e., without being able to perform these simpler and more
general tasks); and (b) that any superordinate task in the hierarchy could
be performed by an individual provided suitable instructions were given,
and provided the relevant subordinate knowledges could be recalled
by him.

It may be noted that there are some possible resemblances between
the entities of such a knowledge hierarchy and the hypothetical constructs
described by three other writers. First are the habit-family hierarchies
of Maltzman (1955), which are conceived to mediate problem solving,
and are aroused by instructions (Maltzman et al., 1956). The second are
the "organizations" proposed by Katona (1940), which are considered to
be combined by the learner into new knowledge after receiving certain
kinds of instructions, without repetitive practice. The third is Harlow's
(1949) concept of learning set. Harlow's monkeys acquired a general
capability of successfully performing a class of tasks, such as oddity prob-
lems, and accordingly are said to have acquired a learning set. There is
also the suggestion in one of Harlow's (Harlow and Harlow, 1949) reports
that there may be a hierarchical arrangement of tasks more complex than
oddity problems which monkeys can successfully perform. Since we think
it important to imply a continuity between the relatively complex per-
formances described here and the simpler ones performed by monkeys,
we are inclined to refer to these subordinate capabilities as "learning
sets."

REQUIREMENTS OF THEORY

If there is to be a theory of productive learning, it evidently must deal
with the independent variables that can be identified in the two major
categories of instructions and subordinate capabilities, as well as with
their interactions, in bringing about changes in human performance.

Instructions

Within a learning program, instructions generally take the form of
sentences which communicate something to the learner. It seems possible
to think of such "communication" as being carried out with animals
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lower than man, by means of quite a different set of experimental opera-
tions. Because of these communications, the human learner progresses
from a point in the learning sequence at which he can perform one set
of tasks to a point at which he achieves, for the first time, a higher level
learning set (class of tasks). What functions must a theory of knowledge
acquisition account for, if it is to encompass the effects of instructions?
The following paragraphs will attempt to describe these functions, not
necessarily in order of importance.

First, instructions make it possible for the learner to identify the re-
quired terminal performance (for any given learning set). In educational
terms, it might be said that they "define the goal." For example, if the
task is adding fractions, it may be necessary for the learner to identify
151 as an adequate answer, and I as an inadequate one.

Second, instructions bring about proper identifications of the elements
of the stimulus situation. For example, suppose that problems are to be
presented using the word "fraction." The learner must be able to
identify I as a fraction and .4 as not a fraction. Or, he may have to
identify as "sum of," and n as "number." Usually, instructions estab-
lish such identifications in a very few repetitions, and sometimes in a
single trial. If there are many of them, differentiation may require several
repetitions involving contrasting feedback for right and wrong responses.

A third function of instructions is to establish high recallability of
learning sets. The most obviously manipulable way to do this is by
repetition. However, it should be noted that repetition has a particular
meaning in this context. It is not exact repetition of a stimulus situation
(as in reproductive learning), but rather the presentation of additional
examples of a class of tasks. Typically, within a learning program, a task
representing a particular learning set is achieved once, for the first time.
This may then be followed by instructions which present one or more
additional examples of this same class of task. "Variety" in such repeti-
tion (meaning variety in the stimulus context) may be an important
subvariable in affecting recallability. Instructions having the function
of establishing high recallability for learning sets may demand "recall,"
as in the instances cited, or they may on other occasions attempt to
achieve this effect by "recognition" (i.e., not requiring the learner to
produce an answer).

The fourth function of instructions is perhaps the most interesting
from the standpoint of the questions it raises for research. This is the
"guidance of thinking," concerning whose operation there is only a small
amount of evidence (cf. Duncan, 1959). Once the subordinate learning
sets have been recalled, instructions are used to promote their application
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to (or perhaps "integration into") the performance of a task that is
entirely new so far as the learner is concerned. At a minimum, this
function of instructions may be provided by a statement like "Now put
these ideas together to solve this problem"; possibly this amounts to an
attempt to establish a set. Beyond this, thinking may be guided by sug-
gestions which progressively limit the range of hypotheses entertained by
the learner, in such a way as to decrease the number of incorrect solutions
he considers (cf. Gagne and Brown, 1961; Katona, 1940). Within a typical
learning program, guidance of thinking is employed after identification
of terminal performance and of stimulus elements have been completed,
and after high recallability of relevant learning sets has been ensured.
In common sense terms, the purpose of these instructions is to suggest
to the learner "how to approach the solution of a new task" without,
however, "telling him the answer."

Obviously, much more is needed to be known about the effects of
this variable, if indeed it is a single variable. Initially, it might be noted
that guidance of thinking can vary in amount; that is, one can design a
set of instructions which say no more than "now do this new task" (a
minimal amount); or, at the other end of the scale, a set of instructions
which in effect suggest a step-by-step procedure for using previously
acquired learning sets in a new situation.

Subordinate capabilities: learning sets

When one begins with the performance of a particular class of tasks
as a criterion of terminal behavior, it is possible to identify the sub-
ordinate learning sets required by means of the procedure previously
described. The question may be stated more exactly as, "What would
the individual have to be able to do in order that he can attain successful
performance on this task, provided he is given only instructions?" This
question is then applied successively to the subordinate classes of tasks
identified by the answer. "What he would have to be able to do" is in
each case one or more performances which constitute the denotative
definitions of learning sets for particular classes of tasks, and totally for
the entire knowledge hierarchy.

A theory of knowledge acquisition must propose some manner of func-
tioning for the learning sets in a hierarchy. A good possibility seems to
be that they are mediators of positive transfer from lower-level learning
sets to higher-level tasks. The hypothesis is proposed that specific transfer
from one learning set to another standing above it in the heirarchy will
be zero if the lower one cannot be recalled, and will range up to 100
percent if it can be.

4
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In narrative form, the action of the two classes of variables in the
acquisition of knowledge is conceived in the following way. A human
learner begins the acquisition of the capability of performing a particular
class of tasks with an individual array of relevant learning sets, previously
acquired. He then acquires new learning sets at progressively higher
levels of the knowledge heirarchy until the final class of tasks is achieved.
Attaining each new learning set depends upon a process of positive
tr insfer, which is dependent upon (a) the recall of relevant subordinate
learning sets, and upon (b) the effects of instructions.

EXPERIMENTAL PREDICTIONS AND RESULTS

Using the procedure described, we derived the knowledge heirarchy
depicted in Figure 1 for the final task of "deriving formulas for the sum
of n terms in number series."

As mentioned previously, it contained nine hypothesized learning sets.
(The final row of circled entities will be discussed later.) Each of these
subordinate knowledges can be represented as a class of task to be
performed.

Measuring initial patterns of learning sets
It is predicted that the presence of different patterns of learning sets

can be determined for individuals who are unable to perform a final
task such as the one under consideration. To test this, we administered
a series of test items to a number of ninth-grade boys. These items were
presented on 4"-by-6" cards, and the answers were written on specially
prepared answer sheets. This particular method was used in order to
make testing continuous with the administration of a learning program
to be described hereafter. Each test item was carefully prepared to in-
clude instructions having the function of identification of terminal per-
formance and of elements of the stimulus situation.

Beginning with the final task, the items were arranged to be presented
in the order I, HA, IVA, IVA2, IVAB, I111, MB, IVB1, and IVa2. For any
given subject, the sequence of testing temporarily stopped at the level
at which successful performance was first reached, and a learning pro-
gram designed to foster achievement at the next higher level (previously
failed) was administered. This program and its results will shortly be
described. Following this, testing on the remaining learning set tasks
was undertaken in the order given. The possibility of effects of the
learning program on the performance of these lower-level learning sets

a The author is grateful to Bert Zippel, Jr., for assistance in the preparation of learning pro-
gram materials and in the collection of a portion of the data.
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TABLE 1
PATTERN OF SUCCESS ON LEARNING SET TASKS RELATED TO THE FINAL

NUMBER SERIES TASK FOR SEVEN NINTH-GRADE BOYS

&moor
TASK

Final I IIA Its Ins IVA1 IVA2 IVAI IVil IVi2

WW

WC

PM

GR

DJ

JR

RH

=MO

=MO =MO NOW

Note that = Pass; = Fail.

(not specifically practiced in the learning) is of course recognized, but not
further considered in the present discussion.

A particular time limit was set for each test item, at the expiration of
which the item was scored as failed. If a wrong answer was given before
this time limit, the subject was told it was wrong, and encouraged to try
again; if the correct answer was supplied within the time limit, the item
was scored as passed. It is emphasized that these time limits, which were
based on preliminary observations on other subjects with these tasks, were
not designed to put "time pressure" on the subjects, nor did they appear
to do so.

The patterns of success achieved on the final task and all subordinate
learning set tasks, by all seven subjects, are shown in Table 1. The sub-
jects have been arranged in accordance with their degree of success with
all tasks, beginning with one who failed the final task but succeeded at
all the rest. Several things are apparent from these data. First of all, it
is quite evident that there are quite different "patterns of capability"
with which individuals approach the task set by the study. Some are
unable to do a task like HA (see Fig. 1). others to do a task like Hs,
which is of course quite different. Still others are unable to do either of
these, and in fact cannot perform successfully a task like Ills. All seven
of these subjects were able to perform IV-level tasks successfully, although
in preliminary observations on similar tasks we found some ninth-grade
boys who could not.

Second, the patterns of pass and fail on these tasks have the relation-
ships predicted by the previous discussion. There are no instances, for
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example, of an individual who is able to perform what has been identified
as a "higher-level" learning set, and who then shows himself to be unable
to perform a "lower-level" learning set related to it.

If learning sets are indeed essential for positive transfer, the following
consequences should ensue:

1. If a higher-level learning set is passed ( +), all related lower-level
tasks must have been passed ( ).

2. If one or more lower-level tasks have been failed (), the related
higher-level tasks must be failed ().

3. If a higher-level task is passed ( +), no related lower-level tasks must
have been failed ().

4. If a higher-level task has been failed (), related lower-level tasks
may have been passed ( +). The absence of positive transfer in this case
would be attributable to a deficiency in instructions, and does not con-
tradict the notion that lower-level sets are essential to the achievement
of higher-level ones.

The relationships found to exist in these seven subjects are summarized
in Table 2, where each possible higher-lower-level task relationship pos-
sible of testing is listed in the left-hand column. It will be noted that
there are several relationships of the type higher (--), lower ( ), as listed
in Column 5. These provided no test of the hypothesis regarding hier-
archical relations among learning sets. The instances in the remaining
columns do, however. The + + and instances are verifying,
whereas + instances would be nonverifying. As the final column
indicates, the percentage of verifying instances is in all cases 100 percent.

TABLE 2
PASS-FAIL RELATIONSHIP BETWEEN RELATED ADJACENT HIGHER- AND LOWER-

LEVEL LEARNING SETS FOR A GROUP OF SEVEN NINTH -GRADE BOYS

RELATIONSHIP
EXAMINED

NUMBER OF CASES WITH RELATIONSHIP TEST OF RELATIONSHIPS

Higher +

Lower +

Higher

Lower

Higher +

Lower

Higher

Lower +

N

(1 + 2 + 3)

Proportion
(1 + 2)

(1 + 2 8)

Final Task: I 0 6 0 1 6 1.00

I: IIA, IIB 1 5 0 1 6 1.00

IIA: IVA1, IVA2, IVAs 2 0 0 5 2 1.00

Hs: Ills 3 2 0 2 5 1.00

IVAB, IVB1, IVs2 5 0 0 2 5 1.00

Note that + = Paas; = Fail.
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Effects of learning program administration

If the characteristics of instructions as previously described are correct,
it should be possible to construct a learning program which can be begun
for each individual at the point of his lowest successful learning set
achievement, and bring him to successful achievement of the final class
of tasks. Briefly, its method should be to include frames which have the
functions of (a) insuring high recallability of relevant learning sets on
which achievement has been demonstrated; (b) making possible identifi-
cations of expected performance and of new stimuli, for each newly
presented task; and (I') guiding thinking so as to suggest proper directions
for hypotheses associating subordinate learning sets with each new one.

A program of this sort was administered to each of the seven ninth-
grade boys, beginning at the level at which he first attained success on
learning set tasks (Table 1). This was clone by means of a simple teaching
machine consisting of a visible card file clipped to a board mounted at a
40° angle to the learner's table, and containing material typed on 4"-by-6"
cards. He wrote his answer to successive frames on a numbered answer
sheet, then flipped over the card to see the correct answer on the back.
He was instructed that if his answer was wrong, he should flip the card
back, and read the frame again until he could "see" what the right
answer was.

After completing the instructional portion of the program for each
learning set, the learner was again presented with the identical test-item
problem he had tried previously and failed. If he was now able to do it
correctly, he was given live additional items of the same sort to perform,
and then taken on by instructions to another learning set in either a
coordinate or higher-level position in the hierarchy. This process was
continued through the performance of the final task.

The data collected in this way yield pass-fail scores on each test item
(representing a particular member of a class of tasks) before the adminis-
tration of the learning program, and similar scores on the same item after
learning. It is recognized that for certain experimental purposes, one
would wish to have a different, matched, task for the test given after
learning, to control for the effects of "acquaintance" during the first test.
Since this study had an exploratory character, such a control was not
used this time. However, it should be clearly understood that the first
experience with these test items in question, for these subjects, involved
only activity terminating in failure to achieve solution. No information
about the correct solutions was given.

A striking number of instances of success in achieving correct solutions
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TABLE 3
NUMBER 1W Isst AnEs OF PASSING AND FAILING FINAL TASK AND SUBORDINATE

LEARNING SET TASKS BEFORE AND AMA ADMINISTRATION OF AN ADAPTIVE
LEARNING PROGRAM, IN A GROUP OF SEVEN NINTIIGRADE BOYS

TASK NUMBER FAIUNG
BEFORE LEARNING

Notion or num
PASSING AFTER

LEARNING
PERCENTAGE

SUCCESS

Final Task 7 6 86

1 5 4 80

H 5 5 100

LIB 2 1 50

IIIn 2 2 100

Total 21 18 86

to learning set tasks was found following learning as compared with
before. These results are summarized in Table 3. Although for learning
set IIa the percentage of success was only 50 percent (with two cases),
there were two learning sets for which 100 percent success was achieved,
and the percentage for all instances combined was 86 percent. These
results provide additional evidence compatible with the idea of the
knowledge hierarchy.

The learner in such a program does not "practice the final task"; he
acquires specifically identified capabilities in a specified order. In as many
as six out of seven cases, we were able by this means to bring learners
from various levels of competence all the way to final task achievement.
(It is perhaps important that the exception was JR, one of two who had
most to learn). Of course, it must be recognized that two separable causes
contribute to the effects of the learning program in this study: (a) the
correctness of the learning set analysis; and (b) the specific effectiveness
of the instructions contained in the learning program.

IMPLICATIONS FOR INDIVIDUAL DIFFERENCES MEASUREMENT

It is evident that learning sets, as conceived in this paper, operate as
"individual differences" variables, which, when suitably manipulated,
also become "experimental" variables. There are some additional impli-
cations which need to be pointed out regarding the functioning of
learning sets in the determination of measured individual differences.

As the process of identification of subordinate learning sets is progres-
sively continued, one arrives at some learning sets which are very simple
and general, and likely to be widespread within the population of learners
for which the task is designed. Consider, for example, learning set IVB
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(Fig. 1), which is represented by a task such as 4 x 2 = 5 + ? If one
makes a further analysis to identify a subordinate learning set for this
task, the answer appears to be "adding, subtracting, multiplying. and
dividing one- and two-place numbers." It is interesting to note that this
is exactly the task provided by a set of factor reference tests (French, 1954)
called Number. In a similar manner, the other two circled entities in the
last row of Figure 1 were identified. One is Symbol Recognition (called
Associative Memory by the factor researchers), and another is Recognition
of Patterns (called Flexibility of Closure). The implication is, therefore,
that these simplest tasks, identified by factor analysis techniques as com-
mon to a great many human performances, also function as learning sets.

The hypothesis has been proposed that learning sets mediate positive
transfer to higher-level tasks. Very often, if not usually, the measurement
of transfer of training implies that a second task is learned more rapidly
when preceded by the learning of an initial task than when not so pre-
ceded. Accordingly, it seems necessary to distinguish between expected
correlations of these basic factors (at the bottom of the heirarchy) with
rate of attainment of higher-level learning sets on the one hand, and
correlations of these same factors with achievement of higher-level learn-
ing sets on the other.

The implications of this line of reasoning would seem to be somewhat
as follows: Factors which are found by the kind of psychological analysis
previously described to lie at the bottom of the knowledge hierarchy
should exhibit certain predictable patterns of correlation with higher-
level learning sets. They should correlate most highly with rate of attain-
ment of the learning sets in the next higher level to which they are
related, and progressively less as one progresses upwards in the hier-
archy. The reason for this is simply that the rate of attainment of
learning sets in a hierarchy comes to depend to an increasing extent on
the learning sets which have just previously been acquired and accord-
ingly to a decreasing extent upon a basic factor or ability. Some analogy
may be drawn here with the findings of Fleishman and Hempel (1954)
on motor tasks.

The expected relationships between factor test scores and achievement
scores (passing or failing learning sets) throughout such hierarchies seem
to require a somewhat more complex derivation. First of all, such rela-
tionships will depend upon the effectiveness of a learning program, or
perhaps on the effectiveness of previous learning. If the learning pro-
gram is perfectly effective, for exanyle, and if differences in rate of
attainment are ignored, everyone will pass all the learning set tasks, and
the variance will accordingly be reduced to zero. Under these circum-
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stances, then, one may expect all correlations with basic factors to be zero.
However, one must consider the case in which the learning program is
not perfectly effective. In such a case, the probability that an individual
will acquire a new learning set, as opposed to not acquiring it, will
presumably be increased to the extent that he scores high on tests of
related basic abilities. If one continues to collect scores on learning set
tasks of both successful achievers and those who fail, the result will
presumably be an increasing degree of correlation between basic ability
scores and learning set tasks as one progresses upwards in the hierarchy.
The reason for this is that the size of the correlation comes to depend
more and more upon variance contributed by those individuals who are
successful, and less and less on that contributed by those who effectively
"drop out."

The difference in expectation between the increasing pattern of
correlation with achievement scores, and the decreasing pattern with
measures of rate of attainment, is considered to be of rather general
importance for the area of individual differences measurement. Con-
firmatory results have been obtained in a recent study (Gagne and
Paradise, 1961) concerned with the class of tasks "solving linear algebraic
equations."

DISCUSSION

The general view of productive learning implied in this paper is that
it is a matter of transfer of training from component learning sets to a
new activity which incorporates these previously acquired capabilities.
This new activity so produced is qualitatively different from the tasks
which correspond to the "old" learning sets; that is, it must be described
by a different set of operations, rather than simply being "more difficult."
The characteristics of tasks which make achievement of one class of task
the required precursor of achievement in another, and not vice versa, arc
yet to be discovered. Sufficient examples exist of this phenomenon to
convince one of its reality (Gagne, et al., 1962; Gagne and Paradise, 1961).
What remains to be done, presumably, is to begin with extremely simple
levels of task, such as discriminations, and investigate transfer of train-
ing to tasks of greater and greater degrees of complexity, or perhaps
abstractness, thus determining the dimensions which make transfer
possible.

The path to research on the characteristics of instructions appears more
straightforward, at least at first glance. The establishment of identifica-
tions is a matter which has been investigated extensively with the use of
paired associates. The employment of instructions for this purpose may
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need to take into consideration the necessity for learning differentiations
among the stimulus items to be identified, as well as other variables sug-
gested by verbal learning studies. The function of inducing high re-
callability would seem to be a matter related to repetition of learning
set tasks, and may in addition be related to time variables such as those
involved in distribution of practice. As for guidance of thinking, the
distinguishing of this function from others performed by instructions
should at least make possible the design of more highly analytical studies
than have been possible in the past.

In the meantime, the approach employed in the experiment reported
here, of proceeding backwards by analysis of an already existing task,
has much to recommend it as a way of understanding the learning of
school subjects like mathematics and science, and perhaps others also.
Naturally, every human task yields a different hierarchy of learning sets
when this method of analysis is applied. Often, the relationship of higher
to lower learning sets is more complex than that exhibited in Figure I.
It should be possible, beginning with any existing class of tasks, to
investigate the effects of various instruction variables within the frame-
work of suitably designed learning programs.

The major methodological implication of this paper is to the effect
that investigations of productive learning must deal intensively with the
kinds of variables usually classified as "individual differences." One can-
not depend upon a measurement of general proficiency or aptitude to
reveal much of the important variability in the capabilities people bring
with them to a given task. Consider, for example, the seven ninth-grade
boys in our study. Each of them had "had" algebra, and each of them
had "had" arithmetic. There was no particularly striking relationship
between their ultimate performance and their previous grades in algebra
(although there is no doubt some correlation), nor between this per-
formance and "general intelligence." But the measurement of their
learning sets, as illustrated in Table 1, revealed a great deal about how
they would behave when confronted with the learning program and the
final task. For some, instructions had to begin, in effect, "lower downs'
than for others. Some could do Task 1 right away, while others could not,
but could do it equally well provided they learned other things first. The
methodological point is simply this: if one wants to investigate the effects
of an experimental treatment on the behavior of individuals or groups
who start from the same point, he would be well advised to measure and
map out for each individual the learning sets relevant to the experimental
task. In this way he can have some assurance of the extent to which his
subjects arc equivalent.
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III

Some Basic Processes Involved
in Mathematics Learning*

ZOLTAN P. DIENESt
University of Sherbrooke
Sherbrooke, Quebec

WIENEVER an organism is put in a new environment the initial
interaction between organism and environment seems to be some kind of
tentative exploring activity. The organism seems to wish to explore and
manipulate the environment. It does this, presumably, for the purpose
of being able to predict how the environment is going to respond. Mathe-
matics learning would probably be no exception to this, but a preliminary
groping period is notably lacking in most mathematics lessons. Children
are not usually thrown into a mass of mathematical stimuli and encour-
aged to sort them out and make sense of them.

Such activity can probably best be described as play. Why does a
kitten play with a ball of wool? The biological purpose is, no doubt, to
become skilled at using its paws and to orient itself in space generally
so that it can later catch food. A child plays for much the same reason.
He moves his body around. He uses his mind in various acts of play in
order to be able to meet requirements the environment is likely to pose
later on. So play, it seems, should be regarded as an integral part of any
learning cycle.

Mathematical play can be generated simply by providing children with
a large variety of constructed mathematical materials. Suppose materials
such as multibase arithmetic blocks, Cuisenaire rods, or various kinds
of geometric materials that might induce them to learn about vector
spaces, matrices, etc., have been made available.

* Inquiries should be addressed to International Study Group for Mathematics Learning. c/o
Professor Zoltan P. Dienes, University of Sherbrooke, Sherbrooke, Quebec, Canada.

t Previously. Dr. Dienes has been aMliated with Teachers College, Columbia University, New
York, New York, and with the University of Adelaide, Adelaide, South Australia.
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The first thing to clo with these materials, of course, is to leave them
around for the children to play with! Then one of two kinds of play
usually takes place. In one, which might be called purely manipulative,
the child tries to find out, almost consciously, how the material handles.

He wants to know what kind of a tool lie has. In the other, which might
be called representational play, the child acids his imagination to the
manipulationhe makes up all sorts of "cover stories" and uses the
material to represent these ideas.

Of course, the child who uses the materials inappropriately and tries
by hook or by crook to fit them into his imaginings is not adapting to the
environment as efficiently as the child who is making up suitable stories
and devising appropriate uses for the material. The manipulative and
representational kinds of play coalesce, really, into one stream of organic
inquiry. The child, however, is not aware that he is inquiring into any-
thing. He is merely having a good time playing with the materials.

Eventually, certain properties of the situation and other constraints
will begin to make themselves clear to the exploring child. For example,
the child may discover that some blocks do not stand up, that others
do not fit alongside each other, that a triangle cannot be made out of

squares or squares out of (some) triangles, and so on. The child, having
realized the restrictions under which he is working and the possibilities
that are open to him, will begin to ask questions concerning the condi-
tions under which certain possibilities may be realized. For instance,
can he build a certain kind of structure with a certain number of certain
kinds of pieces? Is it possible to make windows in a certain part of the

wall without causing the wall to collapse? Answers to such questions
should be obtained rather easily by means of manipulating the material
at hand.

ABSTRACTION

Abstraction is the gathering together of a number of different events
or situations into a class, using certain criteria that must be applicable to
all these events and situations. When we abstract we draw out from many
different situations that which is common to them, and we disregard
those things which are irrelevant to this common core.

If children are provided with a sufficient variety of mathematical
materials, it will be more likely that the mathematical relationships
determined raring the course of their play with these materials will be
abstract, rather than tied to certain particular situations. In effect, it is
hypothesized that in mathematical learning abstraction will be more
likely to take place if a multiple embodiment of a mathematical idea is
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provided, rather than a single embodiment such as Cuisenaire rods by
themselves. Providing a number of embodiments enables the child to
progress toward abstraction on a broad front. The more broadly based
the abstraction, the more widely applicable will it be. In other words,
if the abstraction is a result of gathering together the common properties
of a large variety of situations, it is more likely that the fival abstract
concept will be applicable to a large variety of applications and situations.

The formation of abstract concepts seems to take place in cycles. The
end point of each cycle can act as at least a partial beginning point of the
next cycle. For example, the idea of natural number (or certainly of the
cardinal aspect of natural number) is obtained partially by manipulating
sets of objects, comparing them, and realizing that if two sets are in
one-to-one correspondence then these sets are equivalent, i.e., have the
same number of elements. When the order property is joined to this
concept, the idea of natural number is made operational. This is the
end point of a very long set of experiences in which the child finally
realizes the irrelevance of various other properties of the sets and only
the number property is retained. The child is probably unaware of this
process, at least in the traditional educational setup.

Sets can undergo a large number of transformations, and still the
number of elements might remain unaltered. Thus, any element of a set
could be replaced by some other element without altering the property
that the set has a certain number of elements. On the other hand, if one
piece of a jigsaw puzzle is replaced by another piece, it is highly unlikely
that the puzzle could still be completed.

HIGHER LEVEL ABSTRACTIONS

The "natural number" property of sets can, in turn, be used as a
starting point for further abstraction processes. The ideas of "even"
and "odd" can be generated by getting children to arrange a set of objects
into pairs. They will find that sometimes all of the objects can be ar-
ranged in pairs, and at other times there is one left over. The end point
of a wide variety of such experiences will be the ideas of even and odd.

After this idea is achieved, it is possible to gain some appreciation of
the relationship between them through making unions of disjoint sets
with even and odd numbers of objects in them. By constructing such
unions children can come to realize that the union of a set with an even
number of objects with another set with an odd number of objects results
in a set with an odd number of objects. At the end of this cycle the
children will have realized the addition table of even and odd numbers
that is, that "even plus even equals even," "even plus odd equals
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odd," "odd plus even equals odd," and "odd plus odd equals even."
The resulting 2-by-2 table may later be recognized as isomorphic to

the multiplication table of positive and negative numbers. In fact, it is
an instance of the multiplication table, so-called, of the abstract mathe-
matical group with two elements. It would also be possible for children
to extend this notion by making up other tables of a similar kind (or of
a different kind) that have more than two elements in the table, maybe
three or four or eventually, perhaps, an infinite number.

In summary: the abstractions resulting from one cycle may provide a
basis for the next, higher order, cycles. The experience cycle leading to
natural number could, as we have said, lead to the ideas of even and odd.
These, in turn, could lead to the connection between even and odd that
might, then, be recognized as isomorphic to multiplication with equiva-
lence classes of positive and negative numbers. The mathematic entity
(two-group) invariant under this isomorphism could lead to cyclic groups

of orders 3, 4, 5, . . . . Noncyclic groups, for instance the Klein group,
could then be introduced by a variety of constructive experiences such
as folding pieces of paper.

GENERALIZATION

By generating abstractions out of previously formed ideas we are mov-
ing along an abstraction dimension.

There are, of course, many other dimensions of mathematical thinking.
One of the more important dimensions is generalizationsomething
hinted at, but not made explicit, in the preceding section. Whereas an
abstraction is created from elements by virtue of realizing some common
property of the elements, generalization is the extension of an abstract
class to a wider class of elements that possess the same properties as the
original class, or, possibly, properties only similar to them.

One might, for example, generalize from the even-and-odd situation
to the rules for adding numbers that are divisible by three, those that
when divided by three leave a remainder of one and those that when
divided by three leave a remainder of two. The resulting addition rules
result in what is known as a modulo-three arithmetic. This table does
not have the same properties as the other table (modulo two), but it has
some similar properties. For instance, any two kinds of numbers, when
added, result in one of the three kinds. In other words, the situation is
"closed." Another feature common to the two tables is that in each kind
of table there is a neutral element. The neutral element in the even-
and-odd table is the class of even numbers and in the modulo-three table
it is the class of those numbers that are divisible by three.
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Naturally, one can generalize to more than 3-by-3 tables. One could
take a general n-by-n table and invent rules for its operation. Or one
might impose a restriction to certain kinds of rules. For example, it
might be required that the rules result in an associative table or one with
a neutral element, as in our two examples.

In all mathematics of generalization, the set of entities to which our
operations are applicable is extended. Sometimes the process of gen-
eralization results in a new domain that not only is more extensive than
the previous one but also includes an isomorphic image of the previous
one. This situation might be referred to as "embeddedness." An example
of this might be extending the group with two elements to a cyclic group
of four elementsthe modulo-four arithmetic. In the modulo-four arith-
metic, the natural number's are divided into four classes: those divisible
by four and those that when divided by four leave remainders of one,
two, or three. These four classes provide a system that is also an exten-
sion of the system involving three classes of numbers. But, in addition,
the properties of the numbers that are divisible by four and those that
leave a remainder of two have exactly the same properties as the even
and odd numbers, respectively. The number classes are not identical, but
the relationships involved are the same. In effect, a 2-by-2 table has been
extended to a 4-by-4 table and in this 4-by-4 table there is a subtable that
has the same properties as the original 2-by-2 table. This form of
generalization is very common in mathematics.1

A similar situation exists in passing from natural numbers to integers.
The positive and negative integers comprise a much wider class of entities
than the natural numbers, and yet the properties of the positive integers
are isomorphic to the properties of the natural numbers in reference to
addition, subtraction, multiplication, and division. Still, a "positive two"
is a very different concept than a "natural two." A positive two means
that we are thinking of a "two-moreness" situation. Natural two means
that we are thinking of a situation in which there "are two." Confusion
between these two situations gives rise to much mathematical headache
in the classroom.

In view of the foregoing, a question arises. Is it better to generalize
on a narrow front and then abstract, or to abstract on a broad front and
then generalize? In other words, is it better to restrict oneself to one or
two situations to which the mathematical structure being learned is
applicable, and at the same time pursue its mathematical generality as
far as possible; or to look at a wide number of situations in which the

In "On Abstraction and Generalization," Harvard Educational Review (Summer 1961), the
term "generalization" is used only in the case where it occurs in conjunction with embeddedness.
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structure is applicable, to encourage a broad abstraction of mathematics
before extension of the mathematical structure itself is contemplated?
Probably no easy answer is forthcoming. There might even be individual
differences, and certainly the answer will depend at least in part on the
type of mathematical situation being envisaged.

PARTICULARIZATION

Abstraction and generalization are fundamentally different psycho-
logical processes. Abstraction, the creation of a class out of its elements,
is an irreversible process. Once a class has been created, it is inconceivable

that it can be uncreated. The generalization process, however, can be

reversed. It is equally possible to pass from a more to a less extensive
class and to pass from a less to a more extensive class. The former process
might be called "particularization." Consider, for example, a two-dimen-
sional vector space. The most general vector is an arbitrary ordered pair of
real numbers. Suppose, however, the restriction is imposed that the sum
of these two real numbers must be zero. This results in particularization
from the entire vector space to a subset of this vector space. Further re-
strictions can be made; suppose the choice of vectors is now restricted to
those in which the second component is a number that is two more than
the first component. If both restrictions are to be satisfied, then only the
vector (-1, 1) will do. By two steps of particularization, coupled in each

case by embeddedness, one particular vector has been identified in the
two-dimensional vector space.

The fact that the restrictions are not applied in this systematic order
in our mathematical learning does not necessarily indicate that this is not
how it should be done. In fact, the results of obeying the first restriction
but disobeying the second, obeying the second and disobeying the first,
or disobeying both should also be cinsidered by the learner. Considering
these four possibilities would give a fuller mathematical context to the
particular situation in which both restrictions are obeyed.

SYMBOLISM

So far, emphasis has been given to conceptual structure, as it arises out
of play, and particularly to the two dimensions of abstraction and
generalization.

The role played by language has not been considered. This role is very
important in the general scheme of mathematical learning, but exactly
what it is is not yet clear. Very little research has been done on the role
of language, either mathematical or metamathematical, in the learning
of mathematics itself.
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Some preliminary investigations were made at Harvard simply by ob-
serving children generate and play with symbols they had introduced
themselves. It seemed that at times the introduction of symbols impeded
the concept formation, while at other times the generation of symbols,
particularly by the child himself, led to a considerable amount of exciting
and creative thinking.

It is unclear what general laws govern the use of symbols in mathe-
matical thinking. Until quite recently it had been taken for granted that
the only way to learn mathematics is through symbols. Since it is now
known that mathematics, even mathematics of quite sophisticated kinds
(e.g., complex algebra, :Mine geometry, matrices, eigenvalues, etc.), can be
learned via manipulative experiences with concrete objects, a question
arises concerning the optimal use of symbols.

There seem to be some indications that a certain degree of abstraction
is necessary before a symbol can effectively be used and applied in a wide
range of situations. If symbolization takes place after only one embodi-
ment has been introduced and children are asked certain questions to
which the obvious answers (from the adult point of view) would be
through the use of symbols, the children will almost invariably go back
and manipulate the materials to provide the answers. On the other hand,
if many different embodiments have been introduced and the symbols are
beginning to mean for the children the common mathematical properties
of these embodiments, then it becomes more likely that the children will
use the symbols to provide the answer to a problem.

When a symbol to represent a certain situation has been either in-
vented by a child or presented to him, it is always a problem to know
what that symbol does, in fact, symbolize for that child. To what extent
does the symbol denote that activity with those very things with which
he is engaged, or to what extent does it denote a class of activities that he
might engage in? It seems to be the hallmark of an intelligent child to
think more in terms of classes of events than in terms of individual events.

Classifying events enables one to predict future events more accurately
than regarding events simply as isolated individual occurrences. It seems
a priori more probable that symbolization would be more effective after
a high degree of abstraction has been achieved than if symbols are intro-
duced at the very beginning.

Some people might argue that, on the other hand, introduction of the
symbol would save a good deal of unnecessary work with concrete em-
bodiments. Symbols are more easily transformable and manipulatable
than concrete materials, so it is in a sense labor-saving to manipulate a
symbol rather than an event. My reply to this criticism is that although
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it may be labor-saving, if the result of symbol manipulation is a knowl-
edge only of how to manipulate further symbols it is of little use. At
best, if the symbols denote one kind of activity then predictions regard-
ing only that kind of activity will be possible as a result of manipulating
the symbols. So it seems probable that the introduction of symbols oiler
a variety of concrete experiences would be more effective than their
introduction earlierbut just what variables are involved, only future
research will determine.

INTERPRETATION

Once a language with which to talk about mathematical events has
been constructed, the problem of decoding the language arises. Any
nonmathematician, on looking inside an advanced mathematics textbook,
will be horrified and will shut the book at once. This horror of alien
symbols is clue simply to the fact that most present-day adults were never
taught, during their school days, how to decode mathematical symbolism.
So symbolization and its concise interpretation should, perhaps, be em-
phasized in schools and experimented with in psychological laboratories.

The problem of decoding (interpretation) is the reverse of symboliza-
tion, just as particularization is the reverse of generalization. It is im-
possible to introduce an abstraction directly; so, to explain what a certain
mathematical symbol conveys, it is necessary to choose a particular in-
stance or representation and describe it, or to invent a language (e.g., an
English metalanguage) with which it might be possible to explain what
the strict mathematical language conveys.

One difficulty with mathematical language is its almost total lack of
redundancy. Ordinary language is extremely redundant. English prose
has been measured, I believe, to be on the average about 70 percent
redundant. On the other hand, if any single part of a mathematical
formula were to be left out, either the meaning of the formula would be
altered or the statement would be reduced to nonsense.

Possibly a certain amount of redundancy should be allowed for, in
introducing mathematical symbols. When we pass from ordinary com-
munication to nonredundant mathematical communication there should,
possibly, be some intermediate stages in which redundancy is gradually
reduced to almost zero.

SUMMARY.

To sum up, the Lollowing observations are offered.
One, to encourage children to abstract (that is, to determine the ele-

ments common to a large number of different situations), a large number

a
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of different situations must be provided. This leads to the principle of
multiple embodiment of mathematical concepts.

Two, to encourage children to generalize, one must try to vary the
values of the mathematical variables that make up the mathematical con-
cepts to be taught. An illustration is that of varying the mod value in
modular arithmetic. This leads to the principle of mathematical
variability.

Three, if children are to symbolize and use their symbols effectively,
it is probably better to let them have a hand in the process itself. Chil-
dren might want to change their symbols as they change their breadth
of abstraction. 1 hey might not want to use the same symbols when two
or three situations are pulled together into one. If they originally used
the symbols to represent only one of these situations, they might want a
different and possibly more concise symbolism when they realize that
there could be literally hundreds of similar situations. The principle in-
volved might be referred to as the principle of dynamic symbolization.
Normally, symbols are static; but in this conception symbols take on a
dynamic role and become an integral part, indeed, of the abstraction
and generalization cycles.

Four, to encourage children to interpret, they might first be given some
practice in making up imaginative stories to which their structures are
applicable. Soon they will realize the kind of stories that are applicable
and those that are not. So if children are allowed to take a hand in the
process of interpretation they are more likely to understand the inter-
pretation they have abstracted than if the teacher does all the interpret-
ing for them. This leads to a principle that might be called the principle
of image construction. Children should be encouraged to construct their
own images.

CONTROLLED RESEARCH

The preceding discussion has been rather general. The initial research
of my collaborators and myself had to content itself with a type of re-
search that might be described as "naturalistic" or "observational." This
research was followed by some tentative theorizing to account for the facts
observed. In a later series of experiments, conducted at the University
of Adelaide, Dr. jeeves and I looked into some of the detailed problems
of how structures are built, and how the learning of one structure affects
the learning of another.

For various reasonspartly because our subjects were unlikely to have
come across themmathematical groups were chosen as the structures to
be learned. It could almost be guaranteed that each suhiect would start
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off at essentially the same position, that is, zero. Also, it was relatively
easy to control the degree of task complexity.

We devised an experimental situation in which the responses of the
subjects to the problems would be externalized. Many steps in the think-
ing process could be observed directly. This procedure gave us invaluable
information as to how the thinking might have taken place from stage
zero to criterion.

Several questions were investigated in detail. One dealt with the effects
of conceptual symmetry or asymmetry of a task on performance. Another
involved the effects of starting with a more complex task followed by a
simple one, as against starting with a simple task followed by a more
complex one. A third question we tried to answer is "What kind of
strategies did the subjects use to solve the task that confronted them?"
And, having isolated a number of different strategies, we then asked
how and to what extent those strategies were related to the way in which
the subjects themselves interpreted the nature of the task. We also asked
questions about such things as the ability to extrapolate and the con-
nections between performance, extrapolation, and intelligence. Extrap-
olation was operationally defined in terms of the number of times a
certain combination had to be tried before it was, afterwards, faultlessly
handled. Of course, a smaller score gave higher extrapolating ability.

This extrapolation measure was applied only to those subjects who did
the complex task after the simple task, because some of the properties
were unique to the complex task (but not vice versa). These subjects
were required to guess what these properties were. Some of them guessed
correctly from the very start, in which case the extrapolation score was
zero, the best possible score for that ability.

Each task was administered approximately in the following way: The
subject was given some cards. The experimenter had an identical set of
cards, which he was able to put in the window of a piece of apparatus
in front of the subject. The experimenter sat behind this apparatus. To
begin, a certain card was placed in the window and the subject had to
place one of his cards on the table. Vhich card was next placed in the
window was determined by the card on the table, the card then in the
window, and a set of rules. The subject had to predict what the next card
in the window would be. After a certain number of successive correct
predictions the subject was examined on the remaining possibilities; if
he achieved a criterion of 90 percent correct, the task was discontinued.
If not, the process was kontinued until he again reached the criterion
number of successive correct predictions, after which he was once more
examined on all the remaining possibilities.
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The results were, roughly, these:
The extent of symmetry of the structure had a profound effect on

behavior. The subjects tended to predict that symmetrical structures
would be presented even when asymmetrical structures were being pre-
sented. For example, consider the Klein group as opposed to the cyclic-
four group. In the Klein group, the three elements that are not the unit
element are in a symmetrical relation to one another. That is, if the
nonunit elements are X, Y, and Z, then X and Y produce Z, Y and Z
produce X, and X and Z produce Y. In the cyclic-four group, this is not
so. If X, Y, and Z are the three nonunit elements, then although X and
Y produce Z, and Y and Z produce X, X and Z do not produce Y. Instead,
they produce the unit elementso there is an annoying kind of asym-
metry about the situation that the subjects learning the asymmetrical
(cyclic-four) group did not seem to like at all. They seemed to predict
in the direction of the more symmetrical structure.

Another interesting finding was that those who received the four-group
first appeared to do better than those who received the two-group fol-
lowed by the four-group. This was especially true when the performance
was measured in terms of the subject's verbal interpretation of what
the tasks were about. This finding provided a hypothesis that was tested
later on with more complex group structures. It seemed that there was
little to choose between introducing a group of order three before a
group of order five or vice versa, in the case of adults; but children did
significantly better when they started on the five-group than when they
started on the three-group. It also seemed that those who did the three-
group before a six-group did considerably better than those who did the
six-group before the three-group. Thus, the two-group followed by four-
group subjects did not do as well as the four-group followed by two-
group; but the three followed by the six did better than the six followed
by the three. The conclusion is that while it is possible to throw people
into a structure too deeply, it is also possible to allow them to get in too
gingerly. It seems that there is no particular immediate rationale why the
optimal level should be at any particular place rather than another. The
construction of models predicting such things remains a task for the
future.

The strategies used appeared to fall quite neatly into three distinct
categories. The first we termed the operational strategy; the second, pat-
tern; and the third, memory. The operational strategy was presumably
the result of the subject's regarding the card he played as an operator
acting on the card in the window. This strategy may have encouraged
the subjects to play the same card several times against different cards in
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the window to find out what kind of operator it was. The pattern
strategy involved playing with the combinations in particular areas of
the 4-by-4 matrix constituting the associated triads to be learned in the
group operation. For instance, a subject might investigate what would
follow whenever the card in the window and the card on the table in-
volved the same symbol; or he might investigate how the neutral card
worked. The memory strategy appeared to be a random strategy in which
the subjects restricted themselves to learning the combinations in a ran-
dom order until the whole table had been memorized.

These strategies were related to the ways in which the subjects evalu-
ated the tasks. Those who used an operational strategy indicated that
the card played had a role in the tasks, different from that of the card
in the window, and would affect in a particular way what card would
next appear in the window. The pattern strategists viewed the tasks as
depending on how the combination of particular kinds of cards would
affect the result. The memory strategists simply felt that there were some
combinations to memorize.

The relationships between the evaluations and the strategies were, in
every case, statistically significant. The relationship between the evalua-
tions and the number of instances required to complete the tasks was also
tested. It appeared that the operational evaluators completed the task
with the smallest number of instances, the pattern evaluators came next,
and (as might have been expected) the memory evaluators came last.
These differences also were significant.

With regard to extrapolation, it was found that ability to extrapolate
correlated very highly with general performance on the task, as measured
by the number of errors made. Extrapolation also correlated highly with
intelligence, measured by ordinary group tests used for school purposes;
yet there were no significant relationships found between performance
scores and intelligence test scores.

These results led to further questions about the interrelations be-
tween tasks and performance. One question that was investigated
is the differential effect of generalization and inclusion of one struc-
ture in another on performance. For example, in the three-group, the
five-group, and the seven-group, there are no equivalent parts except the
neutral element, and yet each structure is very clearly a generalization of
the preceding ones. The way in which the tasks become more complex
is by way of generalization. Now, if instead of taking the three-, five-,
and seven-groups, we take the three-, six-, and nine-groups and take
either the direct product of the three-group itself or the cyclic nine-group,
we will have embeddedness at every stage. That is, the three-group is
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embedded into the six-group and the three-group is embedded into any
nine-group. Of course, we also have overlapping between the six-group
and the nine-group because they both contain the three-group as a
subgroup.

Some subjects were run on the three-group followed by the five-group
followed by the seven-group, and others on the three-group followed by
the six-group followed by the nine-group. Control groups were run in
the reverse orders to determine the differential effects of doing the
complex tasks first. The criteria were performance on the third task,
and the sum total of the errors on the first two tasks.2

There are strong indications that children can cope with embeddedness
much more easily than with generalization.

Some other interesting problems arc being opened up in the field of
children's learning of logic. Up until quite recently it had been thought
that children pick up logic incidentally as they mature. From experi-
ments of William Hull a in Cambridge, of my own in different parts of
the world, particularly in Hawaii, New Guinea, and South Australia, and
of others, it is becoming obvious that young children are able to engage
in quite sophisticated logical thinking if the stimulus situations are of
a concrete character.

The Vigotsky blocks, adapted for this use by Hull, involve different
sizes, shapes, colors, and thicknesses with each possible combination of
attributes occurring exactly once. Conjunctions, disjunctions, and nega-
tions can be, so to speak, "played with" by children in this way. Children
might, for example, collect all blocks which are both red and square, all
blocks which are not circles, etc. Disjunctive combinations may, in addi-
tion, lead to implications. Thus, in a set where all blocks are either red
or not square, all squares will be red. That is, from the disjunctive at-
tribute "either red or not square" we can deduce the implication attri-
bute, "if square then red." Further, all valid deductions, such as that
above, can be shown to be equivalent to an inclusion relationship be-
tween sets. If an object is a member of Set A, which is included in Set B,
then it is also a member of Set B. More precisely, if A is included in B
and x is a member of A, then x is a member of B.

In South Australia, and later in New York, we experimented with the
introduction of the quantifying operators for "all" and "there exists" and
their relationship to negation. In fact, the children in a preparatory

2 The results have now been collected and are to be published in the second volume of
Psychological Monographs, Adelaide University, Adelaide, South Australia.

3 See his "Concept Work with Young Children," Bulletin of the International Study Group
for Mathematics Learning, 1962.
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class, five-year-olds, recently compelled the kindergarten teacher to intro.
duce the ideas for "all" and "there exists" because of their questioning
attitude on how the various properties were to be represented by sets of
blocks. Were all of the blocks in a set red, or were some of them red, or
were all of the red ones in the set? Such inquiries coming from five-year-
olds after a few months of experience in logical thinking are very encour-
agitig. Controlled experiments on this kind of thinking have not yet been
carried out, but some are being planned.

It will be appreciated that the research described here represents only
a beginning. A great deal more dovetailing of laboratory and classroom
research, and of mathematics-learning, logic.learning, and language-
learning research will need to be done before we can consider the study
of complex learning as truly undertaken.
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To MATHEMATICIANS or educators who have not thought very much
about the matter it usually comes as a surprise, and occasionally even as
a shock, to find out how little we know about the learning of mathe-
matics. It is not uncommon to hear mathematicians say that because
mathematics is a systematic subject with an inherent order imposed on
the development of topics, it should be relatively straightforward to give
quite an adequate account of how students learn mathematics. Because
students do learn mathematics and because many of the mathematicians
who make this sort of statement have themselves been successful teachers,
it is not always evident what is the best way to bring out the gross in-
adequacies in our present knowledge of mathematics learning.

Perhaps the most effective wayat least we have found that it some-
times worksis to rely heavily on computer analogies. First challenge:
If you understand so well how mathematics is learned, please program my
computer to learn it. It does not take much discussion to bring out the
difficulties of this task, and one can then move on to a second challenge:
Predict the points at which students will have learning difficulties, and
make explicit the principles used to make the predictions. The require-
ment of explicitness is needed to make the challenge a scientific and
theoretical one that cannot be answered by the nonverbalized and intui-

* This research was supported by the U.S. Office of Education, The National Science Foun-
dation, and the Carnegie Corporation of New York. The authors would like to thank Mrs. Sue
Matheson for running the experiments in the school.
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tive experience of a good teacher. While one's opponent is struggling
with this second challenge, a third challenge on performance data can be

put ready at hand: Predict systematic variations in performance data

involving mathematical concepts and skills already taught, and again
make the principles of prediction explicit. The view that mathematical
colleagues may have difficulty giving a serious constructive response to
these three challenges is not meant as a criticism of their scientific
prowess. The only criticism implied is of the opinion that we already

know how to meet these three challenges in any serious way.
The present article is meant to be a small step toward a positive re-

sponse to the third challenge. From a mathematical standpoint the per-
formance task we have selected is ridiculously simple, that of handling
correctly the simple addition facts, with the sums being no greater than 5.

From a psychological standpoint, however, this task is not as simple as
most of those that lie at the heart of the classical experiments in learning
theory. Moreover, attempts to develop mathematically well-defined per-
formance models for even this simple task do not seem to exist in the
literature.

We reserve more detailed comments until after we have presented in
the next section goodness-of-fit results, i.e., the extent of correspondence
between the theoretical predictions and the experimental outcomes
for five closely related models. A broader conceptual framework for the
viewpoint expressed here is to be found in Suppes.1

AN EXPERIMENTAL TEST OF FIVE MODELS

The results we will discuss are from an experiment in which a group
of first-grade children in the first half of the school year were asked to
solve a set of simple addition problems. Each problem was of the form

,n n =

where in n < 5. The line was colored red and the rest of the prob-
lem was printed in black. The task of each child was to provide the
missing number.

Thirty subjects were used, randomly selected from two different home-
rooms. Each subject was run individually. Subjects were seated in front
of a panel with six buttons marked 0, 1, 2, 3, 4, and 5. A sample problem
was then projected on a screen in front of them. They were told that
the red line meant that a number was missing and were instructed to

1 Patrick Suppes, The Payehological Foundation of Mathematics, Technical Report No. 80
(Stanford, Calif.: Stanford University, Institute for Mathematical Studies in the Social Sciences.
1965). Pp. 83.
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push the correct button for the missing number. When a subject had
responded, he was shown a new slide with the correct answer (printed
in red) replacing the red line. Each child was then presented with a
sequence of twenty-one problems consisting of all possible combinations
of integers m and n, subject to the constraints

m n < 5,
m > 0,
n > O.

These problems were presented in a random order, the same sequence
being used for each child. After each presentation of a problem, the
child made a response and was shown the correct answer. Both the actual
response and the response latency (the time between the onset [presenta-
tion] of the stimulus and the elicitation [occurrence] of the response)
were recorded. This procedure was repeated for two more days. How-
ever, on the last two days, no preliminary instructions were given, and
the child was asked to respond as quickly as possible. The order of
presentation of items was different on each of the three days.

In this discussion, we will concentrate on the data obtained on the
third day. It can be assumed that by then the children had become fully
familiar with the experimental situation. The initial problem we pro-
posed to consider was whether it is possible to formulate a simple model
that will account in an approximate fashion for the children's responses.

Unfortunately, the error rate was too low for any systematic analysis
to be based on this aspect of the response data. Although at least one
subject made an error on each problem, seven subjects out of the thirty
made errors on 1 + 3 = ____ and 1 + 2 = ____, and five subjects made
errors on 4 + 1 = ____, 3 + 2 = ___ and 1 + 1 = ____. On most other
problems one or two subjects made an error.

As a result of these low error rates, it seemed more promising to con-
sider the response latencies. The most reasonable basic assumption to
make is that the variations in response latencies between problems are
the reflection of some kind of counting process that the child is using.
For a problem of the form m n = ____, it is possible to distinguish
between five different kinds of counting processes. In order to make this
distinction, it is convenient to consider a counter on which two opera-
tions are possible: setting the value of the counter to a certain value
(while clearing the previous value) and adding a number to the current
value of the counter. The addition operation is performed by succes-
sively increasing the initial value of the counter by one until the second
value has been added on. The operation of this counter is illustrated
in Figure 1, as shown on the following page. Using this counter, an
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addition problem of the form pn n = can be solved in the follow-
ing ways:

1. The counter is initially set to 0, in is added and then n.
2. The counter is set to in (i.e., the left-most number) and n is then

added.
3. The counter is set to ii, and in is then added.
4. The counter is set to the minimum of in and n. The maximum is

then added.
5. The counter is set to the maximum of in and n. The minimum is

then added.

The setting operation is assumed to take a constant time, independent
of the value to which it is set. The addition time, on the other hand, is
proportional to the number of times the counter must be increased.
Suppose a counter takes time a to be set and time 13 to be increased by 1.
If a counter is to be set to a certain value and then increased x times by

(which is equivalent to having x added to it) the total time T taken by
the counter to perform these operations is

T = a px. (1)

Thus, Equation (1) gives the time taken to perform an addition problem
of the form m n = ___. It will give differential predictions depending
on the type of solution because, corresponding to the classification of
solution types we have just proposed, x is determined as follows:

Type 1. x = m n.
Type 2. x = n.

Set Counter
to a

Increment
Counter
by One

Exit with
a + x in
Counter

FIGURE 1.-EXAMPLE OF A DEVICE WHICH SETS A COUNTER TO a AND ADDS x TO a
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Type 3. x = us.
Type 4. x = max (m, n).
Type 5. x = min. (in, is).
If we wish to apply this model to the latencies of our experimental

subjects it cannot be assumed that the values of a and p are constant.
Rather, it is correct to assume that a and ft are random variables with
two different distributions. However, we can eliminate this problem by
taking the mean latencies, E(a) and E(#), over all subjects. We then have,
for a particular problem i,

E(i,) = E(a) xiE(p), (2)

where xi is computed according to the rules given above. For Equation
(2) to hold, it is necessary, of course, that xi be constant for all subjects
on a given problem. In other words, it is necessary to assume that all
subjects use the same type of solution. If this assumption is incorrect,
then the goodness of fit of observed-to-predicted data will be affected.

In order to evaluate the goodness-of-fit of these five models, it is neces-
sary to estimate the expected values E(a) and E(p). These estimates will
be denoted by ; and 0. For each problem, it is possible to compute a
value of xi under each of the five assumptions. Since Equation (2) is
linear, a and can be computed for each model by means of a simple
regression analysis, using xi as the independent variable and the observed
average-success latency on each problem as the dependent variable, with
the index i ranging over all twenty-one problems. It is necessary to use
the success latency rather than the overall latency for the dependent
variable because it is reasonable to assume only that Equation (2)
holds for correct solutions.

An analysis of this type was performed on the data obtained on
the third day of the experiment. Two problems (3 + 0 = ____ and
2 + 3 = were omitted from the analysis. On both these problems,
many individual response latencies were excessively high. The former
was always the first problem to be presented. The high latencies on the
latter can also be accounted for on the basis of sequential ordering effects.
From the data obtained from the remaining nineteen problems, ; and
were evaluated for each of the five models, and two indexes of goodness
of fit were computed. The first was the mean squared deviation between
predicted and observed values:

E19

=
where Ti denotes the observed success latency for problem i. Also com-
puted was the ratio of ft to the standard error of If Ti is normally
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TABLE I
REGREssiox Es 111.111 FOR "IIIF DIFFERENT SOINIION TITER

(a Asp ti MEASVREI) IN SIMONDS)

Mood. a t .2

I. x = m + n. 2.96 .216 .369

2. x = . 3.50 .098 .165

3. x = no. 3.48 .119 .404

4. x = max (, u). 3.43 .092 .471

5. x = min (m, as). 3.26 .710 .233

TABLE 2

Monet. 1: x M n. Mom. 5: x MK min (m, n).

Pr 0111C111 x Wall Success Latency
(in seconds)

Problem x Mean Success Latency
(in seconds)

Pred, Obs. Pred. Obs.

0 + 0 0 2.96 2.98 0 + 0 0 3.26 2.98
0+ I I 3.18 3.36 0+ I 0 3.26 3.36

! + 0 1 3.18 3.27 I + 0 0 3.26 3.27

0 + 2 2 3.10 3.57 0 + 2 0 3.26 3.57

1 + 1 2 3.40 2.67 2 + 0 0 3.26 2.88

2 + 0 2 3.40 2.88 0 + 3 0 3.26 3.45

0 + 3 3 3.61 3.45 0 + 4 0 3.26 3.48
1.1.2 3 3.61 4.20 4 + 0 0 3.26 3.40

2+ I 3 3.61 4.28 0+ 5 0 3.26 2.85

0 + 4 4 3.83 3.48 5 + 0 0 3.26 3.03

1 + 3 4 3.83 4.18 1 + 1 I 3.97 2.67

2+ 2 4 3.83 3.90 I+ 2 I 3.97 4.20
3 + I 4 3.83 4.04 2 + 1 1 3.97 4.28
4 + 0 4 3.83 3.40 1 +3 1 3.97 4.18

0+ 5 5 4.05 2.85 3+ 1 1 3.97 4.04

1 + 4 5 4.05 4.49 I+ 4 1 3.97 4.49

3+ 2 5 4.05 5.15 4+ I 1 3.97 4.53

1+ 1 5 4.05 4,53 2+ 2 2 4.68 3.90

5 + 0 5 4.05 3.03 3 + 2 2 4.68 5.15
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distributed, then this has a t distribution with n 2 degrees of freedom.
(In the present case, it = 19 [problems], so that it 2 = 17. Although
the summation is over subjects, as well as over problems, the details have
been omitted so as not to obscure the basic ideas.) While it is not
entirely clear whether or not the assumptions of the test are satisfied in
the present experiment, its application does provide a rough index of
whether or not the lit is satisfactory. The values of «, /3, and 0 resulting
from the analyses of the various models are shown in Table 1. Model 1
and Model 5 provided the best fits (i.e., s2 was smallest for these
models). The second goodness-of-fit computation resulted in levels of
significance beyond .05 for all but these models. The predicted success
latencies obtained on the basis of Model 1 and Model 5, together with
the corresponding observed mean success latencies, are shown in Table 2.
Notice that, especially in Model 5, each value of x involves a number of
data points. As a result, a clearer notion of the fit can be obtained by
comparing the predicted latency with the observed latency averaged over
all problems that contribute to a given value of x. This is done in Figure
2. It is clear that the best fit is provided by Model 5. Although there are
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less values of x in Model 5, the better fit cannot be ascribed to this cir-
cumstance, since the value of sg is lower for Model 5, despite the fact that
s2 was computed for each model on the basis of deviations between pre-
dicted and observed latencies for individual problems. Further evidence
in favor of Model 5 is the fact that, with the exception of 1 + 1, all
problems with x = 1 have larger latencies than those with x = 0.

While it can safely be concluded that Model 5 fits better than Model 1,
this result can only be considered to be a first step. There is no guarantee
that no other model exists that would fit the data in a more satisfactory
fashion. Moreover, it cannot be inferred that the good fit of Model 5
implies that subjects tend to add two numbers according to the mech-
anism suggested by the model. For this model, x ranges from 0 to 2. It is
only when x = 2 that neither a 0 nor a 1 appears in the problem. Hence
the data might be accounted for by a model which assumes specific
algorithms for solving problems involving a 0 or 1 rather than the general
algorithms used by the models we have proposed in this paper. Finally,
there is, of course, the possibility that different individuals use different
algorithms. Subsequent research that deals with these matters is now
planned.

SOME CONCLUDING REMARKS

It would be good if we could report that the algorithm represented by
Model 5 was the one explicitly taught the children by their teachers.
This does not seem to have been the case. At the present time most first-
grade teachers do not teach their students an explicit counting algorithm
for handling the simple addition facts ordinarily taught in the first grade.
As would be expected there is usually some mention, and often even a
fair amount of discussion, of counting and its relation to the first intro-
duction of addition. Butand this is the important pointan explicit
algorithm is not developed and taught as is clone later for addition of
multi-digit numbers.

The results of the present paper suggest that more attention might
profitably be devoted to these first algorithms, and that the algorithm of
Model 5, which seems more sophisticated than that of Model 1, might well
receive more explicit emphasis in the teaching of first-grade arithmetic.

It has not been our intention in this short paper to present any defini-
tive research, but only to illustrate how even so simple a thing as learning
the addition facts presents an interesting challenge to learning theorists
and affords an opportunity to test some alternative mathematical models,
each of which rests on a clear intuition of how a simple addition problem
may be solved. The central idea of a counting model seems so natural
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that it seems difficult to think of other possible approaches, but this is

not really the casefo example, a table-look-up model with parameters
appropriately introduced for scanning the table can be formulated in

such a way that it is identical in all behavioral predictions with Model 5.
Moreover, simple counting ideas arc not sufficient to account for all the
significant variations in the observed data of Table 2, and as a larger body

of data is accumulated, more complex and subtle ideas will be needed in

constructing an adequate model of the observed phenomena. On the
other hand, it seems to us that the learning of elementary mathematics

affords a natural testing ground for mathematical models of learning or
performance, and there is some reason to hope that in a first approxima-
tion, at least, models of a reasonable degree of simplicity will suffice.

It should be apparent that as such models are developed and the range
and depth of their success is increased they will have increasing sig-

nificance in suggesting and guiding curriculum modifications, particu-
larly as regards the fundamental problem of finding out how students can

on the average best learn mathematical concepts and skills.
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of agreement concerning elements which are generally characteristic of
discovery and expository teaching, there is still another divisive factor at
work. A review of the research literature shows that many of the relevant
variables have been explored to a marked degree, while others have
received relatively little attention. Such wide divergence in the variables
controlled in various studies has led to investigation of widely differing
facets of the discovery and expository processes, a too-general specification
of task parameters, and a consequent noncomparability of the results.

Many of the investigators have been primarily concerned with the
amount and type of external guidance to which the learner is subjected.
Others have been concerned chiefly with the role of verbalization in the
discovery-expository processes. One facet of investigation which has re-
ceived somewhat less attention is that of the sequence characteristics of
the learning tasks. In fact, many previous "discovery" studies have failed
to consider or specify such task parameters as sequence. It could be
argued that the type or amount of external guidance or verbalization is
no more important in concept formation than the timing of such guid-
ance or verbalization. Certainly this aspect of discovery teaching deserves
investigation in its own right.

In addition to the lack of clarity of research evidence pertaining to the
discovery-expository dilemma, there is another factor which often disturbs
the practitioner who depends on research to determine the best instruc-
tional techniques for classroom use. Most "discovery" studies have been
conducted in a laboratory setting and consequently have dealt with small
time samples, small numbers of subjects, and very discrete and often
manipulative learning tasks. One might argue that such sampling of
time, subjects, and tasks is so restrictive and limited in scope that any
attempt to generalize the results to classroom learning or instruction
would be subject to serious question. It would seem that the results of a
carefully controlled classroom experiment where both time sample and
learning task are representative of typical school behavior and curriculum
could be generalized to classroom practice with more confidence than
could the results of the typical short-term laboratory experiment.1

The primary purpose of the present study was to describe and compare
two instructional methods in a naturalistic setting where the learning
tasks and time sample approximated normal classroom conditions. The
methods compared were a discovery method and an expository method

The difficulty of controlling research in a naturalistic classroom setting has been documented
(Baack, et a/., 1963, pp. 165-68; and McDonald, 1964, P. 542) and is acknowledged by the
investigator. It would seem, however, that difficulty does not of itself preclude the possibility
of finding productive ways to utilize the classroom as a research setting.
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which differed primarily in terms of the sequence characteristics of the
presentations, and secondarily in terms of teacher guidance necessary to
maintain these sequence characteristics. No attempt was made to define
the discovery method or the expository method.= Instead, attention was
given to describing two methods which may be somewhat typical of the
characteristics that normally serve to differentiate discovery techniques
from expository techniques.

Specifically, the present study assessed the effects of two methods of
teaching selected mathematical concepts to fifth- and sixth-grade subjects.
The two sets of experimental sequences were presented to the subjects
through quasi-textual instructional programs and were introduced by
classroom teachers trained in both techniques of presentation. The
criteria used to measure the outcomes of instruction included the follow-
ing: tests of initial learning, retention, and transfer of the selected mathe-
matical concepts; tests for transfer of heuristics; and measures of attitude
toward the subject content. A complete listing and description of these
criterion measures appears later in the section "Tests and Measures."

Secondary purposes of this study were the following: (1) to test the
criticism that teaching by a discovery method is inherently more time-
consuming than teaching by exposition; and (2) to point out fruitful
directions that more focused research might take.

Brief definitions of the experimental methods appear below.

Discovery method (Treatment D). Treatment D is a method in which
verbalization of each concept or generalization is delayed until the end
of the instructional sequence by which the concept or generalization is
to be taught.

Expository method (Treatment E). Treatment E is a method in which
verbalization of each concept or generalization is the initial step in the
instructional sequence by which the concept or generalization is to be
taught.

It was hypothesized that Treatment D would produce superior results
to Treatment E on each of the criterion measures.

The discovery and expository techniques used in this study are not directly comparable to
other techniques using the same descriptive titles. Indeed, the use of the term "discovery" in
the literature is vague. As Wittrock and Keisler (1985, P. 20) note, the term is used to describe
stimuli, intervening variables, and responses. The same is true, in a lesser degree, of the term
"expository." The emphasis of this study is on the sequence characteristics of the stimulus
materials.
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METHOD

Subjects

The subjects were 538 fifth- and sixth-grade pupils in the Salt Lake
City School District, Salt Lake City, Utah. The experimental sample was
comprised of 432 of these pupils, who were equally divided among 16
classes. These classes were equally dividea among eight elementary
schools which were judged by district central office personnel to be
representative of the elementary schools in the district, in terms of socio-
economic and geographical characteristics.3

The teachers were selected on the basis of the following criteria:
(1) mathematical and general teaching competence, as judged by super-
visors, (2) minimum of three years of teaching experience, and (3) will-
ingness to participate in this research project. The selection of the
teachers determined the selection of the sample; subjects used in this
study were pupils in established classes of the selected teachers.

Experimental design and controls

Two classes in each of eight schools served as experimental groups. In
each school, both classes were taught arithmetic by the same teacher, one
class by Treatment D and one class by Treatment E. This was done in
order to control the dimensions of teacher personality and other teacher
characteristics. Seven of the teachers taught two sixth-grade classes each,
while the eighth teacher taught two fifth-grade classes.

Seven of the eight experimental teachers taught their own homeroom
class as one of the experimental groups. In an attempt to control possible
differential in pupil-teacher interaction between homeroom and non-
homeroom classes, the number of homerooms receiving each experimental
treatment was balanced as nearly as possible. The assignment procedures
also balanced as nearly as possible the number of classes receiving each
treatment during any particular segment of the school clay. Although
there was no reason to believe that the selection and assignment proce-
dures would bias the sample, a preliminary inspection of the mean values

I A control group, comprised of 106 Pupils in 3 sixth-grade classes, received both the pre- and
posttests but received no special instruction during the intervening six-week period. This group
was included in the study in order to provide normal baseline data against which to assess
effects of the two experimental treatments. Results of the intertreatment comparisons between
the experimental groups and the control group appear in detail in previous reports of this
research (see the introductory footnote) but are omitted here in the interest of brevity. It
should be noted, however, that the results of these comparisons support the findings and con-
clusions reported herein.
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for each treatment group was conducted on several pre-treatment meas-
ures including IQ, arithmetic computation skill, arithmetic problem-
solving ability, prior knowledge of the selected mathematical concepts,
prior attitude toward arithmetic, and pupil perception of teaching be-
havior. The only significant differences found between the Treatment D
and the Treatment E groups were on the attitude measures. Pupils in
Treatment E entered the experimental period with significantly better
attitudes toward arithmetic than pupils in Treatment D.

The major nonexperimental variables controlled in this study are
presented below.

1. The pupils in Treatments D and E received the same length of time
to work on the learning tasks.

2. Although the type of verbal behavior varied to fit the two teaching
models, the amount of verbalization in the teachers' oral presentation
and in the written instructional materials was held constant in both
treatments. Verbalization of the mathematical generalizations varied in
sequence between the two treatments but was present in both.

3. In order to obviate the criticism that the instruction received by the
two treatment groups was not actually different or did not match the
experimental models, three techniques were used in this study in an
attempt to assess the extent to which the teachers did, in fact, teach by
the specified methods. These techniques (utilizing instruments described
hereafter) included the following: (a) live rating by observer-raters of a
10 percent sample of the total teaching behavior of each teacher in each
treatment; (b) rating of a 10 percent sample of total teaching behavior
of each teacher in each treatment from lessons recorded on audio-tape;
and (c) rating by pupils of teaching behavior on the discovery-expository
dimension.

4. The research design and all of the various procedures and methods
utilized were designed to negate any differential "Hawthorne Effect"
between the two experimental groups.

5. An attempt was made to equalize the pre-experimental mathematical
experiences of all subjects in Treatments D and E by presentation, during
a two-month period immediately preceding the pretests, of a unit which
included both specific and general mathematical concepts judged to pro-
vide necessary background for the experimental materials. In addition,
pollution of the experimental results by nonexperimental arithmetic
experiences was minimized by a request that no homework or out-of-
school arithmetic assignments be given to the pupils. District personnel
complied with this request and also elicited parental cooperation.
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The experimental period consisted of three days of pretest admin-
istration, a six-week instructional period, and five days of posttest
administration.

Training program

All raters and teachers attended a training class which met a minimum
of two hours weekly for 20 weeks, 13 weeks prior to and 7 weeks
during the experimental period. Extra training sessions were frequently
inserted as they proved necessary. Training was given in four areas:
(1) general mathematical concepts necessary as background; (2) all se-
lected mathematical principles used in the instructional materials and
criterion measures; (3) procedures for administering and scoring the
various tests, scales, and questionnaires; and (4) use of the two specific
methods of instruction. Training procedures included the following:
(1) demonstrations by the investigator of all instructional units in each
treatment; (2) practice teaching and critiques, during the training class,
of portions of the instructional units; and (3) practice of instructional
techniques in a third class set up in each school specifically for that
purpose.

Instructional materials

The instructional materials were unique to each treatment and con-
sisted of mimeographed textual materials for each subject. These mate-
rials presented several mathematical concepts selected on the basis of
suitability for both discovery and expository teaching and probable un-
familiarity to subjects at the inception of the study. The mathematical
concepts selected were the following: (1) notation, addition, and multi-
plication of integers (positive, negative, and zero); (2) the distributive
principle of multiplication over addition; and (3) exponential notation
and multiplication and division of numbers expressed in exponential
notation.

The materials were equated in terms of the mathematical concepts,
diagrams of physical models, number and type of examples, and degree
of verbal presentation used in each treatment. The two sets of materials
differed primarily in terms of sequence characteristics.

Instructional procedures

The instructional procedures in each treatment were largely deter-
mined by the requirement that the teachers follow the predetermined
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sequences of the instucticnal materials. However, a significant portion
of total teaching behavior was judged to be independent of task sequence
characteristics but still influential in affecting the impact of the instruc-
tional sequences on the subjects. The characteristics of teaching behavior
which seemed most operative in this regard include the following: (1) in-
terjection of teacher knowledge, (2) introduction of generalizations,
(3) method of answering questions, (4) control of pupil interaction, and
(5) method of eliminating false concepts. Model "discovery" teaching
behavior and model "expository" teaching behavior on each of these five
characteristics was specified, and a paradigm of teaching techniques for
each characteristic was established in each treatment. Adherence to the
model techniques of teaching specified for each of the treatments and
to the sequence of presentation determined by the instructional materials
was assessed by observer- and pupil-rating scales (described hereafter).
Scores on these scales were used as an index of teacher fidelity in the
presentation of the experimental treatments.

Because of the wide range of ability among classes, teachers were al-
lowed to vary their rate of instruction in order to fit the needs of their
particular class. (This in no way affected the total time consumed by
each treatment, which was held equal, but merely dictated how far each
class progressed in the instructional materials.) Teachers were required,
however, to cover each concept and principle in the materials carefully,
using the prescribed teaching techniques, following the sequence dictated
by the materials, and making every attempt to make both treatments
equally meaningful. In order to insure adequate presentation of the
concepts to both treatment groups, the criterion was established that a
minimum of 85 percent of each class must attain a specified minimum
level of understanding of each concept before the teacher was allowed
to proceed to the next concept.

Tests and measures

Ten instruments were developed for this study, nine of which were
administered to all subjects while the tenth was used to rate teacher
behavior.

Prior knowledge of the selected mathematical concepts was measured
by a test (Concept Knowledge Test) administered to both treatment
groups in the pretest series. Initial learning was measured by the four
subsections of this test administered at the completion of the cor-
responding subsection of the instructional materials. A parallel form of
this test (Concept Retention Test) was administered twice to both treat-
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went groups, once five weeks after instruction and once eleven weeks after
instruction, in order to measure retention.4

A concept transfer test (Concept Transfer Test) was administered to
both treatment groups in the posttest series and was used to evaluate the
subjects' ability to recognize and apply mathematical principles in situa-
tions unlike those in which they were originally presented. A negative
concept transfer test (Negative Concept Transfer Test) was added to the
Concept Transfer Test in order to assess the subjects' tendency to over-
generalize the principles to inappropriate situations.

Transfer of heuristics was measured by two tests. The first of these was
a paper and pencil discovery test (Written Heuristic Transfer). The
second consisted of a sequence of problems presented orally by the
teacher, each of which could be solved easily if the subject discovered the
"shortcut." On the second test, the final criterion behavior was deter-
mined by performance on a six-problem exercise (Oral Heuristic Trans-
fer). Both of these tests were administered in the posttest series to subjects
in both of the experimental treatments.

Pupil attitude toward arithmetic was assessed by two attitude scales
(Statement Attitude Scale and Semantic Differential Attitude Scale)
administered in the pretest series, and again in the posttest series, to the
subjects in both treatment groups. The scores from these two scales were
summed into a total attitude score (Total Attitude Scale).

In addition to these criterion measures, a questionnaire (Pupil Per-
ception of Teaching Behavior) was administered to subjects in both
treatment groups in both the pre- and posttest series on which they
recorded, by responding to statements about teaching behavior character-
istics of their teacher, their perception of their teacher's behavior along
the discovery-expository continuum. This instrument, along with a rating
scale (Observer Rating of Teaching Behavior) devised and used to rate
teaching behavior through classroom observation and rating from audio-
tape recordings, was used to assess the degree to which teachers adhered
to the prescribed teaching models in each experimental treatment.

The Pintner Intermediate Test, Form A (IQ) and the Metropolitan
Achievement Test, Tests 5 and 6 (arithmetic computation and arithmetic
problem solving) were used as measures of group comparability.

4 The Concept Knowledge Test represents the summation of four discrete subtests, each ofwhich was administered immediately upon completion of the corresponding subsection of instruc-
tional materials. This resulted in a series of four staggered posttests given approximately eight.
six, four, and three weeks prior to the first administration of the Concept Retention Test. Thefour subscores were summed to yield a Total Concept Knowledge Test score. The average delay
between administration of the subtests and the first Concept Retention Test was slightly over
Ave weeks. The second administration of the Concept Retention Test came six weeks after thefirst. Thus, the average time between the subtests and the second retention test was slightlyover eleven weeks.
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RESULTS

Summary of analyses of teaching behavior

As indicated in the method section, two instruments were used to
gather data on teaching behavior which might be characterized as "dis-
covery" or "expository" in nature. The data thus obtained were analyzed
by use of the standard analysis of variance.

The results of analyses of the data obtained with these instruments
were interpreted as measures of the degree to which the teachers were
actually able to vary their teaching behavior and present both teaching
models adequately.

Observer rating of teaching behavior.There were no differences found
between teachers in Treatment D or between teachers in Treatment E on
their mean ratings on this instrument, nor were there any significant
differences between the mean teacher ratings in each treatment and the
maximum rating possible if teachers adhered to the prescribed models in
each treatment. A significant difference was found between treatments on
the mean teacher ratings on the discovery-expository continuum, further
validating the proposition that pupils in the two treatments received
instruction by two consistently different methods. Table 1 summarizes
these four analyses of variance of the data yielded by observer ratings.

TABLE I
SUMMARY OF ANALYSES OF VARIANCE OF TEACHER RATINGS ON

OBSERVER RATING OF TEACHING BEHAVIOR

COMPARISON WI Ws F P

I. Between Treatments D and F. 1 71 1,061.18 < .001

2. Between actual ratings and "ideal"
ratings for teaching models in
D and E 1 71 .59 11.5.

3. Between teachers in Treatment D 7 26 1.00 n.s.

4. Between ,teachers in Treatment E 7 31 .90 n.s.

Pupil perception of teaching behavior.This instrument was used in
an attempt to assess pupil perception of teaching behavior on the discov-
ery-expository dimension, both before and after the experimental instruc-
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tional period. This rating device was scaled so that the pre- to posttest
gain score for each teacher in each treatment could be used as an index of
the teacher's adherence to the teaching model. In the discovery treatment,
high fidelity to the Treatment D model of teaching should have resulted
in a positive pre- to posttest gain score. In the expository treatment, high
fidelity to the Treatment E model of teaching should have resulted in a
negative gain score.

Inspection of the mean pre- to posttest gain score for each treatment
revealed changes for each treatment in the predicted direction. An
analysis of variance which compared mean teacher gain scores in the
two treatments revealed a highly significant difference between the treat-
ments. These data were interpreted as further evidence that the teachers
varied their behavior sufficiently to effect a real test of the two teaching
models.

No significant differences were found between teacher mean pre- to
posttest gain scores within either of the experimental treatments.

Analyses of these data are shown in Table 2.

TABLE 2
SUMMARY OF ANALYSES OF VARIANCi: OF TEACHER PRE TO POSTTEST GAIN

SCORES ON PUPIL PERCEPTION OF TEACHING BEHAVIOR

COMPARISON dil dig F' P

1. Between Treatments D and E 1 398 25.59 < .001

2. Between teachers in Treatment I) 7 192 1.48 n.s.

3. Between teachers in Treatment E 7 192 2.12 n.s.

Summary of tests of hypotheses
Because of the noncomparability of the treatment groups on several

pretreatment measures, statistical controls were imposed in all inter-
treatment data analyses (except analyses of teaching-behavior data dis-
cussed previously) by use of a two-way teacher-by-treatment analysis

of covariance.
The choice of covariates was determined by an examination of the

intercorrelations on all measures and variables. On this basis, IQ, arith-
metic computation, and arithmetic problem solving were used as con-
stant covariates in the analysis of each dependent variable. Pretest scores
were used as additional covariates in analysis of the posttest of each
instrument administered in both the pre- and posttest series. Posttest
scores on the Concept Knowledge Test were used as an additional
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covariate in the analysis of the Concept Retention and Concept Transfer
tests.5

This analysis yielded significant F ratios for between-teacher effects
and teacher-by-treatment interaction on all of the criterion measures.
No attempt to explain these findings is given here; several plausible
explanations are included in previous reports of this research (see the
introductory footnote). Only the results yielded by direct comparisons
between Treatments D and E are presented here.

Initial learning.The data yielded by the Concept Knowledge Test
did not support the hypothesis that Treatment D would produce superior
results on an initial learning test. On the contrary, these data showed
Treatment E to produce significantly better results than Treatment D
on the initial learning criterion test.

Retention.The hypothesis that Treatment D would produce superior
results to Treatment E on a retention test given five and eleven weeks
after instruction was supported by the evidence yielded by an analysis
of the Concept Retention Test scores (p < .05 on the first administration
and p < ,025 on ,:he second administration).

Concept transfer.The data yielded by the Concept Transfer Test
lent tenuous support to the hypothesis that pupils in Treatment D
would show greater ability to transfer the concepts learned during
instruction than would pupils in Treatment E.

Negative concept transfer.There was no support in the data yielded
by the Negative Concept Transfer Test for the hypothesis that Treat-
ment D would produce less negative transfer than Treatment E. Rather,
it was found that there were no differences in negative transfer between
Treatment D and Treatment E.

Attitude. Of the three possible comparisons between Treatments D
and E on measures of attitude, none reached significance at a minimum
acceptable level of significance. The hypothesis that Treatment D would

3 It is questionable whether a legitimate test of transfer potential could have been obtained in
this study without equating original learning, as indicated by performance on the Concept
Knowledge Test, for the two treatments. Therefore, this covariate was included in order to
obtain an estimate of what performance on the Concept Retention and Concept Transfer tests
would have been if performance of the E and D groups had been equivalent on the Concept
Knowledge Test.

Statisticians, however, are divided on the use of this technique. Some argue that it is not
legitimate to use a covariant which has been effected by the treatments. These statisticians
would prefer to use absolute measures of performance rather than a treatment-effected covariant
or any variation of difference-score techniques. At present, this methodological issue seems to
remain largely unsolved.
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produce superior results to Treatment E on attitude measures was
rejected.

Transfer of heuristics.The hypothesis that Treatment D would pro-
duce superior results to Treatment E on tests of pupil ability to transfer
heuristics was supported by the evidence yielded by analyses of both the
Written Heuristic Transfer and the Oral Heuristic Transfer test scores.

Table 3 summarizes the analyses of covariance which yielded the above
results.

TABLE 3
SUMMARY OF ANALYSES OF COVERAGE OF CRITERION MEASURE POSTTEST

SCORES: BETWEEN TREATMENTS D AND E

MEASURE d11 dfs F P DIRECTION

Concept Knowledge Test 1 412 7.435 < .01 D < E

Concept Retention Test 1 1 412 3.918 < .05 D > E

Concept Retention Test 2 1 412 5.868 < .025 D > E

Concept Transfer Test 1 412 3.089 < .10 D > E

Neg. Concept Trans. Test 1 413 .098 n.s.

Sem. Diff. Attitude Scale 1 412 .161 n.s.

Statement Attitude Scale 1 412 1.173 n.s.

Total Attitude Scale 1 412 2.057 n.s.

Written Heuristic Trans. 1 413 5.004 < .05 D > E

Oral Heuristic Trans. 1 413 5.720 < .025 D > E

DISCUSSION AND CONCLUSIONS

Teaching behavior

Of most importance for the interpretation of the results of this study
was the clear-cut evidence that the subjects in the two experimental
treatments received instruction by two consistently different methods of
teaching, each of which closely paralleled the particular model prescribed.
It can be concluded that both treatments were fairly presented and that
no factors operated which would tend to give either method an unfair
advantage. Although the necessity of experimental controls may have
precluded either method from reaching its optimum power, this factor,
if present, was equally operative in both experimental treatments.
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Tests of hypotheses

In general, the findings of this study support many of the claims made
by proponents of discovery methods. The most dramatic finding was
the rather startling reversal in rank of Treatments D and E between the
administration of the Concept Knowledge posttest and the first adminis-
tration of the Concept Retention Test five weeks later. Although Treat-
ment E was significantly superior to Treatment D on the tests of initial
learning (p < .01), the retention test given after an average five-week
delay showed Treatment E not only to have lost this initial superiority
but also to have been surpassed by Treatment D. The pupils taught by
the discovery method were able to retain significantly more material
(p < .05) over the intervening period, notwithstanding the fact that
they had evidenced knowledge of significantly less material than the
Treatment E group on the test of initial learning. Analysis of the scores
from the second administration of the Concept Retention Test eleven
weeks after instruction showed pupils in Treatment D to have maintained
this advantage over pupils in Treatment E (p < .025). This finding
strongly suggests that presentation of mathematical concepts to sixth-
grade pupils by techniques of discovery teaching causes the learner to
conceptually integrate the content in such a manner that he can retain
it more readily than if the concepts had been presented to him by an
expository teaching method.

Another finding which clearly favors Treatment D is that dealing with
subject acquisition of a problem-solving set. In light of the evidence
yielded by both the Written Heuristic Transfer and the Oral Heuristic
Transfer tests, it seems reasonable to conclude that learning by discovery
techniques significantly increases pupil ability to use discovery problem-
solving approaches in new situations, both those which require paper
and pencil application and those which involve verbal presentation by
the teacher. Treatment D was shown to be significantly superior to
Treatment E on both of these dimensions in the present study.

Treatment D also seems superior to Treatment E in terms of transfer
of mathematical concepts, although this finding is somewhat tenuous.
It was the experimenter's opinion that the Concept Transfer Test was
much too difficult for the subjects involved and that this factor resulted in
random errors of measurement which reduced the possibility of finding
more significant differences between the treatments. The obtained be-
tween-treatment F ratio in the teacher-by-treatment analysis of covariance
favored Treatment D over Treatment E at a minimum acceptable level of
significance (p < .10) and the experimenter would speculate that modi
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fications of the instrument to reduce the random error of measurement
would result in more highly significant differences in favor of Treat-
ment D.

The results yielded by the attitude measures were somewhat equivocal.
None of the comparisons between Treatments D and E reached the .10
level of significance, although the differences were all in the direction
predicted. A postexperimental evaluation of the research project also
yielded provocative, although subjective, results related to the above.
Among other questions, the eight experimental teachers were asked
which of their two classes seemed to like the "new math" better. Six of
the eight teachers responded that their Treatment D group gave con-
siderably greater expressions of liking the new arithmetic program than
did their Treatment E class. The remaining two teachers indicated that
both of their classes seemed to like the arithmetic content equally well.
This overall judgment was corroborated by the three rater-observers. In
addition, several factors existed during the experiment which, if operative,
would tend to negatively affect the attitudes of pupils in Treatment D
toward arithmetic while not affecting the attitudes of pupils in Treatment
E. While not offered as conclusive evidence, these opinions were judged
by the experimenter to be sufficiently perturbing to point to the need for
future research specifically designed to test further the relative effects of
discovery and expository methods on pupil attitude.

Although not a specific hypothesis, the question of relative practicality
of discovery and expository teaching in terms of time consumption was of
particular interest in this study, and controls were established to enable
this question to be answered. The results indicate that the discovery
method need not be more time consuming than the expository method of
instruction. When given an equal amount of time to work on the learn-
ing task, pupils in Treatment D proved superior to pupils taught by
Treatment E, in the majority of intertreatment comparisons. No support
was found in this study for the notion that discovery is inherently more
time consuming than expository instruction.

Implications
Implications which have been drawn from both experience in this

study and an analysis of its results are of two types, implications for future
research and implications for educational practice.

Implications for future research.Replications of this study should be
conducted (1) at other grade levels to test the generalizability of the results

These factors are discussed in detail in previous reports of this research, listed in the
,,,ntroductory footnote.
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and conclusions to other age groups; and (2) with more discriminating
attitude measures and experimental controls specifically designed to test

the effects of the two methods upon attitude toward the selected subject-
matter content.

Programmatic research dealing with various discovery-expository vari-

ables of task presentation should be initiated. In addition to a continua-
tion of research in which sequence characteristics of the learning task are
manipulated, the present research design and instructional materials
might be modified to provide tests of the relative effectiveness of various

types and amounts of guidance along the discovery-expository dimension.
Studies could be designed in which the present instructional materials are
used to compare guided discovery with independent discovery. Further
modifications of the present design and learning task could serve to com-

pare discovery methods in which the verbal factor is varied from verbal

to nonverbal discovery. Interrelationships among these relevant variables
might then be explored.

Implications for educational practice.Any generalizations based on
the findings of this study must take into account the particular teachers,
experimental population, instructional procedures, instructional mate-
rials, and criterion measures used. In addition, without the programmatic
research suggested above, any conclusions drawn on the basis of this
single study must be tentative at best. Furthermore, while many of the
results of this study are statistically significant, the question of practical
significance remains largely unanswered.

Conversely, this study was conducted under carefully controlled condi-
tions which were judged to approximate normal classroom conditions
with respect to all dimensions except those specifically varied for experi-
mental purposes. Because of the relatively large time sample, the nature
of the learning task, and the large number of subjects used, it would seem
that the results can be generalized, at least to innovative teaching with
similar subjects and subject-matter content, with a relatively high degree
of confidence. Within this context, it is the experimenter's opinion that,
pending further programmatic research, this study holds the following
implications for educational practice:

1. To the extent that pupil ability to retain mathematical concepts
and pupil ability to transfer heuristics of problem solving are valued
outcomes of education, discovery techniques of teaching should be an
integral part of the methodology used in presenting mathematics in the
elementary classroom.

2. To the extent that irz_mediate recall is a valued outcome of educa-
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tion, expository instruction should be continued as the typical instruc-
tional practice used in the elementary classroom.

3. The present study also suggests that pupils' ability to transfer con-
cepts will likely be increased in proportion to the degree to which
discovery techniques are used in the classroom.
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IN DECEMBER 1962 the Board of Directors of the National Council of
Teachers of Mathematics authorized an expenditure of $40,600 to finance
a General Mathematics Writing Project to produce text materials for
non-college-bound ninth-grade students in the 25th to 50th percentile
range in mathematical achievement. The following summer twelve
writers, working under the direction of Dr. Oscar Schaaf, completed the
preliminary edition of a text entitled Experiences in Mathematical Dis-
covery (EMD). The preliminary edition of EMD was multilithed and
bound in two volumes. A Teacher's Commentary accompanied the text.

The preliminary edition of EMU contains nine chapters having the
following titles:

1. Patterns, Formulas, and Graphing Data
2. Arrangements and Selections
S. Intuitive Geometry
4. A New Look at Whole Numbers
5. Ratio, Proportion, and Per Cent
6. Learning to Use Directed Numbers
7. Measurement

* Dr. David R. Giese, Director of Research, General College. University of Minnesota, served
as statistical consultant in analyzing the data collected during the course of this study.

60
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8. Mathematical Thinking in Geometry
9. Fraction Numbers

As the titles indicate, each chapter involves significant mathematical
ideas. The applied aspects of mathematics are stressed, and there is much
new material (not just a review of old topics).

The style of exposition is based on the discovery approach. Also, the
presentation in each chapter proceeds in such a way that the student is
not compelled to give prolonged attention to long systematic develop-
ments. Another important characteristic of EMD is that practice work
is incorporated as an integral part of the content development.

To determine the effectiveness of the preliminary edition of EMD an
experimental evaluation was carried out during tine 1963/64 school year.
Comparisons were made between ninth-grade general mathematics classes
using EMD and comparable classes using conventional ninth-grade gen-
eral mathematics textbooks. Particular attention was given to com-
parisons involving student achievement in mathematics, and to student
change of attitude toward mathematics. The reason for carrying out the
evaluation with classes of ninth-grade general mathematics students is
that students normally registered in such classes provided the best avail-
able approximation the population for which EMD was written (i.e.,
25th to 50th percentile range in mathematical achievement).

METHOD

Sample

The sample used in the study consisted of 86 ninth-grade general
mathematics classes located in various parts of the United States.1 The
86 classes were taught by 43 teachers, each teaching two of the classes
in the sample. Selecting the sample involved finding schools such that
each school had a teacher who was scheduled to teach two classes in ninth-
grade general mathematics during the school year 1963/64. Thus, one
class for each teacher served as an experimental class and the other as a
conventional control class.

During the course of the study 14 pairs of classes (one pair for each
of 14 teachers) were eliminated from the study for reasons that are ex-
plained in appropriate paragraphs of this report. Data from the remain-
ing 29 pairs of classes, taught by 29 teachers, were analyzed in accordance

I The evaluation of the preliminary edition of EMD was also carried out with several tenth-
grade general mathematics classes, but the present report is limited to the evaluation conducted
with the ninth-wade general mathematics classes.
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with the purposes of the study. This means that data for 29 experimental
classes and 29 conventional control classes were analyzed.

Instructional materials

Each experimental class was provided with a class set of the preliminary
edition of EMD, and the teacher was provided with a copy of the accom-
panying Teacher's Commentary. Each conventional control class had
available the ninth-grade general mathematics textbook that was in nor-
mal use in the school in which the class was located. Although the par-
ticipating schools used nine different conventional textbooks, the majority
of the conventional control classes used either Stein's Refresher Arith-
metic or Hart's Mathematics in Daily Use.

Measuring instruments

The School and College Ability Test (Form BA) was administered as
a pretest to all students, in order to obtain a measure of initial scholastic
ability and also to determine whether or not the experimental and con-
ventional control classes taught by each teacher were comparable in
scholastic ability.

The Sequential Test of Educational Progress (MathematicsForm BA)
was used as a pretest and the Sequential Test of Educational Progress
(MathematicsForm 38) was used as a posttest for all students in both
the experimental and the conventional control classes. The two different
forms were used to obtain a measure of gains in mathematical knowledge
resulting from participation in one of the two kinds of classes.

The School and College Ability Test (SCAT) and the Sequential Test
of Educational Progress (STEP) were selected as measuring instruments
for the following reasons: (1) SCAT provides a measure of both verbal
ability and quantitative ability; (2) STEP, while considered a test of
mathematical achievement, measures mastery in most of the broad mathe-
matical concepts; (3) STEP and SCAT are widely used and are readily
available; (4) national norms for both instruments are available and
many schools have established their own local norms; and (5) both instru-
ments have been used in mathematics curriculum studies and have been
accepted by many researchers as valid and reliable instruments. Although
STEP was published in 1957 by the Educational Testing Service, it was
developed in the few years prior to that date. In view of the present
trend in mathematics curriculum development the items in STEP would
have to be classified as conventional (or traditional). Hence, some of the
newer concepts presented in the preliminary edition of EMD could not
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be tested by STEP. Therefore, it is possible that students using the
conventional textbooks had a slight advantage on STEP.

Since formation of favorable attitudes toward mathematics is generally
considered to be a desirable outcome of instruction in mathematics, an
effort was made to measure student attitude toward mathematics. The
Mathematics Inventory, a test developed by Cyril J. Hoyt and Donald G.
MacEachern at the University of Minnesota in 1958, was selected as the
most appropriate instrument available for measuring student attitude
toward mathematics. This test was administered both as a pretest and
as a posttest to all experimental and conventional control classes to deter-
mine student attitude change toward mathematics.

The Mathematics Inventory was designed for use with junior high
school students. Reliability and validity coefficients have been computed.
The test consists of 110 statements to each of which the student is asked to
respond in one of three ways: "agree," "uncertain," or "disagree." The
test is machine-scorable.

If the Mathematics Inventory is used both as a pretest and as a post-
test, the difference scores that are obtained can be interpreted as a
measure of attitude change for an instructional period. High attitude
scores have been shown to be indicative of the likelihood that students
will elect further courses in mathematics and science. An acceptable atti-
tude toward mathematics is, in itself, an important aspect of achievement.

To obtain a measure of student mastery of topics included in EMD a
General Mathematics Achievement Test (GMATunpublished) was
constructed and administered as a posttest. Test items were submitted
to the investigators by members of the Advisory Committee of the
General Mathematics Writing Project. Four mathematics educators rated
the items that were collected, and the fifty considered to be the most
suitable were incorporated in GMAT. In producing GMAT four cri-
teria were established:

1. The test had to be objective.

2. The test had to have content validity.

3. Chapter sampling had to be representative; and there had to be a
balance among items involving problem solving or interpretation and
those involving recall of factual information.

4. Language usage peculiar to either conventional textbooks or to EMD
had to be neutralized. This meant including definitions of words that
were not common to both treatments.

Basically, the purpose of GMAT was to determine whether or not the
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use of EMD enabled students to learn what the writers of EMD had
intended that students should learn.

Experimental p rocedure and method of analysis

During the early summer of 1963, as already indicated, 43 teachers,
each scheduled to teach two ninth-grade general mathematics classes,
were selected to rarticipate in the evaluation of the preliminary edition
of EMD. Instructions sent to each teacher emphasized two things:
(1) that it was desirable for a teacher's experimental class and his con-
ventional control class to be as much alike as possible, and (2) that the
two classes were to be taught separatelythat is, EMD was to be used
only with the experimental class and the conventional textbook in normal
use in the teacher's school was to be used only with the conventional
control class.

In August 1963 each participating teacher was furnished with one class
set of each of the following tests: SCAT (Form 3A), STEP (Mathematics
Form 3A), and the Mathematics Inventory. Also furnished were enough
answer sheets and electrographic pencils for both of the teacher's classes.
Detailed instructions were provided to insure uniformity of administra-
tion of the tests. Thirty-eight teachers administered SCAT (Form 3A),
STEP (MathematicsForm 3A), and the Mathematics Inventory to par-
ticipating classes and returned the completed testing materials to the
investigators.

Five teachers did not return results for the fall testing. Besides this,
it was learned that in five other cases the same teacher had not been
assigned to teach both an experimental class and a conventional control
class. The classes involved in the two kinds of situations described were
therefore dropped from the evaluation. This meant a reduction of ten
pairs of classes in the anticipated sample size.

In April 1964 testing materials were again sent out, this time to each
participating teacher who had correctly followed directions up to this
point, and was therefore assumed to be actively participating in the
evaluation. During the year the investigators had been notified that one
pair of classes had been disbanded because of a school reorganization.
This pair of classes was dropped from the evaluation. In all, testing
materials were sent to 32 teachers. As in the fall, each teacher was pro-
vided with all materials and complete instructions for administering the
tests. Thirty-one teachers administered STEP (MathematicsForm 3B),
the Mathematics Inventory, and the General Mathematics Achievement
Test (GMAT) in accordance with instructions, and returned the com
pleted materials. Testing materials for one pair of classes were never
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returned. After the test results were machine-corrected, all students who
had not completed all parts of the testing program were eliminated from
the evaluation. Elimination of students for this reason meant elimina-
tion of one more pair of classes from the evaluation because too few

students remained in one of the two classes in the pair. When the spring
testing was completed, there were 30 pairs of classes for which sufficient

data were available for the analysis.,
As a preliminary step in carrying out the analysis of the experiment,

frequency distributions of the STEP (MathematicsForm 3A) pretest
scores and the SCAT (Form 3A) scores were developed. Upon examina-
tion of the means of the distributions it was realized that "low ability"
mathematics students are not homogeneous with respect to SCAT and
STEP scores. Some students who were classified as "low" in one school
would have been classified as "very good" in another school. For exam-
ple, the means for the experimental class of one particular teacher were
34 on SCAT (Form 3A) and 18 on STEP (MathematicsForm 3A), while
the means for the experimental class of a second teacher were 59 on
SCAT (Form 3A) and 28 on STEP (MathematicsForm 3A). Even more
unusual than the differences of these means was the fact that the lowest
student in the second teacher's class was above the highest student in
the first teacher's class. Although not as extreme, there were large differ-
ences between the experimental and conventional control classes for
several other teachers.

In view of the foregoing information it was decided that if the SCAT
(Form 3A) mean scores for a teacher's two classes differed by more than
ten points or if the mean scores on STEP (MathematicsForm 3A)
differed by more than five points, this teacher's classes would not be
included in the primary analysis. This decision was made to insure com-
parability of the classes in each pair for which data were to be analyzed
in the primary analysis. On the basis of this preliminary assessment of
the data, six pairs of classes were excluded from the primary analysis and
were placed in a special group. The data for each of these six pairs of
classes were analyzed separately. Finally, one pair of classes was dropped
from all analyses because the mean scores for one of the two classes in
the pair were far below those of all other classes.2 However, even after
separating out the six pairs of classes described above and dropping one
pair of classes entirely, it was still necessary to cope with rather large
differences between schools for the remaining 23 pairs of classes.

Because of these differences it was felt that it would be impossible to

2 This completes the accounting of the 14 pairs of classes that were reported as being elimi-
nated from the original sample.
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analyze classes simultaneously. Blocking on either the SCAT (Form 3A)
scores or the STEP (MathematicsForm SA) pretest scores or both was
considered, but rejected because of the inability to find suitable blocking
scores which would not result in empty cells. Multidimensional covari-
iance analysis was considered; however, the effect of nonhomogeneity of
regression coefficients, which must have existed but which was not tested,
was unknown. Instead, it was decided to group the 23 pairs of classes into
five groups of approximately equal size, based on their SCAT (Form 3A)
mean scores. In this way five groups, three of which contained five pairs
of classes and two of which contained four pairs of classes, were con-
structed. The range of SCAT means for each group is given in the table
below. The primary analysis was carried out separately for each of these
five groups. To increase the precision of the analysis the students in the
experimental and conventional control classes in each group were divided
into two initial knowledge levels (low and high) using their STEP
(MathematicsForm 3A) pretest scores. The dividing scores for each of
the five groups are shown in Table I.

TABLE 1

GROUP
NUMBER OF

PAIRS OF CLASSES
SCAT SCORES

RANGE OF MEANS

DIVISION POINT ON
STEP PRETEST SCORES

Low HIGH

I 5 31- 37 17 18

II 4 38 -44 19 20

III 5 45 -48 21 22

IV 4 49-52 23 24

V 5 53 - 60 25 26

The scores on two of the posttests (STEP MathematicsForm 3B and
GMAT) and the Mathematics Inventory difference scores (gains) for each
of the five groups were analyzed separately. In each case a three-way
unweighted means analysis of variance was used to determine the effects
of each of the fallowing factors:

1. Treatment (two types, experimental and conventional)
2. Initial mathematical knowledge (two levels for each of the five

groups identified in the table above)
3. Teacher (four or five depending on the group)

Besides determining the effects of the three factors described above,
all interactions of the three factors were also tested. The test scores of
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the students in the six pairs of classes that did not fit into the primary
analysis as described above were analyzed separately, using analysis of
covariance.

Because the amount of variation among schools and between two classes
within a school cannot always be anticipated, the final analysis was quite
different from that which was originally planned.

SUMMARY OF RESULTS

Conclusions pertinent to attitude

1. Treatment effects.Change of student attitude toward mathematics
due to the experimental treatment was not significantly different from
the change of student attitude toward mathematics due to the conven-
tional control treatment.

2. Initial knowledge effects.Examination of the F ratios and the
mean scores indicated that students with more initial mathematical
knowledge not only received significantly higher attitude scores on the
pretest but also raised their attitude scores significantly more during the
year.

3. Teacher effects.The change in attitude during the year was related
to the teacher.

4. Interactions. Only isolated significant interactions were identified
in the analysis.

Conclusions pertinent to mathematical knowledge as measured by the
STEP posttest

1. Treatment effects.The treatment posttest results as determined
by STEP (MathematicsForm 3B) were not significantly different within
groups, thereby indicating that both treatments were about equally effec-

tive in teaching what STEP (MathematicsForm 3B) measures. The
actual differences among groups were as expected, the groups with the
higher SCAT scores getting the higher scores on the STEP posttest.

2. Initial knowledge effects.There were large significant differences
between levels on the STEP posttest. Students who knew more at the
beginning of the experiment as measured by the STEP (Mathematics
Form 3A) pretest also made the higher scores on the STEP (Mathe-
maticsForm 3B) posttest.

3. Teacher effects.There were no consistent differences among
teachers within any group; however, there were large differences among
all teachers in the study.
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4. Interactions.There were no consistent interactions among the
factors.

Conclusions pertinent to the experimental material as measured by the
General Mathematics Achievement Test (GMAT)

1. Treatment effects.There was a significant difference between the
two treatments, with the experimental classes getting the higher scores.

2. Initial knowledge elects. --The students who knew more in the
beginning of the experiment, as measured by STEP (Mathematics
Form 3A), earned significantly higher scores on GMAT.

3. Teacher effects.There were significant differences among the
teachers. The differences were complicated by a significant teacher-
treatment interaction. This indicates that the treatment difference was
not consistent with teachers.

4. Interactions.Except for the treatment-teacher interaction discussed
above, no interactions were consistently significant.

DISCUSSION

The analysis indicated that the use of EMD had little, if any, differ-
ential effect either on attitude, as measured by the Mathematics Inven-
tory, or on mathematical knowledge, as measured by STEP (Mathe-
maticsForm 3B). However, it was apparent that students in the classes
using EMD learned something that was not taught in the classes using
conventional textbooks. The nonsignificant interaction of treatment and
initial knowledge on the General Mathematics Achievement Test
(GMAT) indicates that the better students in each group learned more
than the poorer students, regardless of the teacher or the text materials
that were used.

During the experimental tryout each participating teacher was asked
to submit reports on each chapter of EMD. These reports included ques-
tions concerning mathematical content, difficulty of the material, time
spent on each section of the chapter, and general opinion. Reports re-
ceived indicated that the teachers were favorably disposed toward EMD.
However, they were relatively noncommittal about the choice of topics
and the mathematics contained in the text.

Copies of the preliminary edition of EMD were sent to 15 mathema-
ticians and educators who were asked to give detailed chapter-by-chapter
appraisals of the text. The appraisals suggested that the preliminary
edition of EMD placed too much emphasis on the discovery approach
and that more formalization of those mathematical concepts that students
are expected to discover might be needed. The reviewing group also
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indicated that the preliminary edition of EMD might need strengthening
in the development of basic mathematical concepts before it is pub-
lished in final form.

Information on the readability of the preliminary edition of EMD was
obtained by using the Flesch reading-ease formula adapted for mathe-
matical materials. Samples selected showed that the reading levels of
the chapters ranged from a grade level of 8.0 to a grade level of 11.5.
It was estimated that the reading level of the students for whom this text
was intended should probably be between a grade level of 7.0 and 8.0.

As a result of the statistical evaluation, the information obtained from
the chapter reports submitted by participating teachers, the reviews
obtained from mathematicians and educators, and the reading level
study, the preliminary edition of EMD is now being revised.3

Evaluation of text materials, although long and involved, is necessary
if the material produced is to be of value to the intended student
population.

3 The completed revision will consist of ten independent units. Each will be separately bound.
Five of these units have already been completed and are now available from the National Council
of Teachers of Mathematics, Washington, D.C.
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Individualized Instruction in
Elementary Mathematics

JOSEPH I. LIPSON
Learning Research and Development Center
University of Pittsburgh
Pittsburgh, Pennsylvania

FOR the past two years, the Learning Research and Development Center
has been involved in the development of an innovative system of mathe-
matics instruction for the elementary school, Grades K-6. The purpose
of the program is to allow each child to progress through the curriculum
at his own rate and to reach objectives by means of tasks assigned on the
basis of his unique abilities (Bolvin, 1966). The basic components of the
system are (1) a sequential curriculum stated in terms of what the student
is expected to do at each stage, (2) placement and diagnostic tests to
determine what instruction shall take place, and (3) lessons (e.g., work-
page assignments or teacher-directed activities).

METHOD

Population

The program has been in operation in 1964/65, 1965/66, and 1966/67
in the Baldwin-Whitehall school district near Pittsburgh. Approximately
220 children, who live in the immediate neighborhood, are enrolled in
this school. The neighborhood is characterized by sociologists as lower-
middle class, although the area consists exclusively of one- or two-bedroom
single-family dwellings. There are only three managerial-class families
and one truly poor family with children in the school.

* The research and development reported herein was performed pursuant to a contract with
the U.S. Office of Education, under the provisions of the Cooperative Research Program. More
information about this project, and the detailed curriculum, may be obtained by writing the
author.
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Objectives

The list of objectives is categorized by topic, such as addition or
multiplication, and sequenced according to difficulty and prerequisite
conditions. In total there are about 385 objectives, grouped into 85 units
by topic and by level of difficulty. Many objectives are not "terminal
objectives," in the sense that one would like all elementary school grad-
uates to be able to display mastery of them. They are placed in the
curriculum as "subordinate objectives," because it is believed that
eventual mastery of these intermediate tasks is prerequisite to later
mastery of other important mathematical concepts. For example, the
children are expected to be able to say different names for the same
number (e.g., 8 + 5 = 8 + (2 + 3) = (8 + 2) + 3 = 10 + 3 = 13),
in order to prepare them for such .things as the associative law, rather
than as an end in itself.

The objectives conform to what we call "classical new math." Once
the cardinal and ordinal properties of number are abstracted from count-
ing and matching operations with real objects, the laws of arithmetic are
developed and then used to make the more complex operations and
algorithms reasonable, and retraceable to the basic counting operations.
Many programs in current use are built along the same lines.

Tests
Once the objectives were agreed upon, the next step was to evolve a

set of tests and a set of instructional materials. Given the objectives, the

test-writing was a fairly straightforward matter. Three kinds of tests have
been developed under the direction of Dr. Richard Cox: (1) broad scale
placement tests, (2) detailed diagnostic achievement pre- and posttests,
and (3) curriculum-embedded tests. Since these tests are critical to the
individualization procedures, let us consider each briefly.

Each placement test covers an entire topic in arithmetic, e.g., addition.
At each level of difficulty in a given topical area (there are eight levels

of difficulty in the program), test items were written in sufficient number
to test general capabilities at that level. The tests were kept short enough

so that the entire battery of twelve placement tests could be given in one

week. In this way a placement profile for each child in the entire school

can be completed within one week after classes start.
After the placement profile is completed for a student, he is given the

diagnostic pretest for the lowest hierarchical unit in which his placement
test indicates lack of competence. For example, if a student tests at the

D-level of difficulty in all areas except multiplication, and if he indicated
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inadequacy in multiplication at the C-level, he would be given a diag-
nostic pretest in the C-Multiplication unit. If he shows lack of mastery,
instruction will begin through individually assigned instructional tasks.
After he has completed instruction in the objectives of C-Multiplication,
the student would take a posttest in C-Multiplication which is simply an
alternate form of the pretest.

These pre- and posttests for each unit are called diagnostic achieve-
ment tests because each objective in the unit is tested by a sufficient
number of items not only to indicate general mastery, but also to deter-
mine the specific operations which the child cannot perform. Thus, per-
formance on these tests forms the basis for the individual instructional
assignments.

Finally, in order to keep an up-to-date record of each student's progress,
there are curriculum-embedded tests. These tests are given periodically
as the student works through a unit to determine whether the ongoing
instruction is effective and whether the student is able to apply pre-
requisite skills to new instructional tasks.

Materials

The materials were originally obtained from those commercial pro-
grams which seemed to most closely follow our objectives, e.g., GCMP.
However, on the basis of information on student performance the cur-
riculum-development staff, in cooperation with the teachers, has con-
tinually revised and added to this material. Today, 30 percent of the
roughly 4,000 pages in use have been written by the teachers and center
staff.

In preparing and revising the materials, the following sequence of
operations has been followed. Initially, six sets of commercial workbook
materials were bought. Each page was identified with one of the objec-
tives in our program. Then, another set of commercial workbooks was
cut up and all the pages identified with a given objective were assembled.
These pages constitute the material which can be assigned for instruction
on that objective.

In many cases, there were few or no pages from commercial sources for
a given objective. In such instances, instructional materials were pre-
pared by the staff. Once children are entered into the program, the
pre- and posttest results provide continual information as to which mate-
rials are not providing adequate instruction. Whenever this happens,
the teachers and students are interviewed, and the test results are ex-
amined by item in order to decide what the instructional problem is.
After a decision is made, suggested new approaches are prepared and
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tried. Upon successful trial, the new approach is written up and installed
as new additional material, or as replacement material. In this way
thousands of new pages have been written in response to ongoing instruc-
tional problems. More important, as the most obvious problems are
solved, we are able to turn our attention to other dimensions of the
instructional materials. Thus, a system of ongoing revision, in which
it may take as little as a month to go from an identified problem to the
installation of new materials, promises to provide a wide variety of in-
structional approaches that can be used differentially so that an effective
learning path can be found for each student.

Instructional procedures
The instructional procedure revolves around diagnostic testing and

daily assessment and assignment of work for each student. The idea is to
make sure that no student ever receives instruction on an objective which
he has already mastered while, at the same time, his instruction is always
based on skills which he has mastered.

The student is first placement-tested to find the general level in each
area at which he begins to show difficulty. More detailed pretests are
then administered, starting from the lowest unit in the hierarchy until a
unit is encountered in which the student shows lack of mastery of the
objectives. The pretest is then examined to show which operations the
student is unable to perform.

The student at this point goes into his daily work pattern. There is
a large folder for each student with information on both his past per-
formance and his current work assignment. The information contained
in the folder is (1) his placement profile, (2) the record of all his work
from the beginning of the yearunits mastered, pre- and posttest scores,
dates and days to complete each unit, and (3) his assignment sheet for the
current unit of work.

His assignment sheet for the current unit of work includes (a) his
pretest scores broken down with a score for each objective in the unit,
(b) the teacher's decision as to which objectives need work, and (c) the
list of assigned workpages and curriculum-embedded tests along with
the student's score on each assigned page. Those pages the student is
currently working on are also to be found in the folder.

Let us go through a cycle of evaluation, work assignment, and actual
work by the pupil. At the end of a class each child puts his folder in a
box in the classroom. The teacher then evaluates each folder before the
next class. The folders are separated according to whether the student
(1) needs a test for the next period, (2) needs additional workpages as-
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signed, or (3) has sufficient work for the next period. If the student needs
a test, it is a simple matter to have this in the folder before the next
class period. If the student needs a new assignment, the student's imme-
diate past work and his entire record are examined. On the basis of this
information and the teacher's general assessment of the student's ability,
a new work assignment (usually of the order of five pages of work) is
made. If the student needs no additional work, the teacher need only
decide whether the student is making sufficient progress or whether
personal attention is required. Ideally, the student's progress is evaluated
daily, and new assignments are made on the basis of past performance.

At the beginning of the next hour of arithmetic the children get their
folders. For young children (first and second graders), the pages will have
already been put in their folders by a clerk. The older children will
note the pages assigned and get the pages themselves from a storage area
immediately outside their classrooms. Each child then begins to work
on his individual assignment. During the period he may (1) need help,
(2) need work pages scored, (3) need a new assignment. If a student needs
help, the teacher comes to that student and helps him personally; if a
new assignment is needed, the teacher makes the new assignment on the
spot, but this is not a preferred procedure. If the student needs work
pages scared and he is in Grades 1-3, he takes the pages to a clerk to be
scored. If an instructional problem is indicated in the scoring, the stu-
dent is referred to a teacher. If the student is in Grades 4-6, he will
normally score his own work from keys which are kept in loose-leaf note-
books with each page in a plastic protector. The older student must then
exercise judgement as to when the teacher's attention is needed. The
size of the group during individualized instruction is quite flexibleit
has varied from l to 80.

The teachers have planning time for arithmetic at least once a week.
At this time, the teachers, together with a specialist connected with the
center, discuss the progress of the class as a whole and, in turn, the
progress of each child.

The children work on their individual work for four of the five school
days. The fifth day is called "math seminar day." The entire class meets
as a group. The purpose of math seminar day is to (1) discuss topics of
general interest to the entire class, (2) to promote a conversation between
children of different abilities and at different levels of work, and (3) to
cover broad areas of the curriculum in a discussion lecture. In other
words, the math seminar clay should give the student perspective on where
he has been and where he is going, as well as a sense of the relation
between arithmetic and his world of outside school interests.



INDIVIDUALIZED INSTRUCTION / 75

To evaluate the program properly, the pupil-teacher ratio and the
number of clerk assistants should be considered. For 7 classrooms with
about 220 children there are 10 teachers. One of the teachers, not having
a homeroom, is primarily a science teacher, another is primarily a
librarian (who has duties in the individualized reading program), while
the third is a "travelling teacher" who takes on a miety of classroom
duties so as to enable the seven homeroom teachers to attend planning
sessions. In addition, the usual quota of special teachers comes into the
school to conduct classes in art, music, and physical education.

In order to handle the record-keeping and to score the tests, six local
housewives assist as clerks under the direction of a Learning Center staff
member. Some of the work (lone by the clerks is required by the Learning
Center solely for experimental purposes. Perhaps three or four non-
teacher clerks might otherwise be sufficient to carry the extra load in-
volved in an individualized program in a school the size of Oak leaf.
This, of course, does not take into account the many extra services pro-
vided by the center staff or the preparation and revision of instructional
materials and tests.

RESULTS

Achievement

One of the commonest questions asked is "What do you do about the
student who just can't learn something, for example, how to multiply
fractions?" In this case, either the teacher provides tutorial assistance or,
if enough pupils have difficulty, the instructional materials are revised.
The argument is that the student must first master all of the prerequisite
units and that the current work must then build on this foundation. It is
our problem to find the instructional approach which will be successful
for any particular learning problem. As a result, we can point to a floor
of achievement for each class (Cox, 1965). For example, all of the chil-
dren in the sixth grade will have mastered addition with carrying and
simple multiplication with carrying, as well as subtraction with borrow-
ing and simple division. This floor is much higher for each grade this
year than in the first year. During the first year there were sixth-grade
students who, at the beginning of the year, had not mastered the addition
of single digit numbers. At the end of the year these students had mas-
tered about one and one-half years' work by normal standards, but the
floor was still very low. This year each class is advanced almost a year
over the corresponding class last year.

Another question is "How well do your students do as compared to
other students?" Since there is no control group as such, the question
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is answered in two ways. The first way is to point out that, on entranceinto the individualized program, the students did very poorly on the
placement and pretests--they had not mastered our objectives. In noting
this, of course, one must be aware that since our objectives may differ
from those of other programs, it would not be unexpected to find gaps
in student performance when students from another program are in-ducted into our program. This has been borne out this year. Whenever
new students have come into the school they tend to begin work near the
bottom of the class distribution, regardless of their previous grades.

The companion question is "How well do Oakleaf students do on
standard achievement tests?" The answer is interesting. At the end of
the first year of the program, the first and second grade looked outstand-
ing with almost every student ranking above the 80th percentile. The
third and fourth grades looked average while the fifth and sixth grades
had large numbers of students ranking below the 90th percentile.

Many of the upper class students had to go below grade level to make
up deficiencies in their mastery level. For this reason, they were not
seeing the material normally presented to students in the upper grades.
Thus, on the standardized tests they did poorly while at the same time
they were shoring up their understanding of earlier work.

The next question is "How well do last year's sixth graders do in the
seventh grade of the junior high school?" Does the mastery of earlier
objectives compensate for not encountering certain topics? The seventh-
grade mathematics teacher reports that the Oak leaf students seem no
different from his other students from other schools in the district.

While almost every student has been faced with a large remedial load,
the mastery of earlier levels of the individualized curriculum seems to
allow the student to perform satisfactorily when he goes back into a self-
contained classroom. Of course, it remains to be seen how succeeding
classes of students from Oak leaf will perform on various measures of
scholastic ability. The final test will be to try to evaluate how well the
students turn out as adults in a complex and demanding world. Cer-
tainly, ten years or more is a long time to wait for the results of an
experiment. But, again, perhaps we had better begin.

Number of units mastered

The average number of units mastered in the first year was about
12 units per student. You will recall that there are a total of 85 units of
varying length in the program, which encompasses Grades K-7 (we wrote
objectives for the seventh grade in case some of the better students needed
the additional work).
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Some students (not counting the first grade) completed as few as 5 units,
while others completed more than 20 units.

Range of achievement

Placement tests administered in September 1964 have been compared
to those administered in September 1965. They show that the spread of
achievement increased for the second and third grades and decreased for
the fourth, fifth, and sixth grades. This decrease for Grades 4-6 may be
due to the relatively rapid growth of the slower students, who had been
hopelessly lost in the regular syllabus, along with the heavy remedial load
faced by even the better students (Bolvin, 1966).

Summer retention

In view of the encouraging progress made by the children during the
school year 1964/65, the question of retention over the summer became
important. As is typically the case, there was some loss of skill. Some
children did not perform satisfactorily on tests of objectives previously
mastered. On the other hand, these losses tended to disappear by the end
of the placement - testing period, i.e., the placement tests themselves served
as a warm-up for the students, and the students usually passed on the
pretest the objectives that they had mastered during the previous year.
Furthermore, retesting after a three-month period during the school year
showed generally higher scores on the retests than on the original post-
tests given prior to the summer vacation. Our conclusion is that summer
retention is very high in this program, and we attribute this to the
mastery criterion for progression.

Rate and IQ
A very interesting result is the almost complete lack of correlation of

rate of progression in the program with IQ (Yeager and Lindvall, 1966).
Only on units for which we had independent evidence of instructional
difficulty was there a correlation of time to complete a unit with IQ.
Perhaps the simplest interpretation is that IQ is related primarily to the
ability to leap over deficiencies in the instructional process.

Transfer

Since we have a program in which students are pretested before they
receive formal instruction in a unit, we can look at instances where the
students have shown mastery of objectives before they have been formally
introduced (i.e., taught). The three major conclusions are these:
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1. The probability of transfer of old abilities to new objectives is
greater as the student acquires more knowledge of arithmetic.

2. There is a slight correlation of ability to show this type of transfer
with IQ.

3. The objectives which are most difficult to master without formal
instruction are those which involve the algorithms of multiplication with
multi-digit numbers, and long division. It seems that as the progression
of objectives becomes more logical and less dependent on memorized
procedures the probabilky that the student will infer the rules of the
algorithms is greatly increased. We made an attempt to capitalize on
this observation in revising our materials during the summer of 1965,
and preliminary results are encouraging.

Motivation

There are two ways to report on motivation of the students. The first
is that in the individualized program the students leave the classroom
for many reasons and they do not need to ask permission to leave. If the
work were punishing rather than interesting to them, they could avoid
the work very easily. Independent observers have noted some students
who not only do not try to escape, but who hurry back to the classroom.
Second, students who are behavior problems in regular classrooms often
are not as disruptive in an individualized setting where each student
works on his own assignment. Anecdotally, it can be reported both by the
staff and visitors that for most of the children motivation does not seem
to be a problem, especially in the lower grades.

However, some students who seem to be progressing slowly and some
students who perform well in the self-contained classroom may be missing
something in a program in which they spend much of the time working
alone. The trouble is that it is very difficult to tell the difference be-
tween a student who is working slowly for legitimate reasons and a stu-
dent who is experiencing difficulty because of a mismatch between the
student and the program. Certainly, in an individualized program we
must pay attention to this problem.

A major problem is that certain units of instruction, especially at the
earlier levels, require concrete materials for effective instruction. We are
attempting at this time to prepare lessons which involve such materials.
A special problem occurs in providing directions for the use of such
materials to students who cannot read. In order to deal with this problem
we are attempting to use two audiotape devices. One is a tape carixidge
repeater similar to those being sold for automobiles, and the other is a
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device in which the tape is attached to a heavy card which can present
graphic stimuli along with a sound message of about 20 seconds.

Implications

In conclusion, let me state what I feel are two important implications.
First, the greater the variability of student achievement in the class-

room or school, the greater the potential of an individualized system.
Thus, the general approach may be most useful in school districts which
are undergoing integration or which, for other reasons, have large spreads
in student ability. Second, a system of continuous revision of curricular
materials, based on student performance, is a highly desirable way to
avoid obsolescence of instructional materials and to arrive at effective
working materials.
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Engineering Instructional
Sequences for the Mathematics
Classroom

BERT Y. KERSH
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Monmouth, Oregon

THIS report reflects my concern for the classroom teacher and the diffi-
cult instructional problems he must resolve. The teacher needs proce-
dures by which he can systematically arrange learning experiences so that
the learner will attain prescribed instructional objectives efficiently,
economically, and within practical limitations. However, this report is
written from the point of view of an educational researcher concerned
with the development of a science of instructional engineering. Engineers
are people trained to design and to develop structures such as bridges,
and man-machine systems such as computers. They draw heavily upon
principles of physical science and mathematics, but they also have de-
veloped a body of knowledge through research which may be properly
called an engineering science. As educators we too are concerned with
designing and building man-machine systems, and we too are having to
rely increasingly on our own research efforts because the information
we need is not to be found in textbooks of social science.

It is frequently said that the classroom teacher will never be replaced
by programs of self-instruction. Rather, he will be freed to guide the
learning of his students in ways that only a human being can. Implicit
in this statement is the assumption that some learning processes cannot
be "automated" or learned independently. Learning processes which
many say cannot be automated include such complex intellectual proc-

* Portions of this report were selected from a previous publication in R. Glaser, Teaching
Machine. and Programmed Learning II, Data and Direction. (Washington. D.C.: National
Education Association, 1966).
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esses as reasoning, problem solving, and "learning how to learn." The
behavioral components of such complex processes are elusive, so it is
reasonable to believe they are best learned by interacting with another
person who has mastered them or by wrestling with difficult problems
under supervision.

The thesis of this paper is not that such complex learnings are adapt-
able to self-instructional programming techniques, but rather that the
principles and techniques which underlie self-instructional programming
can be employed equally as well in the development of suitable class-
room instructional materials and procedures. The result may be very
similar in appearance to classroom procedures which are presently em-
ployed by teachers, but the resemblance may end there. There is no
greater similarity between conventional classroom techniques and pro-
grammed classroom techniques than there is between conventional self-
study materials and programmed self-instructional materials.

INSTRUCTIONAL DESIGN REQUIREMENTS

Hereafter, instructional objectives will be classified in two categories:
(1) as being amenable to "automatic" or self-instruction and (2) as being
most readily attained through "human" instruction.

Instructional objectives which are most readily attained through human
instruction may be distinguished from those which are amenable to auto-
matic or self-instruction by identifying their instructional requirements.
For example, assistance from another person may be required in the
attainment of an instructional objective for any one or more of the
following reasons:

1. The required behavior cannot be identified by machine processes
presently available, or by the learner himself without previous instruc-
tion.

2. The required behavior cannot be reliably elicited except through
direct or indirect intercommunication with another person who is capa-
ble of identifying the required behavior once it has been elicited.

3. The learner cannot determine that he is making progress toward
the instructional objective by independently comparing his own behavior
against a behavioral standard or model.

Usually instructional objectives which involve the attainment of factual
knowledge, concepts, principles, or even some psychomotor skills will be
amenable to automatic or self-instruction. Objectives which are most
readily attained through human instruction will usually involve patterns
of behavior occurring at unpredictable intervals and reflecting "media-
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tional" processes. This second class of objectives probably includes what
Duncker (1945) calls formulating or restructuring problems during the
problem-solving process, and what might be identified as hypothesis
formation or "retroductive reasoning" (see Hanson, 1958, p. 85). Of
course, involved in such complex behaviors as reformulating problems
and forming hypotheses are many other behaviors (or behavioral tend-
encies) which have been variously described as "shifting," "searching
for patterns," and "being flexible."

However, public school teachers today (10 not often limit themselves
to teaching one thing at a time. If they wish to teach some computational
skill in arithmetic, for instance, they also concern themselves with such
by-products of learning as the attitudes of their students toward arith-
metic; if they wish to teach theory of combustion, they are also con-
cerned with "understanding scientific method" and "skill in problem
solving." Even if teachers were satisfied to deal with a single objective
at a time, psychologists would remind them that they must not only
consider the objective from the standpoint of immediate learning, but
that they should give consideration also to the maintenance and subse-
quent use (transfer) of the new learning. It is one thing to predict that
the learner will be able to say something or do something that he is
presently unable to do after completing the instruction, and something
else to say that the learner will want to continue using it and will use
it to good advantage in a great variety of appropriate situations. A single
unit of instruction may include some objectives which can be taught
through automatic or self-instructional techniques, and other objectives
which may call for human instruction. When this is the case the instruc-
tion will be said to involve multiple or compounded objectives.

While existing procedures may be adequate for programming objec-
tives one at a time, in the experience of the present writer they have not
been adaptable to programming multiple or compounded objectives.
In dealing with compounded objectives, the programmer must concern
himself with two or more processes which will be operating at once, inabout the same fashion that a composer of music must in developing
a symphonic score.

A new procedure for planning classroom instruction is needed which
will incorporate the techniques employed in developing self-instructional
programs in the design and development of procedures for attaining
compounded instructional objectives. It should be possible for an expert
in human learning and a subject matter specialist to prepare, in advance,
an outline of the learning process, just as an engineer does in designing,on paper, the structures and systems he builds. Then, from these "instruc-
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tional designs," it should be possible for programmers and materials
development specialists in our schools and colleges to actually "build"
the instructional systems, try them out, and, if necessary, send them
"back to the drawing board" to be modified.

The essential characteristics of such a procedure would appear to be
the following:

1. It should provide a notation and charting technique with which
the instructor can prepare in advance a detailed outline of the learning
experience in terms of practice and reinforcement schedules, branching
criteria, and related characteristics, without attending to the specifics of
frame writing.

2. It should outline a precedure for preparing a basic instructional
program aimed at objectives which are amenable to automated instruc-
tion, and then for "weaving in" programs involving human instruction,
or vice versa. In this way, different processes of learning could be em-
ployed simultaneously in a single program, or a single program could be
systematically altered for purposes of research and development.

3. The methodology should enable the instructor to deal with prob-
lems of program design separately from frame writing and materials
development so that the latter can be accomplished by different indi-
viduals concurrently.

AN EXAMPLE: THE TRAC PROCEDURE

One example of a methodology which meets the requirements specified
above is referred to as the TRAC procedure simply because it was de-
veloped in connection with the Teaching Research Automated Class-
room, called "TRAC," located on the campus of Oregon College of
Education. The instructional procedure was designed for use in the
'TRAC facility but it might also be adapted for use in other semi-auto-
matic instructional facilities.

By way of illustrating this procedure, consider a particular instruc-
tional sequence which was designed for research on discovery learning
(Kersh, 1964). We wanted to test an hypothesis concerning learning by
a process of discovery, defined as a specific instructional method. The
design of the instructional sequence was complicated because we had
more than one objective. Our "subject matter" objective was to teach
the distributive law of arithmetic to capable fifth graders. In addition,
our objectives were to teach the fifth graders to "discover" principles
from concrete examples and to stimulate their interest in what they were
learning.
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As might be expected, a number of different criterion measures were
employed. One consisted of a set of six "open sentences" (using the
Illinois Program terminology), some of which correctly represented the
distributive pattern and others which did not. The learner was asked
to mark each example which would always produce a true statement
when the "frames" were replaced with numerals. This test was used as
a standard of learning for purposes of instruction. Instruction was con-
tinued, in other words, until each learner could complete the test with
no more than one error.

A second standard was developed to determine whether or not each
learner could employ certain prescribed behaviors which we called
"searching behaviors." The instructors were trained to use an observa-
tion schedule to identify specific student behaviors identified as "bearch-
ing for patterns," "checking for exceptions to a possible pattern," "check-
ing to see if statements are true or false," and "employing frames." The
procedure was to test each learner individually within 24 hours after he
had attained the first instructional objective. The test consisted of three
questions, each of which was designed to elicit a specific class of searching
behaviors. In the first question, for example, the learner was asked to
examine a set of four examples of a general law of arithmetic and to
determine whether or not they were all examples of the same or of dif-
ferent laws. If his answer was yes, he was asked to write the general law
using the notation of the Illinois Program. As each learner attempted
to answer the questions, he was instructed to "think out loud" or to
indicate what he was thinking by his scratch work.

As a test of "interest" an attempt was made to ascertain whether or
not each learner spontaneously practiced with his new knowledge out-
side of class without instructions to do so. It was reasoned that the
learner who actually put into practice what he was learning without
being told to do so was manifesting interest in the task. We did not have
a very precise measure of such "interest behavior," and had to rely on
information obtained from each learner through interviews.

Finally, as a test of recall, a paper-pencil test consisting of problems
similar to the ones used during instruction was administered to each
subject within eight weeks following instruction.

Our task was to develop an instructional sequence for the classroom
that would accomplish all of these objectives. The product of our labors
was to be evaluated in part by simply teaching several groups of fifth
graders and determining that their performance was acceptable by the
standards we have previously established. We began our efforts at the
drawing board, just as you would expect an engineering scientist to do.
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In a very real sense of the word, we "designed" the entire instructional
sequence, calling on our knowledge of the psychology of learning, on
findings from previous research efforts, and on techniques of instruction
which had been developed by others. The procedures we employed are
described very briefly below.

Preparation of a hierarchy of subordinate facts and processes

According to Gagne (1962), tasks to be learned in the acquisition of
knowledge may be identified by working backwards from the final task.
The question is asked, "What would an individual have to know in
order to perform this task successfully?" The answer to this question
reveals subordinate knowledge which the individual must know in order
to obtain the ultimate objective. The subordinate knowledge is pre-
sumably simpler and probably more general. This subordinate knowledge
is again subjected to the question, "What does one have to know in order
to achieve this?" And still more subordinate knowledge is revealed in
the answer.

By continuing this questioning procedure and working backwards
from the ultimate objective, a hierarchy of subordinate knowledge is
established. In the end, the final content objective is seen to rest on a
framework of subordinate knowledge which becomes increasingly simpler
and more general.

The TRAC procedure differs somewhat in that both knowledge (the
subject matter objective) and the complex behavioral objectives (e.g.,
how to "search for patterns" and to "check for exceptions") are treated
as "ultimate" objectives. The hierarchy of knowledge to be acquired is
identified by asking what the learner must know (after Gagne), and the
hierarchy of complex behaviors is identified by asking what the learner
must do in order to acquire both the knowledge and the complex be-
havior. [Although Gagne does use the word "know" rather than "do,"
he uses this term to indicate what a learner must be able to do in order
to be able to do. The concern here is with how the learner acquires higher
order forms of behavior.]

In the present example, the hierarchy of knowledge that was actually
developed contained seventeen separate subordinate facts, called subfacts,
to be learned. These subfacts were arranged in a logical sequence and
diagrammed so that a programmer could readily determine the sequence
of learning experiences for the lesson.

The complex behavioral objectives, on the other hand, were considered
separately. Also, they usually were diagrammed separately. Figure 1, for
example, illustrates the "hierarchy" (actually a set of programming sped-
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Subfacts 1.16
Constituting the
knowledge hier-
archy

18. During learn-
ing, employ sub-
facts in discover-
ing higher level
tasks: (a) repeatedly

osjecnve 4.
Transfer the same
"discovery processes"
to new learning tasks

17. These same
facts and proc-
esses can be used
elsewhere

OBJECTIVE 3.
Use the Distributive

out instructions to
do so

Law after the formal
learning period with-

19. ... (b) with
knowledge of re-
sults

20. ... (c) with
instructions
gradually with-
drawn

21. ... (d) with
intermittent ap-
proval for search-
ing behavior re-
gardless of success

FIGURE 1.-EXAMPLE HIERARCHY OF COMPLEX BEHAVIORAL OBJECTIVES

fications) which specified what the learner should "do" in order to learn
to use the distributive principle and to transfer those techniques called
"searching behaviors" in learning other mathematical principles. In
Figure 1, the box labeled "Objective 3" reveals that one requirement of
the instructional unit is that the learner generate enough interest in the
distributive law to use it after the formal learning period, without in-
structions to do so. What must the learner do to develop this interest?
The answer is written in the four smaller boxes labeled 18, 19, 20, and
21. These subordinate process statements specify that the learner should
employ subordinate knowledge in discovering higher-level tasks re-
peatedly; with the knowledge of results; on a schedule in which the
teacher's instructions are gradually withdrawn; and with approval pro-
vided intermittently, regardless of the learner's success or failure.

Now locate Objective 4, the "transfer of discovery process" objective
in the same figure. It is combined with the "knowledge" objectives (not
shown). Clearly it is a higher level of learning than the knowledge
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objectives, and probably should be classed as a "learning set," but it
rests on a framework of specific knowledge as indicated. The "discovery
processes" employed by the learners are not precisely stated in Figure 1,
primarily because the behaviors involved cannot be adequately described
in general terms. Instead, the instructors learned to identify examples
of the complex behavior in the context of standardized instructional and
test situations. For example, "frames" (e.g., 0, A, 0) were used in the
notation instead of more conventional algebraic symbols (e.g., x, y, z)
in writing abstract mathematical expressions. All learners were taught
how to use frames. However, "using frames" also referred to a specific
and somewhat complex behavior which was classified as a "discovery
process." When learning by discovery, a student might have been given
a set of mathematical statements such as the following:

3 + 3 = 2 X 3.
5 + 5 = 2 X 5.
88=2X8.

Then the student might be asked to determine whether or not each is
an example of the same general law. If while trying to determine the
correct answer the learner was observed to use frames in an effort to
reduce the three examples to a single abstract expression (e.g., A + A
2 x A) he was said to be "using frames" as a discovery process.

Preparation of flow charts for each subordinate fact and process
Next, the instructional program was designed, using flow charts. The

flow charts were prepared for each of the subordinate facts and processes.

Explain reason
for order of
operations rule.
Give examples,
then cite rule

New explanation
with new examples

FIGURE 2.-14.A. FOR SURFACI 9, "Comm.; lioN: Mu Immix FIRST, 'I IIEN Ann"



When both +
and X are involved,

more than one quan-
9 thy may produce a

true statement,
unless we have
a ride.

How many got
Answer 1?
Answer 2?

How many got
Answer 1?
Answer 2?

How many think
more than one
quantity will
make it true?

9.1

Ask Volunteer 1 to
show class how to
get Answer 1;
Volunteer 2.

... Answer 2.

3 (1.0+)
More

than one
answer?

.95-i-

< .95 5 +
new
e.g.

FIGURE 3.-PLAN 11 IFOR SURFACT 9, "CovviorrioN: N1U1.11111X FIR', THEN ADD"
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A special notation was developed to indicate specific teaching operations
so that the detailed instructions and materials could be completed by
another person independently, without consultation with the person
preparing the flow charts. For example, instructions to the learner (as
if from a teacher) were abbreviated and written in !spare boxes. When-
ever there were problems or examples to be worked by the learners, they
were indicated in diamond-shaped boxes. Additional notation such as
"3(1.0 -1-)" was used to indicate that the problem-solving exercise was to
be continued until every member of the class achieved three problems
in succession correctly. A less stringent criterion would be indicated by
the notation, "3(.75 -1-)."

Using the special notation, it was possible to outline for the pro-
grammer the essential characteristics of the instructional program in
sufficient detail for him to carry on independently. The person doing
the flow charting operated with the knowledge that he could alter the
flow chart quite simply according to the subordinate process require-
ments after he had prepared the outlines for each of the subordinate
facts.

As example, Figures 2 and 3 illustrate two different plans for teach-
ing a subordinate objective which can be learned either by discovery
or by some other method. Subfact 9 is the conventional order of opera-
tions (multiply first, then add). Typically, students were not required
to "discover" a convention; however, it was decided in this case that the
learners shouki have the experience of "discovering" the need for such
a convention before being told the convention.

Plan A for Subfact 9 (which is not the discovery plan) is outlined in
Figure 2. The first box in the flow chart indicates that the teacher should
first explain to the student the reason for the order of operations rule,
then give examples, and finally cite the rule. Next, the diamond indicates
that a test should be given which continues until all learners answer
three problems in a row correctly. Having reached the criterion, the
flow chart indicates that the program should continue to the next step
in learning, designated as Subfact 10. If, during the test, the criterion
is not achieved after five problems, the program branches to a new
explanation of the rule, using new examples, followed by a retest.

The outline for Plan B in Figure 3 (the discovery plan) appears very
much more complicated. Starting with the hexagon after the circle num-
bered 9, the flow chart indicates that the program should be written in
such a way that the students discover the need for a rule. The diamonds
following the hexagon indicate in more detail how this is to be done.
As is indicated, the learners are asked to complete the open sentence
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involving both multiplication and addition, with the expectation that
two correct answers are possible without a rule regarding the order of
operations. The fact that either one of the two answers is considered
correct is communicated to the learners until the learners become aware
that "something is wrong." At about this point (Circle 9.1 in the flow
chart), the flow chart indicates that the teacher should ask for a volunteer
or two to explain to the class how they obtained their particular "correct"
answer. Then the class is asked if they believe that there is more than
one possible answer. If more than 95 percent answer correctly (.95 +),
the teacher explains that mathematicians have agreed to multiply first
and then to add. If less than 95 percent of the class answer correctly, the
procedure of giving examples and asking for volunteers to explain their
procedure is continued until such time as the criterion .95 + is achieved.
Finally, the flow chart ends with a test of the ability of the students touse the rule. The test has a criterion of "3(1.)" after which the programcontinues to the next step, Subfact 10.

Presumably, the flow chart writer could modify the learning experi-ence in yet other ways. The appealing feature of this methodology isthat it indicates rather precisely what changes are to be made. This is
a happy feature from the experimental standpoint. It also indicates howchanges can be made with relative ease after the fashion of an "executive
routine" in a computer program.

This flow-charting procedure was continued until, finally, at the draw-
ing board level, we had a very detailed notion of the instructional proce-dure and also regarding what might be called the "scope and sequence"
of the instructional unit.

Development of specific instructions and materials
The next step was to develop the actual instructional materials re-quired in the teaching of the so-called subordinate objectives. We treated

these separately in the beginning, without worrying too much about the
ultimate objectives. This is an important point, because long-term
instructional sequences .are too complex to be treated as a whole Asinstructional materials were completed for each subordinate objective,they were tried out with small groups of learners and were revised ac-cording to the results. Essentially we were evaluating each segment ofthe instructional sequence separately. Often, we found out that it wasnecessary to take the preplanned sequence back to the drawing board
and to revise it in accordance with our tryout data.

In the end, we had a set of instructional materials together with de-tailed instructions for employing them which was developed on the basis



ENGINEERING INSTRUCTIONAL SEQUENCES / 91

of preliminary trials with several groups of fifth graders, the last of which
had attained the ultimate objectives to our satisfaction.

FINAL EVALUATION

Normally, we have taken steps to ensure that the procedure could be

used successfully in the classroom without special laboratory media.
However, this particular sequence was designed for research purposes.
So our next concern was to build a parallel instructional sequence, iden-
tical in every respect to the first, except that the particular instructional
variable with which we were concerned was eliminated. When the
second course sequence was completed, we had the ingredients for an
experiment designed to test our theoretical "hunch" concerning the
discovery method of teaching. By comparing one specially designed
instructional sequence against the other, under controlled laboratory
conditions, we were able to provide evidence to support (actually, in
this case, to refute) our hypothesis. There is no way that I know of to
do this except by making such comparisons. This is the method by
which we solve puzzles of science. However, the hypothesis-testing
paradigm is not necessary, or even very often appropriate, for evaluating
the effectiveness of courses or course sequences which constitute the
curriculum.

The particular version of the instructional sequence which we had
designed and put together took from 20 to 23 class sessions lasting ap-
proximately 30 to 50 minutes each, which is admittedly not particularly
long. However, the procedures we had followed in instructional design,
construction, and evaluation are just as applicable to sequences lasting
over periods of months and years. There is the added implication for
long-range instructional sequences that even the most carefully planned
sequences may fall short of expectations in the final analysis. It may be
quite possible to evaluate small segments of a curriculum, for example,
from the standpoint of student achievement, but even with instructional
units as short as the one just described, it is very difficult to ascertain
precisely where the program fell short when considered in its entirety.
It is with such long-range instructional sequences that it may become
increasingly important that we employ what may be called "second
order criteria" involving logical and psychological considerations of the
instructional design itself. To determine the effectiveness of an instruc-
tional sequence in meeting these second order criteria it is necessary
either for experimental subjects to complete the entire instructional
sequence or to make use of existing records of student groups who may
have completed the entire instructional sequence in the past.
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IX

Teaching, Discovery, and the
Problems of Transfer of Training
in Mathematics

JERRY P. BECKER
GORDON K. McLEOD
Stanford University
Stanford, California

LEARNING transfer (or transfer of training) is an important topic in
many branches of psychology. The topic receives extensive coverage in
texts of general experimental psychology and in treatments of learning.
As one may expect, it is especially important in the psychology of human
learning and in educational psychology.

In its broader sense, something like transfer of learning is basic to the
whole notion of schooling. Those who support schools, like those who
conduct them, must assume that the thing being taught at this particular
moment will have some value at a later moment and in a somewhat
different situation. For example, we assume that today's lesson in geom-
etry will surely help in tomorrow's lesson in the same subject, that it may
be of use in later study of analytic geometry, and, more ambitiously, that
it may induce an appreciation of logic so profoundly that it affects the
student's entire way of life. Clearly, without some degree of reliance on
transfer, teaching would be hopelessly specific. It would be necessary to
train each student in every specific situation he might ever encounter.

We believe most teachers of mathematics make the assumption that
the skills and understanding which they endeavor to impart to their
students will influence the behavior of the students beyond the classroom
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setting in which the learning takes place. We expect specific learning in
mathematics to transfer to ensuing situations both inside and outside
school. When one takes account of the evidence, however, our assump-
tion is not necessarily borne out in practice. This is, indeed, discouraging
to teachers of mathematics. But what is more discouraging is the fact that
students seem to have difficulty in effecting learning transfer from one
situation to another even within the mathematics curriculum itself.

It seems reasonable to inquire into the degree of validity of the con-
jecture that there is a broad transfer power in the study of mathematics.
For example, it is commonly stated that a significant outcome of the study
of mathematics is the ability to think more logically. What we propose
to ask as educators in mathematics is whether psychological theory can
give us a basis for a hopeful view of the problem of learning transfer.
This is, in fact, the objective of this paper. With psychological theory
as our guide, we propose to consider the problem of structuring the
learning situation in mathematics so that maximum transfer of learning
can occur.

DEFINITIONS AND MODEL OF TRANSFER

It seems appropriate to inquire about a definition of transfer at this
point. It turns out that few people have actually defined the term. Con-
sequently, we have concluded that ,transfer of learning can be thought of
as a broad, inclusive phenomenon. Let us consider a few examples.

"Learning how to learn" to solve a class of problems is considered to
involve an important type of transfer. Mathematics teachers consider the
application of logical processes of analysis learned in geometry to non-
mathematical situations to be a very desirable example of transfer.
Experimenters in psychology consider as evidence of transfer the applica-
tion of a principle in a test situation, where the test situation may differ
only slightly from the training session in which the principle was learned.
We submit that every learning situation involves transfer to some extent,
since a learner brings his past learning experiences and attitudes to any
new learning situation.

We think it would be useful to examine a model suggested by Ferguson
(1956) in order to bring into focus the consideration of the problem of
transfer. His transfer model, in its simplest form, is a mathematical func-
tion of three variables. If y is the dependent variable representing a
measure of performance on some particular task, then y = f(x, tx, tm),
where x is a measure of performance on another task, while ty and ta, rep-
resent the amount of practice on each of the two tasks. Here x is also a
function of t,v; that is, x = 0 (ti), so that y = f(0(tx), Fergu-
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son (1956) used this model to describe a formulation of the concept of
transfer and we propose to consider it in more detail.

When two tasks are the same, so that the measures of performance are
identical, the expression for y reduces to a function of one variable, since
x y implies that tx = ty. Therefore we find y = g(ty). Clearly, this
expression relates a measure of performance on a task to a measure of the
amount of practice on the task and the result is a representation of the
traditional learning curve. Thus, Ferguson's model suggests that learning
is a special case of the more general phenomenon of transfer.

Looking at it another way, if no practice is allowed on the task repre-
sented by y, then y reduces to a function of two variables so that
y = h(x, ti). This case represents a transfer experiment where measure-
ment is made of the effect of practicing one task upon the performance
of another nonpracticed task.

Consideration of this model enables one to obtain a broad, general
view of the problem of transfer. Further, it suggests the following defini-
tion: "Transfer of learning occurs whenever the existence of a previously
established habit has an influence on the acquisition, performance, or
relearning of a second habit" (McGeoch and Irion, 1952, p. 299).

There are many phenomena which are consequences of learning;
among them are skills and understandings. In light of Ferguson's model,
we will focus attention on these in this paper. Therefore, the term
"habits" as used in the definition above will refer to skills and understand-
ings in subsequent pages. It seems clear that an implication of the
definition and the model is that transfer can be positive or negative.

THEORIES OF TRANSFER

Before proceeding to a consideration of transfer of learning in the
educational setting, we think it is appropriate to examine briefly some
general theories which deal with the mechanism of transfer. Man's first
theory of transfer proclaimed that formal study in school subjects was
the best way to secure the ability to apply sound judgment and logical
reasoning to problems outside of school. It held that the more difficult
the formal study, the more exercise for the mind and the better its train-
ing for transfer. For example, this theory held that the development of
logical thinking in geometry would transfer automatically to sound
logical reasoning in social studies.

The investigations of Thorndike and Woodworth (1901) at the turn of
the century proved this theory inaccurate. In a series of experiments, the
influence of special training in estimating magnitudes (lengths, areas,
etc.) on the ability to estimate magnitudes of a more general nature was
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tested. The conclusion was that performance on the more general tests
was not significantly influenced by the special training.

Later Thorndike (Thorndike and Woodworth, 1901) formulated his
doctrine of identical elements to explain the phenomenon of transfer.
It stated that transfer occurs only when identical elements are involved
in the influencing and influenced function. McGeoch and Irion (1952,
p. 343) claimed that by two identical elements. Thorndike seemed to
mean any clearly discriminable aspect of two activities which is the same
in each. It was further suggested by McGeoch and Irion (1952) that
Thorndike wrote as if he intended the theory to cover more than strict
identity. In the light of Ferguson's model, Thorndike's view would claim
that performance on any task is largely reduced to the case y = f(tv). In
words, practice must be specific to the performance being sought. Other
writers have concluded that Thorndike's view on transfer was an ex-
tremely pessimistic one.

Travers (1963, p. 193) states the opinion that Thorndike's theory is
thought of today as an oversimplification of the phenomenon of transfer.
The famous experiment of Judd suggested the theory of generalization
which has come to supplement Thorndike's theory. Modern day Gestalt
psychologists talk about essentially the same phenomenon in terms of
meaningful organization of learning or the reorganization of experience.

It has been demonstrated that this kind of learning leads to transfer
power. Bruner states ". . . massive general transfer can be achieved by
appropriate learning, even to the degree that learning properly under
optimum conditions leads one to 'learn how to learn' " (1962, p. 6). We
propose to devote much of the remainder of this paper to dealing with
the following two questions: What is appropriate learning for transfer?
What might be considered optimum conditions for such learning? We
will not confine our discussion to the area of mathematics, although what
is discussed is certainly relevant to learning transfer in mathematics.

THE ROLE OF PRINCIPLES

Judd (1908) conducted an experiment on maximizing transfer of
learning. This experiment consisted of throwing darts at a submerged
target. Judd reached the conclusion that the best way to guarantee
transfer is to teach principles. However, he believed that a principle
must be exercised in practice while it is being learned, since he found his
experimental group, which had been supplied with the principle of re-
fraction, to be not significantly better than the control group in the first
test; therefore, he contended that knowing the principle was not a sub-
stitute for direct experience. However, having organized their experiences
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using the principle as a frame, the subjects in the experimental group
readily worked out necessary adjustments in succeeding tests with the
target at different depths. Judd (1908) also found that experiences alone
led to confusion on succeeding tests. The control group was not able to
adjust readily to changes in depth.

It is not possible to critically evaluate the research design of Judd's
experiment since many details arc not available. We do know that the
groups of boys were equated on the basis of the teacher's judgments of
their brightness; however, such things as the number of subjects, the
apparatus details, the procedure used in teaching the principle to the
experimental group, and the quantitative results are not reported. For
these reasons, it is significant to mention that Hendrickson and Schroeder
(1941) conducted an experiment in which they modified Judd's experi-
ment so that the skill being tested was shooting an air gun at a submerged
target. Their conclusions confirmed the main result of Judd, although
the differences between the three groups in the study were not large.

The transfer measured in Judd's experiment can be represented in
terms of Ferguson's model. The performance of the control group in
throwing darts at the target, submerged to a particular depth, may have
been dependent only on the group's practice at that depth. If we let this
performance be represented by y,. and let the amount of practice at this
depth be to, then y, = 11(4). Thus, this situation reduces to the usual
learning curve. However, the performance of the experimental group
was dependent not only on practice at a particular depth, but also on
knowledge of the principle of refraction and on practice in its application
at a previous depth. Thus, for the experimental group, if we let x rep-
resent a measure of knowledge of the principle and let tz represent the
amount of practice in applying this knowledge, then y = f2(x, t, ti).

There is another way of looking at the transfer involved in Judd's
experiment, and that is to attempt to provide an explanation for the
poor performance of the control group in terms of negative transfer. We
could conjecture that training at the first depth interfered with per-
formance at the second depth. If we let w represent a measure of
performance at the first depth, then, for the control group, y, = gi(w, tw,
try Now in order to represent the performance of the experimental
group, it is necessary to extend the model so that it is a function of five
variables instead of three. We could conjecture that knowledge of the
principle and practice with it in some way mediated the performance of
the experimental group at the first depth so that the transfer effect of that
experience is positive. Thus, we get that ye = g2(x, t,, w, tw, to), where, as
before, x represents a measure of knowledge of the principle.
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THE ROLE or DISCOVERY

Let us again refer to the study clone by Hendrickson and Schroeder
(1941). A significant observation reported in that study was the apparent
importance of discovery of the solution by individual subjects. Knowledge
of the refraction principle seemed to hasten this discovery for the subjects
in the experimental group. Therefore, we see that discovery enters the
picture in transfer of learning.

Ervin (1960) used third- and fourth-grade pupils to investigate trans-
fer effects of learning a verbal generalization. She led pupils to discover
the principle of reflection by means of experiments in ejecting a marble
from a tube against a barrier. One experimental group worked out the
verbal principle from its observations while the other was given non-
verbal aid in observing relevant facts. All instruction was individual.
While there were no overall differences between the two experimental
groups and a control group in performance on the transfer criteria, one
test item was a key one. Here a Ilashlight was to be aimed upwards towards
a mirror so that it would reflect on a target. The mirror was tipped
sharply, and the target was low, near the flashlight. The usual error
is to aim the flashlight too high, thus sending the beam up to the ceiling
(Ervin, 1960, p. 547). On other test items, subjects could achieve success
by aiming at a point somewhere between the vertical projections of the
target and Ilashlight. But this doesn't work when the mirror is tipped
steeply; only subjects who adjusted the incidence angle could be correct.
Striking differences were found on this transfer item, with superior per-
formance for those subjects who arrived at the correct verbal rule during
training. Finally, it should be noted that both groups in the study had
been guided toward discovery.

In another study of discovery, Gagne and Brown (1961) prepared pro-
grams to instruct ninth- and tenth-grade boys in deriving formulas for
summing various number series [e.g., 1 + 3 + 5 . . . (2n I)].
Then, instead of testing transfer by summing series of the same type, they
tested ability to develop new formulas for summing new series (e.g., l -}-

S -.1- 9 -1- . . . 3.1-1). They constructed three programs: The first (R
and E) gave the rule (formula) for finding the sum of n terms of each
training series and taught subjects to apply it to examples; a second (GD)
divided the task into forty steps of guided discovery, each step requiring
an analysis of a small part of the series; finally, a third (D) demanded dis-
covery of the formula and provided hints as needed. All groups showed
improvement from one training series to another. The transfer test
required subjects to find rules for new series utilizing a few hints as
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needed. Guided discovery was found to be superior to each of the other
groups. It should be mentioned that the tasks selected by Gagne and

Brown appear to be well chosen. Not only are they representative of series

problems, but, insofar as one task can be, they are representative of all
mathematics (Cronbach, I965b, p. 4).

Gagne (1959) and Cronbach (1965a) report that claims for discovery,

as a method of learning, have had widespread influence on mathematics
educators. At the same time, they state that the answer to the question

"What kind of training will make a student capable of discovery?" has

not been given. Consequently, Gagne and Cronbach and others have
called for more research in this area.

Even so, mathematics educators should be aware of the attention that
has been given to the effect that "discovery" of principles has upon trans-
fer of learning. In a study of the effect of external direction during learn-

ing on the transfer of principles, Kittell (1957) used 132 sixth-grade
students, divided into three experimental groups, who were trained by
different methods to select one word that did not belong in a set of five
given words. During the training process, the subjects in the "minimum"
treatment group were told when correct responses were made, but they

were required to discover principles independent of other help. The
appropriate principle was briefly stated in general terms for the "inter-
mediate" treatment group for each task, but they had to discover how

to apply it in each case. The "maximum" treatment group was given

not only the principles but also correct responses. The design of the
research was of the following type:

01 T1 0, 02 03
01 T2 01 02 0
01 T3 01 03 03

where Ti (1 I, 2, 3) represent the treatments and Of (i = I, 2, 3)
represent the observations. (In this experiment, the observations which
preceded and immediately followed the treatments were made with the

same test instrument.)
The second observation measured the application of principles, learned

during the training period, to new items. The third observation measured

the ability to discover and use new unpracticed principles. Kittell (1957)
concluded that superiority of the "intermediate" group, which received

a certain amount of direction in discovering the principles, was estab-

lished at a statistically significant level for both observations. At the
same time, the "maximum" help group was also significantly superior
to the group which derived principles independently.

The technique utilized by Kittell (1957) to train his "intermediate"
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group could be thought of as a type of learning in which principles are
taught by examples. Katona (1940) in several interesting transfer experi-
ments compared the effectiveness of learning by means of examples with
learning by rote. He thought of the former as meaningful learning and
the latter as senseless learning. His conclusions indicated superior results
for the method of meaningful learning when transfer of learning was
tested. Also, there was substantial transfer for the groups that learned
by examples and practically none for the groups that memorized.

Although most educators would not find Katona's conclusions sur-
prising, his experiments were weak in several respects. For example, he
used a very small number of tasks and questionable statistical controls.
According to Melton (1941), Katona's major results were unreliable. He
observed that "understanding" and "transfer" were not independently
defined words; hence, the hypothesis that learning by understanding leads
to greater transfer was not actually tested. Melton further suggests that
a more defensible explanation of the results might be to attribute the
difference in performance to a shift from a rote-learning attitude to a
problem-solving attitude.

Melton's conjecture is supported by the results of an experiment by
Kersh (1958) in which the effects of independent discovery, as compared
to directed discovery, of a generalization were tested. He concluded that
"the superiority of the independent discovery procedure may be better
explained in terms of motivation than in terms of understanding" (Kersh,
p. 290). He goes on to say that the independent learner is more likely to
become motivated to continue the learning process or to continue prac-
tising a task after the learning period. However, in a later study, Kersh
(1964) found that neither of the discovery groups employed the learned
material more frequently after instruction than did the third group in
the experiment. This suggests that his previous findings may be unique
to the particular instructional setting or to the learning materials used
in the earlier study.

The same contrast in approaches to the learning of mathematics is
emphasized in a book by Bruner (1960). He points out that an overly
passive aprfoach to learning creates a situation in which the learner
expects o :ter to come from the outside, that is, from the material which
is presented. Mathematical reasoning, however, requires unmasking, sim-
plification, reordering, etc. Therefore, the role of attitudes is recognized
here as important in learning and hence to transfer of learning.

Hilgard, Irvine, and Whipple (1953) repeated and extended Katona's
card trick experiment using sixty high school students in an attempt to
counter Melton's (1941) criticisms of poor research design. The conclu-
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sions supported the hypothesis that transfer to new related tasks is greater
after learning by understanding than after learning by rote. However,
these authors felt that "the failures of the understanding group were
more impressive than their successes, in view of the logical advantages
inherent in the methods they were taught" (1953, p. 290). Consequently,
a second study was undertaken in an attempt to reduce the number of
errors (Hilgard, Irvine, and Whipple, 1954). Subjects in the under-
standing group were taught by five different methods, but the overall
differences in success among the methods were slight. Hence the com-
plex nature of transfer was brought into focus.

Wittrock (1963) used college students to study the effect of different
schedules of help and statement of rules in learning on the following
criteria: initial learning, retention, transfer to new examples. Wittrock's
results indicate that explicit and detailed direction appear to be most
effective and efficient when the criterion is initial learning. An "inter-
mediate" amount of direction, however, appears to produce the best
results when retention and transfer are the criteria.

Craig (195(i) also used college students to test the effect of giving the
rule and providing help on the criteria of initial k ;arning, retention, and
discovery of new principles. The group which was given the principle
was superior in the number of rules learned initially and retained many
more items after thirty-one (lays. A test for discovery of new principles,
however, did not reveal reliable differences.

A study by Haslerud and Meyers (1958) also compared the transfer
power of a principle which was derived by the subject with the transfer
power of a principle presented by the experimenter in the form of a
statement and an example. The researchers concluded that independently
derived principles transferred more readily than given principles. How-
ever, other researchers have questioned the interpretation of the results
and the conclusions drawn by Haslerud and Meyers (see Cronbach, I965b,
pp. 6.7; Wittrock, 1965, p. 41).

THE ROLE OF VERBALIZATION

As suggested earlier, another important consideration in the transfer
of learning is the question: "What role does verbalization play in trans-
fer?" In a study previously cited, Katona concluded that "the ability to
solve the tasks can be acquired without verbal formulation of what has
been learned and successfully performed" (1940, p. 101). Several people
have pursued this observation in research.

In one of these experiments, Hendrix (1947) tested three hypotheses.
They were (1) the nonverbalized awareness method of learning a gen-
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eralization is superior to the method in which an authoritative statement

of the generalization comes first; (2) verbalizing a generalization imme-
diately after discovery does not increase transfer power; and (3) the possi-

bility exists that transfer power may decrease as a result of verbalization.
We found no trace of statistical controls in the study and the type of
transfer tested was somewhat limited in scope. This is borne out by the
fact that only one principle was considered for the three methods of
training. Hendrix suggests, in conclusion, that the "flash" of nonver-
balized awareness is the phenomenon that accounts for transfer power.
This conjecture, we believe, should be tested under an improved design.

The University of Illinois Committee on School Mathematics (UICSM)
also has something to say on the question of verbalization. This group
believes that the student should become aware of a concept before a name

is assigned to the concept. Many mathematics educators share this view.

TRANSFER IN GEOMETRY

In all of the research studies we have examined, the tasks performed
in the experiments were not unlike the analysis of relationships encoun-
tered in mathematical problem solving. Thus, we accept the conclusions

as being relevant to learning in mathematics. Under careful scrutiny,
however, it will be realized that the tasks to which the learning was
transferred were only slightly different from the training tasks. Mathe-
matics teachers have long felt that there might be a more general type
of transfer to be gained from the study of mathematics, namely, an
improvement in reasoning ability outside of mathematics.

Several studies we have examined have dealt with the hypothesis that
training to think logically in geometry can transfer to nongeometric
situations. Parker (1924), Perry (1925), Fawcett (1938), and Ulmer (1939)

conducted such studies. The study of Ulmer virtually entailed the others,

and hence we will consider it alone.
Ulmer's (1939) experiment was designed to evaluate the results achieved

by a number of high school geometry teachers in different communities
who utilized a method of teaching in which emphasis was placed on the
cultivation of critical thinking. Ten teachers and 1,239 students in seven
high schools were used. The subjects were divided into three groups:
the experimental group with 638 students, the nongeometry control
group with 575 students, and the geometry group (traditional courses)
with 416 students. The nongeometry control group was composed of
sophomores from schools having geometry as a junior course. Only the
most capable teachers were used for both the experimental and tradi-
tional geometry courses. In the experimental group, definite emphasis
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was placed on concise, logical thought and application of critical think-

ing to nongeonletric situations.
The evaluation instruments were reasoning tests prepared at The Ohio

State University. The results indicated significant gains in critical think-

ing at all levels of intelligence for the experimental group at no loss in

the learning of geometry content. The geometry control group showed

a slight gain and the nongeometry group displayed no gain. We agree

that the study illustrated very vividly that even highly competent geometry
teaching offers little hope for the transfer of critical thinking unless

definite provision is made for it in the teaching act. On the other hand,
if such provision is made, the results can be rewarding indeed.

DISCUSSION OF THE RESEARCH

The preceding review of studies dealing with various teaching methods

reveals the lack of consistent empirical evidence on the relative efficacy
of these methods and points to the need for more carefully controlled
research. The hypotheses which precede these studies frequently focus

on the extent to which discovery activity should be guided.
We submit that this may not be the critical variable and that possibly

these studies can be better understood if we separate what happened from

why it happened. In the experiments in which the subjects who were
given the principle performed best, these subjects comprised the group
that had the most practice in using the principle. They were practicing
the principle on trials when the others were trying, sometimes unsuccess-

fully, to discover it.
Particularly in the instances when the transfer task was recognition of

new examples of a learned principle, practice in using the principle may
be the most important variable. Of the groups which were tested for
ability to discover new principles, only the discovery groups in Gagne
and Brown's (1961) study were more successful than the nondiscovery
group. In the studies by Wittrock (1963), Craig (1956), and Kittell (1957),
the subjects in the principle-given groups had the higher scores in dis-
covering new principles. It is difficult to equate these studies, but the
weight of this evidence does no appear to give an advantage to learning

by discovery.
It is more difficult to attribute differences to practice in those experi-

ments in which the guided discovery group performed best. We would
hypothesize that it was a combination of practice, increased attention,
and reflection upon what was learned that was responsible for the differ-
ences in results in these cases.

In regard to transfer, the argument appears to be that learning by
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discovery helps a student to organize knowledge and the knowledge there-
fore is more susceptible to transfer (Baskin, 1962; Bruner, 1961). Hilgard.
states, "Transfer to new tasks will be better if, in learning, the learner
can discover relationships for himself, and if he has experience during
learning of applying the principles within a variety of tasks" (1956, p.
487). However, Travers (1963) sees no advantage to learning by discovery
and prefers the learning of principles and overlearning as the superior
preparation for transfer.

In the experiments by Wittrock (1963), Craig (1956), and Kittell
(1957) described above, the superior group had more opportunity for
overlearning than any other groups in the same experiment. Mandler
(1962, p. 425) cites evidence to the effect that "there is an initial negative
transfer effect followed by a reversal to a positive direction after the
organism has had longer experience with the original task." Thus
Mandler's results would appear to argue for overlearning on specific tasks.
But in an experiment by Duncan (1958), where one series of groups had
different schedules of overlearning on a single problem task and another
series of groups learned the responses to varied stimuli, the group with
experience in "learning to learn" was superior on transfer tasks. Hence,
the role of overlearning in transfer remains unclear.

SUMMARY

It is acknowledged that some aspects of the problem of transfer of
learning have not been discussed in this paper. Much of the paper has
been devoted to the best way to learn principles in order to maximize
transfer. The conclusions of Has !eruct and Meyers (1958) and of Kersh
(1958, 1964) contradicted those of Kittell (1957) so that it is not clear
whether principles should be derived independently by the learner or
learned through a certain amount of direction from the teacher. Kersh
(1958) is of the opinion that this is exactly the teacher's dilemma. The
teacher has to decide whether the most important outcome of a learning
experience should be maximum understanding or maximum motivation
to continue learning. In our judgment, both outcomes are essential to
maximum transfer. Thus, the teacher is confronted with the task of
striking the proper balance.

Ausubel (1961) claims: "Learning by discovery has its proper place
among the repertoire of accepted pedagogic techniques available to
teachers. For certain designated purposes and for certain carefully speci-
fied learning situations, its rationale is clear and defensible." ( 1961, p.
53.) On the other hand, he argues that discovery methods are not unique
in their ability to generate self-confidence, intellectual excitement, and
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sustained motivation for learning. Finally, he states his position that
available research does not provide a basis for generalizing to any one
position.

We have concluded from this investigation what other writers have
concluded in the past; namely, that transfer of learning is not automatic.
T11%. objectives of the methodology must be carefully formulated with
transfer as a primary goal and with provision for various learning experi-
ences as a means to the goal. Also, we believe that the learning of princi-
ples increases positive transfer in most situations and that principles
discovered by the learner arc more susceptible to transfer than those
learned by rote. Finally, it is not completely clear whether principles
should be discovered relatively independently by the learner or through
close direction from the teacher in order to increase transfer. A crucial
question that needs to be answered here is whether the increased expendi-
ture of time required for independent discovery warrants its use. Simi-
larly, the role which verbalization plays in transfer of mathematics
learning remains unclear. Consequently, specific additional research is
needed in these areas.

Ausubcl (1961), in reviewing a sample of research studies, states that
such relevant learning variables as rote-meaningful, inductive-deductive,
verbal-nonverbal, and intramaterial organization were not controlled.
Thus, the generalizability of such studies is limited. Ausubel's observa-
tions should be considered in future research in teaching, discovery, and
the problems of transfer of training in mathematics.
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Some Ongoing Research and
Suggested Research Problems in
Mathematics Education

BOYD HOLTAN
University of Florida
Gainesville, Florida

KNOWLEDGE of ongoing research activities is helpful both in planning
one's own research and in improving existing programs in mathematics
education. Because of poor communication, there is not only a good deal
of unnecessary duplication, but also a lack of needed replication. The
communication channel between research workers and classroom teachers
must also be open. This is particularly serious since information and
products that do not get to the practitioner can obviously have no practical
value. There are research projects in mathematics education, both large
and small, which are being conducted and are completely unknown to
many mathematics educators. Therefore, in planning this publication, the
Research Advisory Committee of the NCTM felt it would be appropriate
to list some activities which would give indications of what is happening
in mathematics education research.

A short questionnaiee was sent to a sample of mathematics educators
asking for a response to two questions.

The first question was, "What research is being conducted at your
institution which is related to some aspect of mathematics education?"

The second question was, "What do you feel is the most pressing prob-
lem in mathematics education to which research might aid in contributing
a solution?"

The answers received for each of the two questions are reported below
under one of three categories: (1) Developmental Activity, (2) Product-
Oriented Research, and (3) Information-Oriented Research.
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ONGOING RESEARCH 1

Deve 'Omen tal activity

A Writing Project for Developing Text Materials for Elementary Teacher
Training in Mathematics

The Development of Ways of Presenting Arithmetic to Elementary Teach-
ersRelating It Very Closely to the Real World

The Development of a Statewide Continuing In-Service Program for
Secondary School Mathematics Teachers

The Development of a Graduate Level Course on the History of
Mathematics

"The Development of Facility in Exposition" in a Methods Course for
Students with Extensive Prior Training in Mathematics (Essentially
a Mathematics Major)

The Development of a Mathematics Institute Program
Development of an Instructional System Involving Television, Text, and

Teacher, for Teaching Mathematics to In :Service Elementary School
Teat hers

The Development of New Materials for High School Geometry
The Development of a System for Teaching Mathematics Through the

Use of a Time-Shared Computer
A First Step Towards the Implementation of the Cambridge Mathematics

Curriculum in a K-12 Ungraded School
The Development of Discovery Units

Product-oriented research

A Study of Textbooks Versus Lectures in the Preparation of Elementary
Teachers

The Design and Evaluation of an Individualized Program in Elementary
School Mathematics

The Development and Evaluation of Minnemast: Elementary School
Science and Mathematics Programs

An Evaluation of the Presentation of First-Year Algebra in Two National
Experimental Programs Based on Selected Criteria from the Theory of
Learning

A Comparative Study of Two Methods of Teaching Mathematical
Analysis at the College Level

If the reported research obviously had both developmental and product-oriented (usually
evaluation) aspects. it was listed under product-oriented research: if it had both product and
information aspects. it was listed under information-oriented research.
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The Development and Evaluation of a New Mathematics Curriculum,
Grades 7-12

An Evaluation of the Effectiveness of Closed-Circuit Television in Teach-
ing Mathematics to Prospective Elementary Teachers

An Evaluation of the Effectiveness of Teaching by Induction, via the Use
of a Computer-Based Teaching Machine

The Standardization of a Number Systems Test for Elementary Majors
An Experimental Study of the Effectiveness of Computer-Mediated In-

struction in Mathematics
A Study of the Effectiveness of Minnemast Materials on Groups, Vectors,

and Transformations
The Development and Evaluation of Test. Items for Elementary and

Secondary School Mathematics Curricula at Each of Bloom's Taxo-
nomic Levels

The Development of a Collection of Film Loops Which Depict Certain
Well-Defined Teaching Strategies, and a Study of Their Effectiveness
for Teacher Training

A Teach-Test Procedure for Obtaining Measures of Mathematical
Aptitude

A Comparison of Two Methods of Presenting an Axiom System Using
a Computer-Assisted Instructional Unit Designed to Teach Deductive
Proof

The Effects of Team Teaching in junior High School Mathematics
The Development and Evaluation of Procedures for Measuring Under-

standings in Arithmetic
The Effectiveness of Programmed Instruction in Teaching Plane

Geometry
The Effects of Teaching a Unit on Logic as a Part of a College Course

in Calculus
An Experimental Investigation of the Effectiveness of the Kansas Demon-

strations of Mathematical Concepts in the Teaching of Mathematics
in the Elementary Grades

An Investigation of the Effect of Types of Exercises in Teaching Mathe-
matical Concepts to Prospective Elementary School Teachers

The Effects of Different Kinds of High School Experience with the Limit
Concept on the Study of Calculus in College

A Comparison of Methods of Teaching Abstract Algebra in College
The Identification of the Algebraic Concepts Needed for the Instruction

of Mathematics in the Elementary School and the Designing of a Re-
lated Course of Study

The Identification of Concepts from Probability and Statistics Needed for
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Instruction of Secondary School Mathematics Teachers and the Design-
ing of a Related Course of Study

The Difference Between Large and Small Sections in Calculus
The Development and Evaluation of a Test. of Understanding of Selected

Properties of a Number System: Primary Form
The Development and Evaluation of a Test of Arithmetic Principles:

Elementary Form

information-oriented research

An Analysis of the Learning Problems Involved in Teaching the First
Grade

The Interrelationships Among Selected Personality Traits, Levels of Cog-
nitive Structure, and Teaching Strategies

Mathematical Models as Mediators in Facilitating or Inhibiting Growth
in Problem-Solving Ability

The Effect of Teaching Certain Concepts of Logic on the Verbalization
of Discovered Mathematical Generalizations

The Influence of Discovery Teaching on the Ability to Solve Mathe-
matical Problems

The Relationship Between "Strategy of Search Training" in Non-Mathe-
matical Fields and the Learning of Mathematics

A Characterization of Provers and Nonprovers in an Axiomatic Geometry
Course for Elementary Education Majors: A Discriminate Analysis

A Study of the Role of Symbolism in Learning Mathematical Principles
A Study of the Relationships Between Problem Solving and Prior

Learning
A Study of the Effectiveness of Using Conceptual Organizers in Learning

Abstract Mathematics
The Development of a Scientific (Theoretical) Language for the Precise

Formulation of Basic Research on Mathematics Learning
The Role of Inductive Strategies in the Teaching of Mathematical Con-

cepts and Generalizations
The Relationship Between Student Interest in the Instructional Materials

and Mathematics Achievement
The Determination of How Children Solve Novel Mathematical Problems
The Identification of Factors Contributing to the Understanding of Se-

lected Basic Arithmetical Principles and Generalization
The Relationship Between Teachers' Knowledge of Arithmetic and Pupil

Gain
The Measurement of Teacher Attitude in Relation to Contemporary

Mathematics Programs
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The Relationships Between Underachievement and Low Achievement
and Mathematics Learning

A Study of the Relative Importance of Certain Factors in the Prediction
of Successful Performance in Seventh-Grade Mathematics

A Comparative Study of Selected Factors of Mathematics Achievement in
Homogeneous Groups of Fifth-Grade Pupils Taught by a Discovery
Approach

Success in Mathematical Statistics as a Function of Mathematical Back-
ground

The Measurement of Affective Changes Among Elementary Majors Dur-
ing Their Undergraduate Careers: A Longitudinal Study

PROBLEMS

Developmental problems

The Development of Additional Materials and Courses for Teachers of
Prospective Elementary School Teachers

Procedures for Developing a Desire to Learn Mathematics, Especially for
Students at About Eighth- or Ninth-Grade Level Who Have Been in
the Lower Achievement Group

The Development of Better Diagnostic and Remedial Procedures for Use
with Individuals

The Development of Improved Teacher-Behavior Training Programs

Product-oriented problems

An Evaluation of the Effectiveness of "Modern" Math Programs and
Instructional Methods Related to Modern" Topics

Using the "Best" Texts that Can Be Constructed Today, What Can the
"Best Possible" Present-Day Teaching Accomplish with Various Levels
of Students?

Teacher TrainingWhat Kind of Programs of 'reacher Training Can
Best Perform the Function of Preparing Teachers to Do justice to New
Programs?

The Determination of Effectiveness of "Discovery Teaching"
To What Degree Do Modern Elementary Math Textbooks and Programs

Which Are Almost Completely Dependent upon Diagrams, Games,
Puzzles, Tricks, etc., Contribute to the Learning and Use of Basic
Mathematics?

The Development of Valid Measuring Devices Which Will Not Only
Measure Skills but Also Concepts and Applications in New Situations

At What Degree of Rigor Do High School and College Freshmen Best
Learn Mathematics?
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An Evaluation of Various Techniques for Keeping Mathematics Teachers
Up-to-Date on Recent Developments in Mathematics and in the Teach-
ing of Mathematics

The Development of Tests to Measure Concept Development and Prob-
lem-Solving Ability

The Development and Evaluation of Procedures for Content Selection
and Placement in Relation to Objectives of Mathematics in the Ele-
mentary School

The Development of Procedures to Aid the Low Achiever in Mathematics

Information-oriented problems

The Role of Intuition in the Learning of Mathematics
Using Clearly Defined Criteria, Is It True that "Any Subject (Topic)

Can Be Taught to Any Child of Any Grade Level in Some Intellectually
Honest Manner?"

Acquiring More Knowledge About the Relationships Between Teaching
and Learning (This Might Be Called "Methods Research" Which in
the Past Few Years Has Taken a Back Seat to Curriculum Research)

How Are Mathematical Concepts Formed?
What Is the Ability to Read Mathematical Material?
An Intensive Study of Outstanding Teachers' Behavior in Relation to

Students' Learning
Determine Optimum Levels for Introducing Specific Skills and Ideas
Determine Methods Which Contribute Most to Retention
How Do Individuals Learn Mathematics?
How Is Mathematics Learned at Various Levels?
The Need to Improve Our Understanding of How to Teach Mathematics
How Do Elementary School Children Develop Concepts in Mathematics?

THESE indications of research activity trends were reported by about
two dozen mathematics educators. The research is not necessarily being
conducted by them, but is being done at their institutions. Twenty-eight
of the research projects were listed under product-oriented research, eleven
under developmental activities, and twenty-two under information-oriented
research. The problems posed were also about equally divided between
product-oriented research and information-oriented research. The rela-
tively small number of developmental projects and problems listed, how-
ever, may not truly represent the current situation since the contributors
were not asked to list developmental activities and since many leaders
in mathematics education do not classify such activities, though highly
significant, as research. In effect, they make a sharp distinction between
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scientific research and artistic development. The former has been
emphasized in this publication.

On the basis of this sample listing of ongoing research and research
problems, it appears that there certainly is activity in mathematics edu-
cation research which could be usefully shared by all who are interested
in the field. Furthermore, a careful perusal of the projects and problems
listed strongly suggests that what is a research problem at one institution
may be an ongoing research activity at another. In addition to making
mathematics educators aware of present -clay research activity and concern,
it is hoped that this compilation may also have a motivational effect on
future research activities.

S.
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WTH so many different kinds of research and development presently
underway in mathematics education, it seems desirable, in this final
article, to provide a perspective in which these activities might be viewed.
Particular attention is given to the nature of and the relationships
between information-oriented (basic) and product-oriented (applied)
research. In the process, some of the major points made in the preceding
articles are highlighted and some of the interrelationships between them
are pointed out. The points raised, however, should be taken as selective
rather than exhaustive.

Let, me begin by making a distinction between scientific research and
developmental activity, or, as it is frequently called, "action research." In
the present context, development refers primarily to those innovative class-
room activities which have had so great an effect on mathematics educa-
tion in recent years. The term "development," rather than "research,"
is used because most, although not all, of the resulting materials and
procedures were obtained not by applying any existing theory or tech-
nology, but simply on the basis of the perspicuitive intuition or artistry
of mathematicians who were also master teachers. Many of the inno-
vators, themselves, are quick to point out that neither the scientific
method nor scientific results were used in any way.

This relatively informal and intuitive approach was sufficient in the

The author would like to thank Drs. E. E. Doe, C. E. Dwyer, and J. P. Williams for their
helpful comments on draft of this article.
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immediate past because the gap between mathematics, as practiced by
twentieth-century mathematicians, and mathematics, as it then existed
in the schools, had become an abyss. Bridges had to be built, almost
any kind of bridges.

Now that the revolutionary period is giving way to a more thoughtful
evolution, the situation is changing. Mathematics educators and others
concerned with the new mathematics programs are beginning to demand
"hard facts" to support the claims made by proponents of the various
programs. If for no other reason, evaluation has been felt necessary to
justify the funds spent on development. Since many of the innovators
had neither the training nor the inclination to pursue this part of the
task themselves, they have enlisted the aid of psychologists and specialists
in educational research.

Originally, the concern was with the question, "Does this new program
(set of materials, etc.) work as well as what we have been doing (using,
etc.)?" I Berger and Howitz have reported the results of a comparative
evaluation study designed to answer just this sort of question. More
important, they have shown how some of the problems confronted in
evaluating a new program can be handled. Anyone who has conducted
such research knows how frustrating it can be when pupils get sick and
are forced to miss a crucial test. when teachers unwittingly contaminate
the experimental treatments, when administrative difficulties make the
random assignment of pupils and teachers to treatments impossible, etc.
It is satisfying to know that a variety of statistical procedures is available
to partially compensate for such factors.

For the most part (there have been exceptions), the new materials and
curricula (e.g., Experiences in Mathematical Discovery) that have been
evaluated have proved to be more effective than the materials and cur-
ricula they were designed to replace, insofar as the newer topics are con-
cerned, and equally as effective with regard to more traditional topics.

Once having demonstrated that a new set of instructional materials
or a curriculum does no harm, and, indeed, seems promising, the next step
is to improve it. For this purpose, a rather simple research strategy or
methodology has been found useful. Determine the learning outcomes
of the new materials or curriculum in question and, by comparison with
certain predetermined and objective standards, determine where the
materials and/or instructional procedures are adequate and where they
are lacking. Such information, of course, is then used in revision, pos-
sibly followed by another evaluation cycle. During the course of such a

I Notice that this same question can be asked of any new productwhether it be a new light
bulb, pill, or automobile.

1
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development and evaluation cycle, material developers and research
workers are often forced to reconsider their objectives and to translate
these objectives into a form that can be measured. The result is almost
always an improved product.

That part of the cycle referred to as materials development, since it
is based almost entirely on intuition, is perhaps best viewed as an art
and not research. The research phase of the cycle consists of the evalua-
tion itself. This kind of comparison with absolute standards has long
been used, in a slightly modified form, by teachers (in the course of
periodic testing), was used somewhat later by program writers, and more
recently is gaining favor as an alternative method of curriculum
evaluation.2

Both approaches to evaluation, comparative and predetermined stand-
ards, since they deal with products, rather naturally fall into the category
of "product-oriented" research. It must be apparent, however, that with-
out formal guidelines to be used in the development of instructional
materials, the materials produced depend almost entirely on the ability
of the writers. In order to capitalize on the skills of specialists in a
variety of related disciplines in developing materials, an increasing num-
ber of research and development centers have found it desirable either
to apply existing technologies (i.e., systematic developmental procedures)
or to devise new ones. Because of the difficult problems of integration
and the like, there often is simply no other way to get the job done in
an efficient manner.

The procedures described by Kersh and Lipson provide two excellent
examples of such technologies. Although both procedures make general
use of the task analysis technology described by GagnO, Kersh dealt with
engineering instructional sequences for use in the classroom and Lipson
with the development of materials for use with individual students.
Although intuitive judgments are always involved to some extent in the
development of any product, these articles make it clear that the purely
artistic approach of the materials producer can be replaced by a clearly
specified technology, one which is subject to review, criticism, and (hope-
fully) continued improvement.

The mathematics educator, of course, must play the key role in deter-
mining what the objectives are to be and in actually writing the material
these tasks require an intimate familiarity with the subject matter.
The psychologist plays his major role in helping to translate these objec-

A more complete description of the development-evaluation methodology described above may
be obtained from Dr. Wells Hive ly, Department of Educational Psychology, University of Minne-
sota. An example of an evaluation study with predetermined standards may be obtained from
Dr. Wai-Ching Ho, Greater Cleveland Mathematics Program.
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tives into terms that can be measured and in devising effective procedures
for achieving these objectives.

Nonetheless, the serious question remains as to whether present-day
instructional technologies can improve on, or even equal, what the skilled
mathematical artist has been able to accomplish. One answer to such a
challenge is that as technologies continue to improve, the improvements
become available not only to the technology developers, themselves,

but to anyone else who wants to use them and who is willing to take
the time to learn how. On the other hand, when the artist improves
his style with practice, the benefit is only to the artist himself and
to those who have direct access to him as a teacher or to his products
(e.g., texts, etc.). Kersh's reference to "second-order" objectives and Lip-
son's mention of attempts to capitalize on the "learning how to learn"
evidenced by the students at the Oak leaf School both suggest basic
changes in the respective technologies originally proposed. It is quite
possible that one of the major reasons why a number of prominent cur-
riculum developers in mathematics have had a generally negative attitude
towards stating objectives in behavioral (i.e., observable) terms is that,
in its preliminary form, the approach paid too little attention to secondary
objectives and learning how to learn. The innovator almost always has
several objectives in mind when he introduces a topic, even if only at
the intuitive level. It is to be expected that, as still further improvements
cumulate with time, technologies will play an ever increasing role in
mathematics education.3

In view of the above discussion, the case for product-oriented research
is quite direct.4 Whenever research (e.g., evaluation) demonstrates the
value of one product over another or that a product meets certain
standards, or, whenever a technology makes it possible to produce more
and better materials in an efficient manner, both the practitioner and
the student benefit rather directly.

When it comes to basic information-oriented research in mathematics
education, however, the payoff is not always so immediate. Nonetheless,
Suppes has made an excellent case for an active program of basic research
in mathematics education. Since he has stated his arguments so clearly,
it is unnecessary to elaborate here. Let me simply summarize what appear
to be his key points: (I) intuition alone provides an insufficient base for

' While both of the technologies described in this monograph are based in varying degrees on
task analysis, there are many other kinds of technological development underway. These activi-
ties range from programming a computer so that it will be able to provide almost immediate
answers to an author's questions about the effectiveness of his material (UICSM) to devising
efficient procedures for assessing mathematical knowledge (University of Pennsylvania).

4 It is for this reason that the project committee did not feel that an article paralleling that
of Suppes on basic research was necessary.
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devising new curricula (or instructional procedures)intuitive judgments
and objective facts are too often at opposite ends of the pole, (2) the
number of sheerly empirical studies is certainly large in number, if not
uncountableachieving order out of chaos will depend on the develop-
ment of a sound theory of mathematics learning, based on carefully
thought out information-oriented studies, (3) there is a need to analyze
and provide a theory for students' learning difficulties, and (4) a better
understanding of how mathematics is learned and how mathematicians
think may lead to a revised conception of the nature of mathematics itself
in particular, a more central emphasis may be given to the patterns of
thought found useful in dealing with mathematics. I find it hard to
disagree with Professor Suppes, for agreeing with what he has said. None-
theless, in order to provide a perspective from which to view the four
reports of information-oriented research, let me make a few additional
comments.

The time-honored purpose of basic research is theory development.
To be classified as basic, the research must deal with (I) the identification
of and relationships between (2) well-defined variables which are (3)
theoretically relevant. Whereas different variatioas on this theme may
be found, most scientists and philosophers of science would probably not
find too much quarrel with this definition, particularly in the present
context where it is being used primarily to specify one of two admittedly
highly overlapping categories (i.e., information- and product-oriented
research).

It is important to notice from the beginning that this definition makes
no mention of experimental or statistical methodologysomething which
is often mistakenly taken as evidence of basic research in education. The
position taken here is that any approach which furthers the goal of basic
research deserves to be classified as such. In the experimental approach,
for example, one or more variables are systematically varied, and the
effects of this manipulation on other (dependent) variables are deter-
mined. The article by Worthen serves as an example of basic experimental
research which also has rather direct practical implications. Perhaps the
most noteworthy feature of this research is that it provides support for two
major contentions of discovery enthusiasts. The discovery group not only
performed better than the expository group on tests designed to measure
the transfer of heuristics but they better retained the material that had
been originally taught. While this is not the first time such results have
been found,5 Worthen's experiment certainly represents one of the best-

5 fee, for example, R. M. Gagne and L. T. Brown, "Some Factors in the Programming of
Conceptual Learning," Journal of Experimental Psychology, LXII (1961), 313.21.
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controlled comparisons of expository and discovery methods in mathe-

matics which extended over a period of weeks. It is particularly en-
couraging to find that laboratory results and field trials often coincide.

Another common approach to information-oriented research, often

called the correlational approach, involves uncovering relationships be-

tween two or more dependent measures. The strong relationship Dienes

found between the way a mathematical task is perceived by a learner

and the learning strategy followed illustrates the utility of this approach.

A third type of information-orieinted research involves setting up a single

well-defined situation, determining the outcomes in an objective fashion,
and, then, comparing the obtained outcomes with predictions made on the

basis of one or more theories or analyses. The studies reported by Suppes

and Groen and Gagne well exemplify this third approach. Suppes and

Groen compared predictions, based on five alternative algorithms for
finding the sum of two numbers, m, n, where m n < 5, with the

latencies (i.e., time between presenting a problem and the occurrence of
the correct answer) actually obtained. The best fit was obtained by an
algorithm, in which the largest of the two given numbers is stored and
successively incremented by one until the smaller value (number) has

been added on. In effect, characteristics of the group data (i.e., statistics

of the obtained score distribution) could be best predicted by assuming
that all of the experimental subjects used this algorithm to add. As the

authors suggested, they do not necessarily believe that this is true, only
that the group's mean performance could be predicted best by making

this assumption. Gagne's rationale was based on the assumption that a
learner's existing state of knowledge is equally as important in deter-
mining future learning as the instructions (or information) given. His
results appear to provide strong support for this position. Furthermore,
the relationship between learning and prerequisite performance, as deter-

mined during the learning sequence, and aptitude, as measured by stand-
ardized instruments, became stronger and weaker, respectively, as learning

progressed toward the hierarchical apex.
On the surface, these findings of Gagne and those of Suppes and Groen

appear to clash head on. To Gagne, the prior state of the learner appears

to be critical in determining what will (or can) be learned. A rapid read-

ing of the Suppes and Groen article, on the other hand, might lead one
to think that individual differences have been ignored.

Rather than being contradictory, I feel that the differences exemplified
by these studies have deep roots and, in fact, are suggestive of two critically
important, but fundamentally different, aspects of mathematical learning
and performance. Gagne was concerned largely with the logically de-
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termined prerequisites for successful performance on a mathematical task.
His experimental data simply provided empirical support for the validity
of his analysis. Had the results not conformed to prediction, the diffi-
culty would have been due more to the logical inadequacy of the task
analysis than to a lack in any theory of behavior. In the Suppes and
Groen study it seems reasonable to suppose that most of the subjects had
at their command the logical prerequisites for all five algorithms pro-
posed, particularly since the five sets of prerequisites undoubtedly overlap.
The reported results were obtained on the third day of the experiment,
after the experimental subjects had attained a high level of mastery on the
tasks, so that the experimental data probably reflected a preference for
one of the algorithms rather than any additional learning. The basis for
such a preference might well involve some sort of complex interaction
between certain basic psychological capacities of learners (presumably
reflecting underlying physiological capacities such as the amount which
can be stored in short-term memory) and what is already learned. In short,
Gagne was largely concerned with determining prerequisites for successful
performance, while Suppes and Groen, implicitly assuming a common
level of prior knowledge, sought to determine what knowledge would be
used. The relative power of each approach depends on what kinds of pre-
dictions one wants to make.

I would propose that both kinds of research are badly needed. Any
reasonably complete understanding of mathematical learning and per-
formance will depend on (1) the identification of those "ideal" compe-
tencies underlying various kinds of mathematical behavior (e.g., what are
the prerequisites for syllogistic reasoning?) and (2) an understanding
of how inherent psychological capacities and subject matter competencies
already had by a learner interact with external stimulation to produce
mathematical learning and performance.

Before passing on, one further point deserves mention. Assessing a
learner's state of knowledge cannot always be determined in a direct
manner. Suppose, for example, an experimental subject has learned to
give the integers, 8, 11, and 5, as responses to the four-tuples (stimuli) (3,
8, 9, 4), (9, 7, 8, 6), and (6, 5, 8, 9). respectively. The question remains as to
just what he has learned. Has he learned the three four-tuple-integer
pairs as distinct entities, noticing no relationships between them? Or has
he learned (discovered) that the response integers can be determined from
the stimuli by adding the numbers in the first and third positions of the
corresponding four-tuple and subtracting from this sum the number in the
fourth position?
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Some of our 0 recent research suggests that presenting a new four-tuple,
such as (4, 8, 9, 3), may provide a sufficient test for deciding between these
alternatives. If, under certain conditions, the learner gives the response,
10, one can be quite certain that he has learned the rule stated above. If
not, he has probably failed to notice the essential similarity between the
three original four-tuple-integer pairs. Furthermore, having once used the
rule, the learner will almost invariably use the same rule again when
confronted with a second four-tuple--unless he either has conflicting
knowledge at his command or has been led to believe that the rule is no
longer appropriate or that his response to the first test stimulus was wrong
(e.g., by telling him). This assessment procedure is quite general and can
be used with any principle that can be stated in the form, "If A, then B." 7

Still a fourth approach to information-oriented research involves the
careful and often painstaking naturalistic observation for which Piaget is
so famous. On the basis of intuition and detailed observations of how
young children learn mathematics, Dienes has identified those kinds of
activity which he feels are fundamental to all mathematics learning. He
has singled out for special emphasis play, informal exploratory behavior;
abstraction, the identification of that which is common to a number of
situations; generalization, the extension of an abstract class to a broader
class; particularization, the passage from a broader class to one more
restrictive; symbolization, the symbolic representation of mathematical
ideas; and interpretation, the determination of meanings underlying
symbols. To this list may be added deduction, the (logical) derivation
of new relationships, and axiomatization, the determination of a (small)
basic set of relationships from which all others may be derived.
Taxonomic activity of this sort is a general characteristic of any new
science, in this case "psycho-mathematics" or the psychology of mathe-
matics learning. Until the basic kinds of phenomena with which the new
science must deal have been adequately determined, the variables chosen
for study may lead to relationships which are merely symptomatic of,
rather than fundamental to, an underlying theory.

Review articles, such as that by Becker and McLeod, also play a vital
role in information-oriented research. This is particularly true when the
authors provide a rationale both for classifying existing research and for
placing proposed research into a perspective. While a few excellent ex-
amples exist in the mathematics education literature, there have been far

Seandura. J. M.. "Precision in Research on Mathematics Learning: The Emerging Field
of Psycho-Mathematics." Journal of Research in Science Teaching, V (1957).

The good teacher may notice the similarity between this test procedure and what is typically
referred to in the classroom as the Abu! experience.
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too few.9 For many purposes, a simple listing will not suffice. Becker and
McLeod have provided a valuable service not only in reviewing, but in
providing a framework for viewing transfer of training, a topic of great
concern to mathematics educators.

In order to dispel any remaining doubt, let me emphasize that, as de-
fined herein, experimental research is not synonymous with basic infor-
mation-oriented research. The typical comparative evaluation study,
for example, would not meet the proposed criteria. In effect, finding rela-
tionships between variables is not a sufficient condition. Not only must
variables be specified, but they must be well-defined in a mathematical
sense. When one talks about one curriculum being better than another,
the question remains as to just what makes it better. What goes into a
curriculum, when presented by one teacher, may be quite different when
presented by another. In short, equivalence classes of mathematical
curricula typically are not behaviorally invariant, even in a probabilistic
sense.

Even finding relationships between unambiguously defined variables,
however, may not be sufficient. To have a direct effect on theory develop-
ment,, research should be aimed at determining fundamental variables
and relationships. In many cases it is hard to determine just when this
requirement is met since which variables are deemed basic and which
theoretically superficial (although perhaps of immense practical concern)
depends, in large part, on the stage of development of the science in
question. An example may not only help to clarify this distinction
but help to locate the present rapidly changing state of knowledge
about the teaching-learning process. Consider grade level, a variable
which is frequently included in educational experimentation. This
variable is well-defined, but not basic according to the present defini-

tion. While it has been observed many times that certain topics are
learned better when taught at one grade level than at another, it has
more recently been established, by a number of investigators,9 that prior
learning may be the crucial factor involved. That is, the reason grade level

has so often been related to teachability is probably that the necessary
prerequisites have tended to covary with grade. level. Obtained relation-
ships between grade level and learning, then, should be deducible from
a knowledge of the abilities had at the various grade levels involved.
The facts that it might be difficult to measure all of the necessary pre.

8 Examples are provided by K. E. Henderson. "Research on Teaching Secondary School Mathe-
matics," in Handbook of Research on Teaching. ed. N. L. Gage (Chicago: Rand McNally, I903),
PP. 1007-80 The Learning of Mathematics, Its Theory and Practice, the Twenty-first Yearbook
of the NCTM: and some of the U.S. °Mee of Education Pamphlets edited by K. E. Brown.

The study by Gagne Provides case in point.
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requisites and that knowledge of these prerequisites is crucial to any
complete understanding of mathematics learning do not alter the situa-
tion fundamentally. A study designed to determine relationships be-
tween grade level and teachability, while it might provide a great deal
of practical information (information which might be put to use in pre-
paring instructional materials) would not add to our store of funda-
mental knowledge. Such information-oriented research is typically re-
ferred to as being empirical in nature.

Nonetheless, empirical research frequently results in information which
can not be derived from other findings. In such cases, the information so
attained sometimes serves as an impetus for theory development. Too
often, however, this is not the case. Facts, even discrepant facts, frequently
pile up with little resulting attempt at theoretical explication. For these
reasons, a strong case can be made for distinguishing between informa-
tion-oriented research which is directed specifically at theory development
and (empirical) information-oriented research in which the variables
chosen for study neither have explanatory power themselves nor are
explained in terms of more generic variables (having such explanatory
power). The term "basic (or theory-oriented) research" might well be
reserved for the former type, in which the concern is either with the
identification of, or relationships between, fundamental variables or with
research which, while derivable from more basic findings, makes these
derivations explicit, whether in the form of highly elaborate theories or
relatively imprecise rationales.

To avoid needless dispute, let me emphasize that it is often difficult to
distinguish between iriformation-oriented research and product-oriented
research, let alone between information-oriented research which is ex-
plicitly theory-oriented and information-oriented research which is not.
Furthermore, even developmental activity frequently provides valuable
information (or at least raises important theoretical questions) while the
results of information-oriented resetarch may find rather direct applica-
tion. The many-faceted nature of much research is well exemplified by
the Kersh and Worthen articles and by several of the listings of ongoing
and needed research which were solicited compiled by Holtan.
Perhaps the ultimate basis for categorizing a study is the researcher's
motivationto find out why or to improve an existing situation.

The major purpose of this article has not been to favor information- or
product-oriented research over artistic development but simply to help
clarify some of the interrelationships between them. It has been suggested,
however, that if mathematics education is to improve fundamentally
beyond its present state more will be required than simply teaching more
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mathematics at an earlier age. We, as mathematics educators, will have
to turn our attention more and more towards the development of im-
proved technologies for preparing materials and for instructing students.
Such advanced technologies, in turn, may be expected to depend increas-
ingly on a more complete understanding of how mathematical knowledge
is organized, learned, taught, measured, and created.

Information-oriented research, product-oriented research, and develop-
ment are all necessary. Information-oriented research, without related
product development, is of no use to mankind while product-oriented
research and development, without supporting basic research, may too
easily become tradition-boundor, what is equally bad, revolution-bound.


