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PREFACE
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MINIMUM C:OVERS OF FIXED CARDINALITY

IN WEIGHTED GRikRII.S*

Lee j. White
+

Given a weighted graph, a method is discussed for obtaining

minimum covers of specified cardinality. It is shown that the family

of minimum covers of varying cardinality is related to the minimum spanning

tree of that graph.

1. Introduction

Consider a finite weighted graph [G, c] where E and V arc the

sets of edges and vertices of G respectively, and ci is the weight of

edge eic E, where edge weights are arbitrary real numbers. A cover

is a subset of E such that each vertex of V is incident to at least one

edge of the subset.

The minimum cover problem is to find a cover of minimum weight sum:

Min cl;c subject to Ax ? 1, x.
1

= 0 or 1,

where A is the vertex-edge incidence maririx of the graph G., x is a

vector corresponding to the edges of G, c a vector of edge weiahts,

and T indicates a vector transpose.
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Norman and Rabin [6] utilized the concapt of reducing paths to

solve the minimum cardinality cover problem, but solution effort of the

algorithm grows exporentially with N, the number of vertices of the graph.

Based on "matching" techniques of Edmonds [1 , 2] , the author [7] developed

an algorithm to solve the minimum cover problem for which solution effort

grows at N4 . Edmonds [3] has developed an efficient method to solve the

degree - constrained su.bgraph problem

Min cilix subject to b1 < Ax < b2, x.
1

= 0 or 1,

which obtains the minimum cover as a special case.

2. k-Covers

Given a weighted graph [G, c ] , consider the minimum k-cover

problem:

Min cTx subject to Ax > 1, /' x. = k, .xi = 0 or 1.
e EG 1

Transform the graph [G, c] to graph [Gx, c - ).] by subtracting

X from each edge weight. The parameter X may assume any real value,

and may be interpreted. as a dual variable or Lagrange multiplier as

discussed by Everett [4] , corresponding to the constraint

e G Xi k '
1

Define W (C) as the weight of cover C in [G, d, and Wx(C) as the weight

of C in [G
X '

c - X] . ICI denotes the cardinality of set C.

Lemma 1

For any real X, if C is a minimum cover in [Gk, c - X] and IC I = k,

then C is a minimum k - cover in [G, c] .
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Proof

Let C' be any k-cover in G. Then for any X,

W
X

(C) = W(C) - k X,

W
X

(C' ) = W (C') k X,

and thus W(C) < W(C).

Lemma 2"

Given a weighted graph [G, c] and X1' X
2 '

such that X2 > Xl.

Let C
1

be a minimum cover in [G
X

, c - X
1],

where IC11 = k l' and
1

C2 a minimum cover in [Gx , c - X2] , where IC21 = k2. Then
2

k2> kl.

Proof

By assumption,

Wx (C1) < Wx (C2) and VT (C2) < Wx
1 1 2 2

W(C
1)

k
1
X1 < W(C2) - k

2
Al

W(C2) - k2X2 < W(C1) - k1X2.

Adding these two inequalities, and rearranging yields

k
1

(X
2

- X) < k
2

(X
2

- X1)

or k
1

< k2, since 1.2 > Xl.

Although the parameter k has been shown to be monotonic with X,

we must ensure that all values of k will be obtained as continuous

values of X are examined. Theorem 1 resolves this question, and the

proof is presented in the appendix.
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Theorem 1

Givena weighted graph [G, c], where the minimum cardinality of

any cover is m. Then given k , m < k< 1E , there exists a X such that some

minimum cover C in [G
X '

c X] is of k cardinality.

3. Vertex and Edge Partitions

For arbitrary values of such that > Min [ciJ , partition the
Ge.t

vertices in [G K, c X] into two sets as shown in Figure 1:

1) VN, vertices which are incident to an edge of nonpositive

weight.

2) Vp = V - V
n

Define an edge partition of [Gx, c X]:

1) PX' all edges in [GX' c - X] with at least one endpoint in

vertex set V . Define a cover of Vp as a subset of the edges

of P
X

such that each vertex of Vp is incident to at least

one edge of this subset.

2) N
X '

all edges in [G
X '

c X] with both endpoints in V
N.

1 Edge

*44.

0>i\

42:k

Vertex Set VII'

Edge Set 11/4.

Set Px

Okay.

111
1.1

its

..v 4,7 ) -7.111 14.1", sr:V

Vertex Set VP

+ indicates c. - X > 0

c. \ <.

Figure 1 Decomposition of Graph G\ into Edge Sets P\, Nx
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Theorem 2

Given [G, c), and any X, form [Gx, c - X] . Define C as the edges

of a minimum cover of V , together with all the nonpositive edges of

G. If IC (= k, then C is a minimum k - cover in [G, c] .

Proof

Let D be any k cover in G. Then

Wx(C) = W(C n P ) + W (C Nx)

Wx (D) = W(D r-NPx) + W(D N
x

)

But since we found a minimum cover of V ,
P

Wx(C rPx) < Wx(D n Px) ,

and since C uses all nonpositive edges is :C.x, c

W x(C n N)1/4) < WX N x) , and 1/V(C) < Wx(D).

Application of Lemma 1 yields the desired result.

The algorithm suggested by Theorem 2 decomposes the minimum

k-cover problem into an "easy" problem in Nx, and a 'hard" cover

problem for node set V. When an edge becomes negative, this ensures

it will not only be in the next larger cardinality minimum cover, but

in every subsequent minimum cover of greater cardinality. Exclusion

of some zero weighted edges in N
X

may be necessary in order to attain

minimum k covers for all feasible values of k, and an efficient

technique exists for this process .

When X becomes s fficiently large such that all nodes are in

set VN, the minimum k - cover problem becomes easy for all k above

5



the corresponding value. The critical value for which this occurs is:
e..

it- = Mai: Min [c., i2]

n all e.
1

incident

to vertex v.
J

The cardinality at which the minimum k - cover will contain a

cycle C3imple closed path) can be seen clearly in edge set Nx: it

occurs at the lowest value of X for which all edges of a cycle become

negative in [Gx, c - X].

4. Minimum Spanning Trees

Define a tree of a graph G as a connected subgraph which contains

no cycles. A spanning tree is a tree which contains all :he vertices

V of G. A forest is a subgraph which contains no cycles , and thus is

a union of disjoint trees .

Kruskal [5] developed and proved the following algorithm to obtain

a spanning tree of minimum weight for a connected weighted graph [G, c] .

1) Well order the edges of G as e e ... , en sol' 2' n

i < j ..-", C.
1
-< c

)..

2) Initially select T =fel, ej.

3) If the union of .e
3

with T forms a cycle, permanently discard

e3; otherwise add e3 to T.

4) Continue adding minimum elements to T in a similar

fashion, such that I' remains a forest in G until the number

of edges in T is (N 1).

5) T is a minimum spanning tree of graph G.
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Edmonds introduces the notion of a "greedy algorithm" . Define

an algorithm obtain an optimal subset of a finite set as greedy if

after well ordering the elements of the set by weight, each element

requires examination only once, and upon examination, can either be

placed in the solution set or permanently discarded.

The minimum spanning tree procedure is clearly a greedy algorithm,

and obtains a cover of the given graph. Also the "easy" part of the

minimum k - cover algorithm in Theorem 2 is greedy. Thus we inquire

as to a relationship between the minimum spanning tree algorithm and

the approach of Section 3 to obtain minimum k - covers.

5. Minimum Forest k - Covers

The question of the relationshipbetween minimum spanning trees

and minimum k covers is complicated by the fact that the latter

configuration may contain cycles. Define a forest cover in a graph G

as a cover of G which contains no cycles. If the graph is connected, we

can demand a forest k-cover configuration,

m < k < (N-1)

where m is the minimum cardinality of all covers.

Theorem 3

Given a weighted graph [G, c] , and any X, form [Gx, c -

Let C be the edges of a minimum cover of VP
together with a minimum

forest cover of VN, using edge set N. If ICI = k, then C is a

minimum forest k - cover in [G,

7



Proof

Let D be any forest k cover in [G, c] , and consider the weights

of C and D in [Gx, c - X].

Wx (C) = Wx(C n Px) + Wx( C n NO,

W;(D) = Wx(D n Px) + Wx (D nNx).

But since we found a minimum cover of VV,

Wx (C n P. ) < Wx ID n Px) .
A.

The minimum forest cover of (C n N
X)

of V
N

can be found by applying

the minimum spanning tree algorithm to edges Nx. This algorithm

terminates when no further edges in Nx can be added without forming

a cycle. Neither edge sets (C nNx) nor (C n P
X)

contain a cycle.

There exists no path in (C n Px) between vertices of VN as this would

contradict the assumption that (C ENP
X)

is a minimum cover of VP' so

C contains no cycles. Wx (C nNx) < Wx (D n Na), so Wx (C) < WOD) ,

and application of Lemma 1 completes the proof.

As in Section 3, the problem of finding a minimum forest k - cover

is decomposed into "hard" and "easy" parts, and the latter is greedy.

It can be shown that for all m < k < (N.-1), there is a X such that the

minimum forest k cover is given by the indicated construction, together

with a simple technique for breaking ties when zero weighted edges

occur in N
X°
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As k exceeds the value

k = Max LMin [c.)
a.m..

1 p
vj all e.

1
incident

to vertex v.
l

the algorithm becomes equivalent to the minimum spanning tree algorithm.

It is precisely as the edge of weight X enters Kruskal's solution set

that the edges of this set form a cover of the nodes V in graph G.
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APPENDIX

The purpose-of this appendix is to provide a proof of Theorem 1.

First consider the following definitions .

A subgraph E1 of a graph G with edges E and vertices V is defined

as a graph whose edges are El C E, and whose vertices are the set of

endpoints V1 C V of the edges El. For convenience, we refer to a

subgraph by its set of edges. A path in a graph is a sequence of edges

P e2, , eN together with an associated sequence of

evrd
e

1+1
in the path have a common vertex vi

+1
and each edge appears

only once in the edge sequence P.

Given two sets of edges, El and E2, in a graph G, define the

symmetric difference as

E1 eE2 = (E1 - E2) v (E2 - El) .

An alternating path P (relative to the sets El and E
2
)is a path whose

edges are alternately in (E1 E2) and (E2 - El).

Given a graph G, define a reducing path P relative to covers C1

and C2 of G as a path P such that:

(1) P alternates in subgraph C
1

-0-c
2

with respect to edges in

C1 and C2, and

(2) C
1

P and C
2

.-(i)P are both covers in G.
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Lemma A.1

Given a graph G,

subgraph C1 0 C2 can

paths.

and two arbitrary covers C
1

and C2 of G,

be decomposed into edge-disjoint reducing

This result was proved by Norman and Rabin [6]. Construct a

maximal alternating path P in subgraph C
1
0 C2, removing the edges

of this path. This produces a new subgraph in which another maximal

alternating path can be removed. Since C
1

and C2 are both covers in

in G, C1 eP and C2 OP are both covers in G, and P is a reducing path.

Theorem 1

Given a weighted graph [G,c] where the minimum cardinality of

any cover is m. Then given k, m < k .< I E J , there exists a X such

that a minimum cover C in [Gx, c X] is of k cardinality.

Proof

Suppose there exists a X, and 5 > o for which all £ such that

o < c < 6,

C1 is a minimum cover in G.
A - c where I C

1
=k1, and C2 is a minimum

cover in GX-I-E , where IC21 '-k2' Further, suppose that k given in the

hypothesis is such that

k
1

< k < k
2.
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Consider the subgraph C
1

0 C2. By Lemma A.1, this subgraph

decomposes into edge-disjoint reducing paths. Partition these paths

into three classes:

Class I

Class II

Class III

Class I

If

I Ci n PI 1 = IC2 n PI 1 + 1

I C2 n PH I = I Cl n PH I+ 1

I C
1

n P
III

I = I C2 n P
III

I

Consider a reducing path PI in Class I.

WX(P1rC2) --WX(PlcC1) ?
0,

this contradicts the assumption C2 is a minimum cover in GX,+e

for E < 6 , since C2 0 PI is a cover with (k
2

+ 1) edges with smaller

weight sum than C2 in Gx+E.

If

WX (Plf C1) 1AT X (PI (C2)> ()"/ >0'

this contradicts the assumption that C
1

is a minimum cover in GX- , for

c<4, since C1 ® PI is a cover with (k
1

1)edges with smaller weight

than C1 in all such G .-
X-E

Thus reducing paths of type P/ cannot exist in subgraph C1 ® C2.

Class II

W7(PlirC2) -WX(P11r\ C1)>4>0'

then this contradicts the assumption that C2 is a minimum cover in

12



iG
X-I E i for E < C%. ,since C2 P

II is a cover with (k
2

1) edges with
.

smaller weight than C2 in Gx+e. If W
X

(P
II nC

1)
W

X
(PII rC

2)
> o-e. > o,

then this contradicts tl_e assumption that C
1

is a minimum cover in

Gk for E < 1. , since C
1
OP

II is a cover with (k
1

+ 1) edges with

smaller weight than C
1

in G
X-C

. Thus only reducing paths PH of zero

weight can exist in Gx.

Class III

Apply the same arguments as for Class II, except extend E to E < 8

to show that only reducing paths Pm of zero weight can exist in GK.

Thus there must be exactly (k2 k1) reducing paths of type PH

in G
K ' all of weight zero, and while any number of paths of type Pill

may exist in Gx, all must have weight.zero.

Thus in graph Gx, the weights of C1 and C2 are identical, but by

implementing combinations of reducing paths of types PH and PIII'
different covers of all k-cardinalities , for

k
1

< k < k
2

can be obtained, and will have this same minimum weight in Gx.
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