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PREFACE
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MINIM UM CGVERS OF FIXED CARDINALITY

IN WE[GHTED GRAPHS*

+
Lee J. White

Given @ weighted graph, a method is discusced for obtaining
minimumn covers of specified cardinality. It is shown that the family
of minimum covers of varying cardinality is related to thc minimum spanning
tree of that graph.

1. Intrcduciion

Consider a finite weighted graph [G, c] where E and V are the
sets of edges and vert.ices of G respectively, and ci is the weight of
edge eieE, where edge weights are arbitrary real numbers. A cover
is a subset of E such that each vertex of V is incident o at least one
edge of the subset.
The minimum cover problom is to find a cover of minimum weight sum:
Min _c_T§ subject to Ax > 1, X, = Oorl,
where A is the veriex-edge incidence maririx of the graph G, x is a
vector corresponding to the edges of G, ¢ a vector of edge veights,

and T indicates a vector transpose.

* This research was supporied in part by the Systems Encineering Laboratory
of the University cf Michigan through contract AF 39 (602) - 3546, and

in part by NSF GRAMNT GN 534,

+ Computer and Information Science, Ohio State University




Norman and Rabin [6] utilized the concopt of reducing paths to
solve the minimum cardinality cover problem, but solution effort of the
algorithm grows expor:entially with N, the number of vertices of the graph.
Based on "matching" techniques of Edmonds [1,2], the author [7] developed
an algorithm to solve the minimum cover problem for which solution effort
arows as N4. Edmonds [3] has developed an efficient method to solve the
degree - constrained subgraph problem

Min _qigg subject to bl < Ax < b2

O — e

’ xo = 0 Or 1 ¥}
i
which obtains the minimum cover as a special case.

2' . k-Covers

Given a weighted graph [G, ¢ ], consider the minimum k-cover
problem:

Min _c_Tgc_ subject to Ax >1, E x, =k, X, = Oorl,

eiGl

Transform the graph [G, c] to graph [G)\, c - i) by subtracting

M from each edge weight. The parameter X may assume any real value,

and may be interpreted.as a dual variable or Lagrange multiplier as

discussed by Everett [4], corresponding to the constraint
> =
eec i Ko
i
Define W (C) as the weight of cover C in [G, d, and w, (C) as the weight
of C in [G)\, c -\, |C! denotes the cardinality of set C.

Lemma 1

For any real \, if C is a minimum cover in [G,, ¢ - A\ and [C| =k,

then C is a minimum k - cover in [G, c].
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Proof
Let C' be any k-cover in G. Then for any \,
W)\(C) =W(C) - kX,
W)\(C') =W (C') - k),
and thus  W(C) < W(C').
Lemma 2

Given a weighted graph [G, c] and A\, \_, such that A\ >\

1" 2 2 1°
Let C. be a minimum cover in [G, , ¢ - \_], where IC | =k., and
1 xl 1 1 1
C2 a minimum cover in [G)‘Q‘ c - .\2], where lCzl = kZ' Then
>k..
kZ" k1
Proof

By assumption,

W)\1 (Cl) S'WXI(CZ) and W)\2 (CZ) < sz (Cl) or

W(C)) - kA < WIC,) -k N

-k \ -
W(C,) - k), < W(cl) kX,

Adding these two inequalities, and rearranging yields

-\ N -\
k Qg =R < ky 0y =)

i \_>\_.
or k1_<_ kz, since \, 1

Although the parameter k has been shown to be monotonic with )\,

we must ensure that all values of k will be obtained as continuous

values of N\ are examined. Theorem 1 resolves this question, and the

proof is presented in the appendix.




Theorem 1

Given-a weighted graph [G, c], where the minimum cardinality of
any cover is m. Then given k., m < k< |E|, there evists a X such that some

minimum cover C in [GX, c - \] is of k - cardinality.

3. Vertex and Edge Partitions

For arbitrary values of \, such that A > Min [ci] , partition the
eieG

vertices in [G)\, c - \] into two sets as shown in Figure 1:

1) VN' vertices which are incident to an edge of nonpositive

weight.
2) V =V-V

Define an edge partition of [G., c - \]:

xl

1) P)\, all edges in [G)\, c - \] with at least one endpoint in
vertex set Vp. Define a cover of _\[p as a subset of the edges

of P)\ such that each vertex of Vp is incident to at least

one edge of this subset.

2) N,,alledges in [G, , ¢ - \] with both endpoints in Vi
acd T Coy
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Theorem 2

Given [G, c], and any \, form [G)\, c - \]. Define C as the edges
of a minimuam cover of Vp, together with all the nonpositive edges of

G,. If |[C|=k, then C is a minimum k - cover in [G, c].

X
Proof
Let D be any k ~ cover in G. Then

W)\(C) = W(C ~ P)\) + W(C N)\)

W)\(D) = W(D r\P)\) + WD ~ N)\)
But since we found a minimum cover of Vp,
W)\(C K\P)\) < W)\ D ~ P)\) ,

and since C uses all nonpositive edges i: G., ¢ - \],

TN
W,([CANJ)< W (D~ N')\) ,and W, (C) < W, (D),
Application of Lemma 1 yields the desired result.

The algorithm suggested by Theorem 2 decomposes the minimuin
k-cover problem into an "easy" problem in N)\, and a "hard" cover
problem for node set VP. Whgn an edge becomes negative, this ensures
it will not only be in the next larger cardinality minimum cover, but
in every subsequent minimum cover of greater cardinality. Exclusion
of some zero weighted edges in N)\ may be necessary in order to attain
minimum k.- covers for all feasible values of k, and an efficient
technique exists for this process.

When N becomes s ‘fficiently large such that all nodes are in

set VN' the minimum k - cover problem becomes easy for all k above




the corresponding value. The critical value for which this occurs is:

_ -
A = Max iMin [Ci] jz
v

j all ei incident

to vertex vj

The cardinality at which the minimum k - cover will contain a
cycle bimple closed path) can be seen clearly in edge set N)\: it
occurs at the lowest value of M for which all edges of a cycle become

negative in [G)\, c - \].

4, Minimum Spanning Trees

Define a tree of a greph G as a connected subgraph which contains

no cycles. A spanning tree is a tree which contains all the vertices

Vof G. A forest is a subgraph which contains no cycles, and thus is
a union of disjoint trees.
Kruskal [5] developed and proved the following algorithm to obtain

;
|
|
f
|
E
a spanning tree of minimum weight for a connected weighted graph [G, c].

1) Well order the edges of G as €1+ €4 -ees € SO
i<j —>c¢ < c.
1 )
2) - Initially select T =ie1, ez}.
3) If the union of e, with T forms a cycle, permaaently discard
e3; otherwise add e3 to T.
4) Continue adding minimum elements to T in a similar

fashion, such that T remains a forest in G until the number

of edges in T is (N - 1).

5) T is a minimum spanning tree of graph G.




Edmonds introduces the notion of a "greedy algorithm”. Define
an algorithm t- obtain an optimal subset of a f.inite set as greedy if
af.ter well ordering the elements of the set by weight, each element
requires examination only once, and upon examination, can either be
placed in the solution set or permanently discarded.

The minimum spanning tree procedure is clearly a greedy algorithm,
and obtains a cover of the given graph. Also the "easy" part of the

minimum k - cover algorithm in Theorem 2 is greedy. Thus we inquire

as to a relationship between the minimum spanning tree algorithm and

the approach of Section 3 to obtain minimum k - covers.

5. Minimum Forest k - Covers

The question of the relationship between minimum spanning trees
and minimum k - covers is complicated by the fact that the latter

configuration may contain cycles. Define a forest cover in a graph G

as a cover of G which coatains no cycles. If the graph is connected, we

can demand a forest k-cover configuration,

m< k < (N-1)
where m is the minimum cardinality of all covers.

Theorem 3

Given a weighted graph [G, c], and any X\, form [Gk' c - \].
Let C be the edges of a minimum cover of VP' together with a minimum

forest cover of V., using edge set N, . If |c] =k, thenC is a

minimum forest k - cover in [G, c].




Proof
Let D be any forest k - cover in [G, c], . and consider the weights

of C and D in [G, . c -\

WX(C) = V\’X(C N Px) + Wx( Cn Nx),

W, (D) =W, (D A P,) + W, (D NN,).
But since we found a minimum cover of VP’

W)\(C ) P}\) < W, (D ~ Px).
The minimum forest cover of (C n Nx) of VN can be found by applying
the minimum spanning tree algorithm to edges N)“ This algorithm
terminates when no further edges in Nx can be added without forming
a cycle. Neither edge sets (C r\N)‘) nor (C m Px) contain a cycle.
There exists no path in (C Px) between vertices of VN as this would

contradict the assumption that (C r\Px) is @ minimum cover of VP' SO
'C contains no cycles. W,(C AN} < W, D~ N,)., soW, (C) < W, (D),
and application of l.emma 1 completes the proof.

As in Section 3, the problem of finding a minimum forest k - cover
is decomposed into "hard" an-d “"easy" parts, and the latter is greedy.
It can be shown that for all m < k < (N-1), there is a M such that the

minimum forest k - cover is given by the indicated construction, together

with a simple technique for breaking ties when zero weighted edges

occur in Nx .

A




As \ excecds the value

A = Max iMin [c.] } .
) Y 4
Yj  alle, incideat

to vertex vj

the algorithm becomes equivalent to the minimum spanning tree algorithm.

It is precisely as the edgie of weight N enters Kruskal's solution set

that the edges of this set form a cover of the nodes V in graph G.




APPENDIX

The purposc-of this appendix is to provide a proof of Theorem 1.

First consider the following definitions.

A subgraph E. of a graph G with edges E and vertices V is defined ]

1

as a graph whosc edges are EIC E, and whose vertices are the set of

endpoints V1 C V of the edges E For convenience, we refer to a

1 L J
subgraph by its set of edges. A path in a graph is a sequence of edges
P ={el ‘ e2 g seees e& together with an associated sequence of

[ ] ( [3
vertlces‘:v1 ' VZ' cees vn +i}}7 such that consecutive edges ei and

e1 + in the path have a common vertex vy +1 and each edge appears

only once in the edge sequence P.

Given two sets of edges, E, and EZ’ in a graph G, define the

1

symmetric difference as

El@EZ = (]EI1 - EZ) v (E2 - El) .

An alternating path P (relative to the sets E

] and Ez)is a path whose

edges are alternately in (E1 - Ez)and (E2 - El).

Given a graph G, define a reducing path P relative to covers C1

and C2 of G as a path P such that:

(1) P alternates in subgraph CIG) C2 with respect to edges in

C1 and C_., and

2

(2) C1 ® P and C2 7DP are both covers in G.

10




Lemma A.]

Given a graph G, and two arbitrary covers C1 and C2

silbgraph C1 @ C2 can be decomposed into edge-disjoint reducing

of G,

paths.

This result was prc?ved by Norman and Rabin [6]. Construct a
maximal allernating path P in subgraph C1 @ CZ‘ removing the edges
of this path. This produces a new subgraph in which ano.ther maximal
alternating path can be removed. Since C1 and C2 are both covers in
in G, Cl @P and C2 @P are both covers in G, and P is a reducing path.

Theorem 1

Given a weighted graph [G,c] where the minimum cardinality of
any cover is m. Then givenk, m< k'< IEI , there exists a N\ such

that a minimum cover C in [G)\, c - M) is of k - cardinality.

- Proof

Suppose there exists a A, and 5 > o for which all ¢ such that
o< ege< §,
C1 is a minimum cover in Gx e where lCll =k1 , and C2 is @ minimum
cover in G)\ te ! where lC2 I '“-k2 . Further, suppose that k given in the

hypothesis is such that

< .
k1 k<k2

11




Consider the subgraph C1 @ CZ' By Lemma A.1l, this subgraph
decomposcs into edge-disjoint reducing paths. Partition these paths

into three classes:

Class I IClr\PI|=|CZr\PI |+ 1
Class II I_CZr\PH|= |C1r\PH|+1
Class III Ic1 ~ PHII = lc;2 ~ Pml
Class 1

Consider a reducing path PI in Class I.
If
w, (PIr\ CZ) - W, (Pl ) Cl)z 0,

this contradicts the assumption C2 is @ minimum cover in G)\ +

s

fore< &, since C2 @ PI is a cover with (k2 + 1) edges with smaller

weight sum than C_ in G)\ te

2
If

/
- W
W, (P~ C)) - W, (B~ Cy) >l >0,

this contradicts the assumption that C1 i5 @ minimum cover in G)\ o’ for

! is a cover with (k1 - 1)edges with smaller weight

than C1 in all such G)\_e. :

Thus reducing paths of type PI cannot exist in subgraph C1 @ CZ'

e<:A, since C, @rpr

Class 11

If : -
W, (P, ~C))-W, (P, N C)) >ol >0,

then this contradicts the assumption that C2 is a minimum cover in

12




G)H-e , for e <el , Since Cz@ PII is a cover with (k2 - 1) edges with

‘ ] . ]
smaller weight than C_ in G)\+£

- {
9 If W)\ (PHr\Cl) W)\\P

vy
II f\Cz) >A >0,

then this contradicis il.e assumption that C1 is @ mininium cover in

G)\_e, for e <2 , Since CI@PII is a cover with (k1 + 1) edges with
smaller weight than C1 in G)\_c . Thus only reducing paths PII of zero
weight can exist in G)\‘

Class III

Apply the same arguments as for Class II, except extend ¢ to € < 5,

to show that only reducing paths PIII of zero weight can exist in G)\‘

Thus there must be exactly (k2 - kl) reducing paths of type PII
in G)\‘ all cf weight zero, and while any number of paths of type P

II1
may exist in G)\‘ all must have weight.zero.

Thus in grapn G)\‘ the weights of C1 and C2 are identical, but by

implementing combinations of reducing paths of types PII and PIII'

different covers of all k-cardinalities, for

can be obtained, and will have this same minimum weight in G)\‘

13
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