
DOCUMENT RESUME

ED 029 679 52 LI 001 535
By-Cunningham. Jay L.; And Others
A Study of the Organization and Search of Bibliographic Holdings Records in On-Line Computer Systems:
Phase L Final Report.

California Univ.. Berkeley. Inst of Library Research.
Spons Agency-Office of Education (DHEW). Washington. D.C. Bureau of Research.
Bureau No- BR-7-1083
Pub Date Mar 69
Grant- OEG-1-7-071083-5068
Note- 307p.
EDRS Price MF-$1.25 HC-$15.45
Descriptors-`,Qtomation. Bibliographic Citations. Catalogs. Computer Programs. Computer Storage Devices.

Costs. *Information Processing. Information Retrieval. Information Storage. Information Systems.
Libraries. Library Technical Processes. Search Strategies. Systems Development

This report presents the results of the initial phase of the File Organization
Project. a study which focuses upon the on-line maintenance and search of the
library's catalog holdings record. The focus of the project is to develop a facility for
research and experimentation with the many issues of on-line file organizations and
search. The first year has been primarily devoted to &fining issues to be studied.
developing the facility for experiment, and carrying out initial research on the issues.
Achievements involved: (1) obtaining equipment: (2) programming and testing an initial
software system. and then expanding it to supply access to the central processor
from two different mechanical terminals at two remote locations: (3) planning for
acquisition and incorporation of an existing machine file as well as bibliographic
records which require original conversions: (4) developing software for data base
preparation and for file handling and access: and (5) initiating analyses on issues
such as optimum length of search keys. Appended are six reports which cover
specific aspects of the project and an article entitled *The Organization. Maintenance
and Search of Machine Files." reprinted from *The Annual Review of Information
Science and Technology:2 volume 3. (JB)

FINAL REPORT
Project No. 7-1083

Grant No. OEG-1-7-071083-5068

A STUDY OF THE ORGANIZATION AND SEARCH OF BIBLIOGRAPHIC HOLDINGS

RECORDS IN ON-LINE COMPUTER SYSTEMS: PHASE I

By

Jay L. Cunningham
William D. Schieber

and
Ralph M. Shoffner

Institute of Library Research
University of California
Berkeley, California 94720

U.S. DEPARTMENT OF HEALTH, EDUCATION it WELFARE

OFFICE OF EDUCATION

THIS DOCUMENT HAS BEEN REPRODUCED EXACTLY AS RECEIVED FROM THE

PERSON OR ORGANIZATION ORIGINATING IT. POINTS OF VIEW OR OPINIONS

STATED DO NOT NECESSARILY REPRESENT OFFICIAL OFFICE OF EDUCATION

POSITION OR POLICY.

March 1969

The research reported herein was performed pursuant to a grant

with the Office of Education, U.S. Department of Health, Educa-

tion, and Welfare. Contractors undertaking such projects under
Government sponsorship are encouraged to express freely their

professional judgment in the conduct of the project. Points of

view or opinions stated do not, therefore, necessarily represent

official Office of Education position or policy.

U.S. DEPARTMENT OF
HEALTH, EDUGATION, AND WELFARE

Office of Education
Bureau of Research

TABLE OF CONTENTS

List of Figures

Acknowledgments

I. INTRODUCTION AND SUMMARY

A. The Research Problem 1

B. Research Method 3

C. Significant Findings and Achievements. .

D. Future Directions

II. FACILITY ESTABLISHMENT 7

A. General 7

B. Fquipment 12

C. Computer Programs 14

D. Data Base Development 20

E. File Structure 21

III. THE BIBLIOGRAPHIC RECORD 35

A. General 35

B. Record Content 37

C. Record Form 38

D. The Representation of Typographical Characters48

E. Logical Similarity of Bibliographic Records. 60

IV. DATA BASE DEVELOPMENT

A. General 75

B. Strategies of Conversion 77

C. Translation of Existing Machine Files, . 85

D. Data Base Production Procedure 94

E. Issues of Cost and Quality 107

75

References 115

TABLE 07 CONTENTS, (Cont.)

Laza

APPENDIX I: AN ALGORITHM FOR NOISY MATCHES IN CATALOG
SEARCHING, By James L. Dolby 117

APPENDIX II: USER'S GUIDE TO THE TERMINAL MONITOR SYSTEM
(WS), By William D. Schieber 137

APPENDIX III: A DESCRIPTION OF LYRIC, A LANGUAGE FOR
REMOTE INSTRUCTION BY COMPUTER, By

Steven S. Silver 145

APPENDIX IV: ILR PROCESSING RECORD SPECIFICATION, By
Jay L. Cunningham 163

APPENDIX V: SUMMARY OF RECORD FORMATS FOR DATA BASES
TO BE CONVERTED TO ILR PROCESSING RECORD
FORMAT

1. Santa Cruz Record Format 193

2. ILR Input Record Format 207

3. Experimental On-line Mathematics
Citation Data Base 263

APPENDIX VI: SAMPLE SIZE DETERMINATION FOR DATA
CONVERSION QUALITY CONTROL, By
Jorge Rodriguez 271

APPENDIX VII: THE ORGANIZATION, MAINTENANCE AND SEARCH
OF MACHINE FILES, By Ralph M. Shoffner
(Published in the Annual Review of
Information Science and Technology, v. 3,
edited by Carlos A. Cuadra. Chicago,
Encyclopaedia Britannica, Inc., 1968.
pp. 137-167) 277

-

Figure

LIST OF FIGURES

Title LEI

SECTION II: FACILITY ESTABLISHMENT

1. Schematic Diagram of Project Facility 8

2. File Generation Process 17

3. Blocking Strategy 24

4 Block a Non-Keyed File 25

5. Uniqueness of Author Identification 30

6. Distribution of Number of Fields of Length N 31

7. Schematic of Multi-level File Structure Linkage . . 33

SECTION III: THE BIBLIOGRAPHIC RECORD

8. Functional System Components Related to Different

Record Formats 36

9. MARC II Elements Deferred in File Organization

Project Data Base 39

10. File Organization Project Data Elements Not

Defined in MARC II 40

11. Coding Sheet - Monographs 46

12. Keying Blocks of Text 52

13. The Tentative Harvard List of Diacritics 56

14. Alphabetical Index of Diacritic Codes 57-58

15. Proposed Single Keying Codes Compatible with

Transliteration Schemes for Modern Cyrillic 59

16. A Spelling Equivalent Abbreviation Algorithm for

Personal Names (Dolby Version 1 - Variable Length). 65

17. Equivalence Class Computation (Manual) 66

18. Equivalence Class Computation (Computer) 68

19. Abbreviation Algorithm for Personal Names

(Version 2 - Fixed Length) 69

Figure

LIST OF FIGURES (Cont.)

Title Page

SECTION IV: DATA BASE DEVELOPMENT

20. Distribution of DupliLate Titles as a Function

of Publication Date:

A. Titles in English Language 86

B. Titles in Languages Other Than English That

Use a Roman Alphabet 87

C. Titles in Languages That Use a Non-Roman

Alphabeb 87

21. Conventional Conversion Compared to Automatic

Format Translation and Computer-Assisted Editing. . 89

22. Plow Chart of Personal Author Field Algorithm . . . 91

23. Flow Chart of Title Field Algorithm 92-93

24. Summary Chart of Data Base Production . 95

25. On-line Search for Duplicates 97

26. Verification of Match 98

27. Data Preparation and Transcription 100

28. Computer Edit, Correction Cycle, and File Update. 101

29. Diagnostic Printout, Part 1 - Logical Field

Listing 105

30. Diagnostic Printout, Part 2 - Card Image Listing. 106

31. Schematic of Quality Control Subsystem 108

32. Relation of Initial Keying Cost to Accuracy . . 113

33. Acceptability in Terms of Accuracy and Cost for

Three Price Quotations for Keying 114

APPENDIX IV: ILR PROCESSING RECORD SPECIFICATION

1. Indicator for Main Entry - Personal Name 166

2. Storage Record Organization 166

- iv-

LIST OF FIGURES (Cont.)

Title Page

3. Schematic of ILR Storage Record, INFOCAL Version 1 . 168

4. ILR Processing Record - Segment 1, Leader 169

5. ILR Processing Record - Segment 2, Record Directory 172

6. ILR Processing Record - Segment 3, Fixed Length

Data Elements 173

7. Variable Field Tags and Data Elements 177

8. Values for Indicator 1 in Applicable Fields 180

9. Sub-Field Delimiter Codes 184

10. Proposed Variable Field Header 188

APPENDIX V-1: SANTA CRUZ RECORD FORMAT

1. Sample Catalog Record in Original Santa Cruz Format. 195

APPENDIX 11-2: ILR INPUT RECORD FORMAT

1. Storage Record Components & Organization

2. Structural Patterns in MARC Record Data Definition

3. Example of Input Format Mapping Into Processing

Format

208

211

213

4. Example of Tab Card Decklet - ILR Input Fonuat . . 217

5. ILR Input Record Format

& Codes

6. ILR Input Record Format

& Codes

7. ILR Input Record Format

& Codes

8. Input Code Values Table

9. Input Code Values Table

(Series Traced Same)

10. Input Code Values Table

(Subject Added Entries)

- I-Fields: Data Elements

- A-Fields: Data Elements

- B-Fields: Data Elements

for Type

for Type

219

224

226

of Main Entry . 232

of Added Entries

for Type of Added Entries

=i IMO

233

234

LIST OF FIGURES (Cont.)

Figure Title Page

11. Input Code Values Table for Type of Added Entries

(Other Added Entries) 236

12. Input Code Values Table for Type of Added Entries

(Series Traced Differently) 238

13. Presence of Fields in an Input Record 239

14. INFOCAL Default Initializations 241

15. Default Settings for Indicator 1 243

16. List of Tag Numbers Which are Currently Repeatable. 244

17. Revised Field Coding: A-Fi3lds & B-Fields 246

18. Table of Valid Symbols 250

APPENDIX V-3: EXPERIMENTAL ON-LINE MATHEMATICS CITATION

DATA BASE

1. Cards Punched for One Paper Published in Vol. 66

of the Communications in Pure and Applied Mathe-

matics 268

ACKNOWLEDGMENTS

This report comprises the results of the first year of
effort under a grant, 0EG-1-7-071083-5068, from the Bureau of
Research, Office of Education, U.S, Department of Health, Educa-
tion and Welfare. The content and conclusions presented in the
report pertain to the period July 1, 1967 - June 30, 1968. The
University of California also provided contributory support.
M.E. Maron, Associate Director of the Institute, acted as Prin-
cipal Investigator and Ralph M. Shoffner as Project Director.

For constructive criticism concerning goals and methods, and
for otherwise inaccessible information, we are especially grateful
to the members of the project's Consultant Advisory Panel. The

members of this Panel were: Mrs. Henriette D. Avram, Library of
Congress; Richard Dougherty, University of Colorado Libraries;
Anthony Hall, UCLA University Research Library; Foster Palmer,
Harvard University Libraries; Charles Payne, University of Chicago
Libraries; Charles Stevens, Project INTREX, Massachusetts Institute
of Technology; and Allen Veaner, Stanford University Libraries.
Valuable consultant support in the development of an algorithm
for searching through "noise" was also received from James L. Dolby,
of The R & D Consultants Company, Los Altos, California.

Our campus Computer Center has been most helpful in planning
and obtaining the system needed to support the project. Our
initial monographic data base was supplied through the cooperation
of Donald Clark, the University Librarian of the Santa Cruz campus,
without whose help we could not have had access to such a large
file. The data base of the citation index in mathematics was
supplied by Mary Tompkins of the Institute's Los Angeles staff.

We would also like to give credit to the individual contri-
butions made by staff members and research assistants of the
Institute, in particular Harriet Zais, who performed statistical
studies of the data base and who supervised the pilot testing of
the input coding system; and Thomas Hargrove, who designed the
scheme for conversion of foreign language materials and much of
the procedure for the data base production. Technical studies
were produced by Jorge Rodriguez and Naresh Kripalani. Programming
support was rendered by Arjun Aiyer, Regina Frey, John Reinke and
Steve Silver. Input editors who got the original conversion task
started were Mrs. Ann Giglioli, Diane Kristell, Lucy Liang,
Elizabeth Poole, Janet Redd, Roberta Roberts, and Douglas Romney.

Finally, we would like to thank the Institute office staff
who were instrumental in the physical preparation of this report:
Patricia Barkeley, Linda Child, Kitty Colburn, Betty Geer,
Marion Gordon, Judith Sutliff, and Connie Torii.

.64.

J.L.C.
W.D.S.
R.M.S.

I. INTRODUCTION AND SUMKARY

A. THE RESEARCH PROBLEM

1. Prologue. This is a period of major intellectual and

technological change in libraries. Among the many aspects of

this change, the applicatior of computers to library operations

is of recognized importance. Much effort is currently being

directed toward such use of computers. For example, there are

a growing aunber of files of bibliographic records which are

being provided in camputer processable form by both public and

private organizations. Most forecasts of the library of the

future include on-line computer use as a key feature of the

library's operation. Attractive as such forecasts may appear,

there are numerous unresolved and often ill-defined problems

which must be solved before on-line systems can be effectively

applied to the acquisition, maintenance, and retrieval of

recorded information. This report presents the results of the

initial phase of a research study, the File Organization Project,

which focuses upon the on-line maintenance and search of the

library's central apparatus of bibliographic control, the cat-

alog hdldings record.

Machine files are being sought and created as a feasible

solution to the problem of growth and complexity in the catalog,

as a response to the need for new and expanded services, for

their speed and convenience in access, and to replace human labor

in generating products such as book-form catalogs and bibliog-

raphies. What are the dimensions of the task of acquiring,

maintaining and using the very large data base? Why is it

desirable or even necessary that library files be accessible

on-line? What techniques can be recommended as efficient, eco-

nomical and acceptable for organizing and searching large files

in operating contexts?

2. The Economic Im lications. This question about tech-

niques can be expanded into other questions. What methods

should be used to encode record content in the various parts

of the system -- input processing, storage, output? What

should the file structure be, that is, how will the records

be mapped irto the physical storage and how should they be

related to each other? What should be the form and capability

of the search language? What post-retrieval analysis and

processing capability should be provided to the system 'user?

To select appropriate techniques in answer to these

questions one must face all of the issues of evaluation which

are common to information retrieval research, that is, by

some method the cost cf the system must be considered in

- 1 -

relation to its performance. Leaving aside the problems of

establishing the system cost, there remain myriad problems to

be resolved in establishing the performance of the system. For

example, how does one measure the effect of a system upon its

user? Can recall and relevance or similar such measures be

applied? Should one consider in the performance of the system
the "non-users" of the system, or the questions that for various

reasons are not or cannot be asked of it? There are only certain

aspects of performance that can be measured. The problem then

is to establish a relationship anong them in order to provide

a suitable measure; for example, how can system capacity, actual

use, average response times, response time variations, etc., be

combined in a performance measure? These questions can be in turn
expanded into still other questions. However, though they are

but a sample of the questions which do not at present have

operational answers, they are among the most important and they

form the context for our study.

On-line time-shared computer systems present many desirable

features for library use: parallel operations in multiple
locations, response times to complex queries measured in minutes

or seconds, reduction in the manual labor required for the

maintenance of catalogs, etc. At the same time, man-effort is
required to design and implement these systems. Further, the

operating costs of an on-line system are high when compared to

those of a computer system organized for conventional batch

processing. That is, a batch processing operation can always
be organized in such a way as to be less expensive to operate

than an on-line system, on the condition that no cost be
assigned to the processing delay incurred by the batch system.

An estimate of the operating cost of an on-line system
for a library can be obtained by considering the major cost

factors of the system: the terminals, the mass-storage for
the bfbliographic records, and the computer time used. The

costs of terminals and the interfacing equipment necessary
to attach them to the central processor vary widely depending

upon type of gear, total number of terminal units, data transfer
rate, distance fram the processor installation, and the like.
For purposes of rough estimation, however, a reasonable system

operating cost lies in the region of $2000 per terminal per

year. Due to the size of the bibliographic record and the
character of present auxiliary mass storage devices, the cost
of storing the data equtya1ent to that of one catalog card
ranges from $0.10 per record per year, to $0.60 or more. The

cost of the central processor allocated to the terminal network

during the time it is in use is similarly highly variable. At

present, these costs range from $2 per terminal hour to $10 and

beyond.

A library with 100,000 master bibliographic records to be

accessed in an on-line mode might need 20 terminals or more with

an average utilization of 1200 terminal-hours per terminal per

year. Thus, the following minimum costs for such a configuration

can conceivably be incurred:

Terminals 20 @ $2000/yr. $ 4o,000

Mass Storage 100,000 recs.

Capacity @ $0.30 ea. 30,000

CPU Time 20 term. x $12001

Charges term. yr. @$2.00/
term. hr. 48 000

TOTAL $118,000/yr.

Due to the fixed sizes of the various central processors

and auxiliary storage units now available, it is most likely

that the actual charges would be higher still. In any event,

it is clear that such costs are significant. There will be

real monetary impact on libraries resulting from improvements

in the processing capacity of the computer system employed to

maintain and search the bibliographic files.

Should libraries undertake the development of such systems?

The question has in a sense become moot in that there are already

so many on-line system development efforts. Rather than attempt

to answer this very broad question, the File Organization Project

is directed toward an analysis and understanding of specific

issues of organization and search if an on-line system is used.

Such understanding should then contribute to the establishment

of the most approprate blend of camputer services for a given

library.

B. RESEARCH METHOD

The focus of our efforts in the File Organization Project

is to develop a facility for research and testing, one within

which experimentation with the many issues of on-line file

organization and search can be performed. In this first phase

of the project we have been concerned primarily with the design

of the facility and the implementation of its initial components.

In addition, to ensure the development of an adequate facility

we must establish central examples of the crucial issues which

are to be investigated. Thus, the research method has had the

following points: to define precisely the issues which will be

studied, to develop the facility within which such issues can

be studied, and to carry out the initial research on these

issues.

MM. 3

if

Our approach has been to organize both the tasks necessary
to the establishment of a usable facility for testing, and the
tasks directly assigned to attacking the experimental issues in
such a way as to keep the tasks manageable and within reasonable
boundaries, hopefUlly without sacrificing the quality of the
ultimate results of the project. The elements of the facility
have been decamposed into separate units for ease and speed of
accomplishment, particularly where programming is involved. The

research issues have been compartmentalized and broken down into
isolable units so that their respective dimensions and sub-pro-
blems are delineated for the staff member assigned as problem
solver. An insight into the effectiveness of this approach can
be gained by a simple enumeration of the significant findings
and achievements of the first year.

C. SIGNIFICANT FINDINGS AND ACHIEVEMENTS

1. Facility for Experiment.

a. General. Equipment was obtained and an initial
software system was programmed and operated on a test basis to
demonstrate capacity to search (by author only) a file of 75,000
catalog records on-line. The system was expanded to supply
access to the central processor fram two different mechanical
terminals at two remote locations on the Berkeley campus. Mass
storage equipment with capacity in excess of 200 million char-
acters was proaured. The necessary adaptation units for inter-
facing with remote terminals were installed at the campus
computer center to support the activities of the project. Plans
were laid for extension and upgrading of the system to handle
the complex requirements of visual (CRT) terminals, now on order.

b. Programs. File structure design was specified
and programmed for an initial configuration of multi-level
index files linked to the master data base, using manufacturer
supported software. Search strategy development was initiated
and preliminary programming of Boolean search programs commenced.

c. Data base. Plans were completed for acquisition
and incorporation of an existing machine file and for the incor-
poration of bibliographic records requiring original conversions.
We expect that within a year our data base will contain in
excess of 120,000 records.

A logical record format for input conversion of catalog
records not in the existing machine file was designed and a
program written to accomplish conversion to a unitary storage
format.

A storage format was designed having special features to
handle special characters and diacritical marks in any language
likely to appear in textual data, yet retaining convertibility
to and from the Library of Congress' MARC II communications
format.

2. Analytic Issues. Analyses were initiated on a number
of the most pressing issues, in particular the optimum length
of search keys, e.g., author name. This analysis will be used
in establishing index files and in guiding users in the minimi-
zation of keyboarding time and effort. This analysis represents
the first step in deciding how to allocate storage for both the
master file and the index files, based on the various critical
factors such as frequency of access, equipment access time, and
storage costs.

User aids were under development, in particular an algorithm
which will serve as the core of a sub-system C.esigned to process
and assist the terminal user in overcoming the effects of spelling
errors. Analysis of these aids will follow their development.

D. FUTURE DIRECTIONS

The general purpose of setting up the facility is to per-
form analyses and experiments in on-line file organization and
search of bibliographic records. Experimental facilities are
often needed to collect data and test hypotheses. In the present
instance such a facility is especially important in order to
record information about factors such as terminal user behavior
and the frequency of recurrence of requests, as well as to test
our analytical models Against actual system operations.

This facility will enable us to experiment with users who
have real needs for information and thereby to relate our
research to its operational implications. To accomplish this,
we will place terminals in areas where they can be used by
library patrons. Both the placement and the period of use of
these terminals will be determined by the experiments planned.
It is anticipated that these terminals will remain in place for
at least three months to allow time for patrons to learn how
to use them.

A number of conditions must be fulfilled before such "live"
testing can be undertaken. The three most important are the
realization of the basic search and retrieval system organized
around the visual (CRT) displays and the basic internal record
formats, the internal (to ILR) experimental use of this system,
and the mcdification and improvement of the system prior to its
experimental use by library patrons. We expect that at least
a year and a half will be required before making the system
available for experiments with users outside the Institute of

5

Library Research. This is because of the need for time to make

the system relidble and its use easy enough for it to be accepted

by library users. Thus, the second phase of the study will con-

sist primarily of a continuation of the "setting up" activities

concerned with the facility and the associated support components,

such as software for data base preparation and for file handling

and access. In addition, a considerable amount of development

and analysis is needed with respect to the following:

To expand the internal processing format to accommodate

augmented bibliographic records for non-monograph

materials.

To implement a data compression method to convert back

and forth from internal processing format to mass

storage format.

To expand the formats to encompass Cyrillic records.

To implement a reasondbly efficient program system as
a foundation for the ready development of user

interface programs.

To implement user assistance routines such as those
providing proper name equivalence classes.

To implement storage allocation algorithms based upon
quantitative analysis of the file parameters.

Such a list can be indefinitely expanded. However, all

of the dbove have been given at least initial effort during

the current phase aLd we hope to accamplish work on all of

them during the coming phase.

II. FACILITY ESTABLISHMENT

A. GENERAL

A facility for experimenting with the on-line organization
and search of bibliographic records, requires equipment, pro-
grams, and data bases. Work has been performed during the first
phase to plan this facility and to begin development of it. In
addition, some analysis using the facility has been initiated.
An overview of the facility and its major components is sche-
matically depicted in Fig. 1

1. EsuLipmalL We plan to implement the facility on two
closely related sets of equipment: the IBM 360 model 40 com-
puter system with mass storage and cathode ray tube display
terminals at Berkeley; and the IBM 360 model 75 with similar
peripheral equipment at Los Angeles. At present we are utilizing
two mechanical terminals in Berkeley. The Los Angeles system
has IBM 2260 displays.

2. Programs. Initial programming has been performed on
many aspects of the system. We will continue this programming
and implement it on both computer systems. The following are
examples of programming that has been done or that is planned:

a. Monitor system. At pre:Lent, monitor systems to
provide terminal operations are operative at both Berkeley and
Los Angeles. The systems are not designed to the same conven-
tions, however. In order to implement common programs td
operate within these systems, we plan to modify the Berkeley
monitor system to bring it into conformance with the more ad-
vanced Los Angeles monitor.

b. Data base programs. Programs are under development
both to provide the data base (both records and file structure)
and to search it. These programs are now being used for mono-
graphic files and will be used for journal article records.
Initially the file access programming has been restricted to
the development of a basic search alld retrieval system utilizing
temporary formats for monograph and journal article records.
Following this, we will extend the system to utilize our internal
storage format. This format has been fully defined for mono-
graphic records. However, it will be extended to include other
types of records in the file structure.

Programming of file handling operations will continue
throughout the study. As soon as the basic search system is
in full operation, however, we will make it available for
internal (to ILR) use in the data base development effort. We
will augment the existing computer programs, dividing the
effort between the internal file handling operations and the
user interface procedures. To guide part of this augmentation,

7 -

FIGURE 1:

SCHEMATIC DIAGRAM OF PROJECT FACILITY

IDATA BASE CREATION & MAINTENAMMO

LC MARC tapes
Santa Cruz tapes
etc.

FILE HANDLING & SEARCH
(ON-LINE MODE)

?bpec. Proaessors
/Utilities (Level II)

COMPUTER CENTER_

Data
Base

(Mass
Storage)

Computer

L Mlimo 1111

,,

OMNI. =YON

REMOTE LOCATIONS

Terminal IUter

Terminal IUser

Terminal IUser

DATA BASE
PRODUCTS,
ANALYSES,
ETC.
(BATCH MODE)

(e.g., limit

liograph es
etc.)

Files çor
Data Ei-
changq

Commiications Format)

- 8 -

kr

tr,

L.

we are now developing a quantitative analysis of the effect of

file structure on retrieval operations. We will then develop
programs to set up the alternative file structures which our
analysis indicates to be of interest.

As soon as our basic search and retrieval system is fully
available, we will monitor the performance of the system users.
In this monitoring process, we will keep a precise machine-
readable record of the two-way interchange between the user
and the system. We are now planning how to keep and identify
this "historc record so that useful analyses can be performed.

As an example, one such investigation to be carried out is
that of determining common errors which are made in keying
bibliographic data. In addition to using the terminal system
to obtain data on error, we will study our off-line data base
input operation to analyze the nature of errors which are made
in conversion keying. Following this we will develop automatic
correct4.on routines and study their behavior. While the cor-
rection routines would have to be combinatorial in nature f
they are intended to be exhaustive, it is our hypothesis that
certain types of errors occur with considerably higher frequency
than do others, and therefore useful heuristic routines can be
developed even though they may ba partial in their effect.

Such analyses are expected to lead to the development of
routines which can assist the non-expert user in obtaining the
materials he desires. Therefore, we anticipate programming
these routines and incorporating them as part of the search
system available to the general user.

We anticipate that large amounts of programming will be
required to provide the user interaction programs. To support
this programming we are developing the LYRIC processor (at

Los Angeles).* This processor will facilitate the rapid develop-
ment of the user interface programs. PILOT, a similar processor,
is being programmed in PL/1 at UC, San Francisco. Although we
anticipate that LYRIC will be preferable, we will experiment
with both processors.

c. Analytic programs. To support our research, many
special-purpose programs will be required. The analysis of error
mentioned above will require programs of this type. Others will

be concerned with analysis to investigate the issues discussed
in the Introduction, such as record encoding, file structure, etc.
These will continue to be defined Lnd developed throughout the
study.

3. Data Base Progress and Plans. The data base develop-
ment, initiated during the current phase, will be continued.
The monograph records will comprise the largest portion of the
data base. As an initial data base for the project, we have

*See Appendix III. 9

utilized 75,000 catalog records which were available in machine
form from the Library of the University of California Santa Cruz
campus, and 40,000 records of the Mathematics Citation Index
available at Los Angeles. These records have been utilized in
their origiLal format. However, we have been developing record
formats to be used on a continuing basis for the facility. The
record formats have been developed to be compatible with the
Library of Congress' MARC II format in order to provide the
greatest likelihood that the records and programs will be of
use to others. The results of this work are presented in
Section III.

We will continue to develop our data base in order to
obtain a file of a size that can support meaningful experimental
work with regular library users. Our objective is to obtain
an on-line file of at least 500,000 bibliographic records.
During the second phase of the project we hope to complete the
establishment of a file containing a minimum of 1/4 million
records, from three sources: by obtaining MARC II records, by
original input, and by converting the Santa Cruz records.

We have developed procedures for original input of mono-
graphic records. We are considering a production plan which
utilizes both on-line terminals for the search of the existing
data base and off-line terminals for the large scale keying of
original input. We have defined a statistical quality control
procedure for maintaining the accuracy of this input process.
During Phase II we plan to test, modigy and re-test bcth the
extraction and the original input procedures.

Because there are a number of existing bibliographic files
in different machine formats, we have been investigating the
problem of utilizing such files through the method of routines
for automatic conversion of such files to a common format. Our
first task has been to develop computer routines for converting
the Santa Cru'd., format (a relatively simple format) to the MARC II
format (a complicated format). Through of dubious practical
value unless the file to be converted is of considerable size (we
believe it to be in excess of 100,000 records), the problem is of
considerable research interest since its basis is the recognition
by computer of the components of a bibliographic entry.

Though data base development is not one of the central
concerns of our study of on-line file organization and search,
there are significant problems involved in such development,
and the inescapable requirement to develop a data base has
immersed us deeply in these problems. BecAuse many of these
problems are of general interest but are not dependent upon
the rest of our work, we have dealt with our solutions to them
separately in Section IV.

4. Ana1ysis of File Structure. An analysis of file
structure was initiated recently. Our objective is to create

- 10 -

an analytical model of the retrieval system, which will de-
lineate the relationships between access time, the cost of

direct-access storage and the strategy for allocating space.
Initially this study will be limited to trade-off analyses
between a few variables. We will then test the model by
organizing the file in the manner indicated and check the out-

come of the predictions. This model will, for example, provide
information on when it is more economical to divide a logical

index file into two or more physical index files, in mass

storage. To support this work, we have observed the relationship

between the length of the beginning portion of an identification

key (e.g., author name) and the degree of uniqueness this
identification provides in the retrieval of records from the

Santa Cruz file. For certain purposes, the key might ultimately
be composed of portions of several fields of the record (see

Chicago search code*).

In order to make it possible to experiment with alternative

file designs, we must have flexible programs which are capable

of maintenance and retrieval without re-programming even though

the file structure is modifiede To accomplish this, we will
continue the attempt to develop a structure which is capable of
containing a wide range of content, and from which any record
or sequence of records can be retrieved by using a common re-

trieval routine. The programs have been designed to be para-
meter-driven, so that changes in file structure may be easily

accommodated.

5. Other Analyses. We have barely begun to identify and
study the central issues associated with on-line organization

and search. Among these, the grouping of records or parts of
records by similarity or other relations pertaining either to

subject content or to user need, has received growing emphasis

in the Project.

We have programmed the first of a set of routines for the

equivalence class coding for author names, title words and other

substantives (reported in detail in Section III).

Associative indexing by statistically-generated means, as

a technique for providing improved retrieval, can be effective

for material which is indexed in depth, i.e., with a large aver-

age number of assigned index terms per document. We plan to
investigate the utility of such associative techniques on mono-

graphic records, which by present cataloging practice have a much

lower average number of assigned index terms per item - i.e., sub-

ject headings per document. As part of this study, the subject

headings in the file will be analyzed for characteristics such as

distribution by date of publication, co-occurrence, and the num-

ber of headings per document.
*Payne, Charles T. "Tagging Codes." Chicago 5

University of
Chicago Library, Feb. 1967. (unpublished report) various pagings

- 11 -

Our work on formats tailored to the various system functions,
i.e., input, processing, etc., leads naturally to concern for data
compression techniques. Our concern here is to provide efficient
representations of the records when they are in the mass storage
device. We plan to initiate a task to analyze the applicability
of known data compression techniques in terms of their encoding
and decoding effort together with the resulting amount of space
required to represent bibliographic records.

B. EQUIPMENT

1. Characteristics. In selecting a system for our exper-
iments with bibliographic data, we must trade off the following
six, desirable characteristics:

a. The maximum amount of large-capacity, random -access
storage capacity that can be attached to a central processor.

b. The least difficulty in attadhing remote terminals,
of both the mechanical and cathode ray -Wipe (CRT) variety.

c. Machine logic capable of handling the maximum
number of individual characters in order to facilitate handling
of the wide range of typographic dharacters encountered in
bibliographic data.

d. That to the utmost extent possible, system software
especially in the realm of physical I/O, be provided by the
manufacturer of the machine.

e. That this full system be available on a time-shared
basis during as much as possible of the regular working day.

f. That it be the most common system in use for
bibliographic data, in order to share software.

In choosing between the two systems available to us at the
Berkeley campus computing center (an IBM 360, =del 40 and a
CDC 6400), the IBM 360 provided the better compromise among this
set of desired characteristics.

2. Main Frame. The central proceSsing unit (CPU) of our
360/40 has a 128K byte memory. Of this, the Operating System
takes approximately 30K. The remaining core storage is divided
into two partitions. In one of these (approximately 20K in size),
utility programs are run (such as tape copy operations). The
remaining 80K bytes are available for other applications. It

is in this larger second partition that we operate when on-line.

3. Mass Storage. The concept of the on-line system nec-
essarily involves the use of random-access mass storage. Three
types are generally available for 360 attachment: drum, disk,
and magnetic strip (also called data cell). Drum storage was
rejected became of its limited capacity. Magnetic strip storage

- 12 -

.1

.1

was considered, but rejected for use during Phase I of the pro-

ject because of persisting hardware failures. (These problems,

we understand, are currently being corrected.)

Given our requirement for very large randam-access storage,

the IBM 2314 disk storage facility appeared particularly satis-

factory since it is a supported unit in terms of IBM software

and has high operational reliability. This device provides a

maximum storage capacity of 233 million characters. However,

the device's effective capacity is approximately 150 million

characters since some space is required by the system in order

to store the operating system programs and control data. The

access time (i.e., the average time required to position the

access device to the desired record) for the device is 100 milli-

seconds. The data transfer rate (i.e., rate at which data is

moved between the device and core storage) is 312,000 characters

per second.

4. Terminal Equipment.. In our experiments, we have planned

that inquiries made to the file will be processed over remote

terminal equipment. This means that processing programs must

operate in a tele-processing environment where several terminals

are busy at the same time. Since the transfer rate of characters

over phone lines to a terminal is relatively slow, the computer

central processing unit (CPU) while servicing one terminal is

waiting virtually all of the time. It is this waiting state or

unused CPU time that makes time-sharing with multiple terminals

an attractive alternative, since with the attachment of a few
additional terminals the CPU is utilized more fully5 with little

noticeable increase in delay time to individual terminals.

Current1y, we have two mechanical terminals attached to the

360: a Teletype model 35 ASR and an IBM 2740 communications

terminal. Data transfer rate to each terminal is approximately

12 and 15 characters per second, respectively. Each has a pri-

vate line connection over voice-grade telephone lines. The

teletype can read and punch paper tape, a feature useful in

situations where data can be prepared before going on-line, in

order to obtain the maximum input rate when on-line.

Mechanical terminals, as we have indicated, produce hard

copy output which in some instances may be desirable. However,

in our early work it has become evident that the slowness of a

mechanical terminal as it types out, character by character, the

results of an inquiry, does not make it particularly attractive

for most library retrieval applications. Therefore, we are now

planning to connect CRT terminals for inquiry and display of

search results. As a shared task among several ILR projects

we have completed an exhaustive inquiry into the characteristics

of currently available CRT's. A. major drawback at this time is

that, with the exception of extremely expensive terminals, the

maximum number of displayable characters is under 100, a number

not nearly sufficient to meet our capacity requirements for the
13 -

display of bibliographic data. Even so, the high volume of data
output associated with bibliographic search makes it desirable to
incorporate CRT's as soon as possible, in order to facilitate
testing on a basis superior to that achievable with the mechan-
ical devices.

C. COMPUTER PROGRAMS

Three levels of programs are required for the facility we
are developing. On the first and most general level is the
monitor system which provides for remote terminal operation.
The second level programs carry out the various operations of
file generation, organization, maintenance, retrieval and dis-
play. The third.level contains programs which analyze the per-
formance of the system, to guide its development. The second
and third level programs do not necessarily operate in an on-line
mode.

1. Terminal Monitor System.

a. Introduction. During the course of the year we
have developed an experimental Terminal Monitor System (TMS)
which is designed to facilitate both communication between remote
terminals connected via phone line to the Camputer Center's
IBM 360/40, and data transfer between the 360/40 and the attached
disk storage facility. All files are maintained on ILR's private
disk facilities and are not accessible by other 360 users.

TMS has a time-sharing design which allows multiple terminals
to operate seemingly at the same time. It allows the user to
carry on a limited dialog with the computer, and will wait for
the user to enter his response before continuing processing.
TMS operates as a user slibsystem of the manufacturer-supported
Operating System/360 (OS) in a partition of core storage of
approximately 80,000 bytes.

TMS performs five general functions:

(1) Text entry: the establishment of new files which can
later be processed.

(2) File search: retrieval and display of records fram
within id.n existing machine file.

(3) Text edittm: addition, replacement, and deletion of
Character strings, individual records, and blocks of records
within an existing file.

(4) Campilation of source programs: conversion to execu-
table instructions from source language (FORTRUT, PL/1, and 360
Assembler) entered in the manner of text.

(5) Interface to special user-written routines: capability
for terminal user to load and execute special-purpose programs.

The logical structure of TMS is built around a set of two
supervisory routines which maintain control over a series of
processing programs (called processors). It is the processors
which perform the file handling functions listed above.

b. Supervisory routines. One of the two supervisory
routines (TXIO) has the function of coordinating input/output
operations to the terminals attached to the system. It does
such things as directing message transmission to the proper
terminal, and the analysis of which user has sent a message
when one is received. It also performs error recovery and
recording (when a transmission error has occurred), character
code translation on both incoming and outgoing messages (since
each different type of terminal has its awn character code),
and message attribute and length analysis.

The other supervisory routine (BASE) is the overseer of
both TXIO and the set of processors. Its function is to bring
a processor into core storage when needed by a terminal user.
After loading a processor, the BASE routine delegates control
of the terminal to the processor, which then communicates directly
with TXIO to accomplish terminal input/output. If more than one
terminal requests the same processor for simultaneous use, the
BASE routine does not load another copy; both terminals use the
same copy. The arrangement which allows sharing of a processor
in this way is called "re-entrant coding". The amount of core
storage in use at any one time is thus a function of the number of
terminals on-line, the space required by each terminal's pro-
cessor, and the degree to which terminals are sharing processors.

Processing programs are of two sub-types: 1) utility pro-
cessors, which perform general functions and are used by many
users and 2) specialized processors written by terminal users
for their own file handling applications.

c. Utility processors. Currently there are seven util-
ity processors. The specific instructions for existing processor
use, showing the formats of both TMS messages and terminal user's
responses,appear in the Terminal User's Manual (See Appendix II).
The first three processors are used for general file handling
operations. The last four are used in the development of new,
user-written processors. The processors are:

(1) Text processor. Enables the terminal user to create
a new file. Each record in this file is 80 characters in length,
of which 76 characters may contain user data and 4 characters
the key by which a record can be retrieved.

(2) Search processor. Used to display one or more records
from an existing keyed file. It has the ability to search on
the full key or on a portion of a key.

- 15 -

(3) Egit_processor. Used to edit existing files. It is
possible to perform replacement, addition, and deletion functions
on character strings within a record. In addition, one can also
add or delete entire records.

(4) AsseMbler language processor. Here a source language
file created as text is given over to the 360 Assembler to
generate object (machine language) instructions. This, and the
following PL/1 processor, are used to generate new programs which
may become part of the processor library.

(5) PL/1 Language processor. Used to generate object code
from PL/1 source language stored as text.

(6) A link processor. Has as its input object code (gen-
erated from either the PL/1 compiler or the Assembler) and gen-
erates a new (or replacement) processor.

(7) LYRIC. A processor for user interaction routines,
which is not yet fully implemented (See Appendix III).

d. S ecialized processors. Currently there are
approximately ten specialized processors. The most important
of these, the file handlir programs, are discussed below.

All processors exist as load modules, and are maintained as
individual members of a partitioned file. Each processor is
planned to be re-entrant, so that multiple use does not require
separate copies of a given processor. A terminal user writing
a specialized processor must adhere to several conventions: He
must observe standard calling conventions, and must provide error
recovery which returns control directly to the calling program
(the BASE routine). Terminal I/0 is accomplished through calls
to special interface routines which are link-edited into the
user's routine during execution of the LINK processor.

2. File Handling Programs. Two classes of programs have
been written which have as their focus the development and use
of the project's data base. The first class is concerned with
the generation and maintenance of the master file and its
associated index files. These programs are batch-oriented and
are not operated as part of the Terminal Monitor System. The
second category consists of programs which are terminal based
(i.e., processors) and which are concerned primarily with re-
trieval from the existing bibliographic files.

a. File generation programs. Fig. 2 shows the file
generation process. The names in parentheses identify computer
routines required. These file generation programs provide for
both original input and extraction flam existing machine files.

- 16 -

/- ./

1(

Original InpAt
ILR Input Fo t

FIGURE 2: FILE GENERATION PROCESS

Diagnostic
Printout

K FileTranslation

//&nta
Cruz Fl e
riginal
orma

Translate

Input
Conversion
& Edit
Routines

anta
Cruz Fi e
(ILR In ut Format)

(INFOCAL)

ncorre ed
Transact on
File (I R Input Format)

TRANSCOF)

d &

Proof No

Read Error

Errors Flund

Diagnostic
Marked for
Re-keying

Certify

Correcte
Transact on

Create
ILR Input Format) Updated

Transaction
(INFOCAL File

Correction
Typing

Off-line
or
On-line
(TMS: EDIT)

Certified &
orrected
Transact

ecs.) ecords

(Carryover)

(Processing
For_ t)

(Tape or Disk)

TO UPDATE
OF MASTER FILE

The most important of the programs written for this purpose
is the one called INFOCAL, which converts data presented in input
format to internal processing format. INFOCAL is written in PL/1.
Unfortunately, it is so large it is very slow. For continuing
operation, it appears that an assembly language routine will be
required. This program is designed to do several things before
a record is actually placed in the master file. First, every
new record entering the system may, as an option, be printed out
on an edit listing, so that it can be proofread for errors in
the text. Second, the program does a certain anount of syntac-
tical checking of field codes and other control information,
and prints diagnostic messages on the edit listing. At the sane
time the program also places a copy of each new record in a
transaction file written on disk storage as a keyed file.

Corrections are written on the edit listing by the proof-
reader and changes to the file may be keyboarded either on-line
via remote terminal, using EDIT, the edit processor available
under the TMS, or off-line for processing in a batch-oriented
update routine. If a record has no further corrections, it may
be certified either off-line or fram the terminal as ready to
be transferred from the transaction file to the master file.
On the next successive execution of
marked as certified will be written
added to the master file. Routines
cycle are now in the design stage.

the INFOCAL routine, records
out and are ready to be
to accomplish this maintenance

Records carried over from the existing transaction file,
which are not yet certified, must go along with new records into
the new (updated) transaction file.

The file translation program, TRANSCOF, converts the existing
Santa Cruz data base fram its original record format to the ILR
input format (that is, the record structure accepted by INFOCAL).
This routine, still under development, is being written in assem-
bly language as a result of our operating experience with PL/1.
We planned to produce our input format so that if there are
changes to the internal format, only INFOCAL will need tobe
changed. Additional discussion of TRANSCOF is provided in
Section IV.

b. Specialized retrieval processors. In order to
begin experimentation with terminal-based search algorithms,
we placed 75,000 records fram the Santa Cruz file on the 2314
disk facility. These records are still in the original fornat,
not yet having been converted to ILR internal format. To retrieve
records, we have written a primitive processor (SCAT) which allows
a terminal user to type an author's name over the terminal, and
to receive a list of documents indexed under that name. Although
we have not generated them, other search keys could be included
readily. However, we did not include them in this initial test
because Boolean cambinations of the terms would not be possible
with SCAT. - 18 -

For the user, the search technique is quite simple (and,

of course, limited). The contents of the file can be displayed
by typing an author's name. Retrieval will be made of all
records for which the left-most characters of the key match
those characters input over the terminal by the requestor. For
example, if the requestor typed the string "GARN" when asked to
place his request, the program would retrieve all records whose
key begins with these characters. Currently, three authors

match: "Garn, Stanley M.", "Garner, Wendel R.", and "Garnett,

Arthur Campbell". If he had typed "GARNETT", he would, of
course, match only on "GARNETT, ARTHUR CAMPBELL".

The master Santa Cruz file contains full bibliographic
entries, When printed out on the terninal each citation occupies
from five to twelve print lines. It becomes evident very quickly
that, given a mechanical terminal, some means must immediately
be constructed to enable the user to limit the amount of material
which is typed out before him. Display of a full record of
average size (400-500 cha-acters) consumes about 1-1/2 minutes.
Ten of these would requile 15 minutes. For the future, it would
thus appear that mechanical terminals will not be suitable for
on-line retrieval of bibliographic data.

Because of such time delays, we have initially provided two
mechanisms for limiting output. One of these is to request the
user to indicate how many entries he will accept in response to

his search request. The other is to allow him to display index
entries only. An index entry contains only one line of data
which gives the full key (full author name) and the address of
the master file entry (its sequence number). Upon completion
of the index file search, the user may then request full cita-
tions by record number.

Although the SCAT processor is quite limited, it has pro-
vided us with immediate experience which has been usefUl in
determining the types of retrieval capability to be incorporated
in future search programs. Further, we now have had experience
with multi-level file structures of the type we will be using
throughout the study.

3. Analytic Programs.

a. General purpose. The third level contains the

programs concerned with the analysis of the system - its content,

structure and operation. These "third level" programs are not

a component part of the system providing file maintenance and
search; rather, they operate independently to obtain information
to guide the project.

Although no programming on this level has yet been accom-
plished, we anticipate that some of these programs will be used

- 19 -

quite generally. For example, one kind of general program will

be for extracting information from a history file containing

the records of past system use. This history file will be

maintained as a basic part of our terminal handling program.

In this way we will accumulate a history file which can be used

to make the same sequence of inquiries against file structures

which have been developed using different organizing strategies.

In these reruns the results of the searches will not go out over

the terminals. Instead, we will record the time for the storage

access portion of the query processing in order to obtain com-

parable timings fur the different structures. We will use this

approach to study factors such as prediction of relative fre-

quency of access to the records in the file, as a basis for

reorganizing the files in order to minimize average access time

for the individual query.

b. Special purpose. To support our research, many

special purpose programs will be required. Examples of these

programs are those to analyze the frequency of co-occurrence

of index terms in the data base; the time pattern of requests

for file information; and the effects of a file compression

technique on storage space and encoding -.decoding time.

Programming of such routines will continue throughout the

project.

D. DATA BASE DEVELOPMENT

1. MonograDh Data Bases. To begin the study, a brief
survey was performed to determine the availability of library

catalog files which might be used. While there are numerous
such files, those of UC Santa Cruz library, Stanford University
Undergraduate Library and LC MARC I* seemed most complete and
accessible. Arrangements were made to obtain all three files.
However, the Stanford file has not yet been obtained.

Before our work with the MARC I records had begun, the
Library of Congress announced the MARC II format. Therefore,
wa decided to organize the major work of the project around this
new format and in the interim until it is available to concen-
trate on the use of the Santa Cruz file. A brief description
of the Santa Cruz format is provided in Appendix V. Section .III

of our report provides the results of our work which concerns
the design of these records. Section IV provides a description
of our resolution of the problems associated with the develop-

ment of a large database.

2. Other Data Bases. In addition to the task of acquiring

existing files of monographic materials, a further goal of the

project is to study the problems of integrating and searching

files of records for other materials, e.g., journal articles,

*The Institute at Los Angeles was a participant in the MARC Pilot

Project experiment. - 20 -

'`

music, etc. The availability of bibliographic machine files
on the level of the journal article is placing increasing
pressure upon the library community to provide computer-based
access to these articles. Thus the issue of organization and
search of such files is as pressing as that for monographic

material. At the same time, it does not appear to require a
uniquely different approach to its solution. Therefore, we
are including journal article maohine files in the study.

Although these records necessarily vary in content from
that of monograph catalog records, compatible record formats
may be developed. This is a goal to which the Library of
Congress MARC Project has addressed itself in the development
of a common machine format for bibliographic and other library
materials. That is, the MARC II format is designed as a data
exchange medium, with a structure intended to have "wide appli-

cability to all types of bibliographic data" and to be "hospita-

ble to all kinds of bibliographic information." For "any given
type of item, e.g., serials, maps,, music, etc., the components
of the (MARC II) format may have specific meanings and unique
characteristics."

Whether it will be possible to so integrate the different
records remains to be seen. However, we are working on the
integration of a citation index file which is a non-monograph
data base. Work has been carried on at UCLA to extend the
Citation Index in
The nature of the
in the Appendix V
to report.

Mathematics, which was initiated at Princeton.
UCLA data base and its preparation is described

. At this time, we have no significant results

E. FILE STRUCTURE

1. Inverted File Structure. In the first phase of this
study we began a detailed examination of file structure. Early
work in this area indicates that the way in which files of
bibliographic information are structured profoundly influences
both the time required to gain access to a record in the file
and amount of storage space consumed by the files. In a large
file it is evident that one cannot conveniently make a sequential
search of the entire file in order to satisfy a unit request for
information. As a result, files usually have been structured
in what is called an "inverted structure". In this structure
all logical records are held in a "master file" with auxiliary
files (called index files) created which allow quasi-random
access into the master file.

*Avram, Henriette D., John F. Knapp, and Lucia J. Rather. The

MARC II Format: A Communications Format for Bibliographic Data.
Washington, D.C. Information Systems dffice, Library of Congress,

1968. p. 10. 7 21 -

It.is possible to define a master file structure from which
records could be retrieved by some given portion of it, called
a key: for example, author. However, since in most computer
systems a record hes only one access point, its address, we
must define additional files which provide multiple access
points into the master record. These additional files, the
index files, contain records which point to and allow us to
locate and access the information contained in master records.

In oux system the full bibliographic record comprises the
master record. The content and format of each master record
is described in detail in Section III. The full set of master
records will be called the master file. The content of an
index record consists of the index term (the access point), and
pointers, one to each master record which has been indexed under
that particular term. One record in an author index file might,
for example, be:

1

SMITH, JOHN W. Al A2 A
3

A4 j

In this record, SMITH, JOHN W., is the access point to the
index records and Ai, A

2'
A
3
and A4 represent pointers to four

different master records which have been indexed under this
access point. Because index terms have varying numbers of
documents indexed under them, the length of the logical index
record is variable.

For our initial operations, this is the type of structure
we have been using. However, this approach is not adequate to
our purposes in developing a system for experiment. During the
course of the study we will want to maintain maximum flexibility
in the operation of the system. We will want to split logical
records, create new index files, partition them, relocate records
and files, and make new groupings of records. Such manipulations
will allow us to explore the relationships which exist between
access time and storage cost. For this reason we are developing
a more general system employing the basic file structure de-
scribed belay. As a part of this we are writing a set of
utility retrieval routines which operate independently of file
content.

2. Random-Access Device Characteristics. In our experiments
we are using a large-capacity disk facility to store the bibli-
ographic data files used. Since the way the file is structured
is, in large part, determined by the methods with which data
can be physically stored on a disk, it is necessary to discuss
briefly the ways in which information can be stored on and
retrieved from a disk device.

- 22 -

a. Storage modes. Data is recorded on a disk In
recording surfaces called tracks, all of which are of equal
capacity in the 2314 facility. Movement of data written onto
or read from a track is done in units called "block" (also
referred to as physical records*). Normally, the size of a
block cannot exceed maximum track capacity. We have now
experimented wdth two general types of file: 1) keyed files
and 2) non-keyed files.

A keyed file is one in which each logical record can be
retrieved by supplying some unique portion of it called a key.
In general, each record may have only one key which must be
identified at the time the file is created. Non-keyed files may

be retrieved only by address. This address may be the actual
position of the record on the device (that is, the track number
where the record resides), or it may be a relative address (that

is, its position relative to the beginning of the file). Actual
addresses are rarely used, since this technique makes a file
unmovable. Relative addressing allows the file to be moved to
any position within the device.

Whether keyed or non-keyed, the very large size of our files
and the relatively high 'cost of direct-access storage, make it
desirable that the data be placed on the disk in as compact a
form as possible.

Disk space is used mast effectively when logical records
are blocked to maximum track capacity, and all blocks are of
fixed (i.e., equal) length. This is because fixed-length blocks
involve less overhead both in terms of access time and storage
space than do variable-length records. Blocking to maximum
track capacity also involves less device overhead since each
block must have a given amount of system control information
stored with it.

To illustrate: Track capacity of a hypothetical device
is 3000 characters; and each block must have 50 characters of
s!rs tem control information stored with it. If we allow only one
block per track, we must talocate 50 of the 3000 characters for
control information. This leaves us 2950 characters for the

block of data. If we allay two blocks per track, the system
requires 100 characters with 2900 remaining for the two blocks
(1450 characters in each). Fig. 3 shows figures for differing

lengths.

*As distinct from logical records; i.e., logical units of data.

- 23 -

FIGURE 3: BLOCKING STRATEGY

Track. capacity = 3000 dharacters
System overhead = 50 chars./block

Number of Total Total Space Size of

Blocks per Allocation Remaining Each

Track for System for Data Block
Overhead

1 50 char 2950 char 2950 dhar

2 100 2900 1450

3 150 2850 950

4 200 2800 700

_ I

To summarize: All blocks, whether in a keyed or non-keyed
file, should be bcth fixedrlength and blocked to maximum track
capacity.

Since most bibliographic records are variable in length,
and we wish to use fixed-length blocks, we are adopting a
technique which translates variable-length logical records into
fixed-length blocks of maximum track capacity. A different
strategy is required for keyed files than for non-keyed files.

b. Non-keyed files. This structure involves sequential
placement of the variable-length logical records into a block
sized buffer in main storage; when that buffer is full, the
entire block is written to disk. In order to retrieve a logical
record we need to knaw: 1) in which block it begins, 2) its
relative position within the block, and 3) its length. In the

example in Fig. 4, a total of sin: complete logical records
(denoted by Ln) and part of a seventh record have been mapped

into two physical blocks.

Block 1

Block 2

Positional
Scale

FIGURE 4: BLOCKING A NON-KEYED FILE

L1 L
2

L
3

1---L
3

(cont'd) L
4

Partial
Record

1 1 1 1 1 1 1 1 1 1 1 1

1 1000 2000 3000 4000 5000 6000

The first logical record (L1) is of length 2000 and can be

retrieved by first reading block 1, then locating position 1

within the block. Similarly, the second logical record (L2)

can be addressed by Block 1, Position 2000. It has a length

value of 1500 Characters. Note that it is necessary to break

some records across track boundaries, so that one logical record

may actually be contained in two (or possibly more) blocks.
Therefore, when a logical record is broken across track boundaries,

a signal must be inserted to indicate whether or not the record

continues into the next block.

Thus, any variable length logical record can be retrieved

by supplying its block (or track) number, its position within

the block, and its length, which together constitute the address

of the record.

c. Keyed files. To map variable-length keyed files
into fixed-length keyed format*,we separate each logical record

into two components. The first component, a fixed-length, keyed
record, points to the variable length data portion. For example,

the two records:

KEY 1 DATA 1

KEY 2
IIIMIMIREC1

DATA 2

*The operating system data management facilities currently require

the index entry in a keyed file to be fixed-length, specifiable by

the user.
- 25 -

would each be split into two records. The first set is the
keyed records:

KEY 1 ADDX1

KEY 2 ADDX
2

ADDX is a pointer field that contains the address of the variable
length data portion.

The second set of records contains the data portions:

1.4 DATA ifATA
2

ADDX ADDX

These are placed in a variable-length, non-keyed file and treated
as discussed above.

3. Multilevel File Structure and File Linkage. Central to
an understanding of a generca retrieval routine are the concepts
of record segmentation, file segmentation, and linkage. An index
file may, for example, be composed of two distinct files which
are linked together. The mechanism which links two segments
together is called a pointer. In the simple inverted file
structure, the poiaters in the index record connect to addresses
of master records. In the same way, two distinct physical files
may be linked to form a single index file. Similarly, a master
record itself might be divided into two or more parts, one part
containing those elements of the logical record which are used
frequently (e.g., main entry, title statement, imprint and call
number) and the other portion(s) of it which are required with
lesser frequency (bibliographic notes, etc.) Thus it is possible
in each case to have a record which has both content and a pointer
to another record, or portion of a record. We shall call the
individual records which are linked together (by pointers)
linkage segments. The linkage segment is conceptually independent
of its logical content. This file structure is similar to that
of a linked list file. In the conventional version of the latter
file structure, the master records themselves are usually not
segmented.

Why should one wish to subdivide a master record? One can
answer this question both at the level of our requirement to

- 26 -

develop a system for experimentation, and on the level of the
design of an operational on-line bibliographical retrieval
system. Taking the latter first, it is most likely that the
variable length records will be segmented into fixed block sizes
in order to simplify the problems of input/output and storage
allocation. If one places the most frequently used parts of the
record in the first segment then following segments will not
need to be obtained as often as they would if the allocation to
segment were independent of use. Thus, the capacity and response
of the system would be improved. This improvement would be even
more dramatic if two random-access storage facilities are used,
with the high frequency elements allocated to the one which is
fast and expensive, while the lower frequency elements are
allocated to the other slower and less expensive unit. Such
storage of segments on the basis of access time of the device
we call "horizontal segmentation".

One can also perform "vertical segmentation", that is,
within the file, the records themselves may be arrayed by
frequency and divided into groups containing the most-used and
least frequently-used records. Here Again one could place the
most frequently used records on the fast device and the least-
used on the slaw device.

The answer for our facility derives fram the comments just
made. These remarks indicate a conceptual solution to the
problems of file organization. However, it is a solution which
raises a host of questions about the relation of segment sizes,
element frequencies, access time and cost, and storage costs.
These questions can only be answered by analysis and experiment.
Therefore, we wish to set up our computer routines such that
varieties of segmentation can be accommodated in order to be
able to carry out relevant experiments.

For our initial experiments we have chosen a simple file
structure. It consists of:

a. A master file consisting of records stored without keys.

b. Index files for author, title and sUbject. Each index
file consists of two sub-files.

(1) a keyed file (called the "access file") in which the
access point is the key and the data field contains a single
pointer to the second sub-file.

(2) the "address file", a non-keyed file containing a
variable number of pointers to the master records which have
been indexed under the term represented in the access file.

To illustrate: Four master records have been indexed under
the term CARTOGRAPHY.

-27-

The entry in the access file for this term would be:

CARTOGRAPHY ADDX

where the term CARTOGRAPHY occupies the key portion of the

record, and ADDX is the data portion containing the pointer
to the corresponding record in the address file. Logical records

in the access file will be of fixed length, while those in the

address file will be variable length.

The address file entry for this term will have four fields
ONIMIN11

containing the addresses of the master records. The format will

be:

I All.

A
ADDX

where the shaded part indicates other data contained in the
track, R is the record,and A

l'
A
2'

A
3

, A4 are pointers which

contain the addresses of the four master records.

4. Uniqueness of Identification as a Function of Key Length.
A significant issue in the study is the number of characters which
are required to uniquely identify a record held in the system.
This is important for several reasons. nrst, the more characters
which must be input through a terminal, th ::? longer the encoding
process becames and the less capacity the terminal will have for
handling requests. Second, the mcre characters which must be
transmitted by the terminal, the greater the chance for keying
error becames. At best, these errors will be automatically
corrected,* but invoking correction routines will reduce the
capacity of the system even further. At worst, these errors will
initially cause improper retrieval and thus a partia/ failure of
the system. Finally, the expected key length for uniqueness
could be used as a basis for index record segmentation. The
objective of the system, therefore, should be to provide search
based on enough characters in the request key to provide a
reasonable amount of uniqueness of the resulting search output,
but with as few characters as possible in order to reduce the
prdblems of keyboard time and keyboard error.

We have analyzed the amount of uniqueness of author names

*For example, by use of equivalence class coding techniques
discussed in Section III.E.

- 28 -

as a function of the number of characters of input provided.
The program used distributes the number of catalog records per
unique search tag of given length for author keys. The results,

taken from a sample of 20,000 author names, are presented in
Fig. 5. We plan to run this analysis on title and subject key
fields as well, in order to determine the proper length for those
search keys. At present we are implementing our search routines
so that a search key of any length can be used by the searcher.

Consequently, our search strategy is independent of search key
length, which enables us to experiment with keys of various
lengths.

The segmentation of an index file may be performed on the
basis of key length. In that case, the distribution of the
length of the index terms, or keys, determines the effect of
segmentation. In preparation for the analysis of the effects of
segmenting the index files, we counted the lengths of the call
number field, the author field, and the subject heading fields
in the Santa Cruz machine file. Fig. 6 contains the distributions
of the field lengths for those elements.*

5. Linkage Control in Retrieval. The retrieval routine
needs to provide access to logical records from two types of
files: keyed and non-keyed; in addition it must be able to
distinguish between data which is content and pointer data. If

a record contains pointer data the routine must know whether or
not to go on retrieving subsequent records in the linkage sequence.
In some cases presentation of information contained in the pointer
field will be enough to satisfy the control routine.

The pointer field establishes a linkage between two logical
records. The pointer field will contain the following information:

A. Type of file pointed to; whether it is keyed or non-keyed.

B. Type of data in the record pointed to:

1) Pointer data only.
2) Content data only.
3) Pointer and content (pointer first).
4) Content and pointer(s) (pointer information

carried as a type of content, e.g., key
itself encoded as the address).

C. The name of the file in which the record resides.

*Source: Compiled from computer runs made November 1 to Novem-
ber 6, 1967 against Santa Cruz catalog on SCAT 10, 11, 12.

Compiler: Ralph M. Shoffner. Capital letters are counted as

two characters. Note that none of these counts have been veri-
fied and they may contain errors.

- 29 -

FIGURE 5:

UNIQUENESS OF AUTHOR IDENTIFICATION

Number of Characters in Identification Tag

7 8 10 11 12 13 14 15 16

2866 3175 3635 4364 5399 6319 6895 7288 7496 7656

2 971 1030 1140 1290 1515 1628 1732 1765 1768 1770

3 492 518 544 605 655 683 699 692 678 670

4 333 335 347 358 343 346 323 322 324 323

5 184 183 176 200 201 203 204 201 194 190

6 148 150 152 152 164 142 134 128 128 127

7 98 92 96 89 91 88 82 81 82 79

8 60 63 63 62 65 55 56 55 51 51

9 78 73 73 66 58 47 47 42 41 39

10 49 50 45 46 42 38 36 32 30 30

11 39 42 29 34 26 21 19 15 15 15

12 27 28 30 29 23 18 21 18 18 16

13 29 26 25 26 23 26 21 23 22 21

14 24 21 22 19 19 13 11 10 9 11

15 20 19 18 18 11 12 13 14 13 11

16 16 18 14 13 11 10 7 6 8 6

17 8 11 11 14 12 12 12 12 9 9

18 9 8 9 13 13 9 7 5 5 5

19 18 16 14 13 9 9 6 5 5 5

20 9 9 9 12 8 9 9777
21 14 10 11 9 6 2 1 1 1 1

22 10 7 9 8 9 4 4 4 4 4

23 7 8 8 3 2 2 2 2 2 2

24 4 5 4 5 1 10000
25 8 6 5 5 3 1 2 2 2 2
26 5 4 3 3 4 5 4 3 3 3

27 3 3 4 5 2 2 2 2 2 2

28 5 5 3 3 3 1 3 2 2 2
29 6 6 5 3 3 2 1 1 0 0

30 7 4 3 1 1 0 0 0 0 0

Notes:

Table entries are the number of unique identification tags

having a given number authors with the same identification tag

(specified by the row value) for the given tag length (specified

by the column value). The identification tag consists of the

beginning characters of the author field in the order surname,

forname, etc.

Source: 20,000 authors in alphabetical order

Compiler: Naresh Kripalani, March 6, 1968
30

FIGURE 6:

DISTRIBUTION OF NUMBER OF FIELDS OF LENGTH N

Sub ect %
0 0.0
0 0.0
4 0.1

65 0.1
172 0.2
462 0.5
924 1.1

1154 1.3
1197 1.4

1434 1.6
1662 1.9
1676 1.9
1651 1.9
1778 2.0

1976 2.3
2072 2.4

2330 2.7
2346 2.7
2369 2.7

2552 2.9
2835 3'3
3327 3.8

3095 3.6
3186 3.7
3499 4.0
2979 3.4
2844 3.3
3046 3.5

3036 3.5
2656 3.0
2458 2.8

2332 2.7

2422 2.8

2372 2.7
2085 2.4

1691 1.9

1588 1.8

1674 1.9

1314 1.5

1196 1.4

1224 1.4

1190 1.3

1031 1.2

1003 1.2

g44 7.

Length Call No. % Author %

1 1 0.0 0 0.0

2 0 0.0 16 0.0

3 0 0.0 36 0.1

4 0 0.0 33 0.1

5 0 0.0 37 0.1

6 5 0.0 50 0.1

7 14 0.0 136 0.2

8 79 0.1 64 0.1

9 312 0.5 155 0.2

10 1870 3.2 103 0.1

11 4770 8.2 249 0.4

12 9234 15.8 221 0.3

13 12322 21.0 444 0.6

14 6614 11.3 953 1.3

15 4877 8.3 1399 2.0

16 5180 8.8 1908 2.6

17 4434 7.6 2339 3.3

18 3717 6,4 2709 3.8

19 2095 3.6 2740 3.8

20 846 1.5 2759 3.9
21 801 1.4 2698 3.8

22 656 1.2 2768 3.9

23 422 0.7 3014 4.2

24 218 0.4 3165 4.4

25 77 0.1 3145 4.4

26 6 0.0 2972 4.2

27 0 0.0 2837 4.0

28 0 0.0 2664 3.7

29 0 0.0 2745 3.9

30 0 0.0 2826 4.1

31 0 0.0 3145 44
32 0 0.0 3311 4.6

33 1 0.0 2965 4.2

34 0 0.0 2713 3.9

35 0 0.0 2277 3.2

36 0 0.0 1919 2.7

37 0 0.0 1542 2.2

38 0 0.0 1230 1.7

39 0 0.0 968 1.4

40 0 0.0 969 1.4

41 0 0.0 644 0.9
42 0 0.0 573 0.8

43 0 0.0 512 0.7

44 0 0.0 472 0.7

45 1 0.0 439 0.6

46-56 4 0.0 2513 3.6

Total 54,122 100.1 71,377 100%6

- 31 -

87,216 100.2

D. Length information: if a content record is pointed to,

the rumber of characters in the record; if a pointer record

(typos 1 and 3), this element contains the number of fields in

the pointer record.

In addition, if the pointer is to a non-keyed record, the

pointer field mast contain the record address; that is:

E. Relative block number, and

F. Relative position within the block.

If the pointer is to a keyed file the pointer record must

contain:

G. The key value.*

The format of a pointer field is as follows:

POINTER TO A NON-KEYED RECORD: (NK)

A B

T

-

D
File
Name

Number/
Length

Pos. BLOCK

0 1 2 4 6 8

POINTER TO A KEYED RECORD: (K)

A B

12

File
Name

Number/
Length

KEY

0 1 2 4 6

The length of pointer NK is always 12 bytes; the length of pointer

field K is always 6 plus the key length (KL) of records in the

.file to which this points.

Thus in this arrangement we have a linkage established by

the pointers. The access record points to the address record;

the address record contains multiple pointers to master records.

This linkage is shown schematically in Fig. 7.

*The key length for the file is obtained fram an independent

table called the file table.
- 32 -

FIGURE 7:

SCHEMATIC OF MULTI-LEVEL FILE STRUCTURE LINKAGE

WM./WM

2

A(R) A (R2) A R A(R4)

ACCESS RECORD
(Level 1)

ADDRESS RECORD
(Level 2)

R
3

MASTER RECORDS
(Level 3)

R2

R
1

Possible retrieval

Using
possible to
program is
with a code
or subject
access file
address is

linkages are:

any combination of Master records:

e.g.: R, + (R
2

R
3

R)

the master and index files described above, it is
show the steps in a utility retrieval program. The

supplied with the key name of an access point, along
indicating whether the name is of the author, title,
class. A search on key is performed in the indicated
. If and when a match occurs, the data from the
read into core storage.

- 33 -

At this point it is possible to provide the user with
information which may be usefUl in satisfying the search request.
It is possible, for example, to indicate how many master records
have been indexed under the name, or to list the addresses of
the master records. Otherwise, the processing continues and,
using the addresses of the master record(s), the blocks contain-
ing them would be read into core storage, and the information
transferred to the requestor at the on-line terminal.

-34-

III. THE BIBLIOGRAPHIC RECORD

A. GENERAL

Although record format and file structure are different
problems, there are overriding considerations which caused us to
devote considerable effort to the identification of record content
and form in the first phase of the project. Among these reasons
were three which are goals of the Project:

(1) To develop methods of converting machine files of biblio-
graphic data both from manual catalog data and existing machine
files;

(2) To devise techniques for processing the content of
machine records via search routines, using actual data bases for
realistic testing;

(3) To make the data base being established as a research
vehicle for the Project, serve as a usable, available source of
records both to other organizations and in practical applications,
e.g., a computer-produced book catalog. This is particularly
important in view of the large costs associated with the develop-
ment of the data base.

Although we often refer to bibliographic records as if they
were homogeneous objects, they vary greatly both in 3:..)rm and con-
tent. Particularly in a data processing system, records which
refer to the same external item (such as a book) may assume radi-
cally different forms as they are transformed through the stages
of input, processing, storage or output. Fig. 8 shows the major
functional components of a data processing system, each of which
may have different, often conflicting characteristics dictating a
different desirable form of record, independent of its content.
The use of a single record form throughout the system would mean
that none of the conflicting requirements would be effectively met.
In addition, the form of a record is very important to the file
organization project if we are to meet our goal of providing a
system within which experimentation can take place. A computer
works entirely with the form of the data. .For example, if it is
to be possible to allow the author field of a record to contain
either the author's name or a code standing for his name in an
author authority index, the form of the records must be such that
this difference can be signalled to the computer programs so that
appropriate conversion can take place before processing or output.
Thus, where a highly flexible system is the objective, record form
and file structure are interdependent.

In a similar manner, we cannot divorce the record form from
its content. That is, we wish to develop a system capable of
handling records with content ranging from that of the traditional
catalog card through those of index entries for journal articles,

35

FIGURE 8:

FUNCTIONAL SYSTEM COMPONENTS RELATED TO DIFFERENT RECORD FORMATS

Printout tions

to those of augmented records containing abstracts, user comments

and perhaps, full text. In order to assure that our system is

properly designed, we must consider this range of content as we

establish the various record :orms.

In considering the form of the records to be handled, the

questions must be broad and their answers must be quite precise

if we are to achieve an open-ended facility that is capable of

reasonably efficient operation even though in an experimental

environment. Thus, we must determine not only how to tell what

particular kind of record we have at hand or where a particular

field begins and ends, but also which typographical symbols wo

have chosen to represent, how they are represented, and what will

be done should we choose to represent other symbols at a later

date.

The final part of this section is given over to a discussion

of one aspect of bibliographica3 "closeness", that of the similar-

ity of personal names. This is an extremely important type of

similarity in the handling of bibliographic entries, in that the

author is normally the major access point to a work. Our work is

directed at overcoming errors due to unintended spelling variations

in personal names.

B. RECORD CONTENT

The content selected for the data base does not constitute a

radical departure from current bibliographic standards. That is,

the major portion of the data base is anticipated to have the

content of the traditional catalog card. In addition, some records

will have additional index record and citation content. A few

remarks will summarize the reasons for the decision to employ the

conventional catalog record in a basically unmodified way. To

reconstitute the basic information content of machine bibliographic

records in advance of data on the use of current record content

would change the focus of the project.* Our decision was to orient

the building of a data base toward materials of general and current

usefulness to the research library so that our research results

could be of potential value at an early date. That goal in turn

made it desirable that the content of these records be capable of

representation in a standard format to facilitate interchange of

data among libraries. The decision was made, therefore, to con-

form to the path being taken by the Library of Congress in its

MARC Project which is developing a standdrd bibliographical

record content and format, beginning with monographs, and specif-

ically intended for the data exchange function.

*For the opposite approach, see the reports from MIT's Project

INTREX, in particular the Augmented Catalog Data Base.

-37-

Since the end of the MARC Pilot Project in June 1967, LC has
moved through a phase of refinement and testing of the original
MARC I record, preliminary to implementation of a machine catalog-
ing distribution service to libraries. A "new model" of the format
was issued in the form of specifications for the MARC II format in

the Spring of 1968. Parallel to these developments, ILR had begun
its File Organization Project in mid-1967.

The impact of this decision during the current phase of the
study has been to place considerable stress on the project staff
attempting to keep the Project work abreast of the MARC format

development. We have found that the problems of coding using the
MARC II format are of two sorts - matters of data availability and
matters of difficulty of interpretation. The matters of data
availability are those pertaining to the less predictably useful
elements, e.g., to record whether the book contains an index to
its own contents, or whether it is a festschrift. Without retriev-
ing the book, editors coding catalog records cannot make such
determinations. The other difficulty arises from interpretation
problems, such as identifying sub-types of name headings in the
MARC indicators, assigning of the language codes, identifying some
of the sub-types of subject headings, determining when the main
entry should be regarded as the publisher, and other areas where
trained judgment and perhaps access to the book are mandatory for
accurate data encoding.

At this time, most of these problems appear to be resolved.
However, while accepting the defined content of the MARC record
in genera12, there are some codes or elements, defined by LC,
which we will not attempt to supply and there are others which we
will supply which are undefined by LC, at this time. These content
exceptions are listed briefly in Figures 9 and 10. It should be
noted in Fig. 9 that a distinction is made between a data element
and the corresponding code (e.g., field tag, sub-field delimiter,
or whatever) which identifies the data element. For example, ILR
will not supply the identifying code for Book Number (e.g., in the
LC Call No. field) but the data will be present since it is embedded
in the field. In most cases of exception to MARC II, ILR is defer-
ring both the MARC II data element and its associated identifying
code (if any), e.g., the Search Code, Tag 042.

C. RECORD FORM

1. The Need for Multialt_Ezgalts. We have defined for the
File Organization Project an input record format and an internal
processing format to accept the corresponding input data. The
processing format in turn is convertible both to and from MARC II,
that is, when the record is to be output for transmission of our
locally-converted records on magnetic tape, or when LC-produced
records are to be accepted into our data base. In addition, we
are planning to develop a mass storage format using data compression
techniques. The first question that is sometimes asked is "Why do
you need many formats? Why not just one?"

- 38 -

FIGURE 9:

MARC II ELEMENTS DEFERRED IN FILE ORGANIZATION PROJECT DATA BASE

Data Element
Defer
Identif.
Code Only

Defer Both
Data Element
& Code

FIXED LENGTH DATA ELEMENTS FIELD

Country of Publication X
Intellectual Level X
Festschrift Indicator X
Index Indicator X
Fiction Indicator X
Biography Indicator X

VARIABLE FIELD DATA ELEMENTS

002 Legend Extension X
014 Search Code X
019 Local System No. X
020 BNB Classification No. X
070 NAL Call Number X
071 NAL Subject Category Number X
080 UDC Number X
220 Translated Title X
360 Converted Price X
670 NAL Agric./Biol. Vocabulary X

$ Book Number portion of call
numbers

X

$ Thickness X

- 39 -

FIGURE 10:

FILE ORGANIZATION PROJECT DATA ELEMENTS NOT DEFINED IN MARC II

LEADER

Agency Code for Originator of Machine Record
Date of Machine Record Format Translation
Agency Code for Processor of Machine Record
Type of Source of the Catalog Data
Agency Code for Source
Agency Code for Adaptor of Catalog Data

FIXED LENGTH DATA ELEMENTS FIELD

Literary Group Filing Control
Cancel Title Added Entry Indicator

VARIABLE FIELD DATA ELEMENTS

052 Cataloging Source Legend
091 Copy Statement (Local Card) (Proposed)
570 "In Analytic" Note
580 "Full Name" Note
64o Book Title (as subject)
741 Title Added Entry (Periodical) (Proposed)
9-- NUC Card Number
9-- Superintendent of Doc's. Number
-12 Firm Name Heading (Proposed)
-31 Anonymous Classic Heading (Proposed)

$ Copy No. (in Holdings Field)

40

In many information system applications, only one record for-

mat is defined". For example, a library converting catalog data

for any particular purpose, such as acquisitions searching or book

catalog printing, might operate with essentially one format. The

identifying codes used constitute a single structure applicable

throughout the cycle of computer storage and retrieval.

In contrast to that approach, the Library of Congress and

others are experimenting with multiple formats, viz., in the LC

input record, mnemonic character groupings are used as acronyms

to substitute for the field names (e.g., "MPS" stands for MAIN

ENTRY of the type PERSONAL NAME, sub-type SURNAME). The internal

processing codes, however, are the standard MARC II numeric tags,

e.g., "100." Other libraries, such as Stanford and Toronto, are

testing mnemonic notation for use as query tags, i.e., as identi-

fiers used to interrogate the data base.*

It is our view that although the formats must be convertible

one to another in order to perform functions such as input and

search, the format requirements are dependent upon the particular

function being performed. It would be cumbersome to impose the

same notational solution, e.g., use of an identical mnemonic tag,

throughout all the system's functions. Where large files of

bibliographical records are being processed, the single format

approach is also costly. Instead, workable formats must be con-

structed to meet the requirements of each function separately.**

The following are the functional requirements for record

formats that we have identified.

(1) Input format.

(a) Ease of manual preparation and handling of the source

data (selection, creation of coding sheets, etc.)

(b) Speed and accuracy in human editing of the source

data. The codes should be easy to remember and simple and conven-

ient to insert.

*See, for example: Bregzis, Ritvars. "Query Language for the

Reactive Catalogue." In: Tonik, Albert B., ed. Information Re-

trieval: the User's Viewpoint - An Aid to Design. Philadelphia,

International Information, Inc., 1967. pp. 77-91. (Fourth Annual

National Colloquium on Information Retrieval, May 3-4, 1967).

**For a report on an approach to library file handling, with many

of the record format features of which we find common agreement,

see: Cox, N.S.M. and J.D. Dews. "The Newcastle File Handling

System." In: Cox, Nigel S.M. and M.W. Grose, eds. Organization

and Handlin_ of Biblio ra hic Records b Com uter. Hamden, Conn.,

Archon Books, 1967. pp. 1-21.

(c) As much streamlining as possible of the keyboarding.

The keying should be rhythmic. Awkward strokes should be avoided.

(d) Independence of the format codes and the typograph-
ical dharacter codes from the character set of the equipment, so

that in principle any device can be used.

(2) Processing format.

grouping

variable

(a) Facility in addressing individual data elements,
of data elements into segments, etc.

(b) Flexibility of structure, so that either fixed or
fields can be efficiently handled by software.

(c) Repeatability of any data element and its format

identifier.

(d) Versatility such that the format can encompass
within a consistent structure, the varying content of records for
all types of library materials: monographic, serials, journal
articles, etc., in either conventional or augmented form.

(e) Minimization of character-by-character scanning,
e.g., when preparing foreign language fields containing diacriticals

for output display.

(f) Provision of capability for generation of sort keys
with the minimum number of additional codes placed in the record.

(3) Mass storage format.

(a) Compactness of representation.

(b) Fast translation from and to the internal processing
format.

(c) The effects of translation errors are localized or
correctable.

(4) Communications format.

(a) Processable on computers with different memory and
logic organizations.

(b) Low programming requirement to utilize the record.

There are many other requirements which the formats should
meet. However, these will be sufficient to demonstrate the con-
flicting requirements from function to function. For example, there
is a conflict between the compactness of the mass storage format
and the facility in addressing individual data elements of the

- 42 -

processing format. Also there is a conflict between the processing

format versatility and the ease of coding the input format, since

in general the fewer the things to be remembered the easier the cod-

ing. It is true that even in developing formats for the separate

functions it is unlikely that our initial formats will remain

unchanged throughout the study. However, regarded as a system of

formats, they are likely to be more satisfactory than a single

format would be.

Irrespective of the discrete functional demands placed on the

sequence of formats, they all serve a basic purpose in common:

they emboay coding to identify record element content by "kind"

and, where applicable, by the role played by the data contained

as a value in an element. A name is an example of a kind of data

element. A name may be one of several sub-types and can act in

one of a nunber of roles in relation to a document. For each

relationship it is assigned to a different field which identifies

at once both its kind and its role. (E.g., kind = personal name;

role = added entry, alternate author of document.)

In summary, the coding in the formats performs four important

tasks. It supplies:

(1) Information about the document itself (title, subject

headings, all the conventional bibliographic data).

(2) Information about the file (whether the record is new

to the file, which file it belongs to, record status, etc.).

(3) Information about the record (to uniquely identify it,

to characterize its composition, to distinguish it from other

types of record content, etc.).

(4) Information about fields or about other codes (e.g., that

a name in a field is of a certain sub-type; that a tag is to be

processed under a ,.:ertain condition, etc.).

2. Input Format. A summary of the approach underlying the

development of the input format at ILR can be found in a previous

Institute publication.* The present format is an extension and

elaboration of work reported therein.

a. Background. The input format described here, and

the conversion procedure outlined below (in Section IV) represent

an approach chosen in the earliest stage of the data base prepara-

tion task. The initial work has resulted in a draft coding manual

*Cartwright, Kelley L. and R.M. Shoffner. Catalogs in Book Form:

A Research Study of their Implications for the California State

Library and the California Union Catalo, with a Design for their

Implementation. Berkeley, Institute of Library Research, Univer-

sity of California, 1967. pp. 30-35.
- 43 -

for use in manual editing.* We anticipate that the input format

and the editing procedure will evolve towards greater reliance on

computer-assisted field identification. As our experience is

evaluated, conclusions will be drawn about the feasibility of

placing more emphasis on such computer-set codes. The ultimate,

of course, would be optical scanning of the unedited cards or a

straightforward keyboarding of them. There would be no interven-

tion by a buman editor until after processing by a computer program.

This program would format the record and then print out the results

for post-edit inspection by a human and correction as needed.

Corrections to errors in coding committed by the edit program

algorithms or the input device operator would be input to tho

machine file in the normal fashion. We are currently working

toward this goal with the automatic translation of the Santa Cruz

records. These records have only the most general level of field

coding.

b. Coding scheme. Since most of

variable in length, the bulk of the logical

as variable for the input format as well as

The advantage to this is that in conversion
normal text typing rhythm is permitted than

approach were used.

the catalog data is
fields have been defined
the processing format.
from 3x5 cards a more
if a fixed length field

More than 120 data elements and fields have been identified

in the MARC II format, and
assigned for most of them.
tags and indicators in the

equivalent ILR input tags have been
These are translated into the MARC II
ILR processing format.

The maaner of identifying the variable fields for input is a

key feature of this format. A mixed technique has been employed:

1) insertion of signals which explicitly label the beginning and

end of each field, and 2) depending on the predictability of the

occurrence of fields,.the insertion of an identifying tag. The

first is a uniform symbol for fields which are always or nearly

always present, and which always occur in the same sequence. The

second is a unique symbol applied to those fields which occur in-

frequently or in isolated sequences.

The first type of coding is applied to the body fields (author,

title, etc.). In this case, no field code may be omitted, even

though the field contains no value in a particular record. The

ftblank" field is purged from the input record at the time of its

transformation into the storage record. Ten fields were chosen for

coding by this technique on the basis of previous experience and

sampling. A symbol easily insertable in the dense text of the

*Cunningham, Jay L. Instruction Manual for Editorial Preparation

of Catalog Source Data. Preliminary Edition. Berkeley, Institute

of Library Research, University of Calif,,rnia, 1968. 172 p. Be-

cause this manual is a draft which is expected to be revised it

has been provided only in limited quantity.
- 44 -

catalog card was selected: the slash mark, "/", is used to signal

the beginning of each of the "body" fields. A blank field, e.g.,
absence of a publisher name, would be signalled by two slashes,

"//"

The second type of code is two-character tag composed of a
uniform special character plus a unique alphabetic. When a field

is not present, no tag is inserted. Two series of these codes

were defined. The more frequently occurring fields are coded with

a combined asterisk plus lower case alphabetic (for ease of input

typing). The less frequently found fields are identified by an
exclamation point plus a single character alphabetic. The "*" or

"I" is needed to distinctly identify the tag, otherwise the edit
program could not distinguish reliably between the code letter

and a text letter.

A further conciseness in input coding derives from the con-
vention that the editor need write only the lower case alphabetic
code on the sheet, in the case of the "asterisk" series of tags.
For distinctiveness, the code letter is written in red. The input
device operator must recognize the letters written as tags and
preface each "red letter" keyed with an asterisk. For the other
series of tags, the editor writes out both the exclamation point
and the code letter.

One problem with the brevity inherent in this system is its
lack of mnemonic value. The input tags used in the LC MARC
production system, for example, are more easily remembered than
combinations such as asterisk plus a letter. However, we have
found that a simple checklist supplied to the editor as a ready
reference tool suffices for the majority of tags not quickly
learned through repetitive use.

c. Coding sheet. Information will be input to the
computer from a coding sheet on which a catalog card is reproduced
or attached. The principal reasons for the use of the coding
sheet are: (1) it provides space in which to record certain in-
formation which is not explicit on a catalog card; (2) it provides
space in which the editor of the data can write information which
represents additional data required, or modification of informa-
tion already on the card; and (3) it provides checklist reminders
of some of the coding conventions and options.

In Fig. 11 we present an example of the coding sheet developed
for the project. The fixed field alternatives and certain other
codes are printed at the left and at the bottom of the sheet. The
tags and field names used in the ILR input format are lib-bed in
Appendix V.

3. Processing Format. The details of the processing format
for the File Organization Project data base are described in
Appendix IV. The salient features, and certain significant

- 45 -

FIGURE 11:
CODING SHEET - MONOGRAPHS

rec:ord_
Date 1 Date 2

"7 I

DAYE TYPE:
bc'I2 dates - 2d is CD
130 12 daLes - 2d is t6i-minal

nn IDate not known
bc21----1DAgits missing

bri IReprodireprt.-no dig. out

bs(1Single dt - no digits out

B1BLIO. LEVEL:
Analytic

de! Col1eGtive
arill 'Monograph

dd V Series

CAT. SOURCE:
(Central

eb1 0/Local orig.
cc! 1NUC

ed] _Other

bzi ILC call no. bracketed

JJ ar- -10RIG. AT

ADAPTED AT

MICRO-REPROD.:
Microfilm
Microfiche
Micro-Opaque

CONTENT FORM:
Bibliogs.

Iii;) -Catalogs
hci Indexes
hed Abstracts
hel Dictionaries
hf1 Encyclopedias

Directories
Yearbooks

hi(Statistics
hj(Handbooks
hki

ADDED E2,TRIE3 TYPE:

Serivs traced same

Subjects & subdiv.

Author edor Vtle

Series traced diff.

ash, 10 ild)

100011

A644 Qua7tzation of signals id non-uniform

teps edondo Beach Calif., TRW Space Tech-

6 Glogy

os1964.
I803m",

28 ST
/

Technical LibrarySTrans-

44CTranslation of Kvantovanie signalov s nerav-

nomernym shagom from Blektrosvyaz, no. 10, pe

10-12, 1957.

.10emb#OL-
OW Information measureseat. 02; Si:vials and

sigaaliagdilW nektroavyaz ay. 10, p. 1012, 1957.

-1-1-ratttrlar 4SerierrrVbpace Techaology Labor-
atories, 1m0., Les Aageles.%Techaical Lib-

rary.vrratslatiolaio. 80.).4

4,

HOLDINGS:
Cop.No. Shelf

Call No. ThisLoc. Camnusi-Br. Loc._ . _ - _ .

if IL 11 fir
jb

jc

jd

Total
Copien

d

ri

j e

,GOVT. PUB.:
Federal

,

kb) 1Cal. State____
(kd jCal. Co./muni.

1---

mai (CONFERENCE PUB.

nat 'MAIN ENTRY IN BODY

LITERARY GROUP:

Fa) 1Complete/coll. works

E-

pD----ISolected workf,

pc 1Prolific

E.5171

raf

kciI Interm.t'1
ker-7-10tber govts.

CANCEL TITLE A.E....DICT. CAT.

CANCEL TITLE A.E....DICT.WIV.

044 4/LANG.

100 TTiA N'YLATION YES

ua
IT----1-MAIN ENT. IS SUIV.

11.E1
1MAIN Ei;';'. IS PUii

TYPE OF MA1N ENTRY

WELL .2 2 J.511111
400_400.__J1111

iMo. I Da. Yr.,

differences in form and structure of this format in relation to
the input format on the one hand, and the MARC II Communications
Format on the other hand, are outlined briefly below.

a. Input and processing format differences. There are

two main differences between the input and storage formats:

(1) Default. Certain data elements and codes are set by
default in the edit program and thus do not appear on the coding

sheet or in the external input record. An example is "Type of

Record = a-- language material, printed."

(2) Coding notation. A briefer but flexible form of field
coding (as described above) is used for input rather than three
or four character numeric tags as in the MARC system. The three-

digit MARC II tags and associated codes are set by the INFOCAL

edit program, which translates the input codes into corresponding
internal processing format codes, as it compiles each field by

concatenating the various input codes and elements that make up

the internal record. The input record image is, in general, not

a mirror image (identified by different field codes) of the resul-

tant internal record in processing format. This is because of

1) the default values, mentioned above, 2) separation of parts
of certain tags and elements on the coding sheet for purposes of

editor convenience, which are brought together by the edit program
for the internal record, and 3) the more complex structure of the
internal coding, due to the fact that a record directory method is

used to organize the processing record.

b. Processing format and MARC II differences.

(1) Figures 9 and 10 in Section III.B. listed the few minor
differences between the File Organization record content and
that of the MARC II record. These differences were primarily those

of inclusion/exclusion. The great majority of data elements that
constitute the content of the File Organization Project record will
be identical to those in the MARC II reord.

(2) There are very few differences between the File Organiza-
tion record and MARC II in terns of coding - i.e., the same field
and sub-field tags, delimiters and indicators which identify and

characterize the data element content. In a few cases ILR will
not be able to supply a code for a data element identified in

MARC II, and in a few other cases, we elected to go slightly beyond
the Library of Congress in identifying a field to serve special
requirements.

(3) In respect to record structure, the File Organization rec-
ord is quite similar to MARC II - a fixed length Leader is createe',

with quite similar purpose and content as MARC II. A Record direc-
tory controls the access to the remainder of the record, including
the Fixed Length Data Elements field, which is treated for
programming purposes as if it were a variable field length field.

- 47 -

In all cases, our goal has been to conform to the utmost

extent to the MARC II design, in order to minimize software differ-

ences in routines to handle records of our own creation and records

originating elsewhere, e.g., in the LC distribution service. In this

regard, we expect to do no reformatting of the content of MARC II

records received from LC. A certain minimum addition of data will

be necessary, e.g., a local master record number, local call numbers,

etc. Lastly, a certain amount of reformatting of record structure

is planned, e.g., to move the codes for diacritical marks from

the text of the field to a special field header. This will facili-

tate preparation of the field for display on CRT terminals having

limdted character sets and allow us to begin experiments in which

the very highest quality of display of foreign language text in

bibliographic records is not a significant factor.

These differences can be reviewed in more detail in the

processing format specification in Appendix IV.

In summary, these differences in formats are not considered

to be departures from the concept of a standardized bibliographic

record. The MARC II design is specifically intended to be adaptable

to local needs, and hospitable to non-conventional data and coding.

Standardization does not imply a rigid, uniform set of data elements

constituting a monolithic structure. Instead, through the use of

the mechanism of optional tags and fields, modularity of structure,

and a hierarchical coding definition, libraries can comply with

MARC yet tailor it to specific requirements. The acceptance of

this approach is already perceptible at the national level in the

efforts of the three U.S. national libraries to support MARC II

as a common standard by accommodating certain of their elements

to a common definition, while defining other elements and codes

for their awn particular applications.

D. THE REPRESENTATION OF TYPOGRAPHICAL CHARACTERS*

1. Overview. Once the input format and the storage format

for bibliographic records have been designed, the problem of key-

boarding textual material not represented on the keyboards of stan-

dard devices must be faced. Catalog records contain tremendous

linguistic variety, because certain portions of the data (usually

at least the title) are by convention recorded in the language of

the text or its translation. Thus the conversion system must

embody procedures for keying both non-Roman alphabets and the

diacritical marks, symbols, and other special characters, some of

which may occur in any alphabet. Moreover, provisions must be

made for efficlent representation of such characters when they

are not defined in the internal operating code set of the particu-

lar computer used.

*This section was prepared by Thomas Hargrove, of the ILR staff.

- 48 -

In line with the goal of minimization of the overall cost of
conversion, the basic approach taken was not to secure specially
modified input transcription devices which would contain a limited
number of symbols and special characters beyond the standard set.
It was felt that this approach is too costly at this time and
represents only-a proximate solution to both the input and the
storage of special catalog data. Rather, a more universal concept
was developed, wherein the standard keyboard of a readily available
keypunch or other input transcription device could be used. This

would require only a small amount of extra operator training and
would be virtually unlimited in its potential for expansion to
cover symbols and codes not foreseen at the beginning of the con-
version.

2. General Objectives. The objectives of the physical data
representation technique are:

a. Input device independence. To handle the extensive
set of alphabets and characters, a method must be established to
represent those characters by a notation that can be implemented
on any equipment.

b. Compact internal character set. The codes used on
the input device must be transformed into a concise internal set.
This will be based upon the specific arrangement of the computer
upon which the system is being implemented, but need not be logi-
cally tied to a given machine.

c. Standard interchange code. For data exchange purposes,
such an internal code set could be translated to the ASCII extended
character set being proposed for standard library use by the Library
of Congress.

d. Ease and economy of codinE. The technique developed
at ILR assumes two aspects to the representation problem: con-
version of individual special characters, and conversion of special
alphabet streams (e.g., text in Cyrillic). At input, it is desir-
able to have a mnemonic code for those individual characters not
on the particular keyboard employed. Yet it is desirable also to
have concise codes. For a special character sequence, a control
or escape code is needed to show the beginning and ending of the
sequence and a shift to the original or to another sequence.

Each of these requirements poses special difficulties in the
design of an economical special character coding technique.

e. Transliteration problem. The conversion of special
alphabets (e.g., Cyrillic) could probably be efficiently handled
by having special masks placed on the device keyboard and trained
language operators type the foreign language records using the
special alphabet control signal. The entire record would be stored
in an internal configuration translatable to the external display
repertory desired. For example, on a CRT device, the record stored

- 49 -

in the coded equivalent of Crrillic could be transformed automat-
ically through a table for display in transliterated or Romanized
form on the screen. A printed transliteration table would be
available at the console for the user to convert from the trans-
literated form into his own language. It is recognized that this
approach is fraught with several dangers since there is no unified
agreement in the linguistic world on standard transliteration or
Romanization schemes.

A remaining task is to establish the precise mapping of the
input character codes into the particular computer character set
available in the Project facility. Numerous smaller problems have
also been identified, such as case change, spacing, and a signal
that a character used as a format code has occurred in the char-
acter stream as text ard should be so treated.

The remainder of thissection summarizes the rules for input
keying of either individual special characters or of character
sequences.

3. Basic Assumptions. The assumption underlying the proposed
input codes is that all special characters can be keyed from a
physical point of view. Such an approach night be called the
"printer's" point of view, in contrast to a computer point of view
of subsequent encoding of characters economically in storage, or
to a user's point of view of the semantic or logical meaning which
the characters serve to express.

A printer, without knowing the subject, is able to set char-
acters by knowing only their physical sequence and alignment in
text. A keying operator, similarly, should be able to keyboard
codes for the physical shapes and alignment of the same characters.
In this approach, the codes typed would not depend on the operator's
having to know the meaning, or how the character would be coded in
computer storage. Instead, the codes should be those which make
input easiest for the keying operator, with the highest accuracy.

This proposal considers all special characters as established
shapes, in a given horizontal position, with a defined vertical
location, and physically imposed upon one or more textual positions.

The approach is aimed at providing the benefits of:

a. short codes for the most frequent characters;

b. minimal look-up for less frequent characters by use
of combined codes of basic shape+location+applicability, in lieu of
looking up arbitrary, non-structural codes;

c. method for adding as many codes as needed;

d. memorizing by keying operator of most frequent char-
acter codes plus the few basic qualifying codes.

- 50 -

4. SRecial Character Encoding Situations. For the purposes
of input a special character representation scheme must, in
principle, addrees five separate but interrelated situations that
may occur in textual material:

a. Special (non-Roman) alphabets: e.g., Cyrillic and
any other alphabet not represeated on standard input devices.

b. Special marks: within any given alphabet, e.g.,
diacritical marks (acute/grave accent, etc., and combinations
of these, digraphs, etc.)

c. Font change: within any given alphabet, foni, can
be either significant or aesthetic (for emphasis). Significant
font change is one involving semantic change, e.g., bold face to
denote vector quantities in mathematical notation, italics to
denote variables, etc. Aesthetic font changes usually add emphasis
(e.g., italicized words), provide reader aids (e.g., boldface sub-
headings in text), or have other not strictly semantic purposes.
The latter have been excluded from the technque devised, but could
be handled in principle.

d. Special symbols: characters not on the standard key-
board, which may or may not have conventional meanings. They may
be language-dependent4.or context-dependent for their meaning (e.g.,
of in British money; 4 has a special meaning on an LC catalog card.)

e. S ecial positional confi uration: of any character
in any language. E.g., exponents and subscripts have a conventional
position and may have smaller point size in a string of text.

Several of the above conditions may apply to a given character.
The single special character in a stream of text may be considered
as a special case of the problem of handling the entire stream in
a non-keyboardable alphabet.

To devise a systematic coding scheme to cope with these text
situations, we redefined them into the following categories:

(1) The alphabet can be either:

Regular mode - the Roman alphabet as represented on the
keyboard of the particular device used, is regarded as the nominal
or default case; or

Cyrillic,

(2)

Special mode - alphabets other than Roman, e.g., Greek,
etc., not represented on the keyboard of the device used.

A character stream in a given alphabet can be either:
Unspecified length; or
Specified length.

51

(3) A s ecified len th character stream is initiated by a

shift code signalling either a:

Fixed len th code (predefined) standing for a special

character; or a

Variable len th code (e.g., Ebbreviated words predefined

in a program table

Breaking the textual situations dawn in this manner allows

us to think how the keying might be best performed in a continuous

fashion with the least stop-and-go motions by the device operator.

The data can be regarded as contiguous blocks or strings within

a characte/ stream. Unit codes are applied by the operator to

control each block that departs from the default situation ("Regular

mode"). To illustrate, a catalog record in which a number of spe-

cial text situations occur can be keyed as a series of contiguous

blocks forming the total record:

FIGURE 12: KEYING BLOCKS OF TEXT

Start-of-record: shift to return to shift to

REGULAR ANY REGULAR SPECIAL

Unspecified... Specified Unspecified... Unspecified...

Length Set Set Set Set

shift to
ANY
Specified
Set

shift to
SPECIAL
Unspecified...
Set

ANOTHER SPECIAL
Unspecified Set,
or RETURN to REG.
by.Termination
Symbol or End-of-
Record

Specifically, the text categories defined above would be

applied as follows:

(1) For normal Roman alphabet text not modified or interrupted

by change in alphabet, by diacritical marks or by any characters

not present on the keyboard, no special action need be taken by

the device oper4or. Each record would be assumed to start its

text in "Regular" mode.

(2) When any of the three categories of text situation occurs,

as a departure from the Regular mode, the device operator can still
continuously input data, in any alphabet, with or without diacritic
marks or special characters, merely by input of a shift code when

- 52 -

departing from the normal situation. The "Regulcir" alphabet

defined for input keying may be somewhat Lxpanded for storage

pul-poses. For example, the S/360 internal set has 256 possible

codes, of which a number are already designated for graphics not

present on the standard keypunch. It would not be necessary to

store the input codes in the exact form in which tney were keyed.

Moreover, the convertibility is three-way: the input codes may

be transformed to the most convenient and efficient storage codes,

and the storage codes may be again transformed to available output

devices, e.g., printers.

While keying in "Regular" mode, each character represents

itself exactly as denoted on the keyboard. At the point of inter-

ruption, subsequent characters stand for either a character in

another alphabet, a diacritical mark, or some other special char-

acter not denoted on the keyboard.

Two types of departures from the Regular mode can occur:

Unspecified-length shift to Special mode, followed at some finite

point by either a deshift to Regular or a shift to another Special

set.

For example, a book title might have a Greek word embedded

in an English phrase, followed by an alternate title in Cyrillic.

The deshift would be signalled by either a termtnator code

or automatically by the end-of-record mark input by the device

operator, if appropriate.

Specified-length shift codes can be of two sub-types:

1) Fixed length codes, which are either one or two-character

format codes recognized by the input edit program as field signals,

delimiters, etc., or are these sane characters themselves preceded

by a reserved symbol to show that the character is in this case to

be regarded as text data, not as a code.

Other than these occurrences, a number of doublet codes have

been provisionally defined to represent diacriticals, e.g., "OE"

for acute accent. Triplets, etc. could also be specified, in order

to make the system expansible.

2) The second sub-type is variable-length specified shifts,

as in the case of groups of characters predefined in a program

table to represent abbreviated words, either for the purpose of

economy of keying frequently occurring words in text, or for cora-

pact storage, or both.

5. The Identification of Shape, Size, Attitude, and Relative

Position. Diacritics in particular manifest many combinations of

shape, point size, inclination or attitude, and position relative

to the character they modify. For brevity, we shall discuss these

characteristics using the single term "location".

- 53 -

a. Order and location of characters. Special characters

or Special uses of any character are considered for keying purposes
to be in the same position or in juxtaposed positions of the data,
left to right.

Data

Position No.

A

1 2 3 4 5 6 7 8 9

For purposes of input, all special ctharacters are coded in
relation to other characters by both physical shape and horizontal
and vertical locations. The same shape in different inclinations
is considered a different shape, for coding purposes:

1

d differs from ? a differs from a differs from a

The same shape character in different horizontal and vertical
locations is coded to express both uniqueness of shapes and posi-
tion in relation to a character to which it is either attached or
juxtaposed.

High

Middle

Low

b.

position are
high, middle

Before With After character

-d a d-

-d El d--
d d d

All characters including diacritic marks at the same
considered vertically in a regular location, or in
or low locations (drawn large for illustration):

Location:

Regular

High
Middle

Low

(Circumflex is High)
(Slash is through Middle)
(Letter 0 is Regular)
(Dot, or period, is Low)

(1) Alphabets, digits, punctuation, and additional characters,
such as +, 4, are at the Regular location.

(2) Diacritics and special uses of any character, such as
exponents and subscripts, are at High, Middle, or Low locations.

-5)4-

6. Initial Codes for Provisional Im lementation. A double-

character code set for modern European nharacters was defined

using the ten digits to represent the most frequent diacritical

marks. The most frequent letters specially formed with diacritical

marks, and other separate diacritical 'darks would be represented

by the letter codes. This double-character code set would serve

as an extension of the Regular character set. By being fixed-
length, the diacritical mark codes can be used in the midst of any
special alphabet set.

The location of a diacritic in relation to a letter is implied
by its code. The implication of this is that any special character
which exactly coincides with a Roman letter and a diacritic mark
may be coded either as a letter plus a diacritic mark, or as a

single combined code. The frequency of certain diacritinally marked
letters in certain languages might make single combined codes very

useful. However, for the present, the letter-plus-diacritical mark
code is proposed as a scheme applicable to any particular language.

Unfortunately, a 36-characte/ double code set is not enough

to encompass all ne diacritical marks. LC lists at least 64 spe-
cial characters beyond the normal keyboard, in its ASCII extension
proposal. These could be assigned single coue characters in two
separate sets, but for simplicity a two-character code is assigned
provisionally to the less frequent diacritics. The order of the
LC list does not reflect th, frequency of occurrence of the marks
themselves. LC's Information Systems Office is making a statistical
study of the frequency of occurrence of diacritics, and when this
kind of data becomes available, it will guide the refinement of the
system proposed. In advance of such quantitative design information,
we have used the diacritic set proposed by Palmer (see Fig. 13),

and our own research) guide the establishment of the initial set

(see Fig. 1)t).

When the frequency distribution of the diacritics and other
symbols is better established, we will implement the LC list as
needed, to assure full convertibility of the textual content of the

data base to a MARC II character set standard.

Codes for special characters and for special uses are made up
of a combination of a flag plus "0" plus digit(s) or letter(s).

The most frequent codes have defined shape, location, and
number of positions applicable in one code. Diacritic characters,
for example, occurring most frequently are coded with briefest codes
(given vertical position assumed in each case as the default posi-

tion). E.g.:

acute (high, one-position) is coded OA

micron (breve, short)(high, one-position) is coded 0

cedilla (law, tt

) is coded OC

- 55 -

FIGURE 13:

THE TENTATIVE HARVARD LIST OF DIACRITICS

ILR 029
Codes

Harvard List
of Diacritics*

Comments

OE 'acute
0A ' grave

OF A circumflex
OU dieresis or umlaut

ON "tilde
OC 3 cedilla

OK ' hacek
OG ° (as in Swedish g, Czech ta.) Angstrom

019 ... underline Digit= No. of letters
underlined.

0 /(as in Danish16) **Display size adapts

(letter 0) to letter

...O.M - (as in B) Anglo-Saxon D differs

0 / (for Polish /) **Display size adapts

(letter 0) to letter

,OL) (comma under letter as in

Rumanian)
.0L (dot below letter)

.0H (dot above letter)

01W t (used in Polish & Inverted cedilla

Lithuanian)

:1S2W
ID, i

kused in Hungarian)

OR -macron
micron

Note: Unique letters after 0 were chosen as non-shift, and

to coincide with frequently associated letters where

possible, with allowance for specially reserved gymbols.

*Source: Palmer, Foster M. °Conversion of Existing Records

in Large Libraries; with Special Reference to the Widener

Library Shelflist." In: Harrison, John and Peter Laslett,

eds. The Brasenose Conference on the Automation of Libraries.

Held at Oxford, Eng., 30 June-3 17117776. London, Mansell,

1967. p. 74.

**In display the slash through "Z" of Polish font will be

shorter than the larger slash through "0" of Scandinavian font.

Slash, as cross-over, can be keyed as @/ in conjunction

with the 01119 code for multiple applicability.

- 56 -

FIGURE 14:

ALPHABETICAL INDEX OF DIACRITIC CODES

Code Mark Name, Defined Loc.

0A Grave (high)

OB Breve, micron (high)

OC Cedilla (low)

0D9 at Disgraph, up-to-9

OE Acute (high)

OF A Circumflex (high)

OG Angstrom (high)

OH Undefined high location

0I9 Underline, up-to-9 (low)

0j9 Ligature, up-to-9 (high)
./

OK Caret, Hacek (high)

OL Undefined low location

OM Undefined middle location

ON Tilde (high)

0.9 Specified number to 9 of non-keyable
characters

00 Slash (through middle)

OP Slant-in-font series (Italic)

Weight-in-font series (bold)
-

OR Macron (high)

OS Special alphabet shift

OT9 Multiple-applicrldlity (to 9)

OU Umlaut, dieresis (high)

OV Reserved-further coding

OlW e. Inverted Cedilla (low)

02W Double acute (high)

03w Reverse comma (high)

04W Double underscore (low)

05W Candrabinde (high)

06W -D Demi-bar in Ang. Sax. (middle)

OXIDE High or middle or low illegible

0.. Unspecified number of non-keyable
characters

57

FIGURE 14 (Cont.):

ALPHABETICAL INDEX OF DIACRITIC CODES

Code Mark Names Defined Loc.

01Y t Dagger

02Y t Double dagger

03Y 01E. Pound sign (English)

04Y Inverted question

05Y I Inverted exclamation

06Y Thorn (Icelandic)

07Y b Musical flat

08Y "Undotted i"

09Y 4 Single left quote (high)

010Y 44. Double left quote (high)

011Y /7 Double right quote (high)

012Y << Left Cont. quote

013Y >> Right Cont. quote

OZ Astride symbol

00 Termination of special alphabet
(de-shift)

FIGURE 15: PROPOSED SINGLE KEYING CODES COMPATIBLE WITH
TRANSLITERATION SCHEMES FOR MODERN CYRILLIC*

Upper
Case

Rmaiem
Letter

Om). Ital

Applied
Mechanics
Reviews

U.S. Library
of Congress

Journal
of

Symbolic
Logic,

Lower
Case

A A a a a a a
b

B E 6 b b b

V B e v v v v

G 'r : g g g g

D ra a
d d d d

E E e e e 6 e

2 g i ti .
g o 2

X AK ox zh A i x

Z 3 3 z z z z

I II u i i i i

J I/ a I 1 j j

K K K k k k k

L JI A 1 1 1 1

M Ai m ma ma na m

N
0

II m

0 o
n
o

n

o

n
0

n
o

P II n p p P P

R P p r r r r

S C c a a 8 S '

T 17 m t t t t

U Y y u u u u

F 0 0 f f f f

H X x kh a h h

C U II
te ; o c

3 q m dh A 6 3

w 111 us 6 A A w

4

5

III u#

1 s

&eh
#

oh& A6 4

5

Y
6

Ed u
b b

i y Y Y
6

7 3 3 6 6 el 7

6 H) m yu iii fi 8

9 SI A Ya a 6 9

Q
one 1
zero 0

I i

6 e f

4
1 one
o zero

CAPITAL letters keyed with Underscore (0-5-8) before code.
Difference in fonts implied in code for Character Set.
Other characters (such as V, transliterated by L.C. as 4Y) can be
coded as elements of another character set, acting as a miscel-
laneous, overflow, or Slavic character set containing all Cyrillic
characters not already coded in the Russian character set.

*Source: Mathematical Reviews,(Am. Math. Soc., Lancaster, Pa.)
v. 30 (1965), p. 1207.

- 59 -

The code for the diacritical would be keyed following the

character which it modified or with which it is associated. Spe-

cial conditions for which this rule is ambiguous and requires

further specifications are provided for in the keypunching manual.

7. Particular Scheme for Cyrillic Alphabet. For Cyrillic,

it is proposed that a 36-character code set (26 Roman alphabet and

10 digits) to be used for keying and storage is more convenient,

economical and unique for operator recognition purposes than trans-

literation schemes of a linguistically controversial nature. With

unique codes stored for every Cyrillic character, printout can be

made into Cyrillic, or into any transliteration scheme desired.

What is left undefined is a complete transliteration scheme. It

is emphasized that it is the alphabet (made up of graphemic units)

which is being coded, not the "language" in transliteration. A

Russian word that already appears in Romanized character form

cannot be coded so that it can be printed back out unambiguously

in Cyrillic, due to the non-agreement on transliteration. Roman

letters, witn or without diacritical marks, are keyed as Roman

(regular) character set, whatever the language the letters them-

selves transliterate.

It is also proposed that the Cyrillic coding scheme include

two single-character sets: one single-character Russian (East

Slavic) Cyrillic set - includipc; three pre-1918 characters - and

one single-character (Other Slavic) Cyrillic set to handle the

overflow, rather than to provide a double-character set for all

Cyrillic characters.

Fig. 15 is a proposed code for Russian Cyrillic character

set. It adopts as much as possible the characters common to many
transliteration schemes, several of the more commonly used of which

are shown in juxtaposition.

E. LOGICAL SIMILARITY OF BIBLIOGRAPHIC RECORDS

1. General Remarks
may be defined according
of several other senses.

. Groups of records in retrieval processes
to similarity of subject content, or in one
One condition for search execution (the

stage which performs the actual retrieval and assembly of the

records or elements a user wishes to inspect) is the definition

of rules to aid him in deciding what will be acceptable to him in

terms of closeness of match of the file responses to his request,

as he carries on his dialog. Howiver, a user must formulate a

request based on the clues available to him when he initiates his

probe of the file, before the individual records or groups of

records which satisfy these clues can be presented to him. There-

fore, the most should be made of these clues in order to make

searching in an on-line environment satisfactory.

2. Automatic Error Control in User-File Interaction. One

characteristic of these clues is that they will often have error
in them and thus an exact match on the request is not always the

- 60 -

"best" retrieval. "Near misses" or assistance in correcting

the error should be provided. Accordingly, a task was defined to
develop automatic techniques for error detection and correction

of request messages at the terminal. Because of the linguistic

and statistical nature of the task, a consultant with experience

in this area was employed to start the work. A technique which

we denote as "name compression by equivalence class algorithm"

has been developed. The background and reasoning for the algorithm

itself is described in a separate paper by James Dolby, included

as Appendix I to this report. The purposes and provisional results

of tests of the algorithm are summarized in the remainder of this

section. Although the specific intent of this algorithm is error
control, it has usefulness in file search beyond that. For this

reason a more general perspective on the concept of "closeness"

is presented first.

3. Closeness in Name Searching. A measure of closeness can
have several dimensions, e.g., specific subject similarity or
associativity, likeness of one or more properties such as set
inclusion (several books by one author), and a number of other

relations. It is possible to apply such a measure to relations
between records in the file, and between records and requests
made of the file. And it is possible to applj such a measure to
parts of logical records, e.g., author names. We can consider
two major classes of file organization and search, and of the
requests that each can handle. The first class is the general
problem of match between requests and file responses which are
in some sense close to the request. The other class is a special
case of the first, in which closeness is defined as exact match

of the response to the request. The exact match problem, as the
simpler of the two, is the logical place to start the research.

At the time of search specification, the user has some initial
clues which may or may not be well-formulated. These clues, such
as author name, subject terms, etc., are used to make up a search

request. The request will be expressed through search keys trans-
mitted through a terminal device. If the clue is an author name,
the user will key in all or some portica of the name. Two problems

arise: no response may be obtained from the file corresponding
to the key as initially expressed, either.1) because no record
at all is present which identically matches the request as ex-
pressed, or 2) the key may contain errors (e.g., form of name at
variance with the form in the machine file, simple misspellings,
phonetic misunderstandings, name changes, etc.), thereby causing
either no response or "false drops." If the search key was
accurately known at the time of input but response is nil or
minimal, then other search aids such as associational and rela-
tional techniques can be invoked (i.e., searching under relaxed
conditions), and the search can proceed or terminate when some
kind or amount of useful search output has been obtained. Alter-
natively, the user might proceed as if the search key were in-
accurate and expand his field of search as follows.

- 61 -

4. "Noisy" Matches. If the exact spelling of the name used

as search key is not accurate ("guess-match"), an error correction

technique becomes immediately useful. The facility should be able
to provide capability to be invoked automatically or at the option
of the user. It might be executed automatically if the user
thought he had input the correct spelling of the author's name,
but received a negative response from the first search of the au-
thor index file, for example. That is, the system should not
be allowed to "give up" just because the user missed on his first
try. The search control program would, upon notice of a negative
search, retrieve synonymous names, if the name input in the re-
quest was spelled closely enough to that of one or more names
existing in the file according to some probabilistically determined
threshold. (The precise nature of the "equivalence class" facility
is yet to be determined. It will probably be tested at first by
establishing a file of fixed-length coded classes. An alternative
method would be to generate interpretively the names which are
members of the class, at the time of input. Another combination
might be to invoke the algorithm inside the machine but have a
list of classes at the console as a user aid.)

The possibilities for the desired name would then be displayed
for consideration by the user. This is a kind of grouping of parts
of records (e.g., a cluster of similar surnames of different authors)
one of which may turn out to be the one which the user is seeking.
The names are regarded as related in that they have close spellings,
a linguistic property exploited in a number of name compression
systems.

In this sense the error control feature acts as a filter on
the request, self-activating upon certain conditions, on demand
at other times. Although searching via author keys may not be the
most important file access point,* keyboarding of proper names is
thought to be the area most vulnerable to input errors. It is
anticipated that the equivalence class technique can be extended
to non-name searches, e.g., words in title and subject index files.
Error correction will be useful in any of the usual searching situa-
tions, i.e., for the person who cannot remember the spelling of an
author name for a book he has seen before, or to handle requests
based on bibliographic references which may contain spelling errors
(the "bad citation" problem).

*Recent research reveals that for the type of catalog search for
a book with which the searcher has had previous contact, only a
little over 20% of a sample of users surveyed could remember author
name clues. However, it was pointed out that of the searches under-
taken using author name as an access point (or author + title), the
cause of failure was lack of a method of manipulating incorrect
author or title information in order to make it operative in cata-
log searching. See Vaughan, Delores K. "Effectiveness of Book-
Memory Data for Conventional Catalog Retrieval." In: Chicago.
University. Graduate Library School. Requirements Study for Fu-
ture Catalogs; Progress Report No. 2. Chicago, Mar. 1968. (NSF
Grant GN 432), p. 53.

- 62 -

5. Equivalence Class Algorithm.

a. General objectives. The handling of large biblio-

graphic files presents two levels of error control, as pointed

out by Dolby.* They are 1) error detection and correction during

the input (file generation) cycle or as a result of feedback by

users to correct the file; and 2) the system's reduction of the

effect of the user's own errors, committed as part of his search.

The use of equivalenct: classes is not restricted to error control.

The general objectives of a compression scheme may be:

(1) for automatic cross-referencing among similar names,

where there is not an c:rror involved, but a file authority situation.

(2) to confirm or establish a "guess" match th,"ough "noise"

i.e., misspelling.

(3) to help eliminate misspelled words from the new records

updating the file.

(4) to save keystrokes both to speed up the request and

reduce keying error.

(5) to achieve data compression 1-2r se, in storage (reduce

disk space for an index file and for programming convenience in

processing fixed length entries).

Our motivation in developing the equivalence class algorithm

is primarily as a user aid in relation to (1), (2), and (4) above.

b. 1LR objectives. Work to date in 1LR has st7 ased

the first of two areas of immediate concern: proper names as

match elements in catalog searches, and regular vocabulary such

as words in titles. The approach taken in the work on author

names was to find a way of gathering together "like" names system-

atically so as to identify similar spellings (and possible mis-
spellings) but without over-identifying the list of names in a

class. That is, a balance must be found between errors of exclu-

sion and errors of inclusion. By a 'balance" is meant a minimal

error of exclusion while at the same time achieving a code that

will produce the minimal amount of identification that will match

names in a given group of "close" name-forms. Such lists of

families of close names are termed "equivalence classes", and the

most familiar forns are found in the conventional telephone direc-

tory, e.g., for variant spellings of the name "SMITH".

The algorithm is intended to function both 1) as an error

filter in on-line interrogation of a file, and 2) as a general

aid in search elaboration and request reformulation. This tool

will provide a capability for access to the file through a

*See Appendix I.
- 63 -

mechanism not now feasible in the limited, passive cross-reference
structures in conventional card catalogs. Not only will the user
be able to come in through ro.Ates not presently available, but he
will be able to receive support from the machine in dynamically
correct_ng his spelling errors when he is attempting to probe the
file and converge on a particular datum, whether it be title of
book, a name, or other information. On the other hand, he will
be able to expand his search in ways not presently available, e.g.,
to track down names or records when the similarity among them is
not explicitly recorded in conventional cataloging information.

c. Develo ment of a name com ression scheme. A spelling
equivalent abbreviation algorithm for personal names may be designed
to produce variable-length or fixed-length canonical forms, i.e.,
class codes. Variable length coding has been extensively tested
but is generally rejected for use in operating systems due to the
added difficulty in programming in comparison to fixed length fields.
Also, code compression is enhanced by fixed length codes where no
interword storaae space is required.

Since no definitive data was available yet on the problem of
deciding exactly how long a fixed-length code should be, or on the
nature of errors introduced by truncating variable-length classes
to a given fixed length, the approach taken was to create two ver-
sions of the algorithm for surname equivalence classes: both a
variable-length algorithm and a fixed-length algorithm.

First a "hand-drawn" protr.)type variable-length algorithm was
written, based on study of the set of classes given in a local
telephone directory. The rules for this algorithm are listed in
Fig. 16. The algorithms used in other compression schemes were
then synthesized and modified. The resulting algorithm was visually
tested on the equivalence classes in the phone book.

d. Results of variable length algorithm on telephone

directory. Visual analysis of the results of the variable-length
algorithm suggested that reasonably accurate matches could be
achieved without excessive over-identification, that is, inclusion
of widely variant names in a class that should have been excluded
from it.

A sample of the telephone directory names and the variable-
length class into which they were compressed by the first version
of the algorithm is shown in Fig, 174

The variable-length algorithm achieved a score of below 5%
under-identification error and over 77% preservation of distinct
identifications when evaluated against the original phone book
system. Specifically, the phone directory contained 451 equiva-
lence classes. The initial version of the algorithm only split
22 (4.9%) of the 451 classes and preserved 349 (77.4%) out of the
451.

- 64 -

FIGURE 16:

A SPELLING EQUIVALENT ABBREVIATION ALGORITHM FOR PERSONAL NAMES

Dolby Version 1 - Variable Length

1. Transform: McG to Mk, Mag to Mk, Mac to Mk, Mc to Mk.

2. Working from the right, recursively delete the second letter
from each of the following letter pairs: dt, ld, nd, nt,

rc, rd, rt, sc, sk, st.

3. Transform: x to ks, ce to se, ci to si, cy to sy. Conso-

nant -ch to consonant -sh. All other occurrences of c to
k, z to s, wr to r, dg to g, qu to k, t to d, ph to f
(after the first letter).

4. Delete all consonants other than 1, n, and r, which precede
the letter k (after the first letter).

5. Delete one letter from any doubled consonant.

6. Transform pf# to p#, #pf to #f, vowel -gh# to vowel -f#,
consonant -gh# to consonant -g#, and delete all other
occurrences of gh. (#.is the word - beginning and word-

ending marker,)

7. Replace the first vowel in the name by the symbol "*".

8. Delete all remaining vowels.

9. Delete all occurrences of w or h after the first letter

in the word.

(NOTE: vowels are defined as a, e, i, o, u, y.)

FIGURE 17:

EQUIVALENCE CLASS COMPUTATION (MANUAL)

Version 1

A portion of a list of personal-name equivalence classes
from the Palo Alto-Los Altos Telephone Directory, arranged
according to the variable length compression code (with the
vowel marker * treated as an A for ordering). (1)

Variable-length
"Dolby Code" Names Belonging to Class

*BL Abel, Abele, Abel?, Able
*BRMS Abrahams, Abrams
*BRMSD Abrahamson, Abramson
*D Eddy, Eddie
*DMNS Edmonds, Edmunds
*DMNSN Edmondson, Edmundson
*DMS Adams, Addems
*GN Eagan, Egan, Eggen
*GR Jaeger, Yaeger, Yeager (2)
*KN Aiken, Aikin, Aitken
*KNS Adkins, Akins
*KR Acker, Aker
*KR Eckard, Eckardt, Eckart, Eckert, Eckhardt
*KS Oakes, Oaks, Ochs
*LBRD Albright, Allbright
*LD Elliot, Elliott
*LN Allan, Allen, Allyn
*LSN Ohlsen, Olesen, Olsen, Olson, Olsson
*LVR Oliveira, Olivera, Olivero
*MS Ames, Eames
*NGL Engel, Engle, Ingle
*NL O'Neal, O'Neil, O'Neill
*NRS Andrews, Andrus
*NRSN Andersen, Anderson, Andreasen
*NS Ennis, Enos
*RKSN Erichsen, Erickson, Ericson, Ericsson,

Eriksen

Notes: (1) A small number of directory entries that do not
bear on the immediate problem have been deleted from the list:
Bell's see also Bells: Co-op see also Co-operative; Palo Alto
Clinic see also Palo Alto Medical Clinic; St. see also Saint; etc.

(2) Names whose compressed codes do not match the one
given in the first column (and hence represent weaknesses in
the algo,Ath._ and/or the directory groupings) are underlined.

- 66 -

An analysis of the under-identification errors (i.e.

names that should have been included in a given class or

that should have been split, according to the phone book)

the Dolby paper in Appendix I.

, close
classes
is in

e. Results of testing op catalog data. A program was

then written to implement the variable-length algorithm by computer.

This version was tested on a sample of 50,000 names in the Santa

Cruz machine-form author file. Fig. 18 shows some selected names

and the "canonical forms" which were computed for families of

close names.

It was then decided to construct a second, fixed-length ver-

sion of the algorithm to discern the kinds of errors that might

be introduced by truncation of the variable-length classes to

some standard length. The initial list of rules for Version 2 is

presented in Fig. 19. This version has not yet been implemented,

but computer testing of it will be carrled out in the next phase

of the project. The fixed-length version incorporates modifica-

tions suggested by analysis of results of the program for the

variable-length classes together with separate "hand" analysis of

the effect of truncation. We intend to program the improved

fixed-length algorfthm and evaluate it comparatively with other

equivalence class schemes such as SOUNDEX.*

f. Effect of truncation to create fixed-len th classes.

Initial analysis of the variable-length algorithm revealed that

simple truncation vfll not generate errors of under-identification

but will lead to further over-identification, i.e., inclusion of

disparate names in a class, that should have been excluded. The

simple truncation to the left-most seven characters of the classes

produced from the phone book names, introduced no losses from

combining too many classes (over-identification). However, reduc-

tion to a code length of four causes a jump in the cumulative

over-identification
losseT(T.e., too many names being included

in a given class that should not be included due to wide variations

in spelling). An optimal length of five characters for a straight-

forwardly-truncated class code appears to be attainable, however,

in advance of any testing on a large file. Since it is desirable

to obtain the shortest possible class, a method other than simple

truncation was sought. A possible solution is further refinement

of the algorithm itself, ending up with a final fixed length of

four. The procedure proposed acts via selective removal of some

of the remaining characters, such as vowel-marker deletion from

the longer words and insertion of additional vowel-markers'in the

very short words. Preliminary analysis indicates that an improve-

ment is achieved. Manual application of the version 2 algorithm

on the phone book classes produced fixed-length compression codes

*Becker, Joseph and Robert M

Retrieval: Tools, Elements,

pp. 143-144.

Hayes. Information Storage and

Theories. New York, Wiley, 1963.

-67-

FIGURE 18:
EQUIVALENCE CLASS COMPUTATION (COMPUTER)

Variable-length
1121by Code"

Version 1

Names Belonging to Class (1)

*BRN O'Brian, O'Brien

*NL O'Neal, O'Neil, O'Neill

*BD Abbatt, Abbot, Abbott, Abetti, Ebbit,

Obieta

*BR Aubert, Auboyer, Aubrey, Aubry, Ibert,

Ybarra

*BRM Abraham, Ibrahim

*BRMS Abrahams, Abrams

*BRMSN Abrahamsen, Abramson

*DRS Edwardes, Edwards, Idriess

*LPR Allport, Alpers, Alpert

*LS Ellis, Alas, Eales, Eells, Elias, Ellis,

Else, Elst, Elwes, Olds, Olesha

*LSN Allison, Alston, Ellison, Elsen, Elson,

Elston, Ohlsen, Oleson, Olsen, Olson

*MR Amery, Amory, Aymar, Aymard, Emery, Immer

*MRN Amerine, Amrine, Emerson, Emerton, Emmerson

*NG Ewing, Ienaga, Inge, Iongh, Ong, Yanaga,

Yang, Youge, Young, Younge

*NN Anand, Annan, Anthony, Antin, Antoni,

Ennin, Onnen, Unwin, Yenawine, Yohannan

*R Airey, Ard, Arey, Arrow, Auer, Aury, Ayer,

Ayers, Ayre, Eayrs, Ewers, Ewert, Eyre,

Ihara, Irie, Iyer, Ore, Orr, Orrey, Orth

*SBRN Ashburn, Asbburne, Osborn, Osborne,

Osbourne

B*K Bach, Back, Baikie, Bakke, Beach. Beachey,

Beck, Becke, Beke, Bewick, Biek, Boak,

Bocci., Bock, Bodky, Boeck, Boeke, Bok, Buck

T1) Selected from Santa Cruz machine author file.

-68-

FIGURE 19:
ABBREVIATION ALGORITHM FOR PERSONAL NAMES

Version 2 -

(This version incorporates refinements proposed as a re-
sult of applying Version 1 of the algorithm to about 50,000

author names selected from the UC Santa Cruz machine catalog

file. These rules should be regarded as interim, in that

further revisions may be suggested after additional analysis.)

For each sur-name:

1. Remove all blanks, hyphens, and apostrophes.

2. Transform McG, Mag, Mac or Mc appearing at the be-

ginning of a name, to Mk.

3. Working from the right, recursively delete the second

letter from each of the following letter pairs:

dt, ld, nd, nt, re, rd, rt, sc, sk, st

4. Transform: x to ks, ce to se, ci

consonant-ch to consonant-sh, all
of c to k, z to s, wr to r, dg to

ph to f.

5. Delete al3 consonants other than 1, n, and r which

precede the letter k (after the first letter).

6. Delete a final e if it occurs.

7. Delete one letter from any doubled letter.

8. Transform pf# to p#, #pf to #f, vowel-gh# to vowel-f#,

consonant-gh# to consonant-g#, and delete all other

occurrences of Oh (# is the word-beginning and

word-ending marker).

9. Transform v to f.

10. Replace each of the first two vowel strings by "*".

Here we consider a vowel to be any of the characters

A,E,I,O,U,Y.

11. Delete all remaining vowels.

12. Delete all occurrences of w or h after the first

letter.

13. If the name is longer than 4 characters, drop one

final s.

to si, cy to sy;
other occurrences
g, qu to k, t to d,

14. Truncate to six characters from right end.

15. Reduce name to 4 characters by first removing the

rightmost * if length?. 5. If still not reduced to

4, remove second * (can't be more than two *) and

then trutcate if need be. If resultant length is
- 69 -

FIGURE 19 (Cont.):

ABBREVIATION ALGORITHM FOR PERSONAL NAMES

Version 2 - FixtlIpamth

now less than or equal to 4 letters, retain one *,
don't remove the *.

16, If the name is less than 4 characters, pad with
blanks at the right, to get a uniform length of 4
characters total.

of length four, resulting in 361 distinct classes or 80% of the
451 original classes in the directory. Improper splits (failure
of the algorithm to identify a name with its proper class) occurred

in 24 or 5.3% of the classes.

6. Comparison with Present Manual Catalogs. It may still
be wondered why the equivalence class idea is advantageous. The

conventional card catalog provides a rather rigidly constructed
"syndetic" apparatus to guide the user to his "target" - reference
structures that lead, for example, from forms of name requested
to the specific form of name used in recording particular file
items, and from specific known names to a list of pertinent
related names (e.g., to a pseudonym: from "Dannay, Frederic see
entries under Queen, Ellery; Ross, Barnaby;" etc.)

The subject cross referencing system is even more highly
constrained - the dictionary of synonyms and other link terms
is dispersed throughout the catalog; only the user who has access
to the "authority list" can even try to assemble systematically
all the possible terms under which he might wish to search. In-
stances of related terms are often explicitly listed as "see
also's", but the distance separating any two similar terms or
names may be great, and thus printing out terms on either side of
the requested one is frequently unproductive. Some method must
be employed that overcomes the linear array of the file.

The manual file, e.g., the telephone book or card catalog,
usually makes limited, rudimentary efforts to help the user correct
his own errors. "See" and "see also" references are inserted for
variant spellirgs of names in the same and different languages.
These are usually permuted general class references, e.g.,

ACCESS 1: ACCESS 2: ACCESS 3: ACCESS 4:
SMITH SMYTH SMYTHE

.

SCHMITH

see also see also see also see also

SMYTH SMITH SMITH SMITH
SMYTHE SMYTHE SMYTH SMYTH
SCHMITH

and

SCHMITH SCHMITH SMYTHE

CATHERINE
For sovereigns, princesses of sovereign houses, and saints:

Bohemian: see Katerina
Dutch: Katherina
English: Catherine

- 71

This apparatus not only is cumbersome to use but complicated

to input and maintain. It also introduces a degree of redundancy
into the file which can be precluded by mechanisms such as equiva-
lence classes.

7. Example of Use of Equivalence Class in On-line Mode. It

is useful to run through a hypothetical exercise to see how the
name compacting algorithm might be of service in an on-line mode.

The user desires to check a name in the file to see whether
the name exists, and if it does, what relation it bears to the
file content, e.g., as author of a book, as subject of a biography,
etc. He is assumed not to have a "verified" version of the spelling
of the name in mind, i.e., no knowledge of the exact spelling of
the name he wants as it exists in the file and even if he did, it
would not necessarily correspond exactly to the particular form
in which the name and its associated elements are established as
a catalog heading.

A necessary stage in the protocol uf fiaterrogating the file
is to decide what to do as the next step. Let us assume that the
first action is to key in the full or partial surname. (In our
first experiments this will be the first n characters of the sur-
name, depending on the kind of rules that are constructed from an
analysis of uniqueness of identification mentioned in Section II.
In later experiments, it would be interesting to test whether a
relatively free-form mmemonic* could be employed, so that the user
could input n charac+.,rs according to general rules and have the
computer perform the match with the equivalence claEs mechanism
rather than the user selecting an assigned code from a list.)

a. For example, if the surnane key is used and the user
thinks the name is GARNETT, A.C., he would key in "GARN". Assume
that a degree of match is found at this level of identification.
The computer could then display a sequence of messages describing
the file contents, in response: e.g.,

"There are 14 books by authors named Garn, Garner,
and Garnett, in the file you have queried.

INDICATE WHICH AUTHOR YOU WISH TO DISPLAY

.GARN .GARNER GARNETT"

If the user requests a display sequence for "Garnett", the follow-
ing message might be output:

"Option 1: There are 7 books by authors named Garnett in the
file.

*Jackson, Michael. "Mnemonics." Datamation v. 13 (Apr. 1967),

pp. 26-28.
-72-

Option 2: There are 5 books by authors named Garnett with
A. for one of their initials in the file.

Option 3: There are 3 titles by authors named Garnett, A.C.,
in the file.

Option 4: There are 2 titles by author whose name is Garnett,
Arthur C., in the file.

Option 5: There is 1 title by the author whose name is
Garnett, Arthur Campbell, in the file.

Please select option you wish to explore further."

Assume the user goes on to select "Garnett, Arthur C." as the
requested author. In this case he need only further select from
two titles.

By such a process of sequential query of the file contents,
the user is able gradually to converge on the name or document
he desires, or confirm that it does not exist, assuming he can
make these decisions from the file fmformation alone. Of course,
in large catalogs it may be necessary to employ gradually (in an
iterative fashion) more and more information about the name or
document(s) sought, such as titles of honor, birth/death dates,
publication date, and other distinguishing data. Such data would
only be displayed when needed, to permit the user to make distinc-
tions among dense clusters of identical names which are identified
positively only by such subsidiary elements.*

The actual machine match at each stage would be made on the
portion of the name required to respond to the user's specification.
He may wish to expand or contract his notion of matching. Should
he decide to exercise the option which would lead to a display of
a run of very close names, for example, the action of the algorithm
controlling this would be based on density factors of the actual
file (number of identical names which are only distinguished by
affixed information, the number of titles per unique author name,
etc.). If there are hundreds of entries under a run of similar
surnames (e.g., Allen) the search control could step through
presentations of various levels of summary information.

b. The other half of the author searching procedure is
concerned with expanding the field of search when no match is
encountered. Let us assume that the surname match has failed and

*This procedure for search purposes is analogous to the "no conflict"
policy employed in cataloging, where no identifying information
need be affixed to name headings except where needed to distinguish
between two different persons with identical names.

- 73 -

1,1

hence we are not interested in the initial spelling but rather

wish to interrogate the file for similar surnames. For example,

assune a search on the class of names beginning with "Aarons".

If the user did not know which spelling to guess at he could

reverse the process and key in the equivalence class code "*RNS"

from a list at the terminal, or if he did wish to guess at a

name, he could key either a full surname or an abbreviated key

for it, e.g., ARON. The response in the case of the full surname

might be "no match" but that there are other spellings. The

dialog would then proceed as above. Our research so far has

served to point up the complexity of even the simplest cases.

-

IV. DATA BASE DEVELOPMENT

A. GENERAL

1. Recent Data Base Pro ects. There has been much recent

activity in the development of machine-form bibliographic files.

For example, the Library of Congress provided a limited amount

of English language cataloging in machine-form to a group of

participating libraries through its MAchine Readable Catalog

(MARC) Pilot Project. Harvard University has a closely related
project to provide non-LC bibliographic records in the MARC

format. In addition to these directly related projects, a
number of universities have begun developing machine data bases
of bibliographic records, among which are the Santa Cruz campus
of the University of California, Stanford, MIT, the University

of Chicago, and the University of Toronto.

In early 1967 the Institute of Library Research completed
an intensive investigation of book-form catalogs for the

California State Library.* During the study, a format convert-
fble to the LC MARC I format was developed and used in an analysis
of the effort required to obtain a machine-form data base from
bibliographic records. It vas fram this basis that we began our
investigations of data base development.

2. Current Effort. In developing the data base for the
facility, bibliographic records for both monographs and journal
articles are being incorporated in the system as the initial
forms of library materials to be represented by machine records.
Our first effort was devoted to establishing a set of procedures
to obtain the initial monograph data base for the study. Under
the funding granted, it was anticipated that a data base con-
taining at least 200,000 titles in the Raman alphabet could be

developed. To obtain a file of this size, it was recognized
that some original input would be necessary. In addition, we
decided to make an extensive study of the procedures by which
existing data bases could be integrated into our system along
with our original input. F.Tom this study, we devised a method

for extracting the relevant information fram same of these

sources in order to reduce original input as much as possible.

The incorporation of these materials requires computer programs

which we are specifying and coding in order to translate the

existing machine data bases.

*Cartwright, K.L. and R.M. Shoffner. Catalogs in Book Form: A

Research Study of their Implications for the California State

Library and the California Union Catalog, with a Design for their

Implementaion. Berkeley Institute of Library Research, University

of California, 1967.

- 75 -

Where original input is to be accomplished in the develop-
ment of the data base, the source of this material will be the
recent cataloging output of the nine campuses of the University.
In order to minimize delay in the establishment of our data base,
we started up the process for original input in parallel with
this programming. We took care to ensure a minimum likelihood
of redundant conversion of the various machine-form information.
It was known that the Harvard project is concentrating on mate-
rials of 1967 and subsequent publication date. The MARC records
were begun in mid-1966 and do not include retrospective materials.
As a result, virtually no materiels prior to 1966 publication
date are included in the MARC I file. The materials of the
Stanford University collection and the University of California
Santa Cruz collection are both primarily undergraduate collections.
The remaining materials available tend to be concentrated in
specific subject areas.

As a result, we anticipate that the majority of machine
records for materials of publication date later than 1967 will
be fully covered by the combination of the Library of Congress
and Harvard University projects. Therefore no original encoding
of materials for this publication region has been undertaken.
With respect to sone of the materials of 1966 and later publica-
tion, it is our expectation that at some point, the records now
existing in LC MARC I files will be supplied to users in MARC II
format by the Library of Congress. In anticipation of having
both these upgraded MARC I records and current MARC II records
from LC, materials with a publication date prior to 1966 only,
are being used for original encoding in our project.

Overlap with the undergraduate collections previously men-
tioned can be avoided in two ways: first, by selecting material
which appears to be relevant to a research library collection but
not to a basic undergraduate collection; and second, by checking
questionable materials against the printed catalogs and lists of
these collections which are available.

In our input procedure, the encoding of the bibliographic
data to identify the logical content of the record and the keying
to provide the record in machine form are performed as two sep-
arate processes. The encoding process requires training in
library cataloging in order to identify the logical content of
the bibliographic record. The keying process does not require

such training. Rather, the central issues in this process are
the speed and accuracy with which it can be performed. Thi3
performance is enhanced given that virtually all decisions have
been made about what is to be keyed.

By separating the keying operation and by making all infor-
mation required by the camputer input program explicit in the
data stream, the keying can be performed on any device such as
keypunch, paper tape typewriter, on-line typewriter, or standard

- 76 -

gt

typewriter wlth optical scanning equipment. This means, for

example, that the computer program is organized to function

wdthout regard to the end of a tab card in a keypunch operation.

The separation of these processes is particularly useful

since there exist commercial firms specializing in the keying

aspects of data conversion, to which this task can be contracted.

By separating this part from the other procedures which require

knowledge of bibliographic records, we can utilize these services

with most efficiency.

An important aspect of any production procedure is the

control that it provides for maintaining the appropriate cost

and quality of the product provided. We have been studying the

trade-off of cost and quality and we have established a statis-

tical quality control procedure to maintain adequate accuracy in

the conversion process without excessive expenditure for this

control.

B. STRATEGIES OF CONVERSION

This section is addressed to two closely related conversion

strategies which are often mentioned but which have not received

carefUl consideration. They are the use of existing machine

data bases and joint eff,rts jn which the conversion is shared

among several libraries. A critical aspect of both of these

strategies is the amount of overlap that exists between the

catalog databases. In the material that follows we consider

this overlap as a variable and show the impact that it has on

the effectiveness of these strategies.

1. Utilization of an Existing Data Base. If a data base

already exists in machine form, it is possible to search it in

order to extract fram it matching records to be inserted into

the new data base being assembled. There are three elements

which are important to the unit cost of the records obtained

by this approach: the cost of the search; the expected number

of records that will match and thus be usefUl; and the translation

costs to convert the record to the format of the new data base.

The search cost is dependent upon the kind of arrangement

or degree of order of the two files - the old and the new, the

size of the files, and the match method used. In general, the

least expensive method is to have the two files sorted to the

same order and then merge them. Although sorting time is not

a strictly linear function of the number of records, only a

small error is introduced by considering it linear. Used for

the purpose of a search, merging time is approximately a linear

function of the number of records in the larger of the two files

by this approach. The search cost can be dharacterized as a

sort cost per record times the number of records in the new file

(assuming its initial order to be different from that of the new

- 77 -

data base), plus a merge cost per record times the number of
records in the larger of the two files. The translation cost
depends upon the degree to which the format and content of the
existing and the new records are the same. In any event, the
translation cost is a linear function of the number of records
translated. That number can be characterized as a percent of the
the total number of records to be included in the new file.

We now develop an algebraic expression for the cost per
converted record. Lebthe number of records in the new data
base be represented as "Vnew". Assuming that it is the larger

of the two data bases (true for our case) the search cost is:

$search = ($sort + $merge) Vnew (1)

where "$sort" is the sort cost per record and Imerge" is the
search-by-merge cost per record (batch mode).

From this, we obtain as the next expression:

conv
= ($search + $trans

Rhit'Vnew)/(Rhitslinew) (2)$

= $
searchi(Rhit'llnew) $trans

= ($sort + $merge)/Rhit +
where

"$trans" is the translation cost per
"R. " is the ratio of the records V
nit

are found in the existing data base; and
conv" is the cost 221:record of obtaining the new data

base by searching, extracting, and translating records from the
old data base.

$trans

record;
in the new file which

If our purpose is to choose the approach which requires
the least cost to obtain the new data base, we may compare this
approach to that of a straightforward conversion of the new
data base, which makes no use of the existing data base. As
before, we can consider the cost as a linear function of the
size of the new file and express the per record input cost as
"$new". We can now set up an inequality such that if the
expression is true, we could choose to use the existing data
base in the development of the new one:

N $
$new Ammt conv

($sort $merge)/Rhit $trans (3)

- 78 -

From this, it is clear that in considering these alternatives

an immediate check can be made to confirm that the cost of

translating an existing record is indeed less than that of the

original conversion of the desired record. Variations in format

or content could be great enough in themselves to reverse the

direction of the inequality. Assuming, however, that this is

not the case, we can proceed to rearrange the terms (since all

terms are positive, the direction of the inequality will be

preserved):

R
hit

(4)
$sort + $,merge

)/($new
- $

trans
)

This expression simply says that for search to be justifiable,

the ratio of hits must be greater than/equal to the ratio of

the search cost (sort-plus-merge) to the difference between the

straightforward conversion cost (non-translated file) and the

conversion cost by the method of translation of an existing

machine file.

Another approach to the use of the existing data base is

to allay the files to remain in their original (perhaps unsorted)

order and to make a randam search for each desired record. For

example, such a search could be performed over a terminal to

an on-line file. In this case, our general analysis is the same

except that we have a search cost (on-line mode), expressed as

a linear function of the number of records, which replaces the

sorting and merging cost. This can be substituted in expression

(4) as "$srch":

R
hit

$
srch

/($
new

_ $
tr s

) (5)

Thus, the analysis is applicable to either situation. Further,

for on-line search to be less expensive than the sorting and

merging approach, the following must hold:

$srch <.($).
sort

+ $
merge

(6)

2. Joint Conversion Efforts. As mentioned earlier, it is

often the case that a joint conversion effort is proposed as a

desirable strategy. Given that all the records fram a group of

separate source files are to be converted, there are still many

questions that must be answered in order to determine how to

go about the conversion. First, is there enough overlap between

the files to make it worthwhile to try to avoid multiple con-

version of the "same" record? This is the question we were

addressing in the previous section, in which we formulated an

equation which can be used to compute the minimum amount of

overlap needed to justify a procedure to prevent duplicate

conversion. If the overlap is sufficient, which records should

be converted first? Can some files be converted independently?

79 -

II

Can some files be converted in parallel, or is there a single
desirable conversion sequence?

Careful analysis shows that this is a less complicated
series of questions than it first appears. First, the total
anount of direct conversion effort will be the same regardless
of the sequence in which it is performed. Therefore, the factor
which affects the total conversion cost is the search for tbose
records already ccnverted to machine form. Therefore, the proper
conversion strategy should minimize the total search cost, in-
curred during the course of ccnverting the whole "new" file,
either by eliminating the search altogether, by reducing the
number of searches, by reducing the search cost per record, or
by a combination of these.

Some approaches which eliminate or keduce the number of
searches will do so at the risk of a certain amount of unintended
duplication of records converted. We will first consider only
approaches that do not risk duplicate conversion.

a. Conversion with guaranteed control of du.lication.
The major source of search cost is search time, whether in a com-
puter or a manual system. Let us use the following notation:

= the number of records in file i;

= the ratio of the total number of
records in file i, which are in
some other file as well;

R. = the ratio of the total number of
records in file i, which are also
in file j;

19j

= the cost per record of searching
$isrch

another file for duplicates while
converting file i.

The total search cost is thus:

± . $$srch V
1 isrch

i=2
(7)

Note that the summation index begins at 2 because there is no
need to perform a search when the first file is being converted,
since no machine file exists yet.

The search cost Der record is dependent upon the file size,
that is, upon the number of records al-7eady converted, over which
the search for duplicates takes place. Although there are many
different ways in which that search can be performed, we assume

- 80 -

it will be one of a binary nature in which the search time is

proportional to the logarithm of the file size. Thus,

isrcn
$, = k log2 (V

j=1

i-2 i-
-

12: E: R. V.) (8)

j=1 h=j+1 J' 0

This formulation of search cost is useful primarily for random

search.

Determining the sequence in which a group of source files

are to be converted has two parts: 1) the general case of

selecting the next file to be converted; and 2) the special

case of selecting the first file.

The rule for the general case is straightforward. The file

to be converted next is the one which has the lowest ratio of

records which are not yet in the converted file, to total

records in this file. This rule balances out the execution

of the maximum possible searches of the converted file at its

current size (as would be provided by selecting the largest

remaining file for conversion next), against the addition to

the file of the least number of records possible (as would be

provided by selecting the remaining file with the fewest records

not already converted).

A, batch oriented search is formulated in a manner similar

to (8), but it is linear:

i-2 1-1

imerge
= g (21' V. - lE 2: R V.) (9)

S j=1 j=1 h=j+1 '3

where limerge" is the total cost for the search of all of the

records in the new file i.

The use of this search method changes the rule for selecting

the least cost conversion sequence. Because it is a batch

process, the cost is not sensitive to the total records in the

file to be selected. Therefore, the appropriate rule is to

select for conversion next that remaining file which has the

fewest records that have not yet been converted (i.e., the

most overlap with the other files). This has the effect of

keeping the growth in total size of the converted file at

smaller increments and thus the merges as amall as possible.

Now let us consider the special case of selection of the

first file which will be converted without pre-sorting and

without search since there is no data base already in machine

form. In the case of a random search it will be the largest

file for which the overall duplication rate with the other

files, R., satisfies the expression defined for R. :

nit

- 81 -

Rhit $srch/($new $modif)
(10)

flAqmodif" in the equation refers to either the cost of converting
records fram manual files or the cost of translating from an
existing data base, when search is used.

By this rule, the most searches will be avoided for a file which
would have been converted with search at some point in the
sequence. This search avoidance reduces the cost more than
converting the large file increases it.

For a batch processing procedure, the first file is selected
according to the general rule, i.e., the smallest file first.
The reasoning for this was given above.

b. Independent/parallel file conversions. To this point
we have discussed only the general characteristics of the files
to be converted. On this level of analysis it would not be
possible to define a method by which independent conversion
of several files in parallel could take place. The key issue
in defining such a method is to be able to predict on the basis
of some set.of readily observable characteristics of the record
to be converted, whether or not it is unique to this file. If
this prediction can be made to a high enough level of accuracy,
then ipso facto it would not be worth it to perform searches
for these probable unique records. The duplication rate needed
to make search and modification (integration of duplicates with
variant elements such as call number) less expensive than direct
conversion without search was shown to be:

Rhit ($sort $merge)/($new $modif)

Recall that search is not economic if the hit ratio is less than
the ratio of search cost/conversion cost differential. So long
as the error of estimate is not so great that the actual hit
rate satisfies this expression while the estimated hit rate does
not satisfy it, then these records having law expectation of
duplication can more economically be converted independently,
without search.

By this procedure, then, the records in all the files,
which are predicted to be unique could be separated and con-
verted in any order whatsoever.

Parallel conversion could be accammodated by the strategy
of segmenting the files into sub-groups, such as letter groups
by main entry or title, and allocating different sub-groups
for conversion at a given time. This technique, however,
implies later search and reconciliation of the file segments.

- 82 -

As a result, it does not attempt to minimize the total con-

version effort as do the approaches we have presented here.

3. An Example: The Catalog Suppleumnt. To develop the

data base for our facility by original conversion, we are using

the catalog records of the University's Catalog Supplement.

These are records of material which were new cataloging (not

necessarily new publications) to the campuses during the period

1963-67. We have made extensive studies of these records and

are thus in a position to provide examples of the use of the

expressions defined in the earlier parts of this section. This

discussion, it should be noted, is intended only as an illus-

tration, however, since many of the estimates are not verified.

Assume the parameters have the following values:

sort
= $0.05 per record

$

$merge = 0.01

$new
= 0.75 "

$modif
0.25 "

$srch
= 0.15

For a manual approach to the search, FL
it

must satisfy the
n

following relation:

R
hit

(0.05 + 0,01)1(0.75 - 0.25), (12)

0,12 (13)

For an on-line search approach, it must satisfy

Rhit
(0.15)/(0.75 - 0.25)

0.30
ie

- 83 -

(15)

Total estimated file sizes, by campus, are as follows:

Berkeley 2149000
Davis 131,300
Irvine 53,500
Los Angeles 276,200
Riverside 99,500
San Diego 128.,700
San Francisco 17,500
Santa Barbara 126.9100
Santa Cruz*

Total - 1,046,80o

At this time we do not have estimates of the duplication rates
among these files. However, we believe that it can be reasonably
hypothesized that duplication rate and file size are negatively
corrrelated. That is, the larger the file, the less the dupli-
cation rate.

Using this hypothesis and the selection rules defined
previously, we would first convert the largest of the files,
that fram Berkeley. The next file would be the one estimated
to have the greatest overlap among the nine. It would be
searched against the machine-sorted Berkeley author file, after
which we would convert the unique titles and input added loca-
tions for the matches. The next highest overlap file would
follow, and so on down to the last remaining file with the
greatest residual uniqueness.

In this situation we would not take San Francisco as the
file with the highest duplication rate, even though it is the
smallest file. Because it represents a special collection
(to support a medical school) our hypothesis of size and dupli-
cation rate is not likely to hold. Therefore, we would convert
it next to last. All other campus files would be chosen in
ascending order of file size.

There are two characteristics which we believe will be use-
ful for predicting duplication rate. If so, they will bear on
the search/convert decision. They are the language of the
record and the indicated date of publication of the material.
Our hypothesis is that duplication rate is highest for English
records, next highest for records in other Raman languages,
and lowest for non-Roman languages. Also, the older the material,
the less the duplication rate. If the record was seen to have
a particular language and a publication date that falls before
a certain date, the card would be converted without search of
the machine file, in the expectation that duplication would be
very low. Otherwise, it would be searched against the data base.

*The Santa Cruz file is now in machine-form and was not estimated
at this time.

-84-

.; I

In order to catch unintended duplication, a check could be

made automatically as part of the file maintenance process (or

manually, off-line) to compare possible matches to see if they

are truly duplicates. If found to be matches, post-conversion
modifying would then be done.

To check these hypotheses, we took a sample of approx-

imately 7000 records and counted the duplication rate as a

function of language and publication date. The results are

given in Fig. 20. It should be noted that this is an overall

duplication rate: it is computed as a ratio to the resulting

file after duplicates are removed, rather than to the inclusive

source file with duplicates intact. The results for English

conform very well to our hypothesis. It would appear that 1962

would be a reasonable cut-off date for the use of on-line search,

on an experimental basis.

No consistent pattern appears for publication date for

the non-English materials. Given the outcome of the work with

English, more study of these materials may be needed. At any

rate, it appears that for English language materials there is

a high likelihood that if we used 1962 as the cut-off date

for searching, not to search items with a date prior to 1962

would give around a 30% chance of converting an item twice.

Whether this is acceptable will depend upon verification of

the various estimates which were used in the computation of

R
hit

C. TRANSLATION OF EXISTING MACHINE FILES

1. General. In order to investigate the automatic

translation to our format of a file in another format for

data base development, we obtained copies of the magnetic

tapes of the catalog of the Library of the University of

California Santa Cruz campus.

The reasons for the decision to use the Santa Cruz file

rather than the LC MARC I file, arose from our analysis of

the UC catalog file.

First, the use of Library of Congress MARC I tapes for

extraction was likely to be useful for less than 10% of the

records in our source file. This is the case because the

MARC I file contains English language materials, the prepon-

derance of which were published since mid-1966. At present,

probably about half of such material which has been published

has been included in the MARC I file. Therefore, we decided

to concentrate on the development of translation procedures

for the Santa Cruz tapes since: 1) they contain approximately
90,000 catalog entries and 2) the Santa Cruz file should have

considerable duplication with at least two of the other campuses.
- 85 -

FIGURE 20:
DISTRIBUTION OF DUPLICATE TITLES
AS A FUNCTION OF PUBLICATION DATE

A. TITLES IN THE ENGLISH LANGUAGE

No. of
Copies

Year of
Publi-
cation

1967 1966 1965 1964 1963 1962
1955
to

1961

1950
to

1954

Prior
to
1950

no
date

.83 .53 .49 .20 .56 .67_ .82 .81 .86 ion.12EL7eat.

% crf year .17 .18 .19 .10 .14 .17 .12 .18 .10

at year .10 .10 .04 .14 .10 .06 .0 2

ar year .10 .06 0 3 . .0 2

of year .03 . . 03 . 8

% of year , 02 . .03 . 4

ar year .03 .02

S-SZtagfir

% of year .01 --
Total % 100 100 100 100 99 99 100 99 100 100

% of year: This is the percent of titles (in the language indi-
cated) in the sample that were published in the given
year, having the given number of copies.

- 86 -

B. TITLES IN LANGUAGES OTHER
THAN ENGLISH THAT USE A

RONAN ALPHABET

No. of
Copies

Year of
Publi-
cation

1967 1966 1965 1964 1963

1

1962
1955
to
1261

1950
to
1254

prior
to
1250

no
date

1
% of yr .83 .79 .781 .83 .79 .83 .79 .92 100

2
% of yr .12 .16 .14 .11 .13 .15 .14 .07

3
% of yr .03 .03 .03 .03 .03 .03 .06 .01

,

4
% of yr .02 .02 .03 .03 .05

,

5
'0 of yr .02 .005 .01

6
vc. of yr

,

70 of

8 v° of yr .

9
/0 of yr

Total % 100 100 100 100 100 101 100 100 100

C. TITLES IN LANGUAGES THAT USE A NON-ROMAN ALPHABET
INCLUDES TRANSLITERATED TITLES

No. of
Copies

Year of
Publi-
cation

1967 1966 1965 1964 1963 1962
1955
to
1961

1950
to
1954

prior
to
1950

no
date

1
% of yr .91 .93 .98 .95 .96 100 100 100 100

,

2
% of yr .09 .07 .02 .05 .04

Total % 100 100 100 100 100 100 100 100 100

- 87 -

The automatic translation of records is of considerable
importance, not only for the conversion of the Santa Cruz
materials as such, but because it represents a special solution
to the general problem of converting fram a less specific
format (such as the Library of Congress MARC I format or the
Stanford University Undergraduate Catalog format) to a more
specific and complex format (such as the Library of Congress
MARC II format). To the extent that automatic conversion is
successful, materials which have been converted in less speci-
fic formats will be more immediately useful in systems based
on the MARC II format. Also, the continuing process of input
in the MARC II format requires that many of the encoding deci-
sions be made by professional cataloging personnel. A further
benefit of automatic translation could be to reduce the amount
of trained personnel effort required for original input. This
would be acccmplished by reversing the production sequence.
The new process might be termed "camputer-assisted editing"
(see Fig. 21). The keying of the catalog data is first per-
formed, then the computer programs incorporpting the algorithms
assign the basic identifying codes to the records, and finally,
the trained personnel would review and correct or extend the
computer actions.

The approach of the algorithms will be to identify the
fields and sub-fields of the bibliographic record on a "best
guess" basis. By this approach, it seems reasonable to
attempt to reduce the total manual effort to one-half that
required by present procedures.

- 88 -

FIGURE 21:
CONVENTIONAL CONVERSION COMPARED TO AUTOMATIC FORMAT

TRANSLATION AND COMPUTER-ASSISTED EDITING

Source
Catalog

/Manual
Pre-edit

Keyboard

(Computer

Edit

Proofread

(Update

41110

C.A.E.
START

Source
Catalog
Card

Keyboard

J

(I A.F.T.
START

Machine
ecords

Computer
Translation
to Input
Format

Computer
Edit to

Processing
Format

Manual
Post-edit/
correction

Stop

9 -

2. Santa Cruz File Translation Program. The general
function of the program (TRANSCOF) is to convert the codes for
data in one format to codes in another format. The change is
one of form, not content. Specifically, this program trans-
lates the Santa Cruz Library System input format into the ILR
input format.

Some of the problems of format conversion are:

(1) Determination of the rules which categorize the
data into a given format, at the field level.

(2) Identification of the "structural properties" of
the original data (such as that of LC cards). Structural
properties are the physical characteristics according to which
the data as strings of symbols may be said.(with some degree
of probability) to group itself according to logical content
and meaning. Very little quantitative information on the
nature of the field content of catalog records is available.
To obtain indicative data, a rough sample of 1000 LC cards
was analyzed: 997 had the characteristic that the author
surname (which is a logical content meaning) was uniquely
separated from the remainder of the name by a comma (a physical
dharacteristic). Thus, one trivial but usefUl structural
property of LC card data is that the surname is separated fram
the given name of an author by a canna with a probability of
about 99%, yielding a reliable 'way of confirming sub-type of

personal name.

Structural properties with a high favorable prdbability
are being used in the development of algorithms which estab-
lish equivalence between the data elements of one format with
those of another. For example, using the structural property
illustrated above, we developed the following algorithm:

Given the code in the source record which identifies
the field containing main entry author name, we can
infer that the symbols preceding the first camma in
a left-to-right character scan constitute those
characters which belong to the element 1surname', and
those subsequent to the comma belong to the category
'given names'. See Fig. 22.

Where structural properties are too ill-structured to de-
scribe or have an unfavorable probability, indirect methods must
be developed for the division of a field in one format into
the several corresponding elements of another, more specific
format. Fig. 23 depicts the initial version of a sa-routine
to identify the elements in the title field, a more difficult
translation.

To illustrate further, consider the problem of sub-
dividing the element 'subject headings' into sub-categories

- 90 -

FIGURE 22:

FLOW CHART OF PERSONAL AUTHOR FIELD ALGORITHM

Given: All of the information concerning personal author as found

on an LC card, except information such as 'editor', translator',

etc., which is given by a code letter in col. 69 of the Santa Cruz

input card. To be determined: (1) Which portion of the string

constitutes the name of the author, (2) which portion is the date

date(s), (3) whether or not the title 'Sir' (which is the most com-

mon title) is present.

The following is a generalized outline of the logic involved and

does not faithfully represent the actual coding of the subroutine

PERSAUTH.

Scan for the
word 'Sir'
imbedded in
the string

Is
'Sir'

resent

START

set
SIRFLAG
= 0

Scan for 1st
numeral not
followed there-
after by a

small alphabetic

Does
situation
occur?

Yes

Insert delimi
ters in front
of name and
date fields

First said
numeral =
start of date

Date field is
assumed not
present. In-
sert delimite
in front of
name field.

Tack on the
word 'sir' with
its delimiter
at end ofstrin
if SIRFLAG =1

If SIRFLAG =1
insert 'sir'
with its deli-
miter between
name and date - 91 -

Iheck col. 69 of
he orig. input
ard for the
resence of a
ode which in-
icates tnat t e

(1)

person Is an editor,
translator, etc.

If code is
present, tack
on appropriate
abbr, with de-
Ilmiter at
ena or,string.

End

FIGURE 23: FLOW CHART OF TITLE FIELD ALGORITHM

Given: Complete monograph title field.
To be determined: (1) Short Title, (2) long title, (3) author

statement and additional information, (4) edition statement, (5)

remainder of edition statement.

Period,
Question
mark,
close pa-
renthesis

START

)11

left to right
scan for

punctuation/

Followed
by 2
lanks

Yes

Period
signals end
of cp

If none
present,
Cgonly
is pre-
sent.

--->(Exit

Colon,
sesi-colon

)"..seParates

IIDfrom.0

s.kparates

and n
Q) fromg
present

No
further
fields
are

present

(Exit

Yes

Is
rd char.

fter period
a blan

Is
it a

numeral?

Indicates
the

start of

left to
right

scan for
"by"

If 'by'
present
it

from
ates

Are
next 3
chars.
'Rev.'?

This is di,
has the begin-
ning or con-
8matioil of

o end
of string

- 92 -

Exit

ii

FIGURE 23 .(Cont.);
FLOW CHART OF TITLE FIELD ALGORITHM

left to
right scan

Followed
by 2
lank

Yes

Period
signals
end of

erio Condition

By

N ither

1111MOIIM,11111

left to
right No

scan for
period

Period

followed
by 2
blanks

Yes

-93-

If neither,'

nly
and are
present

Period

11111
If no per-
iod, last
section
is

Exit

based on the various classe-3 of subjects, corresponding to the
6xx tag series in MARC II. There is nothing in the structure
of information on the LC card which provides any clue to its
meaning or type, beyond the level of "subject tracings" iden-
tified by Arabic numerals. Resort might be made in this case
to table-lookup scheme utilizing a dictionary, which identifies
the field type to which a given subject heading belongs. A
"tagged" version of the LC subject headings machine file could
be the basiz for such a method.

The TRANSCOF program consists of a main routine called
LAYOUT and five subroutines named PERSAUTH, CORPAUTH,
ES200500, TITLEALG and PPD.

The main program performs three functions, in three
sections:

(1) Reads in the set of 'card images fram a source tape
that make up the data converted fram a single catalog card.
This data is then broken dawn and laid out into the appropriate
categories for processing by the subroutines. Certain Charac-
teristics of the data are noted and recorded for later use.
Branches are made to other sections of the main program upon
detection of variations in the data (such as missing sections)
for "troubleshooting" purposes.

(2) The subroutines are called and various logical gates
are opened or closed in the third section.

The subroutines apply the algorithms to the appropriate
strings of data which vere constructed in che first part of
the main program. Data which is input to the subroutines are
restructured into the ILR input format.

(3) The various pieces of the restructured data are
concatenated to produce a continuous string which makes up an
ILR input record. This is then to be written to tape, and the
whole process is repeated for another record.

D. DATA BASE PRODUCTION PROCEDURE

In the following section we present a detailed plan of
the procedure through which we plan to obtain the data base
for the study.

The chart in Fig. 24 summarizes the overall file creation
plan, including the experimental on-line, terminal-based
search operation. Certain aspects of the process have not
yet been implemented as of this writing. These components
are labelled "Proposed". Two programs in this plan are
critical and were discussed in preceding sections. These are

- 94 -

FIGURE 24: SUMNARY CHART OF DATA BASE PRODUCTION

(Original
Format)

Initial
Master

(P ofz.5),g Format)
A \
I \

1

1

.0"

[Start]

Translate
Format rans

At

lated
File

Iklalput
'Format)

Generate

ataloig

(Update Index

Index File

Name
Index

(Proposed
Terminal

Search on
Name

No

Match of Names

Match of Names

Print
Machine
Record Diagnostic

Listing

Compare
Cat. Data

S.

Match

No Match f Input

Records Edit
Program

Trans.
File

Modifie
Master
File

(Proposed
Update

[Stop]

C. recte
rans.

01.

- 95 -

/Modified
ile

.4ma ...1 M. M1=1 . wo M. ON IN M OM

tit

the program for conversion of the Santa Cruz tapes to ILR input
format (TRANSCOF) and the input edit (processing format) pro-
gram (INFOCAL). A preliminary version of the INFOCAL program
is currently running.

Meanwhile, the modules of the system were set up in a
"stand-alone" status. To T.,..plement the program for original
input separately, a large sample extracted from the source
file of University of California Catalog Supplement was used.
The material in this sample was edited, keypunched, and pro-
cessed to shake down the record formats and to serve as a
basis for evaluating alternative methods-of converting existing
machine files. That is, we plan to compare the records put
through the Santa Cruz format translation with any matching
records which are input as original records. This will serve
as a basis for improvement and revision of the automatic format
translation program.

1. Proposed Oa-line Search Procedure. Instead of using
manual methods to verify which catalog entries have been
converted to machine form, we plan to use a terminal-based
search system for this purpose. The search key to be used in
this experiment would be the main entry author name (or a
portion thereof) fram the card, matched against the machine
index file of author names. A research objective of this
technique, as well as to shorten the search process, is to
gather quantitative data on the optimal length of search key,
i.e., minimum number of characters in the name to be keyboarded
in the request while preserving uniqueness (see Section ILEA).

If there is a match, the catalog card would be set aside
to be checked against a subsequent printer listing of the
full machine record. If no match is obtained, the catalog
card would be put immediately into the conversion process.
At the same time, the index file would be updated with the
new information indicating that the entry is in the conversion
process but not yet in the system. As a separate manual
process the printed listing would later be checked Against
the catalog entries which were set aside. If a true match
is confirmed, the added location data or other modifying
information such as variant call number would be incorporated
into the existing record. If the possible match is not true,
the catalog card would then be put into the normal conversion
process as a new record.

Fig. 25 shows the first steps in this experimental
verification search process.

Fig. 26 shows the cards found to be possible matches with
existing machine index file entries being compared with print-
outs for corresponding machine records fram the computer master

- 96 -

FIGURE 25: ON-LINE SEARCH FOR DUPLICATES

Existin
File

(IIpi1f .

Format)
Input
Edit

Generate
Index

Catalog
Card Compare

Identifier
on Card:
Index File

xisting
Machine

File

ILR
Processing
Format

Name
Index
File

>

Update
Index 1.0

r_ _ _
Yes

Hold Match Note Send Non-

Cards for Record match Cards

Compare with umbers of for Original

Machine Listi Possible Matches Input

- 97

I.,..

Record Number
of Matching
Machine
Records

ICatalog
Card

FIGURE 26: VERIFICATION OF MATCH

2.0

Retrieve
Records &
rint Diag-
ostic Lis ing

\
\

.00

F.

/
/

1/(

Compare .

Catalog Ca

Listing

Yes

ecide How
to Integra
Card &

Matching R

e.

cord

- 98 -

file. If a verified match is confirmed, the editor decides how

to merge the manual record with the machine-readable information.

If no true match is found, the name heading on the catalog card

is entered into the machine index file as a control on the new

record, which now goes into the original input process.

2. Editorial Preparation. The next chart (Fig. 27) shows

the process of editing and initial keyboarding. The cards

flowing into this stage are those which did not match, either

on the initial name (author) search, or which were found on

actual comparison with a printout from the machine file to be

distinctive records, even though the heading matched.

If the records matched on name and also matched on title,

edition, etc. when the card was compared with the printout,

the variant data from the catalog card is input as a correction

to the machine record, as depicted in Fig. 28.

Several thousand records have now been edited in the ILR

Input Format. This wont is under evaluation in order to

establish the adequacy both of the formats and of the organ-

ization for providing the input.

Preliminary estimates of the effort requirements will be

used as a basis for evaluating the results of the first year's

editing and for reorganizing the input methods for the remain-

ing portion of the current data base preparation work. Prior

experiments indicate that the input (iacluding all steps of

editing, keyboarding and correcting) of English language

material should be capable of being performed with an

approximate total of 5 man-minutes of effort per title.* Our

recent work using the ILR input format that translates to full

MARC II format indicates that about 15-20% more effort per

title will be required, at least until the editing and typing

staff reach a high degree of proficiency. It is estimated

that non-English material will require on the order of between

one-half again to two times as much effort as the English

language material.

3. Keyboarding. The records are next sent for key-

boarding. During initial tests in ILR the production rate

achieved was somewhat lower than that attained in previous

studies. This is due to the impact on our coding of the

*Cartwright, Kelley L. and R.M. Shoffner. Catalogs in Book

Form: A Research Study of their Implications for the California

State Library and the California Union Catalog, with a Design

for their Im lementation. Berkeley, Institute of Library

Research, University of California, 1967. p. 48-49, 1-31.

- 99 -

FIGURE 27: DATA PREPARATION AND TRANSCRIPTION

Catalog Card

....----4 .

Edited Coding
Sheet

,.

Prepare

Edit

Keyboard

-100-

....

....,

%.

FIGURE 28: COMPUTER EDIT, CORRECTION CYCLE, AND FILE UPDATE

\ Source
,
.
.

S.
Input
Edit
Run

Trans-
action
File

Proposed Automatic Certification

Path Path
V

Proofread Master
File
Update

iN

Certify
Errors?

Part 2
of Listing

. I Indicate
Corrections\

A

\

Keyboard
Corrections /

Old
Master
File

Updated
Master
File

Update Run

Index
Files

r

STOP)
- 101 -

/ .

Exit)

-)

"Carryover"
Diagnostic
Listings

added complexity of the MARC II format, primarily. Preliminary
estimates secured fram commercial service bureaus for the
initial keyboarding on a production basis are for a rate of
about 5,000 characters per hour for the learning phase, in-
creasing to a rate of 7,000 characters per hour after that, on
the average. This is based on the input record as described
in this report.

A number of keyboarding conventions are being recommended
for use with the lengthy, complex strings involved in catalog
records. Among these are a "null previous character" signal,
i.e., a code that can be typed immediately following a character
typed by mistake (when so recognized by the device operator),
and a "spacing rule". The device operator will not have to be
especially attentive to inter-word spacing when inputting the
catalog data since an internal computer edit routine will check
the data stream for instances of more than one space and re-
duce such occurrences to one space.*

*There is one exception which is very important if the input
process happens to be implemented on tab cards. That is to
employ a convention that a punched card can be either filled
completely (i.e., a character in the last column) or partially
filled. If partially filled, all trailing blanks (from the
last character punched to the last column available for use)
will be automatically purged from the input stream by the edit
program. In any case, the first normally used column of the
next succeeding card must contain a blank if there is an inter-
word space needed. If not needed, the following card begins
with the next succeeding character of data in the first nor-
mally used column, as in the case of a break in a word at the
right end of the card being punched.

Strict conformity to this or a similar arbitrary con-
vention is absolutely required to make the input record usable.
Irregularity in spacing can create great difficulty in trans-
lation of a machine file fram one format to aaother, partic-
ularly in cases where tab cards were used as the conversion
medium.

- 102 -

4. Proofing and Correction. The records are then input to
the computer, and the internal processing record is compiled by
the input edit program. (See Fig. 28). After a number of
machine edit checks, validations, etc., are performed, a diag-
nostic proof-listing is printed out. This printout here is

optional: it may be suppressed if the record is not to be
selected for proofing by the statistical quality control routine.
A line printer will be used rather than a slower, more costly
on-line terminal.

The kind o2 validation checks performed are: check to
determine whether ten slashes have been inserted into the record;
signal an error condition if less than ten are present. Check

detailed aspects of the coding, such as whether author-analytic
added entries contain both an author and a title subfield, as
required by the input instructions. On the double-spaced
listing to be used by the proofreader, the computer prints
out error messages from a repertory of such diagnostic routines.
These messages appear in conjunction with the data containing
the detected error. Examples of printed error messages gen-
erated by the edit programs are:

DECKLET SEQUENCING ERROR. The card numbers in the set of
input record tab cards (if that is being used for input) are

not in ascending numeric order.

cc IS INVALID ADDED ENTRY TYPE. "cc" is a two-
character code describing the type and sub-type of a heading.
The code designated was not recognized by the program as a
valid code, indicating an editor error or typographical error
was committed.

MORE THAN 3 BIBLIO. LEVELS. EXTRA CODES IGNORED. Only

three positions are allocated in the record leader for storing
the values for bibliographic levels of the record.

TRANSLATION INDICATOR GIVEN, BUT 2ND LANG. MISSING. The

language variable field contained only one three-character
language code: there should be two.

ONE OR MORE A-FIELDS MISSING. SLASHES FOUND.
This message is printed if the program finds more than or less
than 10 slash marks between the location of the beginning of
the A-fields and the location of the start of the B-fields.

***IMPROPERLY CODED LOCATION SUB-FIELD IN HOLDINGS STATE -

MENT***. ***. The sub-field did not contain a five-digit
agency code or a five-digit-plus-one-letter sequence.

- 103 -

WARNING - LC CALL NUMBER OCCURRED MORE THAN ONCE.
This signals the proofreader that the field code for LC call
number was used more than once. Could occur when proper code
for LC copy statement was nct used for the second call nuMber.

There are a number of error conditions which cannot be
determined by the computer, and these wauld of necessity have
to be detected in the visual proofing process. In case an
error goes into the master file undetected, a procedure will
be established to input corrections reported by users at a
later time.

Two features of the correction cycle are of particular
interest: 1) the re-keyboarding of the corrections could be
performed experimentally via the on-line terminal, in contrast
to the initial keyboarding which is done off-line on devices
such as the keypunch, and 2) the diagnostic liisting of the
record is being experimentally printed out in two parts, one
containing the coding and data displayed in a logical field
arrgy, element by element, field by field; the second part
listing tbe same data but in order corresponding to the
sequence of the physical input record, e.g., a tab card decklet.

This form is an experiment intended to assist the proof-
reader. The first part of the listing is shown in Fig. 29,
and is used by the proofreader (who will not be the same person
as the editor of any given record) for visual scanning, com-
parison with the coding sheet, and detecting.of errors.

The second part of the listing (See Fig. 30) will be used
for re-keyboarding: the proofreader will transcribe keying
instructions on the card image listing itself, and the marked-
up listing will be transmitted to the correction typist, who
will input the corrections into the file. The operator scans
the listing for the indicated errors to be corrected, and
re-keys only the amount of information necessary to correct
those errors. This information will consist, first, of the
information which is in error, and, second, of the correct
information as it should be. Each line of the print-out
will have a number, which is assigned by the computer. When
the computer is given the incorrect information which occurs
in that line, it will search the corresponding internal line
to find that information, and then change it to the indicated
correct information. This technique avoids the necessity to
re-key either entire print lines or entire physical units
such as punched cards.

Such a "string correction routine" can be set up to
process errors at the level of single character, words, lines,
groups of lines, or whole records. It can be operated through
any input device, either on-line or off ilne.

RECORD NUMBER 100150

1966dmdsebfa690ja/%1(690r%jbBF435.G193cA:4430Amanaw00

/111.A52 v.40no 4supp.

/Garrison, Mortimer,Med.

/Cognitive models and development in mental retardation,

/%edited by Mortimer Garrison, Jr.

0/New York,

/American Association on Mental Deficiency,

/1966.

/149 p.

d
0 0
H 0

CD

11-1a
H
tzi

H

ti 0
H
CD 1-3

1-1

/(Monograph supplement to American journal of mental deficiency, v.70, no.4, 1966)

*k"Proceedings of a Research Cpnference sponsored by the Woods Sskools, the.American
issociation on Mental Deficiency and tfie National Institute or Child Health and Human.
Development"

/ O

1

DATE

159

160

161

05/02/68

100150

100150

100150

01

02

03
H0
ON

i 162 100150 04

163 100150 05

164 100150 06

165 100150 07

166 100150 08

'"=, 0-3.m

FILE ORGANIZATION PROJECT

DIAGNOSTIC LISTING
zj

RECORD NUMBER 100150 8
2

.

1966DEDSE8FA690JA/%%6900JB_B_F435._G193C90;430%MANAW00/_R1._A52 V.40110.4 o

c-I tiSUPP./_GARRISUN, _MORTIMER,U4ED./_COGNITIVE MODELS IND DEVELOPMENT IN M EIV.

@
H 8

ENTAL RETARDATION,/*EDITED BY _MORTIMER _GARRISON, _JR./_NEW _YORK,/_AME iii.-31

ti IIIHWRICAN _ASSOCIATION UN _MENTAL _DEFICIENCY,/1966./149 P.//(_MONOGRAPH SUP FAI.4

8 4
PLEMENT TO _AMERICAN JOURNAL UF MENTAL DEFICIENCY, V.70, NO.4, 1966)*10_

1-3PROCEEDINGS OF A _RESEARCH _CONFERENCE SPONSORED BY THE _WOODS _SCHOOLS,
n.)

i

THE _AMEHICAN _ASSUCIATION ON _MENTAL _DEFICIENCY AND THE _NATIONAL _IN

STITUTE OF _CHILD _HEALTP AND _HUMAN _DEVELOPMENT"...

Following this correction of the initial product, it is
necessary to proofread the corrections made by the computer,

in order to determine that these have been made correctly, and

that error has not been introduced in the second keying. Tn

the second proofreading, only the corrections indicated by the

proofreader and the corresponding actions taken by the computer,

will be campared to one another. It will usually not be nec-

essary on the second proofreading to campare again the infor-

mation printed by the computer, to the full information on the

original catalog entry.

The final step is to update the machine files with the

new record.

E. ISSUES OF COST AND QUALITY

1. Data Conversion Quality Control. The data preparation

system is composed of four relatively independent processes:
editing, keyboarding, visual proofreading, and error correction

(re-keyboarding).* Fig. 31 shows the flow of both "clean"

records and defective records through the quality control

subsystem. Distinction will be made anong three sources of

an error: editing, keyboarding, and computer processing (pro-

gram errors, etc.). The detailed attribution of error is for

managerial purposes (e.g., revision of procedures and editor

training), and to prepare billing of a keyboarding contractor,
if the conversion were to be done by an outside service.

Error records (dashed lines) originate mainly in the
editing step and the initial keyboarding step. To detect and
tally errors introduced by either of these sources, a control
element is introduced into the flow.

*This procedure does not include a control step called
Hproofing after editing", wherein the editors exchange
coding sheets among each other prior to initial keyboarding.
This was thought to be an unwarranted extra cost in view of
the high calibre of the staff available for editing. Also

excluded from the above is the review of trainee editors'

production.

-107-

ft,

FIGURE 31: QUALITY CONTROL SUBSYSTEM

Keyboard

:

MB

Re -

Keyboard

Error Record
Clean Record

Indicate
Corrections

if 4

Input
Edit
Run

"Gate"
for

Sample
Extraction

V
END

Group 1
ot Select
for Q.C.
Sample)

(Autoimat1

Certif

[..Defer

Correction

Proofread

1.

Group 3
"Clean"
Records

(Manually C rtified)

L _

Group 2
_>. Error

Records

Master
File

Update

-108-

Instead of making this a separate stage, it seemed most
feasible to couple the control process with the proofreading
step, by modifying the latter. "Modified proofreading" would
include the normal processes of error detection and marking
for the purposes of re-keyboarding. It would also include
tallying of the errors detected and their attribution to
editing, keying, or computer progran. An advantage to this
procedure is a large reduction in the cost of the sampling
needed to establish and maintain the quality control procedure
itself.

The basic decision is that not all records need be
exhaustively proofread immediately after initial computer
input, as has normally been the case in library conversion.
Instead, the editing and keyboarding of all records, and the
modified proofing of only some of the records (or, as a sep-
arate option, proofing of certain critical parts of each
record) is performed as one sequence. The exhaustive proof-
reading of the remainder of the records (or the remaining
parts of all records) and the correction of all of the errors
can be deferred and performed at a later time. (There will
be a procedure for correction of errors reported by file
users, of course.)

The number of records to be proofread in the first cycle
of the control procedure will be that sample size required
to obtain the desired confidence level of the information to
be fed back in regard to keyboarding and other errors. If the
error rate is high at the beginning of the production operation,
as is likely, then the number of records to be proofread will
be high since one of the variables governing the size of the
samples selected for inspection is the number of defective
records found in the initial sample. (A procedure for sample
size determination is included in Appendix VI.)

The output of the initial cycle would be three groups
of records. Group 1 is those records not selected for
proofreading on the initial cycle. These would be auto-
matically transferred to the master file, and can be inspected
at a later date in a systematic manner for purposes of
correction. Group 2 is that set of records, selected for
proofing, which have been found to contain errors and are
now ready for re-keyboarding. Group 3 is that set of records,
also selected for proofing, which have been found to be error-
free and are ready for transfer to the master file. This is
an iterative process, i.e., Group 2 records are continuously
re-cycled until they are removed from the process by falling
into Group 3.

-109 -

2. A Decision Model for Keying Cost/Qualitz. In planning
for a large scale conversion it may be desirable to contract
out certain of the tasks which are one-time, non-continuing
in nature. The keying of the data is a portion of the effort
which might be done by an outside group. However, a method

for deciding how to select among alternative conversion systems
and prices for data transcription service is needed. The

requirement is to secure the greatest amount of converted data
at the least expenditure both of time and money. Also, the

quality of the conversion is vital. We suggest that a solution
is not found in simply choosing the method or firm which offers
a given level of quality for a fixed price (time and materials).
Rather the variables must be related to each other.

In the circumstances of this project, one of the questions
asked is "What will be the cost impact on the record correction
part of our production, of a given level of accuracy of the
data obtained in the initial keyboarding?" This issue under-
lies several stages of the process, in particular the level
of effort for re-keyboarding. We have generalized our decision
making scheme in the hope that it might be usefUl to other
organizations facing similar questions concerning conversion.

The effective conversion cost for a unit record of input
is that needed to attain an error-free record. This accuracy
can be defined by degrees of approximation to perfect data,
that is, to 100% accuracy.

Given that the error rate of the initial keyboarding is
low enough, one may choose to accept the records wlthout
correcting them (at this time). In choosing between alternatives
with different costs and error rates one should select the one
with the lowest cost for the accurate records, where this cost
is computed by allocating all conversion cost to the accurate
records.IfIrecharacterizetheerrorrateasEthen we can

1

compute an effective cost per record, $AR, as

$
$SB

AR =
1 - Ei/100

where $SB represents the initial keying cost per record.

(1)

If a higher level of accuracy is needed than can be
provided during initial keying, then subsequent proofing and
correction will be required. The lucre accurate the initial
keyboarding is, the less the re-keyboarding cost incurred in
the correction module. Therefore, each increment of added
accuracy of initial keying has a value to the organization
in the replaced cost of re-keyboarding the corrections.

-110 -

r.

1,

When we include the cost of proofing and correction in the

total cost for converting data, the cost can be defined as:

where

K = $1H + $SB + $ED + $ECEi (2)

K = total unit cost to input a record

$1H = cost of editing and associated pre-keyboard
processes, per record

$SB = cost per record for initial keyboarding*

$ED = cost of visual error detection
(proofreading)

$EC = cost of re-keyboarding, per error
"character-block"

E. = the number of error "character-blocks"
per record. A dharacter-block is defined

as 5 contiguous dharacters which must be
re-keyboarded to correct one or more
characters within that block.

To state the cost of error in relation to the initial
keyboarding costs, rearrange the equation:

$SB = K - $1H - $ED - $ECEi (3)

With this equation, we can define a family of keying cost/

error rate indifference curves by allowing the total cost, K,

to take on different values. As an example, if $1H + $ED = $0.28

and $EC = $0.05 then the variation in given error rates (Ei)

sustained, can be used to establish a curve for the relation

of the variation in keying cost such that K is constant:

$SB = K - $0.28 - $0.05Ei (4)

Fig. 32 shows an indifference curve for the range of
values cd' E. and $SB.

*Key verifying is excluded since it doubles the cost of the

initial transcription but does not result in detection of

errors attributable to editing and computer processing - or

even all the initial keying errors.

In Fig. 32, any price quotes for initial keyboarding that

fall in the region to the right of the indifference curve would

be unacceptable in comparison to any prices falling on the curve

or to the left of it.

There may be some initial error rate, Ei, that is felt to

to be too great to be acceptable even though the records could

be corrected. Thus, we show this "unacceptable region" extending

horizontally at an error rate of 10 blocks rer record. Fig. 32

was shown with the values of $SB plotted in terns of K. The

leftmost indifference curve identifies the best of a set of

different price/error rate alternatives. To see this, consider

Fig. 33, which shows three separate price quotes for initial

keying, expressed as sliding scales based on error level. Part

of the decision in this case is clear. Regardless of the spe-

cific accuracy obtained, "C" should not be chosen because its

price is always higher than those of A or B. Thus, it would

be irrational to pay price "C" under the conditions shown in

the example.

To determine which of the two prices, A or B, should be

chosen, the indifference curve should be moved to the left as

far as possible and yet allow it to lie upon a point within
the acceptable region, quoted for A or B.

The leftmost curve will intersect Price "A" at an error

rate of 2. Thus, it is the preferable alternative.

In most situations a final error rate which is greater

than zero is acceptable. This does not change the basic

analysis, however. Rather it defines an error rate below

which (plotted above on our figures) additional cost will

not be justified. The leftmost indifference curve which
intersects a price/error rate curve in the given error region

of interest will indicate the best alternative. In the

illustration, a final error rate of 2 might be acceptable.

The price curve "A" would still be the one for the organization

to select.

Thus; using the level of accuracy desired in initial

keying, at a given keying cost as the critical vaxiable, we

have established a basis for selecting anong alternative costs

for keyboarding. This error rate is to be determined by

visual inspection of input records selected by the method of

sequential acceptance sampling outlined in the preceding

section.

- 112-

,10

.-r

FIGURE 32: RELATION OF INITIAL KEYING COST TO ACCURACY

3

4

5

6

A7.7/

-6R7

7 4/
,

8
/

co .61!/

r4 9

pt4

PI 1

REJECT RECORD

11 ABOVE 10 ERRORS

12

13

15
-.90 -.80 -.70 -.60 -.50 -.4o -.30 -.20 -.10 K

PRICE FOR KEYBOARDING ($SB) AS FUNCTION OF
EDITING/PROOFING COSTS & ERROR RATE

K = total unit cost
(constant)

- 113 -

FIGURE 33: ACCEPTABILITY IN TERMS OF ACCURACY AND COST FOR
THREE PRICE QUOTATIONS FOR KEYING

0

1

2

3

4

5

6

7

8

9

10

11

12

13

15

UNACCEPTABLE
REGION

1 1 11 J 1 1 1 1

-.90 -.80 -.70 -.60 -.50 -.40 -.30 -.20 -.10 K

.10 .20 .30 ..40 .50 .60 .70 .80 .90
$SB = PRICE FOR INITIAL KEYING

(Avg./Record)
- = indiff. curve

X X = price quote curves - 114 -

[

REFERENCES

1. Avram, Henriette D., John F. Knapp, and Lucia J. Rather. The

MARC II Format: A Communications Format for Bibliographic
Data. Washington, D.C. Information Systems Office, Library
of Congress, 1968. 167 pp.

2. Becker, Joseph and Robert M. Hayes. Information Storage and
Retrieval: Tools, Elements, Theories. New York, Wiley,
1963. 448 pp.

3. Bregzis, Ritvars. "Query Language for the Reactive Catalogue."
In: Tonik, Albert B., ed. Information Retrieval: the

User's Vie oint - An Aid to Design. Philadelphia, Inter-
national Information, Inc., 1967. pp. 77-91. (Fourth
Annual National Colloquium on Information Retrieval,
May 3-4, 1967.)

4 Cartwright, Kelley L. and R.M. Shoffner. Catalogs in Book
Form: A Research Study of their Implications for the
California State Library and the California Union Catalog,
with a Design for their Implementation. Berkeley, Institute
of Library Research, University of California, 1967.
various pagings.

5. Cox, N.S.M. and J.D. Dews. "The Newcastle File Handling
System." In: Cox, Nigel S.M. and M.W. Grose, eds. Organi-
zation and Handlin of Biblio ra hic Records b Com uter.
Hamden, Conn., Archon Books, 1967. pp. 1-21.

6. Cunningham, Jay L. Instruction Manual for Editorial Prepara-
tion of Catalog Source Data. Preliminary Edition. Berkeley,
Institute of Library Research, University of California,
1968. 172 p.

7. Jackson, Michael. "Mnemonics." Datamation, v. 13 (Apr. 1967),
pp. 26-28.

8. Mathematical Reviews. (Am. Math. Soc., Lancaster, Pa.) v. 30
(1965), p. 1207.

9. Palmer, Foster M. "Conversion of Existing Records in Large
Libraries; with Special Reference to the Widener Library
Shelflist." In: Harrison, John and Peter Laslett, eds.
The Brasenose Conference on the Automation of Libraries.
Held at Oxford, Eng., 30 June - 3 July 1966. London,
Mansell, 1967. pp. 57-83.

-115 -

REFERENCES (Cont.)

10. Payne, Charles T. "Tagging Codes." Chicago, University of

Chicago Library, Feb. 1967. (unpublished report) various

pagings.

U. Vaughan, Delores K. "Effectiveness of Book-Memory Data for

Conventional Catalog Retrieval." In: Chicago. University.

Graduate Library School. Requirements Study for Future
Catalogs; Progress Report No. 2. Chicago, Mar. 1968.

(NSF Grant GN 432) p. 53.

-116-

APPENDIX I

AN ALGOPTTHM FOR NOISY MATCHES IN CATALOG SEARCHING

By

James L. Dolby
R & D Consultants Company
Los Altos, California

AN ALGORITHM FOR NOISY MATCHES IN CATALOG SEARCHING*

By

James L. Dolby
R & D Consultants Company
Los Altos, California

A. INTRODUCTION

A viable on-line search system cannot reasonably assume

that each user will invariably provide the proper input infor-

mation without error. Human beings not only make errors, but

they also expect their correspondents, be they human or mech-

anistic, to be able to cope with these errors, at least at some

reasonable error-rate level. Many of the difficulties in

implementing computer systems in many areas of human activity

stem from failure to recognize, and plan for, routine acceptance

of errors in the systems. Indeed, computing did not become the

widespread activity it is now until the so-called higher-level

langilages came into being. Although it is customary to think

of hijher-level languages as being "Imre English-like," the

height of their level is better measured by the brevity with

which various jobs can be expressed (for brevity tends to re-

duce errors) and the degree of sophistication of their automatic

error detection and correction procedures.

The processing of catalog information for the purposes of

exposing and retrieving information presents at least two major

areas for research in automatic error detection and correction.

At the first stage, the data bank must be created, updated and

maintained. Methods for dealing with input errors at this

level have been derived by a number of groups and it seems

reasonable to assert that something in the order of 60 per cent

of the input errors can be detected automatically (1,2,3).

With the possibility of human proofreading and error detection

through actual use, it is reasonable to expect a mature data

base to have a very low over-all error rate.

At the second stage, however, when a user approaches the

data base through a terminal or other on-line device, the errors

will be of a recurring nature: each user will generate his own

error set and though experience will tend to minimize the error

rate for a particular user, there will be an essentially irre-

ducible minimum error rate even for an experienced user. And

if the system is to attract users other than professional inter-

rogators, it must respond intelligently at this minimal error

level.

*This research was carried out for the Institute of Library

Research, University of California, under the sponsorship of

the Office of Education, Research Grant No. OEG-1-7-071083-5068.

,y47/-119-

In this paper we consider certain problems associated with
making "noisy matches" in catalog searches. Because prelimi-
nary information indicates that the most likely source of input
errors is in the keyboarding of proper names, the main emphasis
of the paper will be on the problem of algorithmically cam-
pressing proper names in such a way as to identify similar
names (and likely misspellings) without over-identifying the
list of possible authors.

B. THE STRUCTURE OF EXISTING NAME-COMPRESSION ALGORITHMS

The problem of providing equivalence classes of proper
names is hardly new. Library catalogs, telephone directories
and other major data bases have made use of "see-also"-type
references for many years. Same years ago Remington-Rand de-
rived an alphanumeric name.compression algorithm, SOUNDEX, that
could be applied either by hand or by machine for such purposes
(4). Perhaps the most widely used on-line retrieval system
presently in existence, the airline reservation system (such
as SABRE), makes use of such an algorithm (5). The closely
related problem of compressing English words (either to estab-
lish noisy matches, eliminate misspelled words, or simply to
achieve iata bank compression) has also received some attention
(see, for example, (6) and (7) and (8)).

Although the English word structure differs from proper-
name structure in some important respects (e.g., the existence
of suffixes), three of the algorithms are constructed by giving
varying degrees of attention to the following five areas of
word structure:

1. The character in word initial position
2. The character set: (A,E,I,O,U,Y,H,W)
3. Doubled characters (e.g., tt)
4. Transformation of consonants (i.e., all alphabetic

characters other than those in 2 above) into equiv-
alence classes.

5. Truncation of the residual character string.

The word-initial character receives varying attention. SOUNDEX
places the initial consonant in the initialposition of the
compressed form and then transforms all other consonants into
equivalence classes with numeric titles. SABRE maintains the
word-initial character even if it is a vowel. In the Armour
Research Foundation scheme (ARF), the word-initial Character is
also retained as is.

Both SOUNDEX and SABRE eliminate all characters in the set
2 above. The ARF scheme retains all characters in shorter words
and deletes vowels only, to reduce the compressed form to four
characters, deleting the U after Q, the second vowel in a vowel
string, and then all remaining vowels.

-120-

10.

%NO

All three systems delete the second letter of a double-

letter string. SABRE goes 4. step further and deletes the second

letter of a double-letter string occurring after the vowels have

been deleted. Thus, the second R of BEARER would be deleted.

SOUNDEX maps the 18 consonants into 6 equivalence classes

as follows:

1. B,F,P,V
2. C,G,J,K,Q,S,X,Z
3. D,T
4, L
5. M,N
6. R

SABRE and ARF do not perform any transformations on these 18

consonants.

Fina4y, all three systems truncate the remaining string

of characters to four characters. For shorter forms, padding

in the form of zeros (SOUNDEX), blanks (SABRE), or hyphens (ARF)

is added so that all codes are precisely four characters long.

Variable-length coding schemes have been considered but
generally rejected for implementation on major systems because

of the attendant difficulties of programming and the fact that

code compression is enhanced by fixed-length codes where no

interword space is necessary. Although fixed-length schemes of
length greater than four have been considered, no definitive
data appears to be available as to the ability to discriminate

by introduction of more characters in the compressed code. The

SABRE system does add a fifth character but makes use of the

person's first initial for added discriminatiori.

Tukey (9) has constructed a personal author code for his
citation indexing and permuted title studies on an extensive
corpus of the statistical literature. In this situation the
author code is a semi-mnemonic code in a tag form to assist the

user in identification rather than as a basic entry point.
However, Tukey does note that in his corpus a three-character
code of the surname plus two initials is superior to a five-
character surname code for puTposes of unique identification.

C. MEASURING ALGORITHMIC PERFORMANCE

One of the main problems in constructing linguistic
algorithms is to decide on appropriate measures of performance
and to obtain data bases for implementing such measures. In

this case it is clear that certain improvements in existing
algorithms can be made - particularly by using more sophisticated
transformation rules for the consonants - and that the problems
of implementing such changes are not so great in today's context

-121-

as they were when the systems noted above were originally de-

e.ved. Improvements in processing speeds and programming lan-
guages, however, do not remove the need for keeping "linguistic

frills" to e, minimum.

Ideally, it would be desirable to have a list of common
errors in keyboarding names as a test basis for any proposed

algcrithms. Unfortunately, no such list of sufficient size
appears to be available. azcking this, one can speculate that
certain formal properties of the predictability of language
might be useful in deriving an algorithm. At the English word
lecel, some effort has been made to exploit measures of entropy
as developed by Shannon in this direction (6,7) However, there
is good reason to question whether entropy, at leas:1 when mea-
sured in the usual way, is strongly correlated with actually
occurring errors (10).

As an alternative, one can study existing lists of personal-
name equivalence classes to derive such algorithms and then test
the algorithm against such classes, measuring both the degree of
over-identification and the degree of under-identification.
Clearly, such tests will carry more weight if they are carried
out under economic forcing conditions where weaknesses in the
test set will lead to real and measurable expense to the orga-
nization publishing the list. The SABRE system operates under
strong economic forcing conditions in the sense that airline
passengers frequently have a number of competitive alternatives
available to them and lost reservations can cause them sufficient
inconvenience for them to consider these alternatives. However,
the main application of the SABRE system is to rather small
groups of persons (at least when compared to the number of
personal authors in a typical library catalog) so that errors
of over-identification are essentially teivial in cost to the
airlines.

A readily available source of see-also-type equivalence
classes of proper names is given in the telephone directory
system. Here, the econamic forcing system is not so strong as
in the airline situation, but it is measurable in that failure
to provide an adequate list will lead to increased user depen-
dence on the Information Operator - with consequent increased
cost to the telephone company. As a test on the feasibility of
using such a set of equivalence classes, the 451 classes found
in the Palo Alto-Los Altos (California) telephone directory were
copied out by hand and used in deriving and testing the algorithm
given in the next section and the SOUNDEX algorithm.

There remains the question of deciding what is to consti-
tute proper agreement between any algorithm and the set of equiv.-
alence classes chosen as a data base. At tbe grossest level it
seems reasonable to argue that over-identification is less serious
than under-identification. False drops only tend to clog the line.

-122-

Lost reference points, on the other hand, lead to loLt infor-
mation. Investigation of other applications of linguistic
algorithms, such as algorithms to hyphenate words, identify
semantically similar words through cutting off of suffixes, and
so forth, indicates that it is usually possible to reduce crucial
error (in this case under-identification) to something under
five percent, while preserving something in the order of 80 per-
cent of the original distinctions (or efficiency) of the system.
Efforts to improve materially on the "five-and-eIghty" rule
generally lead to solutions involving larger context and/or
extensive exception dictionaries. In this study we shall aim
our efforts at achieving a "five-and-eighty" solution.

D. A VARIABLE-LENGTH NAME-COMPRESSION SCHEME

In light of the fact that no definitive information is
available on the problems of truncating errors in name-compres-
sion algorithms, it is convenient to break the prdblem into two
pieces. First, we shall derive a variable-length algorithm of
tile required accuracy and efficiency and then we shall determine
the errors induced by truncation.

After studying the set of equivalence classes given in the
Palo Alto-Los Altos telephone directory, it was fairly clear
that with minor modifications of the basic five steps used in
the other algorithms noted above, it would not be too difficult
to provide a reasondbly accurate match without requiring too
much over-identification. The main modifications made consisted
of maintaining tl'e position of the first vowel and using local
context to make transformations on the consonants. The algorithm
is given below.

11112511am_Equiva1ent Abbreviation Al orithm For Personal Names

1. Transform: McG to Mk, Mag to Mk, Mac to Mk, Mt to Mk.
2. Working from the right, recursively delete the second

letter from each of the following letter pairs: dt,

ld, nd, nt, rc, rd, rt, sc, sk, st.
3. Transform: x to ks, ce to se, ci to si, cy to sy.

Consonant-ch to consonant-sh. All other occurrences of
c to k, z to s, wr to r, dg to g, qu to k, t to d, ph
to f (after the first letter).

4. Delete all consonants other than 1, n, and r which
precede the letter k (after the first letter).

5. Delete one letter from any doubled consonant.
6. Transform pf# to p#, #pf to #f, vowel-gh# to vowel-f#,

consonant-gh# to consonant-g#, and delete all other
occurrences of gh. (# is the word-beginning and word-
ending marker.)

7. Replace the first vowel in the name by the symbol "*".
8. Delete all remaining vowels.
9. Delete all occurrences of w or h after the first letter

in the word.
-123-

1111..11111

The vowels are taken to be (A,E,I,O,U,Y).

The algorithm splits 22 (4.9 percent) of the 451 equivalence
classes given by the phone directory. On the other hand, the
algorithm provides 349 distinct classes (not counting those
classes that were broken off in error) or 77.4 percent of the
451 classes in the telephone directory data base. Thus, we have
achieved a reasonable approximation to the "five-and-eighty"
performance found in other linguistic proble . areas.

To give a proper appreciation of the nature of these under-
identification errors, they are discussed below individually.

1. The name Bryer is put in the same equivalence class
with a variety of spellings of the name Bear. The
algorithm fails to make this identification.

2. Blagburn is not equated to Blackburn.
3. The name Davison is equated to Davidson in its various

forms. The algorithm fails to make this identification
and this appears to be one of a modest class of diffi-
culties that occur prior to che -son, -sen names.

4. The class of names Dickinson, Dickerson, Dickison, and
Dickenson are all equated by the directory but kept
separate except for the two forms of Dickinson by the
algorithm.

5. The name Holm is not equated with the name Home.
6. The name Holmes is not equated with the name Homes.
7. The algorithm fails to equate Jaeger with the various

forms of Yaeger.
8. The algorithm fails to equate Lamb with Lamn.
9. The algorithm incorrectly assumes that the final gh of

Leigh should be treated as an f. Treating final gh
either as a null sound or an f leads to about the same
number of errors in either direction.

10. The algorithm fails on the pairing Leicester and Lester.
The difficulty is an intervening vowel.

11. The algorithm fails to equate the various forms of
Lindsay with the forms of Lindsley.

12. The algorithm fails to equate the various forms of
McLaughlin with McLachlan.

13. The algorithm fails to equate McCullogh with McCullah.
This is again the final gh problem.

14. The algorithm fails to equate McCue with McHugh (again
the final gh problem).

15. The algorithm fails to equate Moretton with Morton.
This is an intervening vowel problem.

16. The algorithm fails to equate Rauch with Raush.
17. The algorithm fails to equate Robinson with Robison

(another -son type prdblem).
18. The algorithm incorrectly assumes that the interior ph

of Shepherd is an f.
19. The algorithm fails to equate Speer with Speier.

-124-

20. The algorithm fails to equate Stevens with Stephens.

21. Similarly for Stevenson and Stephenson.
22. The algorithm fails to equate the various forms of the

word Thompson (an -son problem).

Several of the errors noted above are questionable, al

least in the sense of questioning whether the telephone directory

is following its own procedures with complete rigor. Setting

these acide, the primary errors occur with the final gh, the

words ending in -son, and the words with the extraneous interior

vowels. Each of these problems can be re2olved to any desired

degree of accuracy, but only at the expense of noticeable in-

creases in the degree of complexity of the algorithm.

E. THE TRUNCATION PROBLEM

Simple truncation does not introduce errors of under-
identification; it can only lead to further over-identification.

Examination of the results of applying the algorithm to the

telephone directory data base shows that no new over-identification

is introduced if the compressed codes are all reduced to the

left most seven characters. Further truncation leads to the

following short table:

Code Length Cumulative Over-Identification Losses

7 0

6 1

5 6

4 45

Thus there is a strong argument for maintaining at least five

Characters in the compressed code.

However, there is no real need for restricting ourselves

to simple truncation. Following the procedures used in the

ARF system, we can obtain further truncation by selectively

removing some of the remaining characters. The natural candi-

date for such removal is the vowel marker. If the vowel marker

is removed from all the five character codes, only six more

over-identification errors are introduced. Removal of the vowel

markers from all of the codes would have introduced 17 more errors

of over-identification. Thus we see that the utility of the

vowel marker is in the short codes.

This in turn suggests that introduction of a second vowel
marker in the very short codes may have some utility. This is

indeed the case. If we generalize the notion of the vowel marker

to that of marking the position of a vowel-string (i.e., a string

of consecvtive vowels), where for these purposes a vowel is any

of the characters (A,E,I,O,U,Y,H,W), and maintain these markers

-125-

1

as "padding" in the very short words, 18 errors of over-identi-
fication are eliminated at the cost of two new errors of under-
identification. In this way we derive the following modification
co the variable length algorithm:

1. Mark the position of each of the first two vowel strings
with an "*", if there is more than one vowel.

2. Truncate to six characters.
3. If the six-character code has two vowel markers,,remove

the right hand vowel marker. Otherwise, truncate the
sixth character.

4. If the resulting five-character code has a vowel marker,
remove it. Otherwise remove the fifth character.

5. For all codes having less than four dharacters in the
variable-length form, pad to four characters by adding
blanks to the right.

Measured against the telephone directory data base, this fixed
length compression code provides 361 distinct classes (not
counting improper class splits as separate classes) or 80 per-
cent of the 451 given classes. Twenty-four (5.3 percent) of the
classes are improperly split. By way of comparison, the SOUNDEX
system imploperly splits 135 classes (30 percent) and provides
only 287 distinct classes (not counting improperly split classes)
or 63.8 percent cf the telephone directory data base.

F. ACKNOWLEDGEMENT

The author would like to thank Ralph M. Shoffner and
Kelley L. Cartwright for suggesting the problem and for a
nudber of usefUl comments on existing systems. Allan J. Humphrey
was kind enough to program the variable-length version of the
algorithm for purposes.

-126-

G. CORPUS OF NANES USED FOR ALGORITHM TEST

List of personal-name equivalence classes from the Palo Alto-

Los Altos Telephone Directory arranged according to the vari-

able length compression code (with the vowel marker * treated

as an A for ordering).

*BL Abel, Abele, Abell, Able

*BRMS Abrahams, Abrams

*BRION Abrahamson, Abramson

*D Eddy, Eddie
*DMNS Edmonds, Edmunds
*DMNSN Edmondson, Edmundson
*DMS Adams, Addems

*GN Eagan, Egan, Eggen

*GR Jaeger..., Yaeger, Yeager

*KN Aiken, Aikin, Aitken

*KNS Adkins, Akins
*KR Acker, Aker

*KR Eckard, Eckardt, Eckart, Eckert, Eckhardt

*K2 Oakes, Oaks, Ochs

*LBRD Albright, Allbright

*LD Elliot, Elliott
*LN Allan, Allen, Allyn

*LSN Ohlsen, Olesen, Olsen, Olson, Olsson

*LVR Oliveira, Olivera, Olivero

*MS Ames, EameS

*NGL Engel, Engle, Ingle

*NL O'Neal, O'Neil, O'Neill

*NRS Andrews, Andrus

*NRSN Andersen, Anderson, Andreasen

*NS Ennis,-Eaos
*RKSN Erichsen, Erickson, Ericson, Ericsson, Eriksen

*RL Earley, Early
*RN Erwin, Irwin
*RNS Aarons, Ahrends, Ahrens, Arens, Arentz, Arons

*118 Ayers, Ayres
*RVN Ervin, Ervine, Irvin, Irvine

*RVNG Erving, Irving
*SBRN Osborn, Osborne, Osbourne, Osburn

Note: Names whose compressed codes do not match'the one given'

in the first column (and hence represent weaknesses in

the algorithm and/or the directory groupings) are underlined.

Note: A small number of directory entries that do not bear on

the immediate problem have been deleted from the list:

Bell's see also Bells; Co-op see also Co-operative;

Palo Alto Clinic see also Palo Alto Medical Clinic; St.

see also Saint; etc.

-127-

B*D Beatie, Beattie, Beatty, Beaty, Beedie

B*DS Betts, Betz

B*KMN Bachman, Bachmann, Backman

B*L Bailey, Baillie, Bailly, Baily, Bayley

B*L Beal, Beale, Beall, Biehl

B*L Belew, Ballou, Bellew
B*L Buhl, Buell
B*L Belle, Bell
B*LN Bolton, Boulton
B*M Batun, Bohm, Bohme

B*MN Bauman, Bownan
B*N Bain, Bane, Bayne

B*ND Bennet, Bennett
B*R Baer, Bahr, Baier, Bair, Bare, Bear, Beare, Behr, Beier,

Bier, Bryer

B*R Barry, Beare, Beery, Berry
B*R Bauer, Baur, Bower
B*R Bird, Burd, Byrd
B*RBR Barbour, Barber
B*RG Berg, Bergh, Burge
B*RGR Berger, Burger
B*RK Boerke, Birk, Bourke, Burk, Burke
B*RN Burn, Byrne
B*RNR Bernard, Bernhard, Bernhardt, Bernhart
B*RNS Berns, Birns, Burns, Byrns, Byrnes

B*RNSN Bernstein, Bornstein
B*RS Bertsch, Birch, Burch
BL*KBRN Blackburn, Blagburn
BL*M Blom, Bloom, Bluhm, Blum, Blume
BR*D Brode, Brodie, Brody
BR*N Braun, Brown, Browne
BR*IT Brand, Brandt, Brant
D*DS Dietz, Ditz
D*F Duffie, Duffy
D*GN Dougan, Dugan, Duggan
D*K Dickey, Dicke
D*KNSN Dickenson, Dickerson, Dickinson, Dickison
D*KSN Dickson, Dixon, Dixson
D*L Dailey, Daily, Da:ley, Daly

D*L Dahl, Dahle, Dall, Doll
D*L Deahl, Deal, Diehl
D*MN Diamond, Dimond, Dymond
D*N Dean, Deane, Deen
D*N Denney, Denny
D*N Donahoo, Donahue, Donoho, Donohoe, Donohoo, Donohue,

Dunnahoo
D*N Downey, Downie
D*N Dunn, Dunne
D*NL Donley, Donnelley, Donnelly
D*R Daugherty, Doherty, Dougherty
D*R Dyar, Dyer
D*RM Derham, Durham
D*VDSN Davidsen, Davidson, Davison

-128-

D*VS
DR*SL
F*
F*FR
F*GN
F*L
F*L
F*LKNR
F*LPS
F*NGN
F*NL
F*RL
F*RR
F*RR
F*RS
F*RS
F*RS
F*SR
FL*N
FL*NGN
FR*
FR*DMN
FR*DRKSN
FR*K
FR*NS
FR*NS
FR*S
FR*SR
G*D
G*DS
G*F
G*L
G*LMR
G*LR
G*MS
G*NR
G*NSLS
G*NSLVS
G*RD
G*RD
G*RN
G*HNR
G*RR
G*S
GR*
GR*FD
GR*N
GR*S
H*D
H*F
H*FMN
H*G

Davies, Davis
Driscoll, Driskell
Fay, Fahay, Fahey
Fifer, Pfeffer, Pfeiffer

Fagon, Feigan, Fegan

Feil, Pfeil
Feld, Feldt, Felt
Fu1kner, Falconer
Philips, Phillips
Finnegan, Finnigan
Finlay, Finley
Farrell, Ferrell
Ferrara, Ferreira, Ferriera
Foerster, Forester, Forrester, Forster

Forrest, Forest
Faris, Farriss, Ferris, Ferriss
First, Fuerst, Furst
Fischer, Fisher
Flinn, Flynn
Flanagan, Flanigan, Flannigan
Frei, Frey, Fry, Frye
Freedman, Friedman
Frederickson, Frederiksen, Fredrickson, Fredriksson

Franck, Frank
France, Frantz, Franz
Frances, Francis
Freeze, Freese, Fries
Fraser, Frasier, Frazer, Frazier

Good, Goode
Getz, Goetz, Goetze
Goff, Gough
Gold, Goold, Gould
Gilmer, Gilmore, Gilmour
Gallagher, Gallaher, Galleher
Gomes, Gomez
Guenther, Gunther
Gonzales, Gonzalez
Gonsalves, Gonzalves
Garratt, Garrett
Garrity, Geraghty, Geraty, Gerrity

Gorden, Gordohn, Gordon
Gardiner, Gardner, Gartner
Garrard, Gerard, Gerrard, Girard
Gauss, Goss
Gray, Grey
Griffeth, Griffith
Green, Greene
Gros, Grose, Gross
Hyde, Heidt
Hoff, Hough, Huff
Hoffman, Hoffmann, Hofman, Hofmann, Huffman

Hoag, Hoge, Hogue

-129-

H*GN

H*KSN
H*L
H*L
H*L
H*L
H*LD
H*LG
H*LM
H*LMS
H*LN
H*M
H*MR
H*N
H*N
H*NN
H*NRKS
H*NRKSN
H*NS

H*NS
H*NSN

H*R
H*R
H*R
H*R
H*RMN
H*RMN
H*RMN
H*RN
H*RN
H*RN
H*RNGDN
H*S
H*S
H*S
H*SN
H*VR
J*
J*FR
J*FRS
J*KB
J*KBSN
J*KS
J*L
J*MS
J*MSN
J*NSN

J*S

Hagan, Hagen
Hauch, Hauck, Hauk, Hauke

Hutcheson, Hutchison
Holley, Holly
Holl, Hall
Halley, Haley
Haile, Hale
Holiday, Halliday, Holladay, Holliday

Helwig, Hellwig
Holm, Home
Holmes, Homes
Highland, Hyland
Ham, Hamm
Hammar, Hammer
Hanna, Hannah
Hahn, Hahne, Hann, Haun
Hanan, Hannan, Hannon
Hendricks, Hendrix, Henriques
Hendrickson, Henriksen, Henrikson
Heintz, Heinz, Heinze, Hindes, Rinds,

Hines, Hinze
Haines, Haynes
Henson, Hansen, Hanson, Hanssen,

Hansson, Hanszen
Herd, Heard, Hird, Hurd
Hart, Hardt, Harte, Heart
Hare, Hair
Hardey, Hardie, Hardy
Hartman, Hardmen, Hardmon, Hartmann
Herman, Hermann, Herrmann
Harman, Harmon
Heron, Herrin, Herron
Hardin, Harden
Horn, Horne
Herrington, Harrington
Haas, Haase, Hasse
Howes, House, Howse
Hays, Hayes
Houston, Huston
Hoover, Hover
Jew, Jue
Jeffery, Jeffrey
Jefferies, Jefferis, Jefferys, Jeffreys

Jacobi, Jacdby
Jacobsen, Jacobson, Jakobsen
Jacques, Jacks, Jaques
Jewell, Juhl
Jaimes, James
Jameson, Jamieson, Jamison
Jahnsen, Jansen, Jansohn, Janssen, Jansson,

Janzen, Jensen, Jenson
Joice, Joyce

-130-

K*
K*F
K*FMN
K*K
K*L-----
K*L
K*LMN
K*LR
K*MBRLN
K*MBS
K*MP
K*MPS
K*N
K*N
K*N
K*N
K*N
K*N
K*N
K*NL
K*NR
K*NS
K*P
K*PL
K*R
K*R
K*R
K*R
K*R
K*RD
K*RLN
K*RN
K*RSNR
K*S
K*S
K*S
K*SL
K*SLR
K*SR
KL*N
KL*RK
KL*SN
KR*
KR*GR
KR*MR
KR*N
KR*S
KR*S
KR*S
KR*S
KR*SNSN

Kay, Kaye
Coffee, Coffey
Coffman, Kauffman, Kaufman, Kaufmann
Cook, Cooke, Koch, Koche

Cole, Kohl, Koll
Kelley, Kelly
Coleman, Colman
Koehler, Koeller, Kohler,Koller

Chamberlain, Chamberlin
Combs, Coombes, Coombs
Camp, Kampe, Kampf
Campos, Campus
Cahn, Conn, Kahn
Cahen, Cain, Caine, Cane, Kain, Kane

Chin, Chinn
Chaney, Cheney
Coen, Cohan,-Cohen, Cohn, Cone, Koehn, Kohn

Coon, Kuhn, Kuhne
Kenney, Kenny, Kinney
Conley, Conly, Connelly, Connolly
Conner, Connor
Coons, Koontz, Kuhns, Kuns, Kuntz, Kunz

Coop, Co-op, Coope, Coupe, Koop,
Chapel, Chapell, Chappel, Chappell, Chappelle, Chapple

Carrie, Carey, Cary
Corey, Cory
Carr, Kar, Karr
Kurtz, Kurz
Kehr, Ker, Kerr
Cartwright, Cortright
Carleton, Carlton
Carney, Cerney, Kearney
Kirschner, Kirchner
Chace, Chase
Cass, Kass
Kees, Keyes, Keys
Cassel, Cassell, Castle
Kesler, Kessler, Kestler
Kaiser, Kayser, Keizer, Keyser, Kieser, Kiser, Kizer

Cline, Klein, Kleine, Kline
Clark, Clarke
Claussen, Clausen, Clawson, Closson

Craw, Crowe
Krieger, Kroeger, Krueger, Kruger
Creamer, Cramer, Kraemer, Kramer, Kremer

Craine, Crane
Christie, Christy, Kristee
Crouss, Kraus, Krausch, Krause, Krouse

Cross, Krost
Crews, Cruz, Kruse
Christensen, Christiansen, Christianson

-131-

Li

F

Ic

L*

L*
L*D
L*DL
L*DRMN
L*K
L*KS

L*LN
L*LR
L*MB
L*MN
L*MN
L*N
L*N

L*N
L*N
L*NG
L*NN
L*NS
L*R
L*RNS
L*RNS
L*RSN
L*S
L*S
L*SR
L*V
L*VD
L*VL
L*VN
M*D
M*DN
M*DS
M*DSN
M*KL
M*KM
M*KS
M*KS
M*LN
M*LN
M*LR
M*LR
M*LR
M*LS
M*N
M*NR
M*NR
M*NSN
M*R
M*R
M*R
M*R
M*R

Loc.= Loewe Low Lowe
Lea, Lee, Leigh
Lloyd, Loyd
Litle, Littell, Little, Lytle
Ledterman, Letterman
Leach, Leech, Leitch
Lucas, Lukas
Laughlin, Loughlin
Lawler, Lawlor
Lamb, Lamm
Lemen, Lemon, Lemon
Layman, Lehman, Lehmann
Lind, Lynd, Lynde
Lion, Lyon
Lin, Linn, Lynn, Lynne
Lain, Laine, Laing, Lane, Layne
Lang, Lange
London, Lundin
Lindsay, Lindsey, Lindsley, Linsley
Lawry, Lavery, Lowrey, Lawry
Lawrence, Lowrance
Laurence, Lawrance, Lawrence, Lorence, Lorenz
Larsen, Larson
Lewis, Louis, Luis, Luiz
Lacey, Lacy
Leicester, Lester
Levey, Levi, Levy
Leavett, Leavitt, Levit
Lavell, Lavelle, Leavelle, Loveall, Lovell
Lavin, Levin, Levine
Mead, Meade
Morretton, Morton
Mathews,
Madison,
Michael,

Matthews
Madsen, Matson, Matteson, Mattison, Mattson
Michel

Meacham, Mechem
Marques, Marquez, Marquis, Marquiss
Marcks, Marks, Marx
Maloney, Moloney, Molony
Mullan, Mullen, Mullin
Mallery, Mallory
Moeller, Moller, Mueller, Muller
Millar, Miller
Miles, Myles
Mahan, Mann
Miner, Minor
Monroe, Munro
Monson, Munson
Murray, Murrey
Maher, Maier, Mayer
Mohr, Moor, Moore
Meyers, Myers
Meier, Meyer, Mieir, Myhre

-132-

AIRMINIMMIlt1

M*RF Murphey, Murphy

M*RL Merrell, Merrill

M*RN Marten, Martin, Martine, Martyn

M*Rs Meyers, Myers

M*RS Maurice, Morris, Morse

MK* McCoy, McCaughey

MK* Magee, McGee, McGehee, McGhie

MK* Mackey, MacKay, Mackie, McKay

MK* McCue, McHugh

MK*L Magill, McGill

MK*LF McCollough, McCullah, McCullough

MK*LM McCallum, McCollum, McColm

MK*N McKenney, McKinney

MK*NR MacIntyre, McEntire, McIntire, McIntyre

MK*NS MacKenzie, McKenzie

MK*NS Maginnis, McGinnis, McGuinness, McInnes, McInnis

MK*R Maguire, McGuire

MK*R McCarthy, McCarty

MKD*NL MacDonald, McDonald, McDonnell

MKF*RLN MacFarland, MacFarlane, McFarland, McFarlane

MKF*RSN MacPherson, McPherson

MKL*D MacLeod, McCloud, McLeod

MKL*KLN MacLachlan, Maclachlin, McLachlan, McLaughlin, McLoughlin

MKL*LN McClellan, McClelland, McLellan

MKL*N McClain, McClaine, McLain, McLane

MKL*N MacLean, McClean, McLean

MKL*S McCloskey, McClosky, McCluskey

MKM*LN MacMillan, McMillan, McMillin

MKN*L MacNeal, McNeal, McNeil, McNeill

MKR*D Magrath, McGrath
N*KL Nichol, Nicholl, Nickel, Nickle, Nicol, Nicoll

N*KLS Nicholls, Nichols, Nickels, Nickles, Nicols

N*KLS Nicholas, Nicolas

N*KLSN Nicholsen, Nicholson, Nicolaisen, Nicolson

N*KSN Nickson, Nixon

N*L Neal, Neale, Neall, Neel, Neil, Neill

N*LSN Neilsen, Neilson, Nelsen, Nelson, Nielsen, Nielson,

Nilson, Nilssen, Nilsson

N*MN Neumann, Newman
N*RS Norris, Nourse

N*SBD Nesbit, Nesbitt, Nisbet

P*D Pettee, Petty

P*DRSN Peterson, Pederson, Pedersen, Petersen, Petterson

P*G Page, Paige
P*LK Polak, Pollack, Pollak, Pollock

P*LSN Polson, Paulsen, Paulson, Poulsen, Poulsson

P*N Paine, Payn, Payne

P*R Parry, Perry
P*R Parr, Paar
P*RK Park, Parke
P*RKS Parks, Parkes

-133-

P*RS
P*RS
P*RS
P*RSN
PR*KR
PR*NS
PR*R
R*
R*
R*BNSN
R*D
R*D
R*D
R*DR
R*DS
R*GN
R*GR
R*K
R*K
R*KR
R*L
R*MNGTN
R*MR
R*MS
R*N
R*NR
R*S
R*S
R*S
R*S
R*VS
S*BR
S*FL
S*FN
S*FNS
S*FNSN
S*FR

S*FR
S*GL
S*GLR
S*K
S*KS
S*L
S*L
S*LR
S*LS

S*LV
S*LVR
S*MKR

Pierce, Pearce, Peirce, Piers
Parish, Parrish
Paris, Parris
Pierson, Pearson, Pehrson, Peirson
Prichard, Pritchard
Prince, Prinz
Prior, Pryor
Roe, Rowe
Rae, Ray, Raye, Rea, Rey, Wray
Robinson, Robison
Rothes Roth
Rudd, Rood, Rude
Reed, Read, Reade, Reid

Rider, Ryder
Rhoades, Rhoads, Rhodes
Regan, Ragon, Reagan
Rodgers, Rogers
Richey, Ritchey, Ritchie
Reich, Reiche
Reichardt, Richert, Rickard
Reilley, Reilly, Reilli, Riley
Remington, Rimington
Reamer, Reimer, Riemer, Rimmer
Ramsay, Ramsey
Rhein, Rhine, Ryan
Reinhard, Reinhardt, Reinhart, Rhinehart, Rinehart
Reas, Reece, Rees, Reese, Reis, Reiss, Ries
Rauch, Rausch, Roach, Roche, Roush
Ruth, Rusch
Russ, Rus
Reaves, Reeves
Seibert, Siebert
Schofield, Scofield
Stefan, Steffan, Steffen, Stephan, Stephen
Steffens, Stephens, Stevens
Steffensen, Steffenson, Stephenson, Stevenson
Schaefer, Schaeffer, Schafer, Schaffer, Shafer,

Shaffer, Sheaffer
Stauffer, Stouffer
Siegal, Sigal
Sigler, Ziegler
Schuck, Shuck
Sachs, Sacks, Saks, Sax, Saxe
Seeley, Seely, Seley
Schell, Shell
Schuler, Schuller
Schultz, Schultze, Schulz, Schulze,

Shults, Shultz
Silva, Sylva
Silveira, Silvera, Silveria
Schomaker, Schumacher, Schumaker, Shoemaker, Shumaker

-134-

S*MN Simon, Symon
S*MN Seaman, Seemann, Semon

S*MRS Somers, Sommars, Sommers, Summers

S*MS Simms, Sims
S*N Stein, Stine

S*N Sweeney, Sweeny, Sweney
S*NR Senter, Center
S*NRS Sanders, Saunders
S*PR Shepard, Shephard, Shepheard, Shepherd, Sheppard

S*R Stahr, Star, Starr
S*R Stewart, Stuart
S*R Storey, Story
S*R Saier, Sayre
S*R Schwartz, Schwarz, Schwarze, Swartz

S*1iL Schirle, Shirley

S*RLNG Sterling, Stirling

S*RMN Scheuermann, Schurman, Sherman
S*RN Stearn, Stern
S*RR Scherer, Shearer, Sharer, Sherer, Sheerer

S*S Sousa, Souza
SM*D Smith, Smyth, Smythe

SM*D Schmid, Schmidt, Schmit, Schmitt, Smit

SN*DR Schneider, Schnieder, Snaider, Snider, Snyder

SN*L Schnell, Snell

SP*LNG Spalding, Spaulding

SP*R Spear, Speer, Speirer
SP*R Spears, Speers

SR*DR Schroder, Schroeder, Schroeter
SR*DR Schrader, Shrader
T*D Tait, Tate

T*MSN Thomason, Thompson, Thomsen, Thomson, Tomson

T*RL Terrel, Terrell, Terrill
TR*S Tracey, Tracy
V*L Vail, Vaile, Vale
V*L Valley, Valle
V*R Vieira, Vierra
W*D White, Wight
W*DKR Whitacre, Whitaker, Whiteaker, Whittaker

W*DL Whiteley, Whitley
W*DMN Whitman, Wittman
W*DR Woodard, Woodward
W*DRS Waters, Watters
W*GNR Wagener, Waggener, Wagoner, Wagner, Wegner, Waggoner

W*L Willey, Willi
W*L Wiley, Wylie
W*L Wahl, Wall
W*LBR Wilber, Wilbur
W*LF Wolf, Wolfe, Wolff, Woolf, Woulfe,

Wulf, Wulff
W*LKNS Wilkens, Wilkins
W*LKS Wilkes, Wilks
W*LN Whalen, Whelan
W*LR Walter, Walther, Wolter

-135-

W*LRS Walters, Walthers, Wolters

W*LS Wallace, Wallis

W*LS Welch, Welsh

W*LS Welles, Wells

W*LSN Willson, Wilson

W*N Winn, Wynn, Wynne

W*R Worth, Wirth

W*R Ware, Wear, Weir, Wier

W*RL Wehrle, Wehrlie, Werle, Worley

W*RNR Warner, Werner

W*S Weis, Weiss, Wiese, Wise, Wyss

WtSMN Weismann, Weissman, Weseman, Wiseman,

Wismonn, Wissman

REFERENCES

1 Cox, N.S.M. and J.L. Dolby. "Structured Linguistic Data and
the Automatic Detection of Errors." In: Advances in Com-
puter Typesetting. London, Institute of Printing, 1966.
pp. 122-125.

2. Cox, N.S Mo o, J.D. Dews, and J.L. Dolby. The Computer and the
Library.. Hamden, Conn., Archon Press, 1967.

3. Dolby, J.L. "Efficient Automatic Error Detection in Biblio-
graphic Records." R & D Consultants Company Report,
April 1968.

4. Becker, Joseph and Robert M. Hayes. Information Storage and
Retrieval. New York, Wiley, 1963. p. 143.

5. Davidson, Leon. "Retrieval of Misspelled Names in Airlines
Passenger Record System." Communications of the ACM,
v. 5 (1962), pp. 169-171.

6. Blair, C.R. "A Program for Correcting Spelling Errors."
Information & Control, v. 3 (1960), pp. 60-67.

7. Schwartz, E.S. "An Adaptive Information Transmission System
Employing Minimum Redundancy Word Codes." Armour Research
Foundation Report, April 1962. (AD 274-135).

8. Bourne, C.P. and D. Ford. "A Study of Methods for Systemat-
ically Abbreviating English Words and Names." Journal of
the ACM, v. 8 (1961), pp. 538-552.

9. Tukey, X.161. "A Tagging System for Journal Articles 91d Other
Citable Items: a Status Report." Statistical Techniques
Research Group, Princeton University, 1963.

10. Resnikoff, A. and J.L. Dolby. "A Proposal to Construct a
Linguistic and Statistical Programming System." R & D
Consultants Company, 1967.

-136-

APPENDIX II

USER'S GUIDE TO THE TERMINAL MONITOR SYSTEM (TMS)

By

William D. Schieber
Institute of Library Research
University of California

Berkeley, California

USER'S GUIDE TO THE TERMINAL MONITOR SYSTEM (TMS)

By

William D. Schieber
Institute of Library Research
University of California

Berkeley, California

A. INTRODUCTION

The Terminal Monitor System (TMS) provides on-line terminal

access to the Computer Center's IBM 360/40. All files are main-

tained on ILR's private disk facilities and are not accessible

by other 360 users. The system performs five general functions:

1. Text entry: the establishment of new files in which

the records can later be processed randomly.

2. File search: retrieval and display of records within

an existing file.
3. Text editing: addition, replacement, and deletion of

character strings and individual records, within an

existing file.
4. Compilation of source programs: conversion to execut-

able instructions from source language entered in same

fashion as text.
5. Interface to special user-written routines: ability for

terminal user to load and execute special-purpose pro-
grams.

B. GENERAL DESCRIPTION OF TMS

TMS has a time sharing design which allows multiple terminals
to operate at the same time. Like any conversational system it
allows the user to carry on a dialog with the computer, and will
wait for the user to enter his response before continuing the pro-
cessing. Descriptions of the formats of monitor messages and user
responses to th,.se messages are described in the following sections.
One section is included for each of the first three of the proces-
sing modules. The last two functions will be described in a subse-
quent edition of this guide.

C. 2740 OPERATION

The IBM 2740 terminal is, in most respects, similar to a
normal typewriter. In order to use it as a computer terminal, the
switch on the right marked 'COM' and 'LCL' must be set to 'COM',
and the ON-OFF switch set to 'ON'. At this point the standby
light (marked '5') should be on. Messages sent to the terminal
by the monitor will cause the receive ('10) light to go on during
the transmission. When the terminal is requested to send text
(Transmit) the user must press the 'Bid' key (which causes the
transmit ('T') light to go on). At this point he may type the
message he wants to send. The message mast be ended with the
'EOT' character. This signals the monitor that the terminal

nj

has completed transmission, so that it may process the incoming

text.

D. DETAILED DESCRIPTION OF UTILITY PROCESSORS

There are six different utility processors which the ter-

minal user may summon. However, before calling any of these
for the first time he vill be asked by the monitor to log in.

The format is currently as follows:

The monitor sends:

TERMINAL READYPLEASE LOG IN

Terminal user responds with his name:

doe, john

Following this, the monitor will respond:

(THANK YOU--TERMINAL CLEAR!

At this point the terminal is ready to enter any processor
existing in the ILR processor library. Processors currently

operational are:

1. Text Processor. The text processor is used to create

a new file. Records so entered can be retrieved later by Key.
The keys generated by the processor, have numeric value. To

enter this processor, type in:

itexti

TMS responds:

'TEXT PROCESSORTYPE FILE NAME1

At this point, type the name by which you wish the file to

. be known. If you are typing a source program, the file name
must be the name of the entry point (in assembler: the

CSECT name; in PL/1: the PROCEDURE name). The file name

may be up to 8 characters in length. The format of it is:

(name of file)1

If this name has not been used before, you will receive
space for the new file on the disk; before beginning text
entry, you will be asked to indicate the treatment of lower
case characters in creating the file:

SPECIFY CASE

If you wish lower case
case, (you must if you

Wu((indicating

If you wish lower case
type:

letters to be translated into upper
are typing a program), type:

lower to upper case translation)

characters to maintain their values,

-140-

1L/U CASE--BEGIN TEXT ENTRIJ

'display (key 1)1 to (key 2)1

ITT1 (for lower to luver case translation)

If you had specified '1/u' case, TMS would respond with:

and would go on to the next line to type the first key:

oolo
You may now enter the first record. It must not

exceed 72 characters and must end with an "EOT". Do not

enter a carriage return at the end of the line: TMS will

do this before it types the next record number.

To close the file when you have finished entering

text, type I+++' in position 1. TM'S responds:

EXIT TEXT PROCEEal

2. Search Processor. The search routines are used to

display one or more records from an existing file. To call

the processors type:

srch

TMS will respond:

1SEARCH ROUTINES--SELECT Ffal

User responds by typing the file name:

(file name)

TMS, after locating the file, will respond:

FFEEi SEARCH REQUEST!

Two facilities for search are available. One is

display of one or more records, where the records are

identified by the exact full key. If one specific re-

cord is desired, type:

dis 1

If you want to display a group of records type:

where the value of key1 is less than key2, and key1 is an

actual key in the file. Both values must be of full length.

The second type of search enables the user to scan

the file using abbreviated key prefixes, or portions of

the key. In this type of search all records of the given

key class will be presented. For example, if a given

file contains records having keys of 0004, 0010, 0015,

and 0020, and a scan on key class 001 is requested, only

records whose leftmost three key characters match the

three-character scan value will be presented; here, re-

cords 0010 and 0015. The format for this request is:

Iscan i(key class)
-1141-

After a search request is entered, records are pre-
sented sequentially until the request has been satisfied,
or until the end of file is reached. However, to enable
the user to stop printing of the file, a checkpoint is
entered following printing of the tenth record. If you

want to continue display, type a carriage return. If you

want to stop processing the request, type three plus signs

When the request is satisfied, or when it has been in-
terrupted at a checkpoint TMS will type:

!TYPE REQUEST

at which time the user may enter another request or leave
the search mode. To exit, type '+++'. TMS then responds:

[EXIT SEARCH PROCESSORI

3. Edit Processor. This facility is used to edit exist-

ing files. There are three conventional edit functions: re-

placement, addition, and deletions. These functions may be per-
formed on individual characters, on character strings, on re-
cords, or on groups of records within a file.

The edit processor is called by typing:

Lediti

TMS responds:

LuaIT MODE -- SELECT FILO

User types in:

(file name)

TMS replies:

1SPECIFY 6-51.1

To which the user must respond:

if he wishes lower case characters to be mapped1/u
into upper, or:

if he wishes lowei* to retain their values.1/1

TMS now responds with:

PLACE EDIT REQUEST

The general format for an edit request is:

r(Tode) + (key) 1+ I (character string) I + I

where 'code' is a two-character code which identifies the
edit function, '+' is the tab character, 'key' is the actual
key value of a record, and 'character string' represents
data to be added to, replaced in, or deleted from the record.

-142-

The edit codes are summarized in the table below:

Edit

Function

Replacement

Addition

Deletion

Done On

Characters Records

RC

AC AR

DC

_

DR

Specific edit formats are as follaws:

1) REPLACE CHARACTERS - RC.

where 'old string' is the group of characters which are to

be replaced by those presented in the 'new string'.

2) ADD CHARACTERS - AC.

AC (key) (old string) in(new string) +

where 'old string' is a character sequence following which

the 'new string' will be inserted.

3) DELETE CHARACTERS - DC.

[DC 1+1 (key) i + Listring)

where 'string' is the character sequence to be deleted.

4) ADD RECORD - AR.

[AR 1+ (key) (new recorld

where 'key' is the key of the new record.

5) DELETE RECORD - DR.

1DR 1+ L(k)

where key is the key of the record to be deleted.

Following execution of the edit request TMS will in-

dicate completion and invite you to place your next edit

request. When you have no more editing to do on the current

file you may exit by typing three plus signs. TMS then

responds with

EDIT MODE EXIT

[TERMINAL CLEAR

-143-

APPENDIX III

A DESCRIPTION OF LYRIC, A LANGUAGE FOR REMOTE INSTRUCTION BY COMPUTER

By

Stephen S. Silver
Institute of Library Research
University of California
Los Angeles, Califotnia

A DESCRIPTION OF LYRIC, A LANGUAGE FOR REMOTE INSTRUCTION BY COMPUTER

By

Stephen S. Silver
Institute of Library Research

University of California
Los Angeles, California

A. PURPOSE AND SCOPE

LYRIC (Language for Your Remote Instruction by Computer) was

originally intended by its authors, Gloria and Leonard Silvern, for

use in computer-assisted instruction (CAI).* The language is, how-

ever, so simple and general that it can be used with ease in on-line

processor simulation and tightly controlled interactive situations.

The instructional strategist (programmer) can selectively display

text, and read and analyze user-supplied answers. Branching and

jumping based on user-supplied information may be performed. These

text display and answer checking functions have been implemented at

the Institute of Library Research (Los Angeles) using IBM 2260 dis-

play consoles and the System/360 model 75 computing system, con-

trolled by OS/360.

In addition, the full language implementation will give the

programmer the ability to set counters and constants, store text,

and display this stored information at any time. It will be possi-

ble to identify each student uniquely and to record his answers and

progress in the instructional program.

The current LYRIC monitor has infinite loop protection. When

eighty operations are performed without an intervening write com-

mand, a read operation is forced. Typing the word 'end' at the top

left of the screen will return control to the time-sharing monitor.

B. LYRIC RELEASE II

1. General Features. Release II of LYRIC will, when completed,

have enough data acquisition and manipulation commands to perform

most of the error checking functions normally required by batch

scanning programg. The goal of this release is to give an informa-

tion retrieval specialist the ability to write a LYRIC program that

will make requests, accept answers, test the answers for acceptabil-

ity, and modify a file used by other information processing programs.

The other use for LYRIC is for its original intended purpose

of computer assisted instruction. Courses can be prepared to give

*Silvern, Gloria M. and Leonard C. Silvern. "Computer-assisted in-

struction: specification of attributes for CAI programs and pro-

grammers.
!, Association for Computing Machinery. Proceedings, 21st

National Conference. Washington, D.C., Thompson, 1966. pp. 57-62.

/4:,/=147-

a student enough background to use an information system or for any

course of study that lends itself to this technique.

Specifically, LYRIC will have many of the answer manipulation
and storage commands that were lacking in the first ILR implemen-

tation. A whole series of inter-program linkage commands will be
written to allow LYRIC to control the flow of an information search.

2. Limitation of the Current Release. The major limitation of
this release will be its inability to format output files in any
precise manner. Output will be in a format similar to OS/360's
RECFM=VB. Other limitations will be the techniques for indexing
counters. Only addition and subtraction will be allowed at first.

3. Card Format. Each LYRIC statement is one line long and
consists of a label, an operation code, and a text or operand field.
The label is at column 1, the operation code at 10, and the text
at 16.

4. Blocking of Lyric Records. The LYRIC executer will be
able to sense and deblock records up to 12 cards per physical re-
cord. This block size is controlled by the BLKSIZE sub-parameter
in the DCB parameter on the OUTPUT DD card used by the assembler.

5. Implementation Restrictions. The current implementation
restrictions are:

1) labels shall be = 8 characters in length;
2) operation codes shall be = 5 characters in length;
3) text or operand fields shall be = 40 characters in

length.

All constants shall be S360 halfwords, except string-defining
constants which shall be two 1-byte instructions packed into a half-
word. One byte will be a length specification and the other will be
a location for the start of the operand.

6. Basic Programming Conce ts. Executor and assembler opti-
mization will take second place to logic and simplicity of structure.
Use of subroutines (BAL type) will be used whenever possible. Table
look-up will be used whenever feasible to facilitate debugging and
modification of the system. Optimization for a particular system
will NOT be performed in this release. Absolute references to a
LYRIC record will not be done. Only relative statement numbers will
be used. Input/Output will be well defined and in subroutine form
to allow use on smaller machines not having a universal character
set.

C. THE LYRIC ASSEMBLER

The LYRIC ass ab.ler processes LYRIC source input, converting
it to executable LYRIC object code. The assembler.is divided into
two passes. Pass 1 reads in all of the LYRIC source data, modifies
an interpretable LYRIC object data set, and generates numerous

-148-

label tables for use in pass 2. Pass 1 updates and completes the
object module produced in pass 2, based on label table information
and generates a complete listing of the LYRIC program including any
error messages which may have been generated.

I. Pass I. Pass 1 reads in each LYRIC source statement sequen-
tially, producing an object record for each input statement. Before
processing each statement, error flags which are analyzed anq printed
in pass 2, are cleared. The default TRUE and FALSE LYRIC branch
locations are set to the default value of the next relative LYRIC
location. A running "current LYRIC location" is kept and updated
each time a LYRIC source statement is read in. This location value
is the basis for most entries in the various label tables.

Explicit labels on source statements are entered into a general
label table which saves the literal value of the label and its loca-
tion value relative to the beginning of the LYRIC data set (using
the previously mentioned location pointer). If the label table is
full, an error flag is generated within the object LYRIC statement
and no entry is made in the label table.

Pass 1 continues with a branch to an operation code analysis
routine. This routine is divided into two sections: section 1
searches a list of all known valid op codes. If the op code under
analysis is not entered in this table another error flag is set in
the object record and processing continues by moving the operation
code, text, and label information into the in-core object record,
writing it out in the object data set (error flags and all) and
looping back to read more LYRIC source statements. If the operation
code is found inthis section, control is turned over to the appro-
priate routine in section 2.

Section 2 is a series of macro-defined subroutines containing
all the information necessary to set pointers and otherwise process
a LYRIC op code. These subroutines can define the existence of a
statement, decide whether or not a LYRIC block starts at this point,
decide whether a LYRIC block can end at this statement, define the
setting of object constants within the object module, and decide the
branching to NEX or PRO. These functions are performed by the use
of some standard utility routines which modify label tables and
analyze operands.

An indicated branch to NEX or the start of the next LYRIC block
is accomplished by setting a global flag indicating that a NEX branch
is being attempted, setting a flag in the LYRIC object record indi-
cating that a NEX has been requested and a label resolution is to be
performed in pass 2. A system generated number is loaded into the
TRUE branch constant of the object record. This system number is
the same number that will be forced into the general label table when
the next statement that may legally start a LYRIC block is encoun-
tered and the NEX global flag is on.

A branch to PRO is resolved in pass 1 by loading the present
value of the current step (which is updated each time an op code

-149-

that starts a step is encountered) into the TRUE location and setting

an indicator flag in the record showing that the TRUE pointer has

been set.

At present operands are analyzed as either numerical fields or
text-character strings. By specifying what you wish 'co be searched

for, subroutines are invoked which search the proper fields on the

source statement and which load corresponding constant areas in the

object statement. Any error encountered will be flagged in the ob-

ject statement.

The assembler parses an operand in a number of separate phases

for simplicity of coding and debugging.

Phase I (STRUCTURE) scans the whole operand field from left to

right looking for operand separator delimiters (usually '") or

bracketed by blanks. Starting at the boundaries of the operand sub-
field, the search starts from the left to the right until either a

non-blank or a string delimiter is rcached. The scan then searches

from right to left for a non-blank or string delimiter. The routine

then returns the true length of the searchable part of the string
(less the string delimiters, if any) and the starting point of the
string (also less string delimiters) relative to the first position

of the whole operand field.

A possible difference for the quoted string is for a verbatim

test of the answer, starting and ending at the correct boundaries.

The unquoted string should be used for logical answers where the

operand is a logical word or phrase which is logically but not

physically surrounded by blanks. The difference between the two

should be interpreted by the executer. The real differences come
only at the boundaries of the answer where a non-existent blank

overhang should be assumed for non-quoted strings.

2. Pass II. Pass 2 produces a final LYRIC listing and resolves
all label references, which results in a fully executable LYRIC ob-

ject module.

When the last source statement encountered in pass 1 is pro-

cessed, the object data set is closed, rewound, and opened for up-

date so that the labels can be resolved in place.

Pass 2 now reads the object record as input. As each record

is read a subroutine is called which tests the object flags to see

if a label resolution must be done. If so, a match is attempted

comparing either the label table entries with the explicit label

in the object record or the label table's implicit system labels

with the system label value saved in the TRUE pointer. Any unre-

solved labels will print out an error message.

If a branch to the next phrase is required, a subroutine will
extract the relative length of the branch from a table generated in

pass 1 and add it to the cureent location, thus generating the

-150-

relative location of the next phrase. This value is then loaded

into the FALSE pointer.

After these operations are finished the completed object re-

cord is printed in an expanded format, follawed by any error

messages that may have been generated. The object record is

updated to its final value and the program continues with the next

object record.

When the object deck has been exhausted, assembly is terminated.

D. THE LYRIC EXECUTOR

The LYRIC executor is designed to interpret a LYRIC object data

set produced by the LYRIC assembler. While the LYRIC assembler is -

for most purposes - device independent, the executor is quite machine

dependent. The executor must interface between the intent of the

LYRIC programmer, the computer operating system, and the particular

graphical output terminal being used. The first function of the
executor is to try to find and open a LYRIC student record. This

record saves status information on a particular student and can be

displayed only by the instructor or, under certain conditions, the

student. If this data set is not found, it is assumed that any in-

structions in the LYRIC program requiring the use of the student

data set will be treated as a "no operation."

Next, the LYRIC object deck is located and opened for use.

Execution will start wither at the beginning or at a location indi-

cated by status information in the student record.

The general construction of the executor is very similar to the

assembler since there is a driving section and many utility and

operand analysis subroutines.

Execution starts by branching to the statement extraction rou-

tine which reads in one object record as pointed to by the last

branch address (set by TRUE or FALSE pointers depending on the exe-

cution of the last instruction). If this turns out to be an invalid

record (not within the scope of the LYRIC data set) execution is

terminated and control is passed back to the operating system. If

the instruction defines the start of a new LYRIC step, an appropriate

pointer is set. A default value for the next retrievable record is

taken from the TRUE pointer in the object record. Control is passed

back to the driving routine. The rest of the executor deals with

the execution of each of the individual commands. If the command

agrees with a list of legal commands, control is passed to that par-

ticular subroutine.

For example, GTO's would simply cause the record extraction

routine to get a record from the location pointed to, in the instruc-

tions operand field. A test continuation card would load a buffer

which, when filled (device dependent), would be dumped onto a dis-

play screen.
-151-

E. CONCLUSION

The remarks made dbove should suggest some of the major aspects
of LYRIC in its present form.

A sample LYRIC program, a list of statements now implemented,
and three key operands are presented in the sections which follow.

F. UCLA LYRIC SYNTAX AND DEFINITIONS

Capital letters must be used exactly as shown.

"text". Refers to any string of written information (including
blanks) not exceeding 40 characters.

"number". Any integer not exceeding 255 (360 one byte constant).

"character string". Any series of 40 or less characters.

"(label)". An optional label not to exceed 5 characters in
length.

"label". A required label not exceeding 5 characters in length.

"executable statement". This is, at present, considered any
statement except additional text or GTO (see section on Operations
and Their Formats.)

NOTE: All labels must be left justified in their fields. No more
than 40 labels per program including system labels generated by each
step using a PRO operand.

G. A SAMPLE LYRIC PROGRAM

PROBLEM: Ask a user if he would like to know how to use LYRIC.
If 'yes' give him a positive response. If 'no' tell him he is 'nega-
tive' and he should type in 'yes'. If he does not type in either
'yes' or 'no' give him an error message and ask him tho question
again. If he is again wrong, terminate the program.

START PRE THIS IS A TEST OF LYRIC.
PRO WOULD YOU LIKE TO LEARN MORE ABOUT

LYRIC? ANSWER YES OR NO.
ANS
KEY YES

YOU INDEED REALIZE THAT LYRIC IS WELL
WORTH LOOKING INTO.

GTO NEX
KEY NO

YOU ARE DEFINITELY NEGATIVE.
TRY A "17,S.

GTO START

-152-

UNX 1
YOU DIDN'T TYPE YES OR NO.

YOU HAVE ONE MDRE CHANCE

GTO PRO
UNX 1

YOU HAVE AGAIN FAILED TO ENTER A

'YES' OR A 'NO'. .

GTO NEX
PRE GOOD-BY

END PRE
END

H. OPERATIONS AND THEIR FORMATS

1. STATEMENT: PRE

ABSTRACT:

Defines the start of a screen of text and a

LYRIC Wock.

SYNTAX:

label PRE text

DESCRIPTION:

A new LYRIC block is defined and the text in

the statement field becomes the first text in the

block and on the screen.

EXAMPLE:

PRE This text does not require

user intervention but you

can ask for an ANS anyway.

ANS

COMMENTS:

(label) PRE <text>

Present new step, no response required.

Used for display of information and can be the

object of a NEX statement. Resets the 'current step'

location.

2. STATEMENT: PRO

ABSTRACT:

LYRIC problem statement.
-153-

SYNTAX:

label PRO text

DESCRIPTION:

Defines the start of a LYRIC step requiring a

response. It is exactly the same as a PRE since

the ANS must always initiate an answer.

EXAMPLE:

sam PRO Hello there.
I will help you.
What did you say?

ANS
KEY Ok.

COMMENTS:

(label) PRO <text>
Problem statement with required response.
Similar to the PRE but implies the use of a

trailing ANS.
Resets the 'current step' location.

3. STATEMENT: <blank)

ABSTRACT:

Text continuation.

SYNTAX:

label < text

DESCRIPTION:

Defines text as it will appear on a console

screen. If branched to without any preceeding PRE
or PRO's, the text is appended to the text on the

screen with no break in flaw.

EXAMPLE:

SAM

PRE The rain in
Spain

GTO SAM

falls mainly
on the plain.

-154-

COMMENTS:
(label)<> <text>

Additional text.
May be used anywhere additional text must be produced.

4. ST4TEMENT: ANS

ABSTRACT:

Request an answer from a student beginning at

a predefined location.

SYNTAX:

label ANS time out number,LOC=(column,row)

ARROW=(NO/column,raw),CURSOR=(column,row)

DESCRIPTION:

The console will be placed in such a state that

when the ENTER button is pressed the text typed in

by the student will be read into an answer save area

(ANS). If no options are specified an arrow will be

placed after the previous PRE/PRO text with the cur-

sor following it. The answer will be expected after

this point. Answers can be read in from any point

on the screen as defined by LOC=(column,raw). The

default arrow can be eliminated or repositioned, and

the cursor can be positioned.

EXAMPLE:

PRO
ANS
PRO
ANS
ANS

GTO

COMMENTS:

The rain in spain falls where?

LOC=(1,3),ARROW=(1,3),CURSOR=(1,3)
what now?

10
You have failed to enter anything.

MORE

This may require special programming for dif-

ferent consoles.

(label) ANS
Request an answer at this point.
A small arrow is displayed indicating the start

of the user's answer. The console will then wait
until information is typed in and the ENTER button

is pressed. The screen is read, the answer field is

loaded up to the cursor and execution continues. An

answer may not be longer than 255 characters. Excess

will be truncated. -155-

5. STATEMENT: GUD

ABSTRACT:

Test the first characters of the input answer
for an exact comparison against a correct answer.

SYNTAX:

label GUD text

DESCRIPTION:

If the answer is exactly the same as the operand
up to the cursor, then give a positive result as in

KEY.

EXAMPLE:

PRO
ANS
GUD

GTO
UNX

COMMENTS:

What color

BLUE
BLUE is
NEX
1

The sky

is the sky?

correct

is BLUE. You are incorrect.

(label) GUD <texi>
Test for exact correct answer.
Using the text field, up to but not including

the last blank, the operand is compared with the
user's reply. Only an exact comparison, starting
directly after the arraw, will be considered cor-
rect. Operations proceed as in a KEY.

6. STATEMENT: KEY

ABSTRACT:

Search for a keyphrase in an answer.

SYNTAX:

label KEY 'keyphrase', 'keyphrase', 'keyphrase'

DESCRIPTION:

Searches for a series of logically ORed key-
phrases. As soon as one is found the search is
terminated and the next sequential instruction is
executed. and the required following GTO is exe-
cuted. If no match is found, the instruction
immediately follawing the next sequential GTO is
executed. The search for each keyphrase starts

-156-

at the first position of the answer field and ends

at the N+L-1 position where N is the length of the

answer field and L is the length of the keyphrase
and the first position of the answer is at position

1. Each keyphrase is treated as a separate search

(at the same level).

EXAMPLE:

same KEY 'go','to','there'
Excellent job.

4GTO ON3

GTO NOGOOD

lab KEY 'ain't','good' "9999"
GTO GLITCH
BAD English
GTO BAD9

COMMENTS:

Each keyphrase in the statement will be

searched for at the very start of the answer field.

The translator could supply the location for each

keyphrase in the statement as a constant. Lengths

would also be helpful but a pre-TRT for the deli-

meter would do as well.
(label) KEY (text>
Key word search.
Using the text field, up to but not including

the last blank, searches the user answer for a

match. If a match occurs execute the next sequen-

tial instruction. If not a match, go to the next

non-continue, non-GTO statement. The scope of a

KEY usually ends with a GTO display of information

and can be the object of a NEX statement. Resets

the current step location.

7. STATEMENT: BAD

ABSTRACT:

Test the answer for an exact comparison with

an incorrect answer.

SYNTAX:

label BAD text

DESCRIPTION:

Exactly the same as a GUD.

-157-

EXAWLE:

BAD HOW
You said HOW.

THIS IS NOT A QUESTION.
GTO NEX
UNX 1

You haven't done anything wrong yet

COMMENTS:

This statement will be exactly equivalent to
the GUD statement. It exists only for the mnemonic
value.

(label) BAD <text>
Test for exact incorrect answer.
Acts exactly like GUD. Used for its mnemonic

value.

8. STATEMENT: UNX

ABSTRACT:

Define the action in the event of an undefined
answer.

SYNTAX:

label UNX number

DESCRIPTION:

The text of a UNX will be displayed each time
the user passes through the UNX code while in the
same LYRIC step. UNX's are executed when logically
encountered in the same way as a KEY. They fail
only when the statement has been exhausted. A UNX
with a 0 statement is a no-operation.

EXAMPLE:

KEY YES
Good.

GTO NEX
UNX 3

No no not that.
GTO PRO
UNX I

Very bad.
GTO PRO
KEY Help.
GTO MORE
PRE Well here we are.

-158-

COMMENTS:

UNX's initialize a special save area whenever
they are encountered by the executor. They may

occur at any location in a LYRIC step. Leaving a

step initializes the UNX save areas. This tech-
nique is compatible with almost any kind of imple-
mentation of the UNX function.

(label) UNX <humbei>
Unexpected answer: In the event of an unex-

pected answer the follawing additional text records
will be displayed. This display will occur each
time the UNX is executed but not more than the num-
ber of times shown in the statement field. When
the UNX is exhausted the next executable instruc-
tion is executed as in KEY.

9. STATEMENT: GTO

ABSTRACT:

Transfer control to the program location

indicated.

SYNTAX:

label GTO/PHR/PRO/NEX/ANS/label/*

DESCRIPTION:

Causes control to be transferred to an expli-

citly or implicitly defined statement. The first

GTO after the start of a LYRIC phrase terminates

the phrase.

EXAMPLE:

GTO PHR

gto MAN
ANS
GTO ANS
GTO NEX

joe FRO hi der
GTO PRO

COMMENTS:

A GTO should not force the dumping of the

buffer or you can not concatenate text lines.

GTO <NEX/PROglabel>>
Go to the indicated statement.
NEX = go to the next step: either the next

sequential PRE or PRO encountered.
PRO = Branch to the first preceding PRO

encountered.
<label> = To any legal five character label.

-159-

10. STATEMENT: END

ABSTRACT:

SYNTAX:

Defines the end of a section of LYRIC code.

label END blankPname of LYRIC processor module'

DESCRIPTION:

Defines the end of a section of LYRIC code. On
the execution of an END, control is passed to the
LYRIC program in the STATEMENT field, or, if the
STATEMENT field is blank the student is signed out
of the LYRIC processor.

EXAMPLE:

finish END 'CSW015.SSS.LYR2'
end END

COMMENTS:

If you branch to END, display the buffer first,
then transfer control.

(label) END
End of program.

11. STATEMENT: PAC

ABSTRACT:

Remove specified characters from the answer
field.

SYNTAX:

label PAC 'character string'

DESCRIPTION:

The individual characters in the statement are
removed whenever they are found in the answer field.

EXAMPLE:

PRO Type in 'encyclopedia'.
ANS
PAC 'aeiou'

KEY NCCLPD
very good.

GTO MORE
UNX 1

Not correct at all.

COMMENTS:

The data in the answer field is permanently

changed by this instruction.
(label) PAC <bharacter string>
Compact the answer by eliminating the indicated

characters. If the string starts with a blank or

if the field is completely blank, the instruction

will eliminate blanks. After the execution of this

command, text manipulation commands must take into

consideration the loss of compacted information.

12. STATEMENT: PHR statement

ABSTRACT:

SYNTAX:

A LYRIC phrase.

label opcode PHR

DESCRIPTION:

A LYRIC phrase is defined as the sphere of in-

fluence of a standard LYRIC text and display command

(i.e. KEY). It is the location of the statement
immediately following the next executable GTO ending

the LYRIC phrase.

EXAMPLE:

KEY

GTO

joe GTO

The GTO is equivalent to
GTO

COMMENTS:

sam
hello sam
phr
jim
saying:
jim

The main use of this will be to define LYRIC

command extents.

13. STATEMENT: MOD

ABSTRACT:

SYNTAX:

Define device de-endent considerations.

nolabel MOD device information

-161-

DESCRIPTION:

Allows optimization for different display
devices.

EXAMPLE:

MOD 2260,LINE=80
MOD CCI,LINE=40

-162-

APPENDIX IV

ILR PROCESSING RECORD SPECIFICATION

by

Jay L. Cunningham
Institute of Library Research

University of California
Berkeley, California

ILR PROCESSING RECORD SPECIFICATION

BY
Jay L. Cunningham,

Institute of Library Research
University of California
Berkeley, California

NOTICE: The following specification was prepared to document the

preliminary version of an experimental bibliographic storage record

(internal processing format) for computer use. It presents the record

as of one point in time of an ongoing design. The reader should beware

that extensive changes in data element definition and codes are taking

place both at the Institute of Library Research where the record is

being formulated, and at the Library of Congress where the MARC II

Communications Format is being devised in preparation for a nationwide

machine record distribution service. The ILR storage record will be

compatible with the MARC II record format. For this reason, the

present specification is to be considered a temporary working paper.

A. INTRODUCTION

This report provides the specification of the logical internal record

design for the ILR File Organization Project. The record is designed

to hold records for all types of library materials. At this writing the

field definitions and codes comprise the elements related to monographs.

In later phases, the design will be expanded to include elements pertinent

to journal articles and serial titles. The record is not identical to

the MARC II record. It is, however, intended to be convertible to and

from MARC II. In that sense the ILR record appears quite similar in

structure to the LC MARC II communications format.

This is a specification for programmer use and is not written as a

detailed explanation of the record content. For details on the field

definitions and codes, see the following two documents:

Avram, Henriette D., John F. Knapp, and Lucia J. Rather. The

MARC II Format. a Communications Format for Biblio a hic Data.

Washington, D.C., U.S. Library of dongre6s, 1968. 6 p

Cunningham, Jay L. Instruction Manual for Editorial Preparation

of Catalog Source Data. Preliminary Edition. Berkeley, Institute of

Library Research, University of California, 1968. 172 p.

B. PROGRAM NAME

This specification has
named "INFOCAL"--"Riput for

program exists in Version 1

in PL/I, Version 3, Release

been implemented in a computer program code-

file Organization at U. of chit." The

as of May 6, 1968. The program was written

14 of F-level, 05/360.

/4W-165-

C. NATURE OF THE RECORD

The data base in the File Organization Project is record oriented.

That is, there will be one master record for each bibliographic entity.

The initial entity to be recorded is a single book, or "monograph."

The record design has two primary components: data elements and codes.

The data are organized into groups of one or more data elements. Such

a group is called a field.

The IA% is the principal code used in the record. It both iden-

tifies the field by function and describes its type of content at the

most general level. Example: Tag 100 identifies the field by function

as MAIN ENTRY for a given record, and describes the field as containing

the name of an author of the type PERSONAL NAME.

If a field contains more than one kind of data element, or if it

contains two or more values representing a particalar kind of element,

the elements are separated by codes called sub-field delimiters.

A set of 7 auxiliary codes called indicators accompanies each

field. At present, only two of these indicators are implemented. The

indicators serve to provide additional information about the field.

An example is TAG 100, which will contain one of the following

values in Indicator 1:

FIGURE 1: INDICATOR FOR MAIN ENTRY - PERSONAL NAME

Form of Name
Main ELLIty

is not Subject
Main Entry
is Subject

Forename 0 14

Single Surname 1 c,

Multiple Surname 2 6

Name of Family 3 7

The relationships among data elements and codes used in the record

are summarized in the following tdble:

FIGURE 2: STORAGE RECORD ORGANIZATION

Record Component Content of Componen% Type of Code Identifying
the Component

field

data element (group of
one or more)

,INE,
indicators

sub-field data element delimiter
....

-166-

The ILR storage record contains all data input from a pre-coded
catalog record, with the exception of supplementary data fields
containing what are called "dashed-on entries," in cataloging termi-
nology. Such groups of fields describe a supplement to a book, an
index, appendices, or other related material which is usually bound
separately and often is received after the main work for which the
catalog record was created. The supplementary fields will probably
be stored in a separate record linked to the main record by a number
which is an extension of the master record number. A final decision
has not been made regarding this problem at the time of writing.

D. RECORD COMPOSITION

The storage record is composed of a variable number of characters
placed in contiguous byte locations.

A complete storage record is composed of four segments, as
shown in Fig. 3. Each segment is composed of one or more fields.
The fields are of either the fixed or variable-length type, depending
on their function. The fields are organized into one or more data
elements along with certain of their associated codes.* The biblio-
graphic data elements are variable or fixed in presence. The codes
are correspondingly fixed or variable in presence. The variable
length data elements are in principle repeatable, although in prac-
tice not all are defined as repeatable. The codes are likewise
repeatable in principle.

The four segments of the record are: the Leader (56 bytes); the
Record Directory (variable length, 12 bytes per directory entry); the
Fixed Length Data Elements (currently 26 bytes); and the Variable Fields
(variable in occurrence, variable in length).

All byte positions in the fixed length segments of the record
are expressed in terms relative to the first byte regarded as one.
This was done only for the purpose of conforming to an early draft
of the MARC II format, and will be changed in a future version of the
conversion program (INFOCAL).

All fields which always appear in the storage record and which
express the negative condition of a set of values, e.g., in the Fixed
Length Data Elements, will be set to either zeros or blanks. The zero
and blank carry meaning in these fields, usually as the default value.
The zero will normally be set as the default in a binary-valued fixed
length data element and blank will normally be set as the default in
a multiple-choice fixed data elements. The latter includes elements
which can have a range (e.g., one to three values).

*The tags and Indicators 1-5 are in the Directory. Indicators 6 and
7 are at the head of the variable field.

-167-

FIGURE 3:

SCHEMATIC OF ILR STORAGE RECORD, INFOCAL VERSION 1
(as of May 6, 1968)

Segment 1 Segment 2 Segment 3 Segment 4

LEADER DIRECTORY FIXED LENGTH VARIABLE FIELDS

DATA ELEMENTS

1 5 N x 12 1 2

NOTE: As currently defined in the record design, Variable Field

access is obtained by a scan of the Directory to find the Tag, then add

contents of "Base Address of Data" to Starting Character Position of

field desired. (S.C.P. is relative to the first character of the Fixed

Length Data Elements.)

Access to the first character of the Fixed Length Data Elements

can be obtained by finding the Base Address of Data at character

positions 19-20 of the Leader, then use the value therein as a dis-

placement from the beginning of the Leader.

The length of the Directory may be determined by a data element

contained in character positions 48-50 in the Leader. It is called

"Number of Entries in Directory." Its contents multiplied by 12 gives

the length of the total Directory.

In the record currently implemented, there are no field terminators

and no record terminator. Control is maintained by a total record

length field in the Leader, and field lengths in the Directory Entry

for each variable field (and for the Fixed Length Data Elements field).

E. LEADER

The Leader occupies the first 56 characters of every record. It

contains elements describing and identifying the record, in contrast to

the variable data fields, which describe a bibliographic entity (i.e., a

monograph). Thus the leader tells the type of content included in the

record, in terms of the form of library material represented; the com-

ponents of the record structure in terms of the meanings of the tags

and codes for the particular form of library material indicated; and

the hierarchical level at which the record is pitched (e.g., for a mono-

graph which is a member of a series, the record is for the monograph,

not the series).

The program syMbol name for the entire Leader is LIPREFX.

-168-

FIGURE 4:
ILR PROCESSING RECORD - SEGMENT 1, LEADER

PROGRAM
SYMBOL

DATA
ELEMENT

CHAR.
POSITION CONTENTS, REMARKS, ETC.

LILENGTH Record
Length

1-5 Total number of characters in
record,stored as EBCDIC codes;
right justified, with blank fill.

LISDATE Status Date 6-11 Six-character date referring to
LISTATUS. Currently all blanks.

LISTATUS Record Status 12 One character. Contents:

0 - uncertified

1 - certified

2 - changed record

3 - deleted record

LILEGCNT Legend
Extension

13 Provides facility for extending
record type (characters 14-17).
Not currently used. Set to
zero.

LITYPE Record Type

_

14 One Character. Contents:

a - book

b - manuscript

c - music (sheet)

d - music (manuscript)

e - maps and atlases

f - maps (manuscript)

g - motion pictures and
filmstrips

- microfilm (original edition)

i - phonorecords (spoken)

j - phonorecords (music)

k - pictures, etc.

1 - computer media

rn-other

-169- (Continued on next page)

FIGURE 4 (Cont.):
ILR PROCESSING RECORD - SEGMENT 1, LEADER

PROGRAM
SYMBOL

DATA
ELEMENT

CHAR.
POSITION CONTENTS, REMARKS, ETC.

LIBLEVEL Bibliographic
Level

15-17 Contents: One to three charac-
ters, left justified, with blank
fill.

a - analytic

c - collective

m - monograph

s - serial

LIINDCNT Indicator
count

18 Number of indicator bytes in a
directory entry. Now set to 5.

LIBASE Base Address of
Variable Fields

19-20 The displacement to the first
character of the fixed fields.
A binary number equal to '56 +
12*n', where n is the number of
entries in the directory.

LIORIGIN Origin of
Record

21-23 Three EBCDIC digits identifying
the agency which keyboarded the
record. '003' = ILR; '790' =
U C Santa Cruz.

LIPDATE Processor
Date

24-29 Six character date referring to
LIPROSOR. Currently all blanks.

LIPROSOR Processor or
Record

30-32 Three EBCDIC digits indicating
the agency modifying/processing
the machine record. If LIORIGIN
is 790, LIPROSOR is 003.

LISOURCE Source type of
Catalog card

33 A code identifying the general
source of the original catalog
card.

a - central (e.g., LC card or
proofslip)

local origin (original
cataloging at LIAGENCY).

c - NUC

other library or source
(e.g., Alanar)

-170- (Continued on next page)

FIGURE 4 (Cont.):
ILR PROCESSING RECORD - SEGMENT 1, LEADER

PROGRAM
SYMBOL

DATA
ELEMENT

CHAR.

POSITION CONTENTS, RENARKS, ETC.

LIAGENCY Agency of
Source Type

34-36 Code for specific agency of
LISOURCE, when it is known.
Three EBCDIC digits. Intended
for uC network use.

LIADAPTR Adapter of
Catalog Card

37-39 Three EBCDIC digits identifying
the adapter of the catalog card
when LISOURCE code is other than
"b". If not known, set to
blanks.

LINUMBER Master Record
Number (ILR-
assigned)

40-46 EBCDIC master record number.
Taken from cols. 1-6 of decklet.
Character 40 is zero, currently.

LICHECK Checksum on
Record Number

47 A checksum on characters 40-46.

LIDIRLEN Number Entries
in Directory

48-50 EBCDIC digits with leading
blanks.

LIDEOF Date Entered
on Master File

51-56 EBCDIC in the order 'mmddyy'.
Now set to date of program
execution.

[END OF LEADER]

F. DIRECTORY

The record directory is an index to the kind and location of the
variable fields within the record. It contains a series of fields
(called directory entries) which contain the tag numbers, the lengths
of the variable fields, and the starting character positions of the

fields. The directory entry is fixed in length, but the number of
entries in a given record cannot be predetermined, so the directory as
a whole is variable in length. The directory is automatically gener-
ated by the INFOCAL program.

The program symbol name for the entire directory is LIARTRY.

-171-

FIGURE 5:
ILR PROCESSING RECORD - SEGMENT 2, RECORD DIRECTORY

Length Char. Pos. Content

Directory Entry 1

Directory Entry n

[End of Directory]

3

1

1

1

1

2

2

0 Tag (3 EBCDIC digits.)+

3 Indicator 1* (EBCDIC character.
If not used, blank.)

5

8

Indicator 2* (Repeatable tag
number, applicable to those
tags which can appear more
than once in a given record.
If tag is not currently repeat-
able, indicator will be set to
binary zero. An 8-bit binary
digit.)

Indicators 3,4,5 (Character
positions provided for future
expansion. Currently set to
blanks.)

Field Length (A 16-bit number
giving the character length of
the variable field, including
Indicators 6 and 7.)

10 Starting Character Position (A
16-bit number giving the posi-
tion of the first character of
the variable field. Currently
the first character will always
contain Indicator 6. This posi-
tion is relative to the first
character of the Fixed Length
Data Elements Field (Segment 3).)

The total length of the Directory Entry is 12 Characters. The
total length dt the Directory is 12 x the number of directory entries.

+See Fig. 7 for a list of tags and field names.

*For the most part, Indicator 1 has contents identical to that defined
in the LC MARC II specification. Indicator 2 is a feature defined bY
ILR, but suggested by the Library of Congress for the purpose of in-
suring unambiguous access to data fields having duplicate tags in a
record. -172-

The Tags are sorted by the program on the first digit of the tag
number only. The variable fields are stored in the order in which,they
were input (which generally corresponds to the order of appearance on
the source catalog card).

The justification for storing some of the Indicators in the Direc-
tory and the rest in the Variable Field was as follows: Indicators
which by their nature apply to the variable field as a whole (e.g.,
code for sub-type of name) were stored in the Directory. This renders
them easily accessible when searching the record at the level of the
Directory only, e.g., to test for the presence of certain conditions.
A search for the variable field data itself thus will not have to be
made in each case.

Indicators which by their nature apply only to parts of fields (or
even one character), such as codes for diacritical marks, were placed
within the variable field data itself. Such indicators will most likely
be addessed only when there is actual need to process the variable field
content.

G. FIXED LENGTH DATA ELEMENTS

Elements in the Fixed Length Data Elements Field are assigned fixed
locations and lengths. The entire field may, in various types of
records, assume a variable length, and therefore it has been given a
tag number and a Directory Entry. For the initial version of the
INFOCAL program, only monograph catalog records are being processed.
The Fixed Length Data Elements for monographs have a field length of
26, currently.

The program symbol name for the entire Fixed Length Data Elementv
Field is LIFIXED. Its Tag No. is 000.

FIGURE 6:
ILR PROCESSING RECORD - SEGMENT 3, FIXED LENGTH DATA ELEMENTS

PROGRAM
SYMBOL

DATA
ELEMENT

CHAR.
1

POSITION 1 CONTENTS, REMARKS, ETC.

LIDTYPE Date Type 1 c - two dates, second is copy-
right

m - two dates, second is
terminal

n - date not known

q - digits missing in original
date

r - reprint

s - single publication date

-173- (Continued on next page)

FIGURE.6 (Cont.):
ILR PROCESSING RECORD - SEGMENT 3, FIXED LENGTH DATA ELEMENTS

PROGRAM
SYMBOL

DATA
ELEMENT

CHAR.

POSITION CONTENTS, REMARKS, ETC.

LIDATE1 First or Only
Date

2-5 Four digits, or blank if not known

LIDATE2 Second Date 6-9 1

I

Four digits, or blank if not
present.

LIMICROR Form of
Reproduction

10 a - microfilm V - none

b - microfiche

c - micro-opaque

LIFORM Content
Form

11-14 One to four, or no characters.
Left-justified, with unused char-
acters filled with blanks.

a - bibliographies

b - catalogs

c - indexes

d - abstracts

e - dictionaries

f - encyclopedias

g - directories

h - yearbooks

i - statistics

j - handbooks

k - other
m - medical atlases

LIGOVPUB Government
Publication
Indicator

i

15 a - U.S. federal

b - California state

c - California county/municipal

d - international

e - other governments

V - none

-174- (Continued on next page)

FIGURE 6 (Cont.):

ILR PROCESSING RECORD - SEGMENT 3, FIXED LENGTH DATA ELEMENTS

PROGRAM
SYMBOL

DATA
ELEMENT

CHAR.

POSITION CONTENTS, REMARKS, ETC.

LICONPUB Conference
Publication
Indicator

16 '0' = no

'1' = yes
.

LIMEBODY Main Entry
In Body

17 '0' = no

'1 = yes

LILITGRP Literary
Group

18 a - complete/collected works

b - selected works

c - prolific writer

none

LICNCELT Cancel Title
Added Entry
in Dict. Cat.

19 '0' = no, don't cancel

'1' = yes, cancel in dictionary
catalog; make for div.

LICNTRY Country of
Publication

20-22 All blanks. Not currently
implemented.

L2ILLUS Illustration
Codes

23-26 One to four characters, left-
justified with blank fill. Set
by scan of Collation Input Field.

a - illus.

b - map

c - portraits

d - charts

e - plans

f - plates

g - music

i - coats of arms

j - genealogical tables

k - forms

1 - diagrams

[End of Fixed Length Data Elements]
-175-

H. VARIABLE FIELDS

The variable fields include all the standard bibliographic data
elements defined for monograph catalog records, plus various control
numbers pertaining to catalog records, such as the LC Card No. (The

Fixed Length Data Elements Field, Tag 000, although not strictly a
variable field, may vary in length from one kind of record to another.
Because of its complexity, it was defined in detail above, in Part G.)

The variable fields contain data which by its nature is variable
both in presence and in length. The fields are packed into the last
portion of the storage record with no intervening gaps.

Currently, the individual variable field begins with two special-
purpose character positions, Indicators 6 and 7, which are set to zero.
These are provided for future use. It is intended to use them to
control diacritical marks and similar special characters occurring in
the field, and to control the applicability of the field to a given
library on the basis of set-inclusion or exclusion codes.*

The principal identifying codes (tags, and indicators 1-5) for
a given variable field are, as indicated previously, stored in the
Directory Entry for the field, along with the field length and address
of its starting character position.

A list of tagged fields and the data elements contained in each
is presented in Fig. 7, below.

A list of the meanings of Indicator 1 which are currently
implemented, is presented in Fig. 8.

This does not exhaust the coding supplied in the storage record.
There is a third and last component, sub-field identification. This

code, called a delimiter, serves to identify and describe particular
data elements which may be contained in the tagged fields.

Delimiters are currently stored interspersed with the data in
position ahead of the sub-field they identify. It is not certain
whether this method will be retained in future versions of the storage

format. Currently a "%" is stored as the delimiter symbol in storage
records produced by INFOCAL. A chart listing the present contents of
the delimited sub-fields in each tagged field is presented in Fig. 9.

*See Part J.
-176-

FIGURE 7:
VARIABLE FIELD TAGS AND DATA ELEMENTS

(as of May 6, 1968)

afi Variable Field Data Element Iss. Variable Field Data Element

000

001

002

003

010

011

012

013

014

019

020

030

050

051

052

060

070

071

080

090

091

100

108

CONTROL FIELDS

110

111

112

118

120

128

130

131

138

200

210

220

240

250

260

261

262

300

350

360

400

408

410

CORPORATE NAME

CONFERENCE OR MEETING

FIRM NAME***

TITLE SUBHEADING

CORPORATE NAME WITH FORM
SUBHEADING

TITLE SUBHEADING

UNIFORM TITLE HEADING

ANONYMOUS CLASSIC HEADING***

TITLE SUBHEADING

SUPPLIED TITLES

FIXED LENGTH DATA ELEMENTS
FIELD

CONTROL NUMBER (LC CARD NO.)

LEGEND EXTENSION
+

LANGUAGES

CONTROL NUMBERS

LC CARD NUMBER*

NATIONAL BIBLIOGRAPHY

NUMBER

STANDARD BOOK NUMBER**

PL 480 NUMBER

SEARCH CODE+
+

LOCAL SYSTEM NUMBER+

KNOWLEDGE NUMBERS

UNIFORM TITLE

ROMANIZED TITLE

TRANSLATED TITLE**

TITLE PARAGRAPHBNB CLASSIFICATION NUMBER**

DEWEY DECIMAL CLASSIFICATION
NUMBER

LC CALL NUMBER

COPY STATEMENT (LC CARD)

CATALOGING SOURCE***

NLM CALL NUMBER

NAL CALL NUMBER**

NAL SUBJECT CATEGORY NUMBER

UDC NUMBER**

LOCAL CALL NUMBER (HOLDINGS)

COPY STATEMENT
(LOCAL CARD)***

MAIN ENTRY

TITLE STATEMENT

EDITION STATEMENT

INPRINT

PLACE

PUBLISHER

DATE(S)

COLLATION

BIBLIOGRAPHIC PRICE**

CONVERTED PRICE+

SERIES NOTES

PERSONAL NAME (TRACED THE
SANE)

TITLE SUBHEADING

CORPORATE NAME (TRACED THE
SAME)

PERSONAL NAME

TITLE SUBHEADING

-177- (Continued on next page)

FIGURE 7 (Cont:):

VARIABLE FIELD TAGS AND DATA ELEMENTS
(as of May 6, 1968)

Ns. Variable Field Data Element Tag Variable Field Data Element

411 CONFERENCE (TRACED THE SAME) 650 TOPICAL

412 FIRM NAME*** 651 GEOGRAPHIC NAMES

418 TITLE SUBHEADING 652 POLITICAL JURISDICTION ALONE

440 TITLE (TRACED THE SAME)
OR WITH SUBJECT SUBDIVISIONS

490 SERIES UNTRACED OR TRACED
DIFFERENTLY

653 PROPER NAMES NOT CAPABLE OF
AUTHORSHIP

655 GENERAL SUBDIVISIONS (OTHER

BIBLIOGRAPHIC NOTES THAN PERIOD AND PLACE)

500 BIBLIOGRAPHY NOTE 656 PERIOD SUBDIVISION

510 DISSERTATION NOTE 657 PLACE SUBDIVISION

520 CONTENTS NOTE (FORMATTED) 660 NLM SUBJECT HEADINGS (MESH)

530 "BOUND WITH" NOTE 661 TOPICAL MESH SUBHEADINGS

540 "LIMITED USE" NOTE 662 GEOGRAPHIC MESH SUBHEADINGS

550 GENERAL NOTES (ALL OTHERS) 663 TIME PERIOD MESH SUBHEADINGS

560 ABSTRACT** 664 FORM MESH SUBHEADINGS

570 "IN ANALYTIC" NOTE*** 670 NAL AGRICULTURAL/BIOLOGICAL

580 "FULL NAME" NOTES***
VOCABULARY**

690 LOCAL SUBJECT HEADING SYSTEMS
+

SUBJECT ADDED ENTRY

600 PERSONAL NAME
OTHER ADDED ENTRIES

608 TITLE SUBHEADING
700 PERSONAL NAME

610 CORPORATE NAME
708 TITLE SUBHEADING

611 CONFERENCE OR MEETING
710 CORPORATE NAME

612 FIRM NAME***
711 CONFERENCE OR MEETING

618 TITLE SUBHEADING
712 FIRM NAME***

620 CORPORATE NAME WITH FORM
718 TITLE SUBHEADING

SUBHEADING 720 CORPORATE NAME WITH FORM

628 TITLE SUBHEADING
SUBHEADING

630 UNIFORM TITLE HEADING
728 TITLE SUBHEADING

631 ANONYMOUS CLASSIC HEADING***
730 UNIFORM TITLE HEADING

638 TITLE SUBHEADING
731 ANONYMOUS CLASSIC HEADING***

640 BOOK TITLE AS SUBJECT***
738 TITLE SUBHEADING

-178-
(Continued on next page)

FIGURE 7 (Cont.):

VARIABLE FIELD TAGS AND DATA ELEMENTS

(as of May 6, 1968)

as. Variable Field Data Element INz. Variable Field Data Element

740 TITLE TRACED DIFFERENTLY

753 PROPER NAMES NOT CAPABLE OF

AUTHORSHIP

SERIES ADDED ENTRIES

800 PERSONAL NAME

808 TITLE SUBHEADING

810 CORPORATE NAME

811 CONFERENCE OR MEETING

812 FIRM NAME***

818 TITLE SUBHEADING

840 TITLE-ONLY SERIES HEADING

900 BLOCK OF 100 NUMBERS FOR
LOCAL USE+

NOTES:

* An alternate code defined in LC MARC II for optional local use.

ILR will use Tag 001 for LC Card Nos. available to it, thus

maintaining compatibility with the anticipated LC tape distribution

service.

** Provided in LC MARC II for future use. ILR will supply this data

in its records only if the information is already available on the

LC cards used as input records at the time of original conversion.

*** A local code or data element specified for original conversions by

ILR, but not defined in LC MARC II.

Code and data elements not currently implemented by ILR, but

defined in LC MARC II.

+ An alternate code defined in LC MARC II for optior.-1 local uoe.

ILR will place its own locally-generated master record number in

positions 40-46 of the storage record Leader.

-179-

FIGURE 8:
VALUES FOR INDICATOR 1 IN APPLICABLE FIELDS

Tag Field Indicator and Value

003 LANGUAGES Single or Multilanguage 0

Translation 1

050 LC CALL NUMBER Book in LC 0

Book Not in LC 1

100 MAIN ENTRY
(Personal Name)

Main Entry Not
Subject

Main Entry is
Subject

Forename 0 4

Single Surname 1 5
Multiple Surname 2 6

Name of Family 3 7

110 (Corporate Name) Surname (Inverted) 0 4

111 (Conference) Place + Name 1 5

Name (direct Order) 2 6

112 (Firm Name) 0 1

120 (Corporate Name with
Form Subheading)

130 (Uniform Title 0 1

Heading)

200 UNIFORM TITLE

.....____

Not Printed on LC Cards
Printed on LC cards 1

210 ROMANIZED TITLE No Title Added Entry 0

Title Added Entry 1

240 TITLE STATEMENT No Title Added EntrY 0

Title Added Entry 1

261 PUBLISHER Publisher Not Main Entry 0

Publisher is Main Entry 1

400 SERIES NOTE Author Not Marti Author is Main

(Personal ,Author/ Entry Entry

Title)
Forename 0 4

Single Surname 1 5

Multiple Surname 2 6
Name of Family 3 7

+This value not presently implemented.

-180-

(Continued on next page)

FIGURE 8 (Cont.):

VALUES FOR INDICATOR 1 IN APPLICABLE FIELDS

Tag Field Indicator and Value

410 (Corporate Author/ Author Not Main Author is Main

411 Title) Entry Entry

(Conference/Title)
Surname (inverted) 0 14

Place + Name 1 5

Name (direct order) 2 6

412 (Firm Name) 0 1

490 (Series Untraced or Series Not Traced 0

Traced Differently) Series Traced Differently 1

600
SUBJECT ADDED ENTRIES Forename 0

(Personal) Single Surname 1

Multiple Surname 2

Name of Family 3

610 (Corporate) Surname (inverted) 0

611 (Conference) Place + Name 1

Name (direct order) 2

OTHER ADDED ENTRIES Alternative Secondary Analytical

700 (Personal)
Forename @ D H

Single Surname A E I

Multiple Surname B F J

Name of Family C G K

710 Corporate) Surname (inverted) @ D H

711 Place + Name A E I

Name (direct
order) B F J

712 (Firm Name) 0 1 2

720 (Corporate with Form

Subheading)

730 (Uniform Title 0 1 2

731 Heading)

740 (Title Traced 0 1 2

Differently)

-181-

R.1

FIGURE 8 (Cont.):
VALUES FOR INDICATOR 1 IN APPLICABLE FIELDS

800
SERIES ADDED ENTRIES
(Personal Author/
Title)

Forename 0

Single Surname 1
Multiple Surname 2

Name of Family 3

810
83.1

(Corporate Author/
Title) Surname (inverted) 0

Place + Name 1

Name (direct order) 2

I. SUB-FIELD DELIMITER CODES

In the current version of the INFOCAL program, most sub-field
delimiters have a form of coding as follows: each sub-field beyond
the first is signified by a combination of one or more per cent (%)

symbols in the storage record. That is, the sub-field coding is

positional rather than explicit. Two %'s followed by a data string,
for example, means the first and second sub-fields in the given field

are vacant.

DATA PRESENT: 1st Sub-field data%2d Sub-field data%3d Sub-field data

DATA ABSENT: %%3d Sub-field data

Because this area is the most volatile one in terms of changes
in the form of the coding in the MARC II record designs both the
presently implemented INFOCAL coding and the latest known MARC II
coding are presented, for comparative purposes. This will assist

retrofit of INFOCAL in the future.

It should be noted that changes in the coding imply no change
in the kind or amount of bibliographic data included in the record.

Full data will be included in all cases. The changes relate to
the method of coding and the amount of detail in data element
definition. Since the changes in sub-field definition affect field
tags, the programmer should consult the latest MARC II record speci-

fications issued by the Library of Congress before proceeding with any

changes to the coding produced by INFOCAL. (Certain of the data
elements currently defined in INFOCAL as tagged fields are redefined

in the new MARC II record as delimited sub-fields. Also, certain
data elements have been defined as sub-fields by MARC II which have
not yet been implemented in INFOCAL).

The revised system of sub-field coding announced by the LibrarY
of Congress, as currently understood, is as follows:

In a field in which only one data element has been defined
(e.g., Standard Book Number), the field will begin with the delimiter

code "$a". The same data element may be repeated in a field as many
times as necessary by preceding it with its identifying delimiter.

For example, there may arise a need to assign more than one Standard
Book Number to a single catalog record.

Only fields which can contain more than one kind of defined
data element are listed below.

-183-

FIGURE 9:
SUB-FIELD DELIMITER CODES

NOTE: The word "None" in this table means that the data element
was not defined by ILR for sub-field coding purposes at
the time the INFOCAL program was implemented.

Sub-field Code in
INFOCAL Storage
Record

Revised MARC II
Code TAG, FIELD NAME, AND SUB-FIELDS

None

%

$a

$b

003 Languages

The group of 3-character language
codes needed to describe the
languages of the text or its
translation
Summaries

Example: $aengfre$bgerrus

None
None

$a
$b

050

060

070

LC, NLM, and NAL Call
Numbers

Class Number
Book Number

None
None
%

$a
tb
$c

(Not defined in
MARC II)

051

091

LC Copy Statement

Copy Statement (LOCAL CARD)

Class Number
Book Number
Copy Information

052 1Cataloging Source

None

%

Name of Library Contributing Cat.
Copy

Class No./Call No. (when present)

None

%

%

%

$a
(Not def. in

MARC)
$b
$c

090 Local Liinely Holdings

Call Number
Copy Number

Library Code
No. of Copies

-184-
(Continued on next page)

FIGURE 9 (Cont.):

SUB-FIELD DELIMITER CODES

Sub-Field Code in
INFOCAL Storage
Record

Revised MARC II
Code

I

TAG, FIELD NAME, AND SUB-FIELDS

None
None
%

%

%
None
Tag*
None

%

$a
$b
$c
$d
$e
$k
$t
$u

$v

11
Wo
600

700

800

Personal Name

Name
Numeration
Titles and other words
Dates
Relator
Form Sub-heading
Title (of book or title series)

Filing Information (in 700 only)

Volume or No. (in 400/800 only)

None

%

#

Tag
None
%

$a
$b

$k
$t

$u
$v

110

410

610

710

810

Corporate Name

(also for 112/412/612/
712/812 which are ILR
tags for firm names)
(also for 120/620/720,
Corp. Name with Form
Subheading)

Name
Each subordinate unit in
hierarchy

Form Sub-Inading
Title (of book or title of series)
Filing Information (in 710 only)
Vol. or No. (in 410/810 only)

None $a

11:1

411

611

711

811J

Conferen,e or Meeting

Name

*The word "Tag" here means that the data element is identified in the

current version of INFOCAL as a tagged field. See Fig. 7.

-185-

FIGURE 9 (Cont.):

SUB-FIELD DELIMITER CODES

Code in INFOCAL
Storage Record

Revised MARC II
Code TAG, FIELD NAME, AND SUB-FIELDS

%

%

%
None
None
#

Tag*
None

%

$b

$c
$d
$e
$g

$k
$t
$u
$v

Number
Place
Date
Subordinate unit in Name
Other information in the heading
Form Sub-heading
Title(of book or title of series)
Filing Information (in 711 only)
Vol. or No. (in 411/811 only)

None
Tag
None

$a
$t
$u

130

630

730

Uniform Title Heading

(also for 131/631/731,
Anon. Classic heading -
an ILR tag)

Uniform title (Main portion)
Title (of part)
Filing Information (73O only)

None

%

%

$e

$b
$c

2451 Title Page Title

Short title from which added
entry is made

Remainder of title
Remainder of title page trans-

cription

None

%

$a
$b

250 Edition Statement

Edition
Additional information after

edition

Tag
Tag.
Tag

$a
$b
$c

260 Imprint

Place
Publisher
Date

None

%
%

None

$a
$b
$c

$a

300 Collation Statement

Pagination
Illustrative Matter
Size
Thickness

*The word "Tag" here means that the data element is identified in the
current version of INFOCAL as a tagged field. See Fig. 7.

-186-

FIGURE 9 (Cont.):

SUB-FIELD DELIMITER CODES

Sub-Field Code in
INFOCAL Storage
Record

Revised MARC II
Code TAG, FIELD NAME, AND SUB-FIELDS

None
%

$a
$v

44o Series Note Traced Same
(Title)

Title Portion
Vol. or No.

None
Tag*

Tag

Tag

Tag

$a
$x

br

$z

$t

650

651

652

653

654

Subject Added Entries

Main Subject Heading
General Subject

Subdivisions
Period Subject

Subdivisions
Place Subject

Subdivisions
Title portion of

subject heading

(650-654 only)

1

kalso 600/
610/611/612
and 630)

a

None
%

$a
$v

840

1

Series Traced Differently
(Title)

Title of series
Vol. or No.

*The word "Tag" here means that the data element is identified in the

current version of INFOCAL as a tagged field. See Fig. 7.

-187-

J. ADDITIONAL VARIABLE FIELD FEATURES

Two character positions (Indicators 6 and 7) have been placed at

the head of each variable field occurring in the record, beginning with

Tag 002, Legend Extension.

These indicators serve as the nucleus for expansion of the leading

portion of the variable field to allow encoding of three types of

information which can be applied to the field when it is prepared for

output display: the alphabet of the field, location-specific information,

and a list of diacritical marks. A proposed encoding sequence is shown

in Fig. 10. (These features have not been implemented in INFOCAL).

FIGURE 10:
PROPOSED VARIABLE FIELD HEADER

START OF FIELD IND. 6 IND. 7 DATA

alphabet lucation- diacritics variable field

code specific codes list content

1. Alphabet Code. A flag to shift the encoding of the field from

the English alphabet to some other character set such as Cyrillic. It

would specify both the fact of the shift and the particular encoded

alphabet. An unresolved problem is that a deshift back to English or

to a third alphabet can occur within the field. The flag must be kept

distinct from the first byte of the location-specific information. The

alphabet code could be omitted in the default case of "all-English."

2. Location-S ecific Codes. Indicator 6 has been reserved as a

flag to show whether a given field content is desired by a given

library to which the record applies. For example, the record might

contain both LC subject headings and Medical Subject Headings. Library

A might want only the LC headings; library B only the MeSH headings.

This Indicator will facilitate the composition and display of the record

according to each library's specifications. Four configurations are

possible:

a. If the field is wanted by all locations, the indicator is to be

set to F016 (currently, perhaps it should be 00). This would be the

default case. The next character in sequence is the diacritics indicator

(Ind. 7).

b. If all but certain locations are to be provided with the field,

the indicator will be set to a stacked code of 4016 plus the number of

location codes which follow. Location codes are set as three-digit

EBCDIC numbers, following Indicator 6 and preceding Indicator 7.

c. If only certain locations are to be provided with the field,

the indicator will be set to a stacked code of 8016 plus the number of

location codes which follow.

-188-

d. If none of the libraries are to be supplied with the field, a
code of 0016 is set. This will be rarely used, and will perhaps apply
to information used only by the processor of the records--e.g., the ILR
master record number, if stored in a variable field, would not conceivably
by desired as a "print" field by any libraries to which the record applies.

The location-specific code will always be present.

3. Overprnted Character Coding. Indicator 7 is the nucleus for a
proposed method of storing diacritical marks and any other characters
which are overprinted and thus require special processing, or which
might well be omitted from certain kinds of displays, e.g., CRT's. The
major objective of the code will be to preclude a character-by-character
scan of the field content to determine if overprinted characters exist.

Rather a simple test on the indicator will yield the desired information.
The text string in the field will thus not be interrupted by special
codes, and no special processing will be necessary should it be desired
to bring the field out for display without the overprinted characters.

The proposed technique is as follows:

a. Each variable field will have a one-byte signal in Indicator 7,
which will always be present. It will be followed by 0-n sub-fields,
each containing a value corresponding to a diacritical present in the
field, and a pointer (a relative character position).

b. If the signal is set to zero, there are no special characters,
and the variable field data is free of special handling. Data starts in

Field + 2.

IND. 6 IND. 7

0 Data

c. If the signal is set to an even-numbered multiple n (n=2-4254)
there are n/2 diacriticals in the field's data. The signal will be set
to the relative character position in the field of the first data
character. The signal will be followed by one or more sub-fields which
will show the value of the diacritic together with a pointer to the data
character to which the diacritic is to be applied. (The value comes
first so that the program can be set up to determine whether or not an
actual operation on the data should be subsequently performed.) The

second pointer is counted from the position of the text character
to which the preceding diacritic was applied. Etc.

n !Value 1 Pointer I Value 2 Pointer 2 Data ...

E.g., 41'3'2 Therese ...

d. If the field length exceeds 255, and one or more diacritics

occurs at a position beyond the 255th relative position, the signal
will be set as above, but the first (or subsequent) sub-field will be
set to blank as a Value, and 255 as a Pointer to serve as a displacemev.

-189-

value. The next sequential subfield will show the relative position
beyond 255 of the character to which the next diacritic applies.

4

Value 1
)6 255 Value 2 15 _Data ...

K. EXAMPLE OF STORAGE RECORD

LEADER

)45771 146$$$ 065n 03 00)5 0 3 $ 0100011dS 1 50468

LILENGTH
DISDATE
LISTATUS-.
LILEGCNT
LITYPE---
LIBLEVEL-----
LIINDCNT
LIBASE
LIORIGIN-------
LIPDATE.

LIPROSOR
LISOURCE--
LIAGENCY
LIAD
LINUMBER
LICHECK
LIDIRL
LIDEOF

DIRECTORY
Entry Entry 2 Entry 3

00 SS n

,-

0031 ... 090 1001 2400

TAG--]

IND 1---
IND 2
IND 3,4,5--
FIELD LENGTH (16-BIT
START. CHAR. POS. (16-BIT

260 2610 262 300 4901

550 65001 65002 7411 812

END OF DIRECTORY (CHART CONT/D NEXT PAGE)

-190-

FIXED LENGTH DATA ELEMENTS FIELD I
START OF VARIABLE FIELDS

si96 $$ $4 4
1

Sitlo

----,
sengP am 64-301%435x01

LIDT
LIDATE1
LIDATE2
LIMICROR
LIFORM
LIGOVPUB
LICONPU
LIMEBODY
LILITGRP
LICNCELT
LICNTRY
LULUS
Indicators 5 and 6

Data for Tag 003 -
Data for Tag 090 -

FGarmash , V . A .

for Tag 003 - Languages
Languages code
Local Library Call No. & holdings info.

00Quantization of signals with non-unifo

Data for Tag 100.1°.--"1----1.--Ilthos=.

Data for Tag 240 - Title

rm steps. 0°Redondo Beach, Calif.,0

Data for Tag 260 - Place of Pub...I

Data for Tag 261 - Publisher

W Space Technolog4

Laboratories 0011964.006 1.02800STL Technical Library.$T

Data for Tag 262 - Dat

Data for Tag 300 - Collation
Data for Tag 490 - Series Note

Data for Tag 550 - Notc

ineravnomernym shagom (CHART CONT'D NEXT PAGE)

-191-

from Elektrosvyaz, no. 10, p. 10-12, 1957

Data for Tag 650 - Subject Heading (1st)

00Information

illeasurement.00Signals and signaling.00ElektrosvyazAv. 101

Data for Tag 650 - Subject Heading
Data for Tag 74 - Added Entry for Periodical

ip. 10-12, 1957.00Space Technology Laboratories, Inc, Lol

Data for Tag 812 - Series-Traced-Differently Added Entry

is Angeles.%Technical LibrarY 0 ranslation,%no. 80

Data for Tag 818 - Series title
END OF RECORD

The catalog card shown below was used as the source for the

preceding example of a storage record.

i*Eng.-N4th.
Sciences
Pam Garmash, V A

64-3 Quantization of signals vith non-uniform

steps. Redondo Beach, Calif., TRW Space Tech-

nology Laboratories, 1964.

61. 28 cm. (STL Technical Library. Trans-

lation, no. 80)

UCLA

Translation of nantovanie signalov s nerav-

nomernym shagom from Elektrosvyaz, no. 10, p.

10-12, 1957.

1. Information measurement. 2. Signals and

signalling. I. Elektromaz, v.10, p, 104-12,

1957. /I. Title. (Series: Space Technology

Laboratories, Inc.°, Los Angeles. Technical

Library. Translat ion, no. 80)

-192-

APPENDIX V

SUMMARY OF RECORD FORMATS FOR DATA BASES TO BE CONVERTED
TO ILR PROCESSING RECORD FORMAT

1. Santa Cruz Record Format

2. ILR Input Record Format

3. Experimental On-line Mathematics
Citation Data Base

V - 1. SANTA CRUZ RECORD FORMAT

FIGURE 1:
SAMPLE CATALOG RECORD IN ORIGINAL SANTA CRUZ FORMAT

1Q_AE111._H68
1961

_HOCKING, _JOHN _GILBERT, 1920

YOUNG, _GAIL _S
_TOPOLOGY, BY _JOHN _G. _HOCKING A

_READING, _MASS. _ADDISONJLSL1Y
ILLUS
< ADDISON WESLEY SERIES IN MATHEM

TOPOLOGY

I
Col.

3141

Card Type No.4

ND _GAIL _S. _YOUNG
_CO."

(_INCLUDES i3IBLIOGRAPEI

135
6o16910I 801

70-72

The above is an example of a catalog record punched in the

local input format devised at the University of Santa Cruz

Library in 1965. From this kind of card-image file, the conver-

sion program being written by ILR will produce card images re-

formatted into the ILR standard input format for subsequent

processing by the program entitled "INFOCAL." The INFOCAL out-

put will be the same record in ILR Storage Format (see Appendix

IV). The latter record is the one that is convertible to and

from the MARC II communications format devised by the Library

of Congress.

The following pages constitute a summary of the card for-

mats for each card type in the Santa Cruz record. The information

has been excerpted from: Computer Usage Co., Inc. Specification

Library Prepared for University of

California at Santa Cruz. Palo Alto, Calif., April, 1965.

pp. 51-60. ,

°-195-

A. SHELF KEY CARD - CARD TYPE NO. 000

FIELD ID
FROM
COL

TO
COL C OMMENTS

Call number 1 24

Series 25 Blank, Alpha, or Numeric

Volume 26 28 Blank or 1 - 999, Left justify

Part number 29 30 Blank or 1 - 99, Left justify

Year 31 34 Year of publication

'Donor number 35 38 Blank or Donor number from Gift list

Date rec'd. 39 42 Month and year received

Location 43 44 Alpha code designating Campus or Library

Type Code 45
0 = book 2 = reference 4 = see author
1 = serial 3 = govt. pub. 5 = see subj.
6 = see also subj. o'pch'-' = So. Pacific

Language
Codes 46 50

Up to 5 Alpha Language codes, or 4 codes
followed by 1.0

Pages 51 55 Left justify

Correct/
Delete 56

Delete old records if 'C' or
SUbstitute new records if 'C'

57 69 - unused -

Card No. 70 72 '000'

73 75
Currently unused, but available as part
of Accession number field

76 80 Accession Number

-196-

B. PERSONAL AUTHOR - CARD TYPE NO. 100-104

Limit: 0 - 5 Cards

FIELD ID
FROM
COL

TO
COL C OMMENTS

Author 1 60 name of author - left justified

68 - unused -

Special
Code

69 - see page following corporate author
card -

Card No. 70 72 100 tfiru 104

Accession No. 73 80 same as Shelf Key card

Note: The 1st Author to be processed by the
computer is considered the main author.
The Main Author appears on all catalogs
and is represented in the title by "**".

C. CORPORATE AUTHOR - CARD TYPE NO. 110-119

Limit: 1 or 2 cards per author/ 0 - 5 Authors

FIELD ID
FROM
COL

TO
COL COMMENTS

Corporate
Author 1 60 May be continued on second card

67 - unused -

Continuation
Indicator 68 -'

is - if author is continued on
second card

Special
Code 69 - see next page -

Card No. 70 12 110 - 119

Accession No. 73 80 same as Shelf Key Card

See note concerning main author on
Personal Author card.

-198-

SPECIAL CODES FOR AUTHORS

Type 1: To create added notation on Author Catalog

CODE MEANING NOTATION

J Joint Author joint auth.

C Compiler camp.

E Editor ed.

G Joint Editor joint ed.

I Illustrator illus.

P Publisher pUbl.

T Translator trans.

Type 2: To specify a substitute sort key.

X Use this author as a substitute sort key
for previous author. Previous author
will appear on appropriate catalog but
this author will not.

D. TITLE CARD - CARD TYPE NO. 200-224

Limits: 1 to 5 cards per title/ 0 - 5 Titles

1

FIELD ID
FROM
COL

TO
COL C OMMENTS

Title 1 60 may be continued on up to 4 additional
cards

67 - unused -

Continuation
Indicator 68 is '' if continued on next card

Special Code 69 see next page -

Card No. 70 72 200-224

Accession No. 73 80 same as Shelf Key card

SPECIAL CODES FOR TITLES

CODE MEANING

(blank) Suppress listing this title in TITLE catalog

Title is a transliterated title

Title is a series title

Partial title,

Standard title

This title is to be listed in TITLE catalog

Note: In all cases, the 1st title encountered when processing

a given entry will be the only title which appears in
the Shelf, Author, and Subject Catalog.

-201-

E. PUBLISHER/SOURCE CARD - CARD TYPE NO. 300-305

Limit: 1 - 2 cards per publisher/source/3 pUbl./sources total

FIELD ID

FROM
COL

TO
COL C OMMENTS

rublisher
siource 1 60 may be continued on a second card

67 - unused -

Continuation
Indicator 68

is '-' if publ./source is continued
on next carC

Special
Code 69 = publisher S = source

Card No. 70 72 300-305

Accession No. 73 80 same as Shelf Key card

F. COLLATION CARD - CARD TYPE NO. 400

FIELD ID
FROM
COL

TO
COL C OMMENTS

Collation 1 60 as desired

69 - unused -

Card No. 70 72 400 (1 card only)

Accession No. 73 80 same as Shelf Key card

-203-

G. COMMENTARY CARD - CARD TYPE NO. 500-509

Limit: 1 - 5 cards per comment/2 commentaries (1 of each type)

FIELD ID
FROM
COL

TO
COL C OMMENTS

Commentary 1 6o may be continued on up to 4 more cards

61 67 - unused -

Continuation
Indicator 68

is '-' if commentary continued on
ncxt card

*pecial Code 69 'S' for commentary to appear on shelf
list only

Card No. 70 72 500-509

,ccession No. 73 80 same as Shelf Key card

Note: If 2 commentary entries are used, at
least one must have an 8S1 code.

-2014-

H. SUBJECT CARD - CARD TYPE NO. 600-6o4

Limit: 1 card per subject/5 subjects

HCOOM
FIELD ID L

TO
COL C OMMENTS

Subject 1 6o as desired

61 68 - unused -

Special Code 69 may be used to indicate level of subject*

Card No. 70 72 600-604

Accession No. 73 80 same as Shelf Key card

*the special code is ignored by the
system at present time.

-205-

V-2. ILR INPUT RECORD FORMAT

By

Jay L. Cunningham
Institute of Library Research

University of California
Berkeley, California

A. INTRODUCTION

In this report, a specification for a bibliographic data

input record is presented. It was developed for use in converting

catalog cards for monographs on an original basis - i.e., when no

machine record is found to exist or expected to be obtainable

elsewhere.* Because the format is experimental, the specification

is presented in two parts: 1) the preliminary version, which has

been programmed and is operational in a prototype production for

test and evaluation purposes, and 2) suggestions for a revised

and improved Irersion which has not been programmed but which is

based on the experience gained from the initial model.

The principal conclusions drawn from the evaluation of the

prototype input format for this project are that a record of the

complexity and variability of the MARC II record (to which the

input record is convertible) is very costly to prepare. It is

difficult to recruit and retain personnel of the quality appro-

priate to Ithis work yet suited to its semi-clerical nature. Pre-

liminary estimates are that average editing time per record will

range from about 2-1/2 minutes to 4 minutes per man-record. The

coding required by the MARC II format is the principal reason

for these figures. That is quite aside from the unavailability

at this time of an editing manual from the Library of Congress,

and the fact that the MARC II design is itself still developmental
(with the result that the instructions for editors are continually

subject to revision). The reasons lie elsewhere: in the ill-

structured nature of cataloging itself, in the ambiguities of

the rules and the consequent ambiguities built into MARC (which

is based on the rules), and the variance over the years of these

rules and the reflection of this in catalog cards. Retrospective

cards in particular have caused considerable delay in the project.

Adjustments in the coding prescribed by MARC (which was aimed at

current and future records) have repeatedly been necessary when

older records are to be converted.

Nevertheless, these problems comprise a small percentage of

the records. Therefore, the source of improvement does not seem

*The writer is indebted for the great deal of groundwork on this

record design done by Kelley Cartwright, formerly of the Institute

staff at Berkeley, and Miss Martha Bovee, of the Technical Services

Staff, University Library, University of California, San Diego.

ozof 20T-

to lie in a reduction of the MARC design to a less complex level.
Rather the approach has been to utilize the MARC data definition
to the fullest degree, in tha expectation that the residue of
coding interpretation problems will disappear as the format is

"debugged." Only the form of coding has been altered in our input

format.

We are employing a more concise notation in the coding,
exploiting the concept of "default" settings, and building computer
algorithms for the recognition and identification of the data
elements in catalog records. The improved version of the input
format extends this approach, and reflects a number of recommenda-
tions that we now feel confident can be implemented by program, as
a replacement for a certain amount of manual editing effort.
These program routines would operate either by simple key word
matching or by more complex data recognition algorithns which
process clues imbedded in the fields. The new format takes advan-
tage of a minimum of human-applied codes that serve as bcundary
markers for the operation of the algorithms. Where possible
these markers would be set by actions such as paragraph indention
symbols keyed by the device operator without detriment to a normal
typing rhythm.

B. NATURE OF THE MACHINE RECORD

1. General. AB implied above, the input record format is
compatible with the MARC II Communications format. Strietly speak-
ing, the input record is converted in our system to the ILR Pro-
cessing format. The latter is convertible to and from MARC II.
For all of these record formats, however, the machine record
organization can be summarized as follows: the two primary build-
ing blocks are data elements and codes. The data elements and
codes are organized into the components shown in Fig. 1. The
field is the basic component for processing purposes.

FIGURE 1:

STORAGE RECORD COMPONENTS AND ORGANIZATION

Record Component Content of Component
Type of Code Identifying

the Component

field
data element (group
of one or more)

tag+indicators

sub-field data element delimiter

-208-

It is important to understand the reasons for the organization of
the record into these components, in order to see why the input
format while identical in content, is different in structure and
coding from the other formats.

The MARC record coding is intended to serve four basic func-

tions:

1.

2.

3.

4s

printing
sorting
information retrieval
catalog division

In the simplest design to serve these functions each data element
in the computer record could have been defined as occupying its

own field. Each field would have an identifying code or "tag."

Due to the desire to use a record directory technique in the
Processing and Communications Formats, the use of a field tag for
each value of an element occurring in a given record becomes
inefficient, since each tag is stored in a directory entry of 12
characters in length. (This constraint does not apply to the
input record, since it does not have a directory of its own
contents.)

Moreover, the data elements in many cases naturally group in
clusters that will respond to the functions mentioned above. Many
elements are both derived and manipulated in combination; for
instance, the Imprint field comprises place, publisher and date
of publication. It is thus logical to group more than one element
in a field. There is still the requirement to identify individual
elements, however, so a form of sub-field identification, less
clumsy than the tag and its directory information was created.
These are called delimiters and are embedded in the variable data.
(The tag is relegated to a separate directory section of the
logical record).

The ILR input format takes no intentional cognizance of the
four functions. Its only requirement is to uniquely but concisely
identify each element so that it may be transformed into another
code which itself is more efficient for either internal processing
or communications. It acts only as a one-directional data con-
version vehicle from source to machine edit program. As a con-
sequence the codes used in the input format must be adjusted to
the structural patterns - options, alternations, repetitions - in
catalog data in different ways than the processing format codes.

These field patterns arise from the ways the values for
bibliographic data elements are organized in a given catalog
record:

Single occurrence of a value for a single
e.g., LC Card Number;

Repeated valv.es for a single element, e.g.
numbers on one card;

-209-

element field,

5 several Dewey

Sequences of values for two or more different data
elements, e.g., places publisher, date;

Variability in presence of values in these sequences,

e.g place, date;

Combinations of the above, e.g., place, place, publisher,
date, date; place, publisher, date, place, publisher,

date.

In the input folmat, convenience in editing demands that
complex patterns of elements in dense catalog text be coded as

concisely as possible. Input tags for a pattern such as "place,
place, publisher, date, date" may be coded as

/place,$placedpubli3heradate,date

The slashes identify the data by ordinal position, i.e., the
5th slash in an input string is always'place'. In the processing
format (MARC II) each of the above symbols might be coded by a
three digit tag and generate a directory entry. The MARC design,
which is still evolving, tries to balance the assignment of the
tag level of format definition to a data element by consideration

of such factors as:

Is the data element processed frequently?

If so, is it searched for or manipulated independently
or in combination with other elements?

What is the average length of thz values of the data
element?

How often do sequences of repeated values of the element
occur?

Does it occur in every record?

What is its format function (does it convey information
about the document, about the record, abcut the file or
even about other fields or codes in the record)?

Fig. 2 shows the structural patterns in the revised coding
for MARC,,records. From this, it is evident that our input record
represents a more primitive coding. This is acceptable in this
format because the heavy volume of input symbo1-s4:anning and
syntactical checking is done only once7 when the input compila-
tion is performed. Once the internal record with its apparatus
of field starting position pointers, field length counters, end-
of-field/record/file signals etc. has been constructed, the user
may process the data in strings and with table-driven routines.

-210-

FIGURE 2:

STRUCTURAL PATTERNS IN MARC RECORD DATA DEFINITION

Single-Element
Field

Multiple-Element
Field

Single
Value

Mult.
Value

Single
Value

Mult.
Value

Repeatable
Field Code

Repeatable
Sub-Field Code

1*

Non-Repeatable
Sub-Field Code

9 7 5 2

Non-Repeatable
Field Code

Repeatable
Sub-Field Code

__, 8 3

Non-Repeatable
Sub-Field Code

10 -
.

6 4

*Entries correspond to.explanations and examples immediately

following the diagram.

STRUCTURAL PATTERNS

Multiple Element Field Multiple Values.

1. Field Repeatable, Sub-field Repeatable.

Example:

Form:

6XX--Subject Tracings, with Subject Sub-

divisions.

$aMain Subject Heading$xSubject Subdivision-
$xSubject Subdivision$xSubject Subdivision.

2. Field Re eatable Sub-field Non-Re eatable.

Example: 440Tit1e-Only Series Note (Traced Same).

Form: $aSeries Title, $vVolume,Volume,Volume,...
or inclusive numbers, e.g., $vv. 11-15.

3. Field Non-Repeatable, Sub-field Repeatable.

Example: 260--Imprint.

Form: $aPlace$bPublisher$cDate;$aPlace$bPublisher-
$cDate.
(Dates non-contiguous)

-211-

4 Field Non-Repeatable, Sub-field Non-Repeatable.

Example: 260--Imprint.

Form: $aPlace$aPlace$bPublisher$cDate,Date.
(Dates contiguous; delimiter not required)

Multi le Element Field Sin le Value.

5. Field Repeatable, Sub-field Non-Repeatable.

Example: 051--LC Copy Statement.

Form: $aClass No.$bBook No.$cCopy Information.

6. Field Non Re eatable Sub-Field Non-Re eatable.

Example: Tag 041--Languages.

Form: $aLanguage Codes of Text$bLanguage Codes of
Summaries

Single Element Field, Multiple Values.

7. Field Repeatab122 Sub-field Non-Re eatable.

Example: 490--Series Untraced or Traced Differently.

Form: 490$aXXXX; XXXX.

8. Field Non-Repeatable, Sub-field Repeatable.

Example: 082--Dewey No.

Form: $aXXX$aXXX$a...

Single Element Field Single Value.

9. Field Repeatable, Sub-field Non-Repeatable.

Example: 500--General Notes.

Form: $aXXXXXXXX.

10. Field Non-Repeatable, Sub-field Non-Repeatable.

Example: 241- -Romanized Title.

Form: $aXXXXXXXX.

2. Mapping of Input Codes. To illustrate more precl-ely how
the input format works, it must be remembered that the input codes
do not necessarily bear a one-to-one correspondence to the field
codes in the Processing Record. The external fields generally
speaking map into logically identical internal fields, sometimes
on a many-to-one basis (e.g., the place, publisher, and date element's
are separate fields in the input record but map into one internal
field with three sub-fields in the revised MARC II format).

-212-

Notationally their codes are different, usually in a one-to-many
relation, e.g., the second A-Field slash, with no "ua" code,
translates to Tag 100, Indicator value of 1=Main Entry, Personal
Name, Single Surname sub-type, Condition: main entry is not

subject. The mapping is complex, that is, input fields and codes
are translated (expanded), re-arranged, concatenated, or split

up to form the internal fields. Fig. 3 is an illustration of
such a mapping.

There are four levels of coding in the tag and indicator
of a MARC record. These encompass the aspects of each data
entity needed to serve the four functions mentioned above. In

some cases, the coding has been extended by the device of "stacked"
coding, to serve auxiliary functions such as recording the fact
that the main entry heading is identical with the subject of the
book. This allows the user the option of printing out the
record under the name as a subject heading in a divided catalog.

EXAMPLE OF INPUT

INPUT RACORD

External Data Element Value
Field Code or Code Value

FIGURE 3:

FORMAT MAPPING INTO PROCESSING FORMAT

.

.

.

(UACODH - MAIN ENT. TYPE)

(ua c2)

- M.E. IS SUBJ.)(UBCODE

ub

.

.

(2ND A-FIELD)

(LTHOR NANEMATE
'...

.

.

.

.

PROCESSING RECORD

(DIRECTORY ENTRY)

11 0 6 0 17S 1/416dddd

.

(VARIABLE FIELD)

0 0 AUTHOR NAME/0/0DATE

.11
.

-213-

In Fig. 3, the four levels are exemplified as follows:

Level I - Function of the Field identified

by the code

e.g., 2nd A-Field slash = Main
Entry Heading

Level II - Type of Entity in a Heading (ua)

e .g., c = Corporate Body

Level III - Sub-Type of Entity

e .g., 2 = Corporate Boay in form
of Direct Order and Role
Relation is Main Entry is
Not Subject ("stacked code")

MARC II
Code Type

TAG .

(digit 1)

El XX

TAG
(digits 2-3)

l 1E3

(Indicator 1)

110

Level IV - Role Relation of Functional Fatity (Indicator 1)

e .g., "ub" code in input stream
resets Role Relation in
stacixd code above to 6 =
Main Entry is Subject

110

It should be noted that there is no necessary dependence
between coding in the input format and the processing format. The

internal code could, for example, be stored in two separate indi-

cators, e.g., Indicators 1 and 2, with no effect on the input
format except to change a table in the input edit program.

As part of this translation process, the edit program must
perform all the bookkeeping actions necessary to assemble the
record in Processing Format (e.g., placing tags in directory
entries, counting field lengths, etc.). .Redundant data or purely
intermediary codes are purged. Default settings and initializa-

tions are completed. Computed values are set, either from the
input data (e.g., illustration codes in the Fixed Fields) or by
logical combinations (e.g., a blank 2nd slash with the absence of
a "ua" code means a title main entry iE being input). Character
translation (dependent upon the particular keyboard device used)

is made into the representation of the computer.

Some other differences between the input format and the
processing format are:

Repeatability. Certain codes in the input record,
e.g., the 10 A-Field slashes, are not repeatable, whereas their
corresponding internal codes are repeatable.

-214-

Presence. Certain Fixed Length Data Elements are input

only when present, whereas the internal record always contains

each of these elements, even if the value is "off", "none", or

such.

Level. Certain codes in the input format may translate
to a tag in one case and a sub-field in another case, e.g., the

3rd A-Field slash translates to a tag (Title); the fourth slash

translates to a sub-field delimiter (remainder of title).

C. RECORD COMPOSITION

1. Logical Structure. A complete input record is composed
of a stream of data and codes, in-three segments: The Indicator
segment (I-Fields), the Body of the Catalog Card (A-Fields), and.

the Remaining Data (B-Fields). Each segment is composed of several

fields. The fields are of either fixed or variable-length type,
depending on content. The data elerents are variable or fixed

in presence. The codes ar2 correspondingly fixed or variable
in presence. The codes to the left and below the catalog card
box on the coding sheet are the I-Fields, in pre-printed form.

The coding sheet* designed.for experimental use in the
File Organization project provides space to record certain in-
fornation which is not explicitly recorded on the catalog card,
or for combining in one field the information (e.g., on holdings)
gathered from several cards representing the same title, or to
record information in coded rather than natural form. The I-Fields

are structured in two ways: either checklist or fill-in. The

codes are pre-printed on the sheet in checklist format as a memory
aid to the editor. The boxes are checked to indicate that they
should be keyboarded. Codes which are merely checked are of the
self-transmitting type - the information they carry is embodied
in a first letter defining the general group of the code; the
second letter is a specific value for the code. In some cases
there are multiple values assumed by a particular internal data
element (e.g., Content Form may be checked from 0-4 boxes). The

second letter values will be inserted into the proper element in
the Fixed Length Data Elements Field in the Processing Format.

Where the list of options for a code is too lengthy to be
pre-printed on the coding sheet, the editor selects a code from
a reference list in the coding manual and writes in the proper
values in the box. In Type of Main Entry, "ua" merely identifies
the value which it transmits. An entry could be "uacr meaning
"Type of Main Entry = Corporate Name, Direct Order, Main Entry
in this record is not subject of the work".

*See Fig. 11, Part III, Final Report of File Organization Project,
Phase I.

-215-

Certain data elements are not explicitly coded: e.g., the
Master Record Number is always placed first in the input record

and is recognized by position.

The 1st section of the coding sheet is that outside of the

catalog card image. It contains boxes:

to provide values to certain elements in the Record

Leader.

to transmit codes to elements in the Fixed Length
Data Elements Field in the Processing Record.

to provide values for parts of tags and indicators
that are not supplied by coding in the other seg-
ments of the input record.

to supply data that cannot be recorded on the compact
face of the catalog card image, e.g., call numbers
from other campuses possessing copies of the work.

to record certain control infcrmation, such as
editing and keyboarding statistics.

The codes are alwayz 2 or 4 character combinations, both to
facilitate expansion and for validity checking,

In the card image portion there are two types of coding:

A-fields. The body of the source record, the ten fields or
data elements most frequently occurring on the card.

B-fields. Collateral data which occurs with less pre-
dictability on the cards, such as supplementary notes.

The tables in Section D list the data element names and their
codes in the ILR input format, together with the corresponding
Processing Format codes into which they map.

2. physical Record. The input record is composed of a
variable number of characters placed in contiguous locations on
an input medium, e.g., punched cards. A physical input record
is composed of one unit of the medium used by the keyboarding
device: e.g., a tab card. There might be several tab cards in
a complete logical record. (See Fig. 4.)

a. Beginning of record. A master record number is
placed at the beginning of the input record. For the purposes
of the present conversion, it is 6 characters in length.

b. Continuation segments. If a medium such as tab
cards is used, the record number is repeated in character posi-
tions 1-6 in each succeeding card. A serial card number is
placed in c.p. 7-8, right justified, beginning with "01". A
maximum of 15 cards per decklet is currently permitted in the
INFOCAL program. -216-

t

_

(10001110:: _ANCIELES:X_TECHNICAL _LTP.RARY:$_TRAMLATUINIXNO.. 80:+

//10001107Z,XV. 10, P. 10-12, 1957.*R_SPACE _TECHNOLOGY -LABORATORIES, _INC., -LOS

/ 10001106 19577AM_INARMATION MEASTREMENT7KM_SMAI_S ;ND SIMNALING:1;0_ELiKTOSVYA
U. le OM Nog mweggigl 4

10001105IE SIGNALOV S NERAVNOMERNYM SHAGOM FROM -ELEKTRUSVYAZ, tin. 10, P. 10-10

100011 04-71: -17CITN I CAL -L7I;RARY.P$-TRANVT I OP7, ;:NO. (7$1(- TRANSIAT Iruil OF _KANTOVAN

100011 03% _CALW. "T_R_1112PAr7F _Th7cHrotriny LABflRc.TORIE, /142..1; L.

n 0 1102V. A. alANTI ZAT I rIN GrT4L's Uri% NOtl2uNiFtwtri 'STEPS. //11-REDITNOCI _ikAch

c g 7 r 7 7 77 7. 1 1 17 1 * 11 1

1000110119641957BRDADSEBFA435jA/=43USAENGRUSUAW0000S1C2/_PAM 64-3/_GARMASH5
0

11111,--.7.110

1 111 1111 1 11 1 1 1 1 11 1 I L-3

G
I I I I I I I II

ollloolomoommoolommoo1110001100000111101111110001100000000110m010101 4:
123456789miluom516171819minnumannaminnummtnnocnumsnenowsluuNsmussmomucmmumeumnnnunnunlm
111 0

tzi

22 2222 2 2222 2 2 22212 22212122222222 22222 212 22 2221222 2 2 22212 21122 222222 2 2 272 2 22212 22? I

Pi 2

3 3 3333 3 3333 3 3 3333 3 333 33 3 3313 33 3 333133 3 3333 33 33133 3 33333133 333 3333 3133 33333 3 3133

444444444442444444141444441444441111441444444141444444444444444144144444441444444 I

1

Hti
55r.555555555551555555515555515555555/5551155555555555555555155555555515555555551 I

w

66666 6 6 66616 6 6666 6 66666 616666666 6666 66 6 6 666 66 666616 6666 66 666 6 66616 6 6 666 6666 6 6 666

I7177777777777717177111777777777711777777717777777777777777717777777771777777177 I
9

88888888888888888888888888888888118881888888881888988888888188888888818888881101
8
R999999 9 9919 9 9199919999 9 9 q9999999 99 999999999/9 999999 9999 99999999999 999999/999 999 9

. 7 1 A 5 6 1 8 9 10 11 12131115 1611 11 19 2121 222324 152621 21293131 32 33 31 3536313139 401142131415 1611110 50 51 525351 5556 51 51596061"63646566 6161 69 10 11 721111 157671 117951

ism 132D

c. End of record. An explicit symbol is used to signify

the end of the logical record. Currently, a "+" is used for this

purpose.

2. Logical Record. The logical record content and encoding
is organized to be independent of the physical medium used for

input. (It is "free-floating".) It is not dependent on the
symbols provided on any particular device, although a particular
implementation of the input format implies selection of a particu-
lar set of symbols for a given device. The set chosen in the
remainder of this specification is based on the keyboard of a
Standard 029 keypunch.

D. DATA ELEMENTS AND CODES

The following tables list the complete data elements and
codes currently implemented in the ILR Input Record Format.

FIGURE 5:

ILR INPUT RECORD FORMAT

I-FIELDS: DATA ELEMENTS AND CODES

FIELD
CODE

CODE
VALUE(S)

PROCESSING

z
ri-1

°

8
0
El

FORMAT
nonEs

1 -I

%1
c...)

151 c9,

IT!

.. m

i 1 I 2 CH'
r..,

A cal 5-,
6 B 8 ..----

ELEMENT NAME

1. Master Record Number (ILR) None L 40-46

2. Record Status: L 12

Uncertified new record None (0)

Certified new record
It (1)

Changed record a a (2)

Deleted record None (3)

3. Publication Date 1 None F 2-5

4. Publication Date 2
11 F 6-9

5. Pub. Date Type: F 1

2 dates, 2nd is copyrt b c (c)

2 dates, 2nd is terminal b m (m)

Date not known b n (n)

Digits missing b q (q)

Prey, public., all digits b r (r)

Single date, all digits b s (s)

6. Type of Record: L 14

Language materials (books) c a (a)

Language materials (mss.) c b (b)

Music, printed c c (c)

Music, manuscript c d (d)

Maps/atlases, printed c e (e)

KEY to components: L = Leader, D = Directory, F = Fixed Length Data
Elements Field, V = Variable Fields

-219-

FIGURE 5 (Cont.):

ILR INPUT RECORD FORMAT

I-FIELDS: DATA ELEMENTS AND CODES
PROCES FORMATSING

CODES

N 8 CO H0
ELEMENT NA ME

FIELD
CODE

CODE
VALUE(S)

N
o

t-14o
' 2 144

w

w o

6. Type of Record (Cont.): L 14

Maps, manuscript c f (f)

Motion pic. & filmstrips c g (g)

Microform publications c h (h)

Phonorecords, spoken c 5_ (1)

Phonorecords, music c j (j)

Pictures, designs, etc. c k (k)

Machine-readable data c 1 (1)

7. Bibliographic Level: L 15-17

Analytical d a (a)

Collective d c (c)

Monograph d m (m)

Serial d s (s)

8. Cataloging Source Type: L 33

Central (LC Card) e a (a)

Local original e b (b)

NUC e c (c)

Other e d (a)

9. Book Not in LC (LC Call e z D 050 1

No. Bracketed)

10. Agency Code for Cataloging f a L 34-36

Source

11. Agency Code for Adaptor
of Catalog Card

f b L 37-39

-220-

FIGURE 5 (Cont.):

ILR INPUT RECORD FORMAT

I-FIELDS: DATA ELEMENTS AND CODES
PROCESSING FORMAT

CODES

E-1z
H ,,

tO3 . 4
ELEMENT NAME

FIELD
CODE

CODE
VALUE(S)

64

°
o

ti4o
Al CD

'2ff-i
r...,

I 41=

8 'El riM Ocqr3c.

12. Form of Micro-reproduction F 10

Microfilm g a (a)

Microfiche g b (b)

Micro-opaque g c (c)

13. Content Forms: F 11-14

Bibliographies h a (a)

Catalogs h b (b)

Indexes h c (c)

Abstracts h d (d)

Dictionaries h e (e)

Encyclopedias h f (f)

Directories h g (g)

Yearbooks h h (h)

Statistics h i (1)

Handbooks h j (j)

Other h k (k)

1 . Holdings: j a-j D 090

Call Number None V None

Copy Number % V (%)

Library Code/Location % V (%)

Total copies in location % V (%)

15. Government Publication: F 15

U.S, Federal k a (a)

California State k b (b)

-221-

FIGURE 5 (Cont.):

ILR INPUT RECORD FORMAT

I-FIELDS: DATA ELEMENTS AND CODES
PROCES FORMATSING

CODES

ELEMENT NAME
FIELD
CODE

CODE
VALUE(S) o

ei

H

o
N

P-ci

. 41=
cci A-----0

C.) El H 0 Ca 0 =

15. Government Publication F 15

(Cont.):

California County/Muni. k c (c)

International Orgn. k d (d)

Other Countries k e (e)

16. Conference Publication m a F 16

(1)

17. Main Entry Heading Is n a F 17

Repeated In Body of Card (1)

18. Literary Group Filing F 18

Indicator:

Complete/collected works p a (a)

Selected works P b (b)

Prolific author P c (c)

19. Cancel Title Added Entry
in Dictionary Cat. Only

q a F 19

(1)

(See AA 33P3 and 6)

20. Cancel Title Added Entry
in Both Dict. & Divided

r a D 240 0

Catalogs

21. Language codes: s a D 003 X
+

Lang. of text sub-field None V None

Summaries % V (%)

22. Translation Indicator t a D 003 1

An "X" means this portion of the code is supplied via the input codes
in another element of this table, or another table (q.v.).

-222-

ii

FIGURE 5 (Cont.):

ILR INPUT RECORD FORMAT

I-FIELDS: DATA ELEMENTS AND CODES
PROCESSING FORMAT

CODES

ELEMENT NAME
FIELD
CODE

CODE
VALUE(S)

H

PI

0

00
o
.4H

H
(Z Wo
H 1-4
<4.4o
ir-SI co
M czt
H

.0

cr3 M
o
44 A F.T.1

14 H
r=4

1 rA =2...,0 cil 0 =

23. Type of Main Entry Code u a D 1XX X

(See Fig. 8 for table
of values which complete
the tag and indicator)

24. Main Entry is Subject u b D 1XX X

Indicator (See Fig. 8
for table of values for
Indicator 1, for which
this is a stacked code)

25. Main Entry is Publisher

26. Type of Added Entry Codes
(See Fig.9-12 for table
of values for each cate-
gory of added entry):

u

w

I

c

2-char.
repeat-
able
codes

D 261 1

Series Traced Same D 4XX X+

Subject Added Entries D 6xx x

Other Added Entries D 7XX X

Series Traced Diff. D 8XX X

An "X" means the 2-character codes in the *Value column translate into
the 2nd and 3rd character of the tag and the value for Indicator 1.

-223-

FIGURE 6:
ILR INPUT RECORD FORMAT

A-FIELDS: DATA ELEMENTS AND CODES
PROCESSING FORMAT

CODES

ELEMENT NAME

rA
A00
A
1-4
rA
H
r...

CODE
VALUE(S)

00
0
g

H

.:40
H cr)

2M

IA. gl =
88c

1-4
PT-4 H

I

r...

. Local Call Number

2. Main Entry Heading:

Personal Name

/

None

%

%

%

None

None

%

%

None

%

None

11

D

V

V

V

V

V

V

V

V

V

V

V

V

V

090

lXX

None

(%)

(%)

(%)

None

(%)

None

(%)

(%)

(%)

None

(%)

None

11

Name sub-field

Titles of honor, etc.

Identifier

Relator

Corporate Name (&-Firm Name)

Name sub-field

Each subheading unit

Conference Name

Name sub-field

Number

Place

Date of conf,

Corporate with Form Subhd.

Name sub-field

Form subheading

Uniform Title M.E. Heading

Title sub-field

Other information

+An "X" means this portion of the code is supplied via the input codes
described in another table in this specification (q.v.). Each variable

field contains 2 positions for Indicators 6 and 7 at the beginning of

the field. The data starts in character position 3.

-224-

FIGURE 6 (Cont.):
ILR INPUT RECORD FORMAT

A-FIELDS: DATA ELEMENTS AND CODES
PROCESSING FORMAT

CODES

ELEMENT NAME
FIELD
CODE

CODE
VALUE(S)

r:

Ec-1

<4
(..)

VT1

C13' 8 0
2 gi:a

rii H
H VI I

H
CD

. Supplied Title (Uniform
Title in Interposed
Position):

Not printed on LC cards $$+

Printed on LC cards $ D 200

Title Statement:
Short Title / D 240 X None

Remainder of Title / V (%)

Remainder of Title Page
Transcription % V (%)

. Edition Statement:

Edition # D 250 None

Remainder of Statement % V (%)

6. Place of Publication / R($)++ D 260

7. Publisher / R($) D 261

8. Date of Publication / D 262

9. Collation Statement:

pagination/Volumes / D 300 None

Illustrative Matter / V (%)

Size / V (%)

0. Bibliographic Price $ D 350

1

+This code does not exist in the present version of INFOCAL.

-4.+An "R" means the data element is repeatable. If tag is non-repeatable,

the 2nd and succeeding values of the element occurring in a record are

assigned a preceding delimiter ("%"). If tag is repeatable, "$" trans-

lates to tag.
-225-

FIGURE 7:

ILR INPUT RECORD FORMAT

B-FIELDS: DATA ELEMENTS AND CODES
PROCESSING FORMAT

CODES

ELEMENT NAME
(Primary Series of Codes)

IELD
CODE

CODE
VALUE(S

H
rzl

0
Bd

ru
H
IZ

E9

C.)
H CD

'AZ
C41;% 8 C

2 pe
rT.4

I

H

1. Series Note, Traced Same
(Auth. +Title form):

Personal Name

*

In Main

$

%

a

Entry Healing

Entry Heading

Entry Heading

remainder

b

c

d

e

f

g

h

D

D

V

D

v

D

V

of

D

D

D

D

D

D

D

4xx x

with addi

4o8

"

with addi7;ion

418

m

with addition

418

tag dEgits

440

490 0

490 1

011

500

570

510

ion of:

None

(%)

of:

None

(%)

of:

None

(%)

+

,

Sub-fields are the same as

Series title sub-field

Volume/Number

Corporate Name (& Firm Name

Sub-fields are the same as

Series title sub-field

Volume/Number

Conference Name

in Main

$

n Main

$

%

dentify

*

*

*

*

*

*

Sub-fields are the same as

Series title sub-field

Volume/Number

See Fig. 9 for codes which
Indicator.

2. Series Note, Traced Same
(Title only)

3. Series Note, Not Traced

4. Series Note, Traced
Differently

. National Bibliography Number

6. Bibliography Note

7. "IN" Analytic Note

8. Dissertation Note

-226-

FIGURE 7 (Cont.):
ILR INPUT RECORD FORMAT

B-FIELDS: DATA ELEMENTS AND CODES
PROCESSING FORMAT

CODES

ELEMENT NAME
FIELD
CODE

CODE
VALUE(S)

H

tI4 00
H cf)

CJ

p :

PA 2 m
1.7-1

I
H

HH I-1 0 cf)

9. Contents Note (Formatted) * i D 520

10. "Bound With" Note * j D 530

11. General Notes * k D 550

12. Dash Supplements * ft+

13. LC Subject Headings: * m D 6xx

Personal Name

Sub-fields are the same as in
addition of:

Mai Entry Heading with the

Title of Book $ D 608

Corporate Name (& Firm Name)

Sub-fields are the same as in Mai Entry Heading with the
addition of:

Title of Book $ D 618

Conference Name

Sub-fields are the same as in
addition of:

Mai Entry Heasing with the

Title of Book $ D 618

Cor.orate with Form Subhd.

Sub-fields are the same as in
addition of:

Maid Entry Hea ing with the

Title of Book $ D 628

Uniform Title Heading

Sub-fields are the same as in
addition of:

Mai. Entry H a ing with the

Title of Book $ D 638

See Fig.10 for codes which identi other t es or LC lubj c Hdgs.

+This code does not exist in the present version of INFOCAL.

-227-

FIGURE 7 (Cont.):
ILR INPUT RECORD FORMAT

B-FIELDS: DATA ELEMENTS AND CODES PROCESSING FORMAT
CODES

ELEMENT NAME FIELD
CODE

CODE
VALUE(S)

E-Iz
°

14

H

8 8 c

4, LC Subject Subdivisions

5. Bibliographic History Note

16. Added Entries, Non-Subject
& Non-Series:

Personal Name

--

*

*

in Main

$

in Main

in Main

in Main

in Main

$

identify

hyphens

p+

q

Entry He:din:.

Entry He:din:.

Entry Heading,

Entry Heading

Entry Headin:

other

D

D

D

D

type.

6xx

503

7XX

, wit

708

, wit

718

with

718

wit

728

wit

738

of

the

the

the

the

the

ded -ntries

Sub-fields are the same as
addition of:

Title of Book

Corporate Name (& Firm Nam.-)

Sub-fields are the same as
addition of:

Title of Book

Conference Name

Sub-fields are the same as
addition of:

Title of Book

Cor.orate with Form Subhd.

Sub-fields are the same as
addition of:

Title of Look

Uniform Title Heading

Sub-fields are the same as
addition of:

Title of Book

See Fig.11 for codes whicl

of this category.

+This code does not exist in the present version of INFOCAL. The

processing Format tags referred to are MARC II definitions.

-228-

FIGURE 7 (Cont.):

ILR INPUT RECORD FORMAT

B-FIELDS: DATA ELEMENTS AND CODES
PROCESSING FORMAT

CODES

ELEMENT NAME FIELD
CODE

CODE
VALUE(S)

E-1

WZo
0

Iri
%0 i-.1

c.)q
Cl;13 C0 . =

114
rzi HH fr-1

1 . Series Added Entries * r D 8XX

(Traced Differently):

Personal Name

Sub-fields are the same as in
addition of:

Main Entry Heading with the

Series title sub-field $ D 808 None

II
VOlume/Number (%)

Corporate Name (& Firm Name)

Sub-fields are the same as in Main
addition of:

Entry Heading with the

Series title sub-field $ D 818 None

Volume/Number (%)

Conference Name

Sub-fields are the same as in
addition of:

Main Entry Heading with the

Series title sub-field $ D 818 None

Volume/Number % V " (%)

See also Fig. 12 for Series Added Entry in Title only Form.

18. Title Romanized Note * n D 210 0

(No Added Entry)

1 . LC Call Number: * s D 050 0

Class Number sub-field None V None

Book Number
II V II

-229-

FIGURE 7 (Cont.):
ILR INPUT RECORD FORMAT

B -FIELDS: DATA ELEMENTS AND CODES
PROCESSING FORMAT

CODES

ELEMENT NAME FIELD
CODE

CODE
VALUE(S)

1

H
Pb
Eizi4
.c40
H U)

R M

w
.9=

csn 0 .-:-
2 pc

.
14

124 I

M Ffl

20. LC Copy Number Statement: * t D 051

Class Number sub-field None V None

Book Number
II V 11

Copy Information % V (%)

21. Local Library Copy Statement: * u D 091

Class Number sub-field None V None

Book Number
11 V 11

Copy Information % V (%)

22. Dewey Decimal Class No.: * w D 030 R(%)

Segment sub-field / V R(/)

23. LC Card Number * x D 001

4. Overseas Acquisition No. * Y D 013

[End of primary series]

-230-

FIGURE 7 (Cont.):
ILR INPUT RECORD FORMAT

B-FIELDS: DATA ELEMENTS AND CODES
PROCESSING

N

o0

CODES
FORMAT

f--1

r24

H Ca
2M
H

41
A ::88c

I

COI-144

ELEMENT NAME

(Secondary Series of Codes)

I izi

0
A
1-4
41
H
w

CODE
VALUE(S)

1. Standard Book Number

2. "Limited Use" Note

3. Abstract or Annotation

4. [Reserved for later use]

5. MeSH Main Headings

6. NAL Agric./Biol. Vocab.

7. Local Subject Heading System

8. NLM Call Number

9. NAM Call Number

10. NAL Subj. Category No.

11. Cooperative Cataloging
Library Call Number

12. Special Classification
System

13. Supt. of Documents Catalog
Number

14. Agency Name of Cooperative
Cataloging Source

15. "Full Name" Notes

16. Title Romanized Note
(Make Added Entry)

17. MeSH Topical Subheadings

18. MeSH Geographic Subheadings

19. MeSH Time Period Subheadings

20. MeSH Form Subheadings

21. NUC Card Number

1

.

1
.

!

!

!

!

!

1
.

1
.

t

.

1

.

r
.

!

!

'.

1

.

!

!

1
.

1

.

a+

b

c

d+

e

f+

g+

h

i

j+

k

/4-

m+

n

P

q

t

u

w

x

y+

D

D

D

D

D

D

D

D

D

D

V

D

D

D

D

D

D

012

540

560

660

670

690

060

070

071

052

052

580

210

661

662

663

664

I

(%)

[End of Secondary Series]

+This code does not exist in the present version of INFOCAL. The

Processing Format tags referred to are MARC II definitions.
-231-

FIGURE 8:
INPUT CODE VALUES TABLE FOR TYPE OF MAIN ENTRY

(UA CODE)

TYPE OF ENTITY

(Function = Main
Entry Heading)

Combined with:
A-Field 2nd "/"

SUB-TYPE N

E-1

Z0
P7-1

A00

I

co

P4 N
0 fli
Pi

A00

PROCESSING FORMAT
CODES

TAG INDICATOR 1

Main Ent.' ain Ent.

Not Sub. Is Sub.

PERSONAL NAME Forename 4

Single Surname 5

Multiple Surname 6

Name of Family 7

Surname (Inverted) c 0/)4 100 0)4.

CORPORATE NAME Place or Pl.+ Name 5

Name (Direct Order) 6
,

Surname (Inverted) e 0/4 111 0 4

CONFERENCE NAME Place or Pl.+ Name e 1/5 111 1 5

Name (Direct Order) e 2/6 111 2 6

FIRM NAME f 0/1 112 0 1

CORPORATE NAME
WITH FORM SUBHD.

0/1 120 0 1

General u 0/1 130 0 1

UNIFORM TITLE Anonymous Classic a 0/1 131 0 1

TITLE MAIN ENTRY t 0 240 0 1

+One-digit codes to the right of the slash are set by input of the "ub"

code in the I-Fields. -232-

FIGURE 9:
INPUT CODE VALUES TABLE FOR TYPE OF ADDED ENTRIES

(W CODE)

TYPE OF ENTITY

(Function = Series

Notes, Traced Same,
Author+ Title form)

Combine ylth:
B-field *a

SUB-TYPE

zo
rzi

N
Aoo

IA

PROCESSING FORMAT
CODES

rn

g441
o ca4

rzi

N
Aoo

TAG INDICATOR 1

,uth. Not
ain Ent.

Auth.In
Main Ent

PERSONAL NAME
Forename p 0/4 400 o 4

Single Surname p 1/5 400 1 5

Multiple Surname p 2/6 400 2 6

Name of Family p 3/7 400 3 7

Surname (Inverted) c 0/4 410 o br

CORPORATE NAME
Place or Pl. + Name c 1/5 410 1 5

Name (Direct Order) c 2/6 410 2 6

Surname (Inverted) e 0/4 411 o 4

CONFERENCE NAME
Place or Pl. + Name e 1/5 411 1 5

Name (Direct Order) e 2/6 411 2 6

FIRM NAME f 0/1 412 0 1

+One-digit codes to the right of the slash are set by input of the
"uc" code in the I-Fields.

-233-

FIGURE 10:
INPUT CODE VALUES TABLE FOR TYPE OF ADDED ENTRIES

(W CODE)

TYPE OF ENTITY

(Function = Subject
Added Entries &
Subj. Subdivisions)

Combine with:
B-FiPld "*m"

SUB-TYPE

w
P4

M

41

PT1A
o
c..)

1

gq

E
CZ PT1

ri-i

14Ao
c..)

PROCESSING FORMAT
CODES

TAG INDICATOR 1 1

Forename p 0 600 0

Single Surname p 1 600 1
PERSONAL NAME

Multiple Surname p 2 600 2

Name of Family p 3 600 3

Surname (Inverted) c 0 610 0

CORPORATE NAME Place or Pl. + Name c 1 610 1

Name (Direct Order) c 2 610 2

Surname (Inverted) e 0 611 0

CONFERENCE NAME Place or Pl. + Name e 1 611 1

Name (Direct Order) e 2 611 2

FIRM NAME f 0 612 None

CORPORATE NAME
WITH FORM SUBHD.

620 None

General u 0 630 None
UNIFORM TITLE

Anonymous Classic a 0 631 None

TITLE OF WORK t 0 640 None

TOPICAL 0 0 650 None

GEOGRAPHIC NAME 1 0 651 None

POLIT. JURISDICT. 2 0 652

,
None

-234-

[7 FIGURE 10 (Cont.):
INPUT CODE VALUES TABLE FOR TYPE OF ADDED ENTRIES

(w CODE)

I.

TYPE OF ENTITY

(Function = Subject
Added Entries)

Cont'd.

SUB-TYPE

R4

w
A00

i
R4 r4

w
A00

PROCESSING FORMAT
CODES

TAG INDICATOR 1

NAMES NOT CAPABLE
OF AUTH.

653 None

GENERAL SUBJ.
SUBDIVISIONS

5 0 655 None

PERIOD SUBJ.+
SUBDIVISIONS

6 6 None

PLACE SUBJ.+
SUBDIVISIONS

657 None

+See also B-Fields, Primary Codes, item No. 14.

-235-

FIGURE 11:
INPUT CODE VALUES TABLE FOR TYPE OF ADDED ENTRIES

(W CODE)

TYPE OF ENTITY

(Function = Non-
subject, Non-series

Added entries)

Combine with:
B-Field "q"

,

SUB-TYPE
ill

o
r5.4

r4

Po
c.)

m

o PA
wki
r4 '
Po
r...)

PROCESSING FORMAT
CODES

TAG INDICATOR 1

PERSONAL NAME Forename

Single Surname

Multiple Surname

Name of Family

p

p

p

p

@/d/h

a/e/i

b/f/j

c/g/k

700

700

700

700

Role

Alt. Conn.Analyt.

@

a

b

c

d

e

f

g

h

i

j

k

CORPORATE NAME

Surname (Inverted)

Place or Pl. + Name

Name (Direct Order)

c

c

c

@/(141

ale/i

b/f/j

710

710

710

@

a

b

d

e

f

h

i

j

CONFERENCE NAME

Surname (Inverted)

Place or Pl. + Name

Name (Direct Order)

e

e

e

@/d/h

eVe/i

Vf/j

711

711

711

@

a

b

d

e

f

h

i

j

FIRM NAME f 0Y1/2 712 0 1 2

CORPORATE NAME
WITH FORM SUBHD.

,

r 0/1/2 720 0 1 2

UNIFORM TITLE
TRACING

1

General

Anonymous Classic

u

u

,

0/1/2

0/1/2

730

731

0

0

1

1

2

2

TITLE ADDED
ENTRIES (TRACED
DIFFERENTLY FROM

SHORT TITLE)

Partial Title -
Work in Hand

Title Added Ent.-
Another Work

Analytic Title

t

t

t

0

1

2

740

740

740

0

1

2

NAME NOT CAPABLE
OF AUTHORSHIP

n 0/1/2 753 0 1 2

-236-

FIGURE 12:
INPUT CODE VALUES TABLE FOR TYPE OF ADDED ENTRIES

(W CODE)

TYPE OF ENTITY

(Function = Series
Added Entry, Traced

Differently)

Combine with:
B-Field "*r"

SUB-TYPE rxi

Z0
ri .1

41
Aoo

1

E
1414
OP-1
PA I.

tl
41
Ao
C.)

PROCESSING FORMAT
CODES

TAG INDICATOR
1

Forename p 0 800 0

Single Surname p 1 800 1

PERSONAL NAME
Multiple Surname P 2 800 2

Name of Family P 3 800 3

Surname (Inverted) c 0 810 0

CORPORATE NAME Place or Pi + Name c 1 810 1

Name (Direct Order) c 2 810 2

Surname (Inverted) e 0 811 0

CONFERENCE NAME Place or Pl. + Name e 1 811 1

Name (Direct Order) e 2 811 2

FIRM NAME 812 None

TITLE-ONLY FORM t 0 840 None

-237-

E. PRESENCE AND DEFAULT CONDITIONS

For purposes of the logic of the computer edit program, the

I-Field elements have special "presence" conditions. Fig. 13

lists the status Of each input field code according to its

presence. Note that the absence of an input field does not

necessarily imply that the data element will be absent from the

processing record. For those I-fields always present, it was

decided to define default settings that could be made by program

without any action by human editor or keyboard operator. These

experimental default coding conditions are listed in Figs. 14-15.

For purposes of setting Indicator 2, the value of which

records the sequence numbers of fields with multiple occurrences
in a record, Fig. 16 shows the fields which are currently repeat-

able in the INFOCAL program.

FIGURE 13:

PRESENCE OF FIELDS IN AN INPUT RECORD (MANUAL EDIT)

PROGRAM
SYMBOL

RECORD COMPONENT
EXTERNAL CODE

DATA ELEMENT

I

ALWAYS PRESENT

LISTATUS I-Fields "a" Record Status Only present to over-
ride default setting

LIDTYPE I-Fields "b" Date of Publica-
tion Type

Only present to over-
ride default setting

LITYPE I-Fields "c" Record Type Only present to over-
ride default setting

LIDATE1 I-Fields - no
external code

Date of Pub. 1 No

LIDATE2 I-Fields - no
external code

Date of Pub. 2 No

LIBLEVEL I-Fields "d" Bibliographic
Level

Only present to over-
ride default setting

LISOURCE I-Fields "e" Source Type of
Catalog Card

Only present to over-
ride default setting

LIORIGIN I-Fields "f" Agency Code of
Origin of Mach.

Rec.

Only present to over-
ride default setting

LIPROSOR I-Fields "f" Agency Code of
Processor of
Mach. Rec.

Only present to over-
ride default setting

LIMICROR I-Fields "g" Form of Micro-
reproduction

No

LIFORM I-Fields "h" Content Form(s) No

JCODE I-Fields "j" Holdings Field() Yes part set by de-
fault)

LIGOVPUB I-Fields "k" Govt. Pub. Indic. No

LICONPUB I-Fields "le Conference Pub.
Indicator

No

LIMEBODY I-Fields "n" Main Entry in
Body

No

-239-

FIGURE 13 (Cont.):

PRESENCE OF FIELDS IN AN INPUT RECORD (MANUAL EDIT)

PROGRAM
SYMBOL

RECORD COMPONENgi
EXTERNAL CODE

DATA ELEMENT ALWAYS PRESENT

LILITGRP I-Fields "p" Literary Group
Indic.

No

LICNCELT I-Fields "q" Cancel-Title Added
Entry - Diet.

No

RCODE I-Fields "r" Cancel Title Added
Ent.-Dict. & Div.

No

SCODE I-Fields "s" Languages Codes Only present to over-
ride default setting

TCODE I-Fields "t" Translation
Indicator

No

UACODE I-Fields "u" Type of Main
Entry

Only present to over-
ride default setting

UBCODE I-Fields " " Main Entry Is
Subj. Indic.

No

UCCODE I-Fields "u" Main Entry is
Publ'r. Indic.

No

WCODE I-Fields "w" Type of Added
Entries Codes

No

FIGURE 14:

INFOCAL DEFAULT INITIALIZATIONS REFLECTED IN PROCESSING

RECORD FORMAT WHEN NO INPUT CODES ARE RECEIVED

PROGRAM
SYMBOL

DATA ELEMENT VALUE(S)

LIPREFX LEADER

LISDATE

LISTATUS

LILEGCNT

LITYPE

LIBLEVEL

LIINDCNT

LIORIGIN

LIPDATE

LIPROSOR

LIPSOURCE

LIAGENCY

LIADAPTR

Record Status Date

Record Status

Legend Extension

Record Type

Bibliographic Level

Indicator Count

Agency Code for Origin of
Machine Record

Date of Processing of
Machine Record

Agency Code for Processor
of Machine Record

Source Type of Catalog
Card

Agency Code of Source
Card

Agdipy Code of Adaptor of
Source Card

6 blanks

EBCDIC zero = uncertified

EBCDIC zero = no extension

a- = language material,
printed

ma = monograph

EBCDIC 5 = no. of indicator
bytes in a directory entry

003 = original input at ILR
790 = original input at UCSC

6 blanks (Refers to date of
translation of UCSC original
format to ILR processing

format)

003 = format translation
done by ILR from UCSC orig-
nal format

a = central (LC Card)

000 = LC

3 blanks

LIFIXED FIXED LENGTH DATA ELEMENTS
FIELD

LIDTYPE

LICONPUB

LIMEBODY

LICNCLT

All elements are set to blanks

Date of Publication Type

Conference Publication
Indicator

Main Entry in Body Indi-
cator

Cancel Title Added Entry

except:

s = single date

0 = no

0 = no

0 = no (don't cancel title
added entry--make one from
short title for dict. cat.)

-2)41-

FIGURE 14 (Cont.):

INFOCAL DEFAULT INITIALIZATIONS REFLECTED IN PROCESSING
RECORD FORMAT WHEN NO INPUT CODES ARE RECEIVED

PROGRAM
SYMBOL DATA ELEMENT VALUE(S)

ELEMENTS FROM I-FIELDS WHICH
DATA FIELDS

ARE TRANSMITTED TO VARIABLE

JCODE

SCODE

Holdings: Copy No. at This
Location (2d sub-field)

Holdings: Shelf Location
(3rd sub-field)

Holdings: Total Copies at
This Location (4th sub-
field)

Language Codes

01 = Copy No. at the shelf
location indicated is
Copy 1.

x = Stacks

01 = There is one copy
assigned to this
shelf location, with
the copy no. shown in
the second sub-field.

eng = English is the language
of the text.

-242-

FIGURE 15:

DEFAULT SETTINGS FOR INDICATOR 1 IN VARIABLE FIELD DIRECTORY
ENTRIES TO WHICH INDICATOR IS APPLICABLE

INPUT COMPONENT
AND CODE DATA ELEMENT

ATTRIBUTE OF
INDICATOR

CODE
VALUE

I-Field sa Languages Single or Multi-
language

0

B-Field *s LC Call Number Book in LC 0

A-Field /2

I-Field ua
I-Field ub

Main Entry Personal Name,
Single Surname,
Not Subject

1

A-Field $ Uniform Title Printed on LC Cards 1

A-Field /3

I-Field ra
Title Statement Make title added

entry
1

A-Field /6

I-Field uc
Publisher Publisher Not

Main Entry
0

These codes are set programmatically in the absence of an external
input code.

-2143-

FIGURE 16:

LIST OF TAG NUMBERS WHICH ARE CURRENTLY REPEATABLE
IN PROCESSING FORMAT

TAG NUMBER FIELD NAME
,

051 LC Copy statement

090 Holdings

091 Local Library Copy statement

260 Place of Publication

261 Publisher

400 Series Notes

550 General Notes

Oa Subject Added Entries

7XX Other Added Entries

8XX Series Added Entries

-244-

F. SUGGESTIONS FOR REVISION OF THE INPUT RECORD

1. General. The revised input format is predicated on a

number of factors:

a. Unavailability of human editing talent in sufficient

numbers to accomplish large scale conversion of bibliographic files.

b. Catalog cards follow a number of long-standing

notational and stylistic conventions, e.g., Arabic numerals pre-

ceding subject tracings, series tracings enclosed in parentheses.

These conventions will provide the textual clues in a bibliographic

string that will support computer algorithms to accomplish a

reasonably high degree of reliable field editing.

c. Ability of keyboard device operators to perform a

minimum of obvious coding, e.g., keying a synbol which stands for

a paragraph indention revealed by simple inspection of the catalog

source card.

d. Sufficient regularities in catalog data, by form

of material (e.g., monographs) and by language (e.g., English)

that computer-assisted formatting will prove feasible. Large

volumes of non-standard cards and idiosyncratic cataloging prac-

tices will tend to reduce the effectiveness of computer assigned

codes.

e. The burden of proofreading and correction key-

boarding must be less than in the straightforward system.

f. The conversion may have to be "phased", i.e., the

Processing Format with full MARC II coding down to the level of

every data element and indicator may not be achievable on the

first pass of the conversion effort. Several iterations pre-

ceded by development and re-design may be necessary to achieve

a fully-encoded machine file.

The following table (Fig. 17) is illustrative of the kinds

of clues and patterns found on standard catalog cards which might

be utilized in computer-assisted formatting. A total of six

slash marks are used to break the card up into a set of segments.

Various stylistic and notational clues are used to recognize by

algorithm the fields within each segment. This is a proposed

technique, more or less slashes may be required.

The recognition of sub-types of name and of the roles played

by names in added entries, form perhaps the most difficult problem

of tagging in MARC II. However, it is not unreasonable to sappose

that a degree of accuracy could be attained that would be high

enough so the total effort in proofing and correcting would be

less than that now required to manually edit and proofread a

record.
-245-

FIGURE 17:

REVISED FIELD CODING: A-FIELDS & B-FIELDS

ELEMENT NAME

MANUAL EDIT COMPUTER EDIT
Examples of Conditions
Providing Clues to
Algorithms

Field
Code Recognize by

I

Master Record Number

(MRN)

None Position in input
string; length in
digits

Local Call Number
Position following MRN

Main Entry Heading

,None

/ Position;font Punctuation; content
atterns

Supplied Title
(Interposed)

None Brackets (left & right)

must be present

Title Statement:
Short Title

Remainder of Title

Remainder of Title Pa e

/

None

None

Paragraph
indention

Right bracket of unif.
title, if present

Punctuation; length
in characters for
title added entry
purposes

jay word (e.q., "by")

Key words; digits; etc.

Punctuation
Edition Statement None

None IPlace of Publication

Publisher None

.

Punctuation at end of
place; authority table
look-up; etc.

Date of Publication None Digits pattern

Collation Statement:

Pagination

Illustration

Size

/

None

None

Paragraph
indention

Punctuation; character
patterns ("v% "p':)

Key words; set Fixed
Field codes also

Key word ("ce); digits

Price None Key symbols; digits;
punctuation

Series Notes (1st group) None Parentheses; sequence
after collation or
price .

-246-

FIGURE 17 (Cont.):
REVISED FIELD CODING: A-FIELDS & B -FIELDS

ELEMENT NAME

MANUAL EDIT COMPUTER EDIT
Examples of Conditions
Providing Clues to
Algorithms

Field
Code

Recognize by

Series Notes (2nd
group) and all other

notes

Paragraph
indention

Key words & patterns
(this is the most

ambiguous region on a
catalog card)

National Bibliography
Number

None Sequential position;
key symbols; digits

Tracings: (code even if

none present)

Beginning of subject
tracings

Subject Subdivisions
Beginning of Other

Added Entries

Series Added Entries

/ Paragraph
indention;

Arabics &
Roman Num.

Arabic numerals; match
after conversion to a
tagged authority file

Two hyphens (--)
Roman numerals

Parentheses; key word;
position

Fields at bottom of card:

LC Call Number

LC Copy Statement

Dewey Number

LC Card Number

Overseas Acquisition
Number

/ Position

Character patterns

Multiple hyphens
("dash".on format)

Digit pattern

Digit pattern

Key symbols & abbrev.

2. An Illustrative Example. As an example of what can be

done to design computer-assisted formatting, the following is

a preliminary algorithm for delimiting the Short Title sub-field

of a MARC II record. This procedure is a special case of string

decomposition. This algorithm is phrased in such a form that it

can be used either for manual editing or in a computer program.

In essence, it is "machine-like" editing which is now performed

manually by card preparation sections in libraries. It is of

course subject to review by the cataloger on the basis of judg-

ment as to what makes a title semantically informative and lin-

guistically or grammatically acceptable. The algorithm is exper-

imental and has been tested only in the manual coding effort

undertaken during Phase I of the File Organization Project.

ALGORITHM FOR DELIMITING SHORT TITLE

Comment. It is assumed that the beginning of the title-

page title statement will be explicitly identified in some way

(visually, by a paragraph indention, or in the case of some title

main entries, by hanging indention). The same will be true for

the Collation field. An explicit field code such as "/" will

precede the first word in the title. The problem is to determine

the end of the Short Title, as defined in MARC II. The operational

definition of Short Title is: that portion of the title statement

which is to be used as a catalog entry heading or as a part of

a heading, either main or added, and which might be used separately

from the remainder of the catalog record, e.g., in index lists

rather than in card catalogs. The short title will always be

delimited when more than one of the MARC II sub-fields are present.

This is independent of the Indicator setting for title added

entry.

The algorithm does not identify the content of the next

succeeding sub-field: that is assigned to a separate routine.

This set of rules is still "fuzzy" in that cases of long titles

in older catalog records which force the procedure to be carried

through the string length cutoff step will not always produce

a semantically or grammatically acceptable result.

A weakness in the procedure is its heavy dependence upon the

punctuation used on the title pages of books and upon that inserted

by catalogers according to conventional practhe. Since this

practice is rarely documented or consistently adhered to because

of the variability of title pages and the need to rely on cataloger

judgment, it is likely that the approach through punctuation is

not susceptible of successive improvements.

Another weakness of the algorithm is that it cannot be

consistently applied for situations where the beginning of the

short title contains one or more words from the name of a real

person (e.g., "Arthur Quiller-Couch; a biographical study of Q.").

A title added entry would be more suitable if the subtitle were

included, and so the delimiter is not placed after the semi-

colon.

The algorithm in draft form operates on single intervening

marks of punctuation or other special symbols, multiple patterns

of occurrence of a symbol, and combinations of symbols. A

potential source of improvement in the algorithm would be a

statistical study of frequency of these symbol patterns in catalog

records, in order to optimize the sequence of the steps. At

this stage the steps are presented in purely "intuitive" order.

-2)49-

FIGURE 18:

TABLE OF VALID SYMBOLS

GRAPHIC NAME EBCDIC HEX

[

]

.

Left Bracket

Right Bracket

Period

Less Than Sign

3E

3F

4B

4c

(
Left Parenthesis)4D

1
. Exclamation Point 5A

)
Right Parenthesis 5D

;
Semi-colon 5E

2
Comma 6B

Greater Than 6E

? Question Mark 6F

. Colon 7A

ff Quotation Mark 7F

TABLE 1

UNCONDITIONAL (START) Rule 1

1

1. Scan left-right from start of
t

'Title paragraph to start of
1

'Collation field (count)
1

'Flag end of each sentence
i

I found (valid markers)*_J
1

3. For each intervening mark or symbol
1

I prior to first sentence marker, set

1 a position pointer (show type of
1

1 *
isymbol)*

.

I Go to Table 2

*A sentence is defined operationally as a phrase containing at least
one character the end of which is marked with one of the 4 marks:

! ? and right (close) quotation mark " (the latter cannot be in
character position 1).

**The first sentence is initially defined to be that string which is
marked by one of the 4 symbols, whichever comes first. See Fig.

18 for list of valid marks and symbols.

-251-

TABLE 2

SENTENCE END MARKER Rule 1 2 3 4 5 6 8 E *

1

1. End of sentence marker for first Y Y

1 sentence in Title para. is Period _

I

. End marker is Exclamation Point Y Y

I

3. ,End marker is Question Mark Y Y

4 !End marker is Right Quote Mark Y Y

'Valid punc. symbol intervenes5.
I YNYNYNYN
(other than one of the 4 end

1

'markers)

6.
i

1Go to Table 3

7.
I Go to Table 4

8. 1Go to Table 6

1

9. IGo to Table 7
1

10.1Go to Exception Table**

*Means "Else" - the rule to follow when none of the others apply.

**Not yet defined.

- 252 -

411,:a

ANN

TABLE 3

VALID SYMBOL SWITCHES* Rule 1 2 3 4 5 6 7 8 9 10 E

1

1.
l

Next intervening symbol is [Y

2. 'Next intervening symbol is Y

3. 'Next intervening symbol i .

t

Y

4. !Next intervening symbol i

5. !Next intervening symbol is (

6._]Next intervening symbol is
I

7. Next intervening symbol is Y

8. :Next intervening symbol is ,

1

9. Next intervening symbol is > Y

I Next intervening symbol is :

.1

11.IGo to Table 8

12.IGo to Table 9
1

13.!Go to Table 10

14.:Go to Table 11 x x

15. Go to Table 12 x

16.1Go to Table 13

17. Go to Table 14

18. I Reiterate Table 3 **

..--ii-

x

*For symbols other than the 4 end of sentence markers, except a period.

Valid symbols (such as left ") not listed, and non-valid symbols

encountered in the string, follow "Else" rule.

* *
Exit when no further intervening valid symbols exist in the string,

or when $b and $c have been set, or any combination of these: $b +

no $c found; $c + no $b found. Length limit must always be tested.

(The logic for $c is dependent on a further algorithm). In any case,

if no further processing can be done for short title, procedure con-

tinues to further algorithms.

- 253 -

TABLE 4

PERIOD (FULL STOP) Rule 1 2 3 14. 5

1 ._.4

1 Period occurs in char. position Y Y N N N

1

II ,
2 3 or 4

.

6

I Hit on author statement key
1

Y N Yi Y N

1

1
words list (test left & right)

End marker occurs in position - L GT LE

1 compared to string length limit*

1

14. j Insert Interim Delimiter after
I

lend mArker
1

. !Do Table 5

6. i Insert a $c delimiter prior to author x

1

!statement key word (in "word - 2"

1 position if non-blank in Word -
I

!position)
i

Go to next end marker

8. Go to Table 2

9. Go to [tables for further algorithms, x,

1

4

1

las needed**]

*Length limit is a parameter for string length of n where n is the

maximum number of characters desired in the output for which Short

Title is being used, e.g., two lines of text overprinted in a

heading on an added entry card.

**Not included in this presentation. A positive determination of the

explicit code for the sub-field following short title will often

depend on algorithms for the subsequent parts of the title para-

graph, including imprint. Moreover, the Interim Delimiter may be

deleted altogether if neither Remainder of Title nor Remainder of

Title Page Transcription sub-fields are determined to exist in the

record at hand. (A Place of Publication sub-field always exists).

Finally, a check should always be made at the end for the length

limit, which may involve insertion of a $b delimiter on a rather

arbitrary basis, in some older records.

The anomalies that this test must cope with are many: e.g., the period

may be embedded, as in 'Ed. by ...'; it may appear to the left, as in

'ctitle. By ...'; and it may be in the title proper, as in 'Philosoph-

ies men live Ia..' or 'Great teachers, portrayed lmthose who studied...'

- 254 -

I.

71^

ty

TABLE 5

LENGTH LIMIT (CLOSED) Rule 1 2 3 4 5

1. Relation of author state- Hit left Hit right Hit Rt. NoHit NoHit

ment key word to end

marker

2. Character to which length Blnk Non4 'S Non-

limit signal points

3.

_

No short title delimiter x

required

1. Scan right to left for 1st x

! non-blank character(hope-

fully an interword 10

5. Insert $b delimiter x x x

in blank position

6. Exit x x x

TABLE 6

1 or ? END MARKER , Rule 1

1. Insert Interim Delimiter immediately
1

'after the . or ? mark

.

I

IGo to Table 3

-255-

TABLE 7

RIGHT QUOTE MARK END MARKER* Rule 1 2 3 4

1

1. !Character in next right character or - or, Blank Blank

1 position from Right Quote Mark
1

I2. !Hit on author statement key words

!list (test word to right of Right

I

!Quote)
7--

. ' Insert interim Delimiter to right
!

of punctuation mark in next
1

'succeeding character position to
1

'right of Right Quote Mark
.

4.
I

Insert Interim Delimiter to Right
1

1 of Right Quote Mark
1

5. ' Insert $c delimiter to left of x

i

' author statement key word (or

ix

1

I left bracket if any)

.

1

6. ' Go to Table 3 x x x

-*A left Quote Mark is assumed to have been found in the initial scan
of the Title Statementsentence.

TABLE 8

LEFT BRACKET Rule 1 2 3

1

1. !Digits in character positions Y N N

11-4 in Title Statement**
I

2. Hit on author statement key words
4

Y

3. JBracket position: Length limit LB Gt LE

4. 1No $b delimiter needed
1

I

5. !Insert Interim Delimiter
1

tpreceding left bracket

6.
I

Do Table 5 x

7.
I

!Insert $c delimiter preceding
I

!left bracket

8.
I

!Go to Table 3 Lx, x x x x

**Also scan to right of Left Bracket for string: "i.e.,

- 256 -

i

TABLE 9

NEXT SYMBOL =]) or Rule 1 2 3 14. 6

Y

7

-

1. Interim delimiter already set Y NNNNNYYYNN-YNNYN

NYNN

2. Symbol is followed by ";"

Symbol is followed by a 163.

then cap letter not in auth.

statement key word list

Hit on author statement key

word list (word to right)

5. Site counter EQ EQ, EQ Ev., E GT
r-

6. Insert Interim Delimiter after";"

7. Insert $c delimiter : x

prior to key word

8. Go to [tables for further

algorithms]

9. Return to site of corresponding

(or <

10. Go to Table 3 x

-257-

TABLE 10

PERIOD (NON FULL STOP) Rule 1 2 3 4 5 6 7 8 9

1. Interim Delimiter already set YNNNNNNNN
. Period is "inside" to right of string YNNNNNNN

starting with [< (or left "

3. J Period foll, by right " then lb or YYNNNNN
4. JHit on author statement key words Y N,YNNNN

list (test left and right)

. Single preceding character ,Y N N N

6. Single preceding word Y N N

. Next word after period is a repeat of Y N
1

I

first word or root thereof in Title

1_

Statement

8. Ellipsis found, or string of inter- Y

spersed periods

. Insert Interim Delimiter after

,

x.

right " or

10. 1 Insert Interim Delimiter after period IX x

11. Insert $c delimiter prior to key word

12. 1 Do Table 15 x .

13. 1
Go to Table 3

;

x x
iixxxxl

14. I Go to [tables for further algorithms]._ x, xl xxxl
,

.1

TABLE 11

LESS THAN OR LEFT PAREN. Rule 1 2 3

1. Interim Delimiter already set Y N N ,

2. First< or (in Title Statement Y N

3. Set site counter x x x T.
4. Insert Interim Delimiter prior t

< or (

5. L Go to Table 3

6. Go to [tables for further algorithms]
1

i

x x x 1

1

i

TABLE 12

1 2 3 ii. 5 6SE14-COLON Rule

1. Left Bracket pointer "o "

2. Left Quote Mark pointer " " Y

3. < or (site counter non-even

.

4. Interim Delimiter already set

5. Semi-colon is first intervening Y N

symbol other than 1-3 above

6. Insert Interim Delimiter after
t

semi-colon

7 Go to Table 3 xix x
,

x x8. Go.to [tables for further

algorithms]

_

;

;

-259-

TABLE 13

COMMA Rule 1 2 3 4 6 7 8 9 10.E

1

1. Left Bracket pointer "on" Y

2.! Left Quote Mark pointer "on"
=

Y
_ 1

3.1 < or (site counter non-even Y

4.1 Interim Delimiter already set Y

1

5. Digit pattern following comma YNNNN
1

6.1 Comma is 1st interven. symb.
I

7.
!

Hit on author statement key words

1

1 list (test right) . ,

8.1 Hit on multiple title conditions*

,

1

9. Insert Interim Delimiter after comma

110.1 Insert $c delimiter after comma

Iland prior to key word

11. Go to Table 3 x x x x x x

i

12. Go to [tables for further x

algorithms]

*E.g., combination of ", and 0..." where 0= Capital letter.

TABLE 14

COLON Rule 1 2 3 4

Y

5 6

_
7 8 9 E

1. Left Bracket sointer "o "

2. Left Quote Mark pointer "on" Y

3. < or (site counter non-even I

4. Interim Delimiter already set Y

YNNNN5. Hit on author statement key

words list

6. Next is period or ;

7. Next is ,
Y

8. Next is [(or 4 Y

9. Next is another colon

10. Set Interim Delimiter after .;

11. Insert Sc delimiter prior to word

12. Set Interim Delimiter after

13. Set Int. Delim. prior to [etc.

14. Go to Table 3 xxxx x x

15. Go to [tables for further x x

algorithms]

16. Repeat starting at Step 5 x

TABLE 15

ELLIPSIS CLOSED Rule 1 2

1. I 3rd period followed b Valid s Hbol Blank letter or

non-valid simpol

2. Insert Interim Delimiter

.rior to first eriod in

ellipsis

.1 Exit x x

[END]

-261

V-3. EXPERIMENTAL ON-LINE MATHEMATICS
CITATION DATA BASE*

By
Mary L. Tompkins

Institute of Library Research
University of California
Los Angeles, California

A. INTRODUCTION

A Mathematical Citation Index was started irL March 1965 under

the auspices of the UCLA Computing Facility with the encouragement

and cooperation of the University Research Library, the Engineering

and Mathematical Sciences branch library and the Numerical Analysis

Research Library. Starting in May 1966, the project was continued

by the Institute of Library Research as an example of mechanized
services which would be provided by the Center for Information Ser-

vices in the University Research Library.

It is of particular value because a real data base is accumu-

lating which will be of direct value to mathematicians and other

scientists on the campus, as well as contributing to increased

expertise in the utilization of large files.

Publication of a series of indexes designed to identify scien-

tific serials has been started. These are generally being identified

as MAST: Minimum Abbreviations of Serial Titles. The first volume

in this MAST series, on Mathematics,was to appear in 1968, published

by Western Periodicals, Inc.

Not only do we foresee the need to publish for wide distribu-

tion some products of our work, but we will need to utilize products

produced by others. To recreate files already compiled by others

is not feasible in terms of time or money. Thus, our planning for

an operational citation index at UCLA assumes the purchase and

utilization of existing files, or selections from them, such as the

I.S.I. Science Citation Index tapes and the Physics citation data

being developed by M. M. Kessler at M.I.T. Such acquisitions would

then be augmented to satisfy local specialized demands.

B. MAST: MINIMUM ABBREVIATIONS OF SERIAL TITLES

Before the compilation of citations was begun it was evident

that some way was needed to identify bibliographic references which

were incomplete, ambiguous or otherwise unidentifiable. Hence, the

preliminary work on the project concentrated on a circularly shifted

index of abbreviations of mathematical journals.

*The following material is excerpted from "Experimental On-line

Mathematics Citation Data Base," by Mary L. Tomlkins. Part 8 of

tne Final Report on Mechanized Information Services of the University

Libral.annin. Los Angeles, Institute of Library

Research, Dec. 15, 1967. pp. 3-13. Work on this particular phase

of the project was supportedufF Grant GN-503.

What has been widely discussed as a K-W-I-C (Keyword-in-Context)

or permuted index, we prefer to call by the more accurately descrip-

tive name Ci/cularly Shifted Index. In this index of abbreviations

of serial titles, the abbreviation of every significant word in a

title appears alphabetically at a center gutter, with its preceding

and following words around it. Each indexed abbreviation is accom-

panied by an identification number and a short one-line title. The

identification number refers to a Reference Section which lists

(for the more than 2000 serials) full and complete titles, dates

of publication, and histories of title changes.

For any journal with more than one title, corresponding addi-

tional abbreviations are entered. Likewise, if a journal is some-

times known by a name not appearing as part of its title, this

name would be added. An example of this is "BIT," which is used

for the "Nordisk Tidskrift for Informations-Behandling"--the result

of a fancy cover design.

Minimum abbreviations (Minabbs) of serial titles and the in-

dexing of them instead of the full titles, is a scheme devised by

John W. Tukey at Princeton University and the Bell Telephone Labo-

ratories in connection with his Citation Index for Mathematical

Statistics and Probability, and in response to a wide-spread desire

for a means of identifying journals cited by unclear and unexpand-

able abbreviations. The work at UCLA has been a direct outgrowth

of the author's work with Professor Tukey.*

Briefly, a minimum abbreviation is formed by using the initial

letters of the word up to the second vowel. (For this purpose,

contiguous vowels are considered one.) Minabbs are not necessarily

the most common abbreviation and they are frequently not unique,

but they may be formed from longer dbbreviations and from words

in any language. As a example: either the title, "Verhandlungen

der Naturforschenden Gesellschaft tm Basel", or the acceptable

abbreviation "Verh. Naturforsch. Gesellsch. Basel" can be shortened

to the Minabb VERH NAT GES BAS, which can be located in the Circu-

lar Shift Index in any one of four places.

Ambiguity in an abbreviation is useful in this index because

it immediately displays where confusion may lie. J MATH PHYS may

indicate either the "Journal of Mathematics and Physics (MIT)" or

the "Journal of Mathematical Physics (New York)". The reference

section indicates that the former dates from 1921; the latter from

1960. A rough volume-year correlation will help determine which

serial was intended.

*Tompkins, Mary L. and John W. Tukey. "Permuted Circularly-Shifted

Indexes: A Mechanically Prepared Aid to Serial Identification". IN:

Progress in Information Science and Technology; Proceedings of the .

American Documentation Institute, 1966 Annual Meeting. Adrianne

Press, 1966. pp. 347-355.
-264-

Another type of confusion rests in multiple titles. The

"Annales Academiae Scientiarum Fennicae Series A" is usually

catalogued under its Finnish title "Suomalaisen Tiedeakatemian

Toimituksia. Sarja A", but is usually cited under the Latin.

The entry under the abbreviation of the first title will lead to

the second through the identification number, and thence to the

library classification and shelving of the volume.

The results of this phase of the Citation Index project are:

1. A dictionary of acceptable abbreviations for editing

input to the Mathematical Citation Index files, for

indicating new or omitted titles of mathematical

serials and for drawing together in the citation

files different versions of a single title.

2. An Institute of Library Research-UCLA Computing
Facility report on the computer programs.*

30 Publication of Minimum Abbreviations of Serial Titles:

A Circularly Shifted Index to Mathematical Journals.

C. SELECTION OF SOURCE JOURNALS

At the time this project was started "Mathematical Reviews"

listed 872 journals which publish research in mathematics. In

order to determine how many of these journals constitute the "core"

of the literature, several mathematicians at UCLA and Princeton

were asked to indicate journals in which most of the significant

research appears. Each listed about 100 titles, and a set of 53

journals appeared in all lists. Our "core" consists of these 53

and other multiple but not unanimous choices.

From this an ordering of journals to be processed was estab-

lished. First, twenty-two current issues of nineteen different

journals were scanned and the nunber of times journals were cited

was counted. There were 215 papers which referenced 1294 itens

distributed among 325 different journals. Those journals most

cited were given priority in processing. A slightly changed prior-

ity list reflected the rankings after 13,500 citations could be

counted. A third count of 22,800 journal.citations substantiates

these rankings. They are also compatible by and large with those

made by Charles H. Brown using 3,168 citations from ten journals

published between 1950 and 1952."

*Johnson, G. D., and Tompkins, Mary L. A Circular Shift Index

of Abbreviations of Journal Titles: Description of the 7094

Computer Program, ILR-UCLA Computing Facility Report, 1966.

**Brown, Charles Harvey. Scientific Serials. Chicago, Association

of College and Research Libraries, 1956.

-265-

D. SCOPE OF CITED ITEMS

During the first two phases of this project, 4094 articles
were processed. They were drawn from 25 journals published from
1965 to 1967. Five journals were covered from 1965 to mid-1967;
nine more were covered for 1965 and 1966; eleven more were covered
in 1966 only.

New titles were introduced starting with their current issue,
working backward as time allowed. Once undertaken, the journal
was completed for the entire volume except when all processing had
to stop temporarily in July 1967.

At present 31,424 citations exist on punched cards and on
magnetic tape. 22,823 (or 73%) cite journal literature; 5840 (18%)
cite books; 3% cite material unpublished at the time of citation;
and the remaining 1829 items fall in the miscellaneous categorY
of reports, theses, lecture notes, proceedings of meetings, etc.
(These precentages substantiate those compiled on 18,000 citations
six months earlier: journals, 71%; books, 18%; and, unpublished,
3-1/2%.)

E. PROCESSING CITATIONS

Material for the Citation Index is keypunched on cards which
are later transferred to magnetic tapes, disks or data cell for
computer manipulation and storage.

Current issues of scientific journals have been the sole
source of citations and 73% of the input citations have referred
to scientific journals. Therefore, the card format and the exper-
iments with on-line input have been geared to journal identification.
It is possible, however, that bibliographies from other sources,
particularly from proceedings of meetings or Festschrifts, may be
desirable for inclusion. The format for a citing journal is read-
ily adaptable to a book by merely assigning an arbitrary seven
character designation to the item to correspond with the journal
serial and volume nurbers. This number with that of the first page
serves to bind related citations to the source item.*

The author and title of the citing paper and of each referenced
work (excepting only personal communications) are recorded. An

*NOTE: The data record formats used in the early stages of the
UCLA Citation Indexing Project were developed in advance of the
Library of Congress MARC format. It is expected that analysis of
the feasibility of adapting a version of the MARC II format to the
journal article file format will be undertaken during a later phase
of the File Organization Project so that a uniform record structure
concept can be tested in an on-line environment, and for purposes
of making the data base convertible to MARC II for transmission
to other agencies.

-266-

A

IL

IL

I

attempt is made to preserve all bibliographic information given

by the author. That which will not fit conveniently on the rigidly

formatted citation or C-card is expanded in full text on supple-

mentary or S-cards. Extra long names, or multiple authors which

exceed the 15 character cited-author field are recorded on name

or N-cards.

Fig. 1 illustrates the cards punched for citations from

a single paper.

F. USE OF DISPLAY STATIONS FOR ON-LINE EDITING

Programming the IBM 2075 for the Mathematical Citation Index

has been designed to exploit the display potential of cathode ray

tube terminals. These instruments provide on-line visual access,

query, and input to computer stored data. Man-machine communicar.

tion with them requires a minimum of special operator skills.

They can be used geographically distant from the computer.

The program we call CITATION is an entry into the UCLA time

sharing system. It is designed to facilitate input of new data

into the Citation Index file or correction of existing records.

It edits input records, refusing to store illegal numerical data.

An illegal entry may be one that is too long, or too small, or

one that contains a blank or an embedded character. A message

indicating the error will appear on the scre,en until correction

is made.

Separate formats accommodate information about cited and

citing items. These have been based on the punched card format

for easier conversion. Since journal articles predominate, atten-

tion has been paid to their peculiar bibliographic conventions.

The program commences by clearing the screen (buffer) and

displaying MAIN TITLE:

CITATION INDEX

TYPE A FOR CITING AUTHOR FORMAT

T FOR TITLE OF CITING PAPER

C FOR CITATION FORMAT
R FOR CITED TITLE
I TO INITIALIZE
D TO DISPLAY
S TO STORE

When the letter I is typed the screen displays:

JOURNAL FORMAT

JOURNAL NUMBER
VOLUME NUMBER
YEAR

-267-

FIGURE 1:

CARDS PUNCHED FOR ONE PAPER PUBLISHED IN VOL. 66

OF, THE COMMUNICATIONS IN PURE AND APPLIED MATHEMATICS'

Field

For the Citing Paper

1. Type Card (Al = Author; T1 = title)
2. Type Number
3. Year
4. Journal
5 -Volume
6. First Page
7. Last Page

8. Author name or title statement

For its Cited Items

Field 1. Type of Card
2. No. of Citation
3. Citing Journal
4. Citing Volume
5. Citing Page
6. Author
70 Designation of Multiple Author
8. Designation of Non-journal
9. Abbreviation of Location (title

10. Volume item)
11. Issue
12. Year
13. First Page
14. Last Page

-268.-

of source of cited

The volume, year and assigned identification number of the

journal containing the citations to be recorded are entered in the

INITIALIZE routine. These numbers provide the link between cited

and citing papers and automatically become a part of every succeed-

ing record mitil tPe program is reinitialized.

Typing letter A presents the AUTHOR display:

CITING AUTiOR INPUT

FIRST PAGE NUMBER
LAST PAGE NUMBER
YEAR

Entered page numbers are checked to be sure the last is at least

as large as the first. Multiple authors may be listed.

The TITLE display is simply:

TITLE OF CITING PAPER

and allows for 44o characters of free text.

The citations are now entered on the following format.

CITATION INPUT

VOLUME
YEAR
ISSUE, EDITION
FIRST PAGE CITED
LAST PAGE CITED
JOURNAL ABBV
AUTHORS

The CITATION FORMAT is displayed automatically with serially

increasing numbers for each entry until A is called, for the next

citing author input. Before the next series of citations can be
entered, however, a subtitle asks the operator,

ARE YOU STILL IN THE SAME
VOLUME AND JOURNAL? IF YOU ARE
NOT, PLEASE RE-INITIALIZE.

The editing routines of this program are being constantly

expanded. The next powerful addition to the system will be a check
of journal abbreviations to insure that all citations to a given

paper are being lumped together regardless of the vagaries of

referencing by the citing authors.

-269-

APPENDIX VI

SWLE SIZE DETERMINATION FOR DATA CONVERSION QUALITY CONTROL

By

Jorge Rodriquez
Institute of Library Research
University of California

Berkeley, California

1.*

SAMPLE SIZE DETERMINATION FOR DATA CONVERSION QUALITY CONTROL

By

Jorge Rodriguez
Institute of Library Research
University of California

Berkeley, California

A. INTRODUCTION

This aaalysis aims to solve a specific problem of the

Institute of Library Research, summarized as follows: it is

desired to investigate the possibility of using e, statistical

control method to determine the accuracy of the data conversion

process and to estimate the frequency of errors associated with

a common source.

The constraining factor involved in the control process is

the cost of sampling as opposed to the cost fluctuation of the

conversion process as a function of the level of accuracy.

B. DISCUSSION

It has been suggested that sampling inspection, and more

specifically, sequential sampling inspection, be studied as a

possible control method. It will later be explained that the

nature of the problem suggests other means of control.

In sampling inspection, whether it is single, double, or

sequential, we normally start with two fixed points. Assuming

that the parameters in question lie on the mean of a distribution

(as in the present case) these two points are: a previously

estimated mean value, which is assumed to remain fairly constant

and considered acceptable; and the worst value of the mean that

will be considered acceptable. This introduces the notion of

acceptance and rejection of the lot in question.

The test consists of obtaining a sample from which the

mean of the population is estimated using a proper estimator.

Then, using the lot size and sample size, obtain some measure

of the quality of the decision. For this purpose, two types of

errors are defined and their probabilities estimated: namely,

the probability of error of type I, which is the probability of

rejecting a good lot; and the probability of error of type II,

which represents the probability of accepting a bad lot.

The situation in the data conversion is somewhat different.

In the present problem it is not assumed that the mean of the

distribution remains fairly constant, nor that there is a region

of acceptance opposed to one of rejection. The problem here is

more related to point estimation, to the actual estimation of

the expe,..ted number of inaccurate records, and to obtaining some

e2 7,V-273-

^

measure of the estimate in the form of a probability that deviates

by an mnount less than A .

C. PROPOSAL

Consequently, it seens appropriate to use a simple point

estimation procedure. In this procedure, the size of the sample

will be determined by economic factors. Then the weight of the

estimate will 7be measured by fixing a deviation 41 and eval-

uating the probability of the estimate being within a plus or

minus A from the exact value.

The following is an analysis and detailed description of

the steps of the proposed method.

1. Selection of Lot Size IL The lot size will be determined

by the frequency at which the control is performed, and/or by

the total number of records to be processed. This decision is

not critical as long as it is over, a reasonably large number of

sampled records (not less than 1000). In general though, it is

desirable to use as large a lot size as possible.

2. Selection of the Sample Sipe. The sample size will
mainly be determined by economic considerations, and for this

purpose a cost function is defined which includes all the

variable costs of interest:

A
C
t

= f
1
(m) - f

2
(M) + f

3
(n) (i)

where,
f
1
(M) = cost function representing the cost of correcting

M wrong records.
M = exact number of wrong records due to the conversion

procegs.
M =Aestimate of M.
f
2
(ND = cost function representing the discount when the

4.

number of wrong records due to the conversion process is M.

n = sample size
f
3
(n) = cost function representing the cost of obtaining a

minimum sample of Size n.

It is reasonable to adopt a minimum sample size. In other

words, the estimate will not be accepted if it is obtained using

a sample smaller than the lower limit. The first step, then, is

to obtain a sample whose size is equal to the lower limit and to
estimate the number of wrong records by using a simple average

as the estimator, or

where m = number of
containing at least

(2)

defective records in the sample (records
one error).

-274-

,;

The next step is to investigate the possibility of increas-

ing the sample size by comparing the cost of obtaining the previous

sample size with the expected saviag, which can be expressed by

S = f
2
(M) - f

1
(1'41) (3)

If this value is less than f(n), then a larger sample is not
economically justified, and Vie proceed to para. 3. If S is

larger than f (n) then the sample size can be increased to some

value n' such
3
that:

f
3
(nt) = S (4)

We can obtain a new estimate of the number of defective records

(Mt) by using equation (2) again

m'
M') N (5)

n'

where m' is the total number of defective records in the sample

of size n'.

By repeating the process of comparing sampling costs with

expected saving we can determinL whether it is justified to

increase the sample size.

It is also reasonable to set an .11.2222: limit on the sample

size. In other words, the sample will not be increased beyond

that limit even if it is economically feasible.

A
3. Measure of ths Estimate M. Once we have obtained the

sample size n' and the number of defective records in the sample

m, we can obtain a statistical measure of the estimate by using

a convenient sampling table.

The table referenced (1) gives a relationship of five

parameters: N, n', mt, confidence level, and the precision.
Any four of them will determine the other.

In our case we already have N, m' and n'. And from the

structure of the table, it is easier to decide on the confidence

level desired and then obtain from the table the precision.

To clarify the meaning of
equation is presented, lhowing

A
IM

P (IM - s (Precision) 11111

N) = confidence level

each of these terms, the following
the relationship among them:

= -- and the population is

-275-

(6)

D. ILLUSTRATIVE EXAMPLE

1. Given: 200,000 records to be processed in 50 weeks.
Cost of correcting one wrong record = $0.10
Discount per wrong record = $0.25
Cost of sampling = $0.05/record.
It is desirable to obtain a control output every week.

2. Solution.
Select the lot size N, which is given by:

200,000 records
= 4,000 records/week

50 weeks

Select lower and upper bounds for sample size, and set these
at 5% and 20% of the lot size, respectively.

Now, to perform a control for one week we proceed as follows:
By using a table of random numbers we select a sample size of
n = 200. Assume that we found 9 defective records in the sample,
then m = 9. We obtain the first estimate by using equation (2)
where,

a = (!) N = (A) 4000 = 180.

By using equation (3) we evaluate the expected savings:

S = 180 (25) - 180 (10) = $27.00

Evaluate f
3
(n) = 200 (5) = $10.00

Comparing S and f(n) we see that it is justifiable to
increase the sample sie in order to get a better estinate. By
using equation (4) we obtain a new sample size.

n'(5) = 27000, or n' = 540, which is only about 15% of the
lot size. We obtained 340 more records. Suppose that we obtain
15 more defective records. Then m' = 15 + 9 = 24, and our new
estimate from equation (5) will be MI= 178.

The new expected savings are then S' = $26.70, which is less
than f

3
(5)40) = 2700, and therefore we do not increase the sample

size.

Now, suppose we want to obtain the precision of the estimate
with a confidence level of 95%.

To use the table, first we calculate p, the proportion of
defective records in the sample

m' 24
P =

n
= --4 (100) = 4.4%

5 0
-276-

Rounding this to the larger integer, to be on the conser-
vative side, we have p = 5.

Using Table I, page 23 of the referenced source we find
that if n were 409 the precision would be 2%. Consequently,
we conclude that 100<M <260, with a confidence level better
than 95%.

M - .02M<M 4M .02M]

If it is desired to estimate the errors attributable to
each type of source we need only to use formula (2) with the
corresponding m's, and by using the tables obtain a measure of
the estimates.

REFERENCE

1. Brawn, R. Gene and Lawrence L. Vance. Sampling Tables for
Estimatin Error Rates or Other Pro ortions. Berkeley, Public
Accounting Research Project, Institute of Business and Economic
Research, University of California, c1961. p. 23.

- 277 -

APPENDIX VII

THE ORGANIZATION, MAINTENANCE AND SEARCH

OF MACHINE FILES

By

Ralph M. Shoffner
Institute of Library Research
University of California

Berkeley, California

(Published in the Annual Review of Information

Science and Technology, v.3, edited by Carlos A. Cuadra.

Chicago, Encyclopaedia Briticanna, Inc., 1968. pp. 137-167)

UNIVERSITY OF CALIFORNIA
INSTITUTE OF LIBRARY RESEARCH

Berkeley, California 94720

Reprinted from The Annual Review of Infor-
mation Science and Technology, Vol. 3, 1968,

edited by Carlos A. Cuadra, by permission of
Encyclopaedia Britannica, Inc. Copyrighted 1968.

Permission to reproduce this copyrighted
material has been granted by Encyclopaedia
Britannica, Inc., to the Educational Resources
Information Center (ERIC) and to the organization
operating under contract with the Office of
Education to reproduce ERIC documents. Repro-
duction by users of any copyrighted material
cout'aned in documents disseminated through
the ERIC system requires permission of the
copyright owner.

, i -srnlm.o..PIP.MPMPPPIPPIMPP.

i

li

II

I

S.

c.c.)e

The Organization, "4Maintenance and
Search of

sp <c\

Machine Files' \OC2 \04r
CO

RALPH M. SHOF
41)

University of California %OD

Berkeley, California co

(<;C\

INTRODUCTION

File organization and search is concerned with the structure and operation
of computer systems that store and retrieve large amounts of information.
The following are four key questions about file systans that, ideally, a
review article of the current literature should answer: How well do such
systems operate? What are the structures of file systems? What is the
nature of the system operation? How does one design an appropriate
system?

Unfortunately, there are no simple answers to these questionsfirst,
because the literature contains only partial answers, and second, because
of the great diversity among file systems and file system languages. These
two reasons give rise to a host of other reasons:

1. With many new people working in t17.c field, undefined
vocabulary increases more rapidly than strict definition reduces
it.

2. File systems have to be designed to resolve contradictory goals,
such as rapid access, high capacity, low user training, and high
reliability.

3. The machine system does more of the processing to organize
and group related information.

4. There is an increase in different kinds of information to be
processed

'This review was supported in part by the U.S. Office of Education Grant No. OEG-1-7-071083-5068.
21 am indebted to Luke T. Howe for his extensive belp in prepating tbis review.

138 RALPH M. SHOFFNER

S.

5. Desired modes of access to information are increasing.
6. Machine processes are being developed to reduce the need for,

experienced specialists to act as broker between the users and
the syStems.

1. Even with a determined file structure, the performance of
large-scale, multiple-access ffie systems can be significantly
affected by the search procedures used.

8. The expanding computer field means there are more computer
systems and programming languages with which to implement
file systems.

9. Many special-purpose systems are being developed and their
reports are being published.

W. In spite of all these trends, that Holy Grail the all-purpose data
management systemis being sought by an ever-increasing
number of people.

One evidence of the increasing interest in file structures is the
establishment by the Association for Computing Machinery of a one-day
professional development seminar in "File Structures for On-line Sys-
tems." As with the other ACM seminars, it was scheduled and presented in
several cities throughout the United States. The material was well
organized and the meetings were well attended. No doubt the specific
material will change, but seminars should certainly be continued. Another
important event in 1967 was the publication of Meadow's excellent book
(60) devoted to file organization. It will serve as a text around which file
systems courses can be organized. These courses will also be able to make
good use of several other recent books that devote sections to file
organization and search (37, 72).

This review is divided into three sections: General Issues, Aspects of
File Systems, and File Systems. The division between the last two areas is
somewhat artificial, both in the sense that some of the literature must be
discussed in more than one place and in the sense that one aspect of a
report is emphasized tn the exclusion of other aspects where the chosen
aspect seemed most important. However, rather than attempting to give a
balanced review of individual papers, we have tried to report significant
changes occurring over the entire literature of file organization.

GENERAL ISSUES

Evaluation of Systems
Although a separate chapter of this volume (Chapter 3) is devoted to
evaluation, a portion of that literature needs to be considered here because
of its potential importance in system design. The growth of machine files

ORGANIZATION, MAINTENANCE AND SEARCH OF MACHINE FILES 139

has increased the capability for making partial searches, and it is important
to be able to determine the extent to which file structure and search
techniques influence recall, precision, and other measures of system
performance.

Pollock (68) provides a brief but excellent review of some of the
measures which have been used for the evaluation of systems. He then
defines another, a normalized "sliding" ratio measure. Instead of having
two classes, his measure has multiple classes to which each retrieved
document is assigned according to its relevance to the query. This
approach should prove useful since it avoids the difficulty of having to
judge a document as completely relevant or irrelevant.

The primary measures for the evaluation of document retrieval systems
continue to be those of recall and precision. Swets (79) provides an
interesting representation of these measures, in which, by a change of
variables, he plots an operating characteristic curve of the type used in
statistics. His objective is to simplify the task of evaluation by replacing the
two measures with a single measure of performance. This, he argues, can
be done by treating the slopes of the operating characteristic curves as
equal. If they are equal, they can of course be ignored. However, his data
do not appear to justify this treatment. That is, a different selection method
will provide the best performance, depending upon the ratio of recall to
precision one is willing to accept.

As an alternative to the use of recall and precision for the measurement
of information transfer, Hayes (37) has suggested an abstract measure that
takes into account the amount of information in the search specification,
the total size of the file from which the result is selected, and the size of the
resulting retrieval.

While such an approach may prove useful, the measure developed still
will not incorporate the issues of system and user time and cost. So long as
this is the case, evaluation will be largely irrelevant to the design of file
systems. Hayes recognizes this in his introduction:

The third aspect organization arises because as the file gets
large enough, it is impossible, at least uneconomical, to scan every
item in the file to judge its relevancy. It is therefore necessary to
structure the file to provide indexing tnechanisms, and to provide
intermediate measures of degree of match which are less sophisticated
than the ultimate measure of relevancy. It is this third aspect which
really constitutes the technical problem in information retrieval
system design, since it is here that the size of the file, the requisite
response time, the degree of selectivity, and the accuracy of the
response all interact. (p. 265)

140 RALPH M. SHOFFNER

When measures incorporating all of these aspects are developed, they
will provide a quantitative basis for file systems design. Until that time,
design will continue as a highly subjective process.

Measurement of Association

The measurement of association is central to the organization and search
of machine files. Such measure'snent is needed in order to associate file
records with each other and to associate them with a search request.
Usually this measurement is of the match-mismatch type. That i, either a
given file record matches the search specification completely or it is
considered a mismatch. In this case, no estimate of the relative mismatch of
the file records is made.

While most operating file systems have been based on exact match,
considerable experimental work with statistical measures of association
has been performed. As a result of this work, associative measures have
reached the stage where they will be used in operating file systems. Jones
& Curtice (41) provide a comparison of term association measures. The
authors use a framework that encompasses most associative measures.
They define a weighting in which the measure of association of two index
terms is equal to the frequency of the joint occurrence of the terms divided
by the nth power of the frequency of one of the terms. By varying the value
of n, the behavior of the various associative measures can be approximated.
The authors provide an illustrative example, using a term taken from the
NASA collection, which contains 100,000 documents and 18,000 index
terms. In addition to providing useful approximations, the authors also
show that a specific value of n in the approximation formula impiies a
weighting of the relative importance of recall versus precision in a search
operation.

Salton's work (71) gives experitaental evidence of the useful aess of
associative techniques.

Specifically, the procedures based on synonym recognition,
weighted content identifiers, cosine correlation to match documents
and search requests, and document abstract processing are always
more effective than methods using simple word stem matches (without
synonym detection), nonweighted terms, correlation terms based only
on the number of matching terms, and analysis procedures which
consider only the titles of the documents being examined. (p. 1-4)

The importance of these procedures for operational systems appears to
be in the order in which they are mentioned. In general, the importance of
synonyms is already recognized. To a limited extent, weighted index terms

.2

S.

ORGANIZATION, MMNTENANCE AND SEA RCH OF MACHINE FILES 141

are already in use. The next important step will be the incorporation of
term pairs with associated frequency information so that requests tailored
for recall and precision can be satisfied without significant increases in
search cost.

Research on associative measurement is continuing, with two major
areas of investigation. One is the machine analysis of text to obtain the
appropriate index terms. (This work is covered in Chapter 6, on automated
language processing.) The other is iterative search, in which the retrieval
results and the associative measure are used to modify either the search
request or the indexing provided in the file. In addition to Salton's group,
groups reporting on associative adjustment systems include Jones, et al.
(42), Bryant, et al. (16, 73) and Lehigh University (2). The work reported
by Salton's group is of the greatest interest in that experimental results are
provided for techniques utilizing user feedback for the modification of
search.

ASPECTS OF FILE SYSTEMS

Logical Record Encoding
Record encoding has two separate components. The first component is the
specification of the logical content of the record. The literature concerned
with the determination of logical content is found in the preceding chapter
on document desc:iption and representation. However, a few documents
are discussed in this section because they have as a common characteristic
emphasis upon the development of a hierarchical classification system for
encoding the record infoimation. The second component of record
encoding is that of the representation of the record as it is held in computer
storage. This physical encoding is discussed in the next section.

Two papers report on the experimental application of the Universal
Decimal Classification (UDC) to machine search systems. Freeman &
Atherton (32) report on its application to 250 documents in the field of
oceanography, and Caless & Kirk (17) report on its application to an
unknown number of seismological documents at the VELA Seismic
Information Analysis Center (VESIAC), University of Michigan. Both
papers conclude that the UDC can be used for encoding and searching
documents. However, Freeman & Atherton point out that there is an
unanswered question of whether it should be used in preference to an
indexing language designed specifically for machine processing. Both
papers give an indication of some of the difficulties in adapting UDC for
machine search. Caless & Kirk indicate that extensive skills and
preparation were needed. The skills were in the subject area, in the
application of UDC, and in library classification. Their system is highly
dependent upon a skilled staff performing the encoding both of the

142 RALPH M. SHOFFNER

documents and of the search requests.
This dependence upon skilled staff is not unique to the UDC system,

but, rather, is inherent in any highly structured representation of document

content. The proper conclusion from this is not necessarily that such

systems should be abandoned, but, rather, that when they are used,
specialized information centers such as VESIAC should be set up. In this

way, the record encoding can be performed, in all of its complexity, by

information specialists and then can be distributed and used wherever
there is need for that literature. This, of course, is the direction in which
machine information systems have been proceeding during the last decade.

Just as many problems are encountered in the application of UDC,
many problems have been encountered in the use of classification

structures for chemical information systems. In general, the literature of
the current year represents a continuation of work reported by Tate (80).
Bowman (13) reports on the use of the Wiswesser line notation for 100,000
chemical compounds at Dow Chemical. He gives costs for their method of
encoding the chemical structure information. Starting with a legible
structure diagram and a molecular formula, only $i 76 was required to
code and check the notations and formulas for 1,000 compounds. He does
not indicate the length of training time for the encoders, nor does he
indicate how familiar they were with the process prior to its operation.

Lefkovitz (48, 49, 30) compares the two main approaches to the
encoding of compounds, the connection table and the line notation
methods, with respect to the requirements of a system handling approxi-
mately 3,000,000. In addition to the two basic approaches, he discusses a
derivative system called the Mechanical-Chemical Code (MCC). Although

not as complicated as the others, this code could serve as a rough screen in

an on-line retrieval system.
Two reports of the continuing work at Canadian Industries, Ltd.,

appeared during the year (39, 59, 82). The objective of this work has been
the automatic generation of a connection table from the Wiswesser
notation. This table is to be used in place of the original notation for
internal storage, search, and display purposes.

A study at Chemical Abstracts Service is concerned with automatic
translation from one representation to another. This one is concerned with
the conversion of traditional systematic nomenclature. Vander Stouw,

et al. (86) provide a preliminary discussion of this study, which shonld

produce some generally useful results.
Bobka & Subramaniam (10) report on the development of a chemical

coding system, called Medical Coding System (MCS). The system, which

was developed in the Comparative Systems Laboratory of Case Western

Reserve's Center for Documentation and Communication Research, is

ORGANIZATION, MAINTENANCE AND SEARCH OF MACHINE FILES 143

based upon a classification of chemicals by the type of units or groups
present. It does not record the sequence in which the functional units
appear; rather, each group is coded individually without reference to other

parts of the molecule. No comparison with other notation schemes is made,

and it is not clear why a different system was felt to be necessary for

encoding the compounds. Presumably some of the experimental and
operating systems that are capable of incorporating more than one type of

notation system will provide some of the comparative information
necessary to clarify the advantages and disadvantages of the various
notational schemes (38, 87).

Physical Record Encoding

Character Encoding. Physical encoding is concerned with the binary
representation use d to encode the data within the computer system. Most

systems have used encoding schemes in which characters are the units that

are independently represented. For alphanumeric data the most common

coding systems r..re the well-known Binary Coded Decimal (BCD), and the

American Staudard Code for Information Interchange (ASCII) six-bit and

eight-bit codes. Morena & McLean (64) recommend an Information
Processing Code (IPC), an eight-bit code constructed so that subsets of
seven, six, five, and four bits can be derived from it. Wnile defined as an
eight-bit code, the eighth bit is not used, and thus it is the seven-bit subset
that is presented in the paper. The intention of the authors is not to replace
the function of ASCII as an information interchange standard; rather, it is

to use IPC for internal information storage, particularly in on-line systems.

As the authors indicate, the internal information processing and system-

user interface requirements of on-line systems are of sufficient importance

to warrant consideration of specially designed codes to satisfy them. As the

number and size of on-line file systems increase, further attention to the
internal codes can be anticipated.

Word Encoding. Whereas a character-by-character representation of
nonnumeric information is likely to be the most desirable for manipulation

within the central processing unit and for output over the various
peripheral units, the increasing use of mass storage will foster the
development of coding schemes that require less storage than character-by-
character encoding. As is generally known, the encoding of natural
language is not compact because our words use only a small proportion of
the very large number of possible combinations of the 26 letters of the
alphabet. One approach to obtain a more compact representaiion has been

to develop systems that encode word-by-word rather than character-by-
character. These are ofzen referred to as code-comi. ression systems.

Although information theory provides a sound basis for the development

144 RALPH M. SHOFFNER

of efficient coding structures, the file systems literature reveals little use of
this theory. Bemer (6) devotes his paper to the use of compressed codes to
reduce the cost of long-line communication of natural language. He shows
that if the codes could be generated properly, variable-length coding would
be the most efficient because it can take advantage of the frequency of use
of words in the natural language. By this approach, the codes are
compressed to 35 % of the space required for a character-by-character
representation. Although he does not discuss the compression technique,
he apparently assumes that all programs and tables fit into the computer's
main memory.

Bemer estimates total coding and decoding time at 250 microseconds
pee word, on an IBM 7090. Using a cost of $800 per hour, he computes the
total conversion cost to be $0.0056 per word. While the estimates were
made for a different purpose, they can be used to indicate the potential of
code compression for file system storage. In the interval since this work
was done, the cost of equivalent processing has been reduced by approx-
imately 90%. Assuming that encoding and decoding times are roughly
equivalent, encoding siv..1.4k1 now cost approximately $0.0003 per word.

If the annual cost of the mass storage is $6 per thousand words, then a
code-compression strategy that reduces a space to less than half of the
original wouk: provide a storage cost reduction of more than $3 per
thousand words per year. Obviously, retranslation and other requirements
must be considered in order to determine the effectivimess of code
compression for file systems. Even so, it is clear that systems with mass
random-access storage could benefit from attention to code compression.

In sonvz. cases, non-unique codes may be useful in file systems. In this
area, Bourne & Ford (12) report experimental work showing the degree of
non-uniqueness as a function of the length of code generated. The analyses
were performed on files of 2,082 index terms and of 8,207 student names.
The transformations used were variant methods of selecting letters to be
dropped from the source word. The letters were chosen either on the basis
of position or on the basis of frequency of occurrence. They show that
savings in spacein an index, for examplecan be achieved without a
great loss of uniqueness. Marron, et al. (58, 28) describe COPAK, a
three-component code-compression system. One component, NUPAK,
converts fixed-point data to a compact form. Another, ANPAK, com-
presses alphanumeric data, either the output from the first component or
any other fixed string. The third component, IOPAK, provides a final
compression of the strings before output to a storage medium. At present,
NUPAK and ANPAK have been implemented.

ANPAK is the component of greatest interest for file systems. ANPAK
operates repetitively on the string of data and removes repeating elements

ORGANIZATION, MMNTENANCE AND SEARCH OF MACHINE FILES 145

from the string. The generated code contains all information necessary for
decoding without loss of original information. The authors give an
example of the use of ANPAK on text material for which character-by--
character encoding required 15,180 bits. This was encoded in 9,291 bits,
representing a compression to 61 % of the original size. No indication of
the processing requirements is given. However, the authors assert that such
compressior is economically feasible, since read-in time for compressed
information plus time for decompression is significantly less than read-in
time for the original information.

Field Encoding. Beyond the representation of the information on a
character or word basis, the next problem is that of mapping the logical
fields of the records into inWrnal storage. Benner (7) provides a design
technique for mapping logical records into physical records of fixed size.
By this method, a common program can perform all direct-access file
handling regardless of the specific content or size of the logical records.
This approach encounters the problem of determining the size of a physical
record and the fields of a logicai record that it should contain. Benner's
technique deals quantitatively with this issue in terms of the lengths of the
control versus the data portion of the fields, the activity of the fields, and
the distribution of field lengths. These variables are used to balance storage
utilization against access. From this balancing, the design of the record is
established. The author describes the results achieved using this technique
in the design of a bus:ness information system and estimates storage
utilization to be 65 %. This is the expectation that a character of storage
will be occupied by a character of useful information from the data base
(excluding control information). The length chosen for the physical record
was 796 bytes. The ratio of file processing time to application program
execution time is 1:1.2. The system operates with a mean inquiry response
time of 10 seconds.

Graphic Data Encoding. The rapid development of peripheral equip-
ment providing input and output of data in graphical form has stimulated
interest in the development of data structures for the storage of graphical
information. As Van Dam & Evans (85) indicate, data structures for
storing line drawings have been at one of two extremes. They have been
either descriptions suitable for direct output to a specific display device, or
hierarchical, interconnected list structures. The authors provide another
list structure, but one with less structure provided within the data. They
achieve this by defming a set of primitives that operate on the data to
develop the more complex structure. These primitives constitute the
Pictorial ENCodIng Language (PENCIL), major portions of which have
been implemented on an IBM 7040. In PENCIL, the unit of data is a
picture composed of points, lines, and other pictures. A picture is

146 RALPH M. SHOFFNER

represented by a Control Item and associated Line Items, Text Items, and
Information Items. Through the use of PENCIL primitives, one can define
or establish new data in the form of points, lines, etc. One can also
manipulate the data to move lines and points on the screen and can
perform affine transformations. Control can be used to clear working
storage, assign names to pictures, retrieve pictures from storage, display
their on an output device, delete components of the picture, etc.

The PENCIL approach is particularly interesting because it is integrated
within the more general MULTILANG system at the University of
Pennsylvania. Though MULTILANG is experimental, such mixed data
systems soon will be common. Therefore, file system designers must begin
to give more attention to the storage and mtrieval of graphical information
as well as of alphanumeric information.

The Logical Grouping of Records

To facilitate retrieval, it is desirable to group records that have the same or
related content. Where the content of a record is identified by a set of
assigned index terms, a common method of grouping the records is to list
them under each assigned index term. For systems of this type, Zunde,
et al. (94) define the distribution of index terms assigned to documents to
maximize information transmission. On the basis of information theory
argument, they obtain an equation for the desirable number of records to
which a term is assigned as a function of the average number of records
assigned per term for the entire file. This distribution is then compared
against the distribution of terms in two systems. Although one would
expect a uniform assignment of terms to be the most efficient, they do not
explain the reason this does not occur.

Long, et al. (53) have analyzed the rate at which the number of words in
a dictionary increases with the amounts of text analyzed. Their analysis is
part of an attempt to develop a set of keywords for the indexing of
radiological patient records. They have ercountered difficulty in the use of
word-rank order to establish access in that, beyond the first several
hundred words, about 70% of the remaining words occur with a frequency
of less than one in 10,000. They anticipate continuing the study to
determine whether filter techniques can be developed to give (approxi-
niately) 2,500 words with which to characterize the file.

In a variation of analyzing text in order to determine appropriate terms,
Armitage & Lynch (4) present the development of articulated subject
indexes by manipulating phrases. They show that for subject entries from
Chemical Abstracts, at least half of the articulated terms (i.e., a main term
with a subhead) can be generated from more general phrases by the use of
their rules. They have also applied the technique to 479 abstracts from

ORGANIZATION, MAINTENANCE AND SEARCH OF MACHINE FILES 147

Documentation Abstracts, and they conclude that an index can be de-
veloped from the titles of these abstracts.

Taken together, these papers show that a limited analysis of text can be
used to determine the logical grouping of similar records in diverse subject
areas.

Beyond the grouping of records that have individual index terms in
common, it is possible to group records based upon a determination of
general similarity. One of the continuing studies is carriM on at the
Cambridge Language Research Unit. Sparck Jones & Jackson (75, 76)
report on the current status of the Unit's clump-finding investigations.
Clustering is another term that has been used to describe grouping
procedures. Ide, et al., and Grauer & Messier (in Salton, 71, same as 26)'
report on the current state of the clustering programs under investigation
at Cornell. These programs are based upon the clustering algorithm
developed by J. J. Rocchio. This clustering algorithm is an alternative to
the Cambridge Language Research Unit's clumping approach. It is being
tested on the same data base used in the clumping investigation:
Cleverdon's collection of 1,400 documents from the Cranfield project.
From this, a comparison of the other two approaches should be possible.

A different approach to the grouping of records is that provided by a
document's citations. These citations provide linkages between records
that can be used to infer similar content. Part of the current work iS
concerned with the processing of common citations to infer similar
content. Thus, the objective is the same as that of clustering, but a different
kind of linkage information is used. Chien & Preparata (22, 69) use graph
theory to define a procedure for grouping documents by their "distance." It
is not known whether any test has been made of the algorithm developed.
However, it would be most useful to apply the Chien-Preparata algorithm
to the index terms of the Cleverdon documents in order to compare them
with the methods of clustering and of clumping.

The citation approach is based upon the processing of "citing/cited by"
relations that exist between records in a file. Levien & Maron (52) have
generalized this approach in their discussion of a system for inference
processing. In this system, relations that exist between records in the file
are processed to derive information not explicitly contained in the file.
Although a wide range of problems remain to be studied, their approach is
importam because it reduces the necessity to establish explicitly all of the
record groupings in the file structure.

Two papers are concerned with the grouping of records representing
chemical compounds. Uchida, et al. (84) are concerned with the evaluation
of fragmentation codes, linear ciphers and atom-by-atom topological codes.
Particularly, they have been concerned with a system capable of retrieving

'1
ii

Ili

148 RALPH M. SHOFFNER

material having common substructures. They discuss the results of 28
searches in a flie containing 841 alkaloids and their derivatives. Annitage,
et al. (3) report on the development of algorithms to detect similarities
among chemical compounds. Their purpose is to determine the largest
connected set of atoms and bonds common to any pair of chemical
structures. As investigations such as these proceed, the concepts of
similarity of chemical compounds should be developed enough to allow
grouping of compounds with similar substructures. This grouping will
reduce considerably the required search effort.

File Structure

Given that the records and the logical grouping of these records have been
defined, the task remaining is to obtain a machine file to map this logical
structure into the physical structure of the computer system. In contrast to
records that are characteristically free in form with many partial con-
nections, the physical records of a computer system are normally fixed and
rigid. Thus, for example, the physical records of a computer system's mass
storage have a given number of bits for each physical record. In this
situation, it is most unlikely that the logical records of the external world
will match the physical records of the computer system. Thus, computer
programs must be provided to translate the records from one form to the
other. The term "file structure" refers to the methods by which these
programs retain the logical records and their groupings within the rigid
system structure.

Two major concerns are reflected in thc current literature. One is the
development of more general, and more complex, file structures. The other
is the analysis of the effect of structure on access time.

Most of the current structure development involves variants of a
structure in which each logical record contains the information needed to
generate the address of the next logical record linked to it. Such structures
have been referred to as structured files, threaded-list files, multi-lia files,
etc. Gray (35) provides a brief review of many of the list-structure
approaches that have been used in computer-aided design. Ihay i nclude
the sketch-pad ring structures, the coral-ring structures, and numerous
others. This is a most useful paper because it shows the many similaiities
between these various approaches.

A number of specific list-linking techniques have been reported on
during the year. Gabrini (33) reports on an application of Multi-list, a
linked-list file system developed at the University of Pennsylvania, to the
Project TIP file of Physical Review articles. Ross (70) describes the AED
free storage package, which is part of the AED-1 complier system. The
package is general in that the blocks may be of any size and the programs

4

S.

ORGANIZATION, MAINTENANCE AND SEARCH OF MACHINE FILES 149

provide several different strategies for maintaining storage accounting.
Storage accounting and the reassembly of released storage into usable
units is generally a problem in such systems. Haddon & Waite (36) discuss
their procedure for reallocating variable-length records in order to free
space that was previously unallocatable because of its distribution between
these records. They describe the general procedure and give times for its
use on an English Electric KDF9. As described, the procedure is applied
to the fast memory of the central processing unit. Its extension to mass
storage is not discussed.

As list-processing languages make increasing use of mass storage, they
become more like general processors using list-linked structures. Two

papers related to list processing are concerned with the allocation of data
to mass storage or to fast memory. Cohen (24) discusses the results of a
program on an IBM 7044 with disc storage that allocates the records on the
basis of their frequency of utilization. Bobrow & Murphy (11) discuss a
similar application that utilizes a DEC PDP-1 with a drum memory. Both

conclude that frequency can be effectively used to allocate space.
Just as both of these approaches were heavily influenced by the

MULTICS system, so too was the system described by Barron, et al. (5).

They summarize the file handling facility that is provided on the Titan
computer at the University Mathematical Laboratory, Cambridge. In this
system, files are maintained over indefinite periods on a three-level system
having core, disc, and magnetic tape. Access is provided on the basis of the
name of a desired logical block of informationi.e., a group of records.
The system maintains necessary indexes tot provide the physical records
associated with the name, and to reallocate the physical records among the
peripheral storage units.

Morenoff & McLean (63) discuss multi-level storage organization in a
more abstract fashion. They suggest the definition of levels of the file in
terms of the accessibility characteristics of the organization. On this basis,
they obtain something around 30 to 40 levels, with access times from
nanoseconds to minutes or hours. They suggest that the data have home
addresses in the system that may be specified by the users to provide the
desired accessibility. Beyond this, the statistics of frequency of use could
be used to make blocks of information more accessible and thus make the
operation more efficient. Whether this approach has been implemented is

not indicated.
Several papers have been concerned with the quantitative effect of the

file structure on the expected average access time to obtain records from

the file. Lowe (54) has written a very good doctoral dissertation in which
he characterizes the average access time in terms of the number of index
terms per physical record that can be obtained in an inverted file

S.

4

150 RALPH M. SHOFFNER

organization, as opposed to a linked-list structure. He then extends his
consideration to the effects of truncating the index terms so that the full
index term does not necessarily appear within one physical record. This
latter portion of his work has been published as a separate paper (55).

Thompson, et al. (81) have produced a paper closely related to Lowe's,

in which they are concerned with the number of logical branches that need
to be included at a decision point to minimize search time. Although they
deal entirely with logical records, the limitation of the number of branches
that can be provided at a given decision point is a function also of the
physical record size.

Leimkuhler (51) takes a different approach. He considers the probability
of use of the logical records and organizes the file into zones of roughly
equivalent probabilities, in order to minimize the access time. He proposes

a distribution function for the spread of useful material through a file, and
he suggests that empiricai information indicates the desirability of a
two-level organization for scientific; literature. in this organization, 15 to
20% of the most useful documents would be examined first and would
provide a success probability of approximately 0.67. The search time is
apparently considered to be that required for reading and reviewing the
documents retrieved rather than the time for machine retrieval of the
document references. The additional effort that would be rewired to
retrieve all document references at the same time is not considered.

Although a number of papers relevant to file structure have been
published during the year, the most needed paper has not appeared. That
paper will provide a unifying quantitative model of file structure that will
cover the range from inverted file to linked-list structures and iclate the
structures to space, search, and update requirements.

File Search

As was indicated earlier, a measure of association is necessary both for
determining the logical grouping of the records and for matching those
records with requests. In general, the match criterion specified has been an

exact match of the logical combination of the specified values of the fields
and subfields of a record. Brandhorst (14) has suggested a method of using
term weights to bypass the use of Boolean logic. The determination of
proper relative term weights appears fairly straightforward and the
programming for such an approach reasonably simple. First, the proper
Boolean specification is set up. Then arbitrary weight values are assigned
to search terms, and the minimum total weight any document must achieve
in order to become a "hit" is specified. The following are two examples
(the plus denotes union and is read as "or," while the dot denotes
intersection and is read as "and"):

ORGANIZATION, MAINTENANCE AND SEARCH OF MACHINE FILES 151

(A + B) + (C D) A = 2, B = 2, C = 1, D = 1, WEIGHT Minimum = 2
(A + B) (C D) A = 1, B = 1, C = 2, D = 2, WEIGHT Minimum = 5

Brown (15) reports on the use of a retrieval system with approximately
60,000 compounds in operation at Eli Lilly. While there are some logical
combinations of search terms that cannot adequately be reflected in the
weighting technique, such as a union of intersections (A B) + (C D),
the technique may still be useful for operating retrieval systems.

The translation of the request from the user's language into the structure
required for the search system is a continuing problem of search
specification. Much work has been put into developing systems to handle
the natural language of the system user. Since the general problem has
been so intractable, the current emphasis is upon the use of limited subsets
of natural language.

Kellogg (43, 44) and Tonge (83) are both concerned with limited
processes for translating from the user's language to the system's internal
search control. Both are concerned with the search of relational data files
and both have arrived at an approach by which the user is provided with
the translation of his request for his approval or modification prior to
search. Kellogg's system, CONVERSE, is being constructed at System
Development Corporation (SDC) under the time-sharing system imple-
mented on the IBM Q-32. It appears that the portion of the CONVERSE
program concerned with the translation of the question to the search
control is in operation. It is not clear whether searches are being driven by
the control information obtained. Tonge's work appears to be in
approximately the same stage of development. It will be interesting to
follow both approaches as they develop.

A problem usually encountered in systems using a tiubset of natural
language is the tendency of the user to put in additional words that are
unnecessary and not defmed in the system. It is desirable to have the
facility within the system to ignore such words. Easy English, under
development at the Moore School and reported by Cautin, et al. (19),
removes noise words and questions the user when it encounters words that
it cannot recognize. Such facility will be most important for the infrequent
users of the console system.

Closely related to the specification of the search is the strategy of
carrying out the search. Where probabilistic or associative indexing is
utilized, the opportunity exists for modifying the search request on the
basis of the results obtained. Another search of the file can then be made
with the new request. One o' te most interesting programs in this area is
that of Salton's group (71) in vAtich the measure of association is the cosine
of the angle between the vectors represented by the index terms assigned

152 RALPH M. SHOFFNER

to the request and the file record. The subsequent automatic adjustment of
the retrieval request vector is achieved by modifying the vector with
another vector chosen to maximize the difference between the retrieved
documents that the user felt to be relevant and those that he deemed
irrelevant. The results to date indicate that it is possible to develop
procedures for controlled search in a file with associative indexing. Thus,
one does not have to obtain ever-larger amounts of material in an
ever-larger sphere around the original request. As file sizes increase and as
associative techniques are used more, greater attention will be given to
search strategies and their relation to the objectives of the ffle system.

List-Oriented Programming Languages

As file systems deal with the variability in nonnumeric records, more
complex data structures are required. As complex structures are incor-
porated into general-purpose systems, list-processing techniques will have
to be incorporated into the system in order to provide satisfactory
manipulation of these records.

Foster (30) has written a very good monograph on list processing. He
discusses the various aspects of these techniques: the data representation,
the operators available in the system, and special features such as "garbage
collection." This brief monograph is particularly useful because of his use
of ALGOL as a single language in which to define the list-processing
operations. He also discusses some of the well-known list-processing
languages, such as IPL-V, LISP and COMIT.

List-processing systems have had a significant impact on standard
computer languages. Lawson (47) discusses list processing in PL/i. While
the facility in PL/1 will certainly be most useful, it is well to note the
caution with which Lawson concludes his summary: "The user should be
careful to understand the structure and content of all list elements, since he
may inadvertently reference a value which has differing characteristics
from the based variable declaration." This warning is particularly apt,
since the user is developing his own list-processing macros out of the basic
PL/1 language. Thus, he must maintain the caution appropriate to any
systems programming.

The development of new list-processing languages is continuing.
Blackwell (8) provides a brief discussion of a new list-processing language,
LOLITA. This language is being implemented in the Culler-Fried system,
which uses two keyboards and a display scope connected to a Bunker-
Ramo 340 computer. Many of the list-processing operations are controlled
by the console operator through a set of function keys. Blackwell discusses
the various function keys available to the operator. With these function
keys he can define, load, store, or concatenate list symbols. The major

ORGANIZATION, MAINTENANCE AND SEARCH OF MACHINE FILES 153

difference between LOLITA and other languages, such as LISP or IPL-V,
is the availability of these function operators to the man at the console. It
appears that the language structure is similar to an elementary CAI
language, but with the addition of a number of special-purpose algebraic
operators to make the system amenable to computational applications.

The investigation of list-processing techniques is continuing at the
Moore School of Electrical Engineering. Carr & Gray (18) report on the
current status of this work, in which they are atternnting to extend the
limits of list processing in several directions. Among the issues they are
investigating are: the Growing Machine, a relocatable software system
with simple procedures for addition; an "all-pushdown" computer; and a
software system to produce software to specification. This project is quite
ambitious, and it should produce results of importance to file systems.

FILE SYSTEMS

The previous section reviewed the contributions that have been made to
individual aspects of file systems. This section reviews the operating file

systems on which there have been reports during the past year.
The section is divided into two partsData Management Systems and

Special-Purpose Systems. Data management systems are those designed to
be general purpose in the sense that they can be used to maintain and
search files with many different types of information in different file
structures. Special-purpose systems are those developed for specific
purposes, even though they may have some generality. The discussion of
these systems is divided into two parts, dealing, respectively, with
chemical information systems and other systems.

Data Management Systems

Most of the literature of the current year consists of reports on data
management systems that have been previously announced. 01 le (66, 67)
has written two review articles in which he discusses GIS, IDS, INFOL,
and TDMS. Though brief, they serve as a good introduction for those who
wish to know how these systems relate to each other.

The Time-Shared Data Management System (TDMS) is continuing
under development at SDC (91). This system, an outgrowth of the
TSS-LUCID system, was discussed by Minker & Sable (61) and by Bleier
(9). The latter article provides information on the data structure definition
of TDMS. Data structure definition is critical to a data management
system, since it determines the amount of structural variation the data can
have and implies the corresponding processing effort requinxi. From
Bleier's article, the TDMS data structure appears to be quite flexible from
the point of view of the definition of the individual logical record. Variably

154 RALPH M. SHOFFNER

appearing fields and subfields can be maintained and searched with no
difficulty. Also, it appears th.it variable-length fields can be handled. With

respect to the logical grouping of records, indexes referred to as
concordances can be maintained as specified by the user. However,
Bleier does not discuss the structure of this concordance or the method of
specifying which elements of a logical record will be included in
concordances.

Williams & Bartram (93) discuss another aspect of TDMS, that of report
generation. The report generation program is called COMPOSE/
PRODUCE. The COMPOSE phase of the program is used for the on-line
development of the report specification. The PRODUCE phase of the
program obtains the information from the report files and produces the

report desired. This phase of the process is carried on with little or no
interaction with the user. From the paper it appears that the capabilities of
the report generator are standard. The significant difference between it and
traditional report generators lies in the user interaction in the COMPOSE
portion of the program. TI-ere is little information about the nature of this
interaction beyond the statement that there has been an attempt to use a
restricted subset of English af, the control language for the console user. In
the examples given, this language appears to be very much like COBOL in
the English it uses. There is no indication whether the sophisticated user
can bypass the verbosity requIred by such an approach.

Another group of SDC personnel have reported upon the problems of
statistical routines for data analysis in an on-line system. Shure, et al. (74)

call these routines TRACE, for Time-Shared Routines for Analysis,
Classification, and Evaluation. This system is implemented on the Q-32
Time-Sharing System. As the authors indicate, such on-line general
analysis programs will be of considerable importance to the researcher
who is attempting to perform on-line analysis of very large quantities of
information such as that derived from experiments in the behavioral
sciences. As a result, it would seem most desirable to incorporate this
facility into TDMS.

In last year's Annual Review, Minker & Sable discuss several other data
management systems that were in the developmental stage, including
DM-1, ADAM, and COLINGO. Dixon & Sable (29) provide a general
discussion of DM-1 and its current capabilities. They do not indicate the
stage of development of DM-1, but their discussion in the present tense
implies that DM-1 exists. In providing an overview of the system, they
discuss briefly the languages used, the organization of the indexes needed
to provide for record definition and maintenance, the types of program
tasks that can be carried out, and the search capability of the system. The
structure of the indexing provided is such that records with variable-length

ORGANIZATION, MAINTENANCE AND SEARCH OF MACHINE FILES 155

fields and nested sub-fields can be specified to the system. Linkage of
separate records can also be performed. Thus, for example, the specifica-
tion of the vendor in an inventory record might be made by the vendor
number. This provides a reference to a separate vendor record in which the
vendor's name, address, etc., are provided. Programs would then access
both records, to retrieve needed information. To indicate the flexibility of
the structure, it appears that the Multi-list structure could be duplicated
using this facility.

It is interesting to compare the index structure used in DM-1 with the
index structure provided in TDMS. On the surface they are very similar, in
that each goes through several decoding stages to convert a field name to a
code representing the position of that field and then to a record. To control
the highly variable data structure, every field in a record is separately
indexed so that access to the records in the file can be obtained via any of
the logical fields defmed.

In DM-1, it seems that there is no way to define certain fields as report
fields only. If so, there would be an unnecessary expansion caused by
including these fields in the indexes.

Connors (25) provides an initial discussion of some of the experience
and results with ADAM (Advanced Data Management), the MITRE
Corporation's experimental general information processing system. Char
& Foreman (21) provide a final report of the experiments utilizing ADAM.
These articles are refreshingly candid, and the system planner should read
them carefully before embarking on the development of a data manage-
ment system.

One of the central problems mentioned is that a generalized system
requires a very sophisticated user if some ridiculously excessive machine
times are to be avoided. Connors indicates these requirements: "The user
must be aware of the implications of how his data is structured; he must
understand and control the optimization." He then goes on to give an
example of a trivial but actual user-implemented problemto multiply
price by quantity in order to obtain total price. Unfortunately, as a result of
the combination of the data organization and the file generation statements
he used, the fields were placed into different files and more than one hour
of running time was consumed on the IBM 7030 before the procedure was
killed. Connors points out that the user can specify a different data
structure that would make this search and computation faster, but that he
might at the same time be making the procedure more difficult for other
uses of the information. Only the user is in the position to estimate what
the mix of his processing is going to be, and therefore only he can structure
his control of the system. All of this is based upon the assumption that he
knows how the system will perform in response to the processes that he

156 RALPH M. SHOFFNER

specifies, and thus can control the system to make it effective in response
to his requirements.

Char & Foreman also encountered the problem of the sophisticated user.
Plans were developed for the installation of a remote station at
Headquarters, Air Force Logistics Command. This terminal was going to
be used so that all committee members, after training, could be making
their own queries and interrogations of the system.

Although a number of attempts were made by most members of the

committee at writing their own queries, they were successful at only
the simplest queries, and then quite often made mistakes of
punctuation or in typing. In nearly all cases, the mission personnel
were inclined to turn their more complex qucries over to a committee
member who was a programmer and had mastered the Fable language
and remote equipment to a greater degree . . . some mission person-
nel, as a matter of principle, did not believe it should be their function
to learn a programming language, and others who would try did not
have the time and/or patience to master the intricacies of the language
and equipment, and became discouraged after repeated failure in
attempting to use the English like syntax query language. (p. 52)

When taken out of context these remarks may seem very negative with
respect to the capability of the ADAM system. However, the ADAM
system is reasonably capable as a data management system. In addition,
the experiment was well run, and its findings do indicate a need for
continued development of data management systems. There are, however,
serious problems in the proper use of such systems, and further controlled
experimentation with them is needed to provide guidelines for their
development and use.

Another line of activity at MITRE has been the development of AESOP
(An Evolutionary System for On-line Processing). Summers & Bennett
(78) provide a final report on this prototype interactive system. AESOP is

an experimental system implemented on the IBM 7030 (STRETCH)
computer and using CRT consoles. Although the article describes AESOP
as a data-base-oriented system, it is concerned with the terminal control
aspects of the system, display, editing, printing, and programming. The
artic!,,: gives no information about the system's data management capabil-

ity.
Two new data managemeht systems implemented on IBM 1400-series

systems, have been reported, along with additional reporting on two earlier
systems. The new systems are C-10 and GIPSY (Generalized Information
Processing System). The two older systems are MADAM (Moderately

ORGANIZATION, MAINTENANCE AND SEARCH OF MACHINE FILES 157

Advanced Data Management) and CFSS (Combined File Search System).
Steil (77) describes work that was originally intended to implement

MITRE's COLINGO (now called C-10) as a new version on the 1410. He
gives a very good history of the sequence in development objectives and
the changes in direction that took place as a result of their fmdings. For
example, they decided to program the system in a LISP-like interpreter.
When they began debugging their programs, they found that the
performance was off by several orders of magnitude. As a result, what
began as the development of another file management system became an
experiment to improve the performance of the USP-like language. The
paper is of interest because the author chooses to discuss some of the
things that were done wrong as well as those things that were done right.

GIPSY is being used by the International Atomic Energy Agency in
Vienna. Del Bigio (27) has developed a program manual for the system,
which was developed to process bibliographic infonnation. Because of this
original objective, it has certain rigidities in terms of the way that fields are
identified. However, it does include the capability for variable-length fields
and repeating fields, and it permits specification of the fields that will serve
as indexes to the records. While a program manual is not meant for casual
reading, any who are interested in implementing an IBM 1400 file
management system would benefit from this document,

Freeman & Atherton (32) report on the application of another file
management system for the IBM 1400 to the problem of bibliographic
records. Specifically, they are concerned with organizing and searching
document files utilizing CFSS, previously discussed by Climenson (23).
Although the primary interest of the authors is the use of the Universal
Decimal Classification for retrieval purposes, they indicate briefly the
method by which the file was mapped into CFSS and the characteristics of
the system that made it beneficial to use for the experimental system that
they set up. CFSS is being reprogrammed for the IBM 360 by Service
Bureau Corporation. Its availability should be checked for the next review
article.

Franks (31) has provided a nontechnical article on the characteristics of
the MADAM system. He indicates that MADAM is now available on the
IBM 360/30, but does not indicate whether this is through emulation or
reprogramming.

Given the development of on-line data management systems and the
proliferation of 1401-based systems, what else could possibly be done in
the development of general systems? Vinsonhaler (89, 90) has written a
system in FORTRAN IV. His system, BIRS (Basic Indexing and
Retrieval System), is used primarily for document control. The system is
organized to utilize a 32,000-word core machine and six tape drives. The

1 58 RALPH M. SHOFFNER

description given is for the implementation on a CDC 3600 at Michigan
State University. This system provides for access to the file by index keys.
Such access can be on the basis of providing a printed listing of indexes, or
by automated search of the file. BIRS/II has been released for national
distribution. In addition to the capabilities of BIRS/I, it will include the
ability to handle coordinate and weighted indexing and will incorporate
sophisticated relevance-searching systems. Finally, it will include word-
root analysis and a synonym dictionary for improved searching capability.
While the inherent problems of tape-oriented systems for machine
searching have been well documented, there are at the same time many
applications in which such systems al e extremely useful. In this situation,
the BIRS/II system will provide a rapid method for a person to try out this
method of information control on his own files.

Special-Purpose Systems

Chemical Information Systems. Several of the organizations that are
developing chemical information systems have been mentioned in the
earlier description of the representation of chemical compounds. Hoffman
(38) discusses the chemical structure storage and search system now
operating at Du Pont. Climenson (23) discussed an early version of this
system. To provide access to the basic documents of the file, there are four
separate files: the compound file, the general term file, the thesaurus file,
and the fragment file. Chemical structures are stored in a separate registry
file, which is used for topological substructure search. Hoffman gives more
recent information on the file characteristics, size, growth rate, the cost of
data preparation, and the cost of file search operations. The registry files
contain 69,000 compounds, and the total input cost per compound is 88
cents. While the computer cost for searching is, of course, a function of the
number of questions per batch, the indications are that for searches of the
nonpolyrner registry file the cost is $55 (for 55,000 nonpolymers). The
incremental cost per search question is estimated to be $12. At the present
time, the system is implemented on an IBM 7010 with 1301 disc. During
1967 a major study of file organization was undertaken to lead to the
storage of their files on direct access devices in preparation for on-line
searching. No report is available yet.

Registration and searching of chemical compounds is performed using
conventions that define a connection number and oxidation state for each
item. Polymers are described in terms of significant repeating units and
end g rou p s. Characters in each registry record indicate the presence or
absence of information relating to the compound in the document system
files.

Van Meter, et al. (87) describe an experimental chemical information

ORGANIZATION, MAINTENANCE AND SEARCH OF MACHINE FILES 159

system developed under the Army Chemical Information and Data
Systems Organization. The goal of the work is practical: to develop a
system to satisfy the needs of the Army for cJ:emical information and data.
The input for the system consists of 230,000 chemical compounds from
three separate filesthe Toxicological Information Center of Edgewood
Arsenal (TOXINFO) file, the Chemical-Biological Coordination Center
(CBCC) file, and the Chemical Abstracts Service (CAS) file. The contents
of the system include thf:, molecular formula, structural formula images,
connection table representation of structural formulas, CIDS registry
number, nomenclature, liWature references, file code, and file registry
number. The paper is heavily oriented toward the logical aspects of
representing information and the nature of the searches that are possible as
a result of the logical information included in the file. The physical aspects
of the operation are not included. The authors indicate that these aspects
will be discussed in a forthcoming report on the system.

Matthews & Thomson (59) dicuss briefly a COBOL-organized system
to carry out weighted coordinate term searfth utilizing an index stored on
magnetic tape. A weighted swch Is based on selecting a group of search
terms that express each concept ol the inquiry, assigning each a weight
indicative of its relative importance, and computing a "score" for answers
resulting from combinations of these terms. While it may appear that this
search method is similar to that proposed by Brandhorst, that is not the
intention. Rather, the logic is a conjunction of the terms, and the weighting
indicates the relative importance the user attaches to these individual
terms. This system has been used :o retrieve patents from the Information
for Industry patent file. It is repoited that "A typical question with ten
terms having an average frequency of posting would require 12 minutes on
an IBM 1410 (40K) computer, for which current charges are $15. This time
assumes that the inquiry is one of about five inquiries which have been
processed together." Such information would be more meaningful if it
indicated also the size of the tape file over which the searches are being
processed.

Other Systems. Kessler (45) gives an overview of the on-line aspects of
project TIP (Technical Information Program) at M.I.T. There are now
60,000 articles, covering 32 of the physics journals, in the system. Half are
on disc. and half are on tape ready to go to disc. Access over the system is
to citations backed up by two microfilm-based printout facilities for access
to the documents. Through Project MAC, the experiment has a wide range
of users because access to the IBM 7094-based system is through 150
on-line keyboards.

Anderson, et al. (1) discuss the experimental literature system that is
available for reference retrieval experimentation at Lehigh University's

It

160 RALPH M. SHOFFNER

Center for the %formation Sciences. The file at the present time contains
2,500 document references in the information sciences. These art being
transferred to disc, and on-line search programs are being set up to operate
through GE Data Net-15s and Model 33 Teletypes. The access will be to
both serial and inverted files, which will be maintained on the GE 225. The
search programs will be capable of both exact match and associative
searching. The conversation routine for specifying a search uses normal
search terms, not search codes. It appears, however, that the searches are
placed entirely in terms of conjunction of terms, without "or" logic
available.

The Information Systems Laboratory (ISL) of the Moore School of
Electrical Engineering, University of Pennsylvania, has been described by
Rubinoff (62). One of the interesting assertions made is that computer aid
must be provided not only for searching a document file but also for
librarian-like assistance that the user may obtain when he is operating in
real time with the computer system over his on-line console. In other
words, it must also be able to indicate to the user such information as how
the file is organized and what the meanings are of index terms that were
adopted Iby indexers at the time of indexing. The planned system will have
the following features: The user wilt have direct console access to the
system. He will be able to obtain not only catalog and index data, but
descriptions of the system itself. He will be permitted an unrestricted
search vocabulary, and it will be the responsibility of the system to
interpret search terms, to request clarifications, or to provide meanings of
terms upon request.

Much like Project INTREX, the ISL document system is expected to
incorporate many different access points, such as language, color of the
document, etc. In its first form, this system is implemented on an IBM
7040 computer with an IBM 1301 disc. A DEC PDP-8 serves as an
interface between the users and the 7040 system. This laboratory will be
an outstanding place within which to do the research that will continue the
excellen t reputation of the Moore School.

A set of reports by Magnino (56, 57) and Nelson (65) discuss an
operational system that uses text processing of input documents and
disseminates the information to 2,400 user profiles for IBM and World
Trade Corporation. The text processing is based upon the entire amount of
text available in machine form. In most cases this is an abstract of 200 to
300 words, plus title and other bibliographic data. It appears that searching
is based upon matching the text of the documents with the precise search
terms provided by the user. This requires the user to set up hll of the
alternative terms that he wishes to have used in the search.

From an input of 12,500 documents, more than 500,000 abstl acts were

ORGANIZATION, MAINTENANCE AND SEARCH OF MACHINE FILES 161

sent out during 1966, to approximately 1,400 users. Thus the ratio of
notifications per document per user was .030, meaning that the average
user received abstracts of 3 % of the documents announced during the year.
The 1966 data provided show that over 83 % of the notifications (on a
70% return of evaluation information) were judged by the users to be
relevant to their interests. While this judgment of relevance is extremely
different from the relevance determined when a person is making a specific
search Yequest, it shows that the system is providing information the user
wants to see. It is most encouraging that an operation of this magnitude is
providing useful service to its users.

Two organizations that have been mentioned several times are MITRE
and Cornell University. Both organizations have made significant contribu-
tions to file organization and search, and both have embarked upon
significant efforts in text processing in file systems. From the two
documents provided on SAFARI (20, 92), the present concerns of
investigators are for text analysis and they have not attempted to
incorporate search and retrieval capabilities. By contrast, Salton's work at
Cornell is well advanced. The SMART system is a proven research vehicle
within which the text processing is being incorporated. In the past,
excellent work has been provided by the many organizations in the field,
and it is likely that as they enter new areas of inquiry, they will similarly
make further significant contributions.

CONCLUSION

Because this has been a review of a single year's literature, it has neces-
sarily covered only small portions of many ongoing projects. As a result,
it is difficult to isolate a single "significant event" for the year. Neverthe-
less, it is possible to derive an implied significance for the file system liter-
ature of 1967 by projecting what should occur within the next three years.

All programs in information processing education will incorporate at
least one course devoted to the creation and maintenance of file systems.
Quantitative models of file systems will incorporate characteristics of both
structure and use and will be used to predict the following: response time,
storage requirement, processing effort, and transaction capacity. Finally,
operational file systems will commonly utilize statistical analysis, such as
that of the co-occurrence of indexing terms, to improve their retrieval
performance.

In three years, the principal research concern will be user interaction
with on-line graphic display file systems. As a result of its dynamic aspect,
this research will necessitate further work on the issues of structure, search
strategy, quantitative analysis, and, of course, education. Overall, our
understanding of file systems is reasonably good. The work, in fact, is

162 RALPH M. SHOFFNER

more extensive and better than this reviewer anticipated. There are now a
number of strong individuals and groups concerned with file systems.
From this, we can anticipate that knowledge and application will be
extended rapidly.

REFERENCES

(1) ANDERSON, RONALD R.; AMICO, ANTHONY F.; GREEN, JAMES S.
Experimental retrieval systems studies. Report no. 2; Systems manual for experimental
literature collection and reference retrieval system. Center for the Information
Sciences, Lehigh University, Bethlehem, Pa., 15 April 1967, 59 p. (AFOSR-724-65)
(AD-652 279)

(2) ANDERSON, RONALD R.; KASARDA, ANDREW J.; REED, DAVID M.
Experimental retrieval systems studies. Report no. 3. Center for the Information
Sciences, Lehigh University, Bethlehem, Pa., 15 April 1967, 88 p. (NSF-GE-2569)
(AD-653 280)

(3) ARMITAGE, JANET E.; CROWE, J. E.; EV ANS, P. N.; LYNCH, M. F.;
McGUIRK, J. A. Documentation of chemical reactions by computer analysis of
structural changes. Journal of Chemical Documentation, 7 (November 1967) 209-21 5.

(4) ARMITAGE, JANET E.; LYNCH, MICHAEL F. Articulation in the generation of
subject indexes by computer. Journal of Chemical Documentation, 7 (August 1967)
170-178. Presented at the 153rd Meeting of the American Chemical Society, Division
of Chemical Literature, Miami, Fla., 9-14 April 1967.

(5) BARRON, D. W.; FRASER, A. G.; HARTLEY, D. F.; LANDY, B.; NEEDHAM,
R. M. File handling at Cambridge University. In: AFIPS Conference Proceedings, vol.
30; 1967 Spring Joint Computer Conference, Atlantic City, N.J., 18-20 April.
Thompson, Washington, D.C., 1967, p. 163-167.

(6) BEMER, R. W. Do it by the numbersdigital shorthand. Communications of the
ACM, 3 (October 1960) 530-536.

(7) BENNER, FRANK H. On designing generalized file records for management
information systems. In: AFIPS Conference Proceedings, vol. 31: 1967 Fall Joint
Computer Conference, Anaheim, Calif., 14-16 November. Thompson, Washington,
D.C., 1967, p. 291-303.

(8) BLACKWELL, FREDERICK W. An on-line symbol manipulation system. In:
Proceedings of 22nd National Conference, Association for Computing Machinery.
Thompson, Washington, D.C., 1967, p. 203-209.

(9) BLEIER, ROBERT E. Treating hierarchical data structures in the SDC Time-Shared
Data Management System (TDMS). System Development Corp., Santa Monica, Calif.,
29 August 1967, 23 p. (SP-2750) Also published in: Proceedings of 22nd National
Conference, Association for Computing Machinery. Thompson, Washington, D.C.,
1967, p. 41-49.

(10) BOBKA, MARILYN E.; SUBRAMANIAM, J. B. A computer oriented scheme for
coding chemicals in the field of biomedicine. Center for Documentation and
Communication Research, School of Library Science, Case Western Reserve Univer-
sity, Cleveland, Ohio, July 1967, 22 p. (Comparative Systems Lab. Technical report no.
1 I)

(11) BOBROW, DANIEL G.; MURPHY, DANIEL L. The structure of a LISP system
using two-level storage. Bolt Beranek and Newman Inc., Cambridge, Mass., 4
November 1966, 26 p. (Report no. Scientific-6) (AFCRL 66-774) (AD-647 601) Also
published in: Communications of the ACM, 10 (March 1967) 155-159.

(12) BOURNE, CHARLES P. FORD, DONALD F. A study of methods for systemati-
cally abbreviating English words and names. Journal of the Association for Computing
Machinery, 8 (October 1961) 538-552.

(13) BOWMAN, CARLOS M.; LANDEE, FRANC A.; RESLOCK, MARY H. A

ORGANIZATION, MAINTENANCE AND SEARCH OF MACHINE FILES 163

chemically oriented information storage and retrieval system. I: Storage and
verification of structural information. Journal of Chemical Documentation, 7 (February

1967) 43-47.
(14) BRANDHORST, W. T. Simulation of Boolean logic constraints through the use of

term weights. American Documentation, 17 (July 1966) 145-146.
(15) BROWN, WILLIAM F. A matrix information storage and retrieval system utilizing an

!BM-360, Model-30 Computer. In: Proceedings of the 30th Annual Meeting of the
American Documentation Institute, New York. October 1967. Thompson, Washington,
D.C., 1967, p. 36-40.

(16) BRYANT, EDWARD C.; SEARLS, DONALD T.; SHUMWAY, ROBERT H.;
WEINMAN, DAVID G. Associative adjustments to reduce errors in document
screening. Westat Research, Inc., Bethesda, Md., 31 March 1967, 78 p. (Final report
no. 66-301) (AFOSR 67-0980) (AD-65I 630)

(17) CALESS, T. W.; KIRK, D. B. An appiication of UDC to machine searching. Journal
of Documentation, 23 (September 1967) 208-215.

(18) CARR, J. W., III; GRAY, H. J.; et al. List processing research techniques. Third
quarterly report, December 1966April 1967. Moore School of Electrical Engineering,
University of Pennsylvania, Philadelphia, September 1967. 120 p. (Moore School
Report 68-03) (Technical report ECOM 02377-3)

(19) CAUTIN, HARVEY; LOWE, THOMAS C.; RAPP, FREDERICKA; RUBINOFF,
MORRIS. An experimental on-line information retrieval system. University of
Pennsylvania, Moore School of Electrical Engineering, Philadelphia, April 1967,
107 p.; 1967, 20 p.

(20) CHAPIN, P. G.; GROSS, L. N.; NORTON, L. M.; BELLER, R. J.; BROWNE, C. T.
SAFARI, an on-line text-processing system user's manual. MITRE Corp., Bedford,
Mass. March 1967, 34 p. (Information System Language Studies no. 15) (MTP-60)
(MITRE Project 1108)

(21) CHAR, BEVERLY F.; FOREMAN, ALLING C. Joint AFLCIESDIMITRE Ad-
vanced Data Management (ADAM) Equipment. MITRE Corp., Bedford, Mass.,
February 1967, 124 p. (Final report no. MTR-285) (ESD TR-66-330) (AD-648 226)

(22) CHIEN, R. T.; PREPARATA, F. P. Topological structures of information retrieval
systems. University of Illinois, Coordinated Science Lab., Urbana, October 1966, 19 p.
(Report no. R-325) (AD-642 501)

(23) CLIMENSON, W. DOUGLAS. File organization and search techniques. In: Annual
review of information science and technology. Carlos A. Cuadra, ed. Interscience, New
York, 1966, vol. I, p. 107-135.

(24) COHEN, JACQUES. A use of fast and slow memories in list-processing languages.
Communications of the ACM, 10 (February 1967) 82-86.

(25) CONNORS, THOMAS L. Software concerns in advanced information systems. In:
Walker, Donald E., ed. Information system science and technology. Papers prepared
for the Third Congress. Thompson, Washington, D.C., 1967, p. 395-398.

(26) CORNELL UNIVERSITY. DEPARTMENT OF COMPUTER SCIENCE. Informa-
tion storage and retrieval. Scientific report no. ISR-12 to the National Science
Foundation. Reports on evaluation, clustering, and feedback. Gerard Salton, Project
Director. Ithaca, N.Y., June 1967, 1 vol. (various pagings)

(27) Del BIGIO, G. GIPSY: Generalized Information Processing System. Program manual.
Internal publicption of International Atomic Energy Agency, Vienna, Austria, 16 May
1967, 92 p.

(28) DeMAINE, P. A. D.; KLOSS, K.; MARRON, B. A. The SOLID system. II: Numeric
compression. III: Alphanumeric compression. National Bureau of Standards, Washing-
ton, D.C., 15 August 1967. (Technical note 413)

(29) DIXON, P. J.; SABLE, J. DM-I: A generalized data management system. In: AFIPS
Conference Proceedings, vol. 30; 1967 Spring Joint Computer Conference, Atlantic
City, N.J. 18-20 April. Thompson, Washington, D.C., 1967, p. 185-198.

(30) FOSTER, J. M. List processing. American Elsevier, London and New York, 1967,
54 p. (Macdonald computer monographs)

164 RALPH M. SHOFFNER

(31) FRANKS, E. W. The MADAM System: data management with a small computer.
System Development Corp., Santa Monica, Calif., 8 September 1967, 16 p. (SP-2944)
(AD-658 472)

(32) FREEMAN, ROBERT; ATHERTON, PAULINE. File organization and search
strategy using the Universal Decimal Classification in mechanized reference retrieval
systems. American Institute of Physics, UDC Project, New York, 15 September 1967,
30 p. (Report no. AIP/UDC-5) (PB-176 152)

(33) GABRINI, PHILIPPE J. Automatic introduction of information into a remote-access
system: a physics library catalog. University of Pennsylvania, Moore School of
Electrical Engineering, Philadelphia, I November 1966, 79 p. (Technical Report, no.
67-09) (AD-641 564)

(34) GRAUER, ROBERT T.; MESSIER, MICHEL. An evaluation of Rocchio's clustering
algorithm. In: Cornell University. Dept. of Computer Science. Information storage and
retrieval. Report no. ISR-I2 to NSF. Gerard Salton, Director. Ithaca, N.Y., June 1967,
sec.-6 (39 p.)

(35) GRAY, J. C. Compound data structure for computer aided design; a survey. In:
Proceedings of the 22nd National Conference, Association for Computing Machinery.
Thompson, Washington, D.C., 1967, p. 355-365.

(36) HADDON, B. K.; WAITE, W. M. A compaction procedure for variable-length storage
elements. Computer Journal, 10 (August 1967) 162-167.

(37) HAYES, ROBERT M. A theory for file organization. In: Karp lus, Walter J., ed.
On-line computing: time-shared computer systems. McGraw-Hill, New York, 1967, p.
264-289.

(38) HOFFMAN, WARREN S. An integrated chemical structure storage and search
system operating at Du Pont. In: American Chemical Society. Abstracts of papers,
154th Meeting, Chicago, 10-15 September 1967. Washington, D.C., 1967, 16 p. (Sec.
G-Div. of Chem. Lit., paper 15)

(39) HYDE, E.; MATTHEWS, F. W.; THOMSON, LUCILLE H.; WISWESSER, W. J.
Conversion of Wiswesser Notation to a connectivity matrix for organic ccmpounds.
Journal of Chemical Documentation, 7 (November 1967) 200-204.

(40) IDE, ELEANOR; WILLIAMSON, R.; WILLIAMSON, D. The Cornell programs for
cluster searching and relevance feedback. In: Cornell University. Dept. of Computer
Science. Information storage and retrieval. Report no. ISR-I2 to NSF. Gerard Salton,
Director. Ithaca, N.Y., June 1967, sec.-4 (13 p.)

(41) JONES, PAUL E.; CURTICE, ROBERT M.. A framework for comparing term
association measures. American Documentation, 18 (July 1967) 153-161.

(42) JONES, PAUL E; GIULIANO, VINCENT E.; CURTICE, ROBERT M. Papers on
automatic language processing. Arthur D. Little, Inc., Cambridge, Mass., February
1967, 3 vols. (ESD TR-67-202, vol. 1-3) Vol. I: Selected collection statistics and data
analyses. (AD-649 073); Vol. 2: Linear models for associative retrieval. (AD-649 038);
Vol. 3: Development of string indexing techniques. (AD-649 039)

(43) KELLOGG, CHARLES H. CONVERSEa system for the on-line description and
retrieval of structured data using natural language. System Development Corp., Santa
Monica, Calif., 26 May 1967, 16 p. (SP-2635)

(44) KELLOGG, CHARLES H. On-line translation of natural language questions into
artificial language queries. System Development Corp., Santa Monica, Calif., 28 April
1967, 47 p. (SP-2827)

(45) KESSLER, M. M. The "on-line" technical information system at M.I.T.Project TIP.
In: 1967 IEEE International Convention Record. Institute of Electrical and Electronics
Engineers, New York, 1967, part 10, p. 40-43.

(46) LAMB, SIDNEY M.; JACOBSEN, WILLIAM H., JR. A high speed large capacity
dictionary system. Mechanical Translation (MT), 6 (November 1961) 76-107.

(47) LAWSON, HAROLD W., JR. PL/I list processing. Communications of the ACM, 10
(June 1967) 358-367.

(48) LEFKOVITZ, DAVID. A chemical notation and code for computer manipulation.
Journal of Chemical Documentation, 7 (November 1967) 186-192.

ORGANIZATION, MAINTENANCE AND SEARCH OF MACHINE FILES 165

(49) LEFKOVITZ, DAVID. The impact of third generation ADP equipment on alternative

chemical structure information systems. Presented at the I53rd Meeting of the
American Chemical Society, Division of Chemical Literature, Miami, Fla., 9-14 April

1967, 31 P.
(50) LEFKOVITZ, DAVID. Use of a nonunique notation in a large-scale chemical

information system. Journal of Chemical Documentation, 7 (November 1967) 192-200.
(51) LE1MKUHLER, FERDINAND F. A literature search model. [Abstract] Bu/letin of

the Operations Research Society of America, 15, supplement 1 (Spring 1967) p.

B56-57. (PB 174 390)
(52) LEVIEN, R. E.; MARON, M. E. A computer system for inference execution and data

retrieval. Communications of the ACM, 10 (November 1967) 715-721.

(53) LONG, JOHN M.; BARNARD, HOWARD J.; LEVY, GERTRUDE C. Dictionary

buildup and stability of word frequency in a specialized medical area. American
Documentation, 18 (January 1967) 21-25.

(54) LOWE, THOMAS C. Design principles for an on-line information retrieval system.
University of Pennsylvania, Moore School of Electrical Engineering, Phil. lelphia.
December.1966, 136 p. (Technical Report no. 67-14) (AFOSR 67-0423)(AD-647 196)

(55) LOWE, THOMAS L. Direct-access memory retrieval using truncated record names.
Software Age, I (September 1967) 28-33.

(56) MAGNINO, JOSEH-I J., JR. IBM's unique but operational international industrial

textual documentation systemITIRC. Presented at 33rd Conference of FID and
International Congress on Documentation, Tokyo, 12-22 September 1967. (Preprint, 9

p. and appendix)
(57) MAGNINO, JOSEPH J., JR. Information technology and management science. Paper

presented at the Institute of Management Sciences, 14th International Meeting, Mexico
City, August 1967. (Preprint, 8 p. and appendix)

(58) MARRON, B. A.; DeMAINE, P. A. D. Automatic data compression. Communica-

tions of the ACM, 10 (November 1967) 711-714.
(59) MATTHEWS, F. W.; THOMSON, L. Weighted term search: a computer program for

an inverted coordinate index on magnetic tape. Journal of Chemical Documentation, 7

(February 1967) 49-56.
(60) MEADOW, CHARLES T. The analysis of information systems; a programmer's

introduction to information retrieval. Wiley, New York, 1967, 301 p. (Information

Sciences Series)
(61) MINKER, JACK; SABLE, JEROME. File organization and data management. In:

Annual review of information science and technology. Carlos A. Cuadra, ed.
lnterscience, New York, 1967, vol. 2, p. 123-160.

(62) MOORE SCHOOL OF ELECTRICAL ENGINEERING. The Moore School
Information Systems Laboratory. Morris RubinolY (principal investigator). University
of Pennsylvania, Moore School of Electrical Engineering, Philadelphia, May 1967,

28 p. (AFOSR 67-1952) (AD 657 809)
(63) MORENOFF, EDWARD; McLEAN, JOHN B. Application of level changing to a

multilevel storage organization. Communications of the ACM, 10 (March 1967)
149-154.

(64) MORENOFF, EDWARD; McLEAN, JOHN B. A code for non-numeric information
processing applications in online systems. Communications of the ACM, 10 (January

1967) 19-22.
(65) NELSON, PAUL J. User profiling for normal text retrieval. In: Proceedings of the

30th Annual Meeting of the American Documentation Institute, New York, October
1967. Thompson, Washington, D.C., 1967, p. 288-295.

(66) OLLE, T. WILLIAM. Generalized systems for storing structured variable length data

and retrieving information. Presented at IFIP/FID Conference on Mechanized
Information Storage and Retrieval, Rome, Italy, 14-17 June 1967. (Preprint, 18 p.)

(67) OLLE, T. WILLIAM. IDS and GIS: Chalk and untasted cheese. Prepared for

publication in: Newsletter of the ACM Special Interest Committee in Business Data
Processing, 28 September 1967. (Preprint, 7 p.)

166 RALPH M. SHOFFNER

(68) POLLOCK, STEPHEN. Measures for the comparison of information retrieval
systems, and the normalized sliding ratio. [Abstract] Bulletin of the Operations
Research Society of America, 15, supplement I (Spring 1967) p. B-57.

(69) PR EPARATA, F. P.; CHIEN, R. T. On clustering techniques of citation graphs.
University of Illinois, Coordinated Science Lab., May 1967, 25 p. (Report no. R-349)
(AD-652 593)

(70) ROSS, DOUGLAS "I. The AED free storage package. Communications of the ACM,
10 (August 1967), 481-492.

(71) SALTON, GERARD. The SMART Projectstatus report and plans. In: Cornell
University. Dept. of Computer Science. Information storage and retrieval. Report no.
ISR-I2 to NSF. Gerard Salton, Director. Ithaca, N.Y., June 1967, sec.-1 (12 p.)

(72) SCHECTER, GEORGE, ed. Information retrieval critical view. Based on Third
Annual Colloquium on Information Retrieval, 12-13 May 1966, Philadelphia, Pn.
Thompson, Washington, D.C., Academic Press, London, 1967, 282 p.

(73) SHUMWAY, R. H. On the expected gain from adjusting matched term retrieval
systems. Communications of the ACM, 10 (November 1967) 722-725.

(74) SHURE, GERALD H.; MEEKER, ROBERT J.; MOORE, WILLIAM H., JR.
TRACETime-shared Routines for Analysis, Classification and Evaluation. In:
AF1PS Conference Proceedings, vol. 30; 1967 Spring Joint Computer Conference,
Atlantic City, N.J., 18-20 April. Thompson, Washington, D.C., 1967, p. 525-529

(75) SPARCK JONES, KAREN; JACKSON, DAVID. Current approaches to classifica-
tion and clump-finding at the Cambridge Language Research Unit. Computer Journal,
10 (May 1967) 29-37.

(76) SPARCK JONES, KAREN; JACKSON, DAVID M. The use of the theory of clumps
for information retrieval. Report on the O.S.T.1.-supported project. Can bridge
Language Research Unit, Cambridge, England, June 1967, 1 vol. (various pagings)
(M.L. 200)

(77) STEIL, GILBERT P., JR. File management on a small computer: the C-10 System. In:
AFIPS Conference Proceedings, vol. 30: 1967 Spring knit Computer Conference,
Atlantic City, N.J., 18-20 April. Thompson, Washington, D.C., 1967, p. 199-212.

(78) SUMMERS, J. K.; BENNETT, EDWARD M. AESOPa final report: a prototype
on-line interactive information control system. In: Walker, Donald E., ed. Information
system science and technology. Papers prepared for the Third Congress. Thompson,
Washington, D.C., 1967, p. 69-86.

(79) SWETS, JOHN A. Effectiveness of information retrieval methods. Bolt Beranek and
Newman Inc., Cambridge, Mass., 15 lane 1967, 47 p. (AFCRL-67-0412)

(80) TATE, F. A. Handling chemical ccavounds in information systems. In: Annual
review of information science arid teclutology. Carlos A. Cuadra, ed. Interscience, New
York, 1967, vol. 2, p. 285-309.

(81) THOMPSON, DAVID A.; BENN1GSON, LAWRENCE; WHITMAN, DAVID.
Structuring information bases to minimize user search time. In: Proceedings of the 30th
Annual Meeting of the American Documentation Institute, New York, October 1967.
Thompson, Washington, D.C., 1967, p. 164-168.

(82) THOMSON, LUCILLE H ; HYDE, E.; MATTHEWS, F. W. Organic search and
display using a connecdvity madix derived from Wiswesser Notation. Journal of
Chemical Documentation, 7 (November 1967) 204-209.

(83) TONGE, FRED M. A simple scheme for formalizing data retrieval requests. RAND
Corp., Santa Monica, Calif., May 1957, 31 p. (Report no. RM-5150-PR) (AD-652 201)

(84) UCHIDA, H.; KIKUCHI, T.; HIR.AYAMA, ;:. Mechanized retrieval system for
organic compounds An evaluation of the fragmentation code system. In: 33rd
Conference of FID and International Congress on Documentation, Tokyo, 12-22
September 1967. Abstracts. [Tokyo], 1967, 13 p.

(85) Van DAM, ANDRIES; EVANS, DAVID. A compact data structure for storing,
retrieving and manipulating line drawings. In: AFIPS Conference Proceedings, vol. 30;
1967 Spring Joint Computer Conference, Atlantic City, N.J., 18-20 April. Thompson,
Washington, D.C., 1967, p. 601-610.

If

6J

ORGANIZATION, MAINTENANCE AND SEARCH OF MACHINE FILES 167

(86) VANDER STOUW, G. G.; NAZNITSKY, I.; RUSH, J. E. Procedures for converting
systematic names of organic compounds into atom-bond connection tables. Presented
at the I53rd Meeting of the American Chemical Society, Division of Chemical
Literature, Miami, Fla., 9-14 April 1967.

(87) VAN METER, CLARENCE T.; LEFKOVITZ, DAVID; POWERS, RUTH V. An
experimental chemical information and data system. Status report, JanuaryDecember
1966. University of Pennsylvania, Philadelphia, January 1967, 220 p. (Report no.
CIDS-4) (Contract DA-18-035-AMC-288 (A)) (AD-657 575)

(88) VENNER, FRANK H. On designing generaiized file records for management
information systems. In: AFIPS Conference Proceedings, vol. 31; 1967 Fall Joint
Computer Conference, Anaheim, Calif., 14-16 November. Thompson, Washington,
D.C., 1967, p. 291-303.

(89) VINSONHALER, JOHN F. BIRS: a system of general purpose computer programs
for information retrieval in the behavioral sciences. American Behavioral Scientist, 10
(February i967) 12, 21-24.

(90) VINSONHALER, JOHN F. BIRS: a system of general purpose computer programs
for information retrieval. Learning Systems Institute, College of Education, Michigan
State University, 9 February 1967, 19 p. (Papers of the Institute #39, revised)

(91) VORHAUS, ALFRED H.; WILLS, ROBERT D. The Time-shared Data Management
System: a new approach to data management. System Development Corp., Santa
Monica, Calif., 13 February 1967, 11 p. (SP-2747)

(92) WALKER, DONALD E. SAFARI, an on-line text-processing system. In: Proceedings
of the 30th Annual Meeting of the American Documentation Institute, New York,
October 1967. Thompson, Washington, D.C., 1967, p. 144-147.

(93) WILLIAMS, WILLIAM D.; BARTRAM, PHILIP R. COMPOSE/PRODUCE: A
user-oriented report generator capability within the SDC Time-shared Data Manage-
ment System. In: AFIPS Conference Proceedings, vol. 30; 1967 Spring Joint Computer
Conference, Atlantic City, N.J., 18-20 April. Thompson, Washington, D.C., 1967, p.
635-640.

(94) ZUNDE, PRANAS; ARMSTRONG, FRANCES T.; STRETCH, TERRANCE T.
Evaluating and improving internal indexes. In: Proceedings of the 30th Annual
Meeting of the American Documentation Institute, New York, October 1967.
Thompson, Washington, D.C., 1967, p. 86-89.

N,L

