
ED 029 673
DOCUMENT RESUME

52 LI 001 519
Cognitive Memory: A Computer Oriented Epistemological Approach to Information Storage and Retrieval.
Interim Report. Phase I. 1 September 1967-28 February 1969.

Illinois Univ., Urbana. Coordinated Science Lab.
Spons Agency-Office of Education (DHEW). Washington. D.C. Bureau of Research.
Bureau No-BR-7-1213
Pub Date 30 Apr 69
Contract- OEC-1 -7-071213-4557
Note- 176p.
EDRS Price MF-$0.75 HC-$8.90
Descriptors-*Cognitive Processes. Computational Linguistics. Computer Programs. Computers. *Information
Processing. *Information Retrieval. Information Storage. Man Machine Systems, Syntax

In contrast to conventional information storage and retrieval systems in which a
body of knowledge is thought of as an indexed codex of documents to which access
is obtained by an appropriately indexed query. this interdisciplinary study.aims at an
understanding of what is 'knowledge' as distinct from a 'data file. how this
knowledge is acquired, and how this knowledge can be made effective through
symbolic discourse between man and machine. The purpose is the development of
cognitive memory systems which are capable of responding with structured
information that matches the gap in the knowledge of the querist. rather than with the
delivery of a 'document.' i.e.. an accidental linguistic representation of the information
about a particular fact, that may or may not cover the point in question. This report.
arranged chronologically, describes the work done in each of the five report periods.
The initial research action centered around the development of a linked data
structure concept (called 'cylinders.' based on a use of 'rings') and other technical
aspects. Later, the study concentrated more on the fundamental interactions involved
in cognition. attempting not to duplicate human intelligence but to design machines to
accomplish results that are similar to the results of cognitive processes. A pilot
information system-- 'Rules of the Road' was developed for experimental use.
(Author/RM)

COORDINATED SCIENCE LABORATORY

INTERIM REPORT
PHASE I

1 SEPTEMBER 1967 - 28 FEBRUARY 1969

<0,1C c445;\

JUN 3 0 '69

CO NITIVE
IT; MEMORY0

to UNIVERSITY OF ILLINOIS URBANA, !WWI§

dolie

INTERIM REPORT

PHASE I

o'

1 September 1967 - 28 February 1969

COGNITIVE MEMORY

4- 7- /2-./3
Pr4 41"2--

A Computer Oriented Epistemological Approach
to Information Storage and Retrieval

USOE BUREAU OF RESEARCH
Grant No. OEC-1-7-071213-4557

PROJECT DIRECTORS:
Heinz Von Foerster

Robert T. Chien

Date of Issue
30 April 1969

COORDINATED SCIENCE LABORATORY

UNIVERSITY OF ILLINOIS

Urbana, Illinois

U.S. DEPARTMENT OF HEALTH, EDUCATION & WELFARE

OFFICE OF EDUCATION

THIS DOCUMENT HAS BEEN REPRODUCED EXA:TLY AS RECEIVED FROM THE

PERSON OR ORGANIZATION ORIGINATING IT. POINTS OF VIEW OR OPINIONS

STATED DO NOT NECESSARILY REPRESENT OFFICIAL OFFICE OF EDUCATION

POSITION OR POLICY.

PREFACE

The following pages constitute the Interim Report
of Phase I of the research activities sponsored under
the auspices of USOE Bureau of Research Grant No. OEC-
1-7-071213-4557, entitled Cognitive Memory; A Computer
Oriented Edistemolo ical A..roach to Information Stora e
-Ind Retrieval. This Interim Report is submitted in
accordance with requirements specified under the above
Grant, and covers the period from 1 September 1967 to
28 February 1969.

The first three Sections A (Abstract), B (Introduction)
and C (Computers and the Language Problem) describe the
activity as planned and as accomplished in general terms
and in ascending order of details. We are particularly
grateful for Mr. P. Weston who authored Section C. Since
this interdisciplinary research program ranges over a
great variety of topics, it was felt that individuals or
individual groups working on a particular aspect of this
problem should report their findings in their own words.
Section D (Accomplishment Summary) is a collection of
essays that reflect the activity of these individuals or
groups. Although this collection will give a rather in-
complete and spotty account of the progress of this project,
it is hoped that the main lines of thoughts and achieve-
ments may emerge without too much opacity.

H.V.F.

R.T.C.

TABLE OF CONTENTS

Page

Preface

A. Abstract ii

B. Introduction iii

C. Computers and the Language Problem OOOOO vii

D. Accomplishment Summary 1-156

ii

COGNITIVE MEMORY

A Computer Oriented Epistemological Approach

to Information Storage and Retrieval

A. ABSTRACT

In contrast to conventional information storage and
retrieval systems in which a body of knowledge is thought
of as an indexed codex of documents to which access is
obtained by an appropriately indexed query, this study aims
at an understanding of what is "knowledge" as distinct from
a "data file," how this knowledge is acquired and how this
knowledge can be made effective through symbolic discourse
between man and machine.

This approach is motivated by the recently rapid develop-
ment of our insight into theory and neuropsychology of know-

ledge 2er se, i.e., theoretical and experimental epistemology

(1) (2); into theory and neurophysiology of the processes that
permit the acquisition of knowledge, i.e., cognitive processes
(3)(4)(5); into theory and physiology of mechanisms that
preserve this knowledge, i.e., "memory" as opposed to "record"
(6)(7)(8)(9); and, finally, into the utilization of this
knowledge through symbolic discourse in the form of natural
language in a man-machine system in which each partner is
entitled to make "queries", i.e., to pose problems to the
other partner who may solve them by recourse to deductive or
inductive reasoning (10)(11)(12)(13).

This approach is justified by an estimated order of
magnitude improvement in the efficacy of information retrieval
systems in as much as cognitive memory systems respond with
structured information that matches the gap in a knowledge of
the querist, rather than with the delivery of a "document,"

i.e., an accidental linguistic representation of the informa-
tion about a particular fact, that may or may not cover the

point in question.

iii

B. INTRODUCTION

Current trends in the new science of information
retrieval are to expand and to improve upon the traditional,
non-mechanical, methods for organizing and searching infor-
mation collections by applying present day computing technology.
The searching of indexed document files and even to some
extent the indexing work itself have been mechanized, while
at the same time new and more useful indexing methods have
been developed. Altogether, considerable research effort has
already been expended, practical results havc appeared, and
research in this area is continuing.

Characteristic of virtually all this current retrieval
research is the assumption that an information store must
consist of a collection of documents, though various groups
may choose to define the term "document" at different levels
of text organization. Regardless of the way in which material
is divided inside such a store, once the division has been
made and an index established, the information content of the
stored material has no further effect on the system. The
documents become, as it were, so many numbered "black boxes,"
of which only the mind of a human reader can make any use.
To gain access to a particular box amongst these boxes the
user of such a system has to play a kind of guessing game.
The system, unable to "understand" what the user wants to
know, requires him to describe, in a (usually) very rudimentary
form of language dictated by the document index, not what
he wants to know but the kind of document which could have
bearing on his problem. The description he generates con-
stitutes two guesses, first that he knows how the system's
indexers have interpreted the index language, and second that
he has decribed a manageable set of documents that contain,
among them, the information he is looking for. If he is
wrong on either count he must guess again. Even after a good
guess, the information must be sifted and collated from among
a number of documents.

As reasonable as this position may seem, the necessity
of "documents", i.e. detailed records of human linguistic out-
put, is now for the first time--since the invention of writing--
being thrown open to question by developments in the field of

artificial intelligence. Computer programs designed in

recent years by Lindsay (11) , Raphael (12) , and Bobrow (13) ,

among others, have demonstrated that it is possible for a

machine to admit information expressed in acceptable forms

of natural language, store it in a reduced, non-linguistic

form, and re-generate many acceptable linguistic outputs

expressing not only the original input, but also numerous

implications that can be inferred from the input by operating

on the stored, non-linguistic representations of the input

information with appropriate logical and syntactic rules and

operators. At present these machines are rudimentary in many

ways and do not cope at all with the important subtleties of

natural language, but they do clearly point to a new foundation

for retrieval research in which the information store contains,

not "slots" into which inert records may be fitted, but a

composite representation of a field of information from which,

by internal rules and operations a system may generate a vastly

larger variety of outputs than the number of documents which

would be capable of expressing its original input. This form

of information store we will call a "cognitive memory."

Should this form of system ultimately be realized in

useful form it would have fundamental advantages over current

systems. One of these refers to acceptable forms of requests.

Presently, with document files, a "query" consists of an

attempted description of a document set, using a crude form

of language dictated by the indexing scheme and indexing terms,

which is rather like going to a grocery store intending to buy

milk, let us say, and asking for something that comes in bottles

of a certain shape. Of course, the result may not be what was

wanted, and the request is awkwardly indirect. In the normal

use of language a question has the function of alerting some-

one to our desire for information and, most importantly, of

describing the particular gap in our knowledge that needs filling.

It is this latter, direct, form of query which is appropriate

to a cognitive memory system. Similarly the output of a cogni-

tive system can be made directly responsive to the requirement

expressed in the query, and cannot, in fact take on the "canned"

form of a document which is prepared remotely for its eventual

users. A corollary of this has an important influence upon the

direction of future work in that the system-user dialog is an

essential feature of a cognitive information system.

There is a further important property inherent in cogni-

tive memory storage which is independent of the foregoing man-

machine interface features. This is that in it information

is stored cumulatively and with common access on the basis of

content. Provided that computer storage having both sufficient

complexity and size can be developed, this will mean that
facts which might have appeared in unlikely sources or as
important but unstressed features of technical discussions
could be released from their document "prisons" and made
available to enrich the output information quality.

For these reasons in particular, and because of the
broad applications of the results, we feel that pursuing the
development of cognitive systems is presently the most impor-
tant line of basic research which can be followed in the infor-
mation sciences. The ground work has been laid, but it must be
emphasized that the full realization of a useful cognitive memory
system is still very far off due both to our limited knowledge
of linguistic and cognitive structure as well as to present
limitations of computing systems. Our goal is to attack tl-ese
current problems and produce a "second generation" cognitive
system design.

REFERENCES

1) D. M. MacKay: "Communication and Meaning--a Functional
Approach" in Cross-Cultural Understandin : E istemolo
in Anthropology, F.S.C. Nort rop e Harper & Row,
New York, pp. 162-179 (1964).

vi

2) Warren S. McCulloch: "Postulational Foundations of Experimental
Epistemology" in Cross-Cultural Understandin : Epistemology
in Anthropology, F.S.C. Northrop (ed.), Harper & Row, New
York, pp. 180-193 (1964).

3) J. Y. Lettvin; H.R. Maturana; W.S. McCulloch and W. Pitts:
"What the Frog's Eye tells the Frog's Brain", Procc I.R.E. 47,
1940-1951 (1959).

4) H. Von Foerster: "Circuitry of Clues to Platonic Ideation,"
in Artificial Intelligence, C.A. Muses (ed.) , Plenum Press,
New York, pp. 43-82 (1962).

5) H. Von Foerster: "Computation in Neural Nets," Currents Mod.
Biol., 1, pp. 47-93 (1967).

6) J. J. Gibson: "The Problem of Temporal Order in Stimulation
and Perception," J. Psychol., 62, pp. 141-149 (1966).

7) H. Von Foerster: "Memory without Recotd" in The Anatomy of
Memory, D.P. Kimble (ed.), Science and Behavior Books, Palo
Alto, pp. 388-433 (1965).

8) J.Z. Young: "The Organization of a Memory System", Proc.
Royal Soc. 163, pp. 285-320 (1965).

9) J.Z. Young, personal communication (H.V.F.).

10) M. Minsky: "Steps toward Artificial Intelligence," Proc. IRE
49, 8-30 (1961).

11) R.K. Lindsay: "Inferential Memory as the Basis of Machines
which Understand Natural Language," in Computers and Thought,
E. Feigenbaum and J. Feldman (ed.), McGraw-Hill, New York,
pp. 217-233 (1963).

12) R. Raphael: "A Computer Program which 'Understands'," Proc.
AFIPS, F.J.C.C., 577-589 (1964).

13) D.G. Bobrow: Natural Language Input for a Computer Problem
Solving System, Project MAC, Report No. TR-1, MIT, Cambridge,
Mass. (1964).

vii

C. COMPUTERS AND THE LANGUAGE PROBLEM

I. The Problem

With the current public faith in the unlimited power of
technology, and with a firmly established but exalted image
of computers as electronic "brains," there is already an
established lore, presently of a humorous and fictional
nature, connected with the "super computer," and apparently
serious talk is now being heard regarding the problems
men will face when mechanical rather than human intelligence
rules the world and human labor becomes obsolete. Naturally,
this optimism regarding the power of camputers is shared by
us who are trying to mechanize cognitive processes. But the
curious truth is that the goal we seek with much energy and
enthusiasm is already a household word while we have not
yet fully clarified the basis for achieving it.

Let us begin to examine this unsettling situation by
imagining what mechanized cognitive processes--the term
"artificial intelligence" or "AI" for short, has been widely
adopted for this idea--would look like from the outside,
then moving to a discussion of what has been done, what
significance it has, and what is left--if anything at all--to
be done in the future.

Regarding the outward identifying characteristics of

an artificial intelligence, the public idea is essentially
the same as that of the researchers, and in substance amounts
to the requirement that such a thing must act human. This
was once stated by A.M. Turing in a form now widely known
and accepted as the "Turing Test." This test postulates
that a machine can converse with a human through any appro-
priate means, cathode ray displays, teletype, simulated
voice, or whatever, and if the person, not knowing at the
outset that amachine is at the other end of the channel, is
still satisfied after however long he wishes to maintain the
conversation that it could be a person at the other end,
then the machine has passed the test and can be considered
intelligent.

This criterion is sufficiently objective as originally
stated to satisfy most demands of scientific method, and
this is surely the reason for its continued acceptance for

roughly thirty years. In practice, though, a loophole has

viii

shown up, and it is rather difficult to patch it up without
losing the elegance and objectivity of the original. The
trouble is that machines already exist which have passed
the Turing Test on repeated occasions, but no one in the
AI field, including their inventors, is willing to consider
them very intelligent because they are rather simply or-
ganized, and, more importantly, all they can do is converse
and only in a very restricted context, for instance in one
type of psychiatric interview. On the whole the fact that
these machines can lead their "patients" to believe they
are talking with a human being, simply shows--objectively--
that ordinary conversation often does not require much
intelligence, and this was hardly the intent of the Turing
Test. If the criterion were elaborated to include some
stipulated range of topics, or various types of problem-
solving behavior, etc., etc., the neatness of the original,
and much of its objectivity would be lost.

The trouble is that intelligence cannot be pinned down
by linking it to any one ability, a fact which was grasped
by Binet some time before Turing's suggestion was made--
though this is not meant to suggest that a standardized
I.Q. test be adopted as a working goal. What is in fact
the case is that AI cannot reasonably be expected to establish
for itself a formal definition of intelligence because it
is to a significant extent involved in the attempt to
discover what human intelligence is, in the framework of
information processing. This knowledge is needed to further
the primary goal of designing machines to do what human
brains do, though perhaps differently and perhaps eventually
in better ways. It amounts to a difficult form of mimicry,
and in common with all mimicry demands at least partial
understanding of its object, sufficient at least to allow a
translation from the domain of action of the original to that
of the copy, which domains are in this case very different.
We do not yet have the necessary understanding.

There is no point in comparing mechanical mimicry of
intelligent behavior with "monkey see, monkey do," which
should anyway be amended to read, "monkey see, monkey under-
stand, monkey do." The difficulty comes right at the outset,
with the monkey see stage, due to the grea difficulty in
actually observing the interior workings of intelligent
behavior, rather than its external results. And nothing less
than such an "interior view" will do. We are not as fortunate
as a monkey copying a gesture, who comes supplied with a set
of limbs and joints which can be set in roughly one-to-one
correspondence with his human counterpart, and all of which
can be directly seen in action. We, on the other hand, are

ix

given a computing machine to work with which has no obviously
identifiable features in common with a human being, and
therefore we have no model a priori for the workings we wish
to copy.

The relevant behavior of the human being we are trying
to model in the computer is observable only to the extent
that we can provide him with inputs in the form of questions,
problems, and other bits of language (if language is rather
broadly defined), and he in turn can supply us with answers,
solutions, and other relevant or irrelevant bits of lan-
guage, which may include his own informal reports of the
processes which led to his answers. While the latter may
be of some direct benefit, it is clear that we are forced
to work almost entirely from the outside and almost entirely
through the medium of human language, which is of course
itself a large part of the behavior we want to model. Simply
in order to gets its "raw data" straight, AI has no choice
but to attempt an anlysis of language, and in particular
of the concept of meaning, because it is in this aspect, as
we see it, that language reflects what we seek, the structure

of intelligent behavior.

It is fundamental that a description of language by it-
self, no matter how objectively obtained or finely detailed
it might be, could not suffice. The requirement is for a
description of the relationship of language to cognitive
processes. It is here that AI and current linguistic theory
reach a point of divergence, because current linguistic
theories of language structure appear to be predicated upon
the exclusion of cognitive considerations, though this is a
less rigid position now than in the past and the encroach-
ment of cognitive categories into linguistic "deep structure"
has been ever-present. Whether or not this divergence is
real or long-lasting, it is a fact that AI is fundamentally
involved with language and comes to the subject with its own
point of view.

If we are to learn enough from this undertaking to be
able to construct machines which are able to use human language
then we must at least find out exactly what it is, at the
cognitive level, which humans express in language, and then
discover ways of representing and expressing such things in
our machines. Neither task is easy.

II. What has been done

In groping for solutions to these problems, computers
have been indispensable aids and, occasionally, companions.

Of course the familiar arguments in favor of computers hold
here, i.e., that, in reducing a system to a computer reali-
zation, considerable crystallization of concepts is demanded
(partially offset by obfuscation introduced by trivial
system and program details) and fatal flaws come relatively
quickly to light once the machine is turned loose. Moreover
at this moment there seems to be no practical alternative
to relying on computers to test the complicated and largely
non-mathematical hypotheses that AI deals with. The history
of AI could be written in terms of a fairly small number of
simulation programs, a good portion of which were designed
to deal with some aspect of the problem of meaning.

The present and past programming efforts fall into three
somewhat overlapping categories:

a) structured data base fact retrieval systems,

b) deductive question-answering systems,

c) associative memory systems.

Categories (a) and (b) have only recently begun to split off
from a common root and differ at present mainly on matters
of emphasis. The central idea of both is to establish in
computer storage a formal data base consisting of a catalog
of items along with a system of categories upon them and state-
ments of the relationships between them, and to use this
store of information as the domain of discourse in a linguistic
interaction between a computer program and a human being. The
difference between the two approaches (a) and (b) lies in the
fact that whether fact retrieval or deductive question-
answering is the more important goal, the language used in
the interaction tends respectively to be a "subset" of natural
language, or a formalized language. Put perhaps more realis-
tically, a tendency has developed to concentrate separately
on the two tasks of increasing the language capability of such
a program and on increasing the depth of its deductive power.

In category (c) there is more emphasis on lexical
structure and the wide range of associations characteristic
of human concepts, and less on purely deductive methods. This
type of approach appears more directly germaine to the develop-
ment of closer approaches to natural language for man-machine
interaction, though all of the above and more will eventually
be needed.

Rather than reciting details of the programs, which are
available in the literature, I will simply offer some opinions

xi

on how I believe they relate to the AI picture. First, one
principle is amply borne out by the existing work, and that
is that when human functions are simulated by machines they
will be realized through forms of organization very differ-
ent from the human ones. For example, the programs which
use restricted forms of natural language behave nothing
like inexperienced human speakers, but would be better des-
cribed in human terms as extreme examples of the "one-track"
mind, in the sense that only one context exists in the
world" of such a program and.that is the one in which all
statements are well-formed sentences which convey either
simple facts or questions, and which bear upon the given
data base. In contrast, and it is not meant to be a dero-
gatory contrast in either direction, a human child who has
not yet mastered all of the possibilities of his language
is still likely to know all about such things as truth, fal-
sity, fiction, lies, wishes, guesses, promises, emphasis,
emotional overtones, fragmentary utterances, and so on, and
in fact he is unable to interpret language without dealing
with such contextual matters.

This contrast suggests an analogy with machines for
performing physical functions. The potential benefits of
power and speed which are available mechanically are generally
only realized by concentrating on limited functions and using
the means which are most appropriate to the given end. The
result is usually a device which far exceeds the power of
direct human labor, and similarly the promise of adapting
computers to specialized cognitive functions and achieving
better-than-human performance is now very real.

In a different vein, it is legitimate to ask, in light
of the limited use of language which is involved in the
machines mentioned so far, how and to what extent they
actually deal with meaning. Such a question could not be
finally answered until we were all sure that we understood
the nature of linguistic meaning, but short of that, an
answer can be offered in the form of a description of the
behavior which the programs copy, and of the means they use
to do so.

One aspect of intelligent understanding of language
appears to be primarily involved, and this is that in the
context of factual information from a reliable source a
human can demonstrate his understanding of a body of pre-
sented data by answering questions, regarding the explicit
facts as given and also what can be logically deduced from
them. While this does not exhaust the list of possible human

xii

responses to language, it is surely a basic one and suffi-
ciently difficult to mimic adequately that it has formed an
interesting and productive research area for simulation studies.

Perhaps the most salient feature of these AI programs
is their approach to the representation of meaning, which
approach, the limited scope of current research notwith-
standing, does in its most general aspect typify the unique
assumptions which AI brings to the language problem. One of
these is that meaning is not taken to reside in an ultimate
representational level of language, but to be based in the
(assumed) more general mechanism whereby all of the organism's
knowledge of external and internal reality is represented,
whether this knowledge is derived from linguistic or perceptual
channels. This mechanism must include the dynamic processes
which are responsible for various forms of inference, logical
and intuitive, and for the active building of models in the
course of experience. The AI notion of the interpretation
of a piece of text, for example, does not stop at the dis-
ambiguation of syntactic and semantic iorms but further en-
tails the construction of a model for the content of the text
which will serve to connect it with the remainder of the under-
standing organism's knowledge and to mediate as wide a variety
of useful inferences upon that knowledge as possible.

On the basis of this approach to interpretation, it
is natural to expect that the model-building and inference
processes should themselves play an integral part in facili-
tating the interpretation of natural language utterances
and this viewpoint is indeed a common one in the AI field,
and is shared by myself. This also is the basis of a further
philosophical difference between AI and linguistic theory,
for from the purely linguistical point of view Occam's razor
appears reasonably to demand that modeling and inference pro-
cesses be viewed as excess baggage, while from the AI view-
point language is an empty concept if it is not related to
its function in the overall picture of intelligent behavior.

Aside from occasional misunderstandings, the most impor-
tant negative result of this divergence has been the limited
applicability of advances in linguistic theory to progress
in AI, though it is true that the exercise of ingenuity has
resulted in the effective adaptation of linguistical notions
of semantics in limited scale simulation projects (see Simmons
et al., 1968). In the long run, however, it seems reasonable
to expect that AI must develop its own ways of dealing with
syntactic and semantic problems, and that these may,eventually,
contribute in their turn to linguistic theory.

These speculations aside, AI programs already have
succeeded to some degree in coupling language to other
aspects of intelligence; some of the principal accomplish-
ments being retrieval of facts from a structured data base
in response to questions stated in a fairly free subset
of English, answering questions requiring moderately diffi-
cult deductions from a set of given facts, and the building
of data base from restricted natural language statements.
Here one may include the important step toward adaptability
of allowing new categories and relations to be introduced
through definitions supplied in the same interaction language
used for queries and facts. This much is substantive
accomplishment and is beginning to pass from the state of
laboratory curiosity to that of working tool. But there is
still some distance to go before there will be programs
with even child-like facility in the everyday use of natural
language.

III. Present Activity

The following pages, entitled Accomplishment Summary,
give a historical account of the work performed under the
auspices of this grant. It was felt that the activity of
each participant shou1.1 be described in his own words. It
is hoped that the collection of essays that follow present
a coherent line of thoughts that aim toward a unified concept
of cognitive processes and their possible implementation in
computer soft and hard ware.

xiv

References

Bobrow, D.G., "A Question-Answering System for High School
Algebra Word Problems," AFIPS Conf. Proc.,26, Fall Joint
Computer Conference, 591-614 (1964).

Chomsky, N., As ects of the Theory of Syntax, MIT Press,

Cambridge (165).

Fillmore, C.J., "Toward a Modern Theory of Case," in Report
No. 13, Project on Linguistic Analysis, Ohio State Univer-
sity (1966).

Green, C.C. and B. Raphael, "Research on Intelligent Question-
Answering System," Scientific Report No. 1, Stanford
Research Institute (1967).

Katz, J.J. and A. Fodor, "The Stucture of a Semantic Theory,"
in The Structure of Language, J.J. Katz and A. Fodor (eds.),
Prentice-Hall, N.Y., pp. 479-518 (1964).

Kellog, C.H., "CONVERSE - A System for the On-Line Description
and Retrieval of Structured Data Using Natural Language,"
Document SP-263s, System Development Corp., Santa Monica,
California (1967).

Lindsay, R.K., "Inferential Memory as the Basis of Machines
which Understand Natural Language," in Computers and
Thought, E.A. Feigenbaum and J. Feldman (eds.), McGraw-
Hill, N.Y., pp. 217-233 (1963).

Quillian, R., Semantic Memory, Ph.D. Thesis, Carnegie
Institute of Technology (1966).

Raphael, B., "A Computer Program Which 'Understands'," Proc.
AFIPS, Fall Joint Computer Conference, 577-589 (1964).

Weizenbaum, J., "ELIZA - A Computer Program for the Study
of Natural Language Communication Between Man and Machine,"
Comm. of the ACM 9, 1, pp. 36-44 (1966).

Woods, W.A., "Procedural Semantics for a Question-Answering
Machine," in Proc. AFIPS, Fall Joint Computer Conference,
457-471 (1968).

g
D. ACCOMPLISHMENT SUMMARY

-H

03.) ni
TABLE OF CONTENTS 4-) 0

ni en
4 m

I. Accomplishments from 9/1/67 11/30/67

II. Accomplishments from 12/1/67 - 3/31/68

-H

0 m
-r-1 0

.H
0 00.
o ni

1

4

A. Preface 1 5

B. Major Activities and Accomplishments During
Report Period 3 7

. Organizational 3 7

(i) Weekly Workshop 3 7

(ii) IGLIS Document System 4 8

2. Technical 7 11
(i) Language Acquisition 7 11

(ii) An Investigation of the Normalization
of Natural English Text 8 12

(iii) Work Frequency Study 11 15
(iv) Theorem Proving Techniques 12 16
(v) Time-Space Scheduling 15 19

(vi) Textual Macrostructure 16 20
(vii) Studies of Access Rates to Densely

Interconnected List Organized Data 18 22

III. Accomplishments from 4/1/68 - 7/31/68 23

A. Preface 1 24

B. Major Activities and Accomplishments During
Report Period 3 26
1. "Cylinders," A Linguistic Data Structure Based

On a Novel Use of "Rings" 3 26
(i) Introduction 3 26

(ii) Ring Structures4 7 30

(iii) Cylinders 11 34

(iv) Examples of Use 19 42

(v) Summary 20 43
2. An Objective Function for the Scheduling

Routines of a Time-Sharing System 23 46

3. Cognitive Memory 31 54

4. A Pilot Information System: "Rules of
The Road" 31 54

(i) Introduction 31 54

(ii) Preprocessing 32 55

(iii) Steps Towards a Relational Structure 35 58

IV.

(iv) On the Recognition of Sentence Types 36

(v) Syntactic Processing 38

5. Textual Macrostructure 40

Accomplishments from 8/1/68 - 11/30/68

A. Preface 1

B. Major Activities and Accomplishments During

59
61
63

65

66

Report Period 3 68

1. A Pilot Information System R2: "Rules
of the Road" 3 68

(i) Introduction 3 68

(ii) Query Classification 3 68

(iii) Syntactic Analysis 10 75

(iv) Context Modeling 20 85

(v) Concept Processing 24 90

2. Grammars and Relational Structure 27 93

3. Investigation of Fundamentals of Nonlin-
guistic Cognition 31 97

4. Cognition and Heuristics 34 100
5. Machine Architecture for Information

Retrieval 36 102
(i) Introduction 36 102

(ii) Investigation of the Processor of
Lee and Paull 38 104

(iii) A New Associative Memory Processor 44 110
6. Studies of the Mathematical Theory of

Cognition 49 116

(i) On the Forms of Equations Associated
With Inductive Inference Computers 49 116

(ii) On a Class of Nonlinear Property
Filters 53 120

V. Accomplishments from 12/1/68 - 2/28/69

A. Preface 1 131

B. Major Activities and Accomplishments During
Report Period 3 133
1. Research on the "R2" System 3 133

(i) Question Analysis Techniques 3 133
(ii) Concept Processing 6 136

(iii) Context Modeling 8 138
(iv) Syntactic Processing 9 139

2. Semantic Compiler 15 145
3. Basic Concepts in Cognition 18 148

(i) Review 18 148
(ii) Present Work 18 148

4. Associative Processor 20 150
(i) Introduction 20 150

(ii) Previous Processors 21 151
(iii) Present Results 23 153

L

I. ACCOMPLISHMENTS FROM 9/1/67 - 11/30/67

Item 1.

MAJOR ACTIVITIES AND ACCOMPLISHMENTS DURING REPORT PERIOD

At the beginning of the present period, the research group

undertook the initial definition of organizational structures

and functions for the senior staff, the research assistants,

and the general membership of IGLIS (Interdepartmental

Group on Library and Information Sciences). Subsequently, two

principal foci of activity have centered respectively around

weekly meetings of the senior staff and weekly joint meetings

of the senior staff and research assistants. At the outset,

thP latter meetings have necessarily assumed primarily the

format of didactic workshops as sucessive major aspects of

the research program have been presented. mhe need to he met

jr thin resper7t is to establish a thorough understanding of

the principles on which the prorTram is based, as these prin-

ciples tend to be fundamentally different from those of most

current information retrieval research with which the assistants

are already familiar.

While the work and meetings of the senior staff have also

reflected a need in part to review the common general back-

ground and to facilitate the articulation of the different

approaches of individual members, their interaction has already

been channeled into several areas of the more substantive

issues to be addressed. To date, the latter have specifically

2

3

included the following technical aspects: (1) Operational

definitions of cognitive memory system components, (2) En-

coding graphical lines into symbol chains, (3) Classification

concepts in cognitive processes, (4) Non-linguistic cognitive

representation of events mappable into verbal descriptions

(as well as events themselves), (5) Ring and cylinder repre-

sentation in computer memory of complex relational structures,

and (6) Numerical estimates of computer search speeds with

data involved in cognition experiments.

In illustration of the next level of detail on which

each of these topics might he described, the summary abstract

prepared for the last named effort may be cited as an example:

"During this report period, a simulation of a
computer system searching highly structured data
was performed. The simulated system is a near-
conventional central processor plus a magnetic
disc store plus a special (practical) scheduling
mechanism. The purpose of this simulation is to
provide numerical estimates of the search speed
of immediately practical computer systems when
searching data of the type involved in cognition
experiments.

The results show that the scheduling mechanism
can provide search rate improvements of 4 to 6
times the rate with no scheduler.

These results per se are not viewed as of
especial importance, but they do provide values
against which other system designs can be
compared. The simulation of other systems is
proceeding." (S. Ray and B. Wang)

3

II. ACCOMPLISHMENTS FROM 12/1/67 - 3/31/68

4

1

Preface

The following pages give a brief account of the

activity associated with the study on cognitive memory

during the second report period from 1 December to 29

February 1968. Under Paragraph A in Item (i) some features

of the inter-disciplinary organization of this project are
r

described, while Paragraph B gives technical details,.

The outstanding contributions to this study by Mr.

Jerrold Sadock and Professor Arnold M. Zwicky from the

Department of Linguistics, who tirelessly and patiently

addressed themselves to this group in numerous discussions

and lectures, is herewith acknowledged with great appreciation

and gratitude.

5

H. Von Poerster

ACCOMPLISHMENTS FROM 12/1/67 - 3/31/68

Table of Contents

Page

Preface 1

Major Activities and Accomplishments During Report period 3

1. Organizational 3

(i) Weekly Workshop 3

(ii) IGLIS Document System 4

2. Technical 7

(i) Language Acquisition 7

(ii) An Investigation of the Normalization of Natural
English Text 8

(iii) Work Frequency Study 11

(iv) Theorem Proving Techniques 12

(v) Time-Space Schduling 15

(vi) Texual Macrostructure 16

(vii) Studies of Access Rates to Densely Interconnected
List Organized Data 18

6

3

MAJOR ACTIVITIES AND ACCOMPLISHMENTS DURING REPORT PERIOD

1. ORGANIZATIONAL

() Weekly Workshop - F. P. Preparata

In order to develop a common background and to familiarize

the members of the group with the state-of-the-art of

cognitive processes, a weekly workshop has been established.

The meeting usually consists of a semiformal presentation--

offered by a group member or, occasionally, by an invited

speaker--as a review of current research in the area. The

presentat2on is then followed by a discussion aimed at high-

lighting outstanding features, promises, and limitations of

the work being examined.

The past workshops have dealt mainly with the represen-

tation of relations (and connected hardware and software

general problems) , the theory of transformational grammars,

and the representation of semantic information. Althougn

the workshop has not yet evolved into a "creative" phase,

nonetheless its function in sensitizing the aroup members to

the various problems of the cognitive memory has been highly

successful.

4

(ii) IGLIS Document System D. E. Carroll

During the present report period, one line of

organizational activity has involved the establishment of

a document distribution and bibliographic searching system

to meet the needs of individual members of the IGLIS

(Interdepartmental Groun on Library and Information

Sciences) personnel engaged on the Cognitive Memory Project.

Copies of the forms used for document routing and service

requests are attached. To date some 25 items have been

processed on a trial basis, and the initial responds is

to suggest the utility of the system and the desirability

of expanding :Line depth and scope of the operation in the

future.

8

5

From: (Name) Item No.

(Office) Date

To: D. E. Carroll
IGLIS Information Office
Room 3-107 Coordinated Science Lab

Subj: Action request concerning routed item

Instructions:

Indicated below any desired action you wish taken concerning the
item routed. For immediate response, return this form directly
to the Information Office (or phone 333-6448 or 333-0646).

Desired Action:

Please xerox a duplicate for my use.

Please xerox page(s) for my use.

Please compile and route a bibliography of other works
by the author(s) of this item.

Please compile and route a bibliography on the topic
referenced on page(s) cited as

Please procure and route a copy of the document referenced
on page(s) by/or titled

Please route the enclosed item also to the following
addresses (or class(es) of addressees) :

Other desired actions. (Please specifyl.

9

Form B1--10 Jan 68

FROM: IGLIS Information Office
Room 3-107
Coordinated Sciences Laboratory

TO: IGLIS Members (as addressed below)

Item No.

Date

6

SUBJECT: Document Routing for Cognitive Memory Project

Instructions:

a. After examination, please cancel your name and forward the
enclosed item within 2.5 days to another of the checked addressees
below. (Route first preferably to any remaining addressee in
your own building.)

b. If you cannot attend to the enclosed item within 2.5 days, please
forward without cancelling your name (to ensure re-routing for
your later attention). Re-routing will continue until all checked
addressees are cancelled.

c. Indicate any desired action concerning the item on one of the
accompanying action-request forms. The latter may be returned
separately (if so desired for immediate response) to Room 3-107 CSL
(or phone either 333-6448 or 333-0646).

Addressees:

IGLIS I

IGLIS II

H. Von Foerster
R. Chien
S . Ray
B . Carss
F. Preparata
J. Sadock
P . Weston
A. Zwicky

H . Bielowski
K. Biss
P . Duran
J. Harris
C. Hartman
C. Kelley
P. Ryan
P. Stahl
B . Wang

(216 Elec. Ena. Pes. Lab.)
(3-101 Coord. Sci. Lab.)
(277 Dig. Comp. Lab.)
(805 W. Pennsylvania)
(3-103 Coord. Sci. Lab.)
(1116 W. Illinois)
(3-119 Coord. Sci. Lab.)
(309C Davenport Hall)

(3-119 Coord. Sci. Lab.)
(3-110 Coord. Sci. Lab.)
(3-121 Coord. Sci. Lab.)
(A15 Libra....y)
(3-110 Coord. Sci. Lab.)
(3-113 Coord. Sci. Lab.)
(128 Library)
(3-113 Coord. Sci. Lab.)

.. (3-120 Coord. Sci. Lab.)

Addressees for further disposition on completion of above routing:

D. Carroll (3-107 Coord. Sci. Lab.)

10 Form Al--23 Jan 68

7

2. TECHNICAL

(i) Language.AEquisition - P. Weston

In September, the long range research goal was adopted of

demonstrating the acquisition of some simplified form of natural

language by a computer program. A principle requirement for

achieving this, in our analysis of the problem, is the use of

direct man-machine interaction, am:, furthermore a system at the

interface which is at once simple enough fo.. the machine to be

capable of dealing with the structures, relationships, and

operations involved and yet rich enough to be of some interest

to the human participant.

The initial research steps have been directed toward

programming-tool development in two simultaneous and at this

stage mutually beneficial lines. Most importantly, a linked data

structure concept, which we have called the "cylinder," has been

conceived and implemented. This principle of data structuring

allows multiple circular modes of search within a single structure,

uses only a single principle of construction at all points in a

complex structure, and needs what seems to be a near minimum in

terms of memory space reserved for bookkeeping and other overhead

uses.

In a developmental version, cylinders were used in the

program XBAR (mentioned below) in the period September through

November. In the period following, the experience gained with

the first version and the new availability of the CSL7 list

processing language on the 1604 have allowed the development of

11

8

a generalized and improved form of the cylinder system which we

will now be able to employ extensively in the next stage of

programming work.

To aid in the development of the cylinder structure concept

in its first form and simultaneously to lay a planning basis for

an adequate interface system, a modest computer display program

oi= the Sketch-Pad species was constructed, using cylinders to

form the requisite data structure. This program, called XBAR,

was brought to a level of usefulness which fulfilled its develop-

mental function regarding both the data structures and their

relationship to the interface design. With this accomplished,

and with the availability of the CSL7 list processing language,

the way is now clear to complete the interface work and proceed

with preliminary development on the next phase of the project

which is realization of the information processing programs to

accept and analyze information coming in both graphic and linguistic

form from the interface.

(ii) An Investiaation of the Normalization of Natural English Text -

R. T. Chien, K. Biss

The purpose of this work is to investigate methods of

converting natural English text into a canonical form, that when

stored in a computer, the machine will be able to answer questions

based on the normalized text in storage.

Following Garvin 1
, we divide the set of sentences of a

document into two types; predications and non-predications.

1
Paul L. Garvin, "Research in Semantic Structure," Thompson Ramo

Woolridge, Inc., R. W. Division, Technical Note No. 6, Jan. 15, 1963.

12

9

Predications are sentences which have the form "A is in some way

a function of B," and non-predications are sentences which do not

have this structure. For example the sentence "The SIR model is

the collection of data which SIR subprograms may refer to in

the course of question-answering." is a predication where the

function "equality" is expressed by the word "is," but the

sentence"'understanding' is difficult to define" is not a predica-

tion. In this work we deal strictly with predications.

A particular function in a predication can be expressed

by many different words. In order to normalize the text we

will replace words that express a function by the function itself.

Thus in the sentence, "A horse is an animal," the function

equality, which is expressed by the word "is," is substituted

into the sentence. The sentence thus becomes "A horse equals

an animal." The word "is" is called the original form and the

word "equals" is the replacement.

Predications may appear in the text in several forms, i.e

aPb, abP, bP,
-1a, Pab, etc. where a and b are "objects" and R

is the relation between a and b. Predications of the form of

aRb are left alone but all other forms are paraphrased so that

they will be of the form aPb. For example, the sentence

"Backus notation represents the grammar of a language as a set

of definitions of grammatical structures," is changed to read

"In Backus notation a set of definitions of grammatical struc-

tures represents the grammar of the language." where P is

"represents" in this case.

13

10

In an effort to gain further insight into the usefulness of

predications we surveyed three articles. These articles were:

1) Academic Disciplines - The Scholarly Dispute over the Meaning

of Linguistics - Time, February 16, 1968; 2) Description of

Syntax-directed Translator--C. M. Reeves - Computer Journal;

3) A Computer Program Which "Understands" - Bertran Raphael -

AFIPS Conference, 1964.

Analysis of these articles produced several noteworthy

results. First, non-technical text such as found in Time

magazine contained very few predications, ane the predications

that did exist were hard to recognize. Second, in technical

articles, excluding the abstract and introduction, most sentences

were predications (about 70%) which were fairly easy to recog-

nize. These predications were mostly of the form aRh and only

a few had to be paraphrased. Por example, a paragraph from B.

Raphael's paper reads, "The SIP model is structured by means of

property-lists (sometimes called description lists). A

property-list is a sequence of pairs of elements, and the entire

list is associated with a particular object. The first element

of each pair is an attribute applicable to a class of objects,

and the second element of the pair is the value of that attribute

for the object described," where the function words are under-

lined. This paragraph was then changed to read, "The SIR model

is structured by means of property lists (sometimes called

description-lists). A property list equals a sequence of pairs

of elements. The entire list is associated with a particular

object. The first element of each pair equals an attribute

14

11

applicable to a class of objects. The second element of the

pair etuals the value of the object described." where the

replacement forms are underlined. Third, in the technical

articles the non-predications did not carry very much informa-

tion and in fact, some of the non-predications could be dropped

from the text with almost no loss of information. For example

in the paragraph "Most readers will be aware that the official

document which defines the ALGOL language (Backus et. al., 1963)

makes use of a special notation, the so-called Backus normal

form, for defining the grammar, or rules of syntax, of ALGOL.

This meta language is simple, powerful, and general. It is the

basis for most formal specifications of current programming

languages. We shall take it as our starting point.",the non-

predication "We shall take it as our starting point" could be

dropped from the text and never be missed.

In the future we intend to write a program to answer

questions based on this idea of normalized sentences in a text.

(iii) w2_v_sErfaL.ienc_y_ Study - B. W. Carss

During the past six months, the discussions of the Cognitive

Memory group has shown how relatively little is known about

modern English language usage. It therefore, appears to be

profitable to tackle the problem from two aspects.

a) To carry out a study of word frequency and word combina-

tion frequency in contemporary English. The most recent study

of word frequency, etc. was carried out in 1931, and the book

15

12

reprinted in 1944. A series of computer programs have been

written to perform the necessary analyses automatically. A

sample of approximately 100,000 has been assembled and processing

will commence shortly.

b) To establish a data bank of spoken language. This data

bank will make it relatively easy to compare written language

with spoken language. Hopefully, we can begin to look for

correlations between written language, spoken language and

semantics.

The work proposed under (b) will be funded by another

source and is mentioned here as being directly related to the

cognitive memory project.

(iv) Theorem Proving_lechniques - R. T. Chien, C. Hartman

Application of predictive calculus, in particular the

theorem proving techniaues, to improve the deductibility power

of the computer have been studied. Based on the results of

many projects in recent years, the Robinson resolution principle
1

in conjunction with the HJrbrand approach
2 to theorem proving

seems most effective because of its generality and its relative

simplicity as it consists of just one simple inference principle.

Its main advantage lies in its ability to avoid one of the major

combinatorial obstacles to efficiency which have plagued other

theorem-proving procedures. The basic approach of Herbrand proof

IJ. A. Robinson, "A Machine-Oriented Logic Based on the Resolution
Principle," JACM, Vol. 12, No. 1, January 1965.

2E. Mendelson, Introduction to Mathematical Logic, (von Nostrand,
1964).

16

13

procedures is to try to construct a model that satisfies the

negation of the statement (more generally "well-formed formulas"

(wff's)) to be proved. First the negation of the wff is put

into a standard form. Then the resolution principle is applied

to deduce some other wff, such that the original wff is satis-

fiable only if its descendants are all satisfiable. In its

proportional form the Robinson resolution principle is illustrated

as follows: (PVI3)A(-PVC)AD is inconsistent if and only if

(BVC)AD is inconsistent. Where P is a proposition (in general

and Atomic Formula); B,C,D are wff's and -P is the negation of

P; V stands for "or" and A stands for "and." In other words

we have eliminated P. Let us give an example in the propositional

calculus and apply the rule of inference. We know that: "John

is a friend of Peter or John is a friend of Paul or friend of

both" is a true statement and that "John is not a friend of

Peter" is a true statement also. Let P, B stand respectively

for "John is a friend of Peter", and "John is a friend of

Paul." In a statement form we have that (PvB)A-P is true and

by application of the rule of inference we can conclude that

B is true. So we know that "John is a friend of Paul" is a

true statement. In other words we can say that the truth table

of (PVB)A-P depends only upon the truth values of B.

A more realistic example would be to show that in a group a

left inverse is also a right inverse. The axioms of a group

that we are going to need for the proof are:

1. e.x=e (existence of left unity)

2. I(x).x=e (existence of left inverse)

17

14

3. (x.y).z=w -0- x.(y.z)=w (associative law)

4. x.(y.z)=w -0- (x.y).z=w (associative law)

For convenience the associative law was split in two. We want

to prove that x.I(x)=e (conclusion) is a true statement. Let

the predicate of three arguments P(x,y,z) be interpreted as

x.y=z. In the disjunctive form the theorem is written in the

following way:

1. P(e,x,x,)

2. P(I(x),x,e)

3. -1)(x,y,u)V-P(ulz,w)V-P(y,z,v)VP(xlv,w)

4. -P (y, z ,v)V-P (x,v,w)v-P (x,y,u)VP (u z ,w)

and the conclusion to be proved will take the form P(x,I(x),e).

In this particular case the single existential quantifier has

no dependence on the universal quantifiers, hence leads to the

constant function "s" when this existential quantifier is replaced

by a function symbol. The theorem is proved in the following

steps:

1. P(I(I(s)),I(s),e) by axiom 2

2. P(e,s,$) by axiom 1

3. P(I(s),s,e) by axiom 2

4. -P(I(I(s)),I(s),e)v-P(e,s,$)v-P(I(s),s,e)/P(I(I(s)),e,$)

by axiom 3, taking (I(I(s)),I(s),$) for (x,y,z)

5. P(e,I(s),I(s)) by axiom 1

6. -P(e,I(s),I(s))V-P(I(I(s)),I(s)feW-P(I(I(s),e,$)VP(s,I(s),e)

by axiom 4, taking (I(I(s)),e,I(s)) for (x,y,z)

7. -P(s,I(s),e) by the negation of the conclusion

8. Since 1,2,3,4 are always true so 1e\2A3A4 is true;

18

15

applying the resolution principle we get that P(I(s),e,$)

is true.

9. Since 1,5,6,8 are true so is 1A5A6/\8 and by the resolu-

tion principle we get that P(s,I(s)e) is true.

10. From 7 and 9 we have P(s,I(s),e)A-P(s,I(s),e) is true,

what is inconsistent and the negation of the conclusion

is false so the conclusion is true. In this particular

case we really get the conclusion in step 9 but in

general we get AA7A is true where A is any axiom or true

clause, that is we deduce the empty formula.

In the anplication of this procedure to our particular

problems, we feel that we can make significant improvements,

especially in the relevancy criteria, that is, what should be

the most appropriate axiom or theorem that should be used in the

next step of the proof procedure. It seems that until now no

powerful method has been developed in this sense. For example,

an axiom or theorem to be used in the next step should take

into account its generality, its complexity and its usefulness

based on the previous experience of the system.

(v) Time-Space Scheduling H. Bielowski

The problem of handling relational data structures with

secondary sequential files suggested the study of the problem

of time/space scheduling the activities in a real time computer

system.

A general performance criterion for computers in form of a

revenue-objective has been found. Revenue/response time-functions

19

16

have been defined as a characteristic feature of computational

tasks. Departing from there, four operational subgoals for

the scheduling routines of a generalized computer system have

been stated.

The implications of these subgoals have been critically

related to recent publications. In the light of the stated

objective, the state of the art of Main- and Input/Output

scheduling appeared to be unsatisfactory.

Directions in which further work might find success have

been found. The suggestions pivot around the statement of

relevant items of information on the in-waiting and in-progress

computing tasks as well as on the state bf the system, informa-

tion, which should be used by the scheduling programmers in

order to enable them to effective scheclling decisions. The

matter has been discussed in a 22-page paper.

(vi) Textual Macrostructure - D. E. Carroll

This line of effort has been addressed to the formulation

and initial exploration of a theoretical problem relating to

the "macrostructure" of at least some components and aspect of a

cognitive memory system when operating on documentary textual

information. The conjecture is that the natural language

representation and communication of textual information presumes

some hidden or underlying structures and relational or classifi-

catory processes (heretofore undescribed) which would appear

essential to at least certain aspects of the cognition and

synthesis of information. It is believed that these structures

2 0

and processes (however defined and acquired, perhaps by

cultural convention) must be present to accomplish such tasks

as the synthetic reduction of two or more related through

differing accounts of a topic to a single unified account

characterized by logical clarity and minimum redundancy.

It would appear that such reductive trail:formations must

operate on the natural sentence and phrase levels, that a test

of semantic equivalence and semantic relation (or distance)

is required, and that a set of programmatic conventions must

obtain with regard to relational or classificatory processes.

Assuming for the present some effective means of testing for

semantic equivalence and relation, work is presently being

focused upon an inductive approach which will hopefully yield

a useful corpus of inferences concerning the postulated pro-

grammatic conventions together with at least some tentative

rules concerning their typology and anolications.

21

18

(vii) Studies of Access Rates to Densely-Interconnected List-
Organized Data S. Ray & B. Wang

The preliminary investigation of the rates at which cognitive-

type data (densely interconnected lists) can be accessed with a

near-standard computer Jystem was completed. The system was con-

figured as a 3rd generation computer with the data largely contained

on a magnetic disc. When searching through 10-20 lists in an order

which minimized access time, the results showed that only some 100

data block per second could be accessed. This would correspond to

(perhaps) 300-500 lines per second, the uncertainty being due to the

lack of hard data concerning the number of lines per data block.

A second phase of the investigation was concerned with manual

estimates of search rates in the case of the ILLIAC IV, where there

are 256 arithmetic units with 4 megabytes of random access memory.

In a random-access memory with coordinate-address links, list data

can, -of course, be processed at approximately the inverse of the

memory access time (1 to 2 million lines per second in this particular

case). This is completely uninteresting, however, since any standard

computer with the same size core memory could perform equally well.

More interesting is the case in which the 4 megabyte memory is

treated as a content-addressable structure. Here, the parallelism

of the machine can be utilized. Under these conditions, about 1000

links per second could be processed. It remains to Jo determined

whether the elegance of the content-raddressable approach can be

economically justified as against the faster but less manageable system

of coordinate links.

22

III. ACCOMPLISHMENTS FROM 4/1/68 - 7/31/68

1

PrPface

The following pages give a brief account of the

activity associated with the study on cognitive memory

during the third report period from 1 March to 31 May

of 1968. Not reported in this account is the prepara-

tion of various scientific papers that represent the

first tangible harvest of this basic investigation. Upon

completion, these will be submitted under separate cover

as Special Technical Reports.

Again, the contribution of members of the Department

of Linguistics, of Mathematics, of Anthropology and of

Psychology, whose association with this project is by

interest and enthusiasm, rather than by contract, is

herewith acknowledged with great gratitude and appreciation.

H. Von Foerster

24

ACCOMPLISHMENTS FROM 4/1/68 - 7/31/68

Table of Contents

Page

Preface 1

Major Activities and Accomplishments During Report Period 3

1. "Cylinders," A Linguistic Data Structure Based on a
Novel Use of "Rings" 3

(i) Introduction 3

(ii) Ring Structures 7

(iii) Cylinders 11

(iv) Examples of Use 19

(v) Summary 20

2. An Objective Function for the Scheduling Routines of a
Time-Sharing System 23

3. Cognitive Memory 31

4. A Pilot Information System: "Rules of the Road" 31

(i) Introduction 31

(ii) Preprocessing 32

(iii) Steps Towards a Relational Struxture 35

(iv) On the Recognition of Sentence Types 36

(v) Syntactic Processing 38

5. Textual Macrostructure 40

MAJOR ACTIVITIES AND ACCOMPLISHMENTS DURING REPORT PERIOD

1. "Cylinders," A Linguistic Data Structure Based on a
Novel Use Of "Rings" - P. Weston

A form of linked data structure called the "Halo" has

been described elsewhere(1). The success of this concept sug-

gested a further generalization of this structure and resulted

in another more versatile structural concept, the "Cylinder,"

whose properties will be discussed in the following pages.

,(i) Introduction. With the growth of non-numerical

computer applications, and the attendant necessity of

dealing with entities lacking the orderly internal rela-

tionships characteristic of matrices, interest in linked

data structure has grown, with the key developments coming

out of artificial intelligence research where indeed the

data manipulation problems are the most severe.

Structuring of data with the computer store is a

factor, implicit or explicit, in the design of any computer

program. The point of tangency between data structure and

program design lies in the necessity of imposing relation-

ships upon data independently of their values, in order

simply to express an algorithm or computing procedure upon

them. This is particularly clearly seen in, for example,

the case of matrix multiplication, where row and column

relationships must be imposed in an appropriate way upon

a set of stored numbers in order for the required proce-

dure to be definable as a program. As a general principle,

it may be said that, in the context of computation, data

26

4

structure is dependent upon the processes to be performed,

and is less an intrinsic quality of the data themselves.

In numerical applications it is ordinarily suffi-

cient to structure data in matrix form provided that

arrays with various numbers of dimensions can be handled,

and compilers oriented toward numerical problems, such

as FORTRAN and its sucessors, contain simple and direct

means, including subscripting of variables and dimension

declarations of arrays, for expressing the necessary re-

lationships. What sets this type of structuring apart

from linked structures is the fact that it is possible in

an array to compute, in a reasonably simple manner, the

location in the computer store--or address--which holds

a given datum, on the basis of its description as an array

element, i.e., the values of its subscripts and a "base

address" corresponding to the variable itself. Indeed,

even at the hardware level, current computers universally

include means for dealing directly with one-dimensional

structures through the use of address-modification registers.

It will be convenient to refer to all structures

based solely upon computation of "addresses" as array

structures. Linked structures on the other hand are

characterized by stored rather than computed addresses,

various means being used to explicitly store with the

data the locations of related items. These stored

"pointers" to other items of data are often also referred

27

iI

5

to as links, and structures built from them are often

called lists or linked lists. While the linking method

is theoretically completely general, in practice it

involves an overhead cost in terms of storage space and

running time and is used only when necessary.

When an algorithm effectively precludes the use of

arrays, some form of linked structure is the only pre-

sently available alternative, since content-addressed

stores--which are the other presently interesting

possibility--are not now included in ordinary equipment

and may never be. The difficulties which lead to aban-

donment of arrays are encountered when the details of the

required structure are either; (a) highly irregular,

leading to great quantities of wasted storage due to

empty positions in an array, or (b) highly variable,

leading to massive shuffling around of storage contents

when array parameters are redefined. An important sub-

case of the latter is that in which structural require-

ments are substantially dependent upon data values, as

happens in most instances of artificial intelligence

problems. The automatic parsing of sentences can be taken

as an illustration. The entire object of such an algorithm

is the generation of structure upon the incoming data.

In this case, the structure represents the syntactic rela-

tionships to be found in the input sentences, which are

initially given simply as strings of symbols.

28

6

Because our work is primarily in the artificial

intelligence area, the need of a good linked-structure

system has been recognized as an important consideration.

Two of the older and well established linked-list lan-

guages, IPL-V(2) and LISP(3) were not felt to be entire-

ly adequate, due mainly to the restricted class of

linkage structures realizable, i.e., in both cases only

unidirectional linking is possible and no reentrant

linkages are allowed, with the result that from an arbi-

trary internal element ii1 a linked structure only a por-

tion of the remaining structure is accessible. While for

many purposes this objection is not actually as serious

as it sounds, there do arise many cases in which complete

availability of a structure from any element in it is a

decided advantage. There have been attempts to provide

more or less direct reversibility of linkage paths, e.g.,

Threaded Lists(4), and the SLIP system(5). The latter

tends to impose heavy burdens upon memory space and the

former involve some potentially severe problems due to

untraceable connections when storage cells are "erased".

More recently, the usefulness of ring structures has

been demonstrated(6), and they offer several advantages

over the earlier approaches. The principal ones are

(a) as the name suggests, the basic structures are closed

upon themselves, so that complete availability of struc-

ture is implicit in the design without a great increase in

29

7

storage space, and (b) as they have been implemented, ring

structures usefully combine linking and array structuring

and in so doing make possible a fundamentally more effi-

cient use of the computer. A further, most significant

advance has been the invention of general-purpose low-

level linked-list programming languages, the most widely

distributed one being "L6"(7). In sharp contrast with

earlier approaches these are not tied to any particular

linkage scheme, but are sufficiently general in concept

and economical in the programming means they provide, to

enable the user to realize whatever form of linked struc-

ture he may desire, using a fairly natural and compact

programming notation.

(ii) Ring Structures. Since December, 1967, L6 has

been available at CSL on the CDC 1604 computer and a

cylinder system has been programmed using it. This system,

which we call CYL6, is now in active use as a tool in

other programming work.

In the terminology of linked lists computer storage

is dividable into blocks and fields, in addition to the

common word unit. A block is a group of consecutive

computer words, i.e., having consecutive addresses, while

a field comprises an arbitrarily defined region internal

to a block, having limits fixed with respect to the block

boundaries but not necessarily coinciding with any word

boundaries. A common schematic representation for these

30

8

relationships is shown in Figure 1. A linked structure

may be created by using some fields in each block to

hold the addresses of other blocks, i.e., to contain

pointers. This is often represented in the way shown in

Figure 2.

As a list structure a simple ring, which is the

basic linked structure in the Cylinder system,is nothing

more than a chain of pointers which closes upon itself.

This can be represented as in Figure 3. Although the

circularity of this type of structure could apparently

lead a program to step endlessly fro.n link to link in the

course of a data search, (and for this type of reason all

reentrant structures were avoided in early linked-list

systems) , it is in fact a simple matter to prevent such

a difficulty, when the ring is the only closed linkage

pattern allowed.

This is typically done by incorporating a specially

designated and identifiable cell in each ring to serve as

a reference point in searching and building functions. A

similar device was used in our earlier Halo design, but

in the Cylinder system emphasis is placed on eliminating

all specially reserved storage for system functions--and

most other restrictive system conventions--and the

Cylinder ring is an entirely homogeneous structure. To

insure termination of all ring-searching operations, the

subroutines which execute them have been designed to

31

_

9

FIELD FIELD B FIELD 0

FIELD G FIELD R

FIELD P

ETC

Figure 1. A biocx is a group or consecutive
computer words, within which areas called fields
may be arbitrarily defined and labeled.

Figure 2. A schematic convention for linked
structures, using arrows to indicate the blocks
which are pointed to by stored links.

Figure 3. A simple ring is a closed chain of pointers.
32

10

automatically stop with a "fail" indication in the event

that the starting point of the search is reencountered.

This approach reduces storage overhead requirements and

simplifies system conventions, simultaneously giving the

user maximum latitude.

Given the choice of rings as the basic linkage

pattern, which insures complete availability of each

point in a structure from any other point with a minimal-

ly complicated set of system conventions, there still

remains a wide field of choice in the exact manner in

which the rings are to be used in representing data

structure. Common to all methods is the use of rings to

"thread" blocks of storage which may contain data as well

as ring pointers, linking the blocks together somewhat as

if they were beads on a string. One direct application of

this basic scheme is in representing a classification of

data. See Figure 4. Using individual blocks to hold

descriptive information for the data,the representation

is constructed by linking together on rings those data

blocks which belong to each subclass to be represented.

Because room can be made for more than one ring to thread

a block, thereby representing membership of a datum in

several classes simultaneously, there is no difficulty in

setting up arbitrary hierarchical or overlapping classifi-

cations upon a set of data. Using zing structures in this

way requires little or no more storage than conventional

33

11

lists do, while in contrast with conventional lists, rings

allow full flexibility in the manner in which data may be

searched, i.e., with equal ease a class (ring) may be

searched for the data (blocks) it contains, or a datum

may be searched for the classes which contain it.

(iii) Cylinders. Further discussion of the use of

rings in creating data structures will be limited to the

context of the cylinder conventions. These are:

(a) The only allowed linked structure is the ring,

i.e., a non-branching, self-closed chain of pointers.

(b) A fixed number of fields, eight in the case of

CYL6, are defined upon the first words of all blocks, and

all ring pointers within the system must be contained in

just these fields. However, there are no system-imposed

restrictions on the use of fields which are not needed

in a given program for building rings, i.e., if only a

few levels are needed short blocks may be used or data

may be stored at the unused levels, wherever in the block

they may occur. Program context is the determining factor.

In CYL6 the eight ring-pointer fields are identified by

the letters "I" through "P".

(c) All of the pointers constituting any one ring

lie in the same field within their respective blocks,

i.e., if one pointer in a ring is contained in a "K" field,

all pointers in that ring necessarily lie in "K" fields.

It is convenient to speak of the allowed pointer fields as

34

DATUM Ei
DATUM

0;55

DATUM C

Figure 4. Threading of blocks by multiple
rings to represent a classification upon a set
of data.

I
,

J
,

,

I1 1

1....4
L

,

M
i

,

(.:) N
,

Ct 0
.

i.....

P ,

Figure 5. Conceptual scheme of pointer levels
as defined in the CYL6 system. This is not the
actual arrangement in storage.

I 1 2'

J
,uK vL,vMxN4

Y C Z P,

12

Figure 6. Actual storage arrangement in CYL6,
using the first four words in a block. Pield 0 is
the tag field shared by levels I and J. Fields U
through Z are the tag fields for levels K through
P. The first six bits of the first word are
reserved for the CSL7 storage allocator.

35

"levels" at which rings may be constructed and to speak

of a ring as being at a certain level, e.g., in CYL6 a

particular ring might be at the "K" level or "I" level,

etc. See Figure 5.

(d) Associated with each pointer field there is

also a data field of limited size, called a Tag field.

All data search functions in the CYL6 system are sensitive

only to the contents of the tag field associated with

the level being searched. All tag contents are complete-

ly under control of the user and are primarily intended

to identify, for search purposes, functionally distinct

types of storage blocks within the context of an indivi-

dual program. In many applications tags can provide all

of the identifying information needed to govern every

desired mode of search in a structure. In CYL6, the tags

have a capacity of nine bits, which may be divided into

independent three and six bit subfields or may be taken

altogether for search purposes. It is convenient to

describe the contents of a CYL6 tag field with an octal

digit followed by a BCD character, e.g.,"5A", "1/".

A peculiarity of the CYL6 system is that while there

are eight ring levels there are only seven tag fields, the

I and J levels having a single tag field in common. This

is due to interaction with space reserved in the first word

of each block by the storage allocator of CSL7(8), a

dialect of L6, the language in which CYL6 is written. See

Figure 6.

36

2:
MIIMMP

BLOCK 1

L

BLOCK 2 BLOCK 3

BLOCK 1 BLOCK 2 BLOCK 3

OMM

>

Figure 7. A schematic convention for cylinder
structures. Above is the block and pointer equi-
valent of the lower diagram. The long arrows are
understood to signify closed rings of pointers
running in the sequence indicated by the arrow
direction.

BLOCK 2 BLOCK 4

BLOCK 3

BLOCK 2

BLOCK 1

BLOCK 4

Figure 8. The basic linkages possible when a
particular pair of rings is taken separately. The
particular choice of levels here is unimportant.

1 7

14

15

The four conventions listed above are the only

restrictions which are required by cylinders. They de-

fine a system broad enough in scope to include most

other ring structures and, in the case of CYL6, which

operates within a variant of L6, they are able to co-

exist with any ot1ler constructable in that language.

To gain further understanding of the structures

that are available through the cylinder system it will

be helpful to use an appropriate notation, such as

the one which grew out of the CYL6 development effort.

Figures 7 through 11 help to demonstrate this notation

and its interpretation in terms of the block and pointer

notation of the earlier figures. In this scheme the

chain of pointers constituting a ring is represented

simply by an arrow, the direction of which indicates the

sequence of the indicated data elements along the ring.

Since it is understood that all pointer chains are

closed upon themselves, this fact may be kept in mind

making it unnecessary to draw the rings as closed figures.

When a single block is threaded by rings at several

levels it is natural in the cylinder context to treat

such a block as a cross-linking between rings and this

is the way it is drawn, as in Figure 7.

Although it is in fact generally the case that a

structure consisting simply of crosslinked rings will

tend to be unwieldly in any notation, some order can be

38

16

extracted from the chaos by limiting one's attention to a

single pair of rings at a time. In this case the possibil-

ities are quite limited, a block is threaded by none, one,

or both of the rings, and in the latter two cases may or

may not be threaded by other rings as well, Figure 8.

The basic cylinder is formed from a pair of rings

and employs cross linking between them in a particular

way. The framework of the scheme is pictured in Figure 9,

where the triangles are used to indicate the positions on

each ring of the special cross-links which we have called

"seams". The only defining property of the seam sub-

structure is that the blocks which form the seams lie

either in exactly identical or more usually in exactly

reverse sequences on the two rings. In the figure the

arrow directions shown indicate this ordering. The exist-

ence of such seams is not a mandatory feature in the CYL6

system. Their insertion, removal, and selective tagging

is left entirely up to the user's discretion.

The usefulness of having a sequence of identifiable

seam cross links with the indicated ordering lies in the

fact that between each pair of seams a type of subring is

created which has the important characteristic of self-

closure as does the main ring but has several added fea-

tures of some usefulness as well. As Figure 9 shows, each

subring contains four segments, consisting of the two

sequences of ring links lying between the two bounding

39

7

seams at the lower and upper levels respectively, and

of the two seams themselves, which constitute bilateral

connections between the upper and lower ring segments.

One natural way of using this ring and subring configura-

tion to represent data structure is to assign a datum to

each seam and to represent binary relations between data

by other cross links which carry tags identifying the

relations they represent and are threaded by the lower

ring segment of one subring, whose seam represents the

value of the first argument of the relation and by the

upper ring segment of the subring for the datum at the

second argument position. Such a representation is shown

in Figure 9.

This representation for binary relations is highly

compact as a linked structure, and is quite complete in

representational power in view of the facts that both the

forward and inverse relation are simultaneously repre-

sented, and that the main rings constitute a master file

from which all the data or all the links representing any

particular relation may be selectively retrieved using a

tag-controlled data search. The storage requirement in

terms of number of necessary links compares quite favor-

ably in this case with that for IPL-V,provided that all

the above information is to be represented. In the case

of IPL-V there is a basic requirement of two links per

datum, plus eight links to represent both a binary

40

18

y.

AA
B

/ UPPER SEGMENT

A>

LNER SEGMENT

Figure 9. The subring structure based on
'seams'. In the upper structure links 1 and 2
reDresent R1(a,c) and R2(b,a) respectively ac-
cording to the binary relational scheme described
in th3 text.

P1

P3

P1
LI

P2
L4 L2

P3
L3

P4

Figure 10. A line drawing with four points and four
lines, and a data structure representation for it in terms
of lines as binary relations between points. The intersec-
tion point, P5, does not explicitly appear in this structure.

41

19

relation and its inverse, plus at least two per datum to

construct the master file, plus two for each computer

word of data (numbers, alphanumeric strings, etc.) re-

quired to represent the contents of each datum, making a

total for one binary link between two data, each contain-

ing two computer words, of twenty-four links. Using

Cylinders, the requirement is two and one-half links for

each datum, counting a tag field as one-half of a link

field, two and one-half for each binary relationship re-

presented, and no extra links for the contents of a datum

because of the block structure. The total requirement

for the case cited above is seven and one-half links, which

is less than one third of the IPL-V requirement and the

comparison improves as more words are needed for each datum.

(iv) Examples of Use. An example of a binary rela-

tional structure of a rather simple kind arises in the

machine representation of line drawings involving points

and straight lines as elements. If points are taken as the

data, then lines can be represented as binary relations

between the data points, and a structure of the sort de-

picted in Figure 10 results. This structure represents

only the connections of the points and can stand for any

pattern consisting of a triangle with a fourth line ending

on one of its vertices. Supplying coordinate values for

the points realizes a particular example.

As an example of the flexibility of cylinders,Figure

11 shows a completely compatible extension of the scheme

42

20

in Figure 10 which allows the simultaneous representation

of line to line relations, such as intersection, and of

point-to-point relations including the line definitions in

terms of point pairs. At the K and L levels a second

cylinder is formed, having as seams the lines which appear

as relational links at the upper level. Any points which

are defined by line intersections, such as uoint 5 in the

diagram of Figure 10, can appear as relation links at

the lower level but as seams at the upper level, thus be-

coming capable of serving to define further lines and

so on.

Because points which arise from line intersections

depend for their coordinates upon the other points which

define the intersecting lines, this dependence is impor-

tant to any program which operates upon such data struc-

tures and must be somehow marked, without destroying the

identifiability of the datum as a point. This is readily

done through the use of say, the upper subfield of the

tag, in CYL6 marking it distinctly from the corresponding

subfield for other points but keeping the lower portion

the same. In this way the tags themselves can be made to

represent a type of classification upon the data with no

further burden upon the structure or storage requirement.

(v) Summary. A data structure 'concept which is an

adaptation of ring structures has been developed and

described. It is highly compact compared with conventional

43

P1 P2 P3 P4

Ll L4 L2 L3

21

Figure 11. An extension of the scheme of
Figure 10 whi 'a allows intersection noints to be
represented as binary relations between lines in a
cylinder at one level while the same lines are
simultaneously represented as relations between points
in a cylinder at another level. P5 is given a distinct
tag value, lp, because it must be distinguished
as a dependent quantity, and is not a freely
variable point.

44

22

lists, possessing an advantage of typically a factor of

three in :.torage requirements, and it is highly flexible

in use, since its definition includes most other ring

systems, but the elimination of almost all unnecessary

system conventions, and a novel employment of the ring

structure tend to give Cylinders an advantage in compact-

ness and flexibility in this field as well. It is now

being actively employed in programming for artificial

intelligence and its further potential thereby being

explored.

REFERENCES

1. Weston, P., "Data Structures for Computations within
Networks of Relati.ons", in BCIorLt.6'1,
Biological Computer Laboratory, Uni versity of
Illinois, Urbana, 126 pp., (1967).

2. Newell, A. et al.0 Information Processing_Languaae -
V, Prentice-Hall, Englewood Cliffs, N. J., (1964).

3. McCarthy, et al., LISP 1.5 Programmer's Manual,
MIT Press, Cambridge, Mass., (1962).

4. Perlis, A. J. and C. Thornton, "Symbol Manipulation
by Threaded Lists", CACM 3, 195-204, (1960).

5. Weizenbaum, J., "Symmetric List Processor", CACM 6
524-543, (1963).

6. Roberts, L. G., "Graphical Communication and Control
Languages" in Second Congress on Information
System Sciences, Hot Springs, Virginia, (1964).

7. Knowlton, K. C., "A Programmer's Description of L6",
CACM 9, 616-625, (1966).

8. Bouknight, J., Preliminary User's Manual CSL6 CSL7,
Coordinated Science Laboratory, University of
Illinois, Urbana, (1967).

45

23

2 An Objective Function for the Scheduling Routines
of a Time-SharinQ_System - H. Bielowski

In order to be economically feasible, conversational

interaction with large information processing systems makes

it necessary to apply the principle of "time-sharing".

For many problems associated with time-sharing, such

as virtual memory techniques, memory protections, etc., a

fairly satisfactory solution has been found, whereas poor

solutions of scheduling problems are responsible in many

cases for the typical law efficiency and frustrating per-

formance of the more general-purpose systems.

In the course of a lit rature study, it became appar-

ent that the following reasons must be held responsible fpr

this situation:

1. There is no consensus on a suitable objective

function for the scheduling of programs.

2. There is no a-priori information available to the

scheduler on the characteristics of the "jobs" which are

called for by the users.

3. The various scheduling processes in a given system

do not interact sensibly.

4. The system behavior is tailored according to

assumptions on the job mix and user behavior which do not

46

24

reflect reality.

5. An optimal mathematical solution of many scheduling

problems is not feasible. Even many of the suboptimal

solution procedures are computationally very involved.

With respect to the first point regarding the lack of

an objective scheduling function, a criterion has been

developed that seems to enable the scheduler to adjust the

behavior of the system to arbitrary job streams.

The obvious goal is the satisfaction of the users as

a whole, or what should be equivalent, the best possible

revenue R of a computer installation for a given period

of time T.

For each request of job i, a "revenue function" R(t)

can be constructed, which reflects contributions to R

independent of the response time ti the system realizes.

The revenue criterion presents itself now as: "Maxi-

mize R = IRi(ti) for all jobs i in period T." By their

definition, revenue functions contain estimates. Therefore,

high precision in their representation is not required.

Furthermore, scheduling economy will demand their simplifi-

cation very strongly.

These functions are characterized by the customer's

importance, the fee he pays for a job of a given size and

47

25

kind, the job size (= standard response time), and the

kind of urgency that is attributed to his job. The func-

tions can be "constructed" by composing information entered

by the customer together with his request, or stored in his

terminal, or stored in job-standards tables in the system.

The entries in the job-standards tables can be updated by

the manager of the computing center, using a special routine.

We discuss now linear functions (see Figure 12). They

are represented on a real time axis with arbitrary origin,

R(f)
A

A

tA NOW

DEADLINE

Figure 12. A linear revenue function

48

REAL
TIME

26

as they actually have to be seen by the scheduler. The

linear functions for each job i are given by the arrival

time tAi, the "zero revenue response time" Tzi and the

maximum possible revenue Ai, which is realized only at

instant response. In addition, the "standard response

time" Ti. has to be given. T. should ideally be the time

it takes to finish the job. As this is not known exactly

in advance, and depends of course on the competitive situa-

tion (competition for the use of hardware units, i.e.,

on the length of the I/0-queues), some standard must be

adopted, which could be corrected by the scheduler

according to the system state, and shortened for work

in progress.

It should be noted, that Tz will not be equal to the

deadline, because a response at deadline time is still

satisfactory. The negative part of the function is neces-

sary to represent loss of future revenue, etc., because of

user chagrin.

In the simple case, where the scheduler faces only

two jobs in a queue, (see Figure 13), the following analy-

sis generates the relative priorities:

In real time t, [capital T indicating (t-tA)],

R1(t) = Al-(Al/Tzl)(t-tAl) and R2(t) = A2-(A2/Tz2)(t-tA2)

49

27

There are two alternatives:

job I first: R1 = R1(t+T1)+R2(t.i-T1+T2)

job 2 first: R2 = R1(t+Tl+T2)+R2(t+T2)

The first alternative would be chosen, if R1>R2. This is

true for A
1
/T T

1
< A

2
/T

z2
T
2

.

Job 2

1

C1

Small difference

1/4 because of

counteracfing

factors

Job I

Figure 13. Linear revenue functions for
two jobs and the revenue of the two alternative
service sequences (no timeslicing assumed):

It is interesting to note, that the arrival times

tAi cancel out and do not appear in the decision rule. That

is because the functions are unlimited and decrease inde-

finitely with time. Obviously, this does not hold

for reality. After a certain time, it does not make

any difference whether a job is executed or not. The

revenue function will simply continue as a negative constant,

50

LI+

28

or cease to exist, but expresses the fact, that the job

is rejected. This brings to mind, that it might be of more

value to the user, if the job were rejected before it

started. What is important is the fact, that the decision

rule only has this form, as long as the sum of the standard

response times Ti of all jobs in the system (adjusted for

work in progress) is smaller than the remaining time span

before tne next "stop point" occurs. Even if we add the

notion of the "stop point", the linear function does not

satisfy our intuition of what these revenue functions really

look like. There will certainly be a lower bound on the

response time, below which the revenue will not be notably

higher, which appears to correspond to the conventional

concept of a deadline. Therefore, consider functions of

the type given by Figure 14 (on next page) as representative

of the general case.

For more than two jobs in a queue, say N, then all N:

possible sequences Should theoretically be evaluated. For

longer queues, this enumerative method is of course unfeasi-

ble. Heuristic aboptimal approaches have to be chosen.

It appears to be sufficient to decide, for instance, on

which of N possible locations a new job must be placed

in a queue which is served strictly in a "first-out"

51

29

F!gure 1.4. Some examples for the class of revenue
functions which is considered to be representative
for most jobs.

manner. This type of analysis would make it possible to

devise a set of priority rules (to be used by the sdheduler)

corresponding to classes of revenue functions (combina-

tions of TD, Ts and A) and values of T of both the jobs

waiting and the jobs in process.

REFERENCES

1. Belady, L. A., "A Study of Replacement Algorithms for
a Virtual Storage Computer," IBM Systems Journal,
5, 2, (1966).

2. Denning, D. J., "Effects of Scheduling on File Memory
Operations," Proc. of the SJCC, AFIPS, (1967).

52

30

3. Estrin, G., and L. Kleinrock, "Measures, Models and
Measurements for Time-Shared Computer Utilities,"
Proc. of the 22nd. National Conference of the ACM,
(1967).

4. Fisher, R. 0., and C. D. Shepard, "Time-Sharing on a
Computer with a Small Memory," CACM, 10, 2, (1967).

5. Greenberger, M., "The Priority Problem and Computer
Time-Sharing," Management Science, 12, 11, (1966).

6. Kleinrock, L., "Time-Shared Systems, a Theoretical
Treatment," JACM 4, 2, (1967).

7. Manacher, G. K., "Production and Stabilization of
Real Time Task Schedules," JACM, 14, 3, (1967).

8. Nielsen, N. R., "The Simulation of Time-Sharing Systems,"
CACM, 10, 7, (1967).

9. Rosene, A., "Memory Allocation for Multiprocessors,"
IEEE Transactions on Electronic Computation, EC-16,

5, (1967).

10. Sherr, A. L., An Analysis of Time-Shared Computer
Systems, MAC-TR-18, Massachusetts Institute of

Technology, Cambridge, (1965).

11. Smith, A. A., I 0 in Time-Shared Se mented Multi-
processor Systems, MAC-TR-28, Massachusetts Institute
of Technology, Cambridge, (1966).

12. Vyssotsky, V. A., Corbato, F. J., and R. M. Graham,
"Structure of the MULTICS Supervisor," Proc. of the

FJCC, AFIPS, (1965).

53

31

3. Cognitive Memory S.R. Ray, B. Wang, J. Chow

We have decided to forego, temporarily, the study of

machine organizations suited for (an assumed form of) cog-

nitive structure manipulation in favor of a more concentrated

study of the fundamental interactions required within these

data structures. Consequently, this reporting period has

been consumed largely in attempting to specify a universe

(of objects, attributes, and relations) in which some inter-

esting features of cognition can be studied. One such fea-
C,

ture, a hallmark of cognition, is the ability to calculate

in terms of imprecise categories.

The choice of a universe and a detailed specification

of the class of operations to be studied is not yet resolved.

4. A Pilot Information System: "Rules of the Road" -
K. Biss, R.T. Chien, C. Hartmann, K. Kelley, F.P.
Preparata, P. Reynolds, F. Stahl

(i) Introduction
R.T. Chien

The "Rules of the Road" is the official driver's manual

for the State of Illinois. The goal of this sub-project is

an information system based on knowledge contained in the

document. The system will operate in the on-line mode and

will answer reasonable questions concerning this data base.

The purpose of this sub-project is many-fold:

54

32

1. It provides us with testing material for the

effectiveness and efficiency of language-processing

techniques (syntactic and semantic) developed here

and elsewhere.

2. It provides a natural data base for the study of

relational structure for information representation.

3. It provides a data base for studying the question-

answering process with regard to both the logical

aspects and the aspects related to organization,

search, synthesis, and retrieval.

Although not the primary goal, it is expected that the

system will be able to pass tne written portion of the

driver's test.

(ii) Preprocessing_
F. Stahl

The entire text of "Rules of the Road," the driver's

manual for the State of Illinois, has been keypunched for use

as the data base for the question-answering fact retrieval

system.

Also, a number of programs have been implemented to

facilitate the manipulation of this data during the initial

phase. They include a text-editing routine and a coordinate-

indexing routine similar to IBM's KWIC index.

55

33

The text-editing program which uses the scope for display

purposes and the lightpen for communication has been written

by V. Metze to allow the correction of prose material. The

program allows the user to specify delete, replace, or insert

operations Which act on the lines, words, or characters that

he designates with the lightpen. Information inserted may be

longer or shorter than the information deleted; the program

readjusts the lines accordingly. Information is carried over

from one line to the next as necessary. (However, the carry-

over ends when a new paragraph is encountered.) Words are

never broken in the middle as information is moved from one

line to the next. The program contains a general string-

mover which makes overlapping moves of information described

by 18-bit addresses right or left in memory and correctly

hooks on to the beginning and end words so as to retain any

information not included in the move.

The text-editing routine will speed up the turn-around

time on this manipulation of the data page in other phases

of the operation.

The KWIC index has been used on the data base to get an

estimate of the scope of the vocabulary and phrase usage. The

inherent value of the index is in its ability to find all the

occurrences of any word or phrase in the data base with a

56

34

minimum amount of effort. This is being used as an aid for

sentence classification and recognition of sentence types.

In KWIC the context of a wora is with respect to its line. A

modified version is being implemented to make the cont7xt of

a word a sentence. The modified KWIC will be used to extract

phrases in a rigorous fashion from the data base. Words and

phrases arrived at in this manner will be compiled into a

dicitionary or thesaurus.

The dictionary will serve as a replacement structure to

reduce the total vocabulary of the data base and put it in a

more standardized form. It is hoped that this same dictionary

can be used as the replacement structure for questions in the

same manner as for the data base.

Work by Bobrow and Rapheal has suggested that if a given

question has associated with it a small number of statements

such that the answer to the question can be inferred from

those statements, then there is no reason to presume that a

machine cannot be organized to answer that question. We pro-

pose that given a question and a large number of statements,

there are methods to eliminate large numbers of irrelevant

statements and thereby reduce the problem to manageable size.

This might be accomplished by a kind of intersection of rele-

vant phrases as defined by the question and the linkages of

those phrases in the text itself.

57

35

Steps Towards a Relational Structure
E.P. Preparata, K. Kelley, P. Reynolds

As was pointed out in the introduction, the body of

knowledge on which the project is based should be represented

as a relational structure.

The "universe" of vehicular road traffic should be

adequately described through its items and their interrela-

tions. It is felt that this representation should consist of

two main portions: 1) A strictly relational component in which

the essential elements of the universe are identified, listed

and defined exclusively through their relations; 2) A pro-

positional component, in which specific propositional func-

tions, such as "legality," "safety," and the like are evalua-

ted for events constructed in terms of elements described in

the relational component.

A preliminary attempt has been made to construct the

relational component. Three basic classes of items have

been identified, that is, paths, vehicles and signs. Within

the class of paths, the useful relations are rules of inter-

connection; within the other two classes, useful relations

are generally of classificatory type (such as regulatory signs,

informative signs, etc.). Interclass relations are generally

of relative position or motion.

58

36

Since the relational component will find its primary

application in the process of query interpretation (described

in section D) its construction will proceed in parallel with

the latter activity. It is felt that the findings of the

study of sentence recognition will have a basic influence in

directing the construction of the relational component.

Study of the propositional component will begin once

sufficient insight is gained into the essential features of

the relational component.

(iv) On the Recognition of Sentence Types
P. Reynolds, C. Hartmann

In a retrieval system an important parameter to be con-

sidered is the searching time. The classification of questions

in types can greatly help to cut down the search time since

the search can be guided according to the type of the question.

The answers will be obtained by a matching with the data or

by a theorem-proving technique if the data do not contain ex-

plicitly the answers.

In our particular case the subject is "Rules of the Road"

and it is assumed that the computer has a minimum "knowledge"

of the subject to recognize words and their grammatical

categories which are related to the matter.

LI

59

37

Many attempts to classify the questions were made but

only the most promising will be described below.

Since only 60% of the questions begin with one of the

following words: when, what, where, who, whom, which, why,

how, how much; at first the sentences are classified into two

groups. The first group includes sentences which begin with

one of the described words and the second group includes sen-

tences which do not. We believe that with a sentence inver-

sion routine many of the questions in the second group can be

put in the form of the first group.

The procedure for all sentences of the first group are

very similar. We will illustrate the procedure by considering

sentences beginning with "WHAT." The sentence is scanned only

by looking at nouns and verbs which are not in clauses, and

auxiliary verbs such as may, shall, will, must, should, would

and can. The question will follow in one of the following

patterns:

1. What N V S

2. What V1 N V2 S

3. What be (V) S

4. What AV N (V) S

where N is a noun, V, a verb, AV an auxiliary verb, an S is the

set of statements (properties, relations, etc.) which will

60

38

characterize the answer. In other words, for pattern 1, the

answer will be the intersection of all things equal to S

(modulo V) with N. Any ambiguity in the question will show

up at this step. We have already an algorithm to classify

the "WHAT" sentences. For example, after the application of

the algorithm to the following sentence, "What markings are

used for the center line of a four-lane highway?" we get the

pattern N V S where N=markings, V=are used and S=for the

center line of a four-lane highway.

The next step will be the classification of the part

S, but S will not be classified word by word as we did until

now; it will be by matching of an entirely new idea expressed

in S (properties, relations, etc.) . A sentence inversion

routine will be developed to bring as many sentences as possi-

ble to the first group. The sentences of the second group

will be considered last and some of them will be treated as

special cases if necessary. In the meantime, the algorithms

will be tested against the data to test their performances.

(v) syntactic Processing
K. Biss

In the system we are developing to answer questions

from the Illinois driver's training manual, "Rules of the

Road," we will search for answers to questions on two levels.

61

39

On the first level we will have some sort of semantic match-

ing between questions and text to pick out a set of sentences

which will most probably answer the question. On the second

level we will syntactically match the question with the reduced

set of sentences from level one to pick the answer to the

question.

Since we will have two levels of search in our system,

the syntactic level need not be as powerful as in some other

systems. For this reason we are seeking a simple, fast,

efficient parsing algorithm for the second level.

Our search for an appropriate parsing algorithm has led

us to a study of dependency grammars. In a dependency grammar

each word of a sentence except a head word (usually the main

verb) depends on some other word in the sentence. We say that

one word depends on another if the first modifies or comple-

ments the meaning of the second. The head word of the sentence

has dependents but is dependent on no other words in the

sentence.

For example, the sentence, "The man treats the boy and

the girl in the park," has the following structure:

"Rat&
san

thll)poy
the

62

park
'the

40

McConlogue and Simmons 1 wrote a program to parse English

sentences using a dependency grammar. They assigned numbers

to the levels of the dependency tree and noted that if a

particular word appeared at a certain level in one sentence,

it would probably occur at the same level in other sentences.

Using the idea of assigning numbers to levels in the

dependency tree we have parsed some sentences from "Rules

of the Road."

It is hoped that with the aid of these parsed sentences

we can construct a good parsing algorithm, probably with

some learning features.

5. Textual Macrostructure - D.E. Carroll

During the present report period, work has continued

along the lines previously indicated in the effort to explore

certain underlying classificatory structures and relational

processes that are conjectured to be significantly involved

in the cognition and synthesis of documentary or textual infor-

mation. The level of this effort is necessarily still a

rudimentary one and remains centered presently on certain of

the problems encountered in attempting the synthesis of differ-

ing accounts of a topic so as to yield a single account

1Keren McConlogue and R. F. Simmons, "Analyzing English
Syntax with a Pattern-Learning Parser," Comm. ACM, 8 (Nov.
1965) 687-698.

63

IT,

41

characterized by logical clarity and low redundancy. At

present, work is proceeding primarily with the synthesis

of differing accounts of selected topics in the field of

document indexing and retrieval systems.

64

IV. ACCOMPLISHMENTS FROM 8/1/68 - 11/30/68

1

Preface

The following pages give a brief account of the activity

associated with the study on cognitive memory during the fourth

report period from 1 June, 1968 to 31 August, 1968. Technical

papers that grew out of this study and were presented at

scientific meetings, were published in journals or books, or

have been published as technical reports are not reprinted in

this Technical Progress Report. Reference to these papers are

given in paragraph (vii) of Item 1.

Again, the contribution of members of the Department of

Linguistics, of Mathematics, of Anthropology and of Psychology,

whose association with this project is by interest and enthusiasm,

rather than by contract, is herewith acknowledged with great

gratitude and appreciation.

Last but not least I wish to express my thanks to Dr. John

Lilly of the Communications Research Institute in Miami, Florida,

who joined the group as Visiting Professor in the last weeks of

July and whose important findings on phonetic and semantic

alternates in the perception of repeated words constituted a

significant stimulus to this project, as well as to Professor

E. J. Scott from our Department of Mathematics who developed

during the summer semester a most valuable formalization of

various aspects in the chain of cognitive processes.

66

H.V.F.

ACCOMPLISHMENTS FROM 8/1/68 - 11/30/68

Table of Contents

Page
Preface 1

Major Activities and Accomplishments During Report Period 3

1. A Pilot Information System R2: "Rules of the Road" 3

(i) Introduction 3

(ii) Query Classification 3

(iii) Syntactic Analysis 10
(iv) Context Modeling 20

(v) Concept Processing 24

2. Grammars and Relational Structure 27

3. Investigation of Fundamentals of Nonlinguistic Cognition 31

4. Cognition and Heuristics 34

5. Machine Architecture for Information Retrieval 36

(i) Introduction 36

(ii) Investigation of the Processor of Lee and Paull 38

(iii) A New Associative Memory Processor 44

6. Studies of the Mathematical Theory of Cognition..., 49

(i) On the Forms of Equations Associated with
Inductive Inference Computers 49

(ii) On a Class of Nonlinear Property Filters 53

67

3

MAJOR ACTIVITIES AND ACCOMPLISHMENTS DURING REPORT PERIOD

1. A Pilot Information System R2: "Rules of the Road" -
L. Biss, R. T. Chien, C. Hartmann, J. Jansen, D. Lombardi,
F. P. Preparata, P. Reynolds, J. Schultz, F. Stahl

(i) Introduction
R. T. Chien

The R2 system is a general retrieval system based on the

"Rules of the Road" manual of the State of Illinois. The

objectives of the R2 system program are twofold. First, the

system is to provide us with a testing facility and data for

the development and evolution of fundamental concepts in cogni-

tion. Second, it is to provide us with a general question-

answering system with significantly broader scope than systems

presently known.

During the previous period, a number of significant

achievements have been made in the areas of relational structuring,

parsing programs, context-modeling, and query analysis. The

details of these results are summarized in the following sections.

(ii) Query Classification
P. Reynolds, C. Hartmann, R. T. Chien

The key step in a question-answering system is to understand

what the question means. When the question is understood, its

meaning can be processed with a retrieval system, which will

return an answer to the question. Our problem has been how

to determine at least partially what the question means by

68

normalization. It is found that we could normalize all

questions in a step-wise manner as given by the following

diagram:

Questions

Class 1 Class 2

N
Relative Pronouns Blanks Imperatives Phrase Type Inverted Order

(C1A) (C1B) (C1C)

Retrieval Questions

(C2A) (C2B)

"Yes or No" Questions

First, we divided the questions into two classes. Class 1

questions would typically be answered by a sentence containing

some retrieved information, while Class 2 questions would be

answered by "yes, no, true, false." Class 2 sentences could

be immediately recognized by the presence of such phrases (C2A)

as "yes or no," "true or false," or by the presence of an inverted

order, subject-predicate structure (C2B). The inverted order,

subject-predicate structure, can be recognized in all cases by

the presence of an auxiliary verb (must, can, is, does, etc.)

at the beginning of the sentence or after a comma in the

sentence, e.g.,

"On an interstate highway, can a car travel at 40 mph?"

"Must you have automobile insurance in order to drive?"

Class 1 consists of all other questions. It is characterized

by the presence of a relative pronoun (C1A), a blank (C1B), or

69

5

an imperative (C1C). Class C1C is recognized by the presence

of a word such as "list, give, 3tate" at the beginning of a

sentence or after a comma, e.g.,

"State the difference between a car and a motorcycle."

Phrases such as "would you please" in

"Would you please state the difference between a car
and a motorcycle?"

are disregarded.

Class C1B sentences are "fill-in the blank type," e.g.,

"An octagonal-shaped sign m ans

They are recognized by the presence of a blank.

Class CIA questions always contain a relative pronoun such

as "what, when, where, who, whom, which, why, how, how much,

how many," e.g.,

"What is the minimum speed for a car on an interstate
highway?"

After making this initial breakdown into classes, (C1A) ,

(C1B), and (C1C) are normalized so that the new form of the

question starts with the relative pronoun (or interrogative

word), or contains it in an initial prepositional phrase. Thus:

"If 4 cars arrive at a 4-way stop at the same instant,
who has the right-of-way?"

becomes:

"Who has the right-of-way if four cars arrive at a
4-way stop at the same instant?"

while

"A no-passing zone is marked by what on the pavement?"

becomes:

70

6

"By what, on the pavement, is a no-passing zone marked?"

If a question is not Class 2, C1B, or C1C, then it must

contain a relative pronoun. If there is only one relative

pronoun, this pronoun must "ask the question," and not be in a

subordinate position. When there are more than one relative

pronoun, we normalize the sentence so that the initial relative

pronoun "asks the question," i.e.,

"When the yellow light in on, and you have just entered
the intersection, what should you do?"

becomes:

"What should you do, when the yellow light is on,
and you have just entered the intersection?"

In this case, "when" gives information and doesn't ask for

information as "what" does.

A program has been written to do this classification and

normalization of questions automatically. The data consists

of 195 questions directed towards the "Pules of the Road" as

asked by 7 different people.

follows:

Class 1

All questions are classified as

Number Percentage

70.8

Relative Pronouns 124 63.5

What 54 27.7

Why 4 2.1

Wnich 10 5.1

How, How many, How much 24 12.3

When 19 9.7

Where 2 1.0

Who, For whom, Whose 11 5.7

Blanks 14 7.3

Imperatives 7 3.6

Class 2 50 29.2

71

7

At this point further analysis is applied to a subset of

questions, namely, the subset of questions containing the

relative pronoun "what." This subset seems attractive for

two reasons. First, a relatively large percentage of the

questions are of this type. Secondly, each of the relative

pronouns can be expressed in terms as follows:

Original Replacement

What What
Why For what reason
Which What
How In what manner
How many What amount
How much What amount
When At what times
Where In what places
For whom For what person
Whose What person's

In respect to the "Rules of the Road," these correspondences

are much more specific, e.g., "where" might correspond to

"on what road."

The "What" questions fall into four sub-classes from which

to retrieve meaning.

1. Questions of the form: "What N V S"

Example 1A:

"What markings are used for the center line of a
four-lane highway?"

This sentence would be deciphered as:

N = "markings"

V = "are used"

S = "for the center line of a four-lane highway"

72

8

The set of all things equal (modulo V) to S would then be found,

and the intersection of this set with N would give the answer.

This set might include: division, double yellow line, median,

etc. Since double yellow line is a marking, this would be

the answer. It is not claimed that the intersection would be

singular, and the number of elements in the intersection would

be a measure of the ambiguity of the question.

Example 1B:

"What signs are associated with a no-passing zone?"

Interpretation:

N = "signs"

V = "are associated with"

S = "a no-passing zone."

The set might include: danger, SIGN: DO NOT PASS, slow down,

yellow line next to dashed white line, etc.

Answer: SIGN: DO NOT PASS.

2. Questions of the form: "What V
1
N V

2
S"

Example 2:

"What do you do when you approach a red light?"

This question is among the last four questions that were added

in anticipation of questions that could be asked, but of

which we had no examples.

For interpretation:

V = V
1
V
2

and this sentence is of the form, "What V N S." Then the set

might include: stop, decelerate, shift gears, etc.

Answer: "Stop, shift gears."

73

9

Since when NOT S occurs, you also shift gears but you don't

stop, the best answer, stop, could be arrived at. This method

of eliminating ambiguity probably would not always work, but

it looks promising as a first approximation.

3. Questions of the form: "What be (V) S"

Example 3A:

"What is the meaning of a small white rectangular
sign marked with the letters JCT?"

This sentence would be deciphered as:

be = "is"

(V) = "meaning" (V) = 0 means: definition

S = "of a small white rectangular sign marked with
the letters JCT."

The set of all things equal (modulo V) to S would then be

found. In the computer dictionary we would assume that

"meaning" is the same as "equals," giving the set: crossroad,

danger, etc.

Example 3B:

"What is a motor-driven cycle?"

The set equal to "motor-driven cycle" would then consist of:

"a motor vehicle with two wheels with less than 150 c C. engine

displacement."

4. Questions of the form: "What AV N (V) S"

Example 4:

"What must a driver do before passing through a
green light?"

The sentence would be deciphered as:

74

10

AV = "must"

N = "a driver"

V = "do"

S = "before passing through a green light."

Then S would imply (modulo V) a set of things, whose intersection

with N would give an answer. The set might include: decelerate,

slow down, get into the proper lane, etc.

In this case the answer would be: "slow down, get into

the proper lane."

In the futurt, we plan to look at what we call "S." Current

thoughts are towards feeding "S" into a parser, or looking at

keywords contained in Since how we get meaning out of "S"

appears to be closely related to how the "Rules of the Road"

is structured into memory, we plan to look at this also.

(iii) Syntactic Analysis
K. Biss, J. Schultz, R. T. Chien

This work is a continued effort to find fast and efficient

methods of assigning a structure to natural English sentences,

especially those sentences found in the Illinois Driver's

Manual--"Rules of the Road," so that when stored in a computer,

the machine will be able to answer questions on "Rules of the

Road."

In the September 1967 to February 1968 Progress Report,

we outlined a method for normalizing natural English text. Let

us briefly review the method.

75

11

The set of sentences of a document are divided into two

categories, predications and non-predications. Predications

are sentences of the form "A is in some way a function of B"

and non-predications are sentences which do not have this

structure. A particular function in a predication can be

expressed in many ways. In order to normalize the text we

replace words that express the function by the function itself.

Thus in the sentence "A car is an automobile" the word "is"

expresses the function equality. The normalized sentence

then becomes "A car equals an automobile."

We tried to apply the above method to the sentences

of "Rules of the Road," hoping that those sentences which

were non-predications would be easy to normalize. However, we

found that only a few sentences from "Rules of the Road" could

be normalized in this way and that the normalization was very

involved due to the nature of the sentences. For these reasons

it was not considered worthwhile to attempt to program this

method of sentence normalization and we began looking at

dependency analysis and immediate constituent analysis.

The basis of immediate constituent analysis is that

adjacent substrings of a sentence are syntactically related.

The relation is defined by the rules of the immediate constituent

grammar used in the analysis. These rules are of the form

.4-A3. N NP' which indicates that an adjective and a noun

appearing next to each other in a sentence can be combined

76

12

to form an NP'. For example, let us analyze the sentence "The

old man sat on the bench" assuming we have the rules:

1. V + PP VP

2. P + NP' PP

3. A. + N NP'

4. T + NP' NP

5. NP + VP S

Putting parentheses around the combined terms, we would

get the following parsing:

(The (old man)) (sat (on (the bench))).

This analysis can be represented by the tree of Figure 1,

although we then lose the information about the order in which

the rules are applied.

NP

The

NP'

A.
3

old man

VP

PP

\\N
V NP'

A.

sat on the bench

Figure 1

In our immediate constituent analysis program, our method

is quite similar to that of John Cocke(1) of IBM Research. The

basic plan of this approach is to build all possible two-

77

13

occurrence phrases, then all possible three-occurrence phrases,

etc. The syntactical structures of an n-occurrence system

are the k-occurrence phrases.

The input to the program is the individual words of a

sentence. First, all the words of the input sentence are

looked up in a dictionary to assign the words all possible

parts of speech. Next, all consecutive pairs of 1-occurrences

of words are examined with all possible grammatical interpreta-

tions. For example, let us parse the sentence "The old man

sat on the bench."

Form

The

old

Grammar Code Symbol

A

man

sat V

on PP

the

bench

In this example the first two 1-occurrences, T-A, are

examined and are tested for agreement. The test is made by

table look-up. The table that Cocke uses is a list of

ordered triples of the form A + N NP'. If the pair shows

agreement, it becomes a 2-occurrence phrase and is stored.

If not, the second word is checked with the third A-N. After

all 2-occurrence phrases are stored, the program is checked

for 3-occurrence phrases. The program performs this by checking

78

14

the 2-occurrence phrases with the consecutive 1-occurrence

phrases and vice versa. The program continues on the length

of the phrases to be constructed until phrases as long as the

sentence have been constructed. At each occurrence length,

say X, it looks at all occurrence phrases of length n, n=1,

2,...,X-1, immediately followed by X-n. For our example the

output of this program would be:

Location (rammar Constituent
Item Starting from Length Code Items

1 1 The 1

2 2 old 1 A

3 3 man 1 N

4 4 sat 1 V

5 5 on 1 P

6 6 the 1 N

7 7 bench 1 N

8 2 old man 2 NP' 2,3

9 6 the bench 2 NP' 6,7

10 5 on the bench 3 PP' 5,9

11 1 the old man 3 NP' 1,8

12 4 sat on the bench 4 VP 4,10

13 1 the...bench 7 S 11,12

The main differences between our program and Cocke's are:

a) our program is written in CSL6 language while Cocke's is

written in Fortran, and b) our program will give only 1 parsing.

We eliminate the possibility of several parsings by allowing

79

15

each constituent to be a member of only one larger constituent.

That is, once a particular constituent is integrated into a

larger constituent, it is no longer a candidate to appear in

any other constituent.

The reason why we chose Cocke's program is because it is

so much faster than any other immediate constituent analyzer.

We felt that we can even improve upon the time by not caring

about ambiguities.

A dependency analysis consists of finding a tree which

represents the structure of the sentence being parsed. The

main verb of the sentence is taken as the head node of the

tree with other words in the sentence appearing at the other

nodes of the tree. The connections between the nodes indicate

dependency where word A depends on word B, or B governs A, if

A modifies or complements the meaning of B. For example, the

sentence "The old man sat on the bench" would be represented

by the following tree:

sat

/ Non
man

the

old

Figure 2

80

bench

the

16

In this example "old" and "the" depend on "man," while "man"

depends on "sat," etc.

Let us look more closely at the tree of Figure 2. If we

drop a projection line from each node to a base line, we see

that no projection line crosses a dependency link (see Figure 3).

satIN
on

man

the

old

bench

the

Figure 3

This property is not a universal property of English sentences,

however, the assumption that all sentences satisfy the property

of projectivity is like the assumption that a sentence is made

up of immediate constituents.

Hays(2) has written a parsing program using a dependency

grammar. The program works on the premise that two words will

not be connected in a dependency tree if this connection will

lead to a non-projective tree.

The first step in the program is to find a grammar code

symbol for all words in the input sentence by dictionary

look-up. Then using the string of grammar code symbols the

81

17

program tests all pairs of symbols for precedence where

precedence is defined in the following way:

X precedes Y if and only if

1. X is to the left of Y in the sentence

2. Any words between X and Y depend on either X or Y
(This insures projectivity.)

3. Neither X depends on Y or Y depends on X
(This insures that there will be no circular connections.)

4. Either X or Y or both are independent.

The program then makes the following computation on all pairs

of words to find if X depends on Y.

X depends on Y if and only if

1. X is independent

2. X precedes Y or Y precedes X

3. There is an entry in the dependency table which states
that the grammar code symbol of X can depend on the
grammar code symbol.

When a dependency connection is made, the grammar code symbols

for both X and Y are changed to show the properties of the

pair. In this way Hays was able to obtain an immediate con-

stituent analysis along with the dependency analysis. The

final output of the program is all possible dependency parsings

for the input sentence along with the associated immediate

constituent analysis.

Simmons(3) has also written a program called the Pattern-

Learning-Parser (PLP) which uses a dependency grammar. All of

the grammar rules which this program Uses Pl..: learned from a

hand-parsed text.

82

18

To be more specific,the words in the hand-parsed sentences

are each given a number. This number indicates the level at

which the word occurs in the dependency tree of the hand-

parsed sentence. For example, the words of the sentence

"The old man sat on the bench" would be assigned the numbers
-3 -3 -2 +1 +2 -4 +3

which appear below the words (note that the words on the object

side of the verb are positive). The program then generates,

for each word in the hand-parsed text, a word class of the

form a/b/c/ and a set of sentence-pattern rules which indicate

the structure of the dependency tree of the hand-parsed sentence.

The word class a/b/c that is associated with a particular word

indicates that the word occurred at level a in a tree, that

the word appearing ahead of it was at level b, and that the

word that followed it appeared at level c.

When a sentence is given to the computer to parse, the

word classes for each word in the input string are looked up.

By successively applying logical addition and logical subtraction

to the word classes a prediction is made about the depth at

whigh each word of the input string might appear. If there

is an ambiguity, the sentence-pattern rules are applied.

This program gives multiple parsings for an input F,entence,

but Simmons only uses the first possible analysis.

It has been proven by Gaifman(4) that dependency grammars

and immediate constituent grammars are weakly equivalent.

That is, they generate the same set of sentences from the

same initial vocabulary or, analytically, they classify the

83

19

same string of sentences. However, it can be shown that

dependency grammars and immediate grammars are not strongly

equivalent. That is, there does not exist an isomorphism

between the structural diagram each associates with a given

sentence. Since an isomorphism does not exist, a sentence

which may be ambiguous (have several structural diagrams

associated with it) in an immediate analysis may have but one

dependency tree, and vice versa. Therefore, dependency analysis

and immediate constituent analysis each capture something

of grammar which the other misses. It is for this reason

Hays chose to use both dependency analysis and immediate

constituent analysis.

Part of our project is to find out if it is really

necessary to use both types of analysis. We are not completely

convinced that, in the R2 system, two types of structural

analyses will give much more information than one type of

analysis. It is to test this premise that we are developing

both an immediate constituent parsing algorithm and a

dependency-parsing algorithm.

The dependency-parsing program is running at this time.

Our program is fast and discovers, for any input sentence,

the most probable parsing. The program works in the following

way.

The words of the input sentence are looked up in a

dictionary to discover their syntactic word classes. Using the

string of syntactic word classes, we search for the governor

84

20

of a particular word, checking the words first at distance

one from the given word, then at distance two, etc. A word

and its candidate for governor are checked in a table of

possible dependency connections to find if the syntactic

class of the candidate can govern the syntactic class of the

particular word whose governor we are trying to find. Once

a governor is found for a word we make the connection between

dependent and governor and go to the next word.

We have chosen this way to parse over the approaches of

Hays and Simmons for several reasons. Both Hays' program and

Simmons' program gives multiple parsings. Simmons arbitrarily

picks the first parsing as the correct one. By searching for

the most probable governor, we eliminate questions of ambiguity

but still get a "good" parsing quickly.

At this time our program can deal only with simple

sentences. However, we are working on subroutines to deal

with compound and complex sentences.

(iv) Context Modeling
R. T. Chien, D. Lombardi, F. P. Preparata

In trying to realize a model that could be used to

logically structure the "Rules of the Road" in a data base,

it was first necessary to make some preliminary judgments

concerning the major divisions to be handled. It was found

the entire text could be divided into 5 categories that

would span all conceivable topics. These 5 categories are

listed below:

85

21

1. legal requirements

2. motor vehicles

3. traffic laws

4. accidents

5. unsafe driving practices and emergency action

These categories are obviously not mutually exclusive, but

each has distinct constituents that make it a definite

advantage to try to deal with them separately.

In an attempt to derive a successful model for arranging

information concerning traffic laws, to begin with, it was

necessary to make a further classification. Traffic laws

can be subdivided into the following topics that are

necessary (although possibly not sufficient) for an adequate

coverage.

1. right of way

2. passing

3. lane usage

4. turns (& signals)

5. speed restrictions

6. stopping

7. parking

8. trucks, buses, trailers, taxis, etc.

A further inspection of these subtopics reveals that

each can be broken down into two basic components concerning

traffic law: 1) an explicit component, that can be uniquely

defined by a highway sign, a traffic signal and/or a pavement

86

22

marking; and 2) an implicit component that is known a

posteriori. For example, there are specific highway signs

and signals that regulate turning and indicate exactly where

and when it is legal to make a turn. However, to turn

safely and obey the traffic laws, it is also necessary to

make up your mind before you get to the turning point, move

into the proper lane as soon as possible and to slow down to

a "reasonabl,2" turning speed. These last three prerequisites

for a safe and legal turn comprise the implicit component

of the subcategory "turns (& signals) ." Therefore, it is

apparent that if some systematic structure for modeling

traffic laws is to be devised, it must be capable of handling

both of these components successfully.

Some work has already been done on modeling the explicit

component. This was a relatively simple task since in this

category we have a physical basis for establishing the various

relationships between the entities involved. As an example,

a model for arranging information concerning highway signs

was devised and is described below.

It was first necessary to develop an attribute-value

property list for each sign. It was found that each sign

analyzed could be completely described using five-attribute

value pairs.

Stop

These pairs are listed below for a STOP sign.

(shape: octagon)
(color: red with white letters or yellow with black letters)
(location: intersections)

87

23

(purpose: regulate traffic)
(drivers reaction: to bring vehicle to a complete stop

before entering a marked crosswalk
or crossing a marked stop line. After
stopping he must not start again until
he has yielded the right of way to
pedestrians and to approaching traffic
on the through highway, and until a
safe interval occurs)

Any information concerning an attribute of a particular

sign can be modeled using an attribute-value property list

similar to the one shown above. For example, the above list

contains all the necessary information for answering a

question of the type: "What is the shape of a STOP sign?".

However, other types of questions concerning signs must also

be evaluated. If the question does not refer to a specific

sign, but is in regard to the general nature of signs, the

model must be capable of keying on certain words and making

the appropriate information available. This means that it is

necessary to interrelate all the information in such a way as

to make all the necessary information available regardless of

the point where the data array is entered.

The following diagram Figure 4 illustrates how this

information can be interrelated.

It is easy to see how a model of this type could be

extended to include traffic signals, pavement markings and, in

fact, any physical aspect of driving that can be described

by attribute-value pairs. However, when it is attempted to

extend this model to include the implicit component, it fails.

At present, a scheme based on cause-effect relationships is

88

Figure 4. A Typical Organization

24

being tried to see if it would permit a systematic structuring

of the implicit component. Once a successful scheme is devised,

it will be necessary to try to effect a compatible intersection

between the different models and thereby lead to a successful

overall model.

(v) Concept Processing
F. Stahl, J. Jansen, R. T. Chien

Initial processing has been completed on the data base

for "Rules of the Road" with respect to the maximal phrase

relational strategy. The objective is to find a general

strategy technique with a high relevancy rate for retrieving

statements from the data base, given a question that can be

answered by using the statements from the data base.

A strategic relevancy rate has been lefined as N/(A+E);

where A is the number of statements in the data base that

are relevant; N is the number of relevant statements that

the given strategy technique actually encountered, note

N A; E is the number of statements that the given strategy

encountered, but that are not relevant.

The maximal phrase relational strategy consists of a

dictionary, a set of statements, and a strategy.

Each entry in the dictionary contains a maximal phrase

and a set of pointers that refer to statements.

Maximal phrases are arrived at in the following manner:

(a) Sentences of the data base are numbered consecutively.

(b) A WIS Index is processed on the sentences from a.

90

25

WIS means words in sentence, its name is derived from

KWIC where we consider all words not just key words and

the context is a sentence.

(c) Consecutive entries of the Index are compared to

find the longest string of words that match. Thus, if

STOP AT A STOP SIGN...239 and

STOP AT A RED LIGHT..,646 were consecutive entries, then

STOP AT A 239, 646 would be recorded.

(d) Remove the prefixes from the output of C. If one

entry is the beginning part of another entry, and if these

two entries have any numbers in common, then the numbers

that are common to both are removed from the former. If

an entry results with no numbers, it is deleted, that is:

Stop 239, 362, 424, 749

Stop at 239, 646

Stop at a 239, 646, 932

Stand in 136, 426

would result as

Stop 362, 424, 749

Stop at a 932

(e) The output from d is reverse sorted. That is, if an

entry were

Stop at a

it would be sorted as if it were spelled

a ta pots.

This results in a list of entries that have similar endings

like:

91

26

go at a

stop at a

halt at a.

(f) The suffixes from the output of e are removed. This

is an analogous operation to removing the prefixes in d.

Thus if the book 269, 348

and of the book 269, 348, 729

were entries, then

of the book 269, 348, 729

would be recorded.

(g) The output of f is resorted in normal alphabetical

order. There are a number of strategies that are being

tested for relevancy rate. Given a question:

(a) Find the maximal phrases of the question and

retrieve the indicated statement.

(b) Find the maximal phrases of the question and

retrieve all those statements that occur with at

least two pointers, three pointers, etc.

(c) Retrieve statements by a, or b, and consider

the maximal phrases of these statements and retrieve

those indicated statements.

(d) Same as c, only retrieve statements, with

technique of double occurrence of b.

(e) Find the maximal phrases of the question and

for each pointer n also consider pointers n-1 and

92

27

n+1 (the statements have same clustering!).

(f) Same as e, using double occurrence of pointers

as retrieval criteria.

Grammars and Relational Structures - P. Weston

Most of the wbrk has been completed on the basic inter-

active program, named "LEJARDIN", for graphic manipulation on

the CRT console. Using both typewriter and light pen control,

LEJARDIN allows the definition of arbitrary designs composed

of line and point elements and their assembly into logically

composite structures. In addition, complex arrays of graphic

elements can be formed and rearranged through nothing more

than variation of numerical parameters in an otherwise fixed

composite structure. This feature will be beneficial not only

in immediate drafting applications but also in the longer

term application of supplying an 'environment' for an interactive

language acquisition program which can be taught a form of

natural language in interaction with a human operator. Wben

time permits a manual for LEJARDIN will be prepared.

A manual has been prepared for CYL6, the CYLINDER data

structure system described in the previous quarterly report.

This manual is in press at CSL and will be available early

in November.

In addition to the above projects, the design of a

linguistically interactive program called SMALTALK has begun.

28

This is intended to supply the second major component in the

final design of the projected language acquisition program,

the first component being the now largely complete graphic

program, LEJARDIN. SMALTALK will serve as a vehicle in

developing that notion of grammar which is implicit in the

pronosal for this project. The foremost principle in this

concept of grammar is that the formation rules of linguistic

utterances are best seen not as constraints within the domain

of message elements, no matter how abstract or indirectly

inferred these elements may be as in the grammatical theories

following Chomsky, but rather as the result of what we may

call expression rules which carry relational structures

representing message content in the mind of the sneaker to

their conventional message structure representations, i.e.,

the speaker's expression of this content. This view eliminates

two familiar features of current grammatical theory; the

distinction between surface-structure and deep structure, and

the notion of grammatical transformation. It also reduces

the importance of the sentence as a fundamental message unit.

The reason for elimination of the deep structure concept

as a syntactical notion is that it appears possible to assign

a relational structure significance to all surface elements,

so that the theory may be based upon operations which act

directly upon the rdlational content structure, eliminating

the original theoretical need for syntactical intermediaries

to support separate 'semantic projection rules.' This implies

94

1

29

among other things that a relational meaning must be found for

the so-called meaningless words, e.g., 'the', 'of', 'is',

since they are prominent and ubiquitous surface elements.

This does appear possible, and in addition modal auxiliaries

and verb conjugations are similarly accomodated.

In the attempt to discover the form of relational structure

needed to support such a theoretical treatment it has been

found necessary to take into account information bearing upon

not only the message itself and its explicit content but, in

addition, the framework within which the message is perceived

by the hearer. Pertinent to the latter category are included:

(a) the credihility of the source, i.e., whether fictional,

deceitful, or simply factual (when the modal content of the

material makes this distinction relevant) ; (b) the directness

or indirectness of the source, e.g., written material, direct

communication, indirect communication through a third person,

etc.; (c) the modal content of the message, in which the

speaker's attitude toward the content may be expressed,

including certainty, possibility, desirability, promised

action, question, and so on. In most of these cases truth

or falsity is actually an irrelevant consideration; (d) con-

nections between separate statements including logical ones

expressed by the familiar connectives 'and', or"if...

then...', etc., as Oen as those coupled with modal information

such as 'although.' Furthermore the contextual connections

between statements on two sides of a dialog, often transmitted

95 it

30

through ellipses rather than through marked grammatical

elements, is relevant in this regard; (e) indicators relating

the message content to the conventional metaphysical framework

of the culture whose language is being spoken. This includes

time reference through verb tense, aspect, and phase, as well

as indications of space reference and cther aspects of action

such as agentive or ergative role, all of which have been

indicated by case systems in the grammars of various languages.

All of the above considerations (a) through (e) are

largely independent of the ordinary semantic problem of the

reference of so-called content words, the open-class vocabu-

lary, which also must be handled in some manner to achieve a

working simulation. In light of the distinction between

content and framework and its reflection in the distinction

between closed-class and open-class lexical entities, the

,term 'canonical' has been adopted in referring to the message

framework, logical, modal, metaphysical, which is considered

by the native speaker as a priori in character. This term

is opposed to the term 'empirical' referring to the meaning

of content-words, involving much information of an empirical

nature.

It is a working assumption that the a priori, framework,

or canonical Ftructure which we have postulated, can be

formulated in a sufiiciently language-independent manner as

to serve in the explanation of language universals. This

assumption is plausible because the relevant cognitive

96

31

activity lies not entirely within the linguistic domain but

rather at the boundary between linguistic and extra-linguistic

behavior and therefore not entirely language determined. It

is also a necessary working assumption in proceeding toward

the earlier-stated goal of a linguistically adaptive machine,

which, to be non-trivial,reguires a language-independent

formulation.

Investigation of Fundamentals of Nonlinguistic Cognition, -
F. P. Preparata, S. R. Ray

In this section, we describe an attempt to distill the

mass of requirements for a cognitive system down to certain

essential problems. Of first importance is the tentative

conclusion that the representation of meaning of a communica-

tion must be based upon knowledge of the natural constraints

between objects and relations, that is, upon a world model

or the "eidology", according to the terminology introduced

in "Cognitive Memory! An Epistemological Anproach to Informa-

tion Storage and Retrieval" (prolect proposal).

This is the direction which Chomsky takes in "Aspects

of the Theory of Syntax" by supplying property markers. We

feel, however, that Chomskian markers are far too inflexible

as a mechanism for representing a world model. Rather, it

appears that an approach guided by the philosophy of cognition

expounded by Lenneberg in "Biological Foundations of Language"

is much better suited to our task.

97

32

The principal message of Lenneberg, as it applies to

this investigation, is that cognition is based upon a nonlin-

guistic discrimination process with verbalization as a largely

extraneous (or, certainly, secondary) appendage.

In the same frame of concepts, a widely-accepted model

for the description of cognitive processes contains two main

transformational components, that is: 1) a mapping from the

environment through percepts to the eidology; 2) a mapping

from the eidology to the linguistic description, as well as

its inverse. It is apparent that the two mentioned mappings

"environment eidology" and "eidology .4- language" have dis-

tinct characteristics which warrant a separate analysis.

Furthermore we feel that the insight gained through the

analysis of the perceptual mapping may greatly facilitate, in

due time, the study of the linguistic mapping.

We were accordingly led to attempt to synthesize and

study a very simplified model of a concept-discrimination

process. The percepts chosen as stimuli (input) are stylized

versions of "scenes" of an anthropomorphic environment or

"real world" containing representations of shapes, colors,

sizes, positions, etc. (i.e., visual scenes transformed so

that these properties need not be graphically discriminated).

The "real world" assumed as the underlying matrix of the

percepts bears no character of necessity, but is only chosen

for its convenience in view of an empirical test of the

results of the investigation.

98

33

The final objective of this study is the development of

a procedure for cognition, namely an analysis mechanism which

converts a given scene into a description thereof, this des-

cription being partially classificatory and partially relational.

It must be noted, however, that the analysis problem cannot

be tackled prior to the precise definition of the "universe"

upon which the cognitive mechanism is to operate. This

clearly leads to the synthesis problem, namely to the descrip-

tion of the model which distinguishes admissible from inadmis-

sible scenes. We can therefore distinguish a "generator model"

and a "cognitor model" (usually contained within the former),

which, roughly, Play the roles of speaker and hearer, respec-

tively, according to the well-known linguistic terminology.

The crux of the problem is therefore reduced to the

specification of the nature of the "generator model" and of

the embedded generative device. Intuition would suggest that

the grammatical constraints should be rather weak and that

the interdependence of the "details" should be rather strong,

which is equivalent to strengthening the semantic constraints.

How to express the weakening of the grammatical rules, or

even more, the strengthening of the semantic texture is pre-

sently unclear. It appears practical and intuitively appealing,

however, to express the constraints on the choice of details

(i.e., the constraints on the rewriting rules) as determined

by some broad properties of the remainder of the scene, instead

of by the specific details occurring elsewhere in the scene

itself.

99

34

The tentatively outlined structure is reflected, although

in a somewhat incomplete form (which leaves the door open to

some learning capability), in the cognitor model. Upon pre-

sentation of scenes (percepts) , it is necessary to disambiguate

the communication by successively extracting properties, and

attempting to infer the description of finer details on the

basis of accumulated inexact data from the "world-model."

The disambiguation will proceed from the general toward specific

although backtracking (changing a guess) is a necessary pro-

vision, under the guide of a currently computed likelihood

function (the strategy being very much analogous to the one used

in sequential decoding). For example, the time and general

location of a scene will first be guessed; these choices help

to restrict the probable kinds of objects and their positions,

etc.

4.

At the present stage of the work, we wish to answer;

1) Which is an adequate structure for the implementa-

tion of the generator model (and, consequently, of

the cognitor model)?

2) How to proceed to construct a description of a

particular event (communication) as it is disambiguated?

Cognition and Heuristics - H. Bielowski

The formation and use of concepts is assumed to be the

main feature of cognitive systems. Research has been made

towards mechanisms capable of acquiring concepts. As a working

100

35

hypothesis, the following definition by Church (1956) has

been adopted: a concept is a decision rule to be used to

decide whether or not a given object is a member of a certain

set of objects to which the name of the concept applies.

It is assumed that the acquisition of concepts must be

motivated and controlled by the criterion of usefulness.

As a method of study, it has been decided to work on the

outline of a tentative computer program for the solution of

a specific class of problems within a simple universe. The

class of problems chosen is the one of assigning two-dimen-

sional objects to locations on a plane with the goal of

minimum connection cost, if these objects have to be connected

in a given manner, and the connections cost is proportional

to the distance to be bridged. The layout of etched wiring

boards or the placement of machines in a factory are practical

examples of this problem.

There does not exist a solution algorithm for these

problems, except, in some cases, complete enumeration of the

solution space, which is unfeasible for more than, say, ten

objects.

Restricted permutations are the most effective methods

today. Unfortunately, they are qualitatively and quantitatively

restricted to only the simplest assignment problems.

The point in these problems is to achieve a match between

the topological structure of the connected objects and the

geometrical pattern of the available spaces. Clearly, this

101

36

involves the ability to recognize topological structures as

well as geometrical shapes.

Work is now in progress on the definition of principles

and procedures which would enable a system to learn and apply

simple topological and geometrical concepts, as "chain, tree,

ring," etc., and "corner, square, channel," etc.

As a sideline, a 1000-statement FORTRAN program named

COBSOP (Connectivity Based Sequence of Placement) has been

written. It serves for the study in more detail the handling

of topological data and the degree of recc,,nition obtainable

with fixed, built-in routines. In addition, the program could

be used as a tool for solving actual assignment problems.

5. Machine Architecture for Information Retrieval - A. Kisylia,
R. T. Chien

(i) Introduction

The object of this report is to describe an information-

retrieval system which operates in a highly parallel fashion

in an associative mode. By associative it is meant that a

particular item is located in the data hase by content

addressing. In this process, an entire record of information

is located using a known part of the record as the search

criteria. As an elementary example, the record "John's car

is bright blue" could be located or retrieved by specifying

the words "blue" and "car." This method of data interrogation

is desirable in all information-retrieval problems. The

notion of addressing by contents enables us to avoid the

102

37

artificialities of location assignment and frees us to a

large extent from such local considerations as scanning,

searching and counting; the operation is parallel due to

the fact that the entire content of the memory is searched

simultaneously. This is accomplished by distributing a

sufficient amount of logic throughout the memory. This allows

each storage location or "cell" to act, to a certain degree,

as a small, independent, processing unit.

The associative memory processor described below is a

logical outgrowth of the organization proposed by Lee and Paull(14).

This previous organization was thoroughly investigated and

it was found somewhat deficient in two areas. First of all,

the general operation of the processor was found to be ineffi-

cient in terms of the number of steps (therefore the amount of

time) and the amount of programming required to perform a data

search. Secondly, but most important, it was found that

certain types of searches which are extremely important to

information retrieval could not be performed at all. The next

section briefly describes the organization and operation of

the processor presented by Lee and Paull. The shortcomings of

this system and qualities which are desirable in a processor

of this type are also presented. The final section describes

in brief an associative memory processor which alleviates the

problems presented and therefore facilitates a more efficient

information retrieval system. Examples are given throughout

to clearly explain the operation.

103

38

(ii) Investigation of the Processor of Lee and Paull

The machine proposed by Lee and Paull consists of an

associative memory connected to a conventional, stored-program

computer. The primary function of the computer is to act as

a control device for the associative memory. It also must

be able to store and execute the search programs and temporarily

store data which is retrieved from the memory. The data base

which is to be interrogated is stored in the associative

memory.

The basic memory is a linear array of small, identical,

sequential machines called cells. Each cell contains both a

number of binary storage elements and a sufficient amount of

logic to enable it to perform the functions of the cell. The

storage elements of the cells are of two types: the symbol

elements and the activity elements. The symbol elements are

those in which the information or "symbol" of the cell are

stored. The activity elements are used as bookkeeping tags

to keep track of particular cells during the operation of the

machine. Each cell in the array is connected to a set of

common bus lines, which include the input leads, the output

leads and the various control leads which provide the cells

with ommands. A cell C. also has the ability to transfer

its activity status to either of its immediate neighbors,

Ci+1 or Ci_1. The contents of every cell (the symbol and/or

the activity) can be matched against the pattern presented by

the control computer on the input bus lines. In this way all

cells containing a particular bit pattern can be located and

tagged.
104

39

Information is stored in the computer as strings of

symbols with each symbol stored in a different cell. (Strings

can be of any length as long as there is room to store them.)

Consecutive symbols of a string are stored in consecutive

cells. Therefore if a string contains n symbols and the

first symbol of the string is stored in cell Ci, then the second

symbol is stored in Ci+1, the third in Ci+2, and so on with

the nth symbol being stored in the Ci4.11 cell. The location

of a string is completely arbitrary since the cells do not

have addresses, but the order of the cells in which consecutive

symbols are sotred is very important. A special symbol ao is

provided for the beginning of a string. Parts of strings or

parameters are distinguished by storing another special symbol,

after them. Therefore if a string consisted of the para-

meters XY, OW, PHD, it would be stored in the cell memory in

the following manner: a
0
XYF30Wf3PHD, with a stored in cell

0

Ci, X in Ci+l, Y in Ci+2 , and so on.

Identification and retrieval of a string or a particular

set of strings are accomplished by using a particular parameter

as the search criteria. For instance, if it were desired to

locate all strings which contained the parameter OW the search

would proceed in the following way. First, every cell in the

memory would match its contents against the input bus lines which

would contain the pattern 13. This denotes the beginning of

the parameter C:11N13. If a cell has a successful match it will

set an activity bit. At this point all cells containing 13

105

40

have an activity bit set. Next, all cells with activity bits

set are told to propagate this activity to their neighbor

with a higher index (to the right) and then reset their own

activity. Now all cells compare their contents with the input

pattern consisting of a symbol equal to 0 and a set activity

bit. Only those cells which contain a set activity and the

symbol 0 are allowed to keep their activity set. All other

previously-active cells are reset. At this point only those

cells which are at the beginning of parameters and contain the

symbol 0 are active. Again the activities are propagated to

the right, and search is made for all active cells containing

the symbol W, with all other activities being reset. Now

only those cells containing W which is the second symbol of

all parameters having 0 as the first symbol are active. Finally,

the activity is again propagated to the right and a search is

made for all active cells containing the symbol 3. At this

point only those strings which contain the parameter OW have

an active cell. This cell is the cell containing (3 which

follows OW.

This searching process is a very efficient one. It can

be thought of as eliminating useless information rather than

a searching process for useful information. Although the search

is done serially by character, it is a parallel operation

couducted in each of the strings simultaneously.

Although at this stage all the strings containing the

parameter OW have been isolated, more processing is required

106

41

before these strings can be retrieved. First, a priority

system must determine which of the strings of the set is to

be retrieved first. After this string is found, the activity

present in this string must be transferred to the cell con-

taining the ao, head cell, of that string. This is accomplished

by propagating the activity to the neighboring cell with lower

index (the cell to the left) and Tatching for a cell which is

active and contains the symbol ao. If the match is success-

ful, the head cell of that string has been found. If it is

unsuccessful, the process is repeated until the head cell is

found. From this point, the characters in the string are

read out sequentially, one at a time, by successively propa-

gating the activity to the right neighbor and ordering the

active cell to place its contents on the output lines. This

process, of course, is non-destructive.

This example introduces two of the shortcomings of this

processor. First, the priority system of this machine only

allows one string of the set to retain an active cell. This

string is the one to be retrieved. Since they no longer con-

tain an active cell the remaining strings in the set must

again be identified by another search in order to be again

eligible for retrieval. Provision is made to eliminate

previously retrieved strings from subsequent searches, but

still the same search operation must be performed as many times

as there are strings in the set to be retrieved. These

repetitive searches require additional operating time during

107

4 2

which no really useful processing is being accomplished. It

would be desirable to be able to retain the active status of

all the strings of a set during the retrieval of the entire

set. This would require that only one search, the initial

search, be made. The second deficiency to be noted here is

the waste of processing time needed to find the head cell in

a string chosen for retrieval. The activity must be propagated

to the left and a match be performed as many times as the

number of cells between the head cell of the string and the

active cell which resulted from the search. If this number is

large, the time involved to complete this process becomes very

costly, because the rest of the memory must stand idle until

its completion. This suggests that it would be advantageous

if all the cells in a string could communicate directly with

the head cell without the necessity of involving other cells.

Additional areas in which this processor and all other

similar associative memory processors (15, 16, 17) designed

for information retrieval are deficient can be placed in two

general categories. The first are the operations the machine

can execute but does not do so efficiently. The two mentioned

above fall in this class.

Another problem would be that of identifying the set of

all strings which contain two or more particular parameters.

If the parameters are stored in a particular order, and they

are stored in contiguous groups of cells, the searching process

is the same as above, e.g., A and C are the parameters which

108

43

the strings must contain, and they are stored in all strings

of the set containing A and C in the form 8A8C13. If one or

both of these requirements is not met (as is usually the case)

then the searching process becomeq quite complicated and

requires a great amount of processing time.

Still another problem which has not been handled effi-

ciently is that of repacking the strings in the memory after

information has been eliminated. This is necessary so that

all the empty cells in the memory can be utilized to store

new strings of arbitrary lengths. The methods cf gap closing

proposed by the various authors involve programs which are

extremely inefficient with regard to the amount of processor

time it takes to repack the memory.

The second category inclurles those types of operations

which are necessary for an efficient information retrieval

system(18) but cannot be performed by the type of associative

processor suggested by Lee and Paull and its descendents(16,17).

The organization described above identifies the set of

all strings which contain the parameters of the search criteria

exactly. It cannot perform a threshold search. A threshold

search can be described as the identification of all strings

which contain at least a certain number of the parameters

used for the search. For example, it might be desirable to

locate all strings which contain any 3 or more of 5 particular

parameters.

109

44

A second type of search which would be useful would be

a weighted threshold search. In this identification proce-

dure, the presence of a particular parameter in a string

may be of more or less value than that of other parameters.

In this operation each parameter used in the search would be

given a weight or value corresponding to its importance. If

a string contains a particular parameter, this value is

recorded and added to the results of previous and subsequent

parameter searches. After all parameters have been searched,

only those strings which contained a total search value greater

than a certain amount would be of interest for retrieval.

Both types of searches described above imply that the strings

should be capable of storing the results of many searches.

No provision is made for this in the associative memory

processors mentioned above.

The following section is a brief description of an

associative memory processor which will alleviate the problems

outlined above and facilitate a more efficient information

retrieval system.

(iii). A New Associative Memory Processor

The structure of this associative memory processor is

essentially the same as the configuration proposed by Lee and

Paull. The basic differences lie in the memory cell. This

allows an entire string of cells to act together as an inde-

pendent processing unit.

110

45

111

The basic configuration consists of general purpose

computer acting as a control device for an associative memory.

The computer stores and executes the search programs, issues

commands to the control leads, and temporarily stores the

data which is to be entered into or retrieved from the

associative memory. The memory stores the data base which

is to be interrogated.

As in the previous model, the memory consists of a

linear array of small sequential state machines called cells.

Each cell is connected to a common set of bus lines. These

are the input leads, output leads and control leads. These

lines allow the control computer to communicate with all the

cells simultaneously (if the propagation time along the lines

is ignored).

All cells in the memory are identically the same. Each

cell contains both storage elements, binaries, and a certain

amount of logic which enables it to perform the various

functions required.

The storage elements are divided into four different

fields. A six-bit field stores the character or symbol of

the cell. This is the information register. There is a

one-bit activity field. This bit is used as a bookkeeping

tag to keep track of certain cells during processing. Another

bit is used to indicate if a cell is empty or if its symbol

contents is no longer considered important. The last bit is

the a bit. The presence of this bit allows a string of cells
0

a high degree of processing power.

111

46

A cell may function in one of two states. The state

of a particular cell is determined by the condition of its

a bit. If the a
0
bit is set the cell acts as the head cell

0

of a string. In this state the cell is able to receive count

pulses which can be emitted from all the cells of higher

index up to the next head cell. The binary representation of

the number of these pulses are stored in the head cell's symbol

register, which now acts as an accumulator. This concept of

the function of a head cell is very important. It allows the

results of successive searches to be stored in each string

and eliminates the necessity to propagate an activity to a

cell of lower index (to the left). It also enables the

memory to perform both a threshold search and a weighted

threshold search with equal ease. These points will be ex-

plained clearly in the example at the end of this section.

Each cell in the memory can communicate directly with

other cells in three different ways. First, a cell can transmit

its set activity to its neighbor with a higher index (to the

right). Secondly, as mentioned above, an active cell in a

string can transmit a pulse directly to the head cell of its

string. This pulse is sent along a special gated network called

the routing line. This is a one directional path which passes

through all the cells in the memory. Part of the routing

line is shown in Figure 5 One head cell and two symbol

cells are displayed. Last of all, each of the cells has the

ability to shift the contents of all its registers to its

112

Shape

rRectangular

Shape

Emblem

Purpose

Guide

Color

Green

Purpose

Stop

Diamond

Color

Purpose

Round ...Warn

Octagonal -0

I

Yellow "0

Red

"Regulate Black & White

46.1

I

Location

Intersections

Shape

Driver
Reaction

To Bring Vehicle
to a Stop

Location
i

Posted on
Multilane
Divided
Highway

Color

Driver
Reaction

Be Alert for
Traffic Traveling
in the Same
Direction

Figure 5. A Model of the World of Signs

113

47

neighbor on the right. This is used when repacking the

memory and can also be used to load or unload the entire

contents of the memory automatically.

During a match, the contents of every cell is simul-

taneously compared with the pattern presented on the input

lines. If a cell's ccntents matches this pattern, the

activity bit of that cell is set. "Don't care" conditions can

he specified in any of the bit positions so that a certain

set of bits may be examined at any one time.

Information is stored in the memory as strings of

characters. Each character of the string is stored in a

distinct cell. The first cell in the string is always a head

cell. The special symbol y always precedes and follows the

parameters of a string and the last two symbols in a string

must both be y. As an example, the string containing the

parameters XY, OW, PHD, PCC, and AF would be stored in the

following way:

---a yXYy0WyPHDyPCCyAFyy---.

As as example of operation, consider the problem of

locating all strirqs which contain the parameters XY and AF.

The process for locating a particular parameter is the same

as in the example in the previous section. First, XY is

located everywhere in the memory. At this point, cnly those

strings which contain XY nave a cell with its activity set.

A control bus now tells all cells with their activities set

to place a pulse on the routing line. These pulses are now

114

48

recorded in the head cells of all the strings containing the

parameter XY. Each of these head cells now contain a binary

count of one in their symbol registers. The activities are

reset and a search is now made to find all the occurrences

of the parameter AF in the memory. After these are found only

those strings which contain AF have a cell with its activity

set. Again, a control bus orders all active cells to place a

pulse on the routing line. At this point, only the head cells

of the strings which contain both XY and AF have a binary

count of 2 in their symbol registers. All activities are

again reset. Now the head cells of the set of strings which

contain both parameters can be activated by matching the

contents of every cell with the appropriate pattern on the

input lines. At this point, a priority system can be used

which resets all but one active head cell. The search for

the parameters XY and AF will not have to be made again,

because the results of the initial search are still stored

in the symbol registers of the head cells. These cells can

be activated again by a simple match operation. Before a

string is read out, the bits of its symbol register are re-

set so that it will not be considered again in the priority

search.

It is evident from this example that many processing

steps and therefore much time has been saved by allowing the

head cells to both store the results of consecutive searches

and communicate directly with the cells in their strings.

115

49

It is apparent that a threshold search would be carried

out in exactly the same way. The threshold value would be

used when matching for head cells which contain a particular

stored number. A weighted threshold search would be performed

by instructing the active cells resu7ting from a parametar

search to issue a number of pulses equal to the relative

importance of the parameter. After all searches are completed,

the head cells would be tagged if they contained a value

greater than a certain number.

Studies of the Mathematical The.)ry of Cognition -
E. J. Scott

(i) On the Forms of Equations Associated

with Inductive Inference Computers

As indicated by H. Von Foerster in various publications

auch Ei.s "Memory and Inductive Inference" and "Memory without

Record" (The Anatomy of Memory) to build a computer that

learns from experience, it has to be "pliable" or, more

accurately, it must be an adaptive computer. Whatever other

aspect built into the computer it should be able to make

"inductive inferences." This implies that the system should

be able to compute future events from past experience. Because

the next sentence as given in "Memory without Record" is

pertinent and crucial to what follows, I place it in quotes.

"It is clear that only a system that has memory is capable of

making inductive inferences because, from a single time-slice

116

50

of present events, it is impossible to infer about succeeding

events unless previous states of the environment are taken

into consideration." If, as is often done, we think of the

"brain" as a large number of neurons which are interconnected

in some way to form a complicated network, the stimulus-

response equations should embody position coordinates, a time

coordinate, and what is crucial, terms with time retardation

which would give the computer the essefitial characteristic

previously mentioned, namely, the ability to predict future

events on the basis of a knowledge of past states. That is,

to give an equation or a system of equations with initial

conditions--that is, the state at this moment, say t=0, and

no retarded arguments in time--is insufficient to characterize

an inductive-inference computer.

It follows that systems that are capable of "predicting"

or "learning from experience" ought to be characterized by

equations of the form

;CM = f(t,x(t),x(t-T)), t > T

= g(t), 0 < t < T, (1)

where T > 0 and g(t) characterize the "past history " More,

generally, they should be governed by a system such as

117

51

x
1
(t) =

x
n
(t),x

n
(t-Tnn (t-T nm (t))].

x
2
(t) = f

2
[t,x

1
(t),x

1
(t-T (t)),...,x

1
(t-T

lm
(t)),...,

x
n
(t),x

n
(t-Tnl (t)),...,x

n
(t-Tnm

(t))],

x
n
(t) = f

n
[t,x

1
(t),x

1
(t-T

11
(t)),...,x

1
(t-T

lm
(t)),...,

x
n
(t),x

n (t-Tnl (t)),...,x
n
(t-T nm (t))].

or, more shortly,

x
n
(t),x

n
(t-Tnl (t)),...,x

n
(t-T

nm
(t))],

= 1,2,0eOrn, t < t < B,
0

T..(t) > 0
13 -

and the initial conditions (constituting past history)

(2)

(3)

xi = xio(t), (4)

defined on the set E
to

consisting of the point t
0
and ali

those differences t-T
ij

(t) (i=1,2, ese ,n; j=1,2, rill) which are

less than t
0

for t
0

< t < B.

The mathematics dealing with such systems has, to a

certain extent, been developed. It is far from complete,

however. Nevertheless, certain steps in the direction of an

inductive-inference computer can be taken by considering

certain fi=tions f1 and studying their solutions. The forms

o (2) would play a crucial role.

What their structure should be is not too apparent at the present.

118

52

An examination of the literature indicates that my

surmise about the form of the equation (1) that go with a

possible prediction theory is substantiated in at least one

case by an article by Grossberg(19). In this paper, the

author considers a system of the form

X(t) = AF(t) + B(X0X(t-T) + C(t), t > 0 (5)

where X = (x1,...,xn) is non-negative, B(Xt) = [B(t)] is a

matrix of non-negative functions of X(w) evaluated at past

times w G [-T,t], and C(t) = (I1,I2,...,In) is an input

function.

Specifically, the system studied was

x.(t) = -ax.(t) + y xk
(t_T)Yki(t) + Ii(t).

1 1 k=1

y.k(t) = p.kz.k(t) (P. z. (t))-1,
7 3 3 m=1 3m 3m

zik(t) = [-uzjk(t) + ISxj(t-T)xljtfle(Pik).

which can be written in vector form

U(t) = f(t,U(t),U(t-T)), (7)

with

(6)

'zn,n-1'2nn"

F (fl'f2"'"fn'fll'f12'""fn,n-1'2nn"

-1+Ii
f
i

= -ax. + 13 x
k
(t-T)pki zki

1 k=1
milpkmzkm

119

and

= [-uz
jk jk k

]e(p).

53

Equation (7) corresponds to the system given in Equation (3).

By restricting its function somewhat, a machine based on a

system like (7) can be taught to predict an event B whenever

the event A occurs. This is phrased in another way by saying

that we wish to teach the machine the list AB, or, in terms

of an idealized human subject H, we wish to teach H the list

of letters AB.

It would appear that a system such as (3) is involved

in the problem of building a teaching machine. What needs to

be specified are the functions fi which would incorporate such

properties as remembering, correcting errors, improving with

practirle, etc.

(ii) On a Class of Nonlinear Property Filters

(a) Introduction -

In a previous report(20) and article(21) a set of elements

q of a set L, a stimulus function a(q), a response function

p(q), and an interaction function Kl(p,q) are considered to

be interrelated in such a manner that the resulting equation

integral equation. Both interaction and action in linear

systems, as well as discrete linear systems and those with

uncountable number of elements were considered and applied

to certain specific situations.

120

54

It is the purpose of this report to modify the interaction

function so that the resulting stimulus-response equation is

a nonlinear integral equation. The result should be more in

keeping with the fact that in nature we are in general dealing

with nonlinear phenomena and such an equation or system

thereof would be more representative than linear systems. As

is well known, replacing linear systems, about which we know

a good deal, with nonlinear systems, about which we know

relatively little, presents great mathematical difficulties.

We shall consider a class of nonlinear property filters leading

to integral equations for which some mathematical theory has

been worked out.

(b) Interaction in Nonlinear Systems -

In order to maintain continuity we shall use most of

the notation in the report(20). Let p = (x
l
x2" x

n
) and

'

q = (E1,2,...,n) be any two points of an n-dimensional

manifold e
n

and dp a volume element about the point q. Suppose

that an element q of en is subjected to a stimulus a(q) and

that the connectivity between each element q of en and all

other elements in en
has been defined. We denote by p(p) the

response to a stimulus at p. We shall now assume that the

amount of stimulation received by p from q, instead of involving

the response p linearly, takes it into account in a nonlinear

manner. To be specific, we shall assume that the amount of

stimulation received by p from q is

K
1
[p,q;p(q)],

121

(1)

55

where K
1

is the so-called interaction function. It should be

mentioned that one of the problems here is the delineation

of the form of K
1

if it is to reflect the response of an actual

physical system. Some experiments here, if possible or

feasible, would be of value in determining the analytic character

of Kl. Under these assumptions, the total amount of stimula-

tion as p as q encompasses en will be given by the nonlinear

integral equation

p(p) = ka(p) + Xf6 Kl[p,q;p(q)]dp
, p,qC L

n
, (2)

where k is a constant amplifying factor for a(p) and X is an

amplifying factor reflecting the stimulation at p due to the

totality of elements q belonging to en. No general theory

for the solution of equation (2) with an arbitrary nrnlinear

kernel K
1

exists. Instead, certain classes of nonlinear

integral equations, especially those tied to physical problems,

have been examined. For some of these existence and unique-

ness theorems have been developed as well as methods of

determining solutions. One such class is that discussed in

the paper by Hammerstein(22).

(c) A Class of Nonline,- Filters -

Let us consider the class of nonlinear integral equations

P(p) + K)p,q)F(q,P(q)]dpc, = 0, p,q e En (3)
'n

122

56

of the Hammerstein type. We assume that the kernel K(p,q)

belongs to the class L2, which implies that the functions

Je
K
2
(p,q)dp,)11 = a(p),

n

K
2
(p,q)dp)k =

en

(4)

(5)

exist almost everywhere in en, and their squares are Lebesgue

integrable, i.e.,

MK
2
(p,q)11 = 'e a

2
(p)dp f 0

2
(q)dp M

2
,

P en

where M > 0.

Equation (2) for a kernel of the type we are considering

would have the form

where

p(p) = ka(p)-fe X(p,q)S[q,p(q)]dpq = 0, (6)

W
1
Cp,q;p(q)] = -X(p,q)5Tchp(q)1.

A substitution

transforms (6) into

(7)

P(p) = p(p)-ka(p) '(8)

P(p)+Se X(p,q)YN,P(p)+ka(p)dpq = 0, (9)

which is of the form of Equation (3).

123

57

A principal analytical method of solving (3) or (9) is

to employ the classical method of successive approximation

scheme by setting

P0(q) E 0 (10)

and determining successive functions by means of the relations

P
n+1

(p) = -S
e
n

K(p,q)F[q,Pn(q)]dp p,q E e
n

, (11)

n = 0,1,2,3,... . The convergence of successive functionE,

P(p) is not assured, of course, unless certain conditions

are satisfied. A generalization of the proof in Tricomi;23)

for the one-dimensional case to an n-dimensional space slows

that the sequence

P0(p),P1(p),P2(p),...)Pn(p),...

converges almost everywhere to a solution of (11) if:

and

(a) Se K
2
(1),Odc1u = a

2
(p), exists everywhere in en,

,

(b) F(q,v) satisfies the Lipschitz condition of the form

1F(q,v1)-F(q,v2)1 < YWII/1"21,

.(c) F(q,0) belongs to L2,

(d) a
2
(p)y

2
(p)dp = M

2
< 1.

124

58

These conditions are fairly stringent. Nevertheless, they

are met by a large number of funcLions. Since these are

sufficient conditions and not necessary, the method can still

be employed, but the sequence of functions must be examined

for convergence and satisfaction of the equation. In cases

where the evaluations are tedious and involved, numerical

procedures may be employed.

As an example, consider the equation

where

p(x) = riK(x,F,)(1+p(V)2dt,
-0

K(x,) = x,F < x

X

We define the iteration process by the sequence

p(x) = f1K(x,)i1-1-pn(0]2dg, n=0,1,2, ...
0

For n = 0 we have

= r1K(x,)dg = xi'
x1

=

o o x 0 2 x

= x 2
4-11-1/2x

2
= 1/2(x

2+1).

125

For n = 1,

59

p2(x) = fiK(x,W1-14i(e+1)]2d = (1/2)
0

1K(x,)(+3)
, 2 2

(1/2)2ixjx(e4.3)2d
sl(e.,..3)2(111

0

= (1/2) 2{01/30)x6+(7/2)x4+(9/2)x2+(31/6)1.

The iterates p3(x), p4(x), etc., are obtained similarly.

The crucial element in making use of this theory, as has

been mentioned, is the determination of the nature of the

kernel K(p,q).

60

References

1. Hays, D. G., "Automatic Language-Data Processing," in
Computer Applications in the Behavioral Sciences,
H. Borko, ed., Prentice-Ha Englewoo C iffs, N.J.
(1962).

2. Hays, D. G. and T. W. Ziehe, "Studies in Machine Transla-
tion--10: Russian Sentence Structure Determination,"
RM-2538, The Rand Corp., Santa Monica, California
(AMT:=.1, 1960).

3. McConlogue, K. and R. F Simmons, "Analyzing English Syntax
with a Pattern-Learning Parser," Comm. of ACM, 11,
687 (November, 1965).

4. Gaifman, H., "Dependency Systems and Phrase-Structure
Systems," Information and Control, 8, 304 (June, 1965).

5. Weston, P., "Data Structures for Computations within
Networks of Relations," in BCL Report 67.2, Biological
Computer Laboratory, University of Illinois, Urbana,
126 pp. (1967).

6. Newell, A., et al., Information Processing Language - V,
Prentice-Hall, Englewood Cliffs, N. J. (1964).

7. McCarthy, et al., LISP 1.5 _programmer's Manual, MIT Press,
Cambridge, Massachusetts crm).

8. Perlis, A. J. and C. Thornton, "Symbol Manipulation by
Threaded Lists," CACM, 3, 195 (1960).

9. Weizenbaum, J., "Symmetric List Processor," CACM, 6, 524
(1963).

10. Roberts, L. G., "Graphical Communication and Control
Languages," in Second Congress on Information System
Sciences, Hot Springs, Virginia 196

11. Knowlton, K. C., "A Programmer's Description of L6,"
CACM, 9, 616 (1966).

12. Weston, P., "Data Structures for Computations within Networks
of Relations," in BCII Report 67.2,Biological Computer
Laboratory, University of Illinois, Urbana, 126 pp. (1967).

13. Bouknight, J., Preliminary User's Manual CSL6 CSL7, Coordi-
nated Science Laboratory, University of Illinois, Urbana
(1967).

127

61

14. Lee, C. Y. and M. C. Paull, "A Content Addressable
Distributed Logic Memory with Applications to Information
Retrieval," Proceedings of ti I.E.E.E., 51, 925
(June,1963).

15. Lee, C. Y., "Intercommunicating Cells--Basis for a
Distributed Logic Computer," Proceedin s Fall Joint
Computer Conference, 22, 130 December, 1 62

16. Gaines, R. S. and C. Y. Lee, "An Improved Cell Memory,"
I.E.E.E. Trans. on Electronic Computers, C-17, 10
(January, 1968).

17. Sturman, J. N., "An Iteratively Structured General Purpose
Digital Computer," I.E.E.E. Trans. on Electronic
Computers, EC-14, 2 (January, 1968).

18. Salton, G., "Progress in Automatic Information Retrieval,"
I.E.E.E. Spectrum, 90 (August, 1965)

19. Grossberg, S., "A Prediction Theory of Some Non-linear
Functional-Differential Equations. 1. Learning of
Lists," Journal of Mathematical Analysis and Applica-
tions, 21, 643 (March, 1968).

20. Inselberg, A. and H. Von Foerster, Linear Property Filters,
Technical Report No. 2, Electricai-E74-ineering Research
Laboratory, University of Illinois, Urbana (1962).

21. Von Foerster, H., "Computation in Neural Nets," Currents in
Modern Biology., 1 (March, 1967).

22. Hammerstein, A., "Nichtlineare Integralgleichungen nebst
Anwendung," Acta Math., 54, 117 (1930).

23. Tricomi, F. G., "Integral Equations," Interscience
Publishers, Inc., New York (1957).

128

62

(vii) Papers and Reports Published During this Report Period

Kisylia, A. P., An Association Processor for Information
Retrieval, Report R-390, Coordinated Science Laboratory,
University of Illinois, Urbana (August, 1968).

Von Foerster, H., "What is Memory that it may have Hindsight
and Foresight as well," presented at The Future of the
Brain Sciences, Third International Conference, Academy
of Medicine, New York May, 1968). (Proceedings in press)

129

. ACCOMPLISHMENTS FROM 12/1/68 - 2/28/69

1

PREFACE

The following pages give a brief account of the activity

associated with the study on cognitive memory during the fifth

report period from 1 September to 30 November of 1968. Not

reported in this account is the preparation of various scien-

tific papers that have been completed during this report

period. They will be submitted under separate cover as Special

Technical Reports or as publication reprints.

The contribution of members of the Department of Linguis-

tics, of Mathematics, of Anthropology and of Psychology, whose

association with this project is by interest and enthusiasm,

rather than by contract, is herewith acknowledged with great

gratitude.

Particularly appreciated is the participation in the

discussion and seminars by Dr. Humberto Maturana, Professor of

Biology, University of Chile, Santiago, Chile, who is at present

Visiting Professor at the University of Illinois. His contri-

butions to the group in the neurophysiology of cognition will

be of lasting significance.

Again I wish to express my thanks to Dr. John Lilly, Miss

Margaret Naeser and Miss Alice Miller of the Communications

Research Institute in Miami, Florida, who continued the research

on the semantic significance of alternates with our group during

an extended period of fourteen days from November 25, 1968 to

December 9, 1968.

H. Von Foerster

131

ACCOMPLISHMENTS FROM 12/1/68 - 2/28/69

Table of Contents

Page
Preface 1

Major Activities and Accomplishments During Report Period 3

1. Research on the "R2" System 3

(i) Question Analysis Techniques 3

(ii) Concept Processing 6

(iii) Context Modeling 8

(iv) Syntactic Processing 9

2. Semantic Compiler 15

3. Basic Concepts in Cognition 18

(i) Review 18
(ii) Present Work 18

4. Associative Processor 20

(i) Introduction 20
(ii) Previous Processors 21

(iii) Present Results 23

132

MAJOR ACTIVITIES AND ACCOMPLISHMENTS DURING REPORT PERIOD

1. Research on the "R2" System - K. Biss, R. Burkholder, R.T.

Chien, C. Hartmann, D. Lombardi, P. Raynolds, J. Schultz,

F. Stahl, T. Woo, D. Yeaney

Further progress has been made on the pilot information

system "Rules of the Road," now in its second generation and

abbreviated by "R2." All phases of semantic and syntactic

processing have been further developed, with special emphasis

on semantic modeling and on the retrieval of information from

these models.

(i) Qucstion Analysis Techniques

(Chien, Hartmann, Raynolds)

As given in the last progress report,an automatic classifi-

cation of questions has been developed. Associated with each class

we hope to f!_nd the most efficient qurst.:on (And

information retrieval technique.

Since making our initial breakdown of questions into

classes, we have been looking at papers of question answering

techniques that would fit in with techniques we have already

developed. One technique we have found is Belnaps(1) technique.

His argument [as proposed by Harrah(2)] is that every question

133

4

not only propounds a state of doubt, but also a state of

information. For instance:

What is the maximum speed for an automobile on a highway

of Illinois?

State of doubt: I don't know the maximum speed.

State of information: There exist laws regulating the

maximum speed for automobiles in the State of Illinois

From the state of information, we get a list of alternatives

from which an answer can be derived. In this case the list of

alternatives would be:

One m.p.h. is the maximum speed for an automobile on a

highway of Illinois

Two m.p.h ...

X m.p.h. ...

The state of doubt makes a request about the list of alternatives.

For instance:

(1) give the unique maximum speed

(2) give any maximum speed

(3) list the maximum speeds

So that every question is uniquely determined by the request it

makes and the list of alternatives it presents.

134

Thus we have

Rl

1.

2.

3.

a//////

4.

Al
2

5

where any question Qi gives a statement of information Si with

which there is associated a list of alternatives {Sil. The

request Ri selects some of these alternatives and gives an

answer Ai. Thus any questions Qi and Qj are equivalent if and

only if Ri = Rj and {Si} = {Sj}. In the above example R1 R2

so therefore Qi Q2. Thus we have a way of telling if two

questions are paraphrases of each other. (Q1 equivalent to

is a paraphrase of Q2.)

The question now arises that if Q1 Q2 could Al = A2?

This is obviously true for take R1 = R2 and {Si} = {l. ,2.

= {2. ,3. } with A
1

= A
2

= 2.

135

6

As given in previous reports, we break down non yes or no

questions into a relative pronoun phrase with the rest of the

question called S. S then implies a set of answers which wher

intersected with a set given by the relative pronoun part, gives

an answer. In general our S contains less information than

Belnaps, as our relative pronoun phrase contains more informa-

tion than his R. In this way we feel that we can come up with

a more meaningful intersection.

References

(1) Belnap, Nuel D. Jr., "An Analysis of Questions - Preliminary
Report," TM-1287, Systems Dev. Corp. (1963).

(2) Harrah, David, "A Logic of Questions and Answers," Phi-
losophy of Science, 28, 40-46.

(ii) Concept Processing

(Stahl, Woo, Yeaney)

The initial stage in the development of the R2 question-

answering information retrieval system with respect to the

maximal phrase strategy has been completed. It indicates that

information retrieval systems with natural language communication

on all levels can be successfully implemented. The initial R2

system has already introduced a number of new features that

will aid in the implementation of the total system.

First, the system is data-base independent. That is, the

implementation described would have worked equally well on any

136

7

other coherent textual data-base without any modification to

the programs. Strategy 2 with a threshold of 2 has R12 25%.

Second, the maximal phrase concept has defined a new

approach to natural language interpretation. The questions

posed to the system were not analyzed on a syntactic level.

This means there was no attempt made to determine the structure

of the question other than the relationship of the constituent

maximal phrases to the statements of the data-base. This

technique has the obvious advantage of not acquiring the

ambiguity involved in syntactic analysis and yet extracting

important relationships between the question and the data-base.

There are a number of ways in which the present system

may be clearly improved: 1)allowing paragraphs and chapters to

be treated as unifying entities, 2) recognition of hyphenated

words, 3) replacement capability to accommodate synonyms with

possible relational structures utilizing feedback, and 4)

sensitivity to pluralization and other variant word forms.

The next phase of development should deal with methods of

bringing into play syntactic analysis in the various levels of

the system; for interpretation of the question, for structuring

the data-base, and for the eventual process of inducing and

synthesizing the resultant responses of the system. The addition

of this capacity should greatly enhance the ability of the system

to deal with natural languages.

The specific points of investigation that seem most promis-

ing are the use of locally derived syntactic rules, and the use

of "pattern action" rules as described in Woods(1). Locally

137

8

derived syntax means mechanically deriving syntactic rules from

a given data-base for use in analyzing statements about the

content of that data-base.

References

(1) Woods, W.A., "Procedural Semantics for a Question-Answering
Machine," AFIPS Conf. Proceedings, 33, Part I, 457-473 (1968).

(iii) Context Modeling

(Chien, Lombardi)

A model has been constructed that is capable of logically

structuring the "Rules of the Road." The philosophy behind

this model is to create a structure that contains the fundamental

topics and relationships in such a manner as to make them

accessible to an "uninformed" individual.

Basically the model consists of a number of independent

data cells and a list of modifiers that is available to all the

data cells.

A data cell is made up primarily of five types of nodes that

have the following hierarchical arrangement.

1. MAJOR INDEPENDENT STATIC NODES
2. MAJOR DYNAMIC NODES
3. MAJOR DEPENDENT STATIC NODES
4. MINOR STATIC NODES
5. MINOR DYNAMIC NODES

Briefly, the major nodes contain one word and the minor

nodes a sentence or phrase.

138

9

Also contained in the data cell are the Relational Data

Channels (RDC) that relate the various nodes. These RDC's

always go from major to major node or major to minor node.

The're are four classes of RDC:

1. Operates on a static node and maps into a static node.
2. Operates on a static node and maps into a dynamic node.
3. Operates on a dynamic node and maps into a static node.
4. Operates on a dynamic node and maps into a dynamic node.

Each class of RDC is made up of a number of explicit con-

stituents. For example, the first class has the operator,

"specifies a type of an object." Whenever this particular RDC

is needed it is simply referred to as ISS, which is the first

RDC in the static to static class. Another example is "specifies

how an action is accomplished." This is the fourth RDC in the

dynamic to dynamic class and is abbreviated 4DD.

Finally the list of modifiers is broken down into three

groups: 1) adjectives and adverbs, 2) locations and 3) conditions.

Each member of a group has its own address and, consequently,

an RDC can refer to a specific member (or members), in relation

to a major node, simply by giving that address.

Some analysis has already been done concerning question

answering properties of this model and the model seems well

suited for this purpose.

(iv) Syntactic Processing

(Biss, Burkholder, Chien, Schultz)

In the last progress report we discussed a dependency grammar

parsing program which could parse simple sentences. This program

139

10

has now been extended to parse compound and complex sentences

as well as simple sentences. The program works in the following

way. At any word we assume that the word in question is a

dependent and we search for its governor, first checking words

at a distance one from the dependent, then at a distance two,

etc., until a governor is found. Once the first governor for

the word im question is found, we make the connection and go

to the next word making the assumption that it is now a

dependent and search for its

found for any word, then the

of the dependency tree which

governor. If no governor is

word is assumed to be at the head

underlies the sentence. In this

way we produce the most probable parsing of the sentence.

For a more detailed discussion and an evaluation of the

program we refer the reader to a Coordinated Science Laboratory

report(1) which will soon be printed.

Now that our program is running we will link it in some

way to the "semantic analyzer" component to produce the right

interpretation of a sentence in a form which the computer can

understand.

We have found in developing the grammar for our program

that in order to do a good job in parsing sentences we need a

relatively complex grammar. For this reason we are looking

into the use of a transformational grammar which, theoretically,

should be just as powerful as other grammars but much simpler.

A transformational grammar consists of two parts. The

first part is an ordinary grammar such as a phrase structure

140

11

grammar. The second part consists of transforms which map the

structure developed in the first part into another structure.

We define a transformation the following way(2): if two

or more constructions (or sequences of constructions) which

contain the same n classes (whatever else they may contain)

occur with the same n-tuples of members of these classes in

the same sentence environment, we say that the constructions

are transforms of each other and they may be derived from any

other of them by a particular transformation. For example:

NP1 v V NP2 NP2 v be Ven by NP1

The police were catching thieves. Thieves were being caught

by the police.

NP1 v V NP2 X 4-0- NP2 v be Ven X by NP1

or

NP1 v be Ven by NP1 X

(X represents whatever follows NP2 in the transformed secondary

sentence.)

The zookeeper spotted the monkey in its cage.-*-The monkey was

spotted in its cage by the zookeeper. 4-4-The monkey was

spotted by the zookeeper in its cage.

Transformations can be 1-1, in the sense that for each

individual sentence there is only one transform and conversely

(except in the case of homonymity; however, this is eliminated

by our immediate constituent analysis and dependency grammar

programs); many-one, in that various sentences (with different

subjects) have the same transform.

141

12

The kernel is the set of elementary sentences and com-

biners, such that all sentences of the English language are

obtained from one or more kernel sentences by means of one

or more transformations. Each kernel sentence is a construction

of classes. The kernel constructions of English are the

following:

NP v V (for V without objects)

NP v V P NP

N v V NP

NP is NP

NP is Adj

NP is P NP

NP is Adv

It is known that each sentence in the English language can

be expressed in terms of transformations. We hope to show (in

the near future) how we can bring a sentence back to a kernel

by means of transformations. For example, we will look at

the following:

S
1

: Melvin has a happy face.

S2: Melvin's face is happy.

S
3

: Melvin's face is a happy one.

S
4

: Melvin's is a happy face.

These are transformed from the kernel sentences:

K
1

: Melvin has a face.

K Face is a face.
2

K
3

: Face is happy.

142

13

The following transformations are involved:

for Sl: K3 overlap with Kl

for S2: Kl, NP has NP4-NP's NP, overlap with K3

for S
3

: K NP has NP4-NP's NP, overlap with K
2

(first NP)

K
2'

PRO of second NP

K3, overlap with K2 (second NP)

for S4: Kl, NP has NP4-NP's NP, overlap with K2 (first NP)

K3 overlap with K2(second NP)

Example 2:

S
1

: Melvin anu Gail went to the party and drank a bottle

of pop.

Kl: Melvin went to the party.

K
2

: Melvin drank a bottle of pop.

K
3

: Gail went to the party.

K
4*

Gail drank a bottle of pop.

K
5

: A bottle (is) of pop.

At this time we are planning to parse sentences in the

following way. We will give an immediate constituent structural

description of the sentence using the immediate constituent

analysis program which we talked about in the last progress

report. We will then scan the sentence to give structural

indices of kernels, and scan a kernel list to find if the con-

struction is a kernel. We will then label the kernel, and give

references to the kernels that are coordinated and subordinated

to jt

143

14

R. F. Simmons of the System Development Corporation is

working on a kernel approach similar to this but has not been

very successful yet.

At this time we are flow charting and writing programs

(elementary) that use transformations to seek the kernels and

transformations used in the input sentence.

References

(1) Syntactic Analysis in the R2 System (Forthcoming CSL Report).

(2) Harris, Z. E., "Co-occurrences and Transformations in
Linguistic Structure," Structure of Language, p. 159.

144

15

2. Semantic Compiler - S. M. Taylor, P. Weston

There are in existence today many compilers of various

types for the current Babel of programming languages. They

are united by the fact that all work strictly with the syntax

level of the language, finding in the input text an allowable

string of some type and then transforming it into code as a

unit independent of its surroundings. This approach works well

if the program contains at most syntactic errors which the

compiler can recognize as such. If, however, the program

contains logical error, if it is a false algorithm, so to speak,

then the results are less satisfactory.

This syntactic approach to language has been picked up

by some linguists, most notably N. Chomsky and his students, and

applied to natural language, with some very interesting results,

particularly with respect to an expanded ability to describe

the structure of sentences. Most interesting, however, has been

the failure of this approach in dealing w.ith problems resulting

from the total context imbeddedness of natural language and

the meaningful interpretation of utterances under those circum-

stances. This has led us to the different type of natural

language analysis described elsewhere in this section.

In light of the above, it is felt that another cross-

fertilization would not be amiss. Therefore, work has started

on the application of ideas gained from the study of natural

language, and others, to the processing of computer programs.

145

16

It is felt that the result could be a higher level debugging

aid which would detect a class of logic and design errors

outside the capabilities of present compilers, thus forming

the basis for an interactive man-machine program composition

system.

From the work already done on this, the following conclu-

sions have been made:

1) that a programming language represents an implicit

definition of a pseudo-machine (that is: instead of an IBM

360 or a CDC 1604, a FORTRAN computer or an L6 computer) of

which machine language is only the most specific case;

2) that a program is a sequence of relationships between

the states of this machine;

3) that one can represent these relationships (via cylinder-

type data structures) in a way which will allow them to be

algorithmically manipulated;

4) that in an interactive system of this type it should

not be necessary for the user to have extensive knowledge

beyond a familiarity with the programming language he is working

with, although some type of (presumably pseudo-English) meta-

language for statements about program segments will be necessary.

The following action is planned:

1) a program for generating relational structures from a

low-level source language (tentatively, a subset of ILLAR, a

locally available, sophisticated assembler for CDC 1604 machine

language) will be written;

146

17

2) a type of flow-chart amenable to computer generation

has been designed, and programming will be added to the system

to provide a CRT-display of such a flow-chart of the program

under analysis;

3) light-pen and typewriter controlled program editing

features are planned; as is

4) an option for the execution of the program being

analyzed under detailed monitor control.

147

3. Basic Concepts in Cognition - J. Chow, F. Preparata,

S. Ray, B. Wang

(i) Review

18

Our goal is to demonstrate cognition of a communication

by means of directly perceived data combined with imperceivable

data, relying upon a complex stored representation of feasible

conditions in the environment (the "world-model") from which

the comunication originates. A simple example may clarify

our objective. Suppose the "communication" is a view of a man

standing upon a narrow support high above the ground. The

human form, the support and a measure of the height above ground

are regarded as perceivables. It is the inference that the

human may be in danger of a fatal fall and the gravity of the

situation which are inferred imperceivables. Cognition consists

of identifying combined perceivable and imperceivable factors

from which a rational response may be synthesized.

(ii) Present Work

The present reporting period has been occup'ed by studies

of various means of expressing the "world-model" i.e., the

collection of inferences which follow from the value of total

state (perceivable plus imperceivable variables). If all

variables were restricted to binary values and an exhaustive

statement of input/output relations were assumed, then the

148

19

problem reduces to a sequential machine synthesis. The restric-

tion to binary-valued variables, however, appears to us much

too confusing. We are proceeding tentatively with each variable

having five values: strongly positive, weakly positive,

strongly negative, weakly negative, inapplicable (meaningless

or undecidable). A model which is sufficiently detailed to

produce interesting inferences is being pursued actively.

149

20

4 Associative Processor - J. Lipovski, F. P. Preparata

i) Introduction

One aspect of information retrieval is an investigation

of the over all design (architecture) of a computer (processor)

which efficiently answers search-type questions, called queries.

A conventional computer (Von Neumann Processor) searches for

a given item by comparing it with each item to be searched, one

at a time. Queries typically involve many searches, some of

which depend upon the results of others. Often they take

prohibitively long to answer. Considerable effort is being

expended to organize the search better on a Von Neumann processor,

giving such languages as LISP and such structures as rings or

cylinders, but the serial mode of this processor itself slows

down the search; this fundamental problem must be solved by

considering other processor architectures. These processors

search in parallel; they enable a search of all items to be

conducted approximately in the time it takes to search one item

in a Von Neumann processor. Such processors are called

associative processors.

One reason for using associative processors is that they

provide fast, real-time, information retrieval. Some industrial,

research, and military retrieval problems should be handled in

real-time. Fast retrieval may be a convenience, a more powerful

tool, or a necessity.

150

21

Associative processors may become cost-competitive with

Von Neumann Processors for ordinary retrieval of information.

They are presently quite expensive, but two points must be

considered. Because they are fast, a greater number of queries

can be handled in a given time, and the cost per query is

important. Further, their design is ideally suited to large

scale integration, and the cost of LSI is decreasing.

Lastly, some problems require very large non-numerical

processors. But large processors that perform one instruction

per time unit may be allocated inefficiently for all but a

few programs; large processors that have many specialized modules

break down when any module does--this may make a large processor

unreliable. A large associative processor is desirable which

can be allocated into smaller processors where each processor

is of near-optimum size for the process it carries out, and

which has few specialized modules and some automated fault

detection, testing and repairing of part of the processor while

the remainder of the processor runs normally, to improve its

reliability.

(ii) Pruvious Processors

An associative memory is capable of parallel searches,

but is run by a conventional computer much like a disk or drum.

Early associative memories used cryogenic devices or specially

designed core. C. Y. Lee and M. C. Paull gave an associative

151

22

memory amenable to integrated circuits. D. A. Savitt, H. H.

Love and R. E. Troop followed a different philosophy in

designing two different processors, called ASP processors,

using associative memories. ASP processors seem most suitable

for handling the complex queries of information retrieval.

A homogeneous processor, or iterative processor, is a

collection of physically identical elements, called cells, which

are connected in some regular fashion. The Von Neumann space

(not to be confused with the Von Neumann processor mentioned

above) and a generalization, the Holland space, are early

homogeneous processors. J. Sturman added the concept of

homogeneity, from the Von Neumann space, to Lee's memory to

obtain an associative processor. This processor is capable

of operation if some cells are faulty, if these cells can be

detected. J. Smathers considered Sturman's idealized processor

in light of practical limitation. One serious practical

limitation remains: the communication delay time, and thus

the time required for each instruction execution, grows linearly

with the number of cells in the processor.

Holland pointed out that iterative processors are able to

execute many subroutines simultaneously. This also implies

that a very large processor can be allocated into smaller

processors, each of near-optimum size. Holland's processor is,

however, quite slow and it can become incapable of operation if

faulty cells appear.

152

23

(iii) Present Results

The processor is a singular tree whose nodes are processor

cells, each of which stores a word of memory and has some

internal logic, and whose branches are mainly bi-directional

channel links. For convenience, we consider trees of uniform

degree, d, whose leaves are all at some level, i. Each cell

at level i is able to cut its channel link that connects it to

the cell at level i-l. With the exception of those channel

links that are cut, each cell receives a word of information

(perhaps 40 bits) from one of the d+1 channel links connected

to it, or from the cell itself, and asynchronously broadcasts

this word to the other channel links and to the cell itself.

The collection of cells having unbroken channel links between

them is a subtree called an elementary processor, and all these

channel links form a channel. This processor is easily broken

down into elementary processors, each of which can be of nearly

optimum size for the process it must carry out.

A well-ordered priority structure exists in hardware in

the tree such that for each elementary processor, any set of

cells in it has a first (prior) cell. Of the set of cells

that intend to read their word of memory into the channel, the

prior reads out its contents and drops out of the set. Each

cell asynchronously amplifies and broadcasts these contents so

that all cells receive them. A clock pulse is then fed through

the tree and each cell acts on these contents. All cells receive

153

24

exactly the same word, which was broadcast from the prior

cell, in the same clock cycle. A clock pulse then clears

the channel, since the channel has feedback loops that lock

onto signals, and repeats the above procedure. Propagation

delay in this scheme increases about logarithmically with the

number of cells in the processor.

Each tree branch has two unidirectional lines, or rails,

so that each cell at level i can signal the cell at level i-1

on one rail and the cell at level i-1 can send one signal to

all sibling cells at level i on the other. Each cell at level

i is able .to cut both rails, to and from the cell at level i-l.

The collection of cells having unbroken rails between them is

a subtree called a set. One group of rails carries signals

from each cell to the root cell of the subtree, and the other

group of rails carries a signal from the root cell to all other

cells.

A cell is programmed as a data cell or an instruction cell.

A collection of one data cell and several instruction cells

make up an instruction set. Whenever a word in the channel

matches the word (label) in the data cell, it sends a pulse on

the rails to all instruction cells; this activates a read flip-

flop which puts these instruction cells into the set of all

cells which intend to read their word into the channel. By

means of the priority structure, each cell reads out in a fixed

sequence. By introducing the "label" into the channel, a

sequence of instructions will be generated.

154

25

A collection of several data cells makes up a data set. A

data set may represent a document, for example. A data cell

will name the document, other data cells will give some

descriptors, others will give references found in the document.

Still other cells will be used to store bits which are acquired

in processing a query.

One instruction is the MATCH instruction, which has a

function and an argument. Any data cell that matches the

argument sends a signal on a rail to the root cell. This cell

contains a flip-flop, present in all cells but used only in root

cells of data sets, containing the state of the set. The root

cell interprets the "function" part of the MATCH instruction

as a boolean function on the present state and the signal on

the rail to get the next state of the set. A sequence of

MATCH instructions may choose documents that satisfies a query.

This architecture provides for some fault avoidance. If

a cell has a fault, in other than its channel switching,

priority structure, and rails, and this is known, then it can

be unused, and it might be physically in a subtree without

being a member of the instruction or data set. That is to say,

no cell is essential to the running of the processor. Using

a routine to periodically search for faulty cells, one can

obtain a highly reliable processor. Because it contains

identical cells, it is amenable to automated testing and repair.

This processor, even on a large scale, appears to have

short propagation delays and good reliability. It can be

155

2 6

allocated to make smaller elementary processors to be more

efficiently used. It appears to be a good design for very

large processors as well as for smaller ones. Attention is

being given to improving and simplifying some operations,

and to finding what other problems might plague large processors.

156

