
DOCUMENT RESUME
ED 028 811 Li 001 483

By Artandi, Susan; Baxendale, Stanley
Proiect MEDICO Third Progress Report.
Rutgers, The State Univ., New Brunswick, N.J. Graduate School of Library Service.
Spons Agency-Public Health Service (DHEW), Washington, D.C. National Library of Medicine.
Report No PHS-LM -94
Pub Date 69
Note- 71p.; The first progress report is ED 022 504 and the second progress report is. LI 001 482
EDRS Price MF-SO.50 HC-S3.65
Descriptors-*Automation, Computer Programs, Computers, Computer Storage Devices, Dictionaries, *Indexing,
*Information Retrieval, *Information Storage, Input Output, Operations Research, *Search Strategies

Identifiers-MEDICO, *Model Experiment in Drug Indexing by Computer
This report describes the searching methods and the search program for the

automatic indexing method which was developed and implemented in an earlie r_phase
of the project. The indexing method generates index tags automatically from English
language text and creates a machine searchable file of index records for the
document being processed. Since the First Progress Report the indexing program has
been modified to facilitate the updating and expansion of the computer-stored
dictionary. The MEDICO file which is the output of the automatic indexing program is a
direct file stored on magnetic tape and is sequenced by document accession number.
The primary access point of the file can involve as many, as four hierarchical levels
and generic searches are easily implemented. Boolean searches allow for the'retrieval
of highly specific information: Prior,. to searching, the Boolean expressions
corresponding to the natural language query are formulated by the human searcher. .

Normalization of the query to malce it compatible with the index language is
accomplished automatically by the computer. The tape file is searched sequentially to
search for the presence. or 'absence of terms as prescribed in the Boolean
expression. Several queries can be processed simultaneously and the output for each
query can be printed out as a separate unit. (Author/JW)



r\J
c) 64Pit3
LLI

^

PROJECT MEDICO
Third Progress Report

by
Susan Artandi

and
Stanley Baxendale

U.S. DEPARTMENT OF HEALTH, EDUCATION & WELFARE

OFFICE OF EDUCATION

THIS DOCUMENT HAS BEEN REPRODUCED EXACTLY AS RECEIVED FROM THE

PERSON OR ORGANIZATION ORIGINATING IT. POINTS OF VIEW OR OPINIONS

STATED DO NOT NECESSARILY REPRESENT OFFICIAL OFFICE OF EDUCATION

POSITION OR POLICY.

oc/c14,

JUN 5.69

31(;.
). OF

co

Graduate School of Library Service
Rutgers, the State University
New Brunswick, New Jersey

1969



Project MEDICO

Third Progress Report

(LM-94 Grant)

by

Susan Artandi

Graduate School of Library Service
Rutgers, the State University

and

Stanley Baxendale

Department of Computer Sciences
Rutgers, the State University

Graduate School a Library Service
Rutgers, the State University
New Brunswick, New Jersey

1969



FOREWORD

The work described in this Third Progress Report was conducted under grant LM-94

from the Public Health Service National Library of Medicine.

Rutgers University personnel participating in this phase of the project are:

Dr. Susan Artandi, Principal Investigator

Associate Professor, Graduate School of Library Service

Mr. Stanley Baxendale

Associate Professor, Department of Computer Sciences

Mrs. Gillian McElroy, MLS

A great deal of advice was received from Dr. Thomas H. Mott, Jr., Director,

Center for Computer and Information Services and Chairman, Department of Computer

Sciences.

iii



ABSTRACT

The searching method and the search program for the automatic indexing method developed

in an earlier phase of the Project is described. The MEDICO file which is the output of the

MEDICO automatic indexing program is a direct file on magnetic tape. The primary access

points of the file can involve as many as four hierarchical levels. Generic searches are

easily implemented and Boolean searches allow the retrieval of highly specific information.



TABLE OF CONTENTS

Page

I. Introduction
1

II. Summary 3

III, The MEDICO Index File 5

W. The Search Program 9

V. Modifications in the Indexing Program 15

VI. Appendix 19

1. Flow Charts 21

2. Sample Query Input to Search Program and Its Corresponding Output 29

3. Sample Records from the Automatic Index File 35

4. Automatic Indexing Program Listing 39

5. Revised Version of the Dictionary Processing Program 55

6. Search Program Listing 61

7. Print Program Listing 71

-

vi



I. INTRODUCTION

This is the third Progress Report on research in automatic indexing of drug-related

information conducted under grant LM-94 from the Public Health Service National Library of

Medicine.

iThe First Progress Report, 1 published n January 1968, describes the automatic indexing

method which was developed in the Project. The method will generate index tags automatically

from English language text. Pre-defined text characteristics are used to alert the computer to

the presence of information that should be indexed. In the process of indexing the computer will

switch from the uncontrolled vocabulary of the text to the controlled vocabulary of the index

language and it will automatically compute weights for index terms, The indexing algorithm

also includes a method for the automatic generation of links.

The Second Progress Report, 2 published in November 1968, is concerned with the

statistical evaluation of the output of the MEDICO automatic indexing method just described.

The statistical tests were primarily designed to examine the validity of the assumptions which

formed the bases of the algorithms developed for the computation of weights and the generation

of links between index terms. Evaluation also included a comparison of the output generated

from full text and from the processing of abstracts and summaries of the same articles.

lArtandi, S. and S. Baxendale, Project MEDICO. First Progress Report. New

Brunswick, N. J., Graduate School of Library Service, Rutgers The State University, 1968.

2Artandi, S. and E. H. Wolf. The effectiveness of weights and links in automatic index-

ing. Project MEDICO. Second Progress Report. New Brunswick, N. J., Graduate School of

Library Service, Rutgers, The State University, 1968.

1



II. SUMMARY

This Third Progress Report describes the searching methods and the search program

for the automatic indexing method which was developed and implemented in an earlier phase of

the Project. The indexing method will generate index tags automatically from English

language text and by utilizing explicitly defined text characteristics it creates a machine

searchable file of index records for the document being processed. Some modifications in the

indexing program are also described.

The MEDICO file which is the output of the automatic indexing program is a direct file

stored on magnetic tape and is sequenced by document accession number. The primary access

points of the file can involve as many as four hierarchical levels and generic searches are

easily implemented. Boolean searches allow for the retrieval of highly specific information.

Prior to searching, the Boolean expressions corresponding to the natural language query

are formulated by the human searcher. Normalization of the query to make it compatible with

the index language is accomplished automatically by the computer, The tape file is searched

sequentially to search for the presence or absence of terms as prescribed in the Boolean

expression. Several queries can be processed simultaneously and the output for each query can

be printed out as a separate unit,

cz./3



III. THE MEDICO INDEX FILE

The MEDICO file is a direct file of document references and their associated index

terms stored on magnetic tape in accession number order. In this sense the MEDICO file is

similar to many other index files. The principal characteristic which distinguishes it from

other files is that its content and format is automatically generated by the computer.

The specification of the content of the index record is accomplished through the MEDICO

indexing algorithm described in the First Progress Report. The output of the indexing program

creates a record for each document containing the following data elements: author, title,

citation, and index terms with their respective weights and Chemical Abstracts Registry

Numbers.

Since the MEDICO file is a direct file each record stands for a single document as

opposed to an inverted file in which each record stands for a single index term. Inherent in the

process of searching a direct file for documents specified by subject is the need to make a

complete scan of the entire file for each query to be processed. The capability for

simultaneous searches, processing several queries in a single pass of the tape, can compensate

for this limitation.

The MEDICO search program provides for simultaneous searches and allows for the out-

put corresponding to each query to be printed out separately.

Searching is essentially the reverse of indexing and the preparation of a search

instruction involves procedures and sources of errors that are very similar to those encountered

in indexing. The objective of searching is to identify those documents whose content is

relevant to the query.

The output of a search may be viewed as the result of the relevance judgment of the

system. Theoretically, the closer this resembles the relevance judgment of the user the better

the system performs. In practice, however, the problem is not quite as clearcut, and factors

influencing both system and user judgment need to be taken into consideration.

In searching a documentary file communication with the file is accomplished through the

index terms included in the records of the various documents. The nature of this communication

f/5



6

or the flexibility of searching will be to a large extent determined by the contents and the

structure of the file records.

The MEDICO record was designed to allow access to the drug hiformation at as many as

four hierarchical levels. Figure 1 shows these hierarchical levels.

Biological activity

Drug group name

Chemical or
vne& j_iame

Trade name

Antico vulsants

Barbiturate

Amobarbita Phenobarbita

- C-1)Barbamyl qssomytal

FIG. 1

Since the drug group name is automatically posted for each compound, and since the

chemical name and the drug group name are automatically posted for each trade name, generic

searches are relatively easy to make. The generic specific relationships are also displayed in

the printout of the index record. All this is accomplished through the use of "packages."

As it was already explained in the First Progress Report, a package is associated with

each te.em in the system and it consists of those terms which will appear in the index record

whenever that particular term is recognized in the document text.

For example, if the name 5-ethy1-5-isopentylbarbituric acid were to appear in the text

of the document, its corresponding package would be recorded in the index record:

amobarbital
5-ethy1-5-isoamylbarbituric acid
barbiturates
Reg. no. 57534

The same package would be generated ff 5-ethyl-5-isoamylbarbituric acids or amobarbital were

found in the text. If, however, a trade name such as Barbamyl would appear in the text, the

package would also include Barbamyl in addition to what is given above.

It_should be noted that the fourth hierarchical level, group name according to chemical

activity, was omitted from the MEDICO record because all of the drugs in the experiment were

anticonvulsants. Whenever the term anticonvulsants appears in a record it means that it was



generated directly from the text and not through generic posting.

In addition to utilizing the primary access points in the index record, the search pro-

gram is designed to make possible complex Boolean searches using the connectives AND, OR,

and NOT. Any data element can be combined with any other included in the subject description

part of the index record, involving the capability for many more possible cominbations than

would probably be needed in practice.

While the Boolean expression corresponding to the query is formulated by the human

searcher, normalization of the search terms to make the query compatible with the index record

is accomplished automatically by the computer. The index file is searched sequentially to

search for terms as prescribed in the Boolean expression. Several queries can be searched

simultaneously and the output relating to each query can be printed out as a separate unit.



1

IV. THE SEARCH PROGRAM

After the Boolean expressions have been formulated the program automatically performs

the normalization of the query. Normalization means that the program substitutes for the''

uncontrolled terms in the query the corresponding terms from the system vocabulary.

The file is scanned to find the terms in the query. When a term is present a hit is

scored; however, the final selection of an index record as a reference depends on the truth

value of other terms in the query and the resultant truth value of the logical expression forming

the query. The output of answers for any query will be a list of selected article numbers.

When the whole file has been passed these arrays of article numbers are used to control the

printout of the index records of articles that satisfy the queries. The main problem at this

stage is to process the print tape sequentially and to print out all the records for a query

sequentially at the same time, followed by the printout of the records required by the results

of the next guery and so on. The program here uses as much main storage as possible and

uses the Random Access Disk Unit as auxiliary storage.

Queries are punched into cards in the format shown in Fig. 2. Card column 1 contains

a letter A, conveniently but not necessarily, the first letter of the term, ANTICONVTJLSANT.

The first twenty-four letters of t.he alphabet can be used for this purpose, but not Y or Z.

These are reserved for the truth values true and false as will be explained in the description of

the routine for evaluating logical expressions. Thus twenty-four different terms could appear

in one query.

If two or more terms begin with the same letter it would be necessary to use other

letters to represent them.

The use of letters permits a useful condensation of the logical form of the query.

Card column 3 contains a single numeric digit code which indicates the type of term according

to the following table.



10

Term type codes used on query cards
1 Author

2 Drug term
3 Registry number
4 Association linkage (must be two cards together)
5 Generic term
6 End of query

7 End of all queries

Figure 2

Coding of logical form of query
Boolean connectives

AND

OR

- ... NOT

The Boolean expression does not have to start in card column 1 and spaces can be us6d

to improve legibility.

As the query cards are read the information they contain is stored hi arrays. Each item

is associated with the letter representing it in the query and its position in the array. Each

logical form of query is also stored. A 7 in a query card signals the end of all queries and

causes the first index record to be read from the binary search tape and passes control to the

logic evaluation routine.

Searching for a particular query in the index records is simply a case of comparing the

query terms successively with the terms in the index records. If the search is successful the

truth value is set to true. So that as far as the particular term is concerned a hit has been

made.

The basic ideas used in evaluating the logical expression are simple. Consider that there

are two kinds of, what we may call, elementary logical expressions, namely, those involving

AND and those involving OR. The expression A AND B AND C is false as soon as a false term

is found. That is, if A is false the whole expression is false and it is only necessary to fail

in the search for A in the index record to be able to abandon any further search. Similarly

the expression A OR B OR C can be considered true as soon as a true term is found. Negation

just reverses the truth value of a term.



Sample Worksheet for Query Formulation

QUERY

Which s (with the exception of barbiturates hydantoins and succinimides) have anti-

convulsant activities?

11

CODED QUERY:

CC
1234

WEIGHT

Card Col
80

A 4 ANTICONVULSANTS
4 ACTIVITY
2 BARBITURATES

2

H 2 HYDANTOINS

2 SUCCINIMIDES

3

2

6 END OF QUERY

LOGICAL FORM OF QUERY:

*
-(B

* *
HA S)

FIG. 3



12

The MEDICO search program will evaluate the truth value of complicated Boolean

expressions, including nested parenthetical expressions.

Parenthetical expressions can be evaluated easily by putting the expression in a working

storage area and using it to keep track of events in the following manner.

First a left parenthesis is located and its position noted, next the first right parenthesis

is located. Moving to the left find the nearest left parenthesis. This may or may not be the

first left parenthesis encountered. At any rate within these parentheses an elementary

expression is situated. The logic program calls successively on the search to establish the

truth of the terms and the truth of expression is evaluated. Now the left parenthesis and all

the terms in the elementary expression under discussion are blanked out and if the expression

is true the right parenthesis is replaced by a Y meaning true, otherwise a Z meaning false.

Applying this process recursively the truth of the query is established at the earliest

opportunity. The result is a very fast search. All of the queries in a batch are processed

against each index record in sequence, that is, all the queries are processed against the file

in one pass of the tape.

The output from this program is an array of the numbers of articles 'hitt by each

query in succession.

The problems involved in searching relates to the sequential nature of a tape file and

the relatively limited capacity of main storage. Given the array of hits produced by the query

search program it is required to produce a set of printed records in proper sequence for each

query in turn. This is accomplished in one pass of the print record tape which contains the

index records in ascending order of article number.

At this concluding stage of the program only the print program and its associated

subroutines need be in memory so that the search program can be overlaid and there is more

room available for storing article records. However, with a large file it would be necessary

to use auxiliary disk storage. In brief, index records are read into memory and printed out

in answer to the query being processed. If the query needs an article, the articles preceding

it on the tape are read into memory until the required article is reached and can be read in to

be printed out. Proceeding in this way it is possible to run out of space in memory. To

provide room some articles in memory are written out to disk storage and since disk storage

is addressable, these articles can easily be read back when required. The articles chosen



13

for shunting on to disk are those with lowest priority. The traffic control of the movement and

printing is by means of the SQUEEZ subroutine.



V. MODIFICATIONS IN THE INDEXING PROGRAM

Some changes were made in the indexing program since the First Progress Report.

The modifications are primarily intended to facilitate the updating and expansion of the dictionary.

The complete revised indexing program is included in the Appendix,

As it was described in the First Progress Report, associated with dictionary terms in

memory is a matrix of transfer addresses. As a text word is checked against the dictionary the

first two characters of the word are converted into a unique numeric index. This index is,

in effect, an 'indirect address' of a location in the matrix which contains the address of the

first term in the dictionary beginning with the same two characters. Suppose the textword is

AMOBARBITAL, then automatically the first two letters of the word are used to 'look up1 or

locate the first term in the dictionary beginning with AM which is AMINOGLUTHEMIDE. How-

ever, if the text word were AXILLARY the index deriving from AX would find a location in the

matrix of transfer addresses containing a zero indicating that the dictionary did not contain any

terms beginning with AX.

Initially, when the dictiorary was first set up the terms were sorted according to the

IBM 7040 scientific collating sequence using the available system IBSORT routine. Before this

modification was made a section of the dictionary containing the words under consideration looked

as in the figure below,
542 25 ALPHA(P-AMINOPHENYL) -ALPHA ETHYL-GLUTARIMIDE

547 -25 AMINOGLUTETHIMIDE

552 25 AMINO-GLUTETHIMIDE

556 -9 AMOBARBITAL

561 -14 AMOBARBITAL SODIUM

566 -9 AMYLOBARBITONE

569 9 AMYTAL

574 14 AMYTAL SODIUM

579 -49 ANTICONVULSANT

Any term is preceded by two numeric terms; the first points to the beginning of the

next dictionary term and the second is the package number with a sign indicating whether the

/05

,- I"



16

term has to be placed in the index record together with the package. If the sign is positive the

term will be printed in the record together with the package, if negative, only the package terms

are printed.

For example, 542 is the address of the first computer word of AMINOGLUTETHIMIDE.

542 is the address of the first term beginning with AM and consequently 542 appears in the

matrix of transfer addresses at the location designated by the index constructed from the

letters AM. Thus, its appearance in the dictionary can be considered to be redundant. Its

use, however, allowed the calculation of the length of the dictionary term plus two as the

difference between two successive addresses. 547-542 gives 5 as the number of computer words

containing the following information.

547 -25 AMINOGLUTHETHIMIDE

Hence, the term is contained in 3 computer words, This length computed in the

dictionary processing program is thus implicitly available for use in the indexing process

and the search program.

The -25 indicates that the associated package is number 25 and that the term does not

have to be printed in addition to the package terms because, in this case, it is one of the

terms in the package.

Two modifications were introduced; one, was to replace the address 542 with a zero

which is now used to indicate the last term beginning with AL. Similarly, 574 which is the

location of the first term beginning with AN can be made 0 to indicate the last term, AMYTAL

SODIUM, in the group of terms beginning with AM. Another simple modification allows the

storage of the length of the dictionary term in the word containing its package number.

Consider the example in the following figures.

5561 -91 AMOBARIBITAL

The previous address was 552 and hence 556-552=2 gives 2 computer words for the length of

AMOBARBITAL.

The package number word is represented below.



li00000000000000000000k0000000000lont
36

Package number 36 bits
1

15

9

1

Poomoom0000moiol00000000000looll
2 9

17

L = 2 PACKNO = -9

Since only four bits are required to represent the length of a term which is not likely to

exceed 15 computer words it is feasible to let each address be the link to the next term in

that group wherever it is placed instead of calculating length from the addresses of successive

terms. This removes any necessity to sort the terms and it is possible to update the

dictionary quite freely.

indicated below,

The portion of the dictionary described before would now appear as

0 8/25 ALPHA(P-AMINOPHENYL) -ALPHA ETHYL-GLUTARIMIDE

547 31-25 AMINOGLUTETHIMIDE

552 3/25 AMINO-GLUTETHIMIDE

556 2/-9 AMOBARBITAL

561 3/-14 AMOBARBITAL SODIUM

566 3/-9 AMYLOBARBITONE

569 1/9 AMYTAL

0 3/14 AMYTAL SODIUM

579 3/-49 ANTICONVULSANT

Trying to match AMOBARBITAL would result in the length 2 being compared successively

with the lengths 3, 3 and finding equality of length at the third attempt. Following the

successful length test, and the testing of the successive computer words from which the term

is made up AMOBARBITAL will give a hit, If the word being tested were AMMONIA the length

test would be successful at AMOBARBITAL since each term occupies two computer words; how-

ever, the comparison of computer words would fail on the first comparison. Subsequent length

tests would fail including the test against the length of AMYTAL SODIUM. The search is now

terminated with no hit since AMYTAL SODIUM is the last term in the group as signalled by the

zero.

With the modification just described new terms can be added to the dictionary without



,

18

invalidating the content of previously created index records. When new terms are added to the

dictionary they are simply placed at the end and the pointer to the new term is placed in the

link word of the previously last word in the group replacing the zero denoting the end of the

string. Any number of new terms can be added and linked in the usual way with the last word

in a group being designated by the zero address.

If it is necessary to add a term, for example, AXILLARY and no group of terms of

which the first two letters are AX exists in the dictionary then its computed index will point

to a location in the transfer address matrix which contains a zero. The program inserts

the address of the available location in the dictionary at which the term will be placed into the

appropriate word of the transfer matrix replacing the zero.





1. Flow Charts



22

FLOW CHART OF AUTOMATIC INDEXING PROGRAM

NO

INDEX
FILE

PRINT
INDEX RECORD

COMPUTE
FREQUENCY INDICES
IN INDEX RECORD

DICTIONARY AND MATRIX OF ADDRESSES
AND CODED PACKAGES ARE FIRST READ
INTO MEMORY FROM CURRENT DICTIONARY
FILE

<CALL HEAD>
TO READ AND PROCESS

BIBLIOGRAPHIC
CITATION CARDS

AT BEGINNING OF EACH
ARTICLE

YES

READ TEXT CARDS
ONE AT A TIME

END OF
ARTICLE

YES

EXTRACT A NEW WORD
FROM TEXT - Al FORM

NO END OF

TEXT CARD

IS

NUMBER
OF CHARACTERS

IN WORD

YES

RWD
TAPE

( STOP )

CALL COMPOS
CONVERT WORD TO
COMPUTER WORDS
OF 6 CHARACTERS

A6 FORMAT

GENERATE INDEX OF
TRANSFER ADDRESS

FROM WORD

TRANSFER ADDRESS 0
(WORD NOT IN DICT.)

IS
NUMBER OF
CHARACTERS

IN WORD
>18

PLACE VALID TERM AND
ASSOCIATED TERMS
IN THE INDEX RECORD

REPLACE LAST VALID
TERM BY MULTIPLE
TERM JUST FOUND
RESET INDICATOR

COMPARE
TEXT TO

DICTIONARY
ENTRIES

NO EQUALITY )
./

MULTIPLE WORD CHECK

PLACE BLANK IN
TEST TEXT AND ADJOIN

NEXT TEXT WORD
SET INDICATOR

PLACE WORD IN
SUPPLEMENTARY
RECORD

DO NOT PLACE
MULTIPLE WORDS
IN SUPPLEMENTARY

RECORD
RESET INDICATOR

NOTE: BROKEN LINES REPRESENT
PATHS PROCESSING MAY TAKE
WHEN THE MULTIPLE TERM
CHECK IS NOT IN PROGRESS



READ
INDEX
FILE

NORMALIZING QUERIES 23

CO TO LOGIC
AND PRINT
PROGRAM

ALL QUERIES

WHAT
TYPE

OF QUERY
CARD

MEDICAL
TERM

GENERATE
TRANSFER

MATRIX INDEX

ASSOCIATION SWITCH
1.

ERROR

PRINT
ERROR

GET PACKAGE
INDEX

IS ,

PACKAGE
NUMBER
+ OR-

IS
TERM IN
PACKAGE

kECORD TERM
NO IASTRADE

NAME AND
QUERY NO.-



24 LOGIC PROGRAM

(FROM SEARCH PROGRAM)

SAVE
CC IN CC1

SET
INDICATOR

MOVE TO
FIRST RT.
PAREN
CC2

FIND CC3
FIRST (

TO LEFT OF
CC2

I.

LOGIC

ROUTINE

1

REPLACE (CC)
ITH Y(=T) OR Z
(=F) DEPENDING

ON EX

OFF QUERY

ANSWERED

0

ERASE LOGICAL
EXPRESSION
FROM CC2-1 TO

CC3

NO YES

CC=CC+1

aiINDICATOR
RESET
TO OFF



LOGIC SUBROUTINE

CC .v- CC+1

BLANK

SET
NEGATION
INDEX
M=- 1

NEGATION

LEFT
PAREN

QUERY
TERM
SYMBOL

ERIOD
OR RIGHT

PARE

LOGICAL
CONNECTO



PRINT PROGRAM - CHART I

INITIALIZE
NQ=1;

PRINT OFF
I=1; LAST=0

NA=0

COMPARE
S(I):0

SET PRINT
OPTION ON

COMPARE
S(I):NA+1

SEARCH
REMAINING
ARRAY S FOR

ANY REFERENCES
TO NA

ARE
ERE 1 OR

MORE REFER-
ENCES

READ ONE
PRINTED LINE

FROM TAPE B-5
PRINT

EOA
REACHED9



PRINT PROGRAM - CHART 2

IA

ADD
INFORMATION

BOUT THIS NEW
ARTICLE TO

'LOC'

SET PRINT

OPTION OFF



28
PRINT PROGRAM - CHART 3

EXPANSION OF
K 'FIND' )

AND PRINT
ARTICLE

SEARCH
'LOC' FOR
S(I)

( CALL )
'SQUEEZ'

NOT ENOUGH

IS
ARTICLE
STILL IN

MORY?

EST
FOR ROOM
IN FILE FOR

2 DISC
TRACKS

YES

ENOUGH
ROOM IN
'FILE'

LOCATE
S(I) IN
'DISK'

EXTRACT
STARTING

LOCATION OF
ARTICLE FROM

PRINT ARTICLE
UNTIL EOA
REACHED

READ RACK
ARTICLE FROM
DISC, DELETE

FROM 'DISK'

SEARCH
REMAINING

ARRAYS FOR
OTHER REFER-
ENCES TO SW

NO

>01

PUT SW
IN EXCESS

YES

UPDATE LAST
AND LOC TO
SHOW INFO
FOR NEW
ARTICLE



29

2. Sample Query Input to Search Program and its Corresponding Output



.5)131

Query 1. Drugs which are active as anticonvulsants but which are not of the barbiturate,
hydantoin or succinimide groups.

A 44NT I CONVULSANTS
4ACTIVITY

B 28ARBI TURATES
H 2HYD4NTOI NS
S 2SUCCINIMIDES

6
A * -(B+H+S ).

Query 2, The use of 3, 5, 5-trimethyloxazolidine-2, 4-dione as an anticonvulsant.

T 23,5,5-TR IMETHYLOXAZOL I DINE-214-DIONE
A 2ANT ICONVULSANT

6
T * A.

Query 3, The use of barbiturates in the treatment of convulsive disorders with the exception
of amobarbital.

A 4ANT I CONVULSANTS
4TREATMENT

B 2BARB I TURATES
P 2AMOBARB I TAL

6
A * B *-P.

Query 4, What is the chemical name of sulthiame?

S 2SULTHIAME
6

S.

Query 5. What hydantoins other than phethenylate can be used in anticonvulsant therapy?

A 44NTICONVULSANTS
4THERAPY

H 2HYDANTOI NS
P 2PHETHENYL4TE

6
A * H * -P.

Query 6. What kind of toxic side effects can be expected when Tegretol is administered?

T 4TEGRETOL
4ADMINISTRAT I ON

U 4TEGRETOL
4TOXIC

S 4TEGRETOL
4S I DE EFFECTS
6

T*U*S



32

Query 7, Articles on the effectiveness of diphenylhydantoin as a therapeutic agent and
articles on recommended dosage.
A 4DI PHENYLHYDANTOI N
4EFFECT

B 4DIPHENYLHYDANTO
I N

400SAGE

C 40 I PHENYLHYDAN TO IN
4THERAPY
6

(A * B) + C.

Query 8. The optimum dose of trimethadione in tbe treatment of epileptics.

M 4TR I METHAUI ONE
4DOSE

N 4TRI METHADI ONE
4EP I L EPSY

O 4TRI METHADIONE
4THERAPY
6

M * N * 0.

Query 9. Administration of diphenylhydantoin sodium in the treatment of trigeminal neuralgia.

A 40 I PHENYLHYDANTOI N SODIUM
4ADMI NI STRAT I ON

B 4DI PHENYLHYDANTOIN SODIUM
4TREATMENT
6

A * B.

Query 10. Articles which have as a central topic the use of primidone as an anticonvulsant
Primidone with weight of 3 and anticonvulsant with weight of 3.

P 2PR I MI DONE
A 2ANT I CONVULSANTS

6
P * A.

3

3

Query 11. Articles which have as a central topic the use of primidone as an anticonvulsant.
Primidone with a weight of 3 and anticonvulsant with a weight of 2.

P 2PRI M I DONE
A 2ANT I CONVULSANTS

6
P * A.

Query 12. Articles which refer to oxazolidinediones.

0 $OXAZOLtOINEDIOIflS
6

0.

Query 13. Articles which mention barbiturates.
B 5BAR6 I TURATES

6
B.

3

2



33

Query 14. The chemical name and C.A. registry number of succinimides which are used as
anticonvulsants.
S 5SUCC INIM IDES
A 2ANTICONVULSANTS

6
S * A.



34

QUERY 1 SATISFIED BY ARTICLES 6 13 18 19 20 21 29 30

QUERY 2 SATISFIED BY ARTICLES 4 13 17 21 30

QUERY 3 SATISFIED BY ARTICLES 1 4

QUERY 4 SATISFIED BY ARTICLES 17 28

QUERY 5 SATISFIED BY ARTICLES 4

QUERY 6 SATISFIED BY ARTICLES 0

QUERY 7 SATISFIED BY ARTICLES 2 4 9 11 17 24 26 29

30

QUERY 8 SATISFIED BY ARTICLES 22

QUERY 9 SATISFIED BY ARTICLES 14

QUERY 10 SATISFIED BY ARTICLES 17

QUERY 11 SATISFIED BY ARTi:'.LES 17

QUERY 12 SATISFIED BY ARTICLES 4 13 17 21 22 30

QUERY 13 SATIsFIED BY ARTICLES 1 2 3 4 5 6 7 8

9 10 11 13 17 20 21 23

24 26 27 28 29 30

QUERY 14 SATISFIED BY ARTICLES 4 6 17 30



35

3. Sample Records from Automatic Index File



101111MMERPIRIPIRMINIMMEMINF

36

ARTICLE NUMBER 2

BERNSTEIN IL
TREATMENT OF BARBITURATE COMA.
NEW YORK J MED 669 2290-49 1 SEP 66

2428 WORDS IN THIS ARTICLE.

57410 (2) OIPHENVLHYDANTOIN, 595-DIPHE4YL-294-IMICIAZOLIOINEDIONE,
HYDANTOINS

(3) BARBITURATES

57432 (1) AMOBARBITAL, 5-ETHYL-5-ISOAMYLBARBITURIC ACID, BARBITURATES

50066 (1) 5-ETHYL-5-PHENYLBARBITURIC ACID, PHENOBARBITAL, BARBITURATES

DIPHENYLHYDANTOIN/ THERAPY (1)
BARBITURATES/ EFFECT (1), ACTIVITY (1)9 THERAPY (3), DOSAGE (1)

*ENO OF ARTICLE*



37

ARTICLE NUMBER 6
MILLICHAP JG, ORTIZ WR
NITRAZEPAM IN MYOCLONIC EPILEPSIES
AMER J DIS CHILD, 112, 242-248, SEPT. 1966.

2534 WORDS IN THIS ARTICLE.

(3) ANTICONVULSANTS

125337 (1) PRIMIDONE, 5-PHENYL-5-ETHYLHEXAHYDROPYRIMIDINE-4,6-DIONEt
BARBITURATES

57410 (1) DIPHENYLHYDANTOIN, 5,5-DIPHENYL-2,4-IMIDAZOLIDINEDIONEt
HYDANTOINS

50066 (1) 5-ETHYL-5-PHENYLBARBITURIC ACID, PHENOBARBITAL, BARBITURATES

115388 (1) MEPHOBARBITAL, 5-ETHYL-1-METHYL-5-PHENYLBARBITURIC ACID,
BARBITURATES

77418 (1) CELONTINt Nt2-DIMETHYL-2-PHENYLSUCCINIMIDE, SUCCINIMIOESt
METHSUXIMIDE

ANTICONVULSANTS/ THERAPY (1), EFFECT (3), ACTIVITY (1)

'FEND OF ARTICLE'



4. Automatic Indexing Program Listing



40

571 BAXEND FORTRAN SOURCE LIST
ISN SOURCE STATEMENT

0 $IBFTC EDIT
1 DIMENSION INBUF(72)
2 DIMENSION NMWO1D(50,2)
3 DIMENSION INDIC(3)
4 DIMENSION E0A(4)
5 DIMENSION NOWRD(4),NOLINE(12)
6 DATA NOWRD,NOLI4E/23H WORDS IN THIS ARTICLE.,72H

1

7 DATA ECA/22H *END OF ARTICLE*/
10 DATA BLANKagOMMAgPERIOD/1H g1HZg1Hgg1H./
11 DATA INDIC/1H1g1H2g1H3/
12 DATA MAgX,DASH,LPgRP,SLASHgASTgEIGHT/IHM,IHX,IH-.g1H(g1H)g1H/g1H*1

11H8/
13 DATA DOUBLgTRE3L/0606000000000,0606060000000/
14 COMMON /H/ MAR7gINgARTNUMgNAgAUTHOR(695)
15 COMMON /LIN/ LINE(132),LINDEX,LMARGOICT(3000)
16 COMMON KWORD(14),NWRDS,WORD(72),LENGTHOEND
17 EQUIVALENCE (W1DCTADCT)
20 INTEGER DICT
21 INTEGER PACK4(350),PACK1(100)
22 INTEGER COLUMN,PERIOD,COMMAgZOLANK,WORNTRADD(4096)
23 INTEGER G000WC(100,2),GINDEX
24 INTEGER SAVEgSVINDX,SUPL(750)
25 INTEGER SVLNGH
26 INTEGER SINDX2
27 INTEGER SUPL2(400)
30 INTEGER PINDEX,PACKNOgREGNO
31 INTEGER ENDSEN
32 INTEGER SUPL3(50,3),TYPEIgTYPE2gSINDX3
33 INTEGER SW1,SW2
34 INTEGER WRDCT, WDCT
35 INTEGER PTERM
36 INTEGER RP,X,DASH,EIGHT,SLASHgAST
37 INTEGER PCOUNT

40 INTEGER ARTNUMgREGNOS(30),PAKNOS(30),TRNAMS(30),COMPAR(100,2)
41 INTEGER AN
42 INTEGER REGNWT(30)0KNOWT(30),COMPWT(100)

-*-*-*-*-*-*-*-*-*
C ***************************************************
C ****** DATA INPUT AND INITIALIZATION SECTION ******
C ***************************************************
C READ IN THE PARAMETER CARD.
C IT IS REQUIRED TO lAVE NUMBERS PUNCHED IN COLUMNS 1-3, 5, 7, AND 8-.10
C OF THE PARAMETER CARD (THE FIRST CARD TO BE READ).
C THE THREE CIGIT NUMBER PUNCHED IN COLS. 1-3 IS USED BY THE SUBROUTINE
C -HEAD- FOR THE MARGIN WIDTH OF THE HEADING OF EACH ARTICLE.
C A NUMBER PUNCHED IN COLUMN 5 HAS THE FOLLOWING MEANING

1...LIST COMPARISONS AND LARGE WORDS.
2...LIST COMPARISONS ONLY.
3... LIST LA1SE WORDS ONLY.
4... DO NOT LIST COMPARISONS OR LARGE WORDS.

C A NUMBER PUNCHED IV COLUMN 7 HAS THE FOLLOWING MEANING
1...SAVE NOV-MEDICAL TERMS.
2...D0 NOT SAVE NON-MEDICAL TERMS. (THEIR ASSOCIATION WITH



41

571 BAXEND FORTRAN SOURCE LIST EDIT
ISN SOURCE STATEMENT

MEDICAL TERMS WILL BE SAVED).
C THE THREE DIGIT NUMBER PUNCHED IN COLS. 8..40 IS FOR USE BY THE
C SUBROUTINE WRDPJT... FOR THE WIDTH OF THE PRINT LINE USED FOR
C OUTPUT OF VALID MEDICAL WORDS, NON...MEDICAL WORDS, AND ASSOCIATIONS.
C A NUMBER PUNCHED IV COLUMN 11 HAS THE FOLLOWING MEANING

1... PROCESS INDEX FILE FROM BEGINNING
ANY PTHER DIGIT ADD RECORDS OF NEW ARTICLES AFTER LAST ARTICLE

C RECORD ON FILE
C MODIFICATIONS TO PkOGRAM ADDED SINCE PUBLICATION OF PROJECT MEDICO

FIRST PROJECT REPOlT JANUARY 1968 ARE INDICATED BY BROKEN LINES

43 READ (5,1) MAR3INISW1gSW2gLMARGIARTNUM
51 1 FORMAT(I3,212,13,I1)
52 REWIND 4
53 IF(ARTNUM.NE.1) GO TO 82
56 REWIND 2
57 REWIND 3

C READ IN TRANSFER ADDRESS ARRAY FROM TAPE 1:13.
60 READ (2) TRADD
62 WRITE (3) TRADD

C READ IN DICTIONARY SIZE AND CONDENSED DICTIONARY.
63 READ (2) Jg(DICT(I),I=1,J)
71 WRITE (3) Jg(DICT(I),I=1,J)

C READ IN PACKAGE ARRAYS.
76 READ(2) PACK4gPACK1

101 WRITE (3) PACK4,PACK1
102 REWIND 2
103 GO TO 2
104 82 REWIND 3
105 READ (3) TRADD
107 READ(3) Jg(DICT(I),I=1,J)
115 READ (3) PACK4,PACK1
120 83 READ (3) ARTNUM,AN
123 IF(AN.NE.999) GO TO 83

C PROCESS THE BIBLIOGRAPHIC CITATION FOR THE NEXT ARTICLE.
126 2 CALL HEAD
127 GO TO (98,97),IEND
130 97 AN=999
131 WRITE (3) ARTNUM,AN
132 CALL EXIT

C INITIALIZE LENGTH
133 98 LENGTH = 0

C INITIALIZE WORD COUNT TO O.
134 WRDCT = 0

C SET ...VALID WORD- INDICATOR TO 0 (OFF).
135 IVALID=0

C SET ...PREVIOUS VALID WORD IN SENTENCE... INDICATOR TO 0 (OFF).
136 ISENT=0

C SET -REACHED END OF SENTENCE.. INDICATOR TO 0 (OFF).
137 ENDSEN=0

C INITIALIZE INDEXES FOR 5 FILES.
140 GINDEX=1
141 NMINDX = 1

142 SVINDX=1
143 SINDX2=1



42

571 BAXEND FORTRAN SOURCE LIST EDIT
ISN SOURCE STATEMENIT

144 SINDX3=1
C SET FIRST WORD IN EACH FILE TO 0 (THIS IDENTIFIES THE -END OF FILE-

C FOR EACH FILE).
145 GOODWD(1/1)=0

1 146 NMWORD(1/1) = 0
147 SUPL(1)=0
150 SUPL2(1)=0
151 SUPL3(1/1)=0
152 SUPL3(1/2)=0

-*-*-*-*-*-*-*-*-*

153 NR = 0
154 NP = 0
155 NTN = 0
156 REGNOS(1) = 0
157 PAKNOS(1) = 0
160 TRNAMS(1) = 0

*************************************
C ****** WORD EXTRACTION SECTION ******

*************************************
C READ IN ONE CARD OF THE TEXT.

161 3 READ(15/4) 1NBUF
163 4 FORMAT (72A1)

C CHECK FOR END OF ARTICLE CARD (ZZZ)
164 IF (INBUF(1).EQ.Z.AND.INBUF(2).EQ.Z.AND.INBUF(3).EQ.Z) GO TO 44

C INITIALIZE TO CHECK BEGINNING OF INPUT BUFFER.
167 DO 5 1=1972

C LOOK FOR A BLANK BETWEEN TWO WORDS.
170 IF (INBUF(I).EQ.BLANK) GO TO 6
173 LENGTH=LENGTH+1

C REMOVE THE NON-BLAU CHARACTER FROM THE INPUT BUFFER.
174 WORD(LENGTH)=I4BUF(I)
175 5 CONTINUE
177 GO TO 3

C CHECK TO SEE IF WORD IS NULL.
200 6 IF(LENGTH.EQ.0) GO TO 5

C INCREASE THE WORD COUNT.
203 WRDCT = WRDDT+1
204 WDCT = WRDCT

C WORD IS NOT NULL. :HECK FOR PUNCTUATION AND END OF SENTENCE.
205 IF (WORD(LENGT4).EQ.PERIOD) ENDSEN=1
210 IF (WORD(LENGTH).EQ.PERIOD.OR.WORD(LENGTH).EG.COMMA) GO TO 7

C THERE IS NO PUNCTUATION
213 GO TO 8

C REMOVE LAST CHARACTER (PUNCTUATION)
214 7 WORD(LENGTH)=BLANK
215 LENGTH=LENGTH-1

C CHECK FOR A SHORT WORD
216 8 IF(LENGTH.LT.4) GO TO 25

C CONDENSE THE TEXT WORD TO A6 FORMAT.
221 CALL COMPOS

C ***************************************
C ****** DICTIONARY SEARCH SECTION ******
C ***************************************
C GENERATE TRANSFER MATRIX ADDRESS INDEX

222 IF (KWORD(1).1J.0) GO TO 9



4

571 BAXEND FORTRAN SOURCE LIST EDIT
ISN SOURCE STATEMENIT

225 INDEX=KWORD(1)/2**24
226 GO TO 10
227 9 INDEX=2**11-KWORD(1)/2**24
230 10 INDEX=INDEX+1
231 M = TRADD(INDEX)

C IF TRANSFER ADDRESS IS 0, WORD IS NO GOOD
232 11 IF (M.EQ.0) GO TO 22

C IF WORD IS ALPHABETICALLY BELOW DICTIONARY ENTRY, END CICTIONARY
C SEARCH

235 IF (KWORD(1)) 12,25,13
236 12 IF (KWORD(1).GT.DICT(M)) GO TO 19
241 GO TO 14
242 13 IF (DICT(M).GT.KWORD(1)) GO TO 19
245 14 MTEMP=M

C CHECK FOR A MAXIMUM COMPARISON WITH A DICTIONARY WORD
246 DO 15 MAXCOM=1,4WRDS
247 IF (DICT(MTEMP).NE.KWORD(MAXCOM)) GO TO 18
252 15 MTEMP=MTEMP+1

C TEST TEXT WORD AND DICT WORD FOR EQUAL LENGTH, IF SAME GOOD WORD
254 IF (NWRDS.EL).(DICT(M-2)-(M+2)))G0 TO 28
257 SAVE=M
260 MAX=1

C MODIFY INDEX M UP TO NEXT DICT ENTRY.
261 16 M=DICT(M-2)
262 GO TO 11

C ******************************************
C ****** MULTIPLE WORD CHECK SECTION *******

********************************************
C INCREASE LENGTH AND INDEX I

263 17 LENGTH = LENGTH+1
264 1=1+1

C PUT IN A BLANK
265 WORD(LENGTH)=BLANK
266 SVLNGH=LENGTH+1

C SET INDICATOR TO SHOW THAT A MULTIPLE WORD CHECK IS IN PROGRESS.
267 MULWRD=1

C GO BACK TO WORD EXTRACTION SECTION
270 GO TO 5

C ****************************************************
C ****** SAVE WORD SECTION (PARTIAL COMPARISON) *****
C ****************************************************
C LOOK FOR PARTIAL COMPARISON, INDEX MAXCOM=1 MEANS NO COMPARISON

271 18 IF ((MAXCO4.EQ.1).0R.(MAXCOMAT.MAX+1)) GO TO 16
C SET SAVE INDICATOR TO DICTIONARY INDEX

274 SAVE = M
C SET MAX TO MAXIMUM COMPARISON

275 MAX=MAXCOM-1
276 GO TO 16

C TEST SAVE INDICATOR FOR A NON-VALID WORD, IF ZERO, DO NOT SAVE
C GO TEST FOR LENGTH

277 19 IF (SAVE.EQ.0) GO TO 22
C IF MULTIPLE WORD CHECK IS IN PROGRESS DO NOT SAVE ANY PARTIAL COMPARISONS

302 IF (MULWRD.EQ.1) GO TO 25
C WE NOW HAVE A SINGLE WORD THAT COMPARES TO A NORD IN THE DICTIONARY.
C TEST PROGRAM PARAMETER TO SEE IF THIS NORD SHOULD BE SAVED.



44

571 BAXEND FORTRAN SOURCE LIST EDIT
ISN SOURCE STATEMENT

305 GO TO (20,20,17,17), SW1
C PUT DICTIONARY INDEX, MAXIMUM COMPARISON, WORD LENGTH, AND TEXT WORD
C IN SUPPLEMENTARY RECORD

306 20 SUPL(SVINDX) = SAVE
307 SUPL(SVINDX+1)=MAX
310 SUPL(SVINDX+2)=4WRDS
311 SVINDX=SVINDX+3
312 DO 21 J=1,NWRDS
313 SUPL(SVINDX)=KWORD(J)
314 21 SVINDX=SVINDX+1
316 SUPL(SVINDX)=0

C ZERO WILL BE WRITTEN OVER BY NEXT ENTRY IN SUPL. RECORD, OTHERWISE
C IT IS A SIGNAL FOR THE END OF THE SUPL. RECORD

317 GO TO 17
C ********************************************
C ****** SAVE WORD SECTION (LARGE WORD) ******
C ********************************************
C TEST FOR LARGE SINGLE WORDS.

320 22 IF MENGTHAT.18).0R.(MULWRD.E0.1)) GO TO 25
C PUNCH A CARD WITH THE LONG WORD.

323 WRITE (7,80) (KWORD(J),J=1,NWRDS)
C WE NOW HAVE A LARGE WORD (18 OR MORE CHARACTERS). TEST PROGRAM

PARAMETER TO SEE IF THIS WORD SHOULD BE SAVED.
330 GO TO (23,25,23,25), 5W1

C SAVE WORD IN SUPL. RECORD 2
331 23 SUPL2(SINDX2) = NWRDS .

332 DO 24 J = 1,NWADS
333 SINDX2=SINDX2+1
334 24 SUPL2(SINDX2)=KWORD(J)
336 SINDX2=SINDX2+1
337 SUPL2(SINDX2)=0

C ZERO WILL BE WRITTEN OVER BY NEXT ENTRY, OTHERWISE IT IS AN END OF

RECORD SIGNAL.
C ******************************************
C ****** WORC CHECK COMPLETED SECTION ******

******************************************
C CHECK FOR A MULTIPLE WORD.

340 25 IF (MULWRD.EQ.0) GO TO 27
C IF THIS WORD IS VALID, GO TO VALID WORD SECTION.

343 IF (IVALID.NE.0) GO TO 29
C RESTORE SECOND (ADDENDED WORD) OF MULTIPLE WORD FOR A SEPARATE CHECK.

346 J=1
347 DO 26 K=SVLNGH,LENGTH
350 WORO(J)=WORD(K)
351 26 J=J+1
353 LENGTH=LENGTH+1-SVLNGH
354 MULWRD=0
355 SAVE=0

C GO BACK TO PROCESS THIS WORD.
356 GO TO 8

C REINITIALIZE FOR A NEW TEXT WORD
357 27 LENGTH=0
360 SAVE=0
361 MAX=0

C CHECK TO SEE IF END OF SENTENCE WAS REACHED. IF SO, TURN OFF



45

571 BAXEND FORTRAN SOURCE LIST EDIT
ISN SOURCE STATEMENT

-PREVIOUS VALID WORD IN SENTENCE- INDICATOR.
362 IF (ENDSEN.EQ.1) ISENT=0
365 ENDSEN=0
366 GO TO 5

C *******************************
C ******VALIO WORD SECTION ******

*******************************
367 28 IVALID=M

C EVEN THOUGH A WORD IS VALID, IT IS POSSIBLE FOR IT TO BE PART OF A
C MULTIPLE WORD, SO TEST TO SEE IF THIS VALID WORD IS A SINGLE WORD OR
C A MULTIPLE WORD.

370 IF (MULWRD.E0.1) GO TO 29
C GO PICK UP SECOND WORD FROM TEXT.

373 GO TO 17
C IF THERE HAS BEEN ANOTHER VALID WORD IN THE SAME SENTENCE, GO TO
C VALID WORD ASSOCIATION SECTION.

374 29 IF (ISENT.NE.0) GO TO 38
C PICK UP PACKAGE NUMBER OF THIS WORD FROM DICTIONARY.

377 30 ITEMP = IABS(DICT(IVALID-1))
C TEST PACKAGE NUMBER TO SEE IF WORD IS MEDICAL OR NON-MEDICAL.

400 IF (ITEMP.LT.200) GO TO 34
C WORD IS NON-MEDICAL, TEST PROGRAM PARAMETER TO SEE IF IT SHOULD BE

SAVED.
403 GO TO (31,36), SW2
404 31 [VALID = PACK1(ITEMP-200)

C SEARCH NON-MEDICAL FILE FOR THE SAME WORD.
405 DO 32 J = 1,NMINDX
406 IF (IVALID.EA.4MWORD(Jt1)) GO TO 33
411 32 CONTINUE

C PUT NEW WORD AND THE COUNT IN THE FILE.
413 NMWORO(NMINDXt1) = !VALID
414 NMWORD(NMINDX,2) = 1
415 NMINDX = NMINDX+1

C SET UP A NEW END OF FILE INDICATOR.
416 NMWORD(NMINDX11) = 0
417 GO TO 36

C SINCE WORD IS ALREADY IN THE FILE, JUST INCREASE ITS COUNT.
420 33 NMWORD(Jt2) = 4MWORD(Jt2)+1
421 GO TO 36

C PROCESS THE VALID MEDICAL WORD, SEARCH THE FILE FOR THE SAME WORO.
422 34 DO 35 J=1,GINDEX
423 IF (IVALID.EQ.GOODWD(J,1)) GO TO 37
426 35 CONTINUE

C PUT NEW WORD INTO LIST OF VALID MEDICAL WORDS.
430 G000WD(GINDEX,1)=IVALID
431 GOODWD(GINDEXt2)=1
432 GINDEX=GINDEX+1

C THE ZERO AT THE END OF THE LIST IS AN END OF LIST SIGNAL
433 GOODWD(GINDEX,1)=0

C SET INDICATOR SHOWING A VALID WORD IN SENTENCE BEING PROCESSED.
434 36 ISENT=IVALID
435 IVALID=0

C GO PICK UP A NEW TEXT WORD
436 GO TO 25

C SINCE WORD IS ALREADY IN LISTt ONLY INCREASE ITS COUNT.



46

571 BAXEND FORTRAN SOURCE LIST EDIT
ISN SOURCE S1ATEME4T

437 37 G000WD(J,2)=GOODWD(J,2)+1
440 GO TO 36

C *********************************************
C ****** VALID WORD ASSOCIATIONS SECTION ******
C *********************************************
C EXAMINE THE PRESENT WORD TO SEE IF IT IS MEDICAL OR NON-MEDICAL.

441 38 TYPE1 = (IABS(DICT(IVALID-1))+99)/I00
442 GO TO (39,39,43), TYPE1

C THE PRESENT WORD IS A MEDICAL TERM.
443 39 TYPE2 = (IABS(DICT(ISENT-1))+99)/100

C TEST THE PREVIOUS VALID WORD IN SENTENCE TO SEE IF IT IS A NONMEDICAL
WORD.

444 IF (TYPE2.NE.3) GO TO 30
447 IVAL1=IVALID
450 IVAL2=ISENT

C CONVERT THE NON-MEDICAL WORD TO ITS BASIC TERM.
451 40 IVAL2 = IABS(DICT(IVAL2-1))-200
452 IVAL2 = PACK1(IVAL2)
453 PACKNO = IABS(DICT(IVAL1-1))

C CONVERT, IF NECESSARY, THE MEDICAL WORD TO ITS BASIC TERM.
454 IF (PACKNO.EQ.50.0R. PACKNO .EQ.49)IVAL1=PACK4(4*PACKNO-2)

C SEARCH THE LIST OF ASSOCIATED VALID WORDS FOR THE SAME TWO WORDS.
457 DO 41 J=1,SINDX3
460 IF (IVAL1.EQ.SUPL3(.1,1).AND.IVAL2.EQ.SUPL3(J,2)) GC TO 42
463 41 CONTINUE

C PUT THE TWO NEW TERMS AT THE END OF THE LIST.
465 SUPL3(SINDX3,1)=IVAL1
466 SUPL3(SINDX3,2)=IVAL2

C PUT IN A COUNT OF THE ASSOCIATION.
467 SUPL3(SINDX3,3)=1
470 SINDX3=SINDX3+1

C SET UP AN -END OF LIST- INDICATOR.
471 SUPL3(SINDX3,1)=0
472 SUPL3(SINDX3,2)=0
473 GO TO 30

C THE TWO TERMS ARE ALREADY IN THE LIST, INCREASE THE COUNT.
474 42 SUPL3(J,3) = SUPL3(J,3)+1
475 GO TO 30

C THE PRESENT VALID W3RD IS NON-MEDICAL, TEST THE PREVIOUS VALID WORD
C IN SENTENCE TO SEE IF IT IS A MEDICAL TERM.

476 43 TYPE2=TYPE1
477 TYPE1=(IA8S(DICT(ISENT-1))+99)/100+1
500 IF (TYPE1.NE.1.AND.TYPE1.NE.2) GO TO 30
503 IVAL1=ISENT
504 IVAL2=IVALID
505 GO TO 40

C ************************************
C ****** END OF ARTICLE SECTION ******
C ************************************

506 44 GINDEX = GINDEX-1
C PRINT THE NUMBER OF WORDS IN THIS ARTICLE.

507 CALL CONCOD(WRDCT)
510 IF(WDCT.LT.1000) GO TO 107
513 RI:TT = OR(RDCT,DOUBL)
514 GO TO 108



47

571 BAXEND FORTRAN SOURCE LIST EDIT
ISN SOURCE STATEMENT

515 107 ROCT = OR(ROCT,TREBL)
516 108 WRITE(6945) WD:T, NOWRD
517 45 FORMAT(1H0915,4469/)
520 WRITE(4) NOLINE
521 WRITE (4) WROCT,NOWRD,(NOLINE(I),I=197)
526 WRITE(4) NOLINE

*********************************
* PRINT VALID WORDS SUB-SECTION *
*********************************

C PROCESS LIST OF VALID WORDS.
527 DO 60 I = 1,GINIDEX
530 KT = 0

C TEST TO SEE IF THIS WORD WAS ALREADY DONE.
531 IF (0000WD(I,1).Et).0) GO TO 60
534 IVALID = GOODWD(I,1)

C INITALIZE PRINT LINE INDEX.
535 LINDEX = 0
536 PACKNO = IABS(DICT(IVALID-1))

C LOCATE THE PACKAGE FOR THIS WORD.
537 PINDEX = PACKN3*4-3

C GET THE REGISTRY NUMBER OUT OF THE PACKAGE.
540 REGNO = PACK4(PINDEX)

-*-*-*-*-*-*-*-*-*
541 NP = NP4.1
542 IF (REGNO.EQ.0) PAKNOS(NP) = PACKNO

C TEST FOR A NULL REGISTRY NUMBER OR ONE WITH AN MX PREFIX.
545 IF (REGNO) 47951,46
546 46 ITEMP = REGNO
547 GO TO 48
550 47 ITEMP = -(REGN)+8000000)

C PLACE MX-8 PREFIX IN LINE.
551 LINE(1) = MA
552 LINE(2) = X
553 LINE(3) = DASH
554 LINE(4) = EIGHT
555 LINDEX = 4

C CONVERT THE REGISTRY NUMBER (IN BINARY) TO CODED (A6 FORMAT).
556 48 KWORD(1) = ITEM!)
557 KT = 1
560 CALL CCNCOD(KWORD(1))

C CONVERT THE A6 FORMAT TO A/.
561 NWRDS = 1
562 CALL DECOMP

C LOOK FOR A LEADING ZERO IN THE REGISTRY NUMBER.
563 IF (ITEMP.LT.100000.AND.REGNO.GT.0) GO TO 49
56$ LINDEX = LINDEX+1

C PUT THE FIRST DIGIT IN THE PRINT LINE.
567 LINE(LINDEX) = WORD(1)
570 49 DO 50 J = 2,6

C PLACE LAST 5 DIGITS OF REGISTRY NUMBER IN PRINT LINE.
571 LINDEX = LINDEX+1
572 50 LINE(LINDEX) = WORD(J)
574 LINDEX = LINDEX+1
575 LINE(LINDEX) = BLANK

--*-*--*-*-*-*-



48

571 BAXEND FORTRAN SOURCE LIST EDIT

ISN SOURCE STATEMENT

576 NP = NP-1
577 NR = NR+1
600 REGNOS(NR) = REGNO

C INITIALIZE COUNT OF REFERENCES TO THIS PACKAGE.

601 51 PCOUNT = 0
602 KT = KT + 1

C LOOK THROuGH THE REST OF THE LIST FOR A REFERENCE TO THE SAME PACKAGE,

C IF FOUND, /NCREASE COUNT.
603 DO 52 J = I,GINDEX
604 IF IGOCDWD(J,1).EQ.01 GO TC 52

607 ITEMP = G000WOW,11
610 IF IIABS(DICTIITEMP-11).EC).PACKNO) PCOUNT = PCOUNT+GOODwD(J,2)

613 52 CONT,INUE
C RECORD THE NUMBER OF REFERENCES IN PRINT LINE.

615 LINDEX = LINDEX+1
616 LINE(LINDEX) = LP
617 LINDEX = LINDEX+1

C REDUCE THE PACKAGE REFERENCE COUNY TO AN INDICATOR.

620 IN = 2
621 IF (PCCUNT.1000.LE.WDCT) IN = 1
624 IF (PCOUNT*1000.GE.3eWDCT) IN = 3
627 GO TO I91,921,KT
630 91 PKNOWT(NP) = IN
631 GO TO 93
632 92 REGNWTINR1 = IN
633 93 KT = 0
634 53 LINE(LINDEx) = INDIC(IN)
635 LINDEX = LINDEX+1
636 LINE(L1NDEx) = RP
637 LINDEX = LINDEx+1
640 LINE(LINDEX) = BLANK

C NOW PROCESS EACH TERM CONTAINED IN THE PACKAGE.

641 DO 54 J = 1,3
642 JJ = PINDEX+J
643 PTERM = PACK4(JJ)

C CHECK FOR A NULL TERM IN THE PACKAGE.
644 IF IPTERM.E41.01 GO TO 54

C PLACE THE PACKAGE TERM IN THE PRINT LINE.
647 CALL WRDPUTIPTERM,21
650 LINDEX = LINDEX+1
651 LINE(LINDEX) = COMMA
652 LINDEX = LINDEX+1
653 LINE(LINDEx) = BLANK

C EXAMINE THE REST OF THE VALID WORD LIST FOR THIS SAME PACKAGE TERM.

654 DO 54 K = I,GINDEX
655 IF (GOCDWD(K,1).NE.PTERM) GO TO 54

C STRIKE THIS WORD FROm THE LIST SINCE IT HAS BEEN PRINTED ALREADY.

660 G000WDIK,11 = 0
661 54 CONTINUE

C NOW EXAMINE THE LIST OF VALID WORDS FOR A WORD THAT BELONGS TO THE

C PACKAGE BEING PROCESSED BUT IS NOT CONTAINED IN THE PACKAGE.

664 55 DO 57 J= I,GINDEX
665 IF IG000WD(J,1).EQ.01 GO TO 57
670 ITEST = G000WDIJ,11
671 IF IIABSIDICTIITEST-111.NE.PACKNO) GO TO 57



571 BAXEND FORTRAN SOURCE LIST EDIT
ISN SOURCE STATEMENT

C WE HAVE FOUND A WORD BELONGING TO THE PACKAGE BEING PROCESSED.
674 GOODWD(J,1) = 0

C TEST THE PACKAGE NUMBER, IF NEGATIVE DO NOT PRINT THE WORD.
675 IF (DICT(ITEST-1)) 57,57,56

C PUT THE WORD IN THE PRINT LINE.
676 56 CALL WRDPUT(ITEST,2)
677 LINDEX = LINDEX+1
700 LINE(LINDEX) = COMMA
701 LINDEX = LINDEX+1
702 LINE(LINDEX) = BLANK

-*-*-*-*-*-*-*-*-*
703 NTN = NTN+1
704 TRNAMS(NTN) = ITEST
705 57 CONTINUE

C CHECK FOR AN EMPTY PRINT LINE.
707 IF (LINDEX.EQ.0) GO TO 59

C DO NOT PRINT LAST COMMA AND BLANK.
712 LINDEX =LINDEX-2

C PRINT THE LAST LINE FOR THIS PACKAGE.
713 WRITE (6,58) (LINE(J),J=1,LINDEX)
720 58 FORMAT (1H ,13241)
721 CALL TAPREC

C SKIP A LINE BETWEEN PACKAGES.
722 59 WRITE (6,58)
723 WRITE (4) NOLINE
724 60 CONTINUE

***************************************
* PRINT WORD ASSOCIATIONS SUB-SECTION *

C SKIP TWO LINES FOR NEXT OUTPUT SECTION.
726 WRITE (6,61)
727 61 FORMAT (1H0)
730 WRITE (4) NOLINE
731 WRITE (4) NOLINE
732 SINDX3=SINDX3-1

C SAVE THIS FILE -AS IS-.
733 NC = SINDX3
734 DO 81 J = 1,2
735 DO 81 I = 1,NC
736 81 COMPAR(I,J) = SUPL3(I,J)

C PROCESS LIST OF WORD ASSOCIATIONS.
741 DO 64 I = 1,SINDX3

C SKIP ANY WORD ALREADY DONE.
742 IF (SUPL3(I,1).EQ.0) GO TO 64
745 M1 = SUPL3(I,1)

C INITIALIZE FOR A NEW PRINT LINE.
746 LINDEX = 0

C PUT THE MEDICAL TERM IN THE PRI ( LINE FOLLOWED BY A SLASH.
747 CALL WRDPUT(M1,0)
750 LINDEX = LENGTH+1
751 LINE(LINDEX) = SLASH

C SEARCH THE RECORD FOR THE SAME MEDICAL TERM.
752 DO 63 .1 = I,SINDX3
753 IF (SUPL3(J,1).NE.M1) GO TO 63

49



50

571 BAXEND FORTRAN SOURCE LIST EDIT
ISN SOURCE STATEMENT

C REMOVE THE MEDICAL rERM FROM THE FILE.
756 SUPL3(J,1) = 0

C REMOVE THE NON--MEDICAL TERM.
757 M2 = SLPL3(J,2)

C REMOVE THE COUNT FOR THIS ASSOCIATION.
760 NUMOCC = SUPL3(Jt3)
761 LINDEX = LINDEX +1
762 LINE(LINDEX) = BLANK

C PUT THE NO*-MEDICAL TERM IN THE PRINT LINE.
763 CALL WRDPUT(M2t5)

C INSERT A FREQUENCY COUNT INDICATOR.
764 LINDEX = LINDEX+1
765 LINE(LINDEX) = BLANK
766 LINDEX = LINDEX+1
767 LINE(LINDEX) = LP
770 LINDEX = LINDEX+1
771 IN = 2
772 IF (NUMOCC*1003.LE. WOCT) IN = 1
775 IF (NUPOCC*1000.GE.3* WDCT) IN = 3

1000 COMPWT(J) = IN
1001 62 LINE(LINDEX) = INDIC(IN)
1002 LINDEX = LINDEX+1
1003 LINE(LINDEX) = RP
1004 LINDEX = LINDEX+1
1005 LINE(L1NDEX) = COMMA
10U6 63 CONTINUE

C DO NOT PRINT LAST COMMA IN THE LINE.
1010 LINDEX = LINDEX-1

C PRINT THE INCOMPLETED LINE.
1011 WRITE (6,58) (LINE(J),J=1,LINDEX)
1016 CALL TAPREC
1017 64 CONTINUE

1021 WRITE (3) ARTNUM, NA,AUTHOR,NTN,TRNAMS,NR,REGNOS, REGNWT,
1PAKNOS,PKNOWT,NC,COMPAR,COMPWT
***************************************
* PRINT NON-MEDICAL WORDS SUBSECTION *
***************************************

C SKIP TWO LINES BEFORE DOING NEXT PRINT SECTION.
1022 WRITE (6,61)

C TEST PROGRAM PARAMETER TO SEE IF NONMEDICAL WORDS ARE TO BE LISTED.
1023 GO TO (65,68) t SW2
1024 65 NMINDX = NMINDX-.1

C CHECK FOR AN EMPTY FILE.
1025 IF (NMINDX.EQ.0) GO TO 68

C INITIALIZE PRINT LINE INDEX.
1030 LINDEX = 0

C PROCESS THE NON-MEDICAL FILE.
1031 DO 67 I = 1,NMINDX

C TAKE THE WORD AND FREQUENCY COUNT FROM THE FILE.
1032 M = NMVIORD(1,1)
1033 NUMOCC = NMWORD(It2)

C PUT NON-.-MEDICAL TERM IN PRINT LINE.
1034 CALL WRDPUT(Mt6)

C PUT THE NUMBER OF OCCURANCE OF TERMS IN LINE,



51

571 BAXEND FORTRAN SOURCE LIST EDIT
ISN SOURCE STATEMENT

1035 LINDEX = LINDEX+1
1036 LINE(LINDEX) = LP
1037 NDIGIT = 1

1040 IF (NUMOCC.GT.9) NDIGIT = 2
C CONVERT COUNT FROM BINARY TO COED (A6 FORMAT).

1043 CALL CCNCONNUMOCC)
C CONVERT FROM 46 TO Al FORMAT.

1044 KWORD(1) = NUMOCC
1045 NWRDS =1
1046 CALL DECOMP
1047 DO 66 J =1,NDIGIT
1050 JJ = 6+J-NDIGIT
1051 LINDEX = LINDEX+1
1052 66 LINE(LINDEX) = WORD(JJ)
1054 LINDEX = LINDEX+1
1055 LINE(LINDEX) = RP
1056 LINDEX = LINDEX+1
1057 LINE(LINDEX) = COMMA
1060 LINDEX = LINDEX+1
1061 LINE(LINDEX) = BLANK
1062 67 CONTINUE
1064 IF (LINDEX.EQ.0) GO TO 68

C DO NOT PRINT THE LAST COMMA AND BLANK.
1067 LINDEX = LINDEX-2

C PRINT THE LAST INCOMPLETE LINE.
1070 WRITE (6,58) (LINE(I),I=1,LINDEX)

*********************************
* PRINT COMPARISONS SUB....SECTION *
*********************************

C TEST PROGRAM PARAMETER TO SEE IF COMPARISONS ARE TO BE LISTED.
1075 68 GO TO (69,69174,78) 9 SW1
1076 69 SVINDX = 1

C PRINT HEADING.
1077 WRITE (6,70)
1100 70 FORMAT (1H0,15X121HC 0 MPARIS0 N5/1H 15X96HDEGREE,5X130HTEX

1T WORD - DICTIONARY WORD)
C CHECK FOR AN EMPTY FILE.

1101 IF (SUPL(1).NE.0) GO TO 72
1104 WRITE (6,71)
1105 71 FORMAT (1H 115X,7HN 0 N E)
1106 GO TO 74

C LOOK FOR THE -END OF FILE- INDICATOR.
1107 72 IF (SUPL(SVINDX).E0.0) GO TO 74
1112 M=SUPL(SVINDX)
1113 MAX=SUPL(SVINDX+1)
1114 NWRDS=SUPL(SVINIDX+2)
1115 N=(DICT(M-2))-3
1116 NWINDX=SVINDX+4WRDS+2
1117 JSV=SVINDX+3

C PRINT THE TEXT WORD AND DICTIONARY WORD SHOWING DEGREE OF COMPARISON.
1120 WRITE (6,73) MAXI(SUPL(J),J=JSVINWINDX),DASH,(DICT(K),K=M9N)
1131 73 FORMAT (1H 17X112,3X,29A6)
1132 SVINDX=NWINDX+1
1133 GO TO 72

******************************w



52

571 BAXEND FORTRAN SOURCE LIST EDIT
ISN SOURCE STATEMENT

C * PRINT LARGE WADS SUB-SECTION *
*********************************

C TEST PROGRAM PARAMETER TO SEE IF LARGE WORDS ARE TO BE LISTED.

1134 74 IF (SW1.EQ.2) :".,0 TO 78
C PRINT HEADING.

1137 WRITE (6,75)
1140 75 FORMAT (1H0115X1121HLARGE WORD S)
1141 SINDX2=1

C CHECK FOR AN EMPTY FILE.
1142 IF (SUPL2(1).NE.0) GO TO 76
1145 WRITE (6,71)
1146 GO TO 78

C LOOK FOR THE -END OF FILE- INDICATOR.
1147 76 IF (SUPL2(SINDX2).EQ.0) GO TO 78
1152 NWRDS=SUPL2(SI4DX2)
1153 NWINDX=SINDX2+4WRDS
1154 JSIN=SINDX2+1

C PRINT THE LARGE WORD.
1155 WRITE (6,77) (SUPL2(J)tJ=JSINIFNWINDX)
1162 77 FORMAT (1H ,17X,14A6)
1163 SINDX2=NWINDX+1
1164 GO TO 76

C IDENTIFY THE END OF THE ARTICLE
1165 78 WRITE (6,79) EOA
1166 79 FORMAT (1H0,4A6)

1167 WRITE (4) NOLINE
1170 WRITE (4) E0A,(NOLINEW,I=1,8)
1175 ARTNUM = ARTNUM+1

C GO CHECK FCR A NEW ARTICLE
1176 GO TO 2
1177 80 FORMAT (14A6)
1200 END



53

.571 BAXEND FORTRAN SOURCE LIST
ISN SOURCE STATEMENT

0 SIBFTC HEAD
1 SUBROUTINE HEAD

THIS SUBROUTINE READS IN THE BIBLOGRAPHIC ENTRY CARDS OF EACH
ARTICLE. IT ONTINUES READING CARDS UNTIL A SIGNAL CARD IS
ENCOUNTERED. THE INFORMATION ON THESE CARDS ARE PRINTED WITH
A MARGIN WIDTH THAT IS SPECIFIED IN THE LABELLED COMMON AREA -H-

2 INTEGER V,20,11,W
3 INTEGER RECORD(72),PRINT(132),EX,BLANK
4 INTEGER WORD,AUTHOR,COMMA,ARTNUM
5 COMMON /H/ NUM,ARTNUM,NAUTH,AUTHOR(6,5)
6 COMMON /LIN/ PRINT,LINDEX,LM,IX(3000)
7 COMMON KWORD(14),NWROS,WORD(72),LENGTH,IEND

10 DATA EX,BLANK/IHX,IH /
11 DATA COMMA/IH,/
12 NAUTH = 1
13 LENGTH = 30
14 REAO(15,4) (RECORD(Z),Z=1,72)
21 IF(RECCRD(1).EQ.EX.AND.RECORD(2).EQ.EX.AND.RECORD(3).EQ.EX)

IGO TO 30
24 IEND=1
25 GO TO 31
26 30 IEND=2
27 RETURN
30 31 J = 1
31 WRITE(6,32) ARTNUM
32 32 FORMAT(1H1,14HARTICLE NUMBER,I5)
33 WRITE (4) ARTNUM
34 20 00 21 I = 1,30
35 21 WORO(I) = BLANK
37 I = 1
40 22 IF (RECORD(J).EC).BLANK) GO TO 26
43 23 IF (RECORD(J).EQ.COMMA) GO TO 24
46 WORD (I) = RECORD(J)
47 I = I + 1

50 J = J + 1

51 GO TO 22
52 24 CALL CCMPOS
53 DO 25 I = 1,5
54 25 AUTHOR(NAUTH,I) = KWORD(I)
56 NAUTH = NAUTH + 1

57 J = J + 2
60 GO TO 20
61 26 IF (RECORD(J+1).NE.BLANK) GO TO 23
64 CALL CCMPOS
65 DO 27 I = 1,5
66 27 AUTHOR(NAUTH,I) = KWORD(I)
70 J = 1

71 W = 1
72 M = 0
73 GO TO 28

SET UP OUTPUT PARAMETER J.
74 2 J = 1
75 W = 1

SET UP INPUT .PARAMETER M.
76 3 M = 0



54

571 BAXEND FORTRAN SOURCE LIST HEAD
ISN SOURCE STATEMENT

77 READ(15,4) (RECORD(Z), Z = 1,72)
104 4 FORMAT(72A1)
105 28 IFI.NOT.URECORD(1).EQ.BLANK).AND.(RECORD(2).EQ.BLANK)11 GO TO 6

110 DO 5 Y = W,NUM
111 PRINT(Y) = BLANK
112 5 CONTINUE
114 GO TO 12

CHECK FOR THE SIGNAL CARD.
115 6 IF (RECORD(1) .EQ. EX) RETURN
120 7 DO 9 I = J,NUM
121 M = M+1
122 PRINT(I) = RECORD(M)
123 IF (M .LT. 72) GO TO 8
126 IF (I.EQ.NUM) GO TO 12
131 GO TO 11
132 8 IF ((RECORD(M).EQ.BLANK).AND.(RECORD(M+11.EQ.8LANK).AND.(RECORD(m+

12).EQ.8LANK)1 GO TO 12
135 9 CONTINUE

IF WORD IS INCOMPLETE AT END OF OUTPUT LINE, MOVE ENTIRE WORD
TO NEXT LINE.

137 L = NUP
140 10 IF (PRINT(L) .EQ. BLANK) GO TO 13
143 L = 1-1
144 GO TO 10
145 11 J = 1+1
146 GO TO 3
147 12 WRITE (6,14) (PRINT(K), K = 1,1)
154 WRITE (7,19) (PRINT(K),K=1,I)
161 LINDEX = I

162 CALL TAPREC
163 GO TO 2
164 13 WRITE (6,14) (PRINT(K), K = 1,1)
171 14 FORMAT (1H ,130A1)
112 WRITE (7,19) (PRINT(K),K=1,L)
177 LINDEX = L
200 CALL TAPREC
201 IF (1.1T.NUM) GO TO 15
204 J = 1
205 W = 1
206 GO TO 17
207 15 V = 0
210 L = 1+1
211 DO 16 N = 1,NUM
212 V = V+1
213 PRINT(V) = PRINT(N)
214 16 CONTINUE
216 J = V+1
217 W = J
220 17 IF (M .EQ. 72) GO TO 3
223 GO TO 7
224 19 FORMAT (13241)
225 END



5. Revised Version of Dictionary Processing Program



56

31571 BAXEND FORTRAN SOURCE LIST
ISN SOURCE STATEMENT

0 $1BFTC DICTDO
DICTIONARY PROCESSING AND CREATION OF TRANSFER MATRIX

1 COMMON INDICT(12),DICT(3000),TRADD(4096)
2 INTEGER DICT,TRADD,END,BLANK
3 DATA END,BLANK/6HENDICT,6H
4 WRITE (6,71)
5 71 FORMAT (33H1 ADDR PACK NO DICTIONARY TERM/)

LINK IS A VALUE USED TO CHAIN DICTIONARY ENTRIES
NLINK IS USED TO GENERATE NEXT LINK VALUE
TWO WORDS PRECEDE EACH DICTIONARY TERM - LINKAGE AND PACKAGE
NUMBER - HENCE FIRST TERM STARTS IN LOCATION 3

6 LINK = 3
7 NLINK=3

INDX REFERS TO INDEX OF TRANSFER MATRIX
10 INnx=o
11 LB = 1

READ IN ONE LOGICAL RECORD - ONE DICTIONARY ENTRY
12 1 READ(5,2) INDICT,NPACK
15 2 FORMAT (1246,4X,I4)
16 LBINK = LINK
17 LINK = NLINK

CHECK FOR END OF DICTIONARY CARDS
20 IF (INDICT(1).EQ.END) GO TO 10

NWRD REFERS TO NUMBER OF MACHINE WORDS USED BY DICTIONARY ENTRY

23 Do 3 NWRD =1,12
24 IF (INDICT(NWRD).EQ.BLANK) GO TO 5
27 DICT(NLINK)=INDICT(NWRO)
30 3 NLINK=NLINK+1

IF PROGRAM COMES TO THIS POINT AN ERROR EXISTS
32 WRITE(6,4) INDICT
33 4 FORMAT(1H ,21HERROR 1, LARGE ENTRY., 14A6)
34 CALL EXIT
35 5 NLINK=NLINK+2
36 L = NWRD -

STORE LENGTH OF TERM IN PACKAE NUMBER WORD
37 IF(NPACK) 32,31,31
40 31 NPACK = NPACK + L*2**15
41 GO TO 30
42 32 NPACK = -(IABS(NPACK) + L*2**15)
43 30 DICT(LINK-1)=NPACK
44 DICT(LINK-2)=NLINK
45 WRITE (6,70) NPACK,NLINK,INDICT
46 70 FORMAT (1H ,2110,5X,12A6)
47 33 IF (INDICT(1).LT.0) GO TO 6

MXINDX IS THE MATRIX INDEX GENERATED BY A DICTIONARY ENTRY
52 MXINDX=INDICT(1)/2**24
53 GO TO 7
54 6 MXINDX=2**11-INDICT(1)/2**24
55 7 IF (MXINDX-INDX) 1.9,8
56 8 INDX=INDX+1
57 TRADD(INDX)=0
60 GO TO 7
61 9 INDX=INDX+1
62 TRADD(INDX)=LINK
63 GO TO (13,15),LB



V2=47.

57

31571 BAXEND FORTRAN SOURCE LIST DICTDO
ISN SOURCE STATEMENT

64 13 LB = 2
65 GO TO 1
66 15 DICT(LBINK-2) = 0
67 LB=2
70 GO TO 1

SET CHAIN WORD OF LAST ENTRY TO 0 AND LAST TERM TO END

71 10 DICT(LINK-1)=0
72 DICT(LINK)=INDICT(1)

AT THIS POINT THE DICTIONARY IS (LINK) WORDS LONG
73 WRITE(6,11) TRADD
74 11 FORMAT(1H0,10I6)
75 WRITE(6,72) LINK,(DICT(I),I = 1,LINK)
102 72 FORMAT(1HO,I8//(1H ,2046))
103 WRITE (2) TRADD
104 WRITE (2) LINK,(DICT(I),I=1,LINK)

BEGIN PROCESSING PACKAGE CARDS
111 INTEGER PACKNO,REGNO,PACK1(100),PACK5(350),PINDEX
112 DIMENSION INPUT(12)
113 40 READ (5,41) PACKNO,REGNO
116 41 FORMAT (16,18)
117 IF (PACKNO.EQ.999999) GO TO 67
122 I=1+PACKNO/100
123 GO TO (42,42,56), I

************************************
C **** 4-WORD PACKAGE PROCESSING ****
C ************************************

COMPUTE THE INDEX FOR THE 4-WORD PACKAGE
124 42 PINDEX=PACKNO*4-3
125 PACK5(PINDEX)=REGNO

C READ AND PROCESS 3 DATA CARDS
126 DO 52 1=1,3
127 PINDEX=PINDEX+1
130 READ (5,43) INPUT
132 43 FORMAT (12A6)
133 IF (INPUT(1).EQ.BLANK) GO TO 52
136 DO 44 NWRDS =1,12
137 IF (INPUT(NWRDS).EQ.BLANK) GO TO 45
142 44 CONTINUE
144 45 IF (INPUT(1).LT.0) GO TO 46

INDEX REFERS TO INDEX OF TRANSFER ADDRESS MATRIX
147 INDEX=1+INPUT(1)/2**24
150 GO TO 47
151 46 INDEX=1+2**11-INPUT(1)/2**24

USE M AS INDEX OF PROCESSED DICTIONARY
152 47 M=TRADD(INDEX)
153 NWRDS=NWRDS-1

EXTRACT LENGTH OF DICTIONARY TERM FROM PACKAGE WORD - DICT(M"1)

154 K = 1
155 81 LENGTH = IABS(DICT(M-1))/2**15
156 IF(LENGTH.NE.NWRDS) GO TO (80,82),K
161 MTEMP = M
162 DO 48 L = 1,NWRDS
163 IF(INPUT(L).NE.DICT(MTEMP)) GO TO 80
166 48 MTEMP = MTEMP + I

C INSERT DICTIONARY INDEX IN PACKAGE



58

31571 8AXEND FORTRAN SOURCE LIST DICTDO
ISN SOURCE STATEMENT

170 PACK5(PINDEX) = M
171 GO TO 52

PACKAGE TERM DOES NOT MATCH DICTIONARY TERM GO TO NEXT TERM IN

DICTIONARY
172 80 M = DICT(M-2)
173 IF(M.EQ.0) K= 2
176 GO TO 81
177 82 WRITE(6,50) PACKNO, INPUT
200 50 FORMAT(12HORE PACK NO., 14, 13H CAN NOT FIND/1H 95X,12A6, 13HIN DI

1CTIONARY)
201 52 CONTINUE

C READ IN NEXT PACKAGE DATA CARD
203 GO TO 40

*********************************
C ** I WORD PACKAGE PROCESSING ***
C *********************************

204
205
207
210
213
215
216
221
222
223
224
225
226
227
232
233
234
237
241
242
243
244
247
250
251
252
253
254
255
262
263
264
265
272
273
274
275

56 PINDEX=PACKNO-200
READ (5,43) INPUT
DO 58 NWRDS=1,12
IF (INPUT(NWRDS).EQ.BLANK) GO TO 59

58 CONTINUE
59 NWRDS=NWRDS-1

IF (INPUT(1).LT.0) GO TO 60
INDEX=1+INPUT(1)/2**24
GO TO 61

60 INDEX=1+2**11-INPUT(1)/2**24
61 M=TRADD(INDEX)

K = 1
63 LENGTH = IABS(DICT(M-1))/2**15

IF(LENGTH.NE.NWRDS) GO TO (77,79),K
MTEMP = M
DO 62 L = 1, NWRDS
IF(INPUT(L).NE.DICT(MTEMP)1 GO TO 77

62 MTEMP = MTEMP + 1

PACK1(PINDEX) = M
GO TO 40

77 M = DICT(M-2)
IF(M.EQ.0) K = 2
GO TO 63

79 WRITE(6,50) PACKNO, INPUT
GO TO 40

67 WRITE(6,74)
74 FORMAT (22H1CODED TYPE 1 PACKAGES/)

WRITE (2) PACK5,PACK1
WRITE (6,68) (PACK5(I),I=1,236)

68 FORMAT (1H0,19,315)
WRITE (6,73)

73 FORMAT (22H1CODED TYPE 2 PACKAGES/)
WRITE (6,69) (11PACKI(I),I=1,15)

69 FORMAT (1HO,I9,15)
CALL UPDAT
CALL EXIT
END



31571 BAXEND FORTRAN SOURCE LIST
ISN SOURCE STATEMENT

0 $IBFTC UPDAT
1 SUBROUTINE UPDAT

ROUTINE FOR UPDATING DICTIONARY TAPE
2 INTEGER END,BLANK, DIGT, TRADD
3 COMMON NEWDCT(12), DICT(3000), TRADD(4096)
4 DATA END,BLANK/6HENDICT,6H

FIND END OF DICTIONARY OR LOCATION WHERE NEW DICTIONARY TERM MAY
BE PLACED
DO 1 I = 1,3000
IF(DICT(I).EQ.ENO) GO TO 2

1 CONTINUE
2 MT = I

M = MT
3 READ(5,4) NEWDCT, NPACK
4 FORMAT(12A6, 4X, 14)

ISW = 1

M = MT
IF(NEWOCT(1) .EQ.END) GO TO 16

5 IF(NEWOCT(1).LT. 0) GO TO 6
MX1NDX = NEWDCT(1)/2**24 + 1
GO TO 7

6 MXINDX = 2**11 NEWDCT(1)/2**24 + 1
7 IF(TRADD(MXINDX).E0. 0) GO TO 17
N = TRADD(MXINDX)
FIND END OF STRING OF THIS GROUP OF TERMS

d IF(DICT(N-2).EQ.0) GO TU 9
N = DICT(N-2)
GO TO 8

9 DO 10 NWRD = 1,12
IF(NEWOCT(NWR0).EQ.BLANK) GO TO 12
DICT(MT) = NEWOCT(NWRD)

10 MT = MT + 1
WRITE(6,11) NEWDCT

5
6

11
13
14
15
20
21
22
23
26
31
32
33
34
37

40
43
44
45
46
51
52
54
55 11 FORMAT(1H ,21HERROR 1, LARGE ENTRY., 14A6)
56
57
60

63
64
65
66
67
70

71
72
73

74
75

102
103
104
105
106

59

12 LENGTH = NWRD 1

MT = MT + 2
IF(ISW.EQ.1) DICT(N-2) = M
INSERTION OF LENGTH IN WORD CONTAINING PACKAGE NUMBER
IF(NPACK) 13,14,14

14 NPACK = NPACK + LENGTH*2**15
GO TO 15

13 NPACK = (IABS(NPACK) + LENGTH*2**15)
15 DICT(M 1) = NPACK

GO TO 3
PLACE ADDRESS OF NEW TERM IN MATRIX

17 TRADD(MXINDX) = M
ISW = 2
GO TO 9
PUT END SENTINEL IN LOCATION FOR NEW WORD IN NEXT UPDATE RUN

16 DICT(M) = END
WRITE (6,18) M,(DICT(I),I=1,M)

18 FORMAT(1H0,18//(1H ,20A6)1
WRITE(6,19) TRADD

19 FORMAT(1H0, 1016)
RETURN
END.



6. Search Program Listing



_

62

SN

,

BAXEND FORTRAN SOURCE LIST 12/31

SOURCE STATEMENT

0 $IBETC SEARCH
1 DIMENSION KOMPAR(100g2)
2 INTEGER BARBIT(15),HYDANT(14),OXAZOL(7),SUOCIN(4),TERM(4)
3 DATA 8ARBI1/15,50066150113073071573301574321644371769481115388,

1125337,-.-8028679,8028691,80287049-8028715,....8028726/
4 DATA HYDANT/14,50124,57410,86351,125611,630933,830897,3784927,

15696060,6509348,-.8028679,....8028691,--802870498028726/
5 DATA OXAZOL/7,115673,127480,520774,526352,695534,4171113/
6 DATA SUCCIN/4,77418,77678,86340/
7 nATA TERM/6H8ARBITg6HHYDANTt6HOXAZOLt6HSUCCIN/

10 DIMENSION INPUT(12),NSAT(20)
11 DIMENSION IDENT(20,24,2),NGEN(20)
12 DIMENSION LOGX(20,72)
13 DIMENSION LOGEXP(72)
14 DIMENSION MASK(6),AMSK(6),DIG(6),NDG(6)
15 INTEGER RNWT(30)t QRN(30)
16 INTEGER CHARST(26),BLANK, RPg CCt CC1t CC2t CC3g

1EXVONONAgROgPERIODI OTV
17 INTEGER TTt QAUTHR(20,5), TRADD(4096)t DICT(3000)t SSW1t SSWZ,

1 PACK4(350)g PACK1(100), PACKNOt PINDEX, QTRNMS(30), REGNOt
2 OREGNS(30), OPAKNS(30),QCOMP(100,2), SATIS(20,35),AUTHOR(60),
3 GOMPAR(100,2), TRNAMS(30)t PAKNOS(30)t REGNOS(30)t ANt
4 COMPWT(100),PKNOWT(30),REGNWT(30)4WTtROWT(30),POWT(30),COWT(100)

20 EQUIVALENCE (DIG(1),NOG(1)),(MASK(1),AMSK(1)),(PUTINtINPUT(2))
21 DATA MASK/0770000000000,07700000000077000000,0770000,07700,077/
22 DATA IBLANK/6H
23 DATA CHARST/IHAg1H8t1HCIIHDt1HEt1HF,1HGtIHNg1HIt1H.111HKg1HL111-1Mt

1IHNg1H0g1HP,IHQt1HRt1NSt1HTt1HUt1HVg1HWI1HX,1HYg1HZ/tMINUS/1H/,
2LP/1H(/gRP/1H)/tDNA/1H*/tR0/1H+/OLANK/1H / gPERIOD/1H./

24 COMMON IS(500),LST
INPUT

25 REWIND 3
26 READ (3) TRADD
30 READ (3) Jt(DICT(I),I=1,J)
36 READ (3) PACK4tPACK1
41 137 READ (3) NUMARTtAN
44 IF(ANsNE.999) GO TO 137
47 NUMART=NUMART...-1
50 REWIND 3
51 READ (3) TRADD
53 READ (3) Jt(DICT(I)91=1,J)
61 READ (3) PACK4gPACK1
64 WRITE(6,138)
65 138 FORMAT(1H1,20X921HLIST OF INPUT QUERIESt//1H t8HQUERY 1)

INITIALIZE QUERY NUMBER, COUNTS.
66 IWRSW = 1

67 NQ = 1
70 NAO = 0
71 NTNQ = 0
72 NRQ = 0
73 NPQ = 0
74 NCO = 0

75 NRR = 0
76 SSW2 = 1

BEGIN. READ A QUERY TERM CARD.



BAXEND FORTRAN SOURCE LIST SEARCH
ISN SOURCE STATEMENT

C DESCRIPTION OF QUERY DATA CARDS
COLUMN 1 A LETTER REPRESENTING THE QUERY TERM. THIS MUST NOT BE Y
C OR Z WHICH ARE RESERVED FOR THE LOGIC VALUES TRUE OR FALSE.
C THE SAME LETTER MAY NOT BE USED TWICE IN ONE QUERY.

COLUMN 3 A NUMERIC DIGIT SIGNIFYING THE TYPE OF QUERY TERM.
C THE FOLLOWING CODES ARE USED.
COLUMNS 4 THROUGH 76 CONTAIN THE QUERY TERM
COLUMN 80 A NUMERIC DIGIT 1, 2 OR 3 TO INDICATE FREQUENCY INDEX OR WEIGHT.

77 1 READ (5,2) LETTER,TT,INPUTIQWT
104 2 FORMAT (A1,12,12A6,4X,A1)
105 IF(IWRSW.EQ.2.AND.TT.NE.7) WRITE(6,700) NQ
110 700 FORMAT(1H p6HQUERY pI2)
111 IWRSW = 1
112 WRITE(6,139) LETTER,TTIINPUT,OWT
113 139 FORMAT (1H p1OX,A1,12,12A6,A1)
114 (MT = QWT/2**30
115 IF (QWT.LT.1) OWT=1

C THE FOLLOWING FORMAT IS USED ON THE QUERY CARDS TO SIGNIFY TERM TYPE
1 = AUTHOR
2 = MEDICAL TERM (CAN BE TRADE NAME OR GENERIC NAME).
3 = REGISTRY NUMBER.
4 = ASSOCIATIONS (MUST BE TWO CARDS TOGETHER)
5 = GENERIC TERM
6 = END OF QUERY
7 = END OF ALL QUERIES

120 DO 46 LET = 1,26
121 46 IF (LETTER.EQ.CHARST(LET)) GO TO 47
125 IF (LETTER.EQ.BLANK) GO TO 47
130 GO TO 91
131 47 IERR = 1
132 SSW1 = 1

TEST FOR TYPE OF TERM
133 GO TO (315,281221247,25,26)p TT

THIS QUERY TERM IS AN AUTHORS NAME.
134 3 NAO = NAQ+1
135 IDENT(NO,LET,1) = 1
136 IDENT(NO,LET,2) = NAQ
137 DO 4 I = 1,5
140 4 QAUTHR(NAQ,I) = INPUT(I)

GO TO NEXT QUERY TERM.
142 GO TO 1

THIS QUERY TERM IS A MEDICAL TERM.
143 5 DO 6 NWRDS = 1,11
144 6 IF (INPUT(NWRDS+1).EQ.IBLANK) GO TO 7
150 NWRDS = 12

SEARCH THE DICTIONARY FOR THE TERM.
151 7 IF (INPUT(1).LT.0) GO TO 8
154 INDEX = INPUT(1)/2**24+1
155 GO TO 9
156 8 INDEX = 1+2**11-INPUT(1)/2**24
157 9 M = TRADD(INDEX)
160 10 IF (M.EQ.0) GO TO 92
163 IF (INPUT(1)) 11,89,12
164 11 IF (INPUT(1).GT.DICT(M)) GO TO 92



64

BAXEND
ISN SOURCE STATEMENT

FORTRAN SOURCE LIST SEARCH 12/31

167 GO TO 13
170 12 IF (DICT(M).GT.INPUT(1)) GO TO 92
173 13 MTEMP = M

NOW CHECK DICTIONARY WORD FOR A FULL COMPARISON.
174 DO 14 I = 1,NWRDS
175 IF (DICTOTEMPI.NE.INPUT(I)) GO TO 15
200 14 MTEMP = MTEMP+1

NOW TEST QUERY TERM AND DICTIONARY TERM FOR EQUAL LENGTHS.
202 IF (NWRDS.EQ.(DICT(M-2)-(M+2))) GO TO 16

WE DO NOT HAVE A COMPLETE COMPARISON. GET NEXT DICTIONARY INDEX.
205 15 M = DICT(M-2)
206 GO TO 10

WE HAVE NOW LOCATED THE QUERY TERM IN THE DICTIONARY.
TEST SSW1.

207 16 GO TO (17,23), SSW1
PICK UP PACKAGE NUMBER.

210 17 PACKNO = DICT(M-1)
TEST FOR SPECIAL PACKAGE NUMBERS.

211 IF (IABS(PACKNO).EQ.49) GO TO 69
214 IF (IABS(PACKNO).EQ.50) GO TO 69

GENERATE PACKAGE INDEX.
217 69 PINDEX = IABS(PACKNO).4-3
220 IF (PACKNO) 20,94,18

SEARCH PACKAGE FOR TERM.
221 18 DO 19 I = 1,3
222 J = PINDEX +I
223 19 IF (M.EQ.PACK4(J)) GO TO 20

WE HAVE A TRADE NAME.
227 NTNQ = NTNQ+1
230 QTRNMS(NTNQ) = M
231 IDENT(NO,LET,1) = 2
232 IDENT(NO,LET,2) = NTNQ
233 GO TO 1

PICK UP THE REGISTRY NUMBER.
234 20 REGNO = PACK4(PINDEX)
235 IF (REGNO.EQ.0) GO TO 21
240 NRQ = NRQ+1

RECORD THE REGISTRY NUMBER.
241 OREGNS(NRQ) = REGNO
242 RQWT(NRO) = QWT
243 IDENT(NO,LET,1) = 3
244 IDENT(NO,LET,2) = NRQ
245 GO TO 1
246 21 NPO = NPQ+1

RECORD THE PACKAGE NUMBER.
247 OPAKNS(NPQ) = IABS(PACKNO)
250 POWT(NPQ) = QWT
251 IDENT(NO,LET,1) = 4
252 IDENT (NQ,LET,2) = NPQ
253 GO TO 1

C WE HAVE,AN ASSOCIATION TERM. SET UP SSW1 FOR A RETURN FROM THE
C DICTIONARY LOOK-UP

254 22 SSW1 = 2
255 GO TO 5



BAXEND
ISN SOURCE STATEMENT

65

FORTRAN SOURCE LIST SEARCH 12/3

256 23 IF (SSW2.EQ.2) GO TO 24
261 NCQ = NCQ + 1
262 QCOMP(NCQt1) = IABS(DICT(M1))
263 CQWT(NCQ) = QWT
264 IDENT(NOtLETt1) = 5
265 IDENT(NQtLETt2) = NCQ

C SET SSW2 FOR A RETURN WITH THE SECOND ASSOCIATION TERM

266 SSW2 = 2
267 GO TO 1
270 24 PACKNO = IABS(DICT(W4))

RESET SSW2.
271 SSW2 = 1

CHECK PACKAGE NUMBER.
272 IF (PACKNO.LE.200) GO TO 90

NORMALIZE THE TYPE2 TERM.
275 PINDEX = PACKNO200
276 QCOMP(NCQt2) = PACKl(PINDEX)
277 GO TO 1

C THIS QUERY TERM IS A GENERIC TERM
300 247 IDENT(NAtLETt1) = 7
301 NGEN(NO) = INPUT(1)
302 GO TO 1

wE HAVE REACHED THE END OF THIS QUERY.
C NOW READ LOGIC STATEMENT.

303 25 READ (5,29) (LOGX(NQ,I),I=1,72)
310 29 FORMAT (7241)
311 wRITE16,140)(LOGMQ,I),I=1,72)
316 140 FORMAT(1H ,10X,72A1,//)
317 IWRSW = 2
320 NQ = NQ+1

GO LOOK FOR THE NEXT QUERY.
321 GO TO 1

C THIS QUERY TERM IS A REGISTRY NUMBER
ROUTINE TO CONVERT A SIX DIGIT BCD REGISTRY NUMBER TO BINARY FORM

322 28 00 129 I = 1t5
323 J =
324 DIG(I) = AND(PUTINIAMSK(I))
325 129 NDG(I) = NDG(I)/2**J
327 DIG(6) = AND(PUTINtAMSK(6))
330 NQR = NDG(6) + NUG(5)*10 +NOG(4)*100 + NDG(3)*1000 + NDG(2)*10000

1 + NDG(1)*100000
331 NRR = NRR + 1
332 ORNINIRRI = NOR
333 RMIT(NRR) = OWT
334 IDENT(NO,LET,1) = 6
335 IDENT(NO,LET,2) = NRR
336 GO TO 1

C RESET THE NUMBER OF QUERIES.
337 26 NO = NO-1

INITIALIZE THE ARRAY OF SATISFIED QUERIES.
340 DO 27 I = 1,NO
341 NSAT(I) = 0
34 2 00 27 J = 1,35



66

BAXEND
ISN SOURCE STATEMENT

FORTRAN -SOURCE LIST SEARCH - 12/31

343 27 SATIS(I,J) = 0
346 30 IF(AN.EQ.NUMART) GO TO 81
351 READ (3) ANOA,AUTHOR,NTN,TRNAMS,NR,REGNOS,REGNWT,NP,PAKNOSOKNOWT

19NC,COMPAR,COMPWT
370 DO 75 QN = 1,NQ
371 DO 48 J = 1,72
372 48 LOGEXP(J) = LOGX(QN,J)
374 CC = 0
375 IND = 1

C ****************************
C ********* EVAL ROUTINE ***
C ****************************

376 49 M= 1
377 50 CC = CC +1
400 IF (LUGEXP(CC).EQ.BLANK) GO TO 50
403 IF (LOGEXP(CC).NE.MINUS) GO TO 51
406 M = -M
407 GO TO 50

C CHECK FOR ANY NEW EXPRESSION BEGINING WITHIN PARENTHESES.
410 51 IF (LOGEXP(CC).EQ.LP) GO TO 66
413 DO 52 I = 1,26
414 52 IF (LOGEXP(CC).EQ.CHARST(I)) GO TO 31

C ERROR CHECK FOR NON-VALID CHARACTER.
420 GO TO 98

C DO NOT SEARCH FOR ANY TERM IF Y (TRUE) OR Z (FALSE) IS IN LINE.
421 31 IF (I.EQ.25) GO TO 34
424 IF (I.EQ.26) GO TO 36

C IDENTIFY AND SEARCH FOR TERM REPRESENTED BY CHARACTER.
427 IF(IDENT(0110,1).EQ.7) GO TO 147
432 TT = IDENT(QN,I91)
433 INDEX = IDENT(QN,I,2)
434 IF (TT.LE.O.OR.TT.GE.7) GO TO 100
437 GO TO (32937,399419439239),TT

C SEARCH LIST OF AUTHORS.
440 32 DO 35 I = 19NA
441 DO 33 J = 1,5
442 33 IF (AUTHOR(I,J).NE.QAUTHR(INDEX,J)) GO TO 35
446 34 QTV = 1

447 GO TO 53
450 35 CONTINUE
452 36 0TV = -1
453 GO TO 53

C SEARCH LIST OF TRADE NAMES.
454 37 IF (NTN.EQ.0) GO TO 36
457 DO 39 I = 19NTN
460 38 IF (TRNAMS(I).EQ.QTRNMS(INDEX)) GO TO 34
464 GO TO 36

C SEARCH LIST OF REGISTRY NUMBERS.
465 39 IF (NR.EQ.0) GO TO 36
470 DO 40 I = 19NR
471 40 IF (REGNOS(I).EQ.QREGNS(INDEX)) GO TO 234
475 GO TO 36
476 234 IF (REGNWT(I).GE.ROWT(INDEX)) GO TO 34
501 GO TO 36

C SEARCH LIST OF PACKAGE NUMBERS.



ISN

502
505
506
512
513
516

C

67

8AXEND FORTRAN SOURCE LIST SEARCH 12/3

SOURCE STATEMENT

41 IF (NP.EQ.0) GO TO 36
DO 42 I = 1,NP

42 IF ( PAKNOS(I).EQ.OPAKNS(INDEX)1 GO TO 134
GO TO 36

134 IF (PKNOWT(I).GE.PQWT(INDEX)) GO TO 34
GO TO 36

SEARCH LIST OF ASSOCIATIONS.
517 43 IF (NC.EQ.0) GO TO 36
522 DO 45 I = 1,NC
523 MM = COMPAR(I,1)
524 KOMPAR(I,1) = IABS(DICT(MM-1)I
525 KOMPAR(I,2) = COMPAR(I,2)
526 00 44 J = 1,2
527 44 IF (KUMPAR(I,J).NE.QCOMP(INDEX,J)) GO TO 45

533 IF (COMPWTII).GE.CQWT(INDEX)1 GO TO 34
536 45 CONTINUE
540 GO TO 36
541 239 IF(NR .EQ.0) GO TO 36
544 DO 240 I = 1,NR
545 240 IF(REGNOS(I).EQ. QRN(INDEX)1 GO TO 334
551 GO TO 36
552 334 IF(REGNWT(I) .GE. RNWT(INDEX)1 GO TO 34
555 GO TO 36
556 147 IFINGEN(QN).EQ.TERM(1)) GO TO 151
561 IF(NGEN(0).EQ.TERM(2)) GO TO 152
564 IF(NGEN(QN).EQ.TERM(3)1 GO TO 153
567 IF(NGEN(ON).EQ.TERM(4)) GO TO 154
572 WRITE(6,333)
573 333 FORMAT (1H0,20HILLEGAL GENERIC TERM)
574 GO TO 36
575 151 N = BARUIT(1)
576 DO 155 I=2,N
577 00 155 J=1,NR
600 155 IF(REGNOS(J).EQ.3ARBIT(I)) GO TO 34
605 GO TO 36
606 152 N = HYDANT(1)
607 DO 156 I=2,N
610 DO 156 J=1,NR
611 156 IF (REGNOS(J) .EQ. HYDANT(I)1 GO TO 34

616 GO TO 36
617 153 N = OXAZOL(1)
620 DO 157 I=2,N
621 DO 157 J=1,NR
622 157 IF (REGNOS(J) .EQ. OXAZOL(I)) GO TO 34
627 GO TO 36
630 154 N = SUCCIN(1)
631 DO 158 I=2,N
632 DO 158 J=1,NR
633 158 IF (REGNOS(J) .EQ. SUCCIN(1)1 GO TO 34
640 GO TO 36

C ** ENO OF SEARCH ROUTINE **
641 53 CC = CC+1
642 IF(CC.EQ.73) GO TO 192
645 IF (LOGEXP(CC).EQ.BLANK) GO TO 53
650 IF (LOGEXP(CC).EQ.PERIOU.OR.LOGEXP(CC).EQ.RP) GO 10 55



68

BAXEND
ISN SOURCE STATEMENT

FORTRAN SOURCE LIST SEARCH 12/31

653 IF (LOGEXP(CC).EQ0ONA) GO TO 54

656 IF (QTV*M) 49999956
657 54 IF (QTV*M) 57999949
660 55 IF (QTV*M) -7999956

C SET EXPRESSION .AST CHECKED TO TRUE.

661 56 EXV = 1
662 GO TO 58

C SET EXPRESSION JUST CHECKED TO FALSE.

663 57 EXV = 2
C ****** 8ND OF EVAL ROUTINE ****

664 58 JMP = EXV+2*IND
665 GO TO (86186176175,63,62), JMP

666 76 ICOUNT= NSAT(QN)+1
C SAVE ARTICLE NUMBER FOR LATER PRINTING.

667 SATIS(OtICOUNT) = AN
670 NSAT(QN) = ICOUNT
671 75 CONTINUE

C GO READ NEXT ARTICLE
673 GO TO 30
674 62 LOGEXP(CC2) = CHARST(26)

675 .G0 TO 64
676 63 LOGEXP(CC2) = CHARST(25)

677 64 CC = CC2-1
700 DO 65 J = CC3tCC
701 65 LOGEXP(J) = BLANK
703 IF (CC1.NE.CC3) GO TO 67

706 IND = 1
707 165 CC3 = CC3 -1
710 IF (CC3.EQ.0) GO TO 49
713 IF (LOGEXP(CC3).EQ.BLANK) GO TO 165

716 IF (LOGEXP(CC3).NE.MINUS) GO TO 49

721 IF(LOGEXP(CC2),NE.CHARST(25)) GO TO 166

724 LOGEXP (CC2) = CHARST(26)
725 GO TO 49
726 166 IF (LOGEXP(CC2).EQ.CHARST(26)1 LOGEXP(CC2) = CHARST(25)

731 GO TO 49
C RETURN FRUM EVAL POINT 2.
C SAVE LOCATION OF LEFTMOST PARENTHESIS.

732 66 CC1 = CC
C SET INDICATOR SHOWING WITHIN PAREN.

733 IND = 2
734 67 CC = CC+1
735 IF (CC.GE.73) GO TO 96
740 IF (LOGEXP(CC).NE.RP) GO TO 67

C SAVE LOCATION OF RIGHT PARENTHESIS.

743 CC2 = CC
744 68 CC = CC - 1
745 IF (LOGEXP(CC).NE.LP) GO TO 68

C SAVE LOCATION OF LEFT PARENTHESIS.

750 CC3 = CC
751 GO TO 49
752 96 WRITE (6997) (LOGX(ONII),I=1172)
757 97 FORMAT (23HOUNBALANCED PARENTHESIS/1H t72A1)

760 GO TO 75
761 98 WRITE (61198) LOGEXP(CC),CCt(LOGEXP(K),K=1,72)



BAXEND
ISN SOURCE STATEMENT

69

FORTRAN SOURCE LIST SEARCH 12/3

766 198 FORMAT (10HOBAD CHAR tA1t5H LOC t13,2X,72A1)

767 GO TO 75
770 99 WRITE (61199) CCtLOGEXP(CC)

771 199 FORMAT (10HOBAD TRV t1315X1A1)

772 CALL EXIT
773 81 WRITE (69883)
774 883 FORMAT (1H1)
775 00 82 1=1,NQ
776 K = NSAT(I)
777 82 WRITE (6,83) Il(SATIS(I,J),J=1,K)

L005 83 FORMAT(1H0t5HQUERY113123H SATISFIED BY ARTICLESOI4t/(1H 931)(9814

1))

1006 LST = 0
1007 DO 85 I = 1tNQ
1010 K = NSAT(I)
L011 IF (K.EQ.0) GO TO 88

1014 DO 84 J = ItK
1015 LST = LST+1
1016 84 ISILST) = SATIS(ItJ)

1020 88 LST = LST+1
L021 85 IS(LST) = 0
1023 IS(LST+1) = -1

1024 CALL CHNXIT
1025 192 IERR=IERR+1
1026 92 IERR = IERR+1
l027

IDENT(NOrLETt1) = 6

L030 89 IERR = IERR+1
L031 90 IERR = IERR+1
1032 91 IERR = IERR+1
.033 93 IERR = IERR+1
.034 94 WRITE (6995) IERRtNQt INPUT

.035 95 FORMAT (6HOERRORtI3t6H, QUERY,13,5Xt1246)

.036 SSW2=1

.037 WRITE(6,777)SSW1tSSW2IPACKNO

.040 777 FORMAT(1H0,315)

.041 GO TO 1

.042 100 4RITE (6,101) QNITTO

.043 101 FORMAT (9HOOUERY NOtI3t4H TT=11413H 1=03)

.044 WRITE(6,778)INPUT

.045 778 FORMAT(1H0112A6)

.046 GO TO 75

.047 86 WRITE (6,87) INOtEXV,NOtAN

.050 87 FORMAT (5HOIND=p13,2X,4HEXV=t2Xt3HQN=t1392Xt3HAN=t13)

.051 GO TO 75

.052 END



'T. Print Program Listing



72

571 BAXEND FORTRAN SOURCE LIST
ISN SOURCE STATEME4T

0 $IBFIC PRINT
1 INTEGER PROA,E0A9BUFFERI12/9S(500)9FILE(12,1150),EXCES5(20),

1 DISK(5093),TRACK
2 DATA E0A/6H'END 0/
3 COMMON SAST
4 COMMON /GC/ FILE,IFI,EXCESS,IEX,DISK,IDI,LOC(50,2),ILO,IS,E0A

C AN I PREFIX ON A VARIABLE REFERS TO AN INDEX OF AN ARRAY
C IDENTIFIED BY THE STEM OF THAT VARIABLE.

5 REWIND 4
6 NQ = 1

C SET PRINT OPTION OFF. (1=OFF, 2=014)
7 PR = 1

C INITIALIZE ALL INDICIES.
10
11
12
13
14
15
16
17
20
21
22
23
24
25
26
27
30
31
32
33
35

IS = 0
IDI = 0
IFI = 0
ILO = 0
IEX = 0
NA = 0

1 IS = IS+1
IF (S(IS)) 2,394

2 REWIND 4
CALL CHNXIT

3 NO = NO+1
GO TO 1

4 ISP1 = IS + 1
WRITE (695) NQ

5 FORMAT IIH1930X,12HQUERY IUMBER,I3/
QA = S(IS)

25 IF (QA-NA-1) 6917,18
6 DO 7 I = 19ILO

IF (QA-LOC(I,1)) 7,13,7
7 CONTINUE

DO 8 I = 1,101
36 IF NA-DISK(I,1)/ 899,8
37 8 CONTINUE

C AT THIS POINT WE HAVE BEEN UNABLE TO LOCATE AN ARTICLE. GO TO ERRORR.
41 GO TO 900
42 9 TRACK = DISKII,2i
43 NL = DISKI1,3/
44 IF (IFI+NL.GT.1150) CALL SQUEEZINL/
4/ NWRD = NLIF12
50 M = IFI+1

C UPDATE LOC.
51 ILO = IL0+1
52 LOC(IL091) = QA
53 LOC(ILC92) = M
54 IFI = IFI+NL

C SAVE STARTING LOCATION OF ARTICLE.
55 N = M
56 26 IF (NWRO.LE.456) GO TO 10
61 CALL READR3(TRACK,456,FILE(1,M))
62 TRACK = TRACK+1
63 NWRD = NWRD-456
64 M = M+38



571
ISN

65
66

67
70
76
77

BAXEND FORTRAN SOURCE LIST PRINT

SOURCE STATEMENT

GO TO 26
10 CALL REA0R3(TRACK,NWRD,FILE(104))

C PRINT THE ARTICLE.
DO 11 I = NtIFI

it WRITE (6,12) (FILE(J,I),J=1,12)
12 FORMAT (1H ,12A6)

GO TO 15
C GET THE STARTING LOCATION AND PRINT THE ARTICLE.

100 13 M = LOC(I,2)-1
101 14 M = M+1
102 WRITE (6112) (FILE(JtM),J=1,12)
107 IF (FILE(204).4E.E0A) GO TO 14

112 15 DO 16 I = ISP1tLST
113 16 IF (S(I).EQ.QA) GO TO 1

C SINCE THERE ARE NO OTHER REFERENCES TO THIS ARTICEt PUT IT IN EXCESS.

117 IF (QA.EQ.LOC(IL0t1)) GO TO 27

122 IEX = IEX+1
123 EXCESS(IEX) = QA
124 GO TO 1
125 27 IFI = LOC(IL0t2)-1
126 ILO = 110-1
127 GO TO 1
130 17 PR = 2
131 18 READ (4) NA
133 DO 19 I = ISP1tLST
134 19 IF (S(I).EQ.NA) GO TO 21
140 20 READ (4) BUFFER
142 IF (PR.EQ.2) WRITE (6,12) BUFFER

145 IF (BUFFER(2).4E.E0A) GO TO 20

150 GO TO 23
C UPDATE LOC FOR NEW ARTICLE.

151 21 ILO = IL0+1
152 LOC(ILC,11 = NA
153 LOC(ILOt2) = IFI+1
154 22 IFI = IFI+1
155 IF (IFI.GT.1150) CALL SQUEEZ(50)

160 READ (4) (FILE(ItIFI),I=1,12)
165 IF (PR.EQ.2) WRITE (6,12) (FILE(ItIFI),I=1,12)
174 IF (FILE(2tIFI).NE.E0A) GO TO 22

C CHECK PRINT OPTION.
177 23 GO TO (25,24)t PR
200 24 PR = 1
201 GO TO 1
202 900 WRITE (69901)
203 901 FORMAT (7HOERROR1)
204 REWIND 4
205 CALL CHNXIT
206 END

73



571 BAXEND
ISN SOURCE STATEMENT

FORTRAN SOURCE LIST

0 SIBFTC SQEZ
1 SUBROUTINE SQUEEZ(M)
2 INTEGER FILE(12,1150),EXCESS(20),DISK(50*3),SUMIS(500),TEMP(50),

1 EOA
3 COMMON S9LST
4 COMMON /GC/ FILE,IFI,EXCESSOEXIDISK,IDIILOC(5012),ILO,IS,E0A
5 SUM = 0

C CHECK FOR NO EXCESS ARTICLES.
6 IF (IEX.EQ.0) GO TO 15

C COUNT THE NUMBER OF LINES IN EXCESS.
11 DO 4 I = 1,IEX
12 DO 1 J = 1,ILD
13 1 IF (EXCESS(I).EO.LOC( J,1)) GO TO 2

C ERROR IF ARTICLE IV EXCESS IS NOT LOCATED IN ..LOC-.

17 WRITE (600)
20 CALL EXIT
21 2 IF (J.EQ.ILO) GO TO 3
24 SUM = SUM+LOC(J+192)-.LOC(J92)
25 GO TO 4
26 3 SUM = SUM+IFI+1-LOC(Jt2)
27 4 CONTINUE

C SEE HOW MUCH ROOM WOULD BE LEFT IN -FILE- IF EXCESS ARTICLES REMOVED.

31 5 IF (IFI+M.GT.1150+SUM) GO TO 15
C BEGIN OVERLAYING EXCESS ARTICLES.
C LOCATE THE FIRST ARTICLE IN ....FILE- IN EXCESS.

34 DO 6 NLO = 1,ILO
35 DO 6 J = 19IEX
36 6 IF ILOC(NL0,1).EQ.EXCESS(J)) GO TO 7

C CHECK TO SEE IF FIRST ARTICLE IN EXCESS IS THE LAST ONE IN -FILE-.

43 7 IF (NLO.EQ.ILO) GO TO 14
46 NFI = LOC(NLO,2)
47 NXT = NL0+1
50 DO 11 I = NXTIILO

C IS THE NEXT ARTICLE IN EXCESS...
51 DO 8 J = 19IEX
52 8 IF (LOC(II1).E2.EXCESS(J)) GO TO 11
56 LOC(NL011) = LOC(I,1)

C GET FIRST LINE OF ARTICLE.
57 L = LOC(192)
60 LOC(NL0,2) = NFI

C GET LAST LINE OF ARTICLE.
61 LL = LOC(I+192)-1
62 IF (I.EQ.ILO) LL=IFI

C MOVE ARTICLE UP IN -FILE-.
65 DO 10 K = 1,11
66 DO 9 J= 1,12
67 9 FILE(J,NFI) = FILE(J,K)
71 10 NFI = NFI+1
73 NLO = NL0+1
74 11 CONTINUE

C READJUST PROGRAM PARAMETERS AND RETURN.
76 13 IFI = NFI-1
77 ILO =

100 IEX = 0
101 RETURN



75

571 BAXEND FORTRAN SOURCE LIST SQEZ

ISN SOURCE STATEMENT

C DELETE ONLY THE LAST ARTICLE IN -FILE- AND RETURN.

102 14 IFI = LOC(IL0,2)-1
103 ILO = I10-1
104 IEX = 0
105 RETURN

C NOT ENOUGH ARTICLES IN EXCESS, SO PUT ONE ON THE DISK.

106 15 ILOM1 = 110-1
107 00 16 I = 1,ILOM1
110 16 TEMP (I) = LOC(I;1)
112 [COUNT = ILOM1-IEX
113 IF (IEX.EQ.0) GO TO 18
116 DO 17 I = 1,1EX
117 DO 17 J = 1,ILOM1
120 17 IF (TEMP(J).EQ.EXCESS(I)) TEMP(J) = -2

125 18 DO 19 I = IS,LST
126 DO 19 J = 1,IL3MI
127 IF (S(I).NE.TEMP(J)1 GO TO 19
132 IF (ICOUNT.LE.1) GO TO 20
135 ICOUNT = ICOUNT-1
136 TEMP(J) = -2
137 19 CONTINUE
142 WRITE (6,91)
143 CALL EXIT

C SEE IF THIS ART:CLE IS ALREADY STORED ON THE DISK.

144 20 IF (IDI.EQ.0) GO TO 22
147 DO 21 I = 1,IDI
150 21 IF (TEMP(J).EQ.DISK(I,1)) GO TO 27

154 22 NL = LOC(J+1,2)-LOC(J,2)
155 SUM = SUM+NL
156 24 IDI = 101+1

C FIND NEXT AVAILABLE DISK TRACK.
157 NT = N7+1
160 DISK(I0I,1) = TEMP(J)
161 DISK(IDIv2) = NIT
162 DISK(IDI,3) = ML
163 L = LOC(J,2)

C SEE IF ARTICLE EXCEEDS 38 LINES.
164 25 IF (NL.LE.38) GO TO 26
167 CALL WRITR3(NT,456,FILE(1,L))
170 NL = NL-38
171 NT = NT+1
172 L = L+38
173 GO TO 25
174 26 NWRD = NL*12
175 CALL WRITR3(NT,NWRD,FILE(1,L))
176 GO TO 28
177 27 SUM = 5UM+DISK(1,3)
200 28 IEX = IEX+1
201 EXCESS(IEX) = TEMP(J)
202 GO TO 5

C ERROR MESSAGES.
203 90 FORMAT (44H0UN4BLE TO LOCATE AN EXCESS ARTICLE IN -LOC-)

204 91 FORMAT (42HOMORE ARTICLES IN -LOC- THAN REMAIN IN -S-)

205 END


