1
:
by
3
5
/
f‘;
;
]

P A T IR T AL TR TSR T T e e

iR N I

DOCUMENT RESUME

ED 027 754 EM 007 186

By- Smallwood, Richard D.

Optimum Policy Regions for Computer-Directed Teaching Systems.
Pub Date (68]

Note-33p.

EDRS Price MF-$0.25 HC-$1.75

Descriptors-Branching, *Computer Assisted Instruction, Computer Oriented Programs, *Computer Science,
Decision Making, Educational Research, *Individualized Tnstruction, Instructional Technology, Learning
Processes, *Mathematical Models, Program Descriptions, *Program Design, Programed Instruction, Programed
Tutoring, Program lisprovement, Programing, Program Planning

The development of computer-directed instruction in which the learning protocol
is tailored to each student on the basis of his learning history requires a means by
which the many different trajectories open to a student can be resolved. Such an
optimization procedure can be constructed to reduce the long and costly calculations
associated with straight-forward decision tree optimization calculation. In this
procedure the decision logic acts on the basis of the student’s history, including his
most recent response. A quantitative representation of the purpose of the instruction
and the costs of alternative routes is weighted by the probakility of the student’s
following that route. This defines the maximum expected total utility for a student with
a given history, the optimization equation. By then using this techinique with general
models of learning behavior and a branching network design, the optimum alternative
at each level in the branching network can be stated. Using such an optimization
policy, the total expected instructional cost is sixty to eighty per cent higher than the
optimum policy. (BB)
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OPTIMUM POLICY REGIONS FOR OOMPUTER~DIRECTED TEACHING SYSTEMS

I. INTRODUCTION

In the past few years several significant advances in computer-aided
instruction have opened the way for an evolution toward more sophisticated 3
educational systems, Perhaps this is the time for some consideration and
reappraisal of the direction for this evolution. As I see it, the primary .é
direction for much of the current work in computer-aided instruction is éi
toward the provision of tools that will permit the implementation of
essentially classical teaching heuristics., The end result of this line

of research will be a set of tools that allow the construction of computer-
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based teaching systems that provide a faithful mimicry of classical teaching

methods.,
on the other hand, we might look to the physical sciences and technologies

for another possible tack to take in this evolution of educatioual systems.

For examplé, we could view the past advances in CAI as individual contributions
to an expanding technology; that is, as incremental advances to a cohesive

set of theoretical concepts, experimental methodologies, and practical tools
that together add up to an educational technology. Thus, we can view the
evolution of educational systems as centered about an educational technology
with each new contribution having for its foundation the distilled essence

of previous contributions, and in turn adding its own contribution to the

state of the technology. If this technology is to grow and flourish, then

it must be founded upon a quantitivé science similar in substance to the
scientific bases of other technologies. This implies the development and

utilization of classes of mathematical models, optimization techniques, and




other theoretical structures necessary for the growth of the technology.
The development of a technology typically arises from the repeated

application of the experimental-theoretical cycle, That is, experiments

to test and extend the present theoretical status of the technology are
planned and conducted; and then these are-followed by modifications to the E
theoretical structure based upon the results of the experiments. This
paper will present a potential contribution to the theoretical side of
this educational technology. é

One of the crucial questions to be considered in the future development
of computer-aided teaching systems is the extent to which the latent

computational power of the machine can be used to make rational decisions

on the course of the instruction., A system that inciuded such a decision

process in its operation might be termed " computer-directed’ rather than

" computer-aided” instruction, This discussion will focus on the development

of a method for implementing such a decision process in a teaching systen,

One of the discouraging problems encountered in a theoretical formulation

I N SN

of the decision process in a computer-directed teaching system has been the
excessive computation required, If the decision process is to consider

any significant number of future trajectories that the student might
experience, then the computation time can become a significant limitation
in operating the system. This paper describes a technique that involves

a very small amount of computation time for implementing a truly optimum
decision policy in a computer-directed teaching system, Furthermore, the
results are applicable to a very large class of models of human learning.
As mentioned above, these results represent only a theoretical contribution

to the educational technology. The experimental testing and validation of
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these theoretical results are equally important -- and much more difficult
to achieve; this, then, represents only the first step toward the solution

of the problem,

Tl, DECISION MAKING IN CAI -- A FORMULATION

This section presents a general formulation of the decision problem
in a tutorial computer-directed computer sysctem, This formulation is not
new; it has been described in one form or another previously(2’6’7). It
is presented here to provide a general perspective for viewing the results
of succeeding sections,

The first question we should ask is: Why should decision processes be
incorporated into CAI systems? The answer to this question follows from
the natural desire to develop a teaching system that will detect and respond
to the differences exhibited by individual students. Thus, we should like
to design a decision logic (sometimes called a branching 1ogic) into our
CAI system so that the available past history of the student can be used in
some meaningful way to influence the future course of the student's instruction,
To begin then, let us imagine a hypothetical student with a particular
history for whom a decision policy is required. This decision policy will
be encoded into the computer teaching system, and will prescribe for the
system what alternative instruction should be provided f;: this student and
for other students with different past histories., The role of the past
history in the decision process is extremely critical; for this quantity
represents a parameterization of the available information about the student

that will determine how well the system adapts to the individual learning

characteristics of the student. We shall denote the past history of our
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hypothetical student by h and shall have more to say on this subject later,

The existence of the decision process within the teaching system implies
that there must be a set of alternative courses of action available for
deafing with our hypothetical student. Since this set of instructional
alternatives will typically be dependent upon éhe student's current status,
and furthermore since we have agreed to represent the student's current
status in the form of his past history, h , then the set of available
instructional alternatives for the student will be denoted by A(h) .

For each of the alternative presentations of the material there will
typically be a question or set of questions to test the student's compre-
hension of the material. The student's responses to these questions provide
additional information that we must incorporate into his past history to
guide the future course of the instruction, Since each of the possible
responses that might be elicited from the student will have a different
impact upon-%he student's updated history, it is necessary to consider all
possible responses explicitly. Thus we shall assume that for each possible
instructional alternative there is a finite set of possible student responses,
and we shall denote this set of responses by R(a) where a is the
particular instructional alternative from A(h) that has been presented to
the student.

With this representation of the instructional alternatives and student
responses we can illustrate the complete decision problem with the decision
tree sahown in Fig, 1. As shown in that figure, for a student with a past
history, h , there is a set of instructional alternatives each of which

may produce a sample from the set of possible student responses. At the

conclusion of this response there will be a new past history, h' , and




Past
History h
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Figure 1 The Decislion Tree
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a new decision to be made; and this decision-response cycle may extend a
considerable distance into the future until the instruction is terminated,
The ﬁroblem then is to calculate the optimum instructional alternative at
each decision node taking into account the possible effects that this may
have on the future course of the instruction, A brief look at Fig., 1 will
show the tremendous number of possible student trajectories through the
decision tree that must be considered if all possible paths are to be
accounted for in the calculation, For example, if there are five instructional
alternatives at each decision node in the tree and if there are two possible
responses by the student for each instructional alternative, and if we
desire to calculate the optimum instructional alternative based upon those
paths by fhe student that extend ten presentations into the future, then
this will require the consideration of ten billion possible student tra-
jectories for each decision, This is clearly an infeasible solution to
the problem, This paper will propose an alternative way of viewing this
decision problem that will eliminate all but the most trivial of calculaticns
for each decision in the course of a student's instruction,

To continue with the formulation of the decision process, the selection
of one of the instructional alternatives at a decision point requires a
criterion for appraising the relative value of each alternative, More
explicitly, we shall need a quantitative representation of the purposes of
the instruction as well as the relative costs of alternative presentations.
For our purposes here we shall assume the existence of an utility function,
ua(k,h) that specifies the immediate value that is accrued if alternative
a is presented to a student with past history h and the kth response is
elicited., This function describes the immediate rewards (or costs) that are

associated with each particular stage in the decision tree of Fig, 1, There
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is the additional question of the terminal rewards (or costs) that are
accrued by terminating the instruction with the student;in a particdlar
statﬁs. For this purpose we assume the existence of a terminal utility
function, uo(h) , that describes the utility associated wiih terminating
the instruction for a student with a past history h . A particular
example of such a utility structure will be illustrated in Section IV.

In considering the different possible student trajectories in Fig. 1
we must weight the utilities associated with each trajectory by the
probability that the student will in fact traverse that path in the decision
tree., This requires a model of student behavior that allows the calculation
of the probability that a student will produce a particular response to
the presentation of an instructional alternative, Thus we assume the
existence of a .mathematical model for calculating the probability,
p(k|h,a) , that a student with past history h ' who has been presented
instructional alternative, a , will respond with the kth response
(where k ¢ R(a) aud a ¢ A(h) ).

These definitions lead directly to an equation that defines the
maximum expected total utility v(h) that can be achieved for a student
with a particular past history, h . To write this equation, consider
all possible responses that a student might produce for a particular
instructional alternative. For each such response there will be an immediate
utility that is accrued plus the contribution from all future instruction

that will follow with the updated past history, h' . Thus a recursive

equation for the expected total utility is:

v(h) = max Z p(k|n){u_(k,b) + v(h')]] (1)

a ¢ A(h)tier(a)




In this equation we assume the existence of a rule for updating the
studgnt's past history; that is, h' represents the past history associated
with the student who had a past history, h , was given alternative a
and who responded with the kth response,

The formulation of the decision problem represented by Eq. (1) is
a typical dynamic programming recursive equation, Previous works have
formulated the decision process in a computer-directed teaching system in
a similar waﬁﬂ)ln particular, the reader is referred to the excellent

review article by Groen and Atkinson(e)

The implementation of an actual teaching system with a decision process
bascd upon this formulation was attempted in 1961(6). For this simple
system the number of instructional alternatives at each decision point
ranged from one to four, while the number of possible responses ranged
from two to five, In terms of the decision treé in Fig. 1, the calculation
of the optimum alternative at each decision node was carried out by extending
fhe calculations in Eq. (1) three stages into the future. The weakest
component in that early system was the mathematical model used for the
calculation of student response probabilities, Also, the particular
choice of past history parameterization for the student was very simple
and did not realize the full capabilities of the system. In the next
section, we shall consider a very general class of models that might be
used for describing student learning behavior. The incorporation of this

class of models into the decision process will alleviate many of the

shortcomings of that earlier system,

III. A CLASS OF MODELS

The first step in formulating a model is to attempt an explicit description

of our intuitive understanding of the phenomenon, One such description




of the instructional process defines it as the systematic attempt to
change the student's internal state of knowledge about the material being
presented. Suppose now that it were possible to describe these internal

knowledge states as a finite number of entities each of which represents

one possible internal state of knowledge that a student may occupy during
his course of instruction on the subject material. We shall refer to these
entities as states, and it seems reasonable at this point to assume that

they are mutually <:<clusive and exhaustive.
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Within the limits of this representation, the instructional process
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can be viewed as the selection of alternative mechanisms for causing a

student to make transitions from one internal state to another. These

transitions will seldom be deterministic; that is, a particular instructional

alternative will generally only cause a transition from one state to another

state with a certain probability. Thus, we define as a parameter of the

model the quantity tij(a) . this is the probability that a student
occupying the ith state will ® ake the transition to the jth staite if
he is presented with the material associated with instructional alternative
a .

With this description for the influence of instructional material upon
a student's internal state of knowledge, the question arises: How can we
gain access to information concerning the internal state of the student?
The mechanism for accomplishing this, of course, is to ask the student
questions, the answers to which will depend upon the student's internal
state of knowledge about the material., Thus if we assume that there is a
discrete set of responses that a student will give for a particular instructional
alternative, a , then we can model the relationship between the student's

internal state and his response. For this purpose we define the probability
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r,

Jk(a) that a student who is presented instructional alternative a and

who is presently occupying the jth internal state will give the kth
response to the question associated with the presentation of the material,
There is an explicit assumption in this definition that the student's
response is dependent only upon his internal knowledge state, Figure 2 is
a graphical representation of this class of models.

Now we must consider what additional parameters of the student's past
history should be incorporated into the decision process as a result of
this model., If we somehow were given access to information concerning the
true sqﬁte of the student, then this would be a very valuable component in

the parameterization of the student's past history. Since we seldom, if ever,

have perfect information about the student's state, the logical component

for the student's past history is the current state of information about
the student's internal knowledge state. We can represent this state of

information as a set of probabilities, [nl, o , where 1w, is the

probability that the student presently occupies the ith state, If this
set of probabilities is included as a parameter of the student's past
history, then we can visualize this set of numbers changing as the student
is presented with various instructional alternatives throughovt the course
of his instruction and as his responses to various questions are used to
update the state of information about his progress.

I1f a model of the type presented here is to be used in the decision
process in a teaching system, that is, if a model of this type is to be
used in calculating v(h) in Eq. 1, then two analytical results are required

from the model. The first of these is a procedure for calculating the

response probability, p(k|h,a) , and the second is the mechanism for
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updating the past history h = [ﬁl, o ...] as a result of presenting an
ins . ructional alternative and observing a particular student response.
To describe the answers to these two demands let us assume that for
a particular student with past history h = [ﬂl, T ...] we are considering
presenting instructional alternative a ., This instructional alternative
will consist of some simple textual material followed by a question to test
the student's comprehension of the material, We shall further assume that
any transitions of the student's internal state occur prior to his response*.
We shall consider the response probability, p(klh,a) , first. This
quantity can be easily calculated by considering all possible states that

the student might occupy after presentation of the textual material., The

application of el.uentary probability operations yields for this quantity:

p(k|h,a) =:E::2‘ Pr{prior state = i, succeeding state = j, kD response]

P h, give alternative a}

=S5 e (a) 7 (a)
13

(2)

The procedure for calculating the updated state probabilities,
[ﬂi, ) ...] , can be derived in a somewhat analogous way. Let us suppose
that a particular student with a past history h = [ﬂl, oY ...] has been

. th
given instructional alternative a and has given the k response tc the

* . s s

This is the so called pre-response transition case(7). Similar results
can be easily calculated for the post-response transition case in which
state transitions occur after the student's response.
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question associated with that alternative, The updated state probability,

ﬁ& , can be written through a simple application of Bayes' rule plus some

elementary probability operations as:

! =:E: Pr{prior state = i, succeeding state = j kth response, h,

J
i give alternative a }

th
:E: Pr{prior state = i, succeeding state = j, k response|h,

i give alternative a }

P(klh:a)

Low;t; () v (a)

D xgty () v (a) (3)

J

Thus this class of models provides a very simple mechanism for
calculating the response probabilities as well as updating the past history.
In the next section we shall show how this model can be easily incorporated

into the optimum decision calculation of Section II.

IV. THE OPTIMiZATION PROBLEM

in a tutorial computer-aided teaching system it is often desirable that
each student be exposed to certain basic information even though the actual
presentation of this information may take on many forms. The general
branching network shown in Fig. 3 illustrates a very general and flexible
technique for achieving this result. In the general branching network each
student starts the instruction at the first level, On the basis of the

initial evaluation of the student's past history, one of the instructional
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Figure 3 The General Branching Network
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alternatives leaving the first level is presented to the student, Each of
these instructional alternatives will be assumed to consist of a presentation
of some textual material followed by a question designed to test the student's
comprehension of the material. If the student responds with the correct
answer to this question then he is placed at the final level corresponding

to that alternative. On the other hand, if the student's response is not
correct, then we shal}l assume the existence of some assignment rule that
places the student at some level appropriate to that response., In other
words, we shall assume the existence of a function {(mm ,k) that determines
the next level for a student who responded with the kth response to the

nth instructional alternative leaving the mth level, Once this student
has been assigned this new level, then of course a new decision calculation
must be carried out to determine which of the instructional alternatives
leaving the student's level.should be presented.next.

Given such a general branching network for a set of subject materials,

it seems feasible that one of the models discussed in Section III might very

well describe the student's learning dynamics while progressing through the
instruction defined by the various alternative presentations in the branching
network, Thus; let us assume that such a model does indeed exist and that
there is a set of transition probabilities, tij(a) , and response prob-
abilities, rjk(a) , for each of the instructional alternatives in the
branching network -- that is, for each of the blocks in Fig, 3.' The problem
then is to use the optimization procedure in Eq. 1 with this formal structure
to calculate, on the basis of the student's past history, the optimum
alternative at each level in the branching network.

To accomplish this task we must define the student's past history. For
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the general branching network of Fig. 3 and a mathematical model of the form
in Section III thg appropriate parameterization of the student's past
history is his current level in the general branching network and the current
state probabilities, In other words, we let h = [m,n ,%,, ...] where m
is the student's current level in the general branching network. For a
student at the mth level who has been presented the nth instructional
alternative leaving that level and who has responded with the kth response,
the updated past history is h' = [{(m,n,k), 13575 ...] where né is
calculated according to Eq. 3.

The one remaining component for the optimization is the utility structure.
One reasonable description of a utility structure, and the one that will be
used here, defines a presentation cost for each of the blocks in the general
branching network and also defines a terminal cost that is dependent upon
the student's terminal state when he finishes the instruction at the last
1.vel, Thus, we define the presentation cost for the nth instructional
alternative leaving the mth level as cmn .* The terminal cost at the
conclusion of the instruction is just }; Y474 where Yy is the cost of
terminating the instruction with the student in the ith state, Since
this utility structure has been postulated in terms of cost rather than
values we must transform the value formulation of Eq. 1 into a cost
formulation, This is easily done by multiplying that equation by (-1)

t

and replacing the "max" by "min". For this cost formulation we can define

the quantity “h#n) as the total expected optimum cost for a student who

*This presentation cost can also be made dependent upon the student's response
with no loss in applicability of the results., This generality will not be
included in this section for the sake of notational convenience,
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is at the mth level and whose vector of state probabilities is

= [xl,xe, ...] . The substitution of these definitions into the general
formulation of Eq. 1 yields the following recursive equation for this more

specific problem:

1

v (1) ‘“,i“[ip(klh,n)tcmn + (I >1]

k

‘“ff‘[cmn + > p(k| By n)y (I >] ()

k

In Eq. 4 the subscript 4 is the assigmment function 4(m,n,k) and
the elements of the updated probability vector [I' are calculated from

Eq. 3. The cost associated with the terminal level in the branching network

is of course Jjust
w (1) =2 Y47ty (5)
i :

where )\ is the last level in the branching network,

Appendix A uses the formulation in Egs. 4 and 5 to show that the

quantity wm(n) can have the following relatively simple form

) = =2 o) ] (6)

i nij J
J

where n ranges over the set of instructional alternatives leaving the

mth jevel and i is simply an integer valued index for each instructional
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alternative, With this simple expression for the minimum expected cost,
the optimum decision policy for all student past histories can be written
very simply:

Select the instructional alternative, n , for which the

quantity min|S o™ x| is minimum . (7)
i nij J
J
Once the values for 0£2§ have been calculated, the implementation of this

decision policy is very simple, The extensive searches throughout the
decision tree have been eliminated through the prior calculation of a set
of optimum policy regions that uniquely determine the optimum policy as

a function of the student's past history.

Appendix B describes an iterative technique for calculating the values
of the o coefficients in Eq. 6.

To test out these ideas a simple but non trivial example was constructed
énd the iterative technique of Appendix B was used to calculate the optimum
policy regions. The mathematical model that was used is the simple two
state model shown in Fig. 4. As can be seen, this model has only two
parameters associated with it, the single transition probability, t |,
and the single response probability, r . This is the simple one €l ement
model that has been considered so extensively in the literature(1’3’h’5’7).
The “zerd’ state in this model is generally associated with the unconditioned
or unlearned state, and the"one"state with the conditioned or learned state,
There are two parameters for this model; the transition probability t is

the probability that a student in the "zerc" state will make the transition

to the Yone” state on a particular presentation of the instructional alternative,
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and the response probability, r , is the probability that a student in
the zero state will still respond with the correct answer (this is often
refeéred to a5 the "guessing probability").

Figure 5 shows the sixteen level branching network that was used for
the example, In this figure, the values for the transition probability,
t , and the presentation cost cmn are shown within the rectangle
representing that instructional alternative. The outputs from each block
that exit from the side of the rectangle represent the level assignment
function for incorrect responses to the question associated with that
instructional alternative. The response probability, r , was equal to
0.2 for all of the alternatives, The terminal costs, Y, and vy, ,
were sat equal to 30 and O, respectively. (There is an interesting physical
interpretation for the quantity yo in this formulation of the problem,
This quantity is simply the maximum amount that'we are willing to pay in
order to achieve the transition of a student from the zero state to the
one state.)

When the iterative procedure described in Appendix B was applied to
this problem, approximately 11 iterations were necessary for convergence
of the optimum policy regions, This optimum policy is shown in Fig, 6.
The optimum policy region for each of the instructional alternatives is
plotted as a function of the state probability, ﬁl . Some typical
trajectories that students might take through the general branching network
are also plotted,

It is interesting to consider the speed of convergence of the iterative
process., Figure 7 shows the total expected instructional cost starting

at the first level for several of the decision policies that were calculated

during the 11 iterations, As can be seen the iterative process converges
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quite rapidly in terms of the total expected cost function. As an illustration
of the efficacy of such an optimization procedure, Fig., 7 also shows the

total expected cost for a student for whom the minimum presentation cost
alternative is always chosen, As illustrated in Fig. T this policy results

in a total expected instructional cost that is sixty to eighty per cent

uigher than the optimum policy.

V. SUMMARY AND CONCLUSIONS

As indicated in the introduction to this paper, the results presented
here only represent the first (and probably the easiest) step in an
evolutionary sequence of theoretical-experimental advances to the educational
technology. This paper presents an optimization procedure for a general
class of learning models; the procedure essentially eliminates the tedious
costly calculations associated with a straight-forward decision tree cptimi-
zation calculation, Hopefully, later contributions to the educational
technology will explore some of the experimental implications of these results,
Specifically, much work remains to be done on the validation of models
and more experiments must be conducted to test the efficacy of optimum
decision processes in computer-directed teaching systems., The potential
benefits of educational systems that truly adapt to the individual learning
characteristics of the students will justify the allocation of future

research resources toward these goals,
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Appendix A: THE OPTIMUM POLICY COST FUNCTION

In Section IV the following recursive equation was derived for

the optimum policy cost function for a student with past history

h = [m’ﬂl’ﬂa’osol .

w (1) = "2 [mn +S p(s|,n) w/[,’(ﬁ )] (4)

k

where n is the number of the instructional alternative leaving the

mth level, This appendix shall show that Eq. L, is consistent with a

solution of the form:

Wm(H) min mln[ii e J] (8)

J

First of all, the two quantities p(k|h,n) and x} in Eq. 4 can be

written directly from Egs. 2 and 3 in Section III:

pk|n,n) =9 > 8, (a) ¥, (a) (9)
i

Drgtyy®) mple)
ﬂs = jé = p(k]h,n)Zi’%ﬁij(a) rjk(a) (10)

where a represents the nth instructional alternative leaving the m

ljevel. Now if we assume that W{Kﬂ') on the right side of Eq. 4 is of

the form shown in Eq, 8 then the substitution of ﬂs and waﬂﬂ') into




Eq. L yields:

2 n‘itij (a) rjk(a)

_ min min min (L) i
() = ™ |+ p(ifn,n) ") ) (1)

th
where n' refers to the n' instructional alternative leaving the new
level 4(m,n,k) . Now since the response probability p(k|h,n) is
independent of n' and g , this quantity can be canceled in the final

term of Eq. 11 to give:

min min min ) 22
wm(II) 0 [cmn D g zan'gj xitij(a) rjk(a)]
j i

For each set of state probabilities [ = [ﬁl,ﬁa, ...] there will be
a set of indices, S(II) = [ni,gl,né,...ni,gk,...] that satisfy the
last two minimizations in Eq. 12, In other words, for each value of J]
we define n& and 8 as the two indices that satisfy the minimizations
in Eq. 12 for the kP response, and S(II) is the set of these indices.
Furthermore, the number of possible such index sets will be finite; and
so if we were to investigate the space of possible vaiues for the state
probabilities, we would find this space divided into regions each with
its own value for the index set S(II) . For the sake of this development,
we shall define an index over these regions; that is we shall .et h

denote the hth region in the space of state probabilities and Sh(n)

is the set of indices corresponding to this region,




Now by the definition of this index set, we can rewrite Eq. 12 as:

min min Q&)
W, (1) = [ z }: Oty 3F15(2) rjk<a] (13)

] where nﬁ and gk are elements of the hth index set and h ranges over

A the possible index sets, Sh , corresponding to the various regions in

the space of state probabilities,

And finally by using the fact that the sum of the state probabilities

VY TS S

must be unity we can move cmn inside the summation to give:

Wm(ﬁ) _ m:rlln m}:’tn[i ﬁi<cmn +2 . r(l’e’;thlJ(a) rjk(a))] (14)

i k j
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Eq. 4 is of the same form as Eq, 8 with

m L
- e TS e *

Thus, we have shown that an optimum policy cost function of the form
i shown in Eq. 8 is consistent with the recursive equation of Eq. L, oOf
course, the terminal cost function in Eq. 5 is also in this form, and so
the argument is complete,

Since the optimum instructional alternative is just the one that
minimizes the cost function, it follows that the «'s that determine

wm(n) can also be used to prescribe the optimum policy as d esc.2ibed in

Eq. 7.
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Appendix B: THE CALCULATION OF OPTIMUM POLICY REGIONS

This appendix describes an iterative scheme for calculating the
optimum policy cost function, wm(H) . The basic equation defining the
iterative process is very similar to Eq. L; if w&z)(n) is the optimum
policy cost function after the zth iteration, then we define the process

by :

W= () - “‘,il“[cmn £y p(k|n,n) wf’(n')] (16)

k

for z= 0 . The process is started by assuming an initial value for

v ().

() &5 o (a7)
J

where the aﬁ?)'s are to be specified later. Of course, the terminal

cost function will always be equal to
w2 () —z x, for all z (18)
A =2, Yi™y
i

where )\ is the terminal level of the branching network.

According to the form for wm(n) shown in Eq. 6, a convenient method
for specifying the function is by several sets of Q's -- one set for each
possible combination of n and g in Eq. 6. Each iteration then amounts

to using the previous sets of Q's to calculate new sets of Q's for each
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level. The complete iteration prccess thus consists of the following steps:
l, Set up the initial values of the 's for each level,
2. TFor each level m , search through the space of possible state
probabilities, ]| , and find all those sets of Q's that, on

the hasis of the C's calculated on the previous iteration,
determine the value of w£z>(ﬂ) .
3. Check to see if the new values of the Q's are sufficiently
close to the previous ones to justify stopping the iteration
process; if not, return to Step 2.
One possible method for carrying out Step 2 is first to find the
sets of Q's at several points throughout the space of state probabilities;
e.g. at the points defined by N, = 1, T, = 1, n3 =1l, ... . The
intersection of the hyperplanes defined by these sets of Q's |,
2: Qégg ﬁi » Will generally determine one or more additional points in
éle space of state probabilities, and the Q's for these additional points
cén be added to the list of Q's for the level under consideratic:, This
process continues until there are no intersections of the hyperplunes
that yield a new set of Q's for the level under consideration,
This process of finding a new set of Q's for a particular point,
I , in the state probability space is not a difficult one. Equation 12
can be used to find the appropriate values of n, n&, and gk and then
Eq. 15 can be used in the actual calculation of the Q's .
In practice, there is a slight modification of Step 2 in the iterative
process that yields somewhat faster convergence. For this modified version

of Step 2, we start with the next to last level (A =1) and work backwards.

In addition in the calculations of wm(ﬂ) we use the values of the a's




a— '"Q'

already calculated during the present iteration when calculating wl (')

for anyf greater than m,
The proof of convergence for this iteration process proceeds by
z -
induction. Suppose that wxf] )(I[ )<wt§z L) (L) for all m<A, and all II.

Then since p(k|h,n)20, from Eq.16 we have:
AN <m<‘“§“[cmn +2 Bl v (o )] =@ a9

Thus, if we can find an initial set of a's such that wxf]l) (m< wn(10) (m) ,
then the sequence of iterations will yield a monotonically decreasing
sequence [w( )(II ), W (2 )(I[) ,+..] bounded below by min[cmn]; and this will
prove convergence.

The first iteration of the process yields

(1)(1[) [ +;p(klh,n)z aéli]) W;] for 1<m<g) (20)
J

4 where we have substituted Eq.1l7 into Eq.16 with z=0. The problem now is
to find a set of values for the a.oj's such that the expression in Eq.20 is
less thanzu. r for all T .

1f we substitute rJ from Eq.10 into Eq.20 we have:

Wl o [ I Z oBe, <a>r<a>]

. [
= m;n[; L \cmn + Jzk aég) tij(a) rjk(a)>] (21)

Now w(l) (I will be 1less than Za(“.‘) x. for all Il if there is some in-
m T oi i
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structional alternative, n, for which:
@ _ . ¢))
i = Sm "¢ 7 jg;{aoj t; (@) ry (@) (22)
H

where €¢>0. Thus, if Eq. 22 is satisfied for some ¢>0, the condition

wn?)(ﬂ)< w“(lo)(n) will be true and convergence of the iterative process is

proved.

It can be shown that the set of simultaneous linear equations in Eq. 22
will always have a positive solution as long as the quantities (cmn -€¢ ) are
positive. Thus, we can be assured of convergence of the iteration process if
we select for each level m an instructional alternative with cmn>»0 and
then solve Eq. 22 for the starting a's. Of course, in most practical situa-
tions the solution of these equations will not be necessary; some reasonable

set of initial a's will usually suffice.




