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OPTIMUM POLICY REGIONS FOR COMPUTER-DIRECTED TEACHING SYSTEMS

I. INTRODUCTION

In the past few years several significant advances in computer-aided

instruction have opened the way for an evolution toward more sophisticated

educational systems. Perhaps this is the time for SC:0Q consideration and

reappraisal of the direction for this evolution. As I see it, the primary

direction for much of the current work in computer-aided instruction is

toward the provision of tools that will permit the implementation of

essentially classical teaching heuristics. The end result of this line

of research will be a set of tools that allow the construction of computer-

based teaching systems that provide a faithful mimicry of classical teaching

methods.

On the other hand, we might look to the physical sciences and technologies

for another possible tack to take in this evolution of educational systems.

For example, we could view the past advances in CAI as individual contributions

to an expanding technology; that is, as incremental advances to a cohesive

set of theoretical concepts, experimental methodologies, and practical tools

that together add up to an educational technology. Thus, we can view the

evolution of educational systems as centered about an educational technology

with each new contribution having for its foundation the distilled essence

of previous contributions, and in turn adding its own contribution to the

state of the technology. If this technology is to grow and flourish, then

it must be founded upon a quantitive science similar in substance to the

scientific bases of other technologies. This implies the development and

utilization of classes of mathematical models, optimization techniques, and
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other theoretical structures necessary for the growth of the technology.

The development of a technology typically arises from the repeated

application of the experimental-theoretical cycle. That is, experiments

to test and extend the present theoretical status of the technology are

planned and conducted, and then these are.followed by modifications to the

theoretical structure based upon the results of the experiments. This

paper will present a potential contribution to the theoretical side of

this educational technology.

One of the crucial questions to be considered in the future development

of computer-aided teaching systems is the extent to which the latent

computational power of the machine can be used to make rational decisions

on the course of the instruction. A system that included such a decision

process in its operation might be termed "computer-directed" rather than

"computer-aided" instruction. This discussion will focus on the development

of a method for implementing such a decision process in a teaching system.

One of the discouraging problems encountered in a theoretical formulation

of the decision process in a computer-directed teaching system has been the

excessive computation required. If the decision process is to consider

any significant number of future trajectories that the student might

experience, then the computation time can become a significant limitation

in operating the system. This paper describes a technique that involves

a very small amount of computation time for implementing a truly optimum

decision policy in a computer-directed teaching system. Furthermore, the

results are applicable to a very large class of models of human learning.

As mentioned above, these results represent only a theoretical contribution

to the educational technology. The experimental testing and validation of
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these theoretical results are equally important -- and much more difficult

to achieve; this: then: represents only the first step toward the solution

of the problem.

ri. DECTSTON MAKING IN CAI -- A FORMULATION

This section presents a general formulation of the decision problem

in a tutorial computer-directed computer sysi:em. This formulation is not

nem; it has been described in one form or another previously
(2

:
6

:
7)

. It

is presented here to provide a general perspective for viewing the results

of succeeding sections.

The first question we should ask is: Why should decision processes be

incorporated into CAI systems? The answer to this question follows from

the natural desire to develop a teaching system that will detect and respond

to the differences exhibited by individual students. Thus: we should like

to design a decision logic (sometimes called a branching logic) into our

CAI system so that the available past history of the student can be used in

some meaningful way to influence the future course of the student's instruction.

lb begin then: let us imagine a hypothetical student with a particular

history for whom a decision policy is required. This decision policy will

be encoded into the computer teaching system: .and will prescribe for the

system what alternative instruction should be provided for this student and

for other students with different past histories. The role of the past

history in the decision process is extremely critical; for this quantity

represents a parameterization of the available information about the student

that will determine how well the system adapts to the individual learning

characteristics of the student. We shall denote the past history of our



hypothetical student by h and shall have more to say on this subject later.

The existence of the decision process within the teaching system implies

that there must be a set of alternative courses of action available for

dealing with our hypothetical student. Since this set of instructional

alternatives will typically be dependent upon the student's current status,

and furthermore since we have agreed to represent the student's current

status in the form of his past history) h ) then the set of available

instructional alternatives for the student will be denoted by A(h) .

For each of the alternative presentations of the material there will

typically be a question or set of questions to test the student's compre-

hension of the material. The student's responses to these questions provide

additional information that we must incorporate into his past history to

guide the future course of the instruction. Since each of the possible

responses that might be elicited from the studerit will have a different

impact upon the student's updated history, it is necessary to consider all

possible responses explicitly. Thus we shall assume that for each possible

instructional alternative there is a finite set of possible student responses,

and we shall denote this set of responses by R(a) where a is the

particular instructional alternative from A(h) that has been presented to

the student.

With this representation of the instructional alternatives and student

responses we can illustrate the complete decision problem with the decision

tree shown in Fig. 1. As shown in that figure, for a student with a past

history) h there is a set of instructional alternatives each of which

may produce a sample from the set of possible student responses. At the

conclusion of this response there will be a new past history, h' and
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a new decision to be made; and this decision-response cycle may extend a

considerable distance into the future until the instruction is terminated.

The problem then is to calculate the optimum instructional alternative at

each decision node taking into account the possible effects that this may

have on the future course of the instruction. A brief look at Fig. I will

show the tremendous number of possible student trajectories through the

decision tree that must be considered if all possible paths are to be

accounted for in the calculation. Fbr example) if there are five instructional

alternatives at eadh decision node in the tree and if there are two possible

responses by the student for each instructional alternative) and if we

desire to calculate the optimum instructional alternative based upon those

paths by the student that extend ten presentations into the future) then

this will require the consideration of ten billion possible student tra-

jectories for each decision. This is clearly an infeasible solution to

the problem. This paper will propose an alternative way of viewing this

decision problem that will eliminate all but the most trivial of calculations

for each decision in the course of a student's instruction.

To continue with the formulation of the decision process) the selection

of one of the instructional alternatives at a decision point req:Ares a

criterion for appraising the relative value of each alternative. More

explicitly) we shall need a quantitative representation of the purposes of

the instruction as well as the relative costs of alternative presentations.

For our purposes here we shall assume the existence of an utility function)

u
a
(k)h) thft specifies the immediate value that is accrued if alternative

a is presented to a student with past history h and the k
th

response is

elicited. This function describes the immediate rewards (or costs) that are

associated with eabh particular stage in the decision tree of Fig. 1. There



is the additional question of the terminal rewards (or costs) that are

accrued by terminating the instruction with the student in a partilalar

status. For this purpose we assume the existence of a terminal utility

function
1

u
o
(h) : that describes the utility associated with terminating

the instruction for a student with a past history h A particular

example of such a utility structure will be illustrated in Section IV.

In considering the different possible student trajectories in Flg. 1

we must weight the utilities associated with each trajectory by the

probability that the student will in fact traverse that path in the decision

tree. This requires a model of student behavior that allows the calculation

of the probability that a student will produce a particular response to

the presentation of an instructional alternative. Thus we assume the

existence of a . mathematical model for calculating the probability,

p(klh:a) : that a student with past history h who has been presented

instructional alternative: a will respond with the k
th

response

(where k e R(a) a4d a e A(h) ).

These definitions lead directly to an equation that defines the

maximum expected total utility v(h) that can be achieved for a student

with a particular past history: h To write this equation: consider

all possible responses that a student might produce for a particular

instructional alternative. For each such response there will be an immediate

utility that is accrued plus the contribution from all future instruction

that will follow with the updated past history, h' Thus a recursive

equation for the expected total utility is:

v(h) = max FE p(kIri)[ua(kol) v(h'n]
a e ANLkeR(a)

(1)
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In this equation we assume the existence of a rule for updating the

student's past history; that is, h' represents the past history associated

with the student who had a past history, h I was given alternative a

and who responded with the k
th

response.

The formulation of the decision problem represented by Eq. (1) is

a typical dynamic programming recursive equation. Previous works have

formulated the decision process in a computer-directed teaching system in

4,7)
a similar way. In particular, the reader is referred to the excellent

review article by Groen and Atkinson
(2)

The implementation of an actual teadhing system with a decision process

based upon this formulation was attempted in 1961(6). For this simple

system the number of instructional alternatives at each decision point

ranged from one to four, while the number of possible responses ranged

from two to five. In terms of the decision tree in Fig. 1, the calculation

of the optimum alternative at each decision node was carried out by exteEding

the calculations in Eq. (1) three stages into the future. The weakest

component in that early system was the mathematical model used for the

calculation of student response probabilities. Also, the particular

choice of past history parameterization for the student was very simple

and did not realize the full capabilities of the system. In the next

section, we shall consider a very general class of models that might be

used for describing student learning behavior. The incorporation of this

class of models into the decision process will alleviate many of the

shortcomings of that earlier system.

III. A CLASS OF MODELS

The first step in formulating a model is to attempt an explicit description

of our intuitive understanding of the phenomenon. One such description



of the instructional process defines it as the systematic attempt to

change the student's internal state of knowledge about the material being

presented. Suppose now that it were possible to describe these internal

knawledge states as a finite number of entities each of which represents

one possible internal state of knowledge that a student may occupy during

his course of instruction on the subject material. We shall refer to these

entities as states, and it seems reasonable at this point to assume that

they are mutually r;r.clusive and exhaustive.

Within the limits of this representation, the instructional process

can be viewed as the selection of alternative mechanisms for causing a

student to make transitions from one internal state to another. These

transitions will seldom be deterministic; that is, a particular instructional

alternative will generally only cause a transition from one state to another

state with a certain probability. Thus, we define as a parameter of the

model ttm quaraity t..(a) ; this is the probability that a student

th.

occupying the i state will 'ake the transition to the j
th

state if

he is presented with the material associated with instructional alternative

a

With this description for the influence of instructional material upon

a student's internal state of knowledge, the question arises: How can we

gain access to information concerning the internal state of the student?

The mechanism for accomplishing this) of course) is to ask the student

questions, the answers to which will depend upon the student's internal

state of knowledge about the material. Thus if we assume that there is a

discrete set of responses that a student will give for a particular instructional

alternative, a then we can model the relationship between the student's

internal state and his response. For this purpose we define the probability
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r jk( a) that a student who is presented instructional alternative a and

th
who is presently occupying the j internal state will give the k

th

response to the question associated with the presentation of the material.

There is an explicit assumption in this definition that the student's

response is dependent only upon his internal knowledge state. Figure 2 is

a graphical representation of this class of models.

Now we must consider what additional parameters of the student's past

history should be incorporated into the decision process as a result of

this model. If we somehow were given access to information concerning the

true sqte of the student, then this would be a very valuable component in

the parameterization of the student's past history. Since we seldom, if ever,

have perfect information about the student's state, the logical component

for.the student's past history is the current state of information about

the student's internal knowledge state. We can 'represent this state of

information as a set Of probabilities, Cg g where.is the
11 21 , gi

th
probability that the student presently occupies the i state. If this

set of probabilities is included as a parameter of the student's past

history, then we can visualize this set of numbers changing as the student

is presented with various instructional alternatives throughovt the course

of his instruction and as his responses to various questions are used to

update the state of information about his progress.

If a model of the type presented here is to be used in the decision

process in a teaching system, that is, if a model of this type is to be

used in calculating v(h) in Eq. 1, then two analytical results are required

from the model. The first of these is a procedure for calculating the

response probability, p(k1h,a) and the second is the mechanism for
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updating the past history h = Egi) A2, ...] as a result of presenting an

insructional alternative and observing a particular student response.

To describe the answers to these two demands let us assume that for

a particular student with past history h = Eg g ] we are considering
1' 2'

presenting instructional alternative a . This instructional alternative

will consist of some simple textual material followed by a question to test

the student's comprehension of the material. We shall further assume that

any transitions of the student's internal state occur prior to his response .

We shall consider the response probability, p(klh,a) ) first. This

quantity can be easily calculated by considering all possible states that

the student might occupy after presentation of the textual material. The

application of el_fAentary probability operations yields.for this quantity:

p(klh)a) = Pr(prior state = i) succeeding state = j) k
th

response'

i j
h, give alternative al

(2)

=IE It.t..(a) a)
ij

rjk(

The procedure for calculating the updated state probabilities)

...] ) can ba derived in a somewhat analogous way. Let us suppose
1 2

that a particular student with a past history h = [g
1,

g
2'
3 has been

given instructional alternative a and has given the k
th

response to the

*This is the so called pre-response transition case
(7) Similar results

can be easily calculated for the post-response transition case in which

state transitions occur after the student's response.



question associated with that alternative. The updated state probability,

70. 0 can be written through a simple application of Bayes' rule plus some

elementary probability operations as:

S5-1 Pr(prior state = succeeding state = jlk
th

:= response, h,
J

give alternative a )

Pr(prior state = i, succeeding state = j, k
th

responselh,

give alternative a

p(kih,a)

3t.t . .(a) r (a)
1 13 jk

rjk(
a) ( 3 )

Thus this class of models provides a very simple mechanism for

calculating the response probabilities as well as updating the past history.

In the next section we shall show how this model can be easily incorporated

into the optimum decision calculation of Section II.

IV. THE OPTIMIZATION PROBLEM

In a tutorial computer-aided teaching system it is often desirable that

each student be exposed to certain basic information even though the actual

presentation of this information may take on many forms. The general

branching network shown in Fig. 3 illustrates a very general and flexible

technique for achieving this result. In the general branching network each

student starts the instruction at the first level. On the basis of the

initial evaluation of the student's past history, one of the instructional
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Figure 3 The General Branching Network
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alternatives leaving the first level is presented to the student. Each of

these instructional alternatives will be assumed to consist of a presentation

of some textual material followed by a question designed to test the student's

comprehension of the material. If the student responds with the correct

answer to this question then he is placed at the final level corresponding

to that alternative. On the other hand, if the student's response is not

correct, then we shall. assume the existence of some assignment rule that

places the student at some level appropriate to that response. In other

words, we shall assume the existence of a function -E(mlialk) that determines

the next level for a student who responded with the k
th

response to the

n
th instructional alternative leaving the m

th
level. Once this student

has been assigned this new level, then of course a new decision calculation

must be carried out to determine which of the instructional alternatives

leaving the student's level should be presented next.

Gilien such a general branching network for a set of subject materialsf

it seems feasible that one of the models discussed in Section III might very

well describe the student's learning dynamics while progressing through the

instruction defined by the various alternative presentations in the branching

network. Thus, let us assume that such a model does indeed exist and that

there is a set of transition probabilities, t(a) and response prob-
ij

abilities, rjk ( a) for each of the instructional alternatives in the

branching network -- that is, for each of the blocks in Fig. 3. The problem

then is to use the optimization procedure in Eq. 1 with this formal structure

to calculate, on the basis of the student's past history, the optimum

alternative at each level in the branching network.

To accomplish this task we must define the student's past history. For



the general branching network of Fig. 3 and a mathematical model of the form

in Section III the appropriate parameterization of the student's past

history is his current level in the general branching network and the current

state probabilities. In other words, we let h = [mIlt1,7t2, ...] where m

is the student's current level in the general branching network. For a

th th
student at the m level who has been presented the n instructional

alternative leaving that level and who has responded with the k
th

response,

the updated past history is h' = ...] where is

calculated according to Eq. 3.

The one remaining component for the optimization is the utility structure.

One reasonable description of a utility structure, and the one that will be

used here, defines a presentation cost for each of the blocks in the general

branching network and also defines a terminal cost that is dependent upon

the student's terminal state when he finishes the instruction at the last

1.:qel. Thus, we define the presentation cost for the n
th

instructional

alternative leaving the m
th

level as c
mn

The terminal cost at the

conclusionoftheinstructionisjustEN.7(.wherey.is the cost of

terminating the instruction with the student in the i
th

state. Since

this utility structure has been postulated in terms of cost rather than

values we must transform the value formulation of Eq. 1 into a cost

formulation. This is easily done by multiplying that equation by (-1)

and replacing the "max" by "min". For this cost formulation we can define

the quantity w(n) as the total expected optimum cost for a student who

This presentation cost can also be made dependent upon the student's response

with no loss in applicability of the results. This ge4rality will not be

included in this section for the sake of notational convenience.



is at the m
th level and whose vector of state probabilities is

n = [Tc
11
g
2'

] . The substitution of these definitions into the general

formulation of Eq. 1 yields the following recursive equation for this more

specific problem:

wm(n) = ninin[p(kihIn)[cinn + w(11')i.1

mini +Ip(kIhIn)wz(il')]
n L mn

(4)

In Eq. 4 the subscript 4, is the assignment function ,t(mInIk) and

the elements of the updated probability vector axe calculated from

Eq. 3. The cost associated with the terminal level in the branching network

is of course just

w(n) =2 Yi"i.

where X is the last level in the branching network.

Appendix A uses the formulation in Eqs. I. and 5 to show that the

quantity wm(11) can have the following relatively simple form

min min[X
w a

(m)

j(n) = nij
g

m n i

(5)

(6)

where n ranges over the set of instructional alternatives leaving the

m
th

level and i is simply an integer valued index for each instructional



alternative. With this simple expression for the minimum expected cost)

the optimum decision policy for all student past histories can be written

very simply:

Select the instructional alternative) n ) for which the

quantity min la( m ) g is minimum .

i
i

(7 )

(m)Once the values for a .. have been calculated) the implementation of this
nij

decision policy is very simple. The extensive searches throughout the

decision tree have been eliminated through the prior calculation of a set

of optimum policy regions that uniquely determine the optimum policy as

a function of the student's past history.

Appendix B describes an iterative technique for calculating the values

of the a coefficients in Eq. 6.

To test out these ideas a simple but non trivial example was constructed

and the iterative technique of Appendix B was used to calculate the optimum

policy regions. The mathematical model that was used is the simple two

state model shown in Fig. 4. As can be seen) this model has only two

parameters associated with it) the single transition probability, t

and the single response probability, r . This is the simple one dement

model that has been considered so extensively in the literature(1/3,4)5/7).

Thezerd'state in this model is generally associated with the unconditioned

or unlearned state) and the"onestate with the conditioned or learned state.

There are two parameters for this model; the transition probability t is

the probability that a student in thezerd"state will make the transition

to the*onestate on a particular presentation of the instructional alternative,
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and the response probability; r ; is the probability that a student in

the zero state will still respond with the correct answer (this is often

referred to as the "guessing probability").

Figure 5 shows the sixteen level branching network that was used for

the example. In this figure; the values for the transition probability,

t ; and the presentation cost cum are shown within the rectangle

representing that instructional alternative. The outputs from each block

that exit from the side of the rectangle represent the level assignment

function for incorrect responses to the question associated with that

instructional alternative. The response probability, r was equal to

0.2 for all of the alternatives. The terminal costs, yo and yl

were sot equal to 30 and 0; respectively. (There is an interesting physical

interpretation for the quantity yo in this formulation of the problem.

This quantity is simply the maximum amount that we are willing to pay in

order to achieve the transition of a student from the zero state to the

one state.)

When the iterative procedure described in. Appendix B was applied to

this problem, approximately 11 iterations were necessary for convergence

of the optimum policy regions. This optimum policy is shown in Fig. 6.

The optimum policy region for each of the instructional alternatives is

plotted as a function of the state probability; gl . Some typical

trajectories that students might take through the general branching network

are also plotted.

It is interesting to consider the speed of convergence of the iterative

process. Figure 7 shows the total expected instructional cost starting

at the first level for several of the decision policies that were calculated

during the 11 iterations. As can be seen the iterative process converges
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quite rapidly in terms of the total expected cost function. As an illustration

of the efficacy of such an optimization procedure, Fig. 7 also shows the

total expected cost for a student for whom the minimum presentation cost

alternative is always chosen. 'As illustrated in Fig. 7 this policy results

in a total expected*instructional cost that is sixty to eighty per cent

ikigher than the optimum policy.

V. SUMNIARY AND CONCLUSIONS

As indicated in the introduction to this paper, the results presented

here only represent the first (and probably the easiest) step in an

evolutionary sequence of theoretical-experimental advances to the educational

technology. This paper presents an optimization procedure for a general

class of learning models; the procedure essentially eliminates the tedious

costly calculations associated with a straight-forward decision tree optimi-

zation calculation. Hopefully, later contributions to the educational

technology will explore some of the experimental implications of these results.

Specifically, much work remains to be done on the validation of models

and more experiments must be conducted to test the efficacy of optimum

decision processes in computer-directed teaching systems. The potential

benefits of educational systems that truly adapt to the individual learning

characteristics of the students will justify the allocation of future

research resources toward these goals.
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Appendix A: THE OPTIMUM POLICY COST FUNCTION

In Section IV the following recursive equation was derived for

the optimum policy cost function for a student with past history

h = Cm g g . 3

w (n) = P(k111)n) wz(111m n mn

where n is the number of the instructional alternative leaving the

m
th

level. This appendix shall show that Eq. 4 is consistent with a

solution of the form:

w (H) = n g
min Inin[E (m) Iangj gj.

(4)

(8)

First of all; the tvm quantities p(kIhIn) and 10. in Eq. 4 can be

written directly from Eqs. 2 and 3 in Section III:

p(kihIn) = gitij(a) rjk(a)

i j

. ij
g.t..(a) rjk(a)

p(k1h211)Igitij (a) rjk

. ..

(a) (10)
1

gt(a) a)rjk(

2., j

(9)

where a represents the n
th instructional alternative leaving the m

th

level. Now if we assume that wz(70) on the right side of Eq. 4 is of

the form shown in Eq. 8 then the substitution of TO. and we(7t') into



Eq. 4 yields:

w(n) =

1:3r.t..(a) a)

min min minI 1 lj
rjk(

c p(k1h,n) ] (11)
n mn n' g n'gj

p(k1h0n)

where n' refers to the n'
th

instructional alternative leaving the new

level -E4m;n;k) . Now since the response probability p(klhon) is

independent of n' and g ; this quantity can be canceled in the final

term of Eq. 11 to give:

min min minI
w
m
(n) =n[cm

n
+It at/r.t. (a) r

jk
(a]n n gj 1 lj

+
n mn E

min
n'

mi n
rik(ad

(12)

j

For each set of state probabilities n = bc1,7c2, ...) there will be

a set of indices, s(n) = [ni;g1;11.;...ngkl...] that satisfy the

last two minimizations in Eq. 12. In other words; for each value of n

we define n and g
k

as the two indices that satisfy the minimizations

in Eq. 12 for the k
th

response; and s(n) is the set of these indices.

Furthermore; the number of possible such index sets will be finite; and

so if we were to investigate the space of possible values for the state

probabilities, we would find this space divided into regions each with

its own value for the index set s(n) . For the sake of this development,

we shall define an index over these regions; that is we shall Avt h

denote the h
th

region in the space of state probabilities and S
h
(n)

is the set of indices corresponding to this region.



Now by the definition of this index set) we can rewrite Eq. 12 as:

w (n) =
min min

(1° .t..(a) r. (a)] (13)
m n mn h n'g j ij jk

k k
c

i k j

where n and g
k

are elements of the h
th

index set and h ranges over

the possible index sets, Sh corresponding to the various regions in

the space of state probabilities.

And finally by using the fact that the sum of the state probabilities

must be unity we can move c
mn

inside the summation to give:

wm(n) = (c a:(9 .t..(a) r. (a))-1 (14)
n n g j ijm jk

k k
k j

Eq.4 is of the same form as Eq. 8 with

a(m) = c (4-)-) t .(a) (a)
nhi mn n'k g

k
j ij

rjk

k j

Thus/ we have shown that an optimum policy cost function of the form

(15)

shown in Eq. 8 is consistent with the recursive equation of Eq. 4. Of

course, the terminal cost function in Eq. 5 is also in this form) and so

the argument is complete.

Since the optimum instructional alternative is just the one that

minimizes the cost function, it follows that the Ces that determine

w(n) can also be used to prescribe the optimum policy as de=44.7ibed in

Eq. 7.



Appendix B: THE CALCULATION OF OPTIMUM POLICY REGIONS

This appendix describes an iterative scheme for calculating the

optimum policy cost function, wm(n) . The basic equation defining the

(z),
iterative process is very similar to Eq. 4; if w

m
kn) is the optimum

policy cost function after the z
th

iteration, then we define the process

by:

wi(:+1)(n) = itn[cm. p(kih,n) vir)(n1)]

for z 0 . The process is started by assuming an initial value for

w(0)(n):

w(0)(n) 0P9g.
oj

(m)where the a . 's are to be specified later. Of course) the terminal
raj

cost function will always be equal to

(16)

(17)

(z), ,

wx kn) =1; yiv forall z (18)

where A is the terminal level of the branching network.

According to the form for wm(11) shown in Eq. 6, a convenient method

for specifying the function is by several sets of Ws -- one set for each

possible combination of n and g in Eq. 6. Each iteration then amounts

to using the previous sets of a's to calculate new sets of a's for each



level. The complete iteration process thus consists of the following steps:

1. Set up the initial values of the a's for each level.

2. For each level m , search through the space of possible state

probabilities, E , and find all those sets of a's that or
/ -

the basis of the a's calculated on the previous iteration,

(Z), N

determine the value of w
m

01) .

3. Check to see if the new values of the 00s are sufficiently

close to the previous ones to justify stopping the iteration

process; if not, return to Step 2.

One possible method for carrying out Step 2 is first to find the

sets of Ws at several points throughout the space of state probabilities;

e.g. at the points defined by vl = 1, v2 = 1, v3 = 1, ... . The

intersection of the hyperplanes defined by these sets of 00s ,

v. , will generally determine one or more additional points in
. ngi i
i

the space of state probabilities, and the a's for these additional points

can be added to the list of a's for the level under consideratici. This

process continues until there are no intersections Of the hyperplanes

that yield a new set of 00s for the level under consideration.

This process of finding a new set of Ws for a particular point,

n 0 in the state probability space is not a difficult one. Equation 12

can be used to find the appropriate values of n, n;c, and gk and then

Eq. 15 can be used in the actual calculation of the 00s .

In practice, there is a slight modification of Step 2 in the iterative

process that yields somewhat faster convergence. For this modified version

of Step 2, we start with the next to last level (X-1) and work backwards.

In addition in the calculations of w
m
(ID we use the valaes of the a's



already, calculated durina the present, iteration when calculating w2(10)

forsnylgreater than m.

The proof of convergence for this iteration process proceeds by

induction. Suppose that w(z)(IE)4:w
M

(1E) for all m<X, and all IE.
(z-1)

Then since p(k111,0?0, from Eq.16 we have:

(
wm

1-1)
(0)< min [c + p(kih,n) w(z-1)(11)] = w(U)

n mn
z (19)

Thus, if we can find an initial set of a's such that w
M

(1[)<:w
(0)

,

(1)

then the sequence of iterations will yield a monotcatically decreasing

sequence[W(°)(1E), wr(112)(D) .] bounded below by
minr

Lc ]; and this will
n mn

prove convergence.

The first iteration of the process yields

w(1)(10 = 4.

m n
14:p(k1h,n) for 1<m<CXmn

3

(20)

where we have substituted Eq.17 into Eq.16 with z=0. The problem now is

to find a set of values for the a 's such that the expression in Eq.20 is
oj

less than Ea.(m.)r. for all It .

o3. 3.

If we substitute r. from Eq.10 into Eq.20 we have:

mm1
wr(111)(I0 = ri a(4)t..(a) ri(a)]

oj 13
j k

mr
(2) t..(a) rjk(a))]

min[I:
1

cmn + 40j 13
(21)

Now w1) MO will be less than Ea611.) r. for all 11 if there is same in-
(

. 1
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structional alternative, n, for which:

a (m) = cmn
j

Oj 13
- t + I: ()I° t..(a) (a)

o i
r
jk

,k

(22)

where t>0. Thus, if Eq. 22 is satisfied for some t>0, the condition

w(1)(ID< w
m

(n) will be true and convergence of the iterative process isA
m

proved.

It can be shown that the set of simultaneous linear equations in Eq. 22

will always have a positive solution as long as the quantities (cmn -e ) are

positive. Thus, we can be assured of convergence of the iteration process if

we select for each level m an instructional alternative with c
mn
>0 and

then solve Eq. 22 for the starting a's. Of course, in most practical situa-

tions the solution of these equations will not be necessary, some reasonable

set of initial a's will usually suffice.


