DOCUMENT RESUME

ED 027 743 EM 007 134

By-Fasana, Paul J., Ed.; Shank, Russell, Ed.

Tutorial on Generalized Programming Language s and Systems. Instructor Edition.
American Society for Information Science, Washington, D.C.

Spons Agency-National Science Foundation, Washington, D.C.

Pub Date Jul 68

Grant-F-NSF-GN-657

Note-65p. Manual based on materials prepared and presented by Thomas K. Burgess and others at the
Annual Convention of the American Society for Information Science (New York, October 22-26, 1967)

EDRS Price MF-$0.50 HC-$3.35

Descriptors-*Computer Science, *Computer Science Education, Information Retrieval, Information Storage,
*Manvals

Identifiers-COBOL, FORTRAN, PL I, SNOBOL

This instructor’s manval is a comparative analysis and review of the various
computer programing languages currently available and their capabilities for
performing text manipulation, information storage, and data retrieval tasks. Based on
materials presented at the 1967 Convention of the American Society for Information
Science, the manval describes FORTRAN, a language designed primarily for
mathematical computation, SNOBOL, a list-processing language designed for
information retrieval application. COBOL, a business oriented language; and PL/L a
new language incorporating many of the desirable features of FORTRAN and COBOL
but as yet implemented only for the IBM 360 computer system. (TD)

TR W,

U.S. DEPARTMENT OF HEALTH, EDUCATION & WELFARE
OFFICE OF EDUCATION

THIS DOCUMENT HAS BEEN REPRODUCED EXACTLY AS RECEIVED FROM THE
PERSON OR ORGANIZATION ORIGINATING IT. POINTS OF VIEW OR OPINIONS

STATED DO NOT NECESSARILY REPRESENT OFFICIAL OFFICE OF EDUCATION
TUTORIAL ON POSITION OR POLICY.

-

ED027 7453

GENERALIZED PROGRAMMING

LANGUAGES AND SYSTEMS

Instructor Edition.

Edited by 4
Paul J. Fasana %
Columbia University Libraries
New York, N. Y.

and

Russell Shank

The Smithsonian Institution
Washington, D, C.

: Based on materials prepared and presented
'(i} at the 1967 ASIS Annual Convention

Principal Tutor: Thomas K. Burgess

Partially supported by a grant from the
National Science Foundation (GN-657)

Tutorial Subcommittee

Conference Program Committee

American Society for Information Science
(formerly American Documentation Institute)
Annual Convention (1967)

New York, 1968

EMOO7T 134

L R A M CAR S Sal s i

Rt indd

ADI Tutorial Manuals
PREFACE

A prime responsibility of a professional society is to foster
continuing education activities covering new developments in topics
of importance to the work of its members. This is particularly true
in rapidly expanding and highly complex technologies such as those in
the field of information science.

With this view, the 1967 Conference Planning Committee of the
American Documentation Institute (now the American Society for Informa-
tion Science) chaired by Paul Fasana of the Columbia University Libraries,
established a Tutorial Subcommittee to organize training sessions for
presentation at the Conference. The Subcommittez, under the direction
of Russell Shank, then Associate Professor at the Columbia University
School of Liorary Service, agreed to develop three workshop tutorials
for the following areas: elements of information systems; electronic data
processing concepts; and generalized programming languages and systems.,

The tutorials on these topics ran concurrently. Each began with
a general session in which the tutorial leader gave an overview of the
topic to be covered. The participants were then formed into smaller work-
shop or seminar groups for detailed instruction by a team.sf tutors,

Fach tutorial lasted the entire day. The general sessions were limited
to about 100 people; seminar groups were limited to about 25 people.
In the seminar groups each of the tutors either covered the entire topic
simultaneously, or presented a part of the information to be covered,

repeating their presentations as groups were rotated among them.

~ii-

St

In planning the tutorials it was apparent that syllabi or work- -
books were needed to assure that the basic information to be presented
was uniform and organized for the instructors of each of the groups. It
was assumed that if syllabi were carefully prepared they could be made
generally available and be useful in similar courses at other national
and local meetings of information science groups.

Three manuals, covering the three different topics, were prepared and)
used experimentally at the Conference. Initially, it was hoped that each
manual would contain a comprehensive outline of the topics to be pre-
sented, a display of the illustrations and visual material used in the
lectures, glossaries, bibliographies, and problems. It was further assumed
that the sessions would be more meaningful if an instructor's version and

a student's outline (with sufficient space for notes) were prepared. The

instructor's edition would have enough detailed invormation to allow other {w)
instructors to present the course.

The variation among the approaches to the three topics treated in the
tutorials made it difficult to attain this objective of uniformity in style
of presentation, at least on the {irst attempt. All three manuals have
been extensively revised for publication. This material will undoubtedly
be improved through refinements as the tutorials are presented elsewhere
in the future.

This package contains both an instructor's and a student's version of
the syllabus for each topic. Undoubtedly other instructors will wish to
make modifications of these manuals to suit local needs and instructor's

talents. These manuals are offered, therefore, primarily as examples for

-iii- {;)

for those who might be planning similar tutorials. The student
edition may be produced in gquantity locally as required.

Very briefly, the scope of each of the three sessions of the 1967
tutorials was as follows: ;

Tutorial I. Elements of Information Systems.

Paul L. St. Pierre, Principal Tutor

An introductory course for those with no previous experience or
formal training in systems analysis. Objective will be to familiar-
jize participants with the techniques (file analysis, record analysis,
flow-charting, costing) and the terminology of systems analysis. |
Those who complete this tutorial should have a knowledge of what
systems analysis is, what function it serves and how it can be applied.

Tutorial II. Electronic Data Processing Concepts.
Bruce Stewart, Principal Tutor

For those with little or no experience with EDP equipment. BEmphasis
will be on a functional description of various types of equipment.
Participants will be given an understanding of how such equipment works.
They will not be trained to operate particular machines.

Tutorial III. Generalized Programming languages and Systems.
Thomas K. Burgess, Principal Tutor

KT, et S RS AR

For those with considerable systems analysis and programming experience.
Presentation of a comparative analysis and review of the various pro-
gramming languages currently available, especially as they apply to
information storage and retrieval. The relative merits of different
program languages for use in textual analysis, file structure, file
manipulation, and similar topics will be stressed. Program languages
to be covered include FORTRAN, COBOL, PL 1, SNOBOL, and ALGOL.

Russell Shank
Washington, D.C.
July, 1968

—iv—

TABIE OF CONTENTS

m‘troduclbionOO.OOOO0000..0..0000000000000000000000001

FORTRAN.coeccococcscsccccsocoocscoscscsssceasccsscce)
SNOBOL: coecoeescocescoscssossscevscsossosscossssesell
SNOBOL, Appendix I.cececoceccccscoccescccscssccsses0
COBOLcocsososocsscesoococcccossossossossscnscsscseced

PI'/]-.OOOOOOOOOOOOOO.OOOOOOO...00.00000000.0000000.028

Bibliogaphy: FORMO000000‘0000000000000000‘0000""0
Biblioa‘aphy: SNOBOLOOOOOO0.00Q0000000000000000030""1
Bibliography: COBOI‘OQOOOOOOOOOO..00000000000000000""3

Bibliography: PL/lOOO0000000000.0.0.00000000000000""2"

TABIE OF FIGURES

Character Manipulation...eeecesesescocsscsssesnsss fOllOWs D.
Character (and Bit) IsolatioNeesesceeesocecsoocsss .fOLlOWS D.
Character (and Bit) Replacement........ee.eee.i....fOllows D.
Slip List............................:u...4........follows P.
Example of Procedure BlocKS...eeeecesccscccscreccssscscecesDe
Desirable PL/1 I-R System Features.......oe........follows p.
Arithmetic Capability..............................follows P.
Text Manipulation..................................fbllows P.
Example LeseveoeosooooosossasosssscasssanssesseesesfOllOWS D,
Dynamic Storage A110CAtiON. . eeesecccscosssssseesss fOLIOWS D.

Examle 3.......0lll....OO..........O..OO....ll....followsp.

“-Vie

10
10
11
30
30
33
3k

36
37

Generalized Programming Languages and Systems

A Review of Prograrming Languages with Reference to Information Storage

and Retrieval

Introduction

As the title implies, this manual is designed to discuss higher
level programming languages and their capabilities ror perrorming
text manipulation and data retrieval tasks., It assumes that the
student has some knowledge and experience with a programming language
and with information retrieval activities. It is not necessary or
the student to be familiar with all the languages discussed, but he
should have a working knowledge of at least one higher level language.
Tt was difficult for the authors to reduce the amount of information
available on each of these languages to & useful amount of information
which could be presented in a short period of time. Therefore, we
have had to limit our discussions to talking about the particular
structures of the various languages useful for IR activities. To
attempt is made to teach programming in any of these languuges; this
can be accomplished through the use of the bibliography and self~-study

on the part of the student.

-]

Separate consideration of the languages provides an examination
of the pros and cons of each. However, the decision is left to the
user as to which language to use. This decision must not only be
based upon the availability of the languages but also on the computer
environment in which he will be operating and the particular applications
which he is considering. We have chosen to discuss FORTRAN and COBOL be-
cause of their wide availability on all kinds of equipments and PL/I
and SNOBOL because of their particular characteristics and ease in per-

forming information retrievsl tasks.

Preliminary Assessment

Until recently, the design of programming languages took no con-

sideration of information retrieval requirements and applications.

As a consequeace, advancement of information retrieval methods has
been retarded. In addition, the design of hardwarz has not fully
considered information retrieval requirements. Many operating systems
for various computers are not designed to handle information retrieval
requirements. Because of time limitations, no discussions of hard-
ware and operating systems are included in this presentation. However,
hardware design must be considered when evaluating programming lan-

guages for use in information retrieval applications. Many of the

advantages or disadvantages of the various programming languages
which will be considered can be improved or diminished by either
the operating system and/or the computer on which the language
runs. Therefore, there is more involved in deciding which higher

level programming language to use than mere choice of language.

FORTRAN, which is one of the earliest compiler languages to be
developed, was primarily designed for mathemestical computation.
FORTRAN is not an easy language to use since it lacks string
ranipulation cepabilities, does not handle variable data, and has
limited input and output operations. It is, however, one of the
most widely implemented languages and is available in nearly every

conputer center.

SNOBOL is a list-processing language and was designed specifically
for information retrieval application. It is an easy language to learn
but uses a large amount of core storage and requires long production
run time. Although it is used in a large number of installations,

it has not been generally implemented.

COROL is a business oriented languegc but was not designed

specifically for information retrieval activities. Although nany

information retrieval tasks can be performed with COBOL, it is
awkward and difficult to do so., COBOL structures are rigid, and
string-manipulation and text-editing is difficult to accomplish,
COBOL is widely implemented and should be available in most computer

centers.

PL/I is the newest language to be discussed and incorporates
many of the desiratle features of both FORTRAN and COBOL, as well
as the list-processing languages. PL/I has only been implemented
for the IBM 360 computer system; therefore, at present there is
limited availability. Current experience with PL/I indicates that
the compiler is inefficient with a large amount of overhead in the
programs. Undoubtedly, as time goes on, PL/I compilers will become

more efficient.

B Aot Ct I

RIS AL il b F AV

2
2
=

IC

Aruitoxt provided by Eic:

O

[

FORTRAN

Characteristics of Fortran

FORTRAN is procedures oriented and was intended to compile

programs for solving scientifically oriented problems. Thus,

programs feature:

R P TN E A A TN 7

"Words" which are fixed in length
Arithmetic operations

Array handling

Matrix manipulation

Conditional branching

Algorithmic problem solution

IR Functions

The question to be considerd for information retrieval by
the programmer is whether or not the features listed above will
satisfy his needs in a particular program. These include the

following common functions:

(English) word matching
Word replacement

String manipulation

Sorting and editing
List processing
Phrase analysis
Syntax analysis
Concept associations

Hierarchical subject arrangements

b

Characteristics of an IR System

An analysis of these functions points to a system design

which features:

dacl eon

Character manipulation E
Variable length "word"

List manipulation

Extensive input-output
Array capability
Arithmetic capability

Matrix menipulation

Conditional branching

R

£lgorithmic problem solution

A e CaL NN Sl & SR O N

RS REP ACF RO TR

b e Sk A et

WA TP

Additional Fortran Features

Comparing the desired features of the system with those of
the FORTRAN compiled programs, it 1is quickly seen that all of the %
features of FORTRAN programs are needed, except the fixed "word"
length orientation. Not actually featured by FORTRAN but pro-

grammable are these important characteristics:

Variable length "word"
Character manipulation
List manipulation

Extensive input-output

AN L AR AT S S

AT TS, T R ETAT 3 TR R I e

R A" St

T V¥ T T O e

.
E
3
s
3
;
3
3
\
3
.

Character Manipulation

To gain character manipulation and variable word length ability
is a costly technique and wasteful of storage in that an entire
FORTRAN word is used to store a simple alphabetic character. For

eXample:

e

CHARACTER MANIPULATION
[’ud@@lu’iﬂa

Storage

/ NOW IS THE TIME FOR ALL un

[3 o7 W2 g

TEXT (1) I'n i b I b [b
TEXT (2) el b | b |b
{EXT (3) {w]lb | blob

§ b I'p [b]b

21 bo [b] b

000

Y EAD (5,1) (TEXT(I), I=1,80)
| FORMAT (80AI)

Greater efficiency can be attained if FORTRAN is used in a
binary or hexadecimal computer, since every bit configuration re-
presents a valid numerical quantity. In this case, FORTRAN
arithmetic can be used to isolate, replace, and generally manipulate

characters. This is shown in the following two illustrations:

el

NPT I e W e

AR R A TR T s A B S T AR R TR

kTR TN EGERT Y AT e WRAREAEAR e L TTRA YT

Caldiit e et

el

«10-

CHARACTER (AND BIT) ISOLATION
Packed Hexadecimal Words

(Now IS THE TIME FOR ALL !

TEXT (1) [N]e [w][b]
TEXT (2) [z [s b6]T]

TEXT (3) (W] Eb]T]
O o
O O
O o
NNNN = TEXT (2) /165 %4

NNNN NNNN s 1€ 3k 6

NNNN [coJoo[I [s |
NNNN s Joo[oo]ooO]

CHARACTER (AND BIT) REPLACEMENT -, |
Packed Hexadecimal Words |

- NNNN [T e [N [E |

T = JooJoo]ool

J [b Joo oo oo}

N(1) = NNNN /165 6 [oo]oo[oo] T]

’ N(1) = N(I) 5165k 56 [T JTooJoo]oo0] A)
N(2) = NNNN /16 336 [co][T [e [N]
N(2) = N(2) 3163k 6 [N [oo]oo]oo0
N(2) = N(2) 71655k 4 [oofoo] n JooO]
N(3) = 1/16%52 [oo] = JooJoo] .
N(4) = J /16 % %6 [0ofool00[b]|

NNNN = N(1)+N(2)+NE@)+N@[T | T [N [b |

Supplementary Aids

FORTRAN programs can be used for informetion retrieval but
only at the cost of decreased efficiency. By using supplementary
aids, the amount of inefficiency can be reduced. The aids can be

specially written subroutines in assembly language. These are

designed to provide the characteristics missing from FORTRAN, and

can be used with a FORTRAN program when needed.

There are published and unpublished subroutines which are
available, and before writing an original assembly program the

programmer should check the library at his own installation.

The use of SLIP (Symmetric List Processing; see reference

list) can be useful. Subroutines in SLIP are called "primitives"

which can be manipulated to build more meaningful subroutines.

These may be called into FORTRAN programs.

When SLIP is used, character lists are built with sufficient
headers, identification, and pointers to permit extreme flexibility
in manipulations within these lists, their sublists, sub-sub-lists,
ete. These include sort sequence routines and push-up and push-down

storage capability.

s A oh

1SiT dal'lS

ooooo)] [(mnLva) (*T1'an] [(wniva) (r1'an]{eoc o

| 11 [w3avaH |

A

el 0! el fssera]

AR Ty Ty e

SNOBOL

ETTVINTY

TERARTNT TR T ey

Background

SNOBOL is a high-level programming language specifically designed
for manipulating groups ('strings') of characters of varying lengths.
It was developed at Bell Telephone Laboratories (Hblmdel, New Jersey)
and has been implemented there in several versions for a variety of

different computer configurations.

This report assumes that the reader is familiar with SNOBOL 3.
SNOBOL L is implemented (at present) only for 0S/360, requires a
360/40 or larger, and requires about 240 K (bytes) of core. This

may pose difficulties for some potential users.

A version of SNOBOL 3 for 0S/360 is now in the final stages of T}
development by Dr. Luther Haibt, IBM, Yorktown Heights, New York. Un-

like other versions, this SNOBOL 3 is a compiler, not an interpreter,

It requires something over 128K (i.e., 192K) to implement. This sounds
as 1f it will be & useful and interesting tool, It has features not
in Bell Laboratories SNOBOL 3, but also lacks certain features of

SNOBOL 3 (i.e., back referencing).

Various versions of SNOBOL have been implemented (as of 1966) for
the following equipment:

IBM 1620
IBM 7040/4k
IBM 7094
RCA 601/604
SDS 930-940
CDC 3100

-12-

At Columbia, SNOBOL 3 has been used on the IBM 70L0-7090, Direct
Coupled System, under IBSYS and IBJOB, as well as on the 7020 alone.
SNOBOL U4 is being used on the 360/50 - 360/75 combination, running
ander ASP. SNOBOL U4 is also available for paired 360/62's, running

under HASP.

An interesting SNOBOL variant for 0S/360 has been implemented

(in two versions) at wrT,

Uses - General

Structurally, SNOBOL is closely related to the Markov algorithm
la.nguage,2 this makes it a powerful and general language. The majority
of users employ it in logical, algebraic, and nathematical analyses.

It is used to simulate compiler and other computer languages, and to

translate from one language to another.

Although consideired powerful and general, SNOBOL seens to have bheen
explicitly designed to deal with problems in information science and
librarianship, such as language analysis, bibliographic work, index

analysis, etc.

Operations

The fundamental operations of SNOBOL are:
1) The ability to name strings of characters of varying length

(TITLE 'WAR AND PEACE'j; AUTHOR ' TOLSTOY. ')

=13~

2) The ability to concatenate named strings; for example, if the
computer is told to print out: 'THE AUTHOR OF ' TITLE ' IS ' AUTHOR,

it emits: "THE AUTHOR OF VAR AND PEACE IS TOLSTOY."

3) The ability to make pattern-matches of strings. (For example,
to answer yes or no to the question whether the string of characters

nemed AUTHOR matches the literel string of characters 'TOLSTOY.')

SNOBOL permits a number of other logical operations on strings;
one of its most important values is that & takes care of common prob-

lems in dealing with alphabetic informatiocn of varying length. In

other languages their solution can be tedious and lengthy to program,
increasing the chances of logical, syntactic, and punching error, and ~

meking debugging difficult and time-consuming.

The syntax, logic and form of expression of SNOBOL are clear and
readily grasped, but more abstract than those of such languages as

PL/I or COBOL,

SNOBOL operates with the basic assumption that all strings of
characters are of variable length unless told otherwise (valuable and

important from the programmer's point of view),

SNOBOL also permits indirect referencing and has & well-designed
system for permitting the programmer to write and call his own generalized

subroutines, functions, or procedures.

wllie

As is the case with any high-level language, SNOBOL trades
ease of use and flexibility against efficiency of computer time.
Some operations (e.g., concatenation and pattern matching) seem
comperatively quite efficient. Other operations (e.g., character-
by-character sorting) are quite inefficient. Prototype programs
can be written rapidly in SNOBOL with the more inefficient sections
replaced later by machi.:2 language., Input/output (at least in
SNOBOL 3) is somewhat clumsy, as it was not really written for and
is not as much used for information science as for other purposes.
(Dr. Haibt's 360 SNOBOL 3, being mainly a compiler, promises to be

(relatively) more efficient than other versions.)

SNOBOL is ideally designed for manipulating natural language
information without resorting to explicit coding of input - com-
bining, comparing, substituting, deleting, correcting, permuting,

etc,

Uses - Specific

At Columbia, a number of programs or program segments for
bibliographic data manipulation for both experimental and production
purposes heve been written., A brief description of some of this
work might help the reader to determine if the language can be of
use to him more than a more detailed description of the language

itself.

=15

i

A
-

i
3
xd
E
3
-

g;
!

One mejor area of concern at Columbia has been to develop
language-independent unit operations (as in chemistry) for in-
formation handling; these cen be used for analysis of problems,
flow-charting, writing procedures in various computer languages,
assisting in language development, and better understanding of

bibliographic and indexing operations in rigorous terms.

Sixty or so of such operations have been written and tested
in SHOBOL, and about forty inserted in a procedures or function
librery. These include format and layout roubtines (column for-
mation, page layout, paragraphing, line justification) as well as

routines more directly linked with information science theory.

Two programs for book catalogs have been written - one simple
one by Jessica L. Harris was used for the production of a computer-
based school library catalog (Farmingdale, Long Islend - 10,000
titles). The second, by Brian Aveney, is a prototype program,
demonstrating how conventional bibliographic elements used as
access points may be recognized, and conventional entries, in
various types of arrangements, can be produced without explicit

tagging of elements in input.

Another program produces book indexes using human-created en-

tries, but provides by program all subordination and consclidation

=16=

of references, repetition of subjects continued from one page to the
next, page layout, page nurbering, running heads, elimination of
widows, capitalization, insertion of most function codes for printing,

and supplying index statistics.

The corrections, additions, and deletions routine used with this

program is completely general in that it may be used with any type of

material and requires no coding or use of line numbers. The index pro-

3
?‘
:

gram itself is completely general in that line width, page size, and
so on may be defined in terms of the needs of a particular index. A

still more general program, permittirg up to four levels of subor-

SEb il SAdah et A Sl R St A T s 3

dination, up to four columns per page, and insertion of pronunciation,

etc., with entries, is now being debugged.

Other examples of prograrming which might be indicative include
experimentation in automatic indexing, programs for three different
types of KWOD indexes, a generalized search routine independent of the
jinput data format, a tentative general biblicgraphic program, proto-

type journal (in the style of the H.W. Wilson Reader's Guide), index

prograns, frequency count routines, routines for internally tagging

| words or parts of entries, and so on.

Also written are routines for expanding index entries to permit
combining compatable existing indexes, a quite elaborate nrogran (by
Jessica L. Harris) for the analysis of thesaurus &nd suiriect headings,

§ and some work on directory production problems.

3
2
a -17-

A Ll S e Sl S LA M 3

SNOBOL has allowed all of these programs and routines to be
wrivten within 10 months with never more than three people pro-
gramming and with all of these people working full-time on other
projects. Up until 10 months ago, too, two of these three had

had no computer programming experience of any kind.

suma.ry

SNOBOL, while not an efficient processing language, is easy
to learn and debug, ideally suited to information problems, quite
flexible, very powerful, and likely to grow in use, efficiency,

and importance.

-l

FOOTNOTES

rdelbert G. Goff, 03/360 SNOBOL User's Manual, Boston,
June, 1967.

2Ma.rkov, A.A, Theory of Algorithms, Akad., Nauk SSSR, 1954,
(English edition OTS-USDC 1961) {citation taken from Rosen,
Saul, ed., Programming Systems and Languages. New Ycrk,
McGraw-Hill, 1967, p. 454,

~19-

APPENDIX I

Installations using SNOBOL (1966)

Dr. Hsu, in his Introduction, gives a list of installations using
SNOBOL. Some of these installations may have locally produced manuals

or text materials:

AVCO Corporation

Bellcom, Inc.

Bell - Vhite Sans

The Boing Company

Brigham Young University
University of California at Berkeley
University of California at Los Angeles
University of Chicago

Columbia University

University of Florida

FMC Corporation

Grumman Aircraft

Harvard University

University of Hawaiil

; University of Houston

: IBM France

; University of Illinois

‘ Imperial College (U.K.)

Lockheed Missile and Space Company
University of Maryland
Massachusetts Institute of Technology
University of Michigan

National Security Agency

New York University

Ohio State University

Polytechnic Institute of Brooklyn
Princeton University

Purdue University

Service Bureau Corporation
Stenford University

Technology Incorporated

USAF Academy

University of Utah

R aE AT st S SR s L e M e o St

aalllaidic it Bl Shc it}

FOTRIRSA T RTTR R T TR AR T T et

~50-

o AP I AT

- RS s S g

University of Washington
Washington State University
Thomas J. Watson Research Center
University of Wisconsin

Yale University

The list would doubtless be much longer if it were recompiled

today; including, for example, the Bronx (N.Y.) High School of

Science, the University of Delaware, and many others.*

TR

¥Robert Hsu and Laura Gould, A Linguist's Introduction to SNOBOL,

Honolulu, October 19€6.

2]

COBOL

Recommendation: If you have not had any experience with COBOL,
it is recommended that you read McCracken's "A Guide to COBOL

Programming."l

Background

Historically, COBCL grew out of the desire to develop a
procedure-oriented language that would be closer to the common
English used in the business world. A second goal was to get a

source language compatible with any computer. Work began on COEOL

in 1959 under ‘the direction of a group of computer experts, many
of whom had worked on somewhat similar "English-Language" systems.
The maintenance and development of the language was established
as one of the functions of a group called the Conference ON DAta

SY¥stems Languages (CODASYL).

The first formal report defining COBOL was issued in 1960j
that version of COBOL is referred to as COBOL-60. The next year
a more refined version was described, called COBOL-61, and is prob-

ably the most familiar one in use today.
COBOL-61

COBOL-6L consists of two aspects of language elements: re-

quired and elective. The original idea was to establish certain

2D

:
1
v
‘
;
4
3
E
¢
t‘
,
3
]
5
:
3

requirements that a source language must meet to be called COBOL.
The elective aspects of the language was left up to the discretion
of the implementor. In addition, many computer manufacturers have

added their own extensions to COBOL.
COBOL-65

In 1965 the CODASYL Committee revised COBOL again and came
out with COBOL-65, which is the version being used in most third-
generation equipment. This version also has been accepted by the

USA Standards Institute Committee on Common Programming Languages.2

STRUCTURE

COBOL consists of the following structural divisions
Identification Division
Environment Division
Date Division
File Section
Working-Storage Section
Report Section

Procedure Division

Tdentification Division identifies the source program and the

output of compilation. In addition, any other information such as

date, name of programmer, etc., may be included.

-23.

Environment Division specifies a standard method of expressing

s
E-; those aspects of a data processing problem that are dependent upon
.

the physical characteristics of the users particular computer.

Data Division describes the data that the object program is to

accept as input, to manipulate, to create, or to produce as output,

Data to be processed falls into two categories:

1. Data contained in files (input, output, report) and enters
or leaves the internal memory of the computer from a speci-
fied area or areas.

2. Data developed internally and placed into intermediate or
working-storage or placed into specific format for output
reporting purposes.

*} Procedure Division contains declaratives and procedures., De-

-

claratives allow certain procedural changes to be made during pro-
cessing.

EXAMPLE: The USE verb allows us to do special processings at the
beginning of files. Procedures are composed of paragraphs cor sections

in which all the operations of the data are performed.

ADVANTAGES OF COBOL FOR INFORMATION RETRIEVAL

1. The tabular representation of Information in the Data
Division (the level structure concept) provides an
' excellent capability for retrieving parts of established

files.

,) «2lta

2, The capability of sorting and merging within COBOL provides
a powerful tool for organizing files for retrieval of in-
fermation.

3. The ramilisrity of the language provides for easier use

by persons required to use the language.

4., The availabi.ity of compilers on many computers make it

T i

especially attractive. (Availability of COBOL files al
ready in use).

5, The ease of using subroutines for conversational access

e S A MAAA ad C b St

] via terminals.

6. The advantage of report writing capabilities within the

AT ST ATV

language.

ST TR T TR AR

DISADVANTAGES OF COBOL FOR INFORMATION RETRIEVAL

1. The languasge was not designed for Information Retrieval

ST TR T TR TAAT T ST Ae

and thus is often awkward and wordy.
2. 'The rigid level structure concept does not provide ease
of searching string data (text editing, string manipulation,

ete.).

The response time on conversational system is often not as

TR Y
L]

fast as other languages.

AR R DS NN T TR TR

wawww\:vw«f-m‘v-ma,ﬂw VAN W T R AN R ey TR
Z W

T TR T L S

B AC b Mca Mot M A

Ap T e

SRR T AT TLER AT eIy T R,

CURRENT COBOL SYSTEMS FOR INFORMATION RETRIEVAL

Because of COBOL'S file structure and universality, it has been
chosen for specific information systems. An example is the pro-
grarming of the MEDLARS system (Medical Literature Analysis and Re-

trieval System) in COBOL for use on the IBM 7094 at UCLA.

An important reason for choosing COBOL for an on-line retrieval
system is the prior establishment of many files required by the
system in previous batch processing system. This has been helped
by the expansion and use of COBOL in the direct access storage field
over the last few years. Two such systems tied into COBOL that are
currently being used are General Electric's Integrated Data Store

(IDS) and IBM's Index Sequential Access Method (ISAM).

GE's IDS Retrieval System

Integrated Data Store (IDS) is a new information oriented method
of integrating the operating functions of an information retrieval
system. It allows an efficient system for the storing and retrieval

of data. Some of the specific advantages claimed for IDS include:

1., Shorter time for design and programming of information
systems.,
2. Reduced costs in design and programming of information

systems.

26«

A A R L T R SRR AT AT ST T TR

K

#
Ny

3. More efficient use of disk storage capacity.
k., Reduced record meintenance, updating, and retrieval

time,

The IDS language provides & simplified means for record pro-
cessing in the environment of mass random access storage and ex-
tends the range of COBOL. This extension lies basically in four
additional IDS instructions: STORE, RETRIEVE, MODIFY, and DELETE.
These macro-instructions work in conjunction with, and supplement,
the normal COBOL language in handling files, records or fields.

Such extensions make COBOL into a more powerful retrieval language.

1BM ISAM Retrieval System

This system developed by IBM for use on the 360 series is aimed
at processing files either sequentially or randomly. It basically
operates on complete records and is organized sc that repid sequential
processing is possible. Indexed sequential organization by reference
to indexes associated with the file, makes it possible to quickly

locate individual records for random processing.

In this method of organization, the programming system has control
over the location of the individual records. The user,. therefore, needs
to do little I/O programming; the programming system does almost all

of it since the characteristics of the file are known.

P E -
-27-)
‘

1o b

3

o

atteie s S

4y iy T

TSN AR YR T R R TR e TR T R T TR AT R

,~.!"_ﬁ_)-s«rt B
" —

At

BACKGROUND

In 1963, the Advanced Language Development Commitiee of the
SHARE FORTRAN project was formed to recommend the successor language
for the currently available FORTRANs. The Committee was made up of three
SHARE members and three IBM representatives. The goals of the Committee
were to provide a language which would encompass more users while still

remaining a useful tool to the engineer.

The Cormittee found that many parts of the current FORTRAN
language were outmoded (such as overlapped I/O and processing, and
asynchronous operations), since hardware capabilities had increased
substantially since the development of the language. The Committee
published a report defining a (expanded) FORTRAN system in March,
1964 and in June, 1967, the second SHARE report came out defining data
structure, the report generator, and removing some of the system 360
restrictions. In March 1965 IBM announced its PL/I which contained
major revisions of the expanded FORTRAN defined by the SHARE reports.
The resulting definitions in the PL/I available today contained many
features that would look familiar to FORTRAN, ALGOL and COBOL pro-

grarmers, and several features alien to all three.

The first PL/I compiler availatle from a manufacturer was Release

I of the F level compiler by IBM for use under 0S/360 in 1966, though

28~

T AT AT A R

BAE ks e el el

AT EF T TN TR AR TR T ORESTT SR T

W SRR LR, TR T T
i T
H

it contained only & subset of the fully defined language and lacked
many of the features that make PL/I a flexible programming language.
In the spring of 1967 Release II of the PL/I containing nearly the
full language, in particular the RECORD oriented input/output cap-
abilities which gave it versatility for file heading in the use of
the direct access devices, but without list processing and asyn-
chronous capabilities. In the summer of 1967 PL/I D level for DOS/
360, the Disk Operating System, was released by IBM as a subset of
the PL/I lenguage. While IBM is the only manufacturer with current
releases of the language, other implementations are in progress or
have been announced. Digitec is said to be producing a PL/I compiler
for the GE 635/645 and the Sigma 7 computers. RCA is producing &
subset for its Spectra 70, and UNIVAC is also said to be working on a

PL/I subset.

General Languege Structure

PL/I provides program segmentation capability, which gives it its

modular program structure. Programs are organized into procedures or
blocks and may be made up of one or many blocks. These may be separated

from one another (external) or nested within one another (internal).

Blocks

Blocks provide two important logical functions: 1) they define
the scope of applicability of data variables and of other names so
that the same name may be used for different purposes in different
blocks without ambiguity; and 2) they allow storage for data variables
to be assigned only during an execution of the block and freed for
other uses at the termination of the bloek.

Certain blocks, called "procedure blocks", may be invoked re-
motely from different places in the program and provide means to

handle arguments and rsturn values.
Example of Procedure Blocks

MAIN: PROCEDURE OPTIONS(MAIN);

CALL A;
PROCEDURE;

&

CALL Bj
B: PROCEDURE}

CALL C;

END Bj
END Aj
PROCEDURE}

P
L X]

abpnbu Dy pajUaLIQ 31NPad0Id

uonn29x3 woibold snOU0IYIUASY

Ay111904 abonbup]-042DW

uonpjndiuoy Abdly puD X1DW

Ayjiqodo) dnawnIY

funoiauag oday Joj IndinQ pup ynduy ajqixa) 4
uonpjndiupy ajld dAISUdX3

bu1s5920.4d 91GDL PuD }si7

uonpo119ads a1nanayS pyog X8|dwo)

uonDI0| |y 36040} IWDUAQ

uonojndjupy buiss 3g pup J31O0I0YD
sa]qDIIDA Butys Jayonaoy) yibua bulkipA puo paxid
Aingoonjddy jo adoas abioy

$3.n094 WaysAs ¥-1 1/1d 8lqoaisag

€l
¢l
Il
0l

6
8
1
9
11
v
¢t
[/
R

Character Strings

PL/I has the ability to describe a wide variety of data types,
including Tloating point decimal numbers, and Tloating point binary
numbers of varying precision, fixed decimal and fixed binary numbers
of varying precision and complex numeric data. Of particular interest
to information storage and retrieval programming is the ability to de-
fine and manipulate fixed and varying length character strings and
fixed and varying length bit strings. i/ith varying length string
data the length of the string is kept automatically when performing
string lengthening or string shortening functions. Deta variables of
the type mentioned above can be grouped by using either arrays,
structures, structures of arrays, or arrays of structures., An array
is composed of elements of the same characteristics and each may have
up to 32 dimensions in the current IEM implementation of PL/I. The
data structure is a collection of variables and arrays not necessarily
alike in characteristics. Structures may also contain other structures.
Individual items of an array are referred to by 'subscripted names";
individual items of a structure are referred to by names that nay some-

times have to be qualified to avoid ambiguity.

In PL/I array names and structure names can be used as variables.
Either name may be used as an operand of an array expression or of a

structure expression and it returns an array or a structure result.

-31-

o3

P
o

Input/Output Capabilities

PL/I contains two distinct types of I/O facilities; stream-

oriented input/output and record-oriented input/output.

Stream-Oriented I/O

In stream-oriented input/output the input is considered as one
stream or continuous string of characters, with all data conversion
done on input. Similarly, on output, data conversion is done to con-
vert everything to character strings and the output is one continuous
string. There are three types of string I/O: data directed, list
directed, and edit directed. The first two provide free-form input
and output with little formaet control, while edit directed input/out -
put is much like FORTRAN type input/output statements with formut
specifications. However, unlike FORTRAN, the format specifications
are not rigid and allow variables and expressions to be contained with-
in the format list. allowing more flexibility than is available with
FORTRAN I/O. Stream input/output of the edit type may also be used on

internal files as well as the conventional external file type.

Record-Oriented I/0

Record-oriented input/output offers both speed and versatility in

file handling and is oriented to reading or writing logical records from

-32-

a peripheral unit. This method gives the ability for either sequential
or direct access of records which may be unblocked or blocked. Tiles

may be opened for input/output or for update and processed with record I/O.

Special Features of PL/I: ARITHMETIC CAPABILITY

Arithmetic operations and matrix and vector manipulations are

roughly the sene as those found in FORTRAN, having approximately the
same routines such as SIN, SQRT, etc. available in the PL/I library.
The same operators are available and expressions are formed in the
%:) same manner as in FORTRAN. However, variable types contained with-
in the expressions can be any of the data types allowed in PL/I in-
cluding bit and character strings. Conversion will automatically
take place upon evaluation of the expression, although there is a
considerable time and space overhead when writing mixed expressions

such as these.

=33

TweRe TR T e

sisoq yuawale Aq

JUAWale UD U0 pawJscjeud a4 suonjosado Ansay (9)
pawJoyesd aq ubd uoilpiuUsUodXa

pup® uoisiAlp ‘ uondnaisans Auapjiwis (p)

uonpotjdiynuu 1098 ¢ (T %)) X (%°T1)d =Y O
uonIppD XIIBW J + 9 = V (Q)
£p41D UD Ul usgsuawip 2¢ 0} dn (o)

suonptado Apaly

‘3-(2%%0) %0 +9=YV
* NdWVX3
suo1}nsado 3 %’ -° +/
|0B|D JO UDJ}I0) O} JDjIWIS AJAA

ALITI9VdYVD OJIIIWHLIYEV

P T P P ST I I S T

€

[/
T

E R T R I T T P N A L st

Text Handling Features

PL/I contains basic but versatile character string manipulation

facilities, including:

- Comparison of character strings.

- A concatenation operator,

- Extracting and setting substrings of character or
of bit strings, (SUBSTR).

- Scanning a character or bit string for certain

) character or bit configurations, (INDEX).

- Converting character strings to bit strings and bit

strings to character strings, and assigning bit

configurations to character strings, (UNSPEC).

g -3k

{ (V) 93dSNN ~ ¥1S9 Buins ug oy burg 191040y buiIsAu0)
* @,0T0T00TT,=(V) 03dSNN Buiys taypaoy) o) bulas yg buneauo)
Y (YIS) HIONTT = Adnbul ybusq jususung
buiyounes bBUuS
Z:mm d1S) X3ONI = T butysyol N¥3LLvd
tg=(‘wU'y) yrsgns sburnsgng buipsg
‘(w'u'g) ¥1s8ns = v sbuisqns 9NILOVYLXI

usyy g >y I uosiiodwo)
9 9=V uoi}puUal}nou0)

¢

-9 =Y butrow butns
 ONIAYVA (NBuap) ¥ILOVHVHD ONIYIS)

NOILYINdINVW 1X3L

...

J3dSNh
H1ION31

X3ANI

ERLAME]

<

--o&l.m

s T R O s
g = 55 -
pggenid e

TrORYRTE S g SIVTREIRAR R e

P WIRTT

IR TIRSE T R

()

Exannle 1

SEARC ¢

PROCEDUPE (STR,TNCL) 5
/% PROCEDURE TO SEARCH FOR SO.ETHING INCLOSED IN PAREWTHESLS
IN THE CHARACTER STRING, STR, AND EXTRACT IT AND PLACE
IT IN THE CHARACTER STRING INCL */
DECLARE STR CHARACTER(*),
INCL CHARACTER(*) 3
INDEX(STR,' (')3 /* SEARCH FOR LEVT PARENTHESIS */
INDEX(SUBSTR(STR,J), ')')3 /% SEARCH FOR RIGHT PARENTHESIS
AFTER THE LEFT #/
INCL = SUBSTR(SIR, J41, ¥=2); /[*EXTRACT TIE SUBSTRING*/

Ct
]

END SEARCH;

File Handling Capabilities

Most of PL/I file handling capabilities come with RECORD I/0
or a combination of RECORD I/0 and internal file capebilities of
stream I/0. PL/I implemented under 0S/360 provides the ability to
use all access methods available under the operating system which
includes support of both sequential and directly accessed devices
and is able to use variable length record 1nput/output as well.
Sequential and direct access methods, as well as all supported

peripheral devices can read and write variable length records.

Sequential Access

Sequential access may be done with either blocked or unblocked
records and may be buffered or unbuffered. PL/I supports(lndex
Sequential Access Method) ISAM, which provides a complete filing
system. Under ISAM, records are identified by alpha-numeric keys

of user-defined length, and indexes to all records in the file are

automaticallyr kept. The file may be accessed directly by these keys
or sequentially starting from any point in the file. Records may be

added or deleted and updated in either sequential or direct modes of

processing. Recoirds are placed in the file corresponding to the

collating sequence of their key. Under direct access methods, there

are three principle methods of referring to records in the direct

access file:

P

P STV €

Radahaiit it oa b an S UM I SRR NS e S L v.w'wm T

1) the relative record number;

2) the relative record number plus & key which
may be alpha-numerics;

3) relative track number plus a key which may

be alpha-numerics;

In 2 & 3 duplicate keys may be added to a file by specifying that

the record be placed in the first available space after the relative
record number if a record is already written in that spot. Similarly
extended search option is also available for the so-placed records.

Updating of files is available in a direct mode of access only.

Storage Control

Computer storage for any data variable in & PL/I program may be
assigned statically for the entire execution of the program or
dynamically during execution. Dynamic storage allocation within the
program permits more efficient use of variabie size data areas. Two

classes of autcmatic storage are available in FL/I: automatic and

controlled. When the variable has the controlled storage attributes,
the programmer may allocate or free storage £or that variable at any
time. Storage for the variable with automatic storage attribute is

allocated upon entry to a block and freed upon exit,

* §3110YLINOD
* GITT0¥1INOD

* ISI1-ONNO4 33¥d

.

X vt T X X R L 1 X J

1S1]-puno} yym ssanoud

* 1SI1-GNNO4 3LYI0TIV
* AYVYNOLLOIQ@ 33

Aipouonoip upm ssado.td

oo O &

¢ AYYNOILOI@ 3LVO0MYV
saynqupo mpp ISIT-AdNNO4
SJNQLIPD DIDP AYVYNOILIIQ HVIO3d
WY¥90dd 1/1d
J9VY0LS
3400 3409
431NdWO02 |\ @IsnnNn
*s9|qDIIDA 10} 3bDI0}S
J0 UOIID00}|D Pa}jjoJju0d Jawwpaboad ‘1

NOILVIO1IlY 39Vy0LS OIWVNAQ

§
:
:

AT Rl i

AV VIRRA SSHWTIRTIR T pend

%
2
o

Interrupt Handling

PL/I hendles interrupts generated by system or user generated
conditions such as data conversion errors, file conditions, page
conditions, I/O errors, etc. The interrupt handling routine gives
the programmer the opportunity to either correct the condition that
caused ‘he interrupt, or to do processing prior to closing of the
program. It also gives him the ability to supercede s;stem defined

action for such cases.

List Processing

PL/I provides in its definition primitive facilities for list
processing, although they have not been implemented yet. They are

said to be similar to the facilities offered by L6.

Asynchronous Operations and Tasks

PL/I allows tasks to be created by the programmer and provides
facilities for synchronizing, testing for completion, and assigning
priorities. By using the asynchronous operations which are to be
implemented in Release III of the PL/I compiler, programmers can use
computer facilities which can operate simultaneously (such as input/

output channels and multiple central processing units). Programs

<37

Exarple 3

Example of overlaoping processing with innut/output activities.

At PROCEDUPE 3
DECLARE OME EVENT,
THO EVENT;

>0 00

READ FILE (FILE#1) INTO
READ FILE (FILE#2) INTO

/* DO PROCESSINC DURLNG

WAIT(ONE) /% VAIT
YALT(THO) 3 /% WAIT

END Aj

/% ONE AND TWO ARE DECLARED AS */

/% EVENT VARIABLES */

{:TATNREC) KEY (KEY#1)
(SUBREC) KEY (KEYi2)

THE IMPUT TIMES/

FOR COMPLETION OF THE
FOR COLPLETTION OF THE

-EVENT(ONE) ;

EVENT (TWO) 3

FIRST READ */
SECOND READ */

AN
i 4

3

14
¢
A

may be written in which input/output units initiate or complete
transmission at unpredictzble times such as those found in disc

operations and terminal operations and which effectively overlep

these operations,

Compile Time Facility

The compile time facilities are a macro-language facility that

can be used to perform several functions. These include:

1) modification of a source program to change
variable names;

2) inclusion of strings of text into the source
program where the strings of text reside in
the user or system library;

3) conditional compilation of sections of the
source programj

i) generation of in-line code.

Limitations

"
The current implemeLtation of PL/I by IRM contains certain over-
heads in terms of speed and total program size. The large size of

PL/I programs is almost directly due to the extensive use of library

-38-

may be written in which input/output units initiate or complete
transmission at unpredictable times such as those found in disc

operations and terminal operations and which effectivzly overlep

these operations,

Compile Time Facility

The compile time facilities are a macro-language facility that

can be used to perform several functions. These include:

1) modification of a source program to change
variable names;

2) inclusion of strings of text into the source
program where the strings of text reside in
the user or system library;

3) conditional compilation of sections of the
source programs

4) generation of in-line code.

Limitations

|-\]

The current implemeLtation of PL/I by IBM contains certain over-
heads in terms of speed and total program size. The large size of

I&/I prograns is almost directly due to the extensive use of library

-38-

e =R AT e TR TR

sl

modules by the program such as those for error-monitoring, type
conversion, file opening and closing and many others. Speed of
execution is greatly affected by techniques used to accomplish

a given job, or by basic construction of the program (e.g., ex-
tensive use of procedures or of control storage). A list of pit-
falls for the programmer tc avoid which adversely affect the speed
of execution of & program can be found in Attachment 1 and also in
the PL/I Programmer's Guide IRM Form C28-6504-1. Release 3 of PL/I
from IBM has been developed to reduce overhead connected with many
of these areas. It may also offer the asynchronous and list pro-

cessing capebilities and is to be released in the 3rd quarter of

1967.

«30=

- e e e e s A e e o e e e it G T M AT S e B s o A s At Seoe e Re ke

FORTRAN

Some helpful reading material.:

l. G. Salton, "Data Manipulation and Programming Problems in Automatic'
Information Retrieval." PP 204-210, V9, N3, March 1966, Communi-

cations of the ACM.

2., Charles T. Meadow "The Analysis of Information Systems." John

Wiley and Sons, Inc. New York, 1967.

3. Charles Philip Lecht "The Programmer's FORTRAN II and IV.: McGraw-

Hill Book Company. New York, 1966.

e/
4, J. Weizenbaum "Symmetric List Processor" PP 524-5uli, V6, No. 9,
September 1963, Communications of the ACM.
5. R. M. Lee "A Short Course in FORTRAN IV Programming" McGraw-Hill
Book Company, New York, 1967 (This is one of many FORIRAN primers
available).
~
) T

ANNOTATED BIBLIOGRAPHY

Desautels, E.J., and Douglas K, Smith. "An Introduction to the
String Processing Language SNOBOL." in Rosen, Saul, ed. Pro-
gramming Systems and Languages. New York MbGraw-Hlll l§57.
(McGraw-Hill Computer Science Series) pp. 419 45k,

A complete general manuval for SNOBOL 3. The
Rosen book in which it appears is quite use-
ful for the comparison of languages and for
much incidental information.

Farber, D.J., R.E. Griswold, and I.P. Polonsky.
"SNOBOL, A String Manlpulatlon Language." Journal of the
Association for Computing Machinery, vol. ll, no. 2, January,

1964, pp. 21-30.

Covers the initial version of the language,
SNOBOL, and includes a discussion of the
desirable aspects of a language for string
manipulation.,

mma,DL,REGmwddaMIP.Rmmw
"SNOROL 3 Programming Language.'" Bell System Technical Journal,
vol. SIV, no. 6, July-August 1966, pp. 895-Olk.

Forte, Allen. SNOBOL 3 Primer: an introduction to the Computer
Programming Lenguage. Boston, MIT Press, 1967. $3.95 (paper).

Goff, Adelbert G. osj36o SNOBOL User's Manual., Boston, Brown
Unlver81ty, June, 1967 (mimeo).

A variant for 03/360 which has been implemented
in two versions at MIT.

Griswold, R.E., J.F. Poage, and I.P. Polonsky. Preliminary Report
on the SNOBOL U4 Programming Language. Holmdel, N.J., Bell
Telephone Laboratories, November 22, 1967. (SkDi) (offset)

~l}]e

AL Lot Gt S LA
N

Hsu, Robert, and Laura Gould. A Lineguist's Introduction to SNOBOL.
?onolu%u, Pacific and Asian Linguisties Institute, October, 1966.
mimeo).

Covers only the most basic and important
features of SNOBOL 3, Possible users should
not be deterred by the fact that the examples
are based on linguistic comparison of Proto-
Oceanic and Trukese.

Simon, A.H. and D.A. Walters. RCA SNOBOL Programmers Manuel.
Princeton, N.J., RCA Laboratories, December, 1064,

Accordiig to Desautels, this version has some useful extensions
of the languuge not in Bell Laboratories SNOBOL 3.

Wilson, David L. SNOBOL 3, a List Processing Language. IBM
Document no. l.4.024, 1620 General Program Library, November,
11, 1966.

For the IBM 1620. This version is slow
and has no provision for programmer defined
functions.

-7

TN A v T Sty

BIBLIOGRAPHY

BOOKS: COBOL

COBOL 1961 REVISED SPECIFICATIONS FOR A COMMON BUSINESS-ORLENTED
LANGUAGE, Washington D.C., U.S. Govermnment Printing Office, 1961.

General Electric, GE 40O SERIES COBOL LANGUAGE, Phoenix, GE
Computer Department, 1965.

General Electric, INTRODUCTION TO INTEGRATED DATA STORE, Phoenix,
GE Computer Department, 1965.

IBM, IBM SYSTEM/360 OPERATING SYSTEM COBOL LANGUAGE, New York,
IRM Programming Systems Publications, 1967.

iBM, IBM SYSTEM/360 0S COROL (F) FROGRAMMER'S GUIDE, New York,
IBM Programming Systems Publications, 1967.

McCracken, Daniel D., A GUIDE TO PROGRAMMING, New York, John Wiley &
Sons, Inec., 1963.

COBOL INFORMATION BULLETIN #9, New York, United States of America
Standards Institute, 1967.

PERIODICALS: COBOL

"A Detailed Description of COBOL," Annual Review in Automatic
Programming, Volume 2, 1961, p. 197.

"A Critical Discussion of COBOL," Annual Review in Automatic
Programming, Volume 2, 1961, p. 293.

"General Views on COBOL," Annual Review in Automatic Programming,
Volume 2, 1961, p. 3u45.

"A Critical Appraisal of COBOL," The Computer Bulletin, Volume U,
1961,

"Why COBOL," Communications of the Association for Computing
Machinery, Volume 5, 1962, p. 236.

43

- BIBLIOGRAPIY - PL/T

(1) Irwin, Larry. Implementing Phrase Structure Productions in PL/I,
Cotme ACH 10, 7 (July, 1967) 424,
(2) Lawson, Hareld ¥, Jr. PL/I List Processing. Comm, ACYM 10, 6 (Juse
1967) 358, 367
(3) PL/I: Language Specifications, IBM Corp. C28-6571-4
(4) Mitchell, R, VI, ; Christensen, Carlos; Myszewski, Mathew; Sampson,
' Carol., Au Informal PL/I Roundtable, Coilectinmn One¢, Massachusetts
Com.uter Associates, Inc, Technical Report Ca-6704=0511, April 5,
1967,
(5) Salton, G, Data Maninulation and Programming Problems in Auto-
matic Information Retrieval, Comm, ACH 9, 3
March 1966 204, 210,
(6) Raphael, B, Survev of Computer Languuges for Symbolic and Algebraic
Manipulations. DDC, AD-649401 (ilarch 1967)
(7) SHARE Advauced Language Conmittee, Report of the, (March 1, 1964.)
Revised Edition,
(8) Special Interest Group of Programming Languages (SIGPLAN) of the
T Los Angeles Chapter of the Associztion for Computing Machinery,
- PL/1 Bulletin No., 3.
(9) Weinberg, Cerald M., PL/I Programnina Primer, ‘lleGraw Hill Book Co.,

New York, 196¢. 273 pages.,

(10) Veiss, Eric A., The FL/I Converter., McGraw Hill Book Co., 1965
116 pages,

