
ED 024 577
By- Durst, Lincoln K., Ed.
Committee on the Undergraduate Program in Mathematics Geometry Conference, Part II: Geometry in Other

Subject s.
Committee on the Undergraduate Program in Mathematics, Berkeley, Calif.

Spons Agency-National Science Foundation, Washington, D.C.

Report No-17
Pub Date Sep 67
Note- 126p.
EDRS Price MF-$0.50 HC-$6.40
Descriptors-Calculus, *College Mathematics, *Conference Reports, Conferences, Course Content, *Curriculum,

Curriculum Development, *Geometry, Instruction, *Mathematics, Undergraduate Study

Identifiers-California, National Science Foundation, Santa Barbara

This is Part II of the first volume of the proceedings of the Committee on the

Undergraduate Program in Mathematics (CUPM) Geometry Conference, held at Santa

Barbara in June, 1967. The purpose of the conference was to consider the status of

geometry in colleges at the undergraduate level. This volume contains two lectures:

"The Geometric Content o f Advanced Calculus" by Andrew Gleason and "The Geometric

Content of Freshman and Sophomore Mathematics Courses" by Norman Steenrod. (RP)

DOCUMENT RESUME
SE 004 991



sh-- co 99/

COMITEE ON 'Mt BORGRADUATE PUNA/

SEPTEMBER 1967

IN MARD ATICg

NUMBER 17

CUPM GEOMETRY CONFERENCE

PROCEEDINGS

PART II: GEOMETRY IN OTHER SUBJECTS

Lectures by A. M. Gleason and Norman Steenroci

U.S. DEPARTMENT OF HEALTH, EDUCATION & WELFARE

OFFICE OF EDUCATION

THIS DOCUMENT HAS BEEN REPRODUCED EXACTLY AS RECEIVED FROM THE

PERSON OR ORGANIZATION ORIGINATING IT. POINTS OF VIEW OR OPINIONS

STATED DO NOT NECESSARILY REPRESENT
OFFICIAL OFFICE OF EDUCATION

POSITION OR POLICY.

MATHEMATICAL ASSOCIATION OF AMERICA



CUPM GEOMETRY CONFERENCE

Santa Barbara, California

June 12 - June 30, 1967

PROCEEDINGS OF THE CONFERENCE

Edited by Lincoln K. Durst

PART II: GEOMETRY IN OTHER SUBJECTS

Lectures by A. M. Gleason and Norman Steenrod

COMMITTEE ON THE UNDERGRADUATE PROGRAM IN MATHEMATICS

Mathematical Association of America



C) Mathematical Association of America, Inc. 1967

"PERMISSION TO REPRODUCE THIS
COPYRIGHTED MATERIAL HAS BEEN GRANTED

By E. A. Cameron
Treasurer MAA

TO ERIC AND ORGANIZATIONS OPERATING
UNDER AGREEMENTS WITH THE U.S. OFFICE OF

EDUCATION. FURTHER REPRODUCTION OUTSIDE

THE ERIC SYSTEM REQUIRES PERMISSION OF

THE COPYRIGHT OWNER."

Financial support for the Committee on the Undergraduate
Program in Mathematics has been provided by the National
Science Foundation. A limited number of copies of these
Proceedings is available from CUPM, Post Office Box 1024
Berkeley, California 94701.



FOREWORD

In June, 1967, CUPM sponsored a conference

devoted to geometry in the undergraduate curriculum.

The Proceedings of that conference are being issued

in three parts, of which this is the second. An

account of the background and the nature of the con-

ference is given by Walter Prenowitz in his Introduc-

tion to the Proceedings, printed in Part I. A list

of the lecture topics for the entire conference and

a list of the names of the participants will be found

on the following pages.

The texts printed here are based on recordings

made of the lectures and the discussions, and were

prepared for publication by the assistants, Melvin

Hausner, John Reay, and Paul Yale. The lecturers

themselves were able to make minor changes and cor-

rections on the final sheets, but an early deadline

prevented major revision or extensive polishing of

the texts. The typing for offset was done by Mrs.

K. Black and the figures were prepared by Mr. David

M. Youngdahl.

Lincoln K. Durst

Claremont Men's College
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THE GEOMETRIC CONTENT OF FRESHMAN AND SOPHOMORE MATHEMATICS COURSES

Lectures by Norman Steenrod

(Lecture notes by Paul Yale)

Lecture I. Calculus.

In this series of lectures I am going to discuss the geometric content of

the freshman and sophomore mathematics courses. I shall criticize what we as

teachers are now doing and suggest what we might do. Let me begin with what I

believe to be the chief criticisms.

1. Although geometry pervades all of mathematics and is present at every

stage of a development, too often do we fail to point this out to our students.

We rely on analytical formulationr since we realize that they are complete and

we are in a hurry to get on to other material. We do not take time to look at

geometric formulations.

2. We are too greatly impressed by the rigor of analysis. We seem to feel

that geometry is not rigorous, or at least that the background needed for rigor

is not available. We feel that it is better not to do anything that is not rigor-

ous. I think we are buffaloed tco much by this.

3. When we do present geometry, it is too often the instructor who does

the geometry while the student is merely a passive recipient. We present the

geometry to him in order to explain the analysis, but then we require him to do

only the analysis--no geometry.

4. We tend to avoid geometric formulations of questions in examinations.

Questions are difficult to formulate geometrically. Almost any time you try

such a question, you find that a large group of students misinterpret it. Such

questions are hard to grade because the answers are so varied. The absence of



geometric quescions on final exams tends to degrade the geometric content of the

course, and leads to its neglect.

Now that I have listed the main criticisms, let me take them up one at a

time and fill in some details. The pervasiveness of geometry is an idea that

goes back to Descartes, for a coordinate system in the plane or in space sets

up an equivalence between geometry and algebra-analysis. Every geometric prop-

osition can be translated into its algebraic-analytic analog and vice versa.

I am not proposing that we lead the student through the details of the formal

isomorphism between these two systems, buc I am trying to remind you that the

geometry is always there and to keep in mind that the geometric language for

the corrersion is always at hand. For example, here are a few geometric terms

and their algebraic-analytic counterparts:

Geometric language

point, vv.:tor

projection
surface
plane
region
mapping, transformaLion
neighborhood
limit (using deleted

neighborhoods)
continuity (using

neighborhoods)
tangent

Alez2i2Lals-Anai

number triple (x,y,z)
coordinate, variable
equaticn
linear equation
system of inequalities
function
c, 8
limit (us:ng e, 6)

continuity (using e, 6)

derivative

One might ask, in view of this equivalence, why bother with the geometry

at all? The answer is clear to all of us. The first main reason is that many

applications of calculus are to problems presented in geometric formulations;

e.g., the focal properties of conics, oscillating systems, the 2-body problem.

A complete solution of such a problem has three main steps: the reformulation

in analytic terms, the derivation of an analytic solution, and the interpreta-

tion of the solution in geometric terms.
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Problem

Solution

Geometry Analysis

A second reason is psychological. Two views of the same thing reinforce

one another. Most of us are able to remember the multitudinous formulas of

analysis mainly because we attach to each a geometric picture that keeps us

from going astray. Even better than that, the geometric view of a problem

helps us to focus on the invariants and to weed out the irrelevant details.

For example, a poor choice of a coordinate system may lead to a horrible mess

in the analytic formulation, but with some geometric insight, we may be able to

choose a much better coordinate system.

I turn now to suggestions for presenting some things from a geometric

viewpoint. One of the main difficulties of teaching calculus is the problem

of how to present the central notions of limit and continuity. Here I think

the geometric way is clearly advantageous. Consider the geometric definition

of a limit. Given a set X and a set Y, a point a in X and a point b

in Y, and a mapping f from X into Y, what do we mean by "The limit

of f at a is b"? The geometric answer is: For each neighborhood N of

b, there is a deleted neighborhood N' of a which f maps into N. This

is at least as simple as the standard analytic definition in terms of c's

and 8's; moreover, it has the following added virtues.

1. You can draw an easily-remembered picture and, if necessary, even

label N as first and N' as second to emphasize that N' depends on N.

3



X

2. The gemetric definition is valid for a much wider class of spaces

and functions. The geometric definition reads exactly the same for all metric

spaces, whereas the analyst, when he generalizes to a function mapping a

k-dimensional space into an n-dimensional space, has to write out n + k in-

equalities involving c's, 6's and the coordinate versions of the function f.

To convert the definition of limit to one for continuity, we set b . fa

and drop the word deleted. There is no difficulty in deriving the analytic

definition from the geometric one, but one can work directly with the geometric

definition and easily prove the continuity of numerous functions. For example:

a. The identity function and all constant functions are continuous.

b. Composites of continuous functions are continuous.

c. Isometries are continuous.

d. Any contracting map (e.g., a perpendicular projection) is continuous.

e. A mapping is continuous if it does not expand distances too much;

i.e., if there is a constant k such that d(fx,fy) g kd(x,y) for

all x,y in its domain.

A mapping that is very useful is radial projection onto a sphere which

we can prove to be continuous using the results above. Given a sphere with

center c, we map each point x, x c, to the point y where the sphere



meets the ray from c through x Outside the sphere this is a contraction,

and inside the sphere distances are stretched at most by a factor of k, pro-

viding we stay outside a small sphere of radius 1/k. Therefore, radial pro-

jection onto a sphere is continuous wherever it is defined. This is a nice

example of a function with an essential discontinuity which arises in a natural

geometric setting.

The next critical topic in the calculus course is the tangent to a curve

and its analytic companion, the derivative. I suggest the following geometric

treatment of this topic. Of course, the concept of curve must come first, but

let us assume we have adopted a definition in terms of continuous mappings from

R. into R
2

or R
3 and that we have seen enough examples to realize that this

is a reasonable view. Suppose we are given a curve f: [a,b] --, R
2 and a point

P on that curve, say P = f(to) with to E (a,b) such that f(t) P for t

in some deleted neighborhood (c,t0) U (to,d) of to. We define the tangent at

P as follows. For t > to, compose

Q=f(t)
f with the radial projection p onto

,
the unit circle centered at P. The

'pf (t)

composite pf of continuous mappings

is continuous on the open interval

(to,d). If pf has a limit R at

t
0

, then we call the ray PR the

tangent from the right. We can repeat

this for t < t
0

and define a tangent

from the left. If the two one-sided tangents fit together to form a straight

line, we call this line the tangent to the curve at P. Notice that when the

tangent exists, then the function pf restricted to fc,d] has a singularity

5



at t
0

with left and right limits at t
0

which are diametrically opposite

points of the circle. It seems to me that this definition eliminates the

vagueness usually associated with tangents in calculus courses.

It is easy to derive the analytic notion of a derivative from this geo-

metric definition of a tangent. Given a function f, and a point P on its

graph, consider the unit circle centered at P and the vertical line tangent

graph of f

) slope of chord

to that circle and one unit to the right of P. Except for the points directly

above or below P, the radial projection p' from P onto this vertical line

is Lontinuous so that the composition p'f = p'pf is continuous for x xo.

It follows that pf has a limit at xo from the right, if and only if p'f

does. This is equivalent to the statement that the slope of the tangent is the

limit of the slopes of chords If the one-sided limits exist at xo, then we

have the usual one-sided derivatives, and if these are equal, we say that f

has a derivative at x
0*

6



Discussion.

Hausner asserted that most of the analysts he knew would agree with this

style of presentation and would have no argument with the geometric point of

view. In reply, Prenowitz asked "Then where do all the calculus books come

from?" Hausner answered that we have all been imitating Euler.

Woolf asked how the neighborhood definition would fit in with the algebra

of the functions when sums and products are defined on the image space.

Steenrod responded with the follawing geometric proof that if f: R R and

g: R R are continuous, so is f + g.

1. It is enough to prove that.addition is continuous since the function

f + g is then a composite of

two continuous functions.

2. Addition is simply a pro-

jection of R
2

onto R
1

along the lines of con-

stancy of x + y. This

projection stretches dis-

tances by at most 11,1

hence, it is continuous.

He then asserted that he saw no difficulty in interweaving the geometric

definition of continuity with the algebraic structure on the space of functions.

Stratopoulos asked for clarification of what was being proposed since

initially he understood it to be that we should spend more time to present the

geometric point of view in a calculus course when it is helpful, but from some

of the remarks made in the discussion, it sounded as if you said we should

teach calculus only this way. Steenrod replied that he proposes that we try to
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motivate things geometrically and carry out as much of the argument as can be

done conveniently geometrically, and then apply the analytic tools. It is only

for the sake of debate that we seem to take the extreme view, but me are not

proposing that we teach geometry in place of analysis.

Hammer stated that he thought this presentation of tangents was very

interesting from the standpoint of generality and that, among other things,

it would be useful in clarifying directional derivatives.

Yale pointed out that this approach to limits, continuity, and tangents

with its emphasis on mappings would be much easier to teach if the students

were already familiar with and used to thinking in terms of transformations.

Thus Kelly's position, that mappings should be taught in high school geometry

courses, is relevant here. He then asked if Steenrod intended, as part of his

proposal, to open the door to teaching calculus not only of one variable but

of several variables, all intermixed together. Steenrod replied that this was

right; that with this point of view, the artificial separation between calculus

of one and of several variables is no longer there. Hammer pointed out the

semantic difficulties we get into with our present distinction between deriva-

tives and partial derivatives.

Prenowitz stated that he felt that this is not just a slightly different

way of dealing with tangents, but, in a more general setting, a way of pinning

dawn the elusive concept of the limit of rays. Namely, Steenrod has replaced

the family of rays at P by the isomorphic representation (geometric, not

analytic) using points on a sphere centered at P. The whole point is that

the limit point on the sphere represents the limit ray we are interested in.

8



Lecture II. Calculus,

Today I shall continue my discussion of the four criticisms concerning the

lack of a geometric viewpoint in current calculus courses. Yesterday I elabo-

rated on the first (Geometry is always there but is presented too infrequently.)

and pointed out the two main reasons for focusing attention on the geometric

aspect as well as the analytic aspect of the subject. The first reason concerns

applications. Very many problems with applications of the calculus arise

geometrically. In such cases we have the diagram:

Geometric (Reformulation) Analytic

Formulation > Formulation

Geometric
Solution (Interpretation)

1

(Analytic derivation)

Analytic
Solution

The heart of the calculus may be the middle step, but to ignore the other

two is simply not to train the student in the calculus. The other main

reason is the psychological one that two views of the same question rein-

force each other and enable you to see and do things that one viewpoint

alone would not. In this regard, recall the geometric definitions of limit,

continuity, and tangent that I presented yesterday. The neighborhood defini-

tions of limit and continuity not only have the psychological advantage of

being pictorial, but also the mathematical advantage of easy generalization

to more complicated spaces. Moreover, it is easy to prove, directly from the

geometric definition, that many functions arising in a geometric context are

continuous. From the geometric definition of the tangent one derives immediate-

ly the standard definition of the derivative. I feel that this approach, plac-

ing the emphasis on the tangent, is much better than the analytic approach in

9



which we first define the derivative and use it to define tangents to curves.

Now let us turn to another topic that has been a sore point in calculus

for many years: arc length on a circle. Thomas avoids the question in his

calculus book, Apostol bases his approach on the concept of area, but I believe

that we should simply meet the problem head on. Basically the problem is to

show that the least upper bound of the lengths of inscribed polygons is the

same as the greatest lower bound of the lengths of the circumscribed polygons.

Of course it is easy enough to simply define it as one or the other of these

but in order to use it you need to look at the other also, so essentially the

problem is to show that they are equal.

For each partition, p, of an arc of a circle of radius r let 4(1 )

be the length of the associated inscribed

polygon I 2 and let 4(C ) be

the length of the associated circum-

scribed polygon C . Using the small

triangles as in the figure it is easy to

show that 4(1 ) g t(C ). Now assume

that p" refines p, i.e., that we have

put some additional points on the arc.

Then another triangle argument shows that

4(I ,) and 4(C ,) gh4(C ). Thus,
P P P P

to solve the problem, we only need an estimate on the size of 4(Cp) - 4(Ip)

in terms of something we can control and then show that this tends to zero.

For a partition p, label the circular arcs in order from 1 to k,

th
leta.denotethelengthofhalfoftheiinscribedsegment,andb.the

length of the corresponding half segment of the circumscribed polygon (see the

10



- a. = a.
1 1 1

figure). By similar triangles,

b. a.
1 1=

/
,

r 77
1

and if

m
p
= max (a

1 k

we have

- a - 1)g (
/ 2 2

.

r -a
i

r -m

Since 2 E
k

a = 4(1 ), and 2 E
k

b
i

= 4(C
p

we obtain by summing these
1 i 1

inequalities
r 477;17

t(C ) - 4(1 ) 4(1
P P

Let c denote the length of some fixed circumscribed polygon, so that

4(1 ) N c for all partitions p. The triangle inequality for the right

triangle with hypothenuse r and altitude m yields r m4-Vi7-717

hence

r m .

Also we have r m NIT17--a2 , so if we confine ourselves to partitions p

such that m g r/2, we have ir2-m2 r/2. Combining these inequalities

gives the required squeeze

2c
4(C ) 4(1 ) g m

p r p

It follows that g.l.13. 4(C ) = 1.u.b,

With this definition of arc length for a circle, we have the following

easy proof that the limit of the ratio of chord to arc, as the chord tends

to zero, is 1. Consider for a short arc the trivial partition consisting of

11



its two end points. If a

is half the arc length, we

have by definition

t(I ) < 2a < )

and this implies c < a < b

where b, c are as shown in

the figure. By similar tri-

cr
angles, b -

Now c < a implies 0 < 1 -
cr

. 2 and a < impliesi
k/ 2 2r -c

c r -1r2-c2
1 - < .

a r

As in the paragraph above, r - 172:7 g c

whence

c
0 < 1 -

a

Therefore hut 1 - = 0 as required.

1727--c-2.

It is to be observed of course that we have proved the geometric form of

the analytic statement
sin x

lim = 1.
x-ty

All calculus books endeavor to make this proposition seem reasonable; in most

cases they are content with showing its equivalence to its geometric form.

The above treatment of arc length on a circle should be considered in

connection with my second main criticism: we are too greatly impressed by the

sin x
rigor of analytic methods. Why do we shirk doing a proper job of

The reason is two-fold. First we recall that the most trouble-free definition

of sin x is by its Mclaurin series; and secondly, the concept of arc length

for curves in general is a delicate and lengthy process involving functions of

bounded variation. Since to proceed thus would be inappropriate at this early

12



stage of the calculus, we merely state the result, wave our hands, and refer

students to a more advanced course. Such an "all or nothing" attitude is not

justifiable; in this case we have to do with a very special curve, the circle;

and quite special methods are both adequate and appropriate.

Now let us consider the last two of my main criticisms, the problems they

pose are haw to get the student involved in the geometry and what to do about

geometric problems on exams. These are strictly pedagogical and not mathemati-

5

cal problems. I suppose everyone has his own pet methods; those I offer, I

recommend simply as devices that I have tried with some success.

The subject of curve sketching is treated adequately in most texts, hawever

the material is usually confined to a portion of one chapter. If the student

sketches curves for only one wtek, he is not going to become involved in the

geometry of curve sketching. I usually adopt a program of insisting on curve

sketching as a regular part of the entire course. At least one homework prob-

lem each week involves curve sketching. In addition I give two ten minute

quizzes each week, and at least a third of these .quizzes involve curve sketch-

ing. It is inevitable that some students will submit as a sketch a plot of

three or four points connected by a sloppily drawn curve. So I tell my students

that when sketching the graph of a function they must show clearly where the

function is rising or falling, show where it is convex or concave, indicate the

behavior of the graph as x tends to ±400, show any horizonal or vertical

asymptotes, and state clearly all symmetries.

It is easy to make curve sketching a regular part of the course because

throughout the ftrst year of the calculus we introduce functions of gradually

increasing complexity: linear, polynomial, rational, algebraic, trigonometric,

inverse trigonometric, exponential, and logarithmic. Also the subjects of

13



curves in parametric form and polar coordinates offer additional and natural

opportunities for more curve sketching.

One reason for heavy emphasis on curve sketching is to keep students

convinced that a formula is not just a string of symbols to play games with

according to certain rules. It represents something that has an existence

independent of the formula, and its geometric presentation is another aspect

of its existence. Also the agility they develop during the term enables one

to ask geometric questions on final examinations; it does not take them for-

ever to recognize the curve or surface specified in the problem. For these

reasons I regard curve sketching as an integral part of the calculus program.

Although most calculus books treat the conic sections, many do so in one

chapter somewhat late in the text. I do not understand this; the conics are

prize examples for illustrating much of the material of the calculus. As soon

as students have learned to differentiate polynomials, one can introduce para-

bolas in standard form (4ay = x
2
) and prove the focal property of a parabolic

mirror. As soon as they can differentiate rational functions, one can intro-

2
duce ellipses via the string definition ((x-c)

2
+ y )

3.
+ ((x+c)

2
+ .37

) = 2a,

reduce to standard form, and prove the focal property of an elliptical reflec-

tor. A number of maximum-minimum problems involve the conics. Areas of

ellipses and volumes of ellipsoids may be computed. The conics provide excel-

lent examples for parametric equations of curves and also for polar equations.

Of course a full treatment of conics (sections of cones, focus-directrix,

reduction of quadratics by rotAtions and translations of coordinates) should

come as a unit later on in the course; but much good material can precede this.

Another good way to get the student involved in the geometry is to play

variations on formulas, so that he has to understand the geometric background

14



of the formula if he is to solve an assigned problem. Most formulas in the

text are presented in specialized form, assuming some standard organization or

position with respect to the coordinate system. The case of volumes of solids

of revolution is a typical example. The standard formulas are for solids obtain-

ed by rotating about one of the coordinate axes. A good problem for a ten min-

ute quiz is to ask the student to derive the analogous formula4 for rotation

about a line parallel to an axis, say the line y = -2.

With the final exam or any other major exam we come to something which has

bothered me through the years, and I am sure has bothered a lot of you. This is

the control the exam seems to have on the structure of the course. Somehow the

tail wags the dog. In the exam we are supposed to take a sample of what the

student knows, and surely in three hours, we can do no more than take a sample.

This process of sampling has a feedback effect that is very serious. The most

famous example is the College Board exam and its influence on the teaching of

mathematics in secondary schools. The examiners, in order to be fair to students

in all parts of the country, tended to take the intersection of the topics taught

in various schools and asked questions about this intersection. In the 1920's

and 1930's the exam had little effect on the teaching of mathematics, but by the

early fifties the feedback effect became pronounced. Sizable numbers of students

were taking the exam, and schools were rated by the results. If a particular

high school had a poor rating, they did something about it; they compared care-

fully what they were teaching with the kinds of questions asked on the exam;

they altered their curriculum accordingly, and concentrated on topics of maxi-

mum frequency. The examiners, on their part, observed the shrinkage and nar-

rowed the range of their questions accordingly. At one time it was projected

that after for4y years only one topic would survive this convergence prccess,

and that would be the factoring of quadratics.
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But, you say, this cannot happen in college because the instructor has

charge of his course. Well, he does not, because in many schools there are

freshman courses with large enrollments and many sections. To avoid troubles

with young instructors giving wide varieties of grades we insist on uniform

exams and uniform grading. I have seen the "feedback effect" time and again

while teaching a section of the freshman course. Along comes a bright fresh

Ph.D. teaching his first class. Knowing that the concept of limit is central to

the calculus, he settles down and does a good job of teaching limits for two

months. However on the uniform midterm exam there is only one question out of

five on theoretical aspects of limits. His students do very well on that one

question but not so well on the other four of a more routine nature. The aver-

age score for his students is ten points below the overall average, so he finds

himself giving D's to students he thought were pretty good. Having learned his

lesson, he runs a statistical analysis on the final exams for the last five

years, and starts teaching his students how to turn the crank. By the end of

the semester he usually brings their average up to where it should be.

I do not know how to defeat this, but I do have one suggestion to offer.

Use the feedback effect to upgrade geometry by putting more of the geometric

questions into the final exam and then face the problem of grading then. If,

in the earlier parts of the course, on the ten minute quizzes and the homework,

you have inflicted geometry on the student over and over again, then on the

final exam you have some chance of getting a good reaction out of a geometric

question. Let me give you two examples of the types of questions I have in

mind. Instead of posing the purely analytical problem: evaluate a certain

definite integral, ask instead for the area of the region between two specified

curves. Similarly, instead of asking for a routine implicit differentiation,
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e.g., find dy/dx if x3 - 2xy2 - 3y = 1, ask the student to verify that a

point, in this example (2,1), is on the curve and to find the tangent line at

that point. The essential idea in this type of question is to replace the

routine analytic question by a question in which part of the data appears in

geometric form and in which you ask for a geometric interpretation of the

answer. The second type of question I call integration in reverse: sketch and

describe a region whose area is given by

(1777 - x) dx

0

and set up an integral with respect to y for the same area. [In discussion

over coffee someone pointed out that this type of question is especially effec-

tive when studying area in polar coordinates.]

This completes my comments on the first year calculus course. In the

remaining three lectures I shall consider the typical second year material:

linear algebra, calculus of several variables, and differential equations.

Discussion.

Gray advocated a geometric point of view when presenting a form of the

completeness axiom for the real numbers, suggesting as a possibility, every

bounded convex subset of the real line has endpoints.

Hammer stated the following theorem (Holditch's theorem according to

17

Klamkin) as a nice application of

polar coordinates that is seldom

given in the standard calculus texts.

GiVen a convex curve with a tangent

line at every point consider the

region swept out by tangent vectors



of fixed length, a. The area of this region is
2

, independent of the

convex curve we started with.

Benson, commenting that the book by Granville, Smith, and Longley was one

of the few texts he has seen that had lots of problems of the type advocated,

asked Steenrod if perhaps we should return to the old system in which analytic

geometry was a separate course preceding the calculus. Steenrod replied that

he had taught under both systems and was in favor of the combined course. He

stated, that he for one tries to teach as much analytic geometry in the com-

bined course as he used to teach in the separate course, and that it is up to

us as geometers %o write texts that hold up the geometric aspect of the course.

Keedy stated that at Purdue they try to encourage high schools to either

teach a full year of calculus or none at all in order to avoid sending students

to college who are bored for the first two weeks then lost for the rest of the

semester. When asked by high schools what to do in place of a short introduc-

tion to calculus they advocate presenting some analytic geometry.

Hausner described an interesting linkage for tracing ellipses which can

be used as the basis for a challeng-

ing question on parametric equations

of ellipses. It consists of a block

of wood with two slots at right

angles and a handle attached to two

sliding blocks in the slots. The

problem is to show that as one turns

the crank the handle (P in the

diagram) traces out an ellipse. Coxeter asked if anycne present knew of an

analogous device for part of a hyperbola.
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p.

Lecture III. Linear Algebra.

Until ten years ago linear algebra was a course given at the junior, per-

haps senior, level for mathematics majors, but the situation is changing now

and it is recognized that linear algebra is needed in the study of calculus of

several variables. There are perhaps two reasons for this. First, the simplest

mappings of an s-dimensional space into a k-dimensional space, other than the

constant mappings which send all points in R
s to single points in R

k
, are

the linear and affine mappings. Almost all calculus and analytic geometry

books start with the study of the straight line, y = mx + b. In the same way

it's natural to begin the study of functions in higher dimensional spaces with

the linear and affine functions so that you have a family of examples which you

understand rather thoroughly. The second reason is that the general differ-

entiable map can be analyzed locally (in the first approximation) by its differ-

erential which is affine (or linear if related to a local coordinate system).

That is, just as the local analysis of a curve in the plane replaces the curve

by the tangent line, in higher dimensions the calculus analyzes a mapping local-

ly by using the best affine approximation to the mapping--this is essentially

the differential. Surely if one is to make this type of analysis one should

clarify first the functions that are to be used in these approximations.

Linear algebra is needed, but it's not clear to me how much is needed or

how much will be incorporated into the first two years of calculus. The pro-

cedure now at Princeton is that students planning to major in mathematics are

required to take a sophomore linear algebra course. The students who are not

planning to be mathematics majors, say engineers, take a regular calculus course

and during the second year they have six to eight weeks of linear algebra.

This meets with the hearty approval of the engineeriag departments. They want
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their students to have some familiarity with this material.

Now we come to the question of textbooks and of what material one can use

in such a course, say within the calculus program. What books are available

and what can be used? The situation here is definitely sad. Books on linear

algebra are written by algebraists for algebra students. Of course this is not

in itself a condemnation but there are two features that shaw up from this.

One is that geometry is treated in an offhand fashion, if it is treated at all.

Secondly, a semi-theoretical matter which applies to most but not all books,

they confuse the presentation of theory with techniques of calculation via

matrices. I will elaborate on this second point later.

First let me present an outline of the material that would be the most one

would put into the sophomore course on the calculus. Perhaps not all of this

material should be included but not more than this.

Of course one would start with the conceptual approach, if you will, the

axiomatic approach. Discuss vector spaceb, the basic operations, and the prop-

erties of the basic operations. Essentially the listing of the operations and

their properties is the axiomatic approach. Examples are introducted right

along with the axioms. These include R2, R3, Rk and function spaces. It is

especially important to include function spaces since some applications of

linear algebra in the calculus course are to function spaces, e.g., the space

of solutions of a homogeneous linear differential equation. Next in a con-

ceptual course one must introduce linear transformations and affine transforma-

tions (a transformation S is affine if the transformation T defined by

Tx = Sx SO is linear). Of course one includes examples of these along

with the definitions.

Then one turns to the analysis of the structure of a vector space by
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introducing linear subspaces, the concept of independence, bases for a subspace,

dimension of a subspace, and the direct sum of subspaces. The work here ends

with the theorem that a vector space of finite dimension, say k, is isomorphic

to R
k Thus one proves that a general (finite dimensional) vector space is

really no more complicated than the examples you started with and furthermore

is built up from copies of R by direct sums.

The next study is of the structure of linear transformations, and you first

need a decomposition theorem. Any linear transformation U -4 V, factors into

a composite of a projection, an isomorphism, and an inclusion.

isomorphism
V' = image T

projection
U = Ul + (kernel T)

> V

inclusion
V'

Projections and inclusions are simple geometrically, so if you feel that an

isomorphism is essentially an identity then you understand Ea linear transfor-

mation and you don't need to feel baffled by the seeming complexity of linear

transformations. You simply find the kernel and image, split U and V as

direct sums, and the transformation is straightforward.

Of course this doesn't end the entire story, for although you can say 111

is distinct from but essentially the same as V' there's a special case where

it's clear they are not. Suppose you start with an automorphism of U. If you

try to split this map the projection and inclusion parts are identities and the

mapping you're trying to analyze is the isomorphism in the middle of the dia-

gram. The spaces Ul and VI are no longer distinct and identified by an

isomorphism, but now the same. So now comes the analysis of automorphisms
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and, since it uses the same tools, the analysis of endomorphisms of a vector

space. One needs examples and the first that are readily at hand are defined

in terms of an inner product: orthogonal transformations (rotations and re-

flections), symmetric transformations (picture an orthogonal coordinate system

and stretchings by perhaps different factors in the different directions), and

skew-symmetric transformations (vector products with a fixed vector in R
3

is

a good example). In addition to these I always enjoy presenting the shearing

transformations, keep one coordinate

axis in R
2 fixed and slew the other

about the origin so that each vertical

line slides along itself. Then one

presents the structure theorems for

keep
fixed

symmetric and skew-symmetric transfor-

mations, i.e., you show that you can

choose coordinates in such a way that

these transformations have a simple prescribed form. Finally comes the analysis

of a general automorphism, that it can be decomposed into a composite of an

orthogonal transformation and a symMetric transformation. As details for this

analysis one needs determinants, characteristic polynomials, characteristic

values, and characteristic vectors.

This then is the outline of perhaps the most linear algebra one would put

into a sophomore calculus course:

A. Vector spaces, the basic operations and their properties.

B. Examples. R2, R3, Rk, and function spaces.

C. Linear transformations and affine transformations including

examples.
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D. The structure of a vector space, subspaces, independence, bases,

dimension, direct sum.

E. The analysis of linear transformations.

F. Examples of automorphisms and endomorphisms, orthogonal, symmetric,

and skew-symmetric transformations, shears.

G. Structure theorems for symmetric and skew-symmetric transformations

and the analysis of general automorphisms, including such details

as determinants, characteristic polynomials, characteristic values,

and characteristic vectors.

Now let me elaborate on my second criticism, that most linear algebra

books confuse the presentation of theory and the technique of calculating via

matrices. One way to see that a book makes this mistake is to see that it has

a chapter on determinants and matrices before linear transformations are defin-

ed. The linear transformation is an easy conceptual thing to talk about and

give examples of without matrices. The matrix is a tool for computation, i.e.,

it is a set of coordinates in a standard array in terms of the bases of U and

V. That is, once bases have been selected in U and V so that the points in

U and V have coordinates, then a linear transformation from U to V also

has coordinates arranged in a rectangular array called a matrix. The matrix,

important as it may be for computation, is of no importance in the theoretical

or conceptual part of the course nor in the geometric pictures that com along.

Presenting matrices before linear transformations and teaching students to work

with them is comparable to trying to teach someone to play the piano on a key-

board that isn't attached to any strings. There's no feedback, the student does

not see the objective and finds no pleasure in what he's doing. Now I agree

that historically matrices came first, vector spaces weren't discovered in their
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abstract form. For many years a vector space was an R
k

for some k and a

linear transformation was a transformation given by a system of linear equations

represented by the matrix of coefficients. Thus properties of linear transfor-

mations had to be formulated as properties of matrices. The abstract point of

view, that one could proceed on a different level and work without coordinates,

developed during the twenties and thirties. With this new point of view the

picture became quite easy and lovely and the theory was disassociated from the

mechanism of computation. Thus it is easy to see why the first books on linear

algebra had to begin with determinants and matrices, but it seems to me that

the conversion to the more recent and simpler view has been much too slow. I

don't mind a historical presentation provided it's made clear to the student

that matrices are not essential to understanding the theory and that the theory

should not be confused with the computations which arise.

Another inadequacy of many texts is that the structure theorems for linear

transformations are usually given only in the comriex case. This case is easier

and smoother because the characteristic polynomial factors into linear factors.

For example, the classification theorem for general automorphisms is usually

stated as: every automorphism is the product of a unitary and a Hermitian

symmetric transformation. The details for the real case are omitted, but this

is the case of interest at the level of second year calculus, so I think it

should be included.

To establish the structure theorems for automorphisms, one must define the

determinant, det T, of an endomorphism T. The question is how best to do

this in a sophomore course in calculus. It may well be that one should be

content with doing it only for dimensions at most 3. In such a case one would

state the structure theorems in their n-dimensional form, and say that the
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proofs are to be given only for the first few dimensions.

There is little trouble in defining det T in dimension 3 once the

scalar and cross products have been done. One defines the dot-cross (triple)

product [A, B, C] of three vectors, shows that it is trilinear and alternat-

ing, that it is zero for dependent vectors, and that it gives the volume of

the parallelepiped spanned by A, B, C with a sign when they are independent.

Using the linearity of T and the above properties it is readily shown that

the function [TA, TB, TC]/[A, B, C] of independent vectors A, B, C is a

constant; this constant is called the determinant of T and we have

[TA, TB, TC] = (det T) B, C] for all A, B, C.

An advantage of this approach is that det T takes on the geometric

significance of being the ratio of the volume of the image of a parallelepiped

to its original volume. Using the methods of integral calculus, this result

extends to an arbitrary bounded domain D:

volume (TD) = (det T) (volume )).

A mild disadvantage of this approach is that it makes the concept of determinant

appear to depend on the choice of scalar product one is using. However if one

has previously shown that any two n-dimensional spaces with scalar products are

isometric, then there is an automorphism S of 3-space into itself which is an

isometry of a given scalar product into a second, hence

[TA, TB, TC]2 CSTA, STB, STC]l

det
2

.T [A, B, Cj2 CSA, SB, SCji

= det1(STS
-1

) = (det1S)(det1T)(detIS 1) = det1 T.

If one decides to do determinants in the n-dimensional case, there is much

disagreement as to the best procedure. If you choose a basis and a representa-

tion of the endomorphism by a square matrix and then define determinant by a

formula, you have a non-invariant definiAon, and you must prove properties of
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the determinant before you arrive at the conclusion that it doesn't depend on

the chosen coordinate system. This explicit procedure for determinants, which

makes you feel that you knaw what's going on or at least that you've got a hold

on it, is not invariant in form, and rather lengthy arguments are needed to

show that it is invariant.

There is an invariant approach that depends on introducing the tensor

product of vector spaces, developing this algebraic operation, and extending it

finally to the exterior algebra, AiV, i = 0,12 2n where a= dim V. This is

a graded algebra and AnV is one-dimensional and therefore an isomorphic copy

of the ground field. Any automorphism of V induces an automorphism of the

exterior algebra on V, so in particu:.ar it induces an automorphism of AnV.

The only automorphism of a one-dimensional space is multiplication by a scalar.

The scalar that shows up here is called the determinant and gives you the in-

variant approach, or at least an invariant approach. I think that it's readily

recognized that this is a bit too much for the usual sophomore course, so we

need a substitute approach.

Another which is somewhat invariant in form is an extension to n dimen-

sions of the definition in the 3-dimensional case given above. If V is an

n-dimensional vector space we want a function of n vectors with scalar values

such that the function is multi-linear (linear in each variable), skaw-symmetric

or alternating (if you switch two variables you switch the sign), and non-

trivial (at least one non-zero value). The basic theorem about such functions

is that they exist, moreover any two such functions differ at most by a scalar

multiplier. CIn response to questions the lecturer returned to this topic and

outlined a proof in Lecture IV, the next lecture in these notes.] Gtven an

endomorphism of V, let f be any one of these "volume" functions. Then the
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function g defined for n vectors
'

x
1,
x
2'

...,x
n

, by

= f(Tx1,Tx2,...,Txn)

is another volume function, so g = Xf for some scalar X. This scalar A,

the amount by which T alters volumes, is the determinant of T.

Discussion.

Hausner, Prenowitz, Steenrod, and Gray discussed the role that the algebra

of n by n matrices should play in a linear algebra course. After discus-

sion there seemed to be general agreement that the isomorphism between the ring

of endomorphisms of V and this ring of matrices should be put on the same

status as the isomorphism between V and Rn, that the students should be

required in the exercises to use matrices for computations and relate their

results to the underlying geometry, but that the distinction between linear

transformations and matrices should be made very clear to the student. Hammer

pointed out that several concepts for matrices, e.g., the strange multiplication

and similar matrices, are explained by their geometric interpretation, and that

the geometry of vectors and endomorphisms and the algebra of n-tulAes and

matrices nicely complement each other with each providing insights into the

other.

Yale suggested using matr!xes as "shock therapy" at the beginning of a

linear algebra course, and claimed that it is relatively easy to convince

students that they won't get very far with matrix computations unless they

understand their geometric background. As a typical device for this he suggest-

ed asking students to compute the sixteenth pawer of some matrix representing

a simple geometric transformation in a poor coordinate system.

Keedy brought up the pedagogical difficulties in presenting such an
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abstract view of linear algebra to students who are only sophomores. Woolf

stated that a course which is primarily a course in manipulating matrices may

seem more efficient in the short run, the students seem to catch on to the

material quicker, but that nothing sticks, a few months later the students

don't remember a thing. Someone jokingly replied that nothing sticks in an

abstract course either, not even the students. Gray remarked that at his

school they willingly sacrificed a little on computations with matrices in

order to instill a greater appreciation for and understanding of linearity.

Prenowitz returned to Keedy's point and said that he felt that it would be much

easier to present this type of linear algebra course if somewhere along the

line, perhaps in high school, the student hns a few weeks of classical vector

analysis using arrows.

Coxeter made two suggestions concerning terminology and notation. A

symmetric linear transformation could be quite naturally called a strain since,

relative to a suitable coordinate system, it stretches the various coordinates

by various ratios. A simple strain is a strain in which only one coordinate is

stretched. He advocated using the right handed notation, (x)T or x
T

,

instead of T(x) since in the right handed notation the coordinates of a

vector may be presented as a row vector rather than a slightly unnatural column

vector. In this notation the coordinate symbols for the vector x and the

linear transformation T go together in the same order as in xT, an order

which seems more natural to him.

Prenowitz, Coxeter, and Johnson ended the discussion with a nice applica-

tion of geometry in linear algebra. Every orthogonal transformation of V is

the product of at most n reflections if n is the dimension of V. To see

this note that an orthogonal transformation preserves distance and is deter-
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mined by its action on an n-simplex with one vertex at the origin. The

vertices not at the origin can be mapped to their desired positions by a

sequence of n suitably chosen reflections.



Lecture IV. Linear Algebra and Calculus of Several Variables.

I would like to look again at two points I raised in yesterday's lecture.

I spoke of linear algebra books not presenting the geometric side with suffici-

ent detail, either omitting it or treating it in an offhand fashion. Let me

elaborate on this point. Most books are quite good about presenting pictures

for the basic operations on vectors. They define addition of vectors in R
2

or R
3 in terms of components and then give the picture for the parallelogram

rule. Similarly when they define multiplication by a scalar they present the

corresponding picture of a coordinate line with the vector as the unit segment.

However when they present the basic properties of the operations they usually

omit the corresponding pictures. The commutative law, which one verifies
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algebraically in R
k

by look-

ing at components, has a very

simple geometric picture asso-

ciated with it. Similarly

the associative law is verified

algebraically and can be pictured

using a parallelepiped. View

the main diagonal as the sum of

the diagonal of a face plus the

remaining edge. The distribu-

tive law, r(x+y) = rx + ry,

amo Lts geometrically to the

fact that multiplication by the

scalar r is a similarity.

It takes a bit of time to draw



these pictures, but by the time you've done so the algebraic formalism has

taken on a geometric shape in the student's mind.

To make this clear let me take an even more trivial example, the rule of

signs in arithmetic, -(-x) = x. I remember my son coming to me with the argu-

ment that since putting a minus sign in front of 2 makes it negative, putting

another minus sign in front ought to make it still more negative. He had in

mind the geometric picture of moving a point on the number line from right to

left (positive to negative). His picture was inadequate because he was looking

at the operation on one point at a time. Regarded as a transformation on all

positive numbers, the minus sign doesn't shift all numbers uniformly to the

left, instead it rotates the positive half line through 1800, pivoting at

zero. Once this is seen there is only one natural extension of the operation

to the negative half of the line. With this picture attached to the rule of

signs, how can anyone forget the rule or be uncertain of it. In my son's class

the reason given for the rule of signs was to preserve the distributive law.

This is a valid mathematical reason but has little impact on a seventh grader.

Distributivity means that the operation is linear; in R
1

, a linear mapping

is a similarity; and multiplication by -1 is in fact rigid. Surely it is

better to appeal to the need to preserve rigidity than to the need to preserve

distributivity.

There were several questions about the method of developing determinants

that I mentioned briefly last time, so perhaps I should elaborate on it a bit.

To motivate what is done in n-dimensions I suggest doing first the 3-dimen-

sional case using the dot-cross product as described in the preceding lecture.

You then ask if this can be extended to higher dimensions, that is, can the

triple product be extended to an n-tuple product? First we define what is
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meant by an n-dimensional volume, namely a scalar valued function of n vec-

tors in R
n

that is multi-linear, skew-symmetric, and non-trivial. The objec-

tive then is to give an inductive argument showing that such a function exists

and is essentially unique, ie., unique up to a scalar multiplier.

To do this split your n-dimensional space V into the direct sum of a

one-dimensional spoce and an (n-1)-dimensional space, V'. Let b denote a

base vector of the one-dimensional space, then each vector x in V can be

written uniquely as a certain scalar multiple of b plus its projection x'

in V', x = mb + x'. Now let's assum we have a volume function f on V

and are in the process of proving uniqueness inductively. Given n vectors,

3C10t29...22CrciriVwespliteadlofthernasaboveintileformx.=ffl.b1-x!.1 1 1

Expanding f(x1,x2,...,xn) = f(mlb + xi,...,mnb + x') by multi-linearity we

get 2n ter=s most of which are zero, for it's easy to show that multi-

linearity and skew-symmetry combined imply that f(y1,y2,...an) is zero when-

ever a vector is repeated or, more generally, whenever the vectors are linearly

dependent. Thus

f(x
1
2. ,x

n
) = On

1
b + x',...,m b + x')

1 n

= En
k=1

th
(b in the k-- place)

= E1=1 mk(-1)
k-1

(qc deleted),

Now define a function g of n-1 vectors in V' by

g(y123722""yn-1) f(bal2Y22""Yn-1)2

and then we have

= 4,

n t 1\k-1 t

It is straightforward to verify that g is a "volume function" on Vf. If

f' is another volume function on V then expand it in the same way in terms
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of the analogous (n-l)-dimensional volume function g'. By the inductive

hypothesis, g' = rg for some scalar multiplier r, and hence f' = rf, so

any two n-dimensional volume functions are scalar multiples of each other.

The same equation indicates how one should build an n-dimensional volume

function, f, from an (n-l)-dimensional volume function g. The details of

the existence proof are then straightforward.

In spite of the fact that one can start this induction from dimension one

or two, I feel that in a calculus course it is valuable to develop volume in

R
3 and to use the cross product in doing this.

Having completed my comments on linear algebra, I shall discuss now its

applications to the calculus of several variables. Consider again the idea of

the velocity vector. Let f: [49,b] R
3 define a curve, and let x = f(t)

and x + AX = f(t + At), i.e., x and Ax are vectors and t and At are

scalars such that both t and t + At are in (a,b). Suppose the velocity

dx i. Ax
vector,

dt pet At'
exists and is not zero, then, since radial projection

Ax
is continuous, lim , , will also exist. Similarly, since taking lengths

At-40 lAxl
dx idx1

of vectors is continuous, if exists so will li =
dt At-mo0 At

idti. This leads

to a geometric view of the unit tangent vector and scalar velocity (speed)

without any mention of arc length, i.e., we have a geometric view of

dx dx ds
wi

ds
thout knowing anything about s.

dt dt

This brings up the difficult question of how to handle arc length on

curves. I looked at several calculus books and observed that most of them

don't handle it. Apostol, in the second edition of his book, defines arc

length as the least upper bound of lengths of inscribed polygons and proves

that, if the curve is smooth, arc length is the integral of the speed. There is

an alternative procedure which I've used and that I'd like to present for you

to consider. Assume we're dealing with a smooth, or at least piecewise smooth,
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dx
curve so exists at all points except perhaps a finite number of points.

dt
dx

Also assume that a- 0 at any point. Then you simply define the arc length,

s(t), from a to t to be
rt lax' A

.T .
It's not fair to do this unless

you verify that this extends the common notion of arc length, at least to the

extent that the common notion has been clearly defined, say for straight lines

and circles. It does agree in these two cases, it is clearly additive, so it

observes the basic properties that arc length should have. A formal proof

dxt
that 1-1 comes immediately from this definition and the fundamental

dt dt
dx dx ds

theorernathecalculus.Toshowthat-we use the fact that
dt ds dt

s(t) is strictly increasing and hence has an inverse function. It takes

about one half of a page to complete the argument. The only objection I

see to this approach from the geometrical point of view is that it avoids

limits of inscribed polygons to which we're somehow wedded as human beings.

In this same direction I never neglect to develop the standard decompo-

sition of the acceleration vector,

2
sus.

= dx (d
2
s ds)2

dt2 ds dtz)
(normal) (TE n 2

i.e., the acceleration vector is the sum of the tangential and centripetal

accelerations. By this time most students have taken first year physics and

recognize the normal component as the scalar velocity squared over the radius

of curvature, in other words, as the "circular centripetal force."

The chief bugaboo in a course on the calculus of several variables is the

chain rule. If one uses the Frechet definition of the derivative this bugaboo

tends to disappear. Consider first the case of a scalar valued function, say

f: D R, D a domain in R3. Define f'(x,y), the derivative of f

at x with respect to the vecto.. y, as the following limit, if it exists:
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fl(x,y) . list LL.±...17) f(x)

11-40

For sufficiently small h, x + hy will be in D, and essentially you are

taking a derivative along a line through x using as your unit segment the

vector y. This is an invariant definition which is independent of the coordi-

nate system end uses only the linear structure of the space. The theorem one

has to prove is that if f'(x,y) exists for each y and is continuous in x

for each y, then fl(x,y) is linear in y. This linearity leads to the

formula for f'(x,y) in terms of a basis, asa basis--it need not be ortho-

normal. If A
1 n

is a basis and y = E y.A. then

f'(x,y) = f'(x,A
1
) y

1
+ + f'(x,A

n
) y

n
.

Thus, if you know the particular derivatives, f'(x,A.), referred to as the
3

8f
partial derivatives, .57 2 you can recapture all derivatives.

In this result we have the ingredients of the chain rule, for f'(x,y)

is the scalar product of the partial derivatives and the components of the

vector y. If we now assume that the basis is orthonormal and use the fact

that any linear functional (scalar valued linear function) on the space is

given by the inner product of y with some fixed vector then we can write

f'(xly) as the inner product of y with a fixed vector called (71)x, the

gradient of f at x. This defines the gradient vector and one has the

df
nice geometric theorem that the directional derivative, ---, in any direction

ds

is the projection of the gradient on that direction. If you draw the sphere

df
with diameter (7f)x, you can read off -cm. simply by looking at the

intersection of the sphere and your directional line. This picture is

frequently omitted from calculus books but I find it very attractive.
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When you change from scalar valued functions to functions from m-dimen-4

sions to n-dimensions say f: D -4 W, D a domain in V, V and W vector

spaces of dimension m and n respectively, then you can take the same defi-

nition of the Frechet derivative, but now f'(x,y) is in W instead of R.

The happy thing about this is that practically no new analysis is required to

handle this apparently much more complicated derivative than has already been

done in the first case. One simply chooses a basis in W, splits W into one-

dimensional pieces and takes the components of f'(x,y). Each of these com-

ponents is a derivative of a scalar valued function, so you've utlified the

concept of derivative. The same theorem (existence and continuity in x of

f'(x,y) for each y implies linearity of f'(x,y) in y) holds in this case,

just look at the components. Thus the mapping f'(x) which sends y to

f'(x,y) is a linear transformation of V into W, or, to put it another way,

the derivative f' is a mapping of D into L(V,W), the space of linear

transformations of V into W. In the old language, to each point of the

domain of f there is assigned a Jacobian matrix at that point.

When teaching the topic of Taylor's expansion of f: D -- Rn near a point
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x
0

E D, one can justify the statement "f'(x
0
) is the best linear approxima-

tion to f in a small neighborhood of xo." Let g denote the first two

terms of the expansion, i.e.,

g(x) = f(x
0
) + fi(x )(x-x

0
)

0

This is an affine mapping, and the remainder theorem yields

lim f(x) g(x) 0 .

x-'1% Ix x01

It is readily checked that this holds for no other affine mapping.

The chain rule for the composition of f: R
k

-P R
m

and g: R
m

-0 R
n

takes on the same form as for functions of one variable

(gf)lx = (g'(fx))(f'x),

and its geometric
interpretation is most pleasing: the best linear approxima-

tion to the composition gf at a point x is the composition of the best

linear approximation f'x to f at x and the best linear approximation

gl(fx) to g at fx. Representing g' and f' by their Jacobian matrices,

and recalling that multiplication of matrices corresponds to composition of

linear transformations, we obtain the standard formulas

azi .b_y2

by.] bxk

where y = f(x) and z = g(y) = g(f(x)).

Turning to the special case of a vector field f in a domain D C Rn,

we have f: D -o Rn and
atn,Rn) hence f'(x) for each x E D

is an endomorphism of Rn. Naw you can show a profit if you've covered the

linear algebra in some detail, because you can naw define the curl and diver-

gence of f in an invariant fashion. The curl of f at x is simply one-

half of the skew-symmetric part of f'(x) and the divergence of f at x is

the trace of f'(x) (and also the trace of the symmetric part of fl(x)).
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Thus the curl and divergence are simply special aspects of the general deriva-

tive.

An associated bugaboo has to do with the transfon d.on of multiple

integrals where you throw in the Jacobian determinant. For straight volume

problems, for example, the standard way of writing the formula is

111 6(x
1
x
2
x
3
)

du2 du3 =
J b(ulu2u3)

U-region

f1 f
dx

1
dx

2
dx

3

Image in X-space
of the U-region

Now I'm not advocating that in a sophomore calculus course you prove this

theorem in its full generality. The general case is much too involved, we

don't have time for its proof in a calculus course, there are too many other

things we must cover. But I do believe you should state the theorem, show why

it is reasonable (volume T(U) = (det T) volume U), and then prove the particu-

lar cases that you want to use, especially polar, cylindrical, and spherical

coordinates.

Let's review what this involves in the case of spherical coordinates.

First the Jacobian of the transformation is computed and found to be

p
2

cos y. Take U to be a rectangular box with sides parallel to the coordi-

nate axes, with one corner at p, 0, y and edges Ap, AO, Ay. Integrating

the Jacobian over U gives (l/3)[(p+Ap)
3

- p
3
][sin(y+Ay) - sin y]Ae. We

compute naw the volume of the image V of U in (x,y,z)-space. This is

an elementary solid and its volume can be worked out by the methods of the

calculus. A cone with a spherical cap is a solid of revolution; if p is

the length of the generator of the cone and y is the generating angle,

its volume is (2/3)rp
3 (1-sin 0. Its intersection with a wedge of angle AO

has volume (l/3)p
3
(l-sin cp)Ae. Form now the difference of two of these

taking p to be p Ap and p respectively, and Cocn a second difference
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0 z X-space

y

x = p cos y cos 8
y = p cos y sin 0
z = p sin y

taking y to be y + Ay and ,y respectively. The result coincides with the

integral of the Jacobian over U.

This makes a pleasant exercise in the calculus, it can even be assigned

as homework, and once it is done the student understands the meaning of the

general case.

Discussion.

Woolf stated that he was a little uncomfortable about using a definition

of arc length that is restricted to smooth curves. In reply Steenrod elaborat-

ed on one of the points he was trying to make in the lecture. Although in a

sophomore calculus course we do not have time to present or prove results in

their full generality we should prove them in the special cases that exhibit

enough generality for the moment. For example, only a few mathematicians have

worked through the details of the general theory of surface area; however, we

are happy to accept the standard formula for smooth surfaces as a definition

because it gives the right answers in all those special cases where the area
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is determined by some simpler method (flat regions, cones, cylinders, surfaces

of revolution).

Klamkin and Hammer suggested that one ought to show the students that the

Jacobian for rotations and translations is 1, in agreement with our intuition

that rigid motions don't change volume, and ,erify that volumes behave the way

we claim they do in the case of a linear change of coordinates. In the case of

a linear change of coordinates the Jacobian is just the determinant of the

transformation.

Yale pointed out that one can exploit the chain rule to simplify the

computation of the Jacobian for changing from rectangular to spherical coordi-

nates and in showing that volumes beave the way they should. The equations

relating rectangular and cylindrical coordinates, x = r cos 0, y = r sin e,

z = z, are the same in form.as the equations relatThg cylindrical and spherical

coordinates, r = p cos y, z = p sin y, e 0. Thus if one computes the

Jacobian and verifies the volume relationship in changing from rectangular to

cylindrical coordintes, the same computation can be used again along with the

chain rule to yield the appropriate results for spherical coordinates.

In reply to Woolf's question as to whether the mapping f' from D into

L(V,W) should be called the derivative or differential Steenrod promised to

talk further on the difference between the two in his next lecture.
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Lecture V. Differential faalaarlE.

Let me reply first to the question of last time about differentials versus

derivatives. Suppose V and W are vector spaces, D is open in V, and

f is a continuously differentiable function mapping D into W. We saw

yesterday that the derivative, f', is a map of D into L(V,W), the space

of linear transformations of V into W. One could repeat this process and

take the second derivative, f", a mapping of D into L(V, L(V,W)), but,

if you look at things this way, higher derivatives get more and more awkward to

write. So one goes back and examines L(V,W) in greater detail. Using the

natural isomorphism between W and R OW and the fact that L(V,R)

we find that

L(V,W) L(V, R ow) L(V,R) OW V* e) W.

Thus f' can be regarded as a map of D into V* OW, f" maps D into

V* 0 V* OW, etc.

One is tempted to regard these successive derivatives as tensor functions

on D, but this proves to be wrong. If we change coordinates in D, transform

f' by the tensor transformation rule, and then take the derivative, we do not

obtain the tensor transform of f"; second derivatives of the coordinate

transformation appear in the first but not the second. The derivative somehow

isn't a tensor in the proper sense. However a piece of the derivative, its

skew-symmetric, or alternating, part does transform properly. These skew-

symmetric tensors are called forms. A p-form on D is a function mapping D

th
into the p-- component of the exterior algebra generated by V*, f: D ARV*.

If you take the derivative then, as we saw above with W = ARV*, we obtain a

mapping f' of D into V* 0 ARV*. There is a natural quotient mapping

(derived from the basic homamorphism of the tensor algebra of V* onto the
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exterior algebra of V*) of V* 0 APV* onto AP4-1V*. The exterior derivative

or differential of f is the composite of f' and this natural homomorphism,

so whenever this quotient map actually collapses things the differential, df,

is only an aspect of the derivative, f', and is not the same. But in the

special case p = 0, i.e., f: D R we have A
I
V* = V*, so no collapsing

occurs and for scalar functions there is no difference between the two. There

is a difference whenever p > 0. The gradient, curl and divergence are modifi-

cations of the exterior derivative, and the relations curl grad = 0,

div curl = 0 correspond to ddy = 0 for all y.

A number of the things I've discussed in the last two lectures are done

in some detail in the text on advanced calculus by Nickerson, Spencer, and

Steenrod. This set of lithoprinted notes, was prepared in 1958 for a course at

Princeton combining advanced calculus and complex variables. The first eight

chapters were written and revised several times but chapters 9-13 were hastily

prepared with the intent of polishing them later. In 1962 we split this course

into two courses, a year's course on advanced calculus and differential geome-

try, and a year's course on complex variables. At the same time linear algebra

was made a prerequisite, so mathematics majors are now required to take linear

algebra in the sophomore year. In fact most of the material of the first eight

chapters is covered now during the sophomore year. When I teach the advanced

calculus and differential geometry course, we begin with chapter 9, and struggle

on from there. Chapter 11 on the teLsor and exterior calculus has been thor-

oughly revised and is available in mimeographed form. Course structures change

so rapidly these days that a would-be author is easily deterred by the thought

that any book he writes may soon be obsolete.

Let us turn now to a discussion of the sophomore course on differential
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equations. Most books I've seen on the subject begin by presenting examples of

differential equations in the form of formulas. This gives the student the

impression that a differential equation is just something you write on piece

of paper, that it's a batch of symbols with derivatives in it, or more formally

that it's a function of several variables some of which are derivatives with all

this equated to zero. This is the analytic definiton. Although such a defini-

tion can be made rigorous, the approach suggests to the student that it isn't

a differential equation unless and until it is written as a formula in standard

notation.

It seems to me that a geometric view of differential equations can clarify

the whole picture and give the student some feeling for what's going on right

from the start. Suppose you have a domain D in a vector space V and a con-

tinuous mapping f: D -4 V, i.e., a continuous vector field in D. A solution

curve through a point x in D is a function, say y = g(x,t), of the initial

(a
position x and time t such that g(x,0) = x and f(y). The equation

dt

= f(y) is the associated differential equation. Without proving anything
dt

at this introductory stage you can state the main facts. First of course is

the existence theorem, for any x in D there is a time interval around zero

and a function g such that y = g(x,t) is a solution for t in this inter-

val. The uniqueness theorem requires some condition of the Lipschitz type and

says that any two solutions through x must coincide. Then you can state a

group property of solutions: g(g(x,t),$) = g(x,s + t). In other words, if you

start at the point x, move along a solution curve through x for a time t,

then move along a solution curve through the point g(x,t) for a time s, you

arrive at the point on the original solution curve that corresponds to the time

t + s. Thus the two solution curves are actually the same curve and you arrive
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at the concept of a streamline. Another way of saying this is that a curve C

followed by a point x is also the curve followed by each point of C; thus

C slides or flows along itself. A point moving along C will do so with

varying velocities but when it reaches x then its velocity is the prescribed

velocity f(x). The picture of these streamlines filling D, one through each

point, is called a steady flow.

One can give examples of steady flows on a very elementary level, examples

LIZwhich are very appealing. The simplest is of a constant field
' dt

= b, b a

fixed vector. In this field all vectors are parallel and have the same length,

and of course the flow is simply translation with streamlines y = x + bt. Or

LIZconsider = ry, r a scalar, the differential equation associated with a
dt

radial field in which all vectors point away from the origin (r > 0) or

towards the origin (r < 0). The streamlines are clearly straight lines

through the origin and you can explicitly check that the solutions are

ertx.
Another nice example in R3 is that of a rotating field. Choose

an axis of rotation, or axis of fixed points, say the line along the vector b.

Dcfine the vector field by f(y) = b x y, so that f(y) is perpendicular to

both b and y. You can integrate the associated differential equation

LIZ
dt

=bxy explicitly in terms of sines and cosines and see that the steady

flow is circular motion about the axis with angular velocity 1bl.

It seems to me that this can be done very early in the course, say the

first two or three weeks. You may feel that at the beginning you must start

with mechanics, i.e., solving simple equations so as to get the students start-

ed on homework problems. But actually you can make up homework problems on

this kind of materialit's not difficult.

Of course steady flow is not the whole story but it is a unifying geometric

view of the subject. One needs of course the reduction theorem stating that
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any differential equation in the analytic sense

d
k-1

LL.Y. = f(x,y,
dxk dY"."dxk-1

can be reduced to a steady flow by introducing new variables y. = . for
1 dx1

i = 1,...,k-1. This gives a system of first order equations which can be

dz
written as a single first order equation F(z) where z is the vector

dt

whose components (x,y y
'-1"."Yk-1)

and the components of F(z) are

The only drawback with this view is that the

resulting steady flow is frequently in a dimension greater than 3 where

visualization is not granted to most mortals.

Another reason that I like the steady flow picture is that it makes it

easy to explain to a class the geometric background of the game of making sub-

stitutions in a differential equation in order to reduce it to a form that is

readily integrable. One is simply transforming the vector fiele and resulting

flow to a new coordinate system, chosen with the hope that the solution curves

will have a simpler and recognizable structure. To convince the student that

this can be done ask him to picture a coordinate system in which the streamlines

are the "lines parallel to one axis." The associated differential equation in

.51Y.
this new coordinate system is simply b, i.e., in this coordinate system

dt

the flow is translation and the golution is trivial. Thus the problem of solv-

ing a differential equation and that of finding a suitable coordinate transfor-

mation are essentially equivalent.

Incidentally, while on the subject of coordinate transformation, I believe

that one should always display the domain and range of the transformation as

two separate rectangular coordinate systems. The image of the domain gridwork

is pictured as two families of cuilies in the range space, and the inverse image

of the range gridwork as two families of curves in the domain. The purpose of
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doing it this way is to emphasize the mapping aspect of the transformation. I

do this even when discussing such a simple case as polar coordinates.

Now let me list some topics in a differential equations course which are

especially geometric in nature.

1. Sketching a steady flow from its vector field.

2. Finding orthogonal trajectories.

3. The two body problem.

4. Linear systems of first order equations with constant

coefficients.

The first topic is treated perfunctorily in most books, often with just a

few comments about drawing the line element field and then trying to connect

these line elements to form smooth curves. One exception is the old book by

Piaggio which takes this up in the very first chapter. He presents details for

sketching the whole family of streamlines before the student learns how to turn

the crank. The main features of his procedure are: First sketch the curves of

zero slope (the isoclines for zero slope), i.e., the curves of maxima and min-

ima for the streamlines. In addition sketch the curves of inflection points,

the curves y" = O. About half the people I talk to have never tried this

second point, so let me give you an example. The differential equation

y' = -xy + 1 is linear in y so you can write down the solution in terms of

exponentials, however this does not give much information about the shape

of the solution curves. The curve of zero slope is xy = 1. Differentiating

we obtain y" = 0 if and only if y = z . This curve and the convexity of
x -1

the solution curves in the four regions determined by its three branches are

indicated in the follawing sketch. With this added bit of detail the student
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finds the sketching of the solution curves much more interesting.

--=

Stream lines for y' = -xy 1, shawing the zero isocline

and the curve of inflection points

The second topic, orthogonal trajectories, is treated adequately in most

books so I won't say anything about it except that I always include it in the

course. It's pretty geometry and has practical importance, e.g., lines of

force versus equipotential curves and surfaces.

The two body problem is a wonderful problem from several points of view.
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Consider the steps you go through to solve it. You start with any rectangular

coordinate system in R
3

, set up the differential equation in vector form and

you have an equation with a total order of melve. You then observe a certain

kind of symmetry in the equation, do some adding and subtracting and come up

with an equation for the center of mass. This is a simple equation that you

can integrate and find as a result that the motion of the center of mass is

a translation. Now you change to a new coordinate system whose origin is at

the center of mass. You can thus assume the center of mass is fixed and ask

for the motion of each particle with respect to the center of mass. You find

that the differential equations for the two particles not only look alike but

that the solution for one determines the solution for the other, so you've

reduced the problem to the problem of one body attracted to a fixed center.

The differential equation for this problem has total order six. Many books

leave out these initial steps. I don't understand why they do this; it is part

of the problem, and it is very nice mathematics.

You now go to work on the one body problem. The first integration is

manageable in rectangular coordinates and tells you that the motion is planar.

It also gives Kepler's law about equal areas. At this point you transform to

polar coordinates in the plane of motion, eliminate the t parameter, and

obtain a differential equation in r and 0 which is linear in 1/r. This

second order linear equation can be integrated explicitly and out comes the

equation of a conic section in polar form. If you've done a good job on conics,

the students will be delighted to get the answer in such nice form. If you

haven't, they will be mystified, and you will need to transform into rectangular

coordinates to show that (if the initial velocities are not too great) the

motion is along an ellipse with one focus at the center of mass. Then, using
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the area of the ellipse and Kepler's first law, one derives his third law.

This problem illustrates almost everything you do in a differential equa-

tions course, especially the techniques of choosing coordinates properly to

simplify a problem, and making coordinate transformations to obtain explicit

solutions. In addition to all this it has great cultural value.

Finally, a few words about the last topic, systems of linear differential

equations of the form
dt AY,

where A is a linear transformation. The

student's have already solved single linear equations with constant coefficients

and this first order system is essentially a trivial problem compared to their

previous problems. It's just in higher dimensions and now you do something

about the geometry of the topic that you didn't do before. The solution can be

given explicitly in the perfectly good form y = e
At

x, read "y is e
At

acting on x." Of course you have to define the exponential e
At

in the

standard way,

At 00 1 Ak k
e =

Note that I view A as a linear transformation not a matrix. You can 'prove

that this converges, without resorting to matrices, by using norms in the space

=
of linear transformations. Since At and As commute, e

A(t s)
e
At

e
As

, so

the group property we spoke of earlier works out nicely.

After doing this one looks at the two dimensional case in detail. The

origin is a fixed point and the question is, how do the solution curves behave

in a neighborhood of the origin. It turns out that there are four types of

behavior. To solve such a problem, one must determine the characteristic

values and vectors of A. The latter give the straight lines that are stream-

lines, and the characteristic values determine the nature of the neighboring

curves. This is a pretty bit of geometry which fits in neatly if you've
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already done the linear algebra. It gives you a fine opportunity to reestab-

lish the idea of a steady flow. There are good treatments of this topic in

the differential equations books by Kaplan and Ross. (It is sometimes listed

as "phase-plane analysis.") Some books fail to include it.

Discussion.

Woolf and Hausner asked about 0-forms and whether vector-valued functions

could be viewed 3S 0-forms. Steenrod replied that there is a generalization of

the notion of differential forms called vector-valued differential forms. If

V and W are vector spaces, then a vector-valued differential form of degree

p defined on a domain DC V with values in W is a function

cp : D -0 (Awe) 0W.

Its differential dy is a vector-valued (p+1)-form. In particular, a vector-

valued 0-form is a function y: D -1,W, and y' = dy D -4V* OW. One

can multiply an ordinary p-form on D with a vector-valued q-form to obtain

a vector-valued (p+q) -form. In this way, the vector-valued forms constitute

a module over the algebra of ordinary forme.

Klamkin remarked that the radius of curvature is another nice device to

help sketch a steady flow, an idea that he believes goes back to Rayleigh.

The vector field for the radius of curvature at each point is readily obtained

for a first order equation and can even be approximated for second order aqua

tions by approximating the derivative at each point.

The book by Horace Lamb and the At.......____J2SnericanMatheleAMattax were sug

gested as good sources of ideas and pictures to help visualize solutions to

differential equations.
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Benson initiated a long discussion of conics by observing that the two-

body problem might serve as a good motivation for the study of conics and ask-

ing what other motivating ideas could be used earlier. Steenrod suggested two:

analytically they're next in line after the study of straight lines, or one can

look at circles an0 tilt them or project them to motivate ellipses. He repeat-

ed his view as stated in an earlier lecture that it is important to have the

conics (at least in standard position) available early in the freshman course

because they provide nice applications of the derivative. Blattner reported

that his students became more excited about conics when he presented a brief

treatment using Dandelion spheres as in the book by Hilbert and Cohn-Vossen.

Prenowitz, Kelly, and Hausner stressed the point that the teacher's attitude

is very important. Topics such as conics may seem "old hat" to us but we must

be careful not to take away their natural appeal. We should be sure to give

the student some idea of the tremendous amount of work behind the polished form

presented. Kelly remarked that the focus-directrix definition provides a

unified way of presenting all three types of conigs. He showed how the varia-

tion of eccentricity, e(x) = jl - -El (assuming the y-axis is the directrix,

(f,0) is the focus) in terms of the x-intercept can be exploited in the

early study of conics.

Kelly held up as an example of a poor attitude on the part of a teacher

an anonymous algebraist who was heard to mutter, "I've got to go teach volumes

by slicing. That's really a topic for butchers!" This example reminded

Steenrod of one topic, how to teach students to draw good pictures, that he

wanted to cover in his lectures but couldn't for lack of time. The unhappy

algebraist may have been unhappy because he lacked the ability to draw pictures.

If you're good at drawing pictures, then teaching such topics as volumes by
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slicing is enjoyable. The first place where a gooc picture in three dimensions

is needed occurs in the topic of direction angles and cosines. Given the co-

ordinates of two points, the problem is to draw the box with sides parallel to

the coordinate planes having the two points as diagonal vertices. There is a

simple mechanical technique, draw first the projection in the xy plane, erect

the vertical edges and fill in the top and bottom. Techniques such as this

ought to be included in calculus and analytic geometry books. Gray stated

that perhaps we need a pamphlet for instructors on how to draw good pictures

for calculus and linear algebra courses. Vogt pointed out that Klein, in the

geometry volume of his book Elementary Mathematics from an Advanced Standpoint,

discusses the problem of making correct drawings, cf. pages 77-80. We all

could profit by studying a little descriptive geometry.
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THE GEOMETRIC CONTENT OF ADVANCED CALCULUS

Lectures by A. M. Gleason

(Lecture notes by Melvin Hausner)

Lecture I.

I would like to continue Steenrod's series of lectures by considering some

problems in analysis. To begin with, let me express the general opinion that

the course we teach in college which is usually called "Calculus" frequently

hurries into such questions as differentiation and integration, and often fails

to put the nroper emphasis on what the subject is all about, namely functions of

a real variabie, or of several real variables. The differential and integral

calculus are, after all, techniques used to find out certain properties of

functions, and should not be considered as ends in themselves. I believe that

we are going to see, in the near future, a considerable change in the emphasis

of the college calculus course which will reflect this opinion.

The easiest kind of function is the constant function, of which there is

little to say. Next in the hierarchy are the linear functions, and then the

quadratic functions. The linear functions (strictly, the affine functions)

already exhibit their basic properties in dimension one. Or, if we consider

two of these functions at a time, we get a good idea of the general situation

by considering lines in the plane. Thus, to solve two linear equations in two

variables, we have (geometrically) two intersecting lines, parallel lines, or

identical lines. All of these situations have, as you know, straightforward

generalizations in higher dimensions. For the quadratic functions, the basic

situption (at least if we consider these functions one at a time) occurs in

three dimensions. That is, all of the interesting phenomena concerning these

functions which occur in higher dimensions already show up in three dimensions.
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But this is not true of the cubic functions (of several variables) or of the

polynomial functions of higher degree, where new complications occur in higher

dimensions. I have a feeling that it is because we live in three dimensions,

and because we can draw the pictures to see the phenom2na of quadratic behavior

but cannot see the basic phenomena for higher degree functions, that we know a

great deal about the quadratics but very little about the higher degree func-

tions. At any rate, this seems to be a partial explanation for our ignorance.

The basic thought behind calculus is to reduce questions of complicated

functions to the simpler functions. We can phrase this in a sufficiently in-

formal way, which is necessarily full of qualifications. All decent functions

are practically linear. The theme of the calculus is to take advantage of this

situation. For example, if f is a "decent" real-valued function of a real

variable, and if x is in its domain of definition, and if x' is near x,

then f(x') - f(x) is approximately equal to Lx(xl x), where Lx is a

linear function, which varies--probably non-linearly-=with x:

f (x ' ) - f (x) Lx (x x) .

Of course, this "equation" needs clarification. The usual meaning of this

approximation is that the approximation "gets better" as x' gets closer to

x. More formally, there is a linear function Lx (depending on f, and

explicitly on x) with the property that for any x and any e > 0, there

exists a 8 > 0 such that if x' is any number satisfying the condition

Ix' xl < 8, then

If(x') f(x) Lx(xl x)I elx xl

(Note that the weak inequality permits x' = x.) This is the definition of

the Fr4chet derivative. However, this definition is not strong enough to
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reject many pathological situations. For example, consider the function

f(x) = x
2

sin
1
--. It is well known, and easy to prove, that f'(0) = 0.

Geometrically, each chord starting at the origin will have its limiting slope

0 as the other end-point approaches the origin along the curve. However, if

'we take two different points each approaching the origin along the curve, the

limiting slope will not exist.

It is possible to change the above definition slightly to avoid this

occurrence. We merely take two points xl and x" independently approaching

x. Formally, given the function f and the point x, the "strong" Frgchet

derivative at x is the linear function L
x

with the property that for any

e > 0, there exists a 8 > 0 (depending on e, f, and x) such that if

x, <8 and Ix" - xl < 8, then
Ix'

If(x") f(x') Lx(C" 20)1 eke - x'l.

Geometrically (we are thinking of f as a real-valued function of a real

variable) we are permitting x' and x" to approach x independently and

it is required that the slope of the secant joining (K',y') and (10,y")

have a limit. Here, and x" may be relatively close, while each is
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relatively far from x. Intuitively, this is certainly a reasonable definition

for smoothness of a curve. It is also true that this definition is equivalent

to the assumption that f has a continuous derivative. Thus, restricting our-

selves to an interval, f will have a continuous derivative in this interval

if and only if f has a "strong" Frd'chet derivative at every point of the

interval. This definition illustrates, geometrically, why it is the C
1

functions which we wish to consider, rather than merely differentiable functions.

In the real variable case (f: R R), the derivative Lx is a number.

It is an easy matter to consider these derivatives for functions f: Rn -0 R,

and more generally if f maps Rn into Rm. All that is necessary is to

replace the absolute values by norms wherever required. If f: R
n

R, then

the derivative L
x

is a linear function from R
n

into R satisfying

If(x") - f(x') - Lx(x" - x')I g -

provided Hxt - xJJ <8 and Hx" < 8. Similarly, if f: Rn Rm, L
x

is a linear function from Rn into Rm such that

df(x") - f(x') - Lx(xu x')II ellx" xlIl

provided Hxf - < 6 and DO - < 6. Again Lx varies, in general

non-linearly, with x. As in the simpler case, this leads to C
1

mappings as

the primary notion rather than the secondary one.

We may rephrase our informal statement: All decent functions have con-

tinuous derivatives. However, we can say more, again informally. In many

ways, functions of class C
I behave just as if they were linear. We can

rephrase as a metaprinciple.

In cases where the affine approximations to functions are in general

position, the qualitative behavior of the functions is just as if they were

their affine approximations.
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Implicit Function Theorem. We shall illustrate the above idea by consider-

ing the implicit function theorem. Suppose we have a function F: R X R R.

The implicit function theorem gives conditions under which the equation

F(x,y) = 0 may be solved for y in terms of x. We first note that calculus

cannot answer such a question by itself. We must have an initial solution

0
,y

0
) with F(x

0
,y

0
) = 0 in order to "get a grip on the problem." The

problem of discussing globally what the solutions are like is not within the

scope of calculus. However, the local solutions of the equation F(x,y) = 0

in the neighborhood of (x
0
,y

0
) might not be represented as a function at all.

The diagram gives some of the conceivable possibilities. The classical cri-

terion is that if F is C
1

, and if F2(x0,y0) 0, then for some interval

I about x
0

, there exists a C
1

function g: I R such that F(x,g(x)) = 0-
for all x in I and g(x0) = yo. Furthermore, g is unique among all

Possible solution sets of F(x,y) = 0 near (x0,y0).

(Given F(x0, yo) = 0.)

continuous functions h: I R which satisfy the conditions F(x,h(x)) = 0

and h(x0) = yo. Also, the derivative g' is given by the formula

gl(x) = -F
1
(x,g(x))/F

2
(x,g(x)) in the interval of definition. (We use the

notation F. for the "partial derivative with respect to the i
th

variable.")

To see how this fits in with the above discussion, we write
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F(x,y) F(x02570) + F1(x0,y0) (x-x0) + F2(x0,y0) (y-y0).

If we replace F by its affine approximation, and use F(x0,y0) = 0, we

have to solve the equation

F1(x0,y0)(x-x0) + F2(x0,570)(y-y0) = 0.

Of course, we can solve for y if F
2

0 at (x
0
2y

0
). (This is the "general

position" for the affine approximations referred to in the metaprinciple.) We

also note that the solution in this case is linear, and has as its derivative

-F
1
/F

2
evaluated at (x10,y

0
). Thus, when we solve the affine approximation

of the given equation F = 0, we obtain a solution which is the affine approx-

imation of the answer.

We recall the proof of this theorem, giving only a sketch. In the plane,

we have the point (x
0
,y

0
) at which F = 0. Then, along the vertical line
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through (x01,510), the derivative of

F is not zero. Say it is positive.

Therefore, the derivative is positive

on the vertical line through (x0,y0).

Hence, F is strictly monotonic on

this line, positive above (x0,y0)

and negative below it. By continuity,

the signs are preserved in a (two-

dimensional) neighborhood of these

points. If we take any vertical line

intersecting these neighborhoods,

there must be a point where F = 0

on this line, since there is a sign



change. In fact, since F2 > 0 at (x0,y0), we may assime that all of this

is taking place in a neighborhood in which F2 > 0 (E is C
1
). Thus F is

strictly monotonic increasing along each of these vertical lines and F = 0

only once along each of these lines. This gives the uniqueness of our solution,

and it also shows that we have a function g(x). Then using the mean value

theorem, or some equivalent result, we can show that g is differentiable and

has the required derivative.

We can look at this result in another way. We imagine the smooth surface

z = F(x,y) which, by hypothesis, passes through the point (x0,y000). It

has a tangent plane at that point. The theorew states that the surface cuts

the plane z = 0 in a curve and that this curve has as its tangent line the

intersection of the tangent plane with z = 0. The "general position" require-

ment guarantees that the tangent plane does not coincide with the plane z = 0,

nor is the intersection with z = 0 a line parallel to the y-axis.

Suppose we consider the higher dimensional case where F: Rn - R. Let

us take n = 4, since the general case is no harder. It is worth noting that

the difficult analysis has already been done in the case n = 2 discussed

above. (As in many such situations, this theorem is essentially two-dimen-

sional.) For convenience in notation we let the variables be xo, xi, x2,

and x3. For partial derivatives we shall use the corresponding subscripts.

0000
Suppose F : R

4
- R and that F(xo, xi, x2, x3) = 0. When can we solve the

equation F 0 for the variable x
0°

Assuming F is C
1

, we replace F

by its affine approximation at the given point to obtain, as the equation

approximating F = 0, the equation

0 = F0(x0 x(03) + Fi(xi x7) + F2(x2 - 22) + F3(x3 x3)

where the partial derivatives are evaluated at the given point. To solve for
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-

x
0'

we need F
0

-/ 0 at the given point. In this case x can be expressed
0

linearly in terma of xi, x2, and x3. The implicit function theorem, in this

case, states that the non-linear equation F = 0 can be solved for xo, pro-

vided the linear approximation can be solved uniquely. Again, the linear solu-

tion of the approximating equation is the linear approximation of the solution

of the original equation.

We can get the result for the higher dimenslonal case by simply "fixing"

two of the variables and concentrating only on xo and one of the other vari-

ables. The two-dimensional case permits us to solve in terms of this variable,

and gives us a formula for its derivative. In this case we have a partial deriv-

ative, since the remaining variables are held fixed. This also shows continuity

of the partial derivatives. Thus, using the theorem that continuity of the

partial derivatives implies differentiability in the sense of Fr6chet, we

obtain the differentiability of the solution xo = g(x1,x20x3).

I mentioned, at the beginning of this lecture, the importance of the idea

of a function in the calculus. We should be careful, as far as possible to dis-

tinguish between three kinds of properties of functions. These are the

the local, and the infinitesimal. A ,Dlobal property of a function is a property

which concerns the function in its entire domain. A local property, is a proper-

ty which is stated about a function in a little patch, whose size may vary from

point to point; but the property concerns the function in the whole patch. Fin-

ally, an infinitesimal iy22.2ssi of the function is one concerning its deriva-

tives at a point. For example, the property that a function is differentiable

at a point, or that its derivative vanishes at a point, is aa infinitesimal

property, since no information is given about the function's behavior over any

small patch. We ought to realize that the classical differential calculus

concerns itself with the interplay between local and infinitesimal propertiec
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of functions. It says virtually nothing about the connection between the local

and the global properties of functions. Non-calculus techniques, just as impor-

tant as those of calculus, connect the local and global levels. For some

reason, this is kept secret in the books. But differential calculus cannot

help with this problem; it does not have the grip. (Integral calculus is a

little more global in its scope.)

For example, in the implicit function theorem considered above, the hypoth-

esis on the derivatives was an infinitesimal hypothesis, while the property of

having continuous derivatives is a local property. The conclusion was a local

one. Calculus does not provide us with the in-the-large (global) solution

of the equation F(x,y) = 0. Similarly, calculus did not help us find a point

(x0,y0) where F = 0.

This issue also comes up in maximum and minimum problems, and it should

be mentioned when it occurs Here, the notion of a local maximum and minimum

is a local one. Thr: theorem often used is that at a local maximum, or minimum,

the derivative is 0. This is an infinitesimal condition. The sufficiency

condition in terma of second derivatives is also an infinitesimal condition.

However, finding the actual minimum is a global problem, and this feature

should be stressed in teaching the calculus.

Discussion.

The uniqueness of the solution of F(x,y) = 0, and its "completeness"

was brought up. Gleason gave the meaning of local uniqueness, in the possibly

non-continuous sense, as follows: Let S be the set of points where F = 0.
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Then there exists some neighborhood N of the given point (x0,y0), such

that N n s is the graph of some function g(x) defined in an interval

about xo. Furthermore g(x) is C
1

in this interval.

Concerning the continuity of the solution of F = 0 for more than two

variables, and the relationship with the two-dimensional case, Gleason pointed

out that the argument given in the two-dimensional case goes over easily in

higher dimensions. The argument is essentially two-dimensional.

It was agreed that the levels global, local, and infinitesimal sometimes

get mixed in hypothesis and conclusion. Despite the resulting uncertainty and

even possible confusion of level, Gleason felt that the distinction was impor-

tant and ought to be stressed.

Some examples of theorems with global conclusions are: The mean value

theorem. The theorem that if f' > 0, then f is monotonic. However, it

was pointed out that even these theorems use the global hypothesis that the

domain is connected. Similarly, the theorem on the attainment of a maximum

requires the global hypothesis of compactness of the domain.

It was thought that a careful use and phrasing of the mean value theorem

would make the generalization of the implicit function theorem trivial, by

replacing the real variable x by the vector variable x. However, the

correct form for the mean value theorem was left open.

The generalization of the implicit function theorem when F is a vector

valued function was brought up. It was agreed that the proof would be more

difficult here. Gleason remarked that even here, the idea of the one-dimen-

sional proof can be generalized. The intermediate value theorem generalizes in

higher dimensions to an appropriate theorem on winding numbers or degrees of

mappings.
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It was pointed out that the equivalence of continuity of the partial

derivatives, and the existence of a "strong" Frechet derivative was not well

known, with only a one-way implication usually stated and proved. A brief

sketch of the proof was indicated (in one variable), and it was clear that in

one variable, the equivalence was quite elementary.

It was mentioned that the book A First Course in Integration by E. Asplund

and L. Bungart used this idea throughout. At this point Gleason remarked that

he would not object to the abandonment of the traditional derivative in favor

of the more restrictive strong Frechet derivative. However, he mentioned that

he had not considered the long range implications of this idea. The effect

would be, at first glance, the abandonment of pathologies, which might prove

worthwhile at this level. It was pointed out that the function would not even

have to be defined at the given point, although it could be defined using con-

tinuity. Coxeter pointed out that the usual definition of the derivative would

be discovered as the first case of Taylor's theorem. Another point mentioned

in favor of the traditional definition was that it was easily computed. In

general, no one was firmly in favor of a change towards the strong Frechet

derivative.

Gleason felt that there was too much emphasis in present-day calculus

courses on pathological functions. The pathologies are not really in the

main-stream. For example, it is fairly hard to prove that every continuous

function is Riemann integrable, but it is quite easy to prove it for piecewise

monotone bounded functions. The latter hypothesis covers all the functions that

need to be considered in a first course.

The distinction between the general mathematical notion of a function and

the scientist's notion of numbers determined by experiments should be mentioned,

and in the introductory courses the problem should be what functions should be
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r..

considered to represent these "physical" functions. Thus, we should raise the

question "What are the possibilities for functions?"



Lecture II.

It should be noted that the geometric formulation of the alternative

definition of the Frechet derivative must be stated with care. For example,

if F: R
2

-) R, then, in analogy with the slope of a secant through two dis-

tinct points x and x" approaching a given point, we might imagine that

we would have a similar situation involving the direction of the plane through

points on the graph of z = F(x,y) corresponding to three non-collinear points

(x.,y.) approaching the given point. However, we can easily convince our-

selves that if the points are almost collinear, then we will probably obtain an

almost vertical plane, which is not necessarily near the tangent plane. What

is required is to keep the angles of the triangle in the (x,y) plane away

from 0.

Implicit Function Theorem for Several Variables. We now recall the gen-

eral theme enunciated in the last lecture, namely that C
1

functions behave

like their linear approximations, provided they are in general position--that

nothing vanishes "by accident." Let us now consider the implicit function

theorem for mappings into a space of more than one dimension. To be specific,

suppose H: R
4

R
2

, and H is C
1

(Last time, we only considered real-

valued functions.) We wish to solve the equation H = 0. Thus we have the

system

F(x, y, u, v) = 0

G(x, y, u, v) = 0

where F and G are real-valued and C
1

, and we wish to solve for u and v

as functions of x and y. Again we suppose that we have an initial solution

(K
0

y
0

u
0
, v

0
), since calculus cannot help us find this. If we linearize
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the system (i.e., replace each function by its linear approximation) we obtain

the system

F1(x-x0) + F2(y-y0) + F3(u-u0) + F4(v-v0) = 0

G1(x-x0) + G2(y-y0) + G3(u-u0) + G4(v-v0) = 0

where the various partial derivatives are evaluated at the point

0
, y

0
u
0
, v

0
). The linear.system can be solved uniquely for u and v

provided

[

3

det
G
3

G
4

(Classically, the Jacobian of the given functions, with respect to the varia-

bles we wish to solve for, does not vanish.) The condition that the determi-

nant does not vanish is, in this case, the condition that the functions are in

general position. The determinant condition then implies the conclusion that

we can solve for u and v in terms of x and y. Again we stress that

we obtain a local solution, and that it is essential that the functions be C
1

(although som weakening of this hypothesis can be made). The conclusion of

the theorem can be stated as follows. If S is the set of points in R
4

which satisfies the equations F = 0 and G = 0, then there exists a neigh-

borhood N in R4 of the given solution (xlio, yo, uo, vo) such that S n N

is the graph of a function from some open domain of R
2 into R

2
That is

there exist functions g(x,y) and h(x,y) such that S n N is the set of

points (x,y,g(x,y) ,h(x,y)) for (x,y) in some open domain N
1

of R
2

.

Furthermore, the functions g and h are C
1 As before, the solution of

the approximate equation is the approximation of the solution.

The implicit function theorem very nicely illustrates the idea of a

calculus course as a course in the theory of functions. This theorem is
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clearly a new technique for defining functions (the implicit functions). As

we are aware, the student's first reaction when he is told that 4we can solve

for u and v" is usually confusion if not rebellion. For example, he might

insist on a formula. Thus, it is helpful to take the view that we are finding

new techniques for defining functions and then examining the properties of

these new functions.

Inverse Function Theorem. We now consider the inverse function theorem,

a theorem which may be regarded as a special case of the implicit function

theorem in more than one variable,.since it essentially involves solving n

equations for n unknowns. However, we shall view this theorem in a different

geometrical light. If F is a function from some domain of Rn, we shall

use the notation (dF)
x

to indicate the derivative of F at the point x.

(dF)
x

is a linear map from R
n

into the appropriate vector space determined

by the range of F. Then the inverse function theorem is as follows. Suppose

F is a function from some domain on Rn into Rn (the same dimension).

Suppose that F is C
1

This implies, for example, that for any x
0

in the

domain of definition, and any e > 0, there exists a 8 > 0, such that if

Ilx-x
0

< 8, then

HF(x) F(x0) (dF)x0(x-x0)11 e Hx-x011.

Then if (dF) is injective, or equivalently if it ig surjective, or equiva-
x0

lently if det (dF) 0, then F is invertible near xo. That is, there
xo

exists some neighborhood N of x
0

such that F(N) = M is a neighborhood

of F(x
0
), and such that if F is restricted to N and regarded as a map

of N onto M, F is injective, and its inverse F
-1

is aloo C
1

on M.

Once again we stress that the theorem is strictly a local theorem. There are
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similar results for functions in Cn, where n = 2,3,...,00. But these results

are an immediate consequence of the C
1 theorem, since the C

1
theorem allows

us to write a formula for the derivatives of F
-1

, and this formula shows that

F
-1

has as many continuous derivatives as F. The important result is the C
1

case. The case n > 1 is no real extension.

There is a difference in viewpoint between the implicit function theorem

and the inverse function theorem. In the former case, we tend to view the

result in tf.irms of the intersection of the contour level sets of two or more

functions. In the inverse function theorem, we think of a mapping taking

points of one space into the other.

The Use of Affine Spaces. We can phrase these theorems in a slightly dif-

ferent way which is somehow more geometric. It is unrealistic to use a vector

space as the domain and range of functions, since for example the world we live

in (as well as Euclidean geometry) does not hay. an origin. A more reasonable

space to choose is an affine space. As is well known, to each iffine space A,

there is associated a vector space V, which I prefer to call its director

,space. For example, we may regard V as the set of translations in A, and

it is not hard to characterize axiomatically the relationship between A and

V. A familiar result is that two points P and Q of A determine a unique

vector A of V, which may also be written Q - P. It is the (origin-free)

affine space, or some domain of it, which should be used as the range and do-

main of functions. Now, if A and B are affine spaces with director spaces

V and W, and if F: A -4 B, then (dF) : V -4 W. When A is a vector space

x0

to'begin with, there is a natural way to identify A with V. In particular

when A and B are taken to be Rn and Rm, the distinction between these

spaces and their director spaces is often blurred. But the more general way of
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looking at F and dF does clarify the geometry.

We can illustrate with the example of the velocity vector. Suppose we

regard A as Euclidean 3-space, and we have a function R A. We regard R

as representing time, and we regard A as Euclidean 3-space. The velocity

vector is usually computed by forming the difference quotient

(f(t1) - f(to))/(ti-to)

and letting t1 approach to. But the numerator is not in A. It should be

regarded as the vector displacement f(t0)f(t1), hence an element of V, the

director space of A. The limit is therefore in V, so f'(to) E V. Thus, we

f'
have R -) V. Note that f'(to) is not in A. Every physicist knows that a

velocity is not a distance--it is a different object: f'(t) is in a different

space.

The points of time do not constitute a vIctor space in any natural way,

but may be regarded as a one-dimensional affine space T. The director space of

T will be denoted by I (for time intervals). It is also wrong to regard I

as the vector space of real numbers R. The process of introducing a "unit of

time" is the same as choosing a (one vector) basis in I. Once this is done,

we get real numbers. These show up simply as coordinates of vectors with re-

spect to this basis (unit of time). Thus "second" is the name of a non-zero

df
vector of I. For the motion T -4A, we obtain the velocity I -) V. To get a

numerical answer, for example in ft/sec, it is necessary to choose a basis (sec)

in I, and a suitable basis in V. Then the usual way of finding the matrix of

the linear transformation in terms of a given basis yields the correct numerical

answer for the velocity in terms of the units chosen. Now, if we realize that

for each t E T, there is associated a linear map of I into V, we may regard

df as a map of T into Hom(I,V). Here Hom(I,V) is the vector space of

linear transformations of I into V and may be regarded as its awn director
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space. Thus, acceleration shows up as its differential: (ddF) : I -* Hom(I,V).
xo

Since there is a natural basis for Hom(I,V) in terms of the basis for I and

V, we obtain natural units for the acceleration vector. There is no question,

for example, of combining velocity and acceleration vectors. They belong to

different vector spaces. In general, then, if A and B are affine spaces

with director spaces V and W respectively, and if D is some domain of A,

then for any C
1

function F: D B, we have the differential map

dF: D Hom(V,W). Otherwise put, (dF) is a linear map of V into W.
xo

Parentheticllly, even the notion of a norm for V and W is not required for

the definition of dF, since for finite dimensional vector spaces, the topology

is uniquely determined. However, carrying this out is a bit tricky.

We now consider some variations of the inverse function theoreru. Suppose

F: R
n

RP, As usual in our discussions, we may take the domain of definition

to be any open set in R
n

, and F is understood to be C
1

As discussed

above, we may take F: A -0 B where A and B are affine spaces of dimen-

sion n and p, respectively. We take, for convenience, the director spaces

of A and B to be R and RP respectively. This amounts to choosing

basis vectors in the director space and has the notational advantage that the

dimension of these spaces is explicitly given. We thus have (dF)a: Rn R.

We can now state some theorems which are easily derived from the inverse func-

tion theorem by means of a few simple tricks.

First suppose n g p and that (dF)
ao

(which maps Rn into RP) has

rank n, the largest possible rank. Then F maps some neighborhood of

a
0

in Rn into an n-dimensional surface imbedded in R. Specifically, by

choosing the coordinates in the right way, the image of some patch ia Rn

is the graph of a (smooth) function mapping a domain in Rn into
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R
p-n

= R
1

= R
1

Range of F (near F(a0),
the graph of a function).

Thus, we can represent the range (always locally!) by choosing a certain

"free" coordinates, and expressing the other p - n in terms of them. Par-

enthetically, this is a very good way of defining an n-dimensional surface in

p-space (n g p).

If the roles of the dimensions are reversed, i.e., if n p, we have the

4'heorem that if the rank of (dF)
ao

is p, the largest possible rank, then

F is (locally) a surjection--some neighborhood of a
0

maps onto an open set.

We can phrase this more precisely in terms of graphs of functions from RP

into Rn-P, but it is most convenient to express both of the above results in

terms of curvilinear coordinates. If the maximal rank hypothesis is valid for

the linear parts dF of the mapping F, then by introducing curvilinear coordi-

nates locally in A and in B, F will aCtually be represented by its linear

approximation. Since one can make a reasonable plea for curvilinear coordinates

as a slight distortion of the usual coordinates, this fact is a reasonable

statement of the theme that C/ functions have, in general, the sam behavior

as their linear approximations. We illustrate some of the lower dimensional

cases on the next page.

If the rank of dF is not maximal, we can still make this statement in
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F

(The curves are the inverse images

of the points.)

(h linear representation.)

F >6.

. (The curve is the image of R10)

1

\s/

(h linear representation.)
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certain cases. The theorem is that if the rank of dF is locally constant, then,

by introducing curvilinear coordinates, F can be represented by its linear

part dF. If we look at the matrix definition of the rank of dF, we can see

that the rank can go up locally, but never dawn. For if we find the largest

r x r submatrix which is non-singular, this non-singularity will be maintained

near the point in question. Thus, once again, this is a theorem whose hypothe-

sis puts the function in general position. Once again we also remark that this

is strictly a local theorem.

Functional Dependence. We naw consider an example of a theorem which is

widely quoted, but almost invariably incorrectly. This is the theorem on func-

tional dependence of functions: If f, g, and h are (C
1
) functions of three

variables, and if the determinant of the Jacobian matrix is identically zero:

j(fArab) = det
x,y,z

II 0, identically,

then there is a functional aependence among the functions, i.e., a function

y such that y(f,g,h) = 0 identically. This theorem is false in any reason-

able interpretation. Of course, we do not want y to be a trivial function

identically 0. Thus, we wish to exclude the possibility that y vanishes in

a region. We certainly want y to be continuous. Actually there are two

statements which should be added to the theorem, which are often omitted.

First, the theorem is a local theorem, and second, the rank must be locally

constant. Thus, if the Jacobian vanishes in a neighborhood of a point, the

functional dependence may only hold in some smaller neighborhood of the point.
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Furthermore, the hypothesis must include the condition that the rank of the

Jacobian is locally constant. We now offer some counterexamples.

First, as to the local nature of the theorem, we proceed as follows. We

first map the line R
1 densely and smoothly into the plane R

2
by means of

some function a: R
1

R
2

. This may be achieved by enumerating the rational

points of the plane, and mapping the integers one-to-one into these rational

points. We can then extend (even in a C manner and with non-zero derivative

everywhere) to a function from R
1

to R
2

. We now project R
2

onto R
1

and

follow this by the mapping a, to obtain a map F of R
2

into R
2

Clearly,

dF has rank 1 everywhere, so the Jacobian vanishes. But equally clearly,

if cp(F) E 0, and if y is continuous, then we must have y identically 0,

since it vanishes on the dense range of F. However, the result is locally

true in this case, and the diagram illustrates the local nature of the conclu-

sion.

We now give an example which shaws that we must include the hypothesis

that the rank is locally constant. Again we start on the line R
1

and con-

struct a subsidiary map T: R
1

R
2

. We take the ray x > 0, and map it in a

C fashion into a spiral winding about and approaching the origin. This can

be arranged so that T(x) approaches 0 as x approaches 0. We can also

arrange to have T(0) = (0,0), and to have all of the derivatives of T
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1

vanish at x = 0. For example, we may define

T(x) = (e
-1/x

2
1 -1/x

2
1

cos e sin ), x

T(0) = (0,0).

o,

Note that dT has rank 0 at x = 0, while the rank of dT is equal to 1

everywhere else. Again, we first project R
2

on the line R
1

, and we com-

pose with T. For the resulting map F, dF has rank 1 everywhere except

on the line x = 0, where its rank is 0. If we consider any small neighbor-

hood of a point where x = 0, it will map onto a central portion of this

spiral. Then while there is a C function which vanishes only on this spiral,

all of its derivatives also vanish at the center point, and it cannot be con-

sidered a reasonable function. The functional dependence wanted requires that

dy 0.

Finally, I should like to discuss the relationship between the implicit

function theorem (in one dimension) and the inverse function theorem. It is an

easy matter to go from the inverse function theorem to the implicit function the-

orem. For example, to solve the equation F(x,y,u) = 0 for u, we merely con-

sider the mapping (x,y,u) (x,y, F(x,y,u)) and find its inverse. Equivalent-

ly, we invert the system r = F(x,y,u), s = x, t = y. Hawever, going back from

the implicit function theorem to the inverse function theorem is tricky. For

example, to solve the system F(x,y,u,v) = 0, G(x,y,u,v) = 0, the device is to
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solve one of these equations for one of the variables (which is possible by

the Jacobian condition), substitute in the other equation, and verify that the

appropriate partial derivative of the composed function does not vanish. This

turns out to be the original Jacobian condition. In n variables, this becomes

quite complicc.ted. I would like to point out the underlying reason for this dis-

parity. If we consider the infinite dimensional case, it turns out to be an

easy matter to prove an appropriate version of the implicit function theorem

from the inverse mapping hypothesis. All that is required is care in the

formulation. However, the method of solving for one variable at a time to

prove the inverse mapping theorem is hopeless in the infinite dimensional case,

or at any rate would require an exceedingly great effort. Because of this, we

can state that the inverse function theorem is, in some sense, the more primi-

tive theorem.

Discussion.

(Much of the discussion occurred during the lecture proper. But we in-

clude it here since, in the spirit of Frechet, it was tangential.)

The "affine space - vector space" formulation led to the remark that this

seemed quite sophisticated to present to, say, an engineer who wanted to com-

pute. Gleason raised the question of whether, in fact, a mountain was being

made of a molehill. But he noted that one should not expect someone to fi3ure

out by himself something that is too hard to explain to him. He will have to

figure this out, somehow. Physicists and engineers need this formulation more

than mathematicians.

Gleason pointed out that in a Euclidean space (defined as an'affine space
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whose director space has an inner product), it is most natural that the inner

product of two vectors be regarded as a bilinear map of V X V into D, some

one-dimensional vector space. In this way, the choice of unit of length is

equivalent to a choice of a basis vector in D. However, there is a question of

whether enough is gained to warrant doing this systematically. At any rate,

it is worth pointing out to a class.

It was observed that one of the reasons origins come up is that the alge-

braic formulation of a vector space is very much simpler than that of an affine

space. Gleason mentioned that his definition of an affihe space involved the

set A, a vector space V, and a mapping of A x A into V, corresponding

to the operation of forming the vector from one point to another. At one point

in the development, it is shown that the vectors are the translations in a

natural way.

Gleason also mentioned the example.of an affine space A which is a coset

of a subspace W of a vector space V. In this case, W may be regarded

naturally as the director space of A.

There was a brief discussion of the Frechet derivative in infinite dimen-

sional space. Here the director space is taken to be a Banach space and it

is not hard to verify that the Frechet derivative of a continuous function is

a bounded operator (if it exists). This follows from the definition of the

Frechet derivative. One of the complications in extending the techniques is

that closed subspaces do not necessarily have closed complementary subspaces.

Some details are given in Lang's book on differential geometry.

It was pointed out that the functional dependence theorem is sometimes

stated for functions which are the solutions of certain differential equations.

The distinction between the derivative f' and the differential df
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was brought up. Gleason argued that if f: A -4 B, it is desired to have

df: AV AW, where AV and AW are the Grassmann algebras of V and W.

However, he saw no harm in using df (instead of f') also as a mapping

of V into W, since the former is a natural extension of the latter.

The theorem that a space curve is planar if it has torsion zero was

cited as an example of another theorem which is often incorrectly .stated.

Gleason pointed out that it is necessary to require that the curvature is

never zero.

Finally, the analogy was given between the result that the rank can never

decrease locally and the result for polytopes that if vertices are moved locally

the number of edges, etc., never decreases. The relationship between this semi-

continuity property and the phenomena of "accidents" was pointed out.
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Lecture III.

Today I shall consider a topic familiar to any teacher of the calculus,

namely, maximum-minimum problems. The typical setting for this problem is a

function f: A R. The problem is to find the maximum value of f or the

minimum value of f. A is usually some geometric space, possibly flat and

possibly more complicated. The simplest case is where A is one-dimensional,

and we shall consider this case first. For simplicity, we shall assume that

A is an interval.

One-dimensional Maximum and Minimum Problems. An important aspect of

maximum problems is the exip .41ce theorem: a continuous function on a compact

set attains its maximum. If A is not a closed interval, then this existence

theorem can often be applied by noting the behavior of f near the boundary,

or infinity, and then by using the compact case on a closed sub-interval of A

(see diagram). Following the existence theorem, we come to the necessary

conditions for a function to have a maximum at a point. Namely, if f attains

a maximum at x
02

then either 1) x
0

is a boundary point of the domain, or

2) f does not have a derivative at x
0'

or 3) fl(x
0
) m 0. In practice we

do not often consider the case 2) in a calculus course and, as we all know,

the student often forgets case 1). All of these conditions are local, so that
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at some stage we have to sort out these "critical points" to find the (absolute)

maximum. There are several sufficiency conditions for a local maximum, among

which is the second derivative test. However, the most practical way of dis-

covering the global and local maximum points is simply to plot the critical

points(x.,f(x.) )and to note that between two consecutive critical points
1

(xi2571.)

the function is monotone. This fact is usually underemphasized, but it is

enough to give a good picture of the global behavior of f, as well as to sort

out the local and global maximum and minimum points (see diagram).

I should like to complain here about the way these problems are usually

formulated and answered. In many important applications the problem is what

is the maximum value of f? But in most texts, the questions usually ask

where the maximum occurs. For example, many inequalities of the type "f(x) M

for all x in a certain set" are derived by using the usual techniques for

finding the maximum value M of f. Students are often surprised at this

turn of events because they were never asked to find M = f(x
0
). They only

found x
0"

Maximum and Minimum Problems in Several. Variables. For n variables, the

situation is different in certain respects. For simplicity we shall confine

ourselves to functions defined on an open domain, or the closure of such a set.
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The case n = 2 typifies the general case. The existence theorems are

essentially unchanged. The necessary condition that a function f attains

its maximum at x
0

is as in the one-dimensional case, except that the

derivative condition is replaced by the condition (df) = 0 (the zero
x0

linear operator) . Points of non-differentiability are usually not con-

sidered. However, in this case there is no easy analogue of the mono-

tonicity property mentioned above for the one-dimensional case. Here, for

the consideration of interior points where df = 0, some test involving

the second derivative is essential. Thus we require a consideration of

(ddf)x.

We now recall the theory. Starting with

A R,

we find the differential at a point x:

(df)

V R.

.

Regarding x as a variable point, and assuming f Is C
2

, we have

df
A HOM(VIR),

Here Hom(V,R) is a vector space. Thus it may be regarded as an affine space

which is Its own director space. If we apply the same procedure to df we

find the second derivative at a point x:

(ddf)

V ---)0.x Hom(V,R).

Then, regarding x as a variable in A, we obtain

ddf
A H(V, Hom(V,R)) .

But this latter object is easily identified with the bilinear functions on

V X V, which we denote by Bihom(V, V, R). Esurthermore, since we are dealing

here with C
2

functions, (ddf)x can be shown to be a symmetric bilinear

functional. This is equivalent to the result that the various partial deriva-
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a
tive operators -7-6, commute on C

2
functions. If we set Symm(V, V, R) equal

to the space of symmetric bilinear functions of V X V, this amounts to saying

that the above map factors through Symm(V, V, R). Also, the symmetric bilinear

functionals are identified with the space Q(V, R) of quadratic forms on V in

a natural way. Thus the diagram of the second derivative is as follows:

ddf
A --* Symm(V, V, R) -+ Bihom(V, V, R)

bIL t

Q(V, R)

As we know, the test for a local maximum is that the quadratic form be

negative definite. If the form is positive definite, the function has a local

minimum. If the form has full rank, but fails to be positive definite or nega-

tive definite, then the function has a saddle point. In an accidental situa-

tion the form is degenerate, and the classical answer is that the second deriv-

ative test fails. However, there is some sort of saddle point if the form has

one negative and one positive eigenvalue.

We remarked in our first lecture that the quadratic functions are basically

understood since all of the phenomena which can happen in n-space already

occur for n = 3. Thus our ability to draw graphs permits us to look at and

understand these functions. For n = 1 the functions are simply ax
2

0 and

we have the natural distinctions a > 0, a = 0, and a < O. In two dimensions,

we are confronted with saddle points. The level lines for the functions

x
2

- y
2

give an essentially new phenomenon. By the time n = 3, the only

new thing is a degenerate quadratic with a saddle: w = x
2

- y
2

4. 0z
2

. No

essentially new phenomenon occurs with more than three variables. For cuhics,

on the other hand, the types of singularities are more complicated. We should

probably have to familiarize ourselves with cubics in quite a few variables

(perhaps about six) before we could understand all the possibilities.
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We often teach our students that in a neighborhood of a critical point

where the quadratic form is non-degenerate, the function behaves like the

corresponding quadratic form. There is a theorem due to M. Mbrse which states

that at a critical point which is non-degenerate, the function can be madc

locally equal, to a quadratic form of the same type as the second differential

by introducing curvilinear coordinates. Thus the contour levels for a func-

. tion whose quadratic form is of the type x
2

y
2 actually do look like we

always say they do. Although this theorem is not very hard to prove (it is
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accessible to anyone who understands the inverse-function theorem), it is not

widely knawn. Since it really clarifies the picture it ought to be part of

the third year calculus course.

Convexity Approach to Maximum-Minimum Problems. We now take a slightly

different approach to these problems. The Fr4chet derivative at a point was a

linear function. Thus we took derivatives, so to speak, in all directions and

combined them in one object. But maximum-minimum problems in affine space are

essentially one-dimensional problems. To see this, let us recall the following

one-dimensional result:

If f is defined in an interval, and if f"(x) 0 at each point of this

interval, then f is convex: f(Ox + (1-0)y) g Of(x) + (1-0)f(y) for

0 < 0 < 1. Furthermore, if f" > 0, then this inequality is strict except

for the trivial case x = y.

Geometrically, the graph lies beneath each of its chords. The proof is a

rather easy consequence of the mean value theorem, and its geometric signifi-

cance in terms of increasing slope is also equally clear. This result has an

easy extension to many variables. Let f be a function defined on a convex

set in an affine space. Suppose that on every line, the second derivative is

non-negative (or strictly positive). Then in that case, f will be convex

along every line. But this implies that f is a convex (or strictly convex)

function. Such functions have very convenient properties from the point of

view of minimum problems. For example, their contour levels enclose convex

sets. For such functions we have the following result, which is very easy

to prove.

If a convex function has a minimum, then the sat of values where this

minimum is achieved is a convex set. Furthermore, a strictly convex function
!MOM MOM w/Mnaw../ VamPW.Netat
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has at most one minimum point. For convex functions, a local minimum point is

a minimum point in the large. Asa point where df = 0 is a minimum point.

We note that all of this information can be obtained by considering func-

tions of one variable. We do not care about uniformity with respect to the

various directions in which these derivatives are taken. The arguments used

here are so general that they apply with equal ease to infinite dimensional

spaces.

Summarizing, if f is defined on an affine space, or on some convex set

in an affine space, then the test for a critical point is as follows: x
0

is

a critical point of f if (df) (g) = 0 for every g in the director space.
xo

In more familiar language, f(x + kg)I = 0 for every direction g.

dk 0 k=0

This is a necessary condition for an interior point x
0

to be a minimum point.

The function attains a minimum at x
0

if x
0

is a critical point and

(ddf)
x
(g, g) is positive semidefinite for each x in the space and each

direction g in the director space. In more familiar terms,

d
2

f(x + kg)I
k=0

0

dX2

for every x in the space and every direction g. If this is a strict in-

equality for all g 0, then xo is the unique minimum point. If in the

positive semidefinite condition, x is restricted to some neighborhood of x ,

0

then we obtain the conditions for a local minimum. Note that the positive

semidefinite condition is required to hold at all points of space, or in any

event, for all points in a neighborhood of xo if only a local minimum is

required.

Before leaving the subject of maxima and minima in two variables, I would

like to point out that some books give the condition of positive definiteness

at a critical point but do not assume that the function is C
2

. Thus,
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positive definiteness is not implied near xo. This is wroftg, since it is

possible to construct a function which has a local minimum along every line

from a point, but which does not have a minimum there, since one can sneak in

on the point along some parabola.

Infinite Dimensional Case: A Problem in the Calculus of Variations. We

can introduce the functions df and ddf in infinite dimensional situations,

but certain properties do not readily go over. For example, if Q is a strict-

ly definite quadratic form, it is not true that a small perturbation of Q is

positive definite. For example, in the space of square summable sequences
2

xn
x = (x. ) 2 where Pcii = 2 the function Q(x) = E --- is positive definite,

1

but Q(x) - efIx1I

2
is not positive definite for any e > O. Thus even continu-

ity of ddf is not enough to verify that xo is a minimum by considering ddf

at x
0

alone.

However, we can illustrate the convexity approach in the following elemen-

tary theorem from the calculus of variations, which is often thought to be in-

accessible to the student in some of its details.

Theorem. Of all C
1

functions f defined in the unit interval [0,1]

and satisfying f(0) = 0 and f(1) = 1, the unique function which has the

shortest length is the straight line function f(x) = x.

Proof. In the class C
1

of functions defined in [0,1], let A be the

class of functions f such that f(0) = 0 and f(1) = 1. This is seen to be

an affine subspace of C
1

, and its director space is the set V consisting of

functions g with g(0) = g(1) = O. Geometrically, A is a coset of V,

and V has co-dimension 2 since it is given by the intersection of the two

hyperplanes E0(x) = 0 and El(x) = O. 001, is given by E0(f) = 0 and
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yf)=1.)ThelinearfunaionsE.areevaluationfurmtions:E.(f)
=

and E and E
1

are evidently linearly independent.
0

The length function y: R is given by the formula

(pa) = Sol 11.77F dt .

We now calculate (dy)f(g), and we do so along a line through f in the

direction g. We have

(f + Xg) x=0(dwyg) = dx cP

d riv14.(ft.gs1)2 dt lx7.0
dX JO `

ri V(t)g' (t) at .

J /1-Ff (t) 2

Here, all that is required is the knawledge that we can differentiate under

the integral sign and the ability to perform the required integration. The

condition for a critical point is (dy)f(g) = 0 for all g E V. Now it is

an easy matter to verify that if f is a critical point, i.e., if

11 f'(t)gs(t) dt = 0
Jo /1-1-f ' (t) 2

for all g with g(0) = g(1) = 0, then f'A/1 + (f')f is constant. The

classical atgument which proves this by an integration by parts is inadequate,

since it assumes that this function is in C
2

. But there is an easy argument

which gives the result quickly. rEditoriaLnatt; The argument is given in the

discussion section, following the lecture.] It follows that (f1)
2
= constant.

It follows that fl = constant. (f' is continuous; since it takes on at most

two values, it is constant.) Finally f(x) = cx and c = 1 since f(1) = 1.

Thus f(x) = x is the unique critical point for y.

Now it is enough to verify that ddf is a positive definite quadratic

form in any direction. The calculation (the so-called second variation) is
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simply

d
2 2

p1 g'(t)
(ddy)f(g,g) = cgf + Xg) lx=0 = Jo dt.

(1 + ff(02)3/2

This is clearly non-negative and can only be zero if g'
2
= 0 or g' = O.

Since g(0) = 0 we see that this quadratic form is 0 only if g = 0. Thus

ddy is positive definite everywhere and we have the result: cp(f) is simply

a strictly convex function over A and has its unique minimum at its critical

point.

Discussion.

Gleason remarked that one easy variation on this problem is to minimize

*(f) = Si177777 h(t) dt over the same class of functions. It is necessary

to have h > 0 but, if this is so, the reasoning yields the differential equa-

tion f'hAIT-17777 = constant. Otherwise the argument is the same. In the

classroom it is convenient to take h as the reciprocal of a polynomial to

reduce the algebra.

The lemma referred to in the lecture was stated and proved as follows.

Lemma. If * is a continuous function in [0,1], and if

S
1 .

o
Ar(t)g-I(t)dt = 0 for all g E V, then * = constant.

Proof. Define the linear functional T by the equation

pl
T(h) = Jo *(t)h'(t) dt (h E C1) .

By hypothesis T vanishes on the subspace V. Therefore, since V is given

by the two hyperplanes E0(x) = 0 and El(x) = 0, it follows by an easy

linear argument that T = + 0E1. In more familiar terms,

T(h) = uh(0) + Oh(1).

But clearly T(1) = O. Using the constant function 1 for h we obtain
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0 = a + 0, a = -0.

Hence

T(h) = O[h(1) h(0)3

= 0 s1
h'(t)dt.

But using the definition of T, this yields

S
(*(t) - 0)h'(t) dt = 0 for all h E C

1
.

But now we take h such that h' = *(t) - 0. This yields *(t) - = 0,

which is the result.

Johnson pointed out that the incorrect method of obtaining the critical

function using integration by parts yields an answer which may then be directly

verified to be a critical point. However in a non-positive definite case

some critical points might conceivably be lost by this method.

Coxeter remarked, after seeing the Morse movie on pits, peaks, and passes,

that a simple connection with Euler's formula was just missed. For suppose

that a smooth dry planet has V pits, F peaks, and E passes. From each

pass drop two heavy balls, one on each side, and consider the pattern formed

by the tracks of all the balls. This is a "graph" having V vertices (each

having a valency equal to the number of balls in the pit, possibly only one)

and E edges (possibly one of them forming a loop or two of them joining the

same pair of vertices). This graph decomposes the surface of the planet into

F regions, one surrounding each peak. Therefore V - E + F = 2. The dis-

cussion of saddle points then led to a discussion of the Morse theory in higher

dimensions and in infinite dimensional spaces.

After the discussion, Gleason gave the following example (due to Whitney)

of a function of three variables x, y, and t which is of order 5 at the

origin but which cannot be changed into a polynomial upon introduction of
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curvilinear coordinates. Take w = x(x y)y(x + ty)(x + y(sin t)). Then,

regardless of coordinates, the five hyperplanes x = 0, etc., can be recovered

at the origin. Using cross-ratios on the hyperplanes x = 0, x+y = 0, y = 0,

'city = 0, it will be possible to recover t. Similarly, it will be possible

to recover sin t. But clearly this is not possible for a polynomial function,

since the sine is not an algebraic function.
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Lecture IV.

In this lecture I should like to discuss area and volume, and some of

their ramifications. I think the first thing that we should all do is to

admit that the notion of area in the plane is not trivial, even if we restrict

our attention to polygons. The calculus texts all take this notion for grant-

ed and then they proceed to the notion of areas of curved regions. Let us

first consider some of the problems concerning area of polygons in the plane.

Area of Polygons. The area of a polygon is, of course, a certain function

from the set of polygons into the set of non-negative real numbers. Congruent

polygons must have the same area. Furthermore, if a polygon is cut into

pieces, then the sum of the areas of these pieces is supposed to be equal to

the area of the polygon. Although everybody believes that such a function

exists, the belief is based, for most people, on faith and their experience

with painting surfaces, transferring water from one vessel to another, etc.

The question of the existence of such a measure thus arises.

The critical question is this. Suppose that a triangle is cut into many

pieces. How do we know that it is impossible to rearrange the pieces in such
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a way that we arrive at the same triangle with a chunk removed? If this could

be done, then the only area function with the desired properties wuld be the

trivial zero function. That there is a non-trivial problem here becomes quite

clear when we pass to higher dimensions. The idea of physical conservation

becomes meaningless for dimensions higher than three, while the Banach-Tarski

example shows that even our intuition for 3-space is in error wher, very com-

plicated sets are involved.

In the beginning calculus course it would take quite a long time to prove

the existence of such an area function. The result is not necessary for the

proof of the purely analytic theorem on the existence of the Riemann integral,

but is essential for the geometric interpretation of the integral as an area.

I see no reason why we shouldn't point out to our freshmen that the problem

is important and non-trivial and then go on without offering a proof.

On the other hand, it is extremely easy to verify that the area function

is unique, once we grant that the unit square has area one. For in this case,

we can find the area of a square of dimensions l/n by 1/n, then a rectan-

gle with rational sides, and then a rectangle with real sides. Then the area

of a triangle may be found by the usual method of Euclidean geometry. Finally,

a polygon may be decomposed into triangles.

In this connection, I might mention that this approach actually needs a

much smaller group than the full Euclidean group.* All that is required is the

group of translations and half turns (rotations through 1800). We can illus-

trate it for the triangle in the diagram below. A similar technique works for

any scalene triangle, although some care is needed. We can then transform any

* V. G. BoltyanskiI. Equivalent and Equidecomposable Figures, Boston,

Heath and Company, 1963.
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rectangle into a congruent one in standard position (one side "vertical" and

one "horizontal"). Then the areas of these standard rectangles can be shown to

have the usual area exactly as outlined above.

As a sidelight, we can mention that it is impossible to transform a tri-

angle into a rectangle using such a cutting up and pasting procedure and only

the group of translations. To prove this we shall first construct a function

which is invariant under cutting up, pasting, and translating. Let u be a

unit vector in the plane. Corresponding to u and any edge e of a polygon

n, define the number A(u, e, n) by the formula

A(u, e, n) = 0 if the edge e does not have the

same direction as u.

A(u, e, n) = length of e if the area of the

polygon n lies to the left of e

when e is oriented in the same

way as u.

A(u, e, n) = the negative of the length of e if

the area lies to the right of e when

e is oriented in the same way as u.

We then define K(u, n) = Ee A(u, e, n), the sum extending over all of the

edges of n. It is then an easy matter to see that, for fixed u, K(u,H) is
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K(u211) = length of e. K(u211) = 0, all u.

invariant under all translations. It is also seen that K(u, n) is invariant

under the cutting and pasting operations. Thus the function K(u211) is an

invariant under the operations we have been considering. Now note that

K(u, = 0 for all u if n is a recr.angle, but K(u, n) 0 if 11 is a

triangle and if u is parallel to one of its sideb. This completes the

the proof.

Jordan Content. I would suggest that when measure is finally introduced

to the calculus student the Jordan content should be developed in some detail

before the Lebesgue theory. There are several reasons for this. First, it is

easier. This hardly needs any elaboration. Secondly, it is more natural. The

kinds of sets which arise in Lebesgue theory are unnatural when taken out of

context. Of course, when a subject requires Lebesgue measure, such as the

study of Fourier series, etc,2 Lebesgue measure should be introduced. But

even in Fourier series, the student can easily be carried through a good part

of the subject--for example, the convergence properties for decent functions--
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before the need arises. At some point the student can honestly understand the

necessity for such concepts as almost everywhere, etc., and Lebesgue measure

can be introduced. Also, the theory of Jordan content is quite accessible to

the student who has only the most modest idea of topology in n dimensions.

Once the notion of the closure, the boundary, and the interior of a set are

known, no more topology is needed.

Let us recall how we define Jordan content in n dimensions, The basic

idea is that a bounded set will have a well-defined Jordan content provided

that its boundary has Jordan content zero. Also, Jordan content zero may be

defined in terms of finite coverings. This is a very reasonable criterion.

Thus it says that a bounded set has Jordan content if its boundary isn't

"thick." It includes all of the bounded sets which come up in an elementary

course. It avoids all of the pathologies of a more advanced measure theory.

Briefly, here is the way I find most convenient to introduce Jordan

content. This is done in n dimensions, but we can illustrate in the

plane. Wc take a fixed partition of

R
2

, say that determined by the hyper-

planes x = integer. We then refine

this partition into squares of side

1/2, refine again into squares of side

k, etc. It is enough to work with

these fixed partitions of the plane,

each of which is a refinement of the

previous one. Now if S is any bounded set, and we work with any one of these

partitf_ns, we count how many of the squares are contained entirely in the

interior of SI and also how many touch the closure of S. We multiply by
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a power of to obtain an inner measure and an outer measure of the set

S for the particular partition. This is a highly intuitive procedure. As

we go to the next partition, it is very easy to see that the inner content

increases and the outer content decreases. The content is then defined if the

inner and outer sums have a common limit. A bounded set is then called a

J-set if it has Jordan content. We then show that a bounded set is a 3-set if

and only if its boundary has Jordan content 0, and that in this case the

interior of the set and the closure have the same Jordan content. This is Ln

extremely easy theorem to prove. It is then very easy to prove that the

Jordan content is additive over figures whose interiors do not overlap.

It is next shown that Jordan content is invariant under translation.

(Because we took a fixed sequence of partitions there is a problem in estima-

tion involved.)

Invariance under rotation is ,Icwn by the following clever trick. We

first show that the Jordan content is characterized up to a constant factor.

That is, any real valued function which is defined on all J-sets and which is

additive and translation invariant is a constant multiple of the Jordan con-

tent. (lhis is easily shawn. The volume of the unit cube will determine all

volumes.) We next verify that linear transformations take J-sets into J-sets.

It then follows that, for a fixed linear transformation T, the function

J(TE) is a translation invariant function on J-sets E. (It is here that wt

depend heavily on the fact that T is linear, or that the translations are a

normal subgroup in the group of affine transformations.) Thus we obtain

J(TE) = f(T)J(E),

where f(T) is a function on linear transformations and E is any 3-set

At this point we can show that an orthogonal transformation preserves Jordan
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content by taking E = unit ball. Then TE = E and f(T) = 1. [Editorial

note: An equally elegant proof is given in the discussion.]

As &bonus we can find that f(T) is the absolute value of the deter-

minant of T. All that is required is to factor T as the product of a

symmetric and an orthogonal operator and then verify that, for a symmetric

operator S, f(S) is the product of the absolute values of its eigenvalues.

(Each eigenvalue corresponds to a stretch in one direction.) Equivalently, we

may factor T in any way into simpler factors and verify the determinant

formula for the factors. (The elementary operations on a matrix correspond to

such a factorization.)

The Riemann Integral. The integral is defined using the usual Riemann-

Darboux sums. The domain of definition is broken up into small J-sets, sums

are found, and limits taken in the usual way. We also verify that, for posi-

tive functions, the integral is the Jordan content (in one higher dimension)

of the set which is under the graph of the function. This is a very convenient

tool, since it can reduce many problems about integration to corresponding

problems about Jordan content in a higher dimension. It also shows the con-

venience of introducing Jordan content in all dimensions.

At this point let me emphasize that I am considering "absolute integrals."

These are integrals over sets and their fundamental characterizing properties,

which should be stated and proved, are:

1) f g g implies Ssf gSsg.

2) Ss k = kJ(S) for constants k.

3)
SISUTf = Ssf +

$Tf
where S and T are disjoint J-sets.

These properties characterize the integral and they can serve as the basis for
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If setting up the integral" in many physical applications. They permit us to go

from the discrete to the continuous in a natural way. For example, the work

done by a force f(x) acting along the x-axis is not defined, by the physi-

cist, as
b

a
f(x) dx. Rather, he cuts up the interval into pieces and he

observes that if in any one of these pieces he replaces f(x) by the largest

and smallest value of f in that interval, he will get a larger and smaller

answer, respectively, for what he wants. He is led to Riemann-Darboux sums in

this way. Otherwise put, he is using properties 1), 2), and 3) for the work-

functional, and these properties characterize work.

Note that linearity in f does not show up in any natural way. For

these applications, it seems artificial. Rather, what is used is the strong

property that the integral is monotone.

The Change of Variables Formula. We now come to the formula for changing

variables in a multiple integral. This is undoubtedly the hardest theorem

proved in the elementary calculus course. We first reduce the problem to

changing variables in the computation of J(TE), where T is a diffeomor-

phism. In order to avoid improper integrals, or boundary difficulties, we

WPM

assume that T is defined on some open set D and that E is contained in

D. We prove that TE is a J-set and we then go about proving the formula.

The best proof of the formula may not be the shortest. However, it

seems to me that the right way of proving this result should be based on the

reason that we believe the result in the first place. Namely, if E is cut

up into small cubes, each cube is mapped onto some set. Since T is almost

linear in a small cube, the volume of the image set is almost Idet dT1 times

the volume of the cube. Therefore the formula must be
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J(TE) = YE Idet dTi.

Again, I prefer a proof based on this idea because, as a general rule, I pre-

fer that proof of a result which takes the natural approach to a problem and

carries it through. Incidentally, it is worth noting that it is sufficient to

prove the inequality J(TE) ISE Idet dT1. For if this inequality is applied

to T
-1 on the set TE, the equality will be proved. This remark is a great

help in the analysis.

Lower Dimensional Content in Higher Dimensions. We now come to the hard

part of the subject. Namely, what should we do about content of surfaces em-

bedded in spaces of a higher dimension? All the difficult points already come

up when we consider two-dimensional surfaces in three-space. Before beginning

this subject, we note that the length of a curve is rather easy. We partition

the curve into sub-curves, sum the lengths of the inscribed chords, and take

limits in the usual way. We can then show that the answer, for a C
1

para-

metrization F, is the usual formula s = IIF'11. Of course, this is also easy

to motivate, since the significance of F' as the velocity vector has already

been discussed.

On the other hand, this does not generalize easily to curved surfaces.

We have already mentioned at the beginning of Lecture II that three points on

a surface which are almost collinear when projected onto the (x,y)-plane

do not necessarily determine a plane which is near the tangent plane, hence

near the surface. Thus, casual attempts to approximate the surface polygonal-

ly do not work. If we beg this question, simply assume that the surface is

the graph of function z = F(x,y) and define surface area by the formula

A = + F
1
2 + F22 2 then it is not at all obvious that A is invariant
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under a rotation of space.

How then does one proceed? I do not have a ready answer, but I feel that

we ought to focus our attention on definitions which we feel are intrinsic to

the problem. Therefore I recommend the following approach. Admittedly, how-

ever, there are many problems involved. We imagine the surface suspended in a

three-dimensional Euclidean space. We chop it up into decent little pieces.

(This needs a definition analogous to J-sets.) Each one of these pieces is

then orthogonally projected into a tangent plane at ona of its points. (In-

tuitively, we smash the surface with a bAmmer to flatten it. But first we

lay it on a table.) We then sum and we obtain an approximate answer. We

then take a limit. This ought to be the answer. There are many problems in-

volved and I do not know of a good, smooth, attack.

I do not like the classical answer which parametrizes the k-dimensional

surface in n-space using a one-one function F, from a region in R
k

into

the n-dimensional Euclidean space A, which is smooth and has rank k every-

where. The area is then determined in R
k by integrating the function which

corresponds to the stretching of area, namely the square root of the sum of the

squares of all k x k sub-determinants of a matrix representing dF. This

has to be shown invariant under change of parametrization. This is possible

with som work. It is much harder to show that this is independent of change

of variables in the ambient space. It involves quite a complicated identity

imvolving the invariance of sums of squares of sut-determinants.

Before concluding, I should mention why this problem is done in

Euclidean space. We know that a volume is determined up to a constant factor

in an affine space. This is true for every k-plane. But there is no intrinsic

normalization available suitable for all subspaces in an affine space. But in
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Euclidean space we can always stipulate that the volume of the unit cube

(determined by an orthonormal basis) is 1. This is a uniform prescription

and normalizes volume on all subspaces of a Euclidean space.

Discussion.

Whitney's book on geometric integration theory was mentioned as a possible

source for some of this material. But it was felt that this book was too hard

for the audience for which the material of this lecture was intended. Spivak's

book was also noted.

Coxeter observed that the definition of the integral used partitions well

suited to Euclidean space and asked about the situation in hyperbolic geometry.

Gleason thought that this would be well suitcd to Haar measure. Roughly speak-

ing, once a fixed set is decided to have unit volume, then the volume of any

set is approximated by taking a small set and comparing how many translations

of it are required to cover S with how many are necessary to cover the unit

volume. Gleason mentioned a friend who took this Haar measure approach with

youngsters, about twelve years old, with some success. Of course, more time

was available to him than is customary in a calculus course.

Prenawitz pointed out that the Haar measure approach is at least capable

of wide generalization, while the usual approach is a very special procedure.

Gleason observed that the Haar measure approach takes quite a bit longer and

is more sophisticated. Also, the partition approach has the advantage of being

very algorithmic. At each stage upper and lower bounds are obtained, so the

error in the approximation by Riemann sums is known. It was also pointed out

that the translations formed a simply transitive abelian normal subgroup of the
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affine group, and it was this property which was used in the development. Thus

this offers another way of generalizing the method.

The problem of defining k-dimensional curved area in n-space from the

point of view of coordinates was raised. It was thought that this approach

was very natural in view of the method outlined for the change of variables

formula. Gleason observed that in the change of variables situation, at least

there was already a notion of content in the image space, while here it had to

be defined from the beginning. The determinant identity which was needed to

show that the "obvious" integral definition of area was independent of the

choice of orthonormal coordinates in the large n-dimensional space was as

follows. Let A be an n x k matrix, and let Ari
2

be the sum of the squares

of all
)

k x k subdeterminants of A. Let R be any n x n orthogonal

matrix. Then RAM = HAIL Gleason mentioned that one of the uses of exter.ior

algebra is that such determinant identities are "swept under the rug." A

natural proof of this identity would at least make the "formula definition" of

area more attractive. It was observed that HAII was equal to the k-volume of

the parallelepiped formed by k vectors in n-space (modulo a simple proof),

and this result easily proves the determinant identity. The question of a

natural proof of this result was left open. Geometrically, it is the following

generalization of the Pythagorean theorem. Let n be a k-dimensional simplex

in Euclidean n-space, and let 111111 be the k-dimensional content of n. Let

orthonormal coordinates U. be chosen. For each j = (h2...,jk) with

Igh<°"<iitgn,letrlibe the projection of n onto the k-space

spanned by u. 2...2u. .

J1 Jk

Then
2

= E. (Indl
2

.

3 3

Gleason noted that in the proof of the change of variables formula, when

one has come down to estimating the size of TC, where C is a small cube
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and T is the given diffeomorphism, we can assume, with no loss in generality

that dT is the identity at one point in the cube. This is so because the

change of variables formula is known for linear maps, so it is always possible

to apply a linear map to T and prove the result for the composition.

Yale gave the following proof that orthogonal transformations preserve

volume. From the equation J(TE) = f(T)J(E), we find that for reflections T,

J(E) = J(T
2
E) = f(T)

2
J(E). Therefore f(T)

2
= 1. Since f(T) 02 this gives

the result for reflections. The general result follows from the simple result

that any orthogonal transformation is a product of reflections.
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Lecture V.

Today we shall consider the notion of a directed integral, as contrasted

with an absolute integral which we considered at the last lecture. Most

integrals involve chopping up the domain, weighting the value of the function

we are integrating with some measure assigned to the subdomain, summing, and

then taking a suitable limit as the partition grows finer. But one of the first

things we do after defining y,
L13Ja,

f = la f is to permit b < a by defining

Iba = . This is usually done very quickly and formally. I suggest that we

do a better job on this transition. It is an important step because we are

passing from an absolute integral to a directed integral. The sign change is

confusing and it does not clarify matters sufficiently to remark that "we

count things negatively if we integrate in the wrong direction." I do not

suggest that a great issue be made of this when the subject is first introduced

to freshmen. However, we might remark on this transition, to the effect that

for a directed integral we chop the directed interval into smaller directed

intervals and use their directed lengths for the computation of the directed

integral. This is a useful notion in the substitution rule, where it is

usually hidden under the rug by the formalism. If we substitute

a

Path of
Integration

b
x = x(t) (c < t < d) to evaluate an integral y

a
f(x)dx, in some cases

a dil:.ected integral is clearly involved (see diagram).
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In higher dimensions the distinction is much clearer. For the simplest

case, suppose we have a smooth curve C in the plane or in space. The abso-

lute integral of a function f along this curve would be denoted Sc f ds.

The method of computation is to chop the curve up into little pieces, multiply

a value of the function in each piece by the length of the piece, sum, and take

a limit. Usually f is defined in some neighborhood of the curve and this

takes place in Euclidean space so that lengths are defined. For practical

purposes we can use chord length instead of arc length in the computation.

However, a line integral is based on a new idea. When we evaluate the

approximating sums we must take into account the direction and sense of the

chord as well as the length. The most obvious and simplest way to do this is

to make this dependence linear. In Euclidean space we use a vector F and

evaluate (cc FGis. Thus the contribution of the vector chord is its inner

product with F evaluated somewhere in the vicinity. This comes up very

directly in the notion of work. F is a force field, and something is being

pushed against this force from one

point to another along a curve.

Then the amount of work done by the

field is yc F.ds, using the usual

approximation arguments, The Riemann

sum used to evaluate such an integral

uses the vector F as a weight. Its

inner product is found with the small

"vector chord," then sums and limits

are taken. We must realize that the curve we are integrating must be taken

as a directed curve. That is, there is a linear ordering on its points, which
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may be given by a parametrization.

We first note that a vector field F was used to determine the linear

operator on the directd chords, with the help of the inner product. However,

in a sense this is an accident. In any vector space we always have linear

operators but an inner product may not be given. Therefore we make the

observation that if the curve C is in an affine space, the entire procedure

can be generalized. However, instead of being given a field F of vectors in

the director space V of the affine space, we must be given vectors in the

dual space V* of V.

We now review the definitions. If A is an affine space and V is its

director space, a vector field is a function defined on some open set D with

values in V: D -cfo V. A co-vector field is a function from some open set D

of A into the dual space V* of V: D 1:9) V*. w is also called a one-

dimensional differential form. Then, if a co-vector field w is given, we

can integrate it along an ordered cwve which lies in the domain of definition

of co. The definition involves Riemann sums. The ordered curve we are think-

ing of is a point set with some abstractly given order on it. However, in

order to allow self-intersections we can assume that we have an order

parametrization for the curve. The definition of the integral involves

chopping up the curve into smaller ordered curves, using the ordered end-

points to obtain a vector of V, applying the value of w in the vicinity

of this smaller curve to this vector, summing, and taking limits.

We now wish to generalize this idea to higher dimensional surfaces.

First, let us consider a two-dimensional surface in three-space. When the

surface is chopped up into pieces, we must somehow take into consideration the

orientation of each piece. All the different tangent planes for a small piece
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are nearly parallel, and their direction must be taken into account. For

a surface in 3-space the classical device is to take a piece of the surface

and to construct a vector normal to the tangent plane at one of its points.

The length of this vector is taken to be the area of the little piece.

However, there are two ways for this normal vector to point. Therefore

some rules must be given for the orientation of the normal vector. Questions

then arise concerning the possibility of doing this continuously and lead

to the consideration of such objects as the Mlibius band where it is impos-

sible. However, once the normal can be consistently constructed on the

surface, the method of integration is clear. y y.da is defined when y is

a continuous vector field and the surface is smooth. Each piece of the sur-

face is represented by a vector orthogonal to one of its tangent planes and

whcse length is the area of the surface. For each piece, we evaluate y at

one point, find the inner product with the vector representing the piece, sum,

and take limits.

Exterior Algebra. The techniques we have discussed do not work for k-

dimensional surfaces in n-dimensional space unless k = 1 or k = n 1.

There are simply too many directions determining a k-plane unless k = 1

or k = n 1. Therefore something new is required. I am not happy with the

motivations that I know for imposing, at this point, the exterior algebras on

V and on V*. However, they can be described simply enough. To describe

A(V), we construct an algebra which is generated by the vectors of V, has

a unit, is associative, and for which vAw= -wAv for any vectors

v and w of V. A(V) is the "universal algebra" with these properties. It

is the unique largest algebra with these properties. No equation is true which

is not forced by the above properties. Once this is done, it is possible to
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0

decompose A(V) into a direct vector space sum of homogeneous spaces

A
I
(V), A

2
(V), A

3 n (V). The elements of A
k
(V) ire homogeneous of

degree k. A
k
(V) is generated by the wedge products of k elements of V.

In a natural way A
0
(V) may be regarded as the real numbers R, and A

1
(17)

n
may be regarded as V itself. The dimension of A

k
(V) is

(
) and therefore

the dimension of A(V) is 2n.

The algebra A(V*) is a little easier to define in terms of V. Namely,

each space A
k
(V*) is conveniently identified with the space of k-linear

skew-symmetric forms on V. There are two simple ways of defining a multipli-

cation for these forms. Both ways multiply and skew-symmetrize, but a differ-

ent factor is used in the skew-symmetrizing operation. The reason is that

A
k
(V*) is naturally isomorphic to the space of k-linear skaw-symmetric forms,

but there are many natural isomorphisms. The algebraically "right" way of doing

this is to consider a large space of multilinear functions of mixed degrees

(the free tensor algebra) and divide by the ideal generated by all elements

of the form v X v. This leads to equivalence classes, and doesn't offer

much motivation for the subject.

Once these constructions are made we can make the following statement,

which, together with the defining relations, characterizes the exterior algebra:

If W and V are vector spaces, and if y is a linear map from W into V,

then y may be uniquely extended to a homomorphism y of the algebra AN)

into the algebra A(V). In brief, the following diagram can be completed to be

commutative:

eP

A (4) _> A(V)
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The maps from V and W into A(V) and A(W), respectively, are inclusion

maps.

Once these spaces are constructed, there is a natural duality between

/j(CV) and A
k
(V*). Under this duality, the inner product of f

1
A...Af

k

(fErk)andvIA...Avit(v.EV) is simply det (f., v.). (When the other
j

identification of the space of skew forms with Ak(V*) is used, a factor of

of kt appears.)

Orientation and Vector Valued Content. We can now define what we mean by

an orientation of a vector space W. iuppose W is k-dimensional. Then A
k (W)

has dimension one. Therefore there are two rays in A
k
(W) at the origin, as

there are in any one-dimensional vector space over the reals. Then each of

these rays is said to determine an orientation of W. Briefly, we call one of

the rays the positive half. Also, if W is the director space for some affine

space, this also orients that affine space. Thus if y: W -4V is an injec-

tion of W into V, any orientation in W induces an orientation in y(W),

namely, the image of the ray determining the orientation in W by the natural

extension of y which was described above.

We can now define a vector valued Jordan content in an oriented k-dimen-

sional affine space which is embedded in an affine space of dimension n k.

(Think of the surface embedded in 3-space and go to the tangent plane.)

Suppose that B is k-dimensional affine space, with director space W of

dimension k, and that B is a flat in the affine space A, whose director

space V nas dimension n. By the above rem 7ks, the orientation of B

singles out a ray in A
k
(V). We shall define the vector Jordan content of

a J-set in B as an element of A
k
(V) which is in this ray. CFor planes in
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B (k-dimensional)

A (n-dimensional)

3-space we went from A
2
(V) to a ray in V itself. This was possible

because we had an inner product and an orientation of 3-space. We shall go

into this duality at the end of the lecture.)

Our method is as follows. For a parallelepiped of sides vl,...,vk in

B, we define the vector Jordan content to be ± vlA...Avk. The sign is chosen

so that the answer is in the selected positive ray of A
k (V), We then show

that the parallelepipeds detertined by vl,...,vk and by wl,...,wk have the

same Jordan content if and only if v1A...Ayk = w1A...Awk. This statement

is meaningful because Jordan content in an affine space is determined only up

to a constant factor, and so a statement about equality of Jordan content can

be given without reference to a specific content. The statement on wedge

products can be seen to be true by using the determinant theorem on how linear

transformations transform areas. Finally, if S is any Jordan set in B,

we define the vector valued Jordan content of S to be the previously defined

vector valued content of any parallelepiped which has the same Jordan content

as S.
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Surface Integrals. Once this content is defined we can define a surface

integral. Suppose that A is an affine space of dimension n with director

space V. In order to integrate along some k-dimensional surface in A we

take D as some open set in A and we suppose that we are given a function

w from D into /1k(V*). (lhis is also called a k-form on D.) To integrate

w along some k-dimensional surface in D we first chop the surface up into

small pieces. Each piece is not in an affine k-space, but it is almost so.

In the Euclidean case we can simply project dawn orthogonally onto some tan-

gent plane of the piece, but in the affine case the procedure is admittedly

not clear. In any event each piece, being almost in an affine k-space almost

has a k-dimensional Jordan content in A
k
(V). We operate on this by w

evaluated at some point of the piece to obtain a number, sum over the pieces,

and take a limit. Once intrinsically defined, it is an easy matter to see

how such an integral can be computed using a parametrization of the surface.

Another way of looking at this problem is as follows. We have, up to a

sign, the k-dimensional Jordan content of sets in a flat space, as an element

of ik(V). We wish to extend this function to curved k-dimensional surfaces

in a reasonable way. We also note that in order for the above integral to be

defined, it is necessary that each of the pieces have an orientation.

At this point we can clear up a matter concerning k-dimensional area.

If V has an inner product, then V and V* can be identified. Thus there

is a natural way of defining an inner product in A(V) and hence a norm.

Now, while the vector valued Jordan content is determined only up to a sign,

its norm is unique and this is the usual k-dimensional area. Thus to find

the area of a curved surface, it is this norm which must be summed over the

pieces. The limit is the area.
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Exterior Differentiation. We now consider exterior differentiation. The

following development is somewhat different from the usual one, and many objec-

tions are possible. Its advantage is that it naturally ties in with our pro-

cedure up to now. Let us denote the usual Frechet derivative of a function

f by dtf in order not to confuse it, at this point, with the exterior

derivative. If w is a k-form on A, we have

A Ak(V*).

Taking the Frechet derivative we have, as before,

A 14 Hom(V,

Of course, we may replace A by an open set. The elements of Hom(V, A
k
(V*))

may be regarded as multilinear functions of k + 1 vectors, since we regard

A (V*) as the space of k-linear skew-symmetric forms on V. Thus an element

T of Hom(V, A (V*)) may be regarded as the function

=

This function is, however, skew-symmetric on the last k-variables but not the

first. In order to find the exterior derivative of w, we skew-symmetrize

according to the formula

Ei (-1)
i
*(vi,v0,...24i,...,vk).

MOM

The resulting form * is then skew-symmetric in its k + 1 arguments.

Hence it may be regarded as an element of A!c+1 (V*). This is the exterior

derivative dw: dw = d D. We have

dw k+1A 4 A (Vic) .

The Theorems of Stokes and Gauss. We now come to the theorem of Stokes,

which states that, under certain conditions,

SaE da/'
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I want to consider this theorem in the geometric sense, and not for the simpler

case when the integration is done over singular cycles. The set E is taken

to be a set whose closure is in a smooth (k, + 1)-surface and whose k;oundary

set relative to that surface is the union of finitely many sets, each of which

is a J-set in a k-surface. E is assumed to be the closure of its interior

(taken in the (k+1)-surface). We further assume that we can orient E. That

is, we can consistently assign an orientation throughout E. (An orientation

on the surface will induce one on the tangent plane.) Then there will be a

natural orientation on the boundary of E. For wherever we are on the bound,

ary, which can be expressed as a hyperplane in some curvilinear coordinate

system, there are two sides of the hyperplane. These are expressible by two

vectors, one pointing out of, and one pointing into, E. If the outward normal

is chosen, then we can fix the orientation in the boundary by choosing k

vectors v
1 2

v
k

in such a way that u v
12.""

v
k

is positively oriented.w...

The ordering of the v's then determines the orientation on the boundary.

Clearly we have a technical problem here.

We now come to the Gauss divergence theorem, a theorem with clear geo-

metric content, and which is almost the same theorem. In some ways, however,

this theorem is a little more general. The Gauss theorem is a theorem about

vector fields, not differential forms. For simplicity we shall work in

Euclidean n-space. Suppose that E is a bounded region in n-space. To avoid

complications, assume that E is the closure of its interior. We assume that

E is bounded by a smooth variety. (This is a much harder theorem if E has

corners, especially curved corners. Of course, everybody proves the theorem

for a smooth boundary and then uses it for cubes.) Now suppose there is a

vector field y on E or in a neighborhood of E. Then there is a natural
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notion of a flow generated by this vector field. This is a function *(p,t)

whose value is a point of space. Here p is a space variable and t is a

real variable representing time. The conditions on * are that, for fixed

p, the map t *(p,t) has p(*(p,t)) as tangent vector. We also require

that *(p,O) = p. The function *(p,t) is called a flow. If we imagine a

compressible fluid flawing in such a way that for any point p, the particle

of fluid at p has velocity y(p), then *(p,t) gives the position, after

the elapse of t units of time, of the particle which started out at p.

We now consider the volume of E, and let time elapse. The points of

E each move, and therefore we have a transformation Tt. We wish to find

J (Tt (E))1t=0 .

There are two ways of calculating this derivative. They are quite differ-

ent but, of course, they must lead to the same result. This gives us a non-

trivial theorem. One way of calcu-

lating the derivative is to note that

J(Tt(E)) can be calculated by the

change of variables formula. As we

noted, this amounts to breaking E

up into little cubes and finding

the volume of the image of each such

cube. The global change of variable

thus expresses the volume of T(E) as an integral over E. Thus the deriva-

tive of J(T
t
E) is an integral over E in a natural way.

The other way of finding the derivative is to compute the change in

volume directly for small t. When the set E is moved, some volume is

gained and some is lost. The amount gained or lost is found at the boundary,

114



Loss

J (tidE)

and can be found simply by brea%ing

up the boundary into pieces and

making the usual linear approximations.

If the outward unit normal v is

constructed at each boundary point,

then in a small amount h of time

the net gain in volume is seen to be

J
n-1

(A6E)v yh. The sign is nega-

tive if volume is lost, so summing

gives the net gain. When the details are carried out, we obtain

n-
SE div dJn 16E v.y dJ

1
,

where v is the outward unit normal on the boundary. This is the theorem of

Gauss. It has a meaning regardless of any orientation considerations. The

integrals are absolute integrals. Here div y, the divergence of y, is

defined at any point p as the trace of the linear operator (d
t p

This form of the Gauss divergence theorem can be extended to a non-

orientable Riemannian manifold, since there is nothing in the above "proof"

which involves orientation. But if orientation is assumed, then this theorem

can be converted into Stokes' theorem.

Identification in Exterior AJA2,1:iras.. We now consider the algebraic

question of what is involved when one of these theorems is converted to the

other. When can we go from k-forms to k-vectors? What identifications are

possible?

We have already seen thot the spaces A
k
(V) and 1,k(V*) are naturally

dual spaces. It follows that an onientation in V induces an orientation in

V*. For an orientation in V is cimply the choice of a positive ray in
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An(V). We therefore orient V* by choosing as the positive ray in An(V*)

those linear functionals which are positive on the positive ray in An(V).

If, in addition, a unit of n-volume is chosen in V, then this determines

a unit of n-volume in V*. For a unit of volume amounts to singling out a

a certain parallelepiped and declaring it to have volume 1. As we have noted,

this amounts to choosing (up to sign) a non-zero element in An(V). But since

an orientation is given, we can single out the unique positively oriented one.

Thus choosing a unit of volume and an orientation in V is the same as

choosing a basis vector for An(V). Once this basis vector is chosen, we

simply choose as basis vector in V* that element whose value is 1 at the

basis vector of V.

When this happens, A(V) is identified with An(V*), since both are

identified with the reals, as is any one-dimensional vector space once a

basis is chosen. But we can say more. We have a wedge product defined between

A
k
(v) and A

n-k
(V) with values in A(V) which may be regarded as the real

numbers. Thus these spaces may be regarded as dual spaces. However, the dual

space of A
n-k

(V) is, naturally, A
n-k

(V*). Therefore we have the

identification

Ak (7)
An-k(v*) (k = 0,1,...,n),

provided that a unit of volume and an orientation are chosen in V. All

identified spaces are indicated in the diagram on the next page, the identified

spaces are connected by lines.
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0= A, (V) , A1 (V) ,
An(v)

= AO (V*) Al
An- L An(V*)

Identified subspaces of A(V) and A(V*), given an orientation

and a unit of volume in V.

If there is an inner product in V, there is no orientation implied.

Hawever, there is a 'Ludt of volume, since we may choose any orthonormal basis

as determining the unit of volume. Even before the orientation is chosen,

there is the obvious identification of V with V*, hence of A
k
(V) with

A
k
(V*). Thus before an orientation of V is given we have the identifica-

tion as follows.

R = A
o
(V) = AP(V*)

A
I
(V), An."1(V), An(V)

A
1
(v*), S An-1(V*), An(V*)

Identifications if a space has an inner product.

(No orientation given.)

Finally, once one of two unit vectors in An(V) is chosen, we also
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obtain an orientation and me have all of the above identifications. All

homogeneous subspaces of A(V) and A(V*) which have the same dimension

are identified.

In this way, the identification of the vector valued (n - 1)-Jordan

content of a set located in an oriented (n - 1)-flat of an oriented Euclidean

n-space is identified with a vector orthogonal to this flat whose length is

the (n - 1)-content of the set. The direction of this vector depends on the

orientation of the flat and of the surrounding space. Formally, we go from

A
n-1

(V) to A
n-1

(V*) to A
1
(V) = V. The same answer is obtained if we go

from A
n-1

(V) to A
1
(V*) to A

1
(V) = V. In a diagram:

Here care must be taken in the identification! For example, V acts on A
n-1

(V)

both by left multiplication and by right multiplication and, if n is even,

there are two identifications possible because the wedge product is anti-

commutative with respect to elements of V.

For n = 3 there are just two spaces left in A(V) and A(V*) after

all of the identifications. These are simply the scalars R and the vectors

V. This explains why the classical vector field analysis did not need any

forms, exterior derivatives, etc. For example, the two differential operators

on the vector field y which yield the vector field curl y and the scalar

field div y are both found by exterior differentiation of the appropriate
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field of co-vectors after the appropriate identifications:

Al(V)

J-1

Al (V*) > A2
(V*)

Al(V)

Al (V*) A
2
(rk)d ----> A (V*)

3

If y has values in A', then curl y = f1d(i0 and div y = V"Id(jy).

We end with the remark that the people who used these operations were not

in the dark about their nature. For example, they knew that one integrates

the curl in connection with a surface integral and that one uses the diver-

gence as a volume density.
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