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FOREWORD

The Proceedings of the CUEM Geometry Conference

will be issued in three parts:

I Convexity and Applications (Lectures by

GrUnbaum and Klee).

II Geometry in Other Subjects (Lectures by

Gleason and Steenrod).

III Geometric Transformation ,Groups, and Other

Topics (Lectures by Coxeter, and others).

The texts printed here are based on recordings

made of the lectures and the discussions, and were

prepared for publication by the assistants (Hausner,

Reay, and Yale). The lecturers themselves were able

to make minor changes and corrections on the final

sheets, but an early deadline prevented major revision

or extensive polishing of the texts. The typing for

offset was done by Mks. K. Black and the figures were

prepared by Mr. David M. Youngdahl.

Lincoln K. Durst

Executive Director, CUPti
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INTRODUCTION

A Geometry Conference, sponsored by the Committee on the Undergraduate

Program in Mathematics of the Mathematical Association of America, was held on

the Santa Barbara campus of the University of California from June 12 to

June 30, 1967.

The conference had its genesis in a meeting of geometers which was called

by P. C. Hammer to consider the status of geometry in our schools and colleges.

The meeting was held in Chicago on January 27, 1966 and was attended by more

than twenty mathematicians including R. D. Anderson, Chairman of the Committee

on the Undergraduate Progtam in Mathematics, and E. G. Begle, Director of the

School Mthematics Study Group. It was generally agreed that the immediate

focus of the problem of geometry lay at the undergraduate level (although its

solution was related to questions involving the graduate curriculum and pre-

college mathematics) and that the problem should be referred to CUPM. In May,

CUPM authorized a small conference to consider the qiiestion further. A meeting

was held in the fall of 1966 at UCLA, attended by S. S. Chern, L. K. Durst,

P. C. Hammer, P. J. Kelly, V. L. Klee, Jr., W. Prenowitz, N. E. Steenrod, with

Anderson as chairman. After preliminary discussion of the problem, Chern pro-

posed a summer conference of undergraduate mathematics teachers who would attend

lectures on various aspects of geometry, analyze the material presented, and

examine its relevance to the undergraduate curriculum. Steenrod suggested that

in addition lectures be given on the geometric underpinning of other branches

of mathematics. This new and experimental format, which would involve features

of a summer institute and a seminar on curriculum, quickly received approval of

the group and of CUPM itself. Anderson appointed a Planning Committee consist-
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of Hammer, Kelly and Klee, with Prenawitz as chairman.

The Planning Committee proposed a conference of four weeks duration but

consented to a reduction to three weeks for fiscal and other reasons, despite

misgivings that there might not be enough time for a natural development of

curriculum discussion. Twenty-one college teachers were chosen as participants

by invitation, since the experimental nature of the conference did not require

a large membership.

The following mathematicians lectured for a period of one or more weeks:

H. S. M. Coxeter; A. H. Gleason, B. GiUnbaum, V. L. Klee, Jr., N. E. Steenrod.

Shorter series of lectures were given by H. Busemann, G. Culler, P. C. Hammer,

P. J. Kelly and W. Prenawitz. Each lecture was followed by a discussion period--

this helped to contribute a freshness of spirit to the discussion since ques-

tions, remarks and challenges did not have a chance to be forgotten or lose

their cutting edge. Several discussions on curriculum were scheduled as the

need arose. The program was supplemented by the showing of several films pro-

duced by the College Geometry Project of the University of Minnesota.

An important innovation was the selection of three assistants to the

lecturers, younger mathematicians who were responsible for writing up the

lecture notes and leading discussions on the material and its relation to the

undergraduate curriculum. M. Hausner, J. R. Reay, and P. B. Yale were chosen

for these assignments and carried them out with singular dedication.

The text which follows gives a record, sometimes in summary form, of the

lectures and discussions of the conference.

Walter Prenawitz
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APPLICATIONS OF GEOMETRY

Lectures by Victor Klee

(Lecture notes by Melvin Hausner and John Reay)

Lecture I.

During the past few years, we have witnessed the effects of the many

efforts to revise and improve the mathematical curriculum (SMSG, CUFM, etc.).

These efforts have proved to be widely influential and beneficial--much more

so than we might have imagined when they were initiated. However, the possi-

bility of further progress should not be ignored. In particular, an informal

session at the 1966 Chicago A.M.S. meeting made it clear that many geometers

favor a broad further revision of the geometry curriculum from the kindergarten

through the senior undergraduate level. Since such a broad attack was clearly

not feasible, it was decided to start at the college level. Hence we are

gathered here.

Let us consider the following four questions.

1. Is collegiate geometry instruction in a state of decline?

2. If so, is this undesirable?

3. If this is undesirable, what should be done to improve the situation?

4. What should a college geometry course consist of?

Our assumption is that questions 1 and 2 have affirmative answers and

that questions 3 and 4 are only slightly different. Once question 4 has been

answered, the next step will be to write the appropriate books.

(It is profitable to compare the situation of geometry with that of

algebra. In algebra, thousands of students have learned from the books by

van der Waerden or from Birkhoff and MacLane or their imitators. Hence the

algebraists have a common experience which serves to strengthen their subject.
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I do not believe the universality of these books was a result of general agree-

ment on what belonged in an algebra course at the time they were written.

Rather, it occurred because the books were written so well that their readers

came to think that this was the only natural way to proceed.)

What are the desirable characteristics of an undergraduate collegiate geom-

etry course? In my opinion, they shouZd include the following points. Except

for the first and third, these apply as well to any college mathematics course.

a) The course should be n-dimensional, and even infinite-dimensional if

this is possible with little extra cost. Anything less will be a letdown for

the student and will minimize the usefulness of the course.

b) There should be a unifying theme throughout the course. For example,

it might be the study of certain objects, such as differentiable manifolds or

convex bodies. Or it might be some notion, such as invariance or symmetry.

c) It is more important to study the geometric objects, their structure

and their properties, than to have an esthetically pleasing axiom scheme. One

should use the mlst powerful approach rather than the most esthetic one. Thus

the axiomatic basis should be specifically "geometrical" in nature only if no

loss of efficiency results from this.

d) It should emphasize the points of contact with other areas of mathe-

matics.

e) It should include applications to science and technology wherever

possible.

f) Unsolved problems should be mentioned in order to whet the students'

interest.

Subjects which might satisfy these criteria for a geometry course are

differentiable manifolds, algebraic topology, n-dimensional projective geometry,
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and the geometry of convex bodies. There are of course several other possibil-

ities.

My candidate is a course on convex bodies. As far as point a) is concern-

ed, the subject is easily carried out in n dimensions. As GrUnbaum pointed

out, many of the methods used for n-space are essentially two- or three-

dimensional, making motivation and intuition very easy in n dimensions even

for the inexperienced. As to point b), the unifying theme is the study of the

properties of convex sets. This is very pictorial, and close in spirit to the

familiar Euclidean geometry, but it makes much more contact with modern mathe-

matics. The method which seems to fit the criterion of point c) is to use

real vector spaces as the setting for the theory. Hawever, if Prenowitz's

"join geometry" approach can be developed in more detail, it might very well

be used instead. The possibilities for point f) are excellent (cf. GrUnbaum's

lectures). Finally there are many connections of convexity with other areas

of mathematics, and many applications in science and technology. Let us

mention just a few.

1. In functional analysis, three of the most important tools are separa-

tion theorems for convex sets (the basic separation theorem being equivalent

to the Hahn-Banach theorem),, extreme-point theorems for convex sets, and fixed-

point theorems for convex sets. Inclusion of these topics in a convexity

course serves simultaneously to teach the student some interesting geometrical

facts and to prepare him for a later course in functional analysis.

2. In a very natural way, a number of topological notions can be brought

into a course on convexity. For example, the Euler characteristic can be

approached in a combinatorial way based on convex sets. Having defined

simplicial subdivisions and proved that a simplex admits subdivisions of
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arbitrarily small mesh, then by using Ky Fan's combinatorial lemmas (taking

perhaps one hour), it is possible to prove (perhaps in two hours) such basic

results as Brouwer's fixed point theorem, the Borsuk-Ulam antipodal mapping

theorem, the invariance of domain theorem, the Lebesgue tiling theorem, etc.

One can then proceed to use these results in obtaining further properties of

convex sets.

3. In a study of the combinatorial properties of convex sets, various

combinatorial identities enter in a natural way and of course there are many

contacts with graph theory. At present, matroids do not seem to arise

naturally in such a course, but techniques naw being developed will probably

change this situation in a few years. (Jon Folkman has a new combinatorial

notion which is related to positive bases as matroids are related to linear

bases.)

4. In inequality theory, many results are best viewed from the point of

view of convex functions. There are applications of convexity Ln summability

theory and in many other parts of mathematics.

There are many areas of modern applied mathematics which use convexity

in a significant way. Some of them are listed belaw.

5. In linear programming theory, the study of convex polytopes forms the

essential geometric background.

6. In much of nonlinear programming theory, convex or concave functions

form the background.

7. Control theory uses the separation theorems, as well as Liapounoff's

theorem asserting theconvexity of the range of a vector measure.

8. The theory of pattern classification uses separating hyperplanes in

a fundamental way, and in particular Schlafli's theorem on the number of regions
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determined by a finite set of hyperplanes in general position through the

origin.

9. Parts of information theory are closely related to packing problems for

convex bodies.

I readily confess that I have not attained a sufficiently high degree of

organization to cover all the above topics in a one-year course, but I believe

it to be possible. The unifying theme makes this less of a hodge-podge than

it appears to be.

Discussion.

The question of a unifying theme was brought up. In particular, Klee

admitted that this was not so apparent in Birkhoff and McLane, although the

notion of a group permeates this text. In this connection Klee felt that a

course based on the notion of transformation as a unifying theme would be too

bland in nature, with too few deep or exciting geometrical results.

Point c) of the ideal geometry course was discussed in some detail. This

led to the general question of whether the course should be content-oriented

or foundation-oriented, with Klee and most of the vocal participants choosing

the former. However, when it was suggested that a mathematics course without

axioms is simply not a mathematics course, Klee stressed that he did not wish

to eliminate the axioms--he wanted to use an efficient axioms system and not

concentrate on esthetics. In any event, the underlying axioms would be stated.

When the question of the importance of n-dimensional space was brought up,

it was pointed out that a junior or senior level course was under discussion

11



and that this should not cause problems at that level.

Finally, there was general agreement that a year's course on convex bodies

should not be the sole upper level geometry course. It should be one of

several. But Klee felt that one geometry course which has some depth is better

than the customory hodge-podge course.

12



Lecture II.

We shall naw discuss some applications of convexity which might be in-

cluded in the sort of course GrUnbaum is discussing. These are not applica-

tions in the strictest sense of the term. Rather, they illustrate the sort of

IIpure applied mathematics" in which one takes certain objects which come from

applied mathematics and then one studies them for their awn sake, just as one

would any other mathematical object. (Note that much of mathematics has

developed in exactly this way.)

We now introduce a few mathematical notions which form the necessary

backgrouad for the material. These will be elaborated in GrUnbaum's lectures.

Definition. An extreme point p of a convex set C is a point p of C

such that C (p) is convex. (We use the notation A ^dB for set-theoretic

difference.) Equivalently, p is an extreme point of the convex set C if p

is in C but is not the mid-point of any segment joining two points of C.

For example, the extreme points of a plane convex polygon are the vertices

of that polygon.

Extreme points and techniques for manipulating them constitute one of the

three aspects of convex sets which are most important in connection with

applications of convexity to other portions of mathematics. (rhe other two

are separation theorems and fixed-point properties.) The importance of

extreme points is due in part to the following fact.

Theorem. If K is compact, convex, and finite dimensional, then K is

the convex hull of its extreme points; that is, K = con ext K.

(This result goes back to Minkowski. In the corresponding infinite-

dimensional result of Krein and Milman it is necessary to take the closed

convex hull of the extreme points.)
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If we abandon the restriction of compactness, we have the following

analogous result.

Theorem. If K is closed, convex, finite-dimensional, and line-free

(no line is contained in K), then K is the convex hull of its extreme points

and its extreme rays; that is K = con(ext K U rex K). (An extreme ray of a

convex set K is a half line contained in K which is not crossed by any

segment in K.)

A ray which is not extreme An extreme ray

Amother important reason for studying extreme points is in their applica-

tion to a wide variety of practical optimization problems. For example,

suppose one has a cost function which is to be minimized. In many cases, this

function f is defined.over a convex set C and iu many applications f is

affine, or at least concave. A basic property of such functions is as follows.

Theorem. If a concave function attains its minimum on a line-free closed

convex set, it does so at an extreme point.

For the above result, as for the remainder of these lectures, we are

assuming that the convex set is finite-dimensional.

We would like to indicate a more or less constructive method of obtain-

ing this minimizing extreme point, starting from an arbitrary minimizing

point. Let us consider for the sake of simplicity a compact set, and

let us first consider the simpler problem of finding an extreme point.
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GrUnbaum will probably describe a quick inductive proof of the existence of

extreme points, but the following procedure is more constructive in nature.

In the diagram, we start at any point xl. If it is not extreme, it is

the mid-point of some segment. Extend this segment in one direction as far as

possible, to a boundary point x2. We continue the process with x2, and in this

way we obtain a sequence x1,x2,... of points. We claim that this procedure

must terminate after.at most d+1 steps, where d is the dimension of the set.

To see this, note that the point x3 cannot be on the line x1:x2, by the

special choice of x
2.

We claim similarly that x
4

cannot be in the plane

x
1
x
2
x
3

and so on. The reason is indicated in the following flgus. If it

were possible to continue along the line L in the plane x1x2x3, then, since

we are in a convex set, the shaded triangle would be in that set. This implies

that x
1
x
2

can be extended beyond x
2

which is a contradiction of the choice

of x
2'

Similar arguments hold for higher dimensions. Of course, the pictor-

ial argument can be made formal. Now, if f is a given concave function,

assumed continuous for the purposes of illustration, then a similar process may

be applied to find its minimum. For if the minimum is attained at xl, and if

x
1

is not extreme, it is an immediate consequence of the notion of concavity
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that the minimum is also attained at one or the other endpoint of any segment

through x
1

, say at x
2'

We may then continue as above to prove the stated

theorem.

The required definitions of concavity and convexity, along with the pic-

torial idea are as follows.

Definition. Let C be a convex set, and let f be a real-valued func-

tion on C. Then

1) f is concave if f(Xx + (l-X)y) Xf(x) + (1-X)f(y) for all x and

y in C and all X between 0 and 1:

2) f is convex if the above inequality is reversed. Equivalently, f is

convex if -f is concave:

3) f is affine if it is both convex and concave; the above inequality

is replaced by an equality:

These formulations translate the usual geometric notions. Thus, f is

concave, convex, or affine if the graph lies respectively above, below, or on

any chord.

It is clear why the minimum of a concave function on a line segment must

be attained at an endpoint. For if not, we would have a graph with points:

which is clearly not possible for a concave function.

We now consider a specific class of minimization problems, namely, the

transportation problems. Such a problem (an m X n transportation problem)

is specified by a positive m-vector a mi ai > 0, and a positive

n-vector b (b1,...sbn), bi >0, where 41.1 ai = 13.1 bi. We suppose that

we have a homogeneous, infinitely divisible commodity located at the sources
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All,aileTheamounta.of the commodity is at the source Ai. The problem

is to transport this commodity to the destinations (or sinks) Bj in such a

way that the total amount bj of the quantity arrives at A solution of

this problem is an m x n matrix x = ( xij ), where x
ij

is the amount of the

material from source A
i

which is sent to the sink Bj Thus, the solution

x is a matrix which satisfies the conditions:

xl1x12
a
1

am

1.

2,

3.

x
ij

0

e.;.1 xij ai

Em x
j
= b

ji=1 i

(row sum)

(column sum)bl bn

The rectangle is a convenient pictorial device to help us remember the size of

x and the row and column conditions. The solutions, as a set of m X n

matrices, form a subset of Erna. Furthermore, the defining equations and in-

equalities for x show that the set of such x's is a convex polytope. To

see this, note that each of the mn inequalities x
ij

0 defines a closed

halfspace, and each of the equalities determines a hyperplane which is the

intersection of the two closed halfspaces determined by that hyperplane. Thus

the set of matrices x satisfying the required conditions is an intersection

of finitely many closed halfspaces, namely a polyhedron. It is clearly bounded,

since each component is bounded by Ei ai. Thus it is a polytope.

Definition. If a and b are vectors as above, the set of matrices x

satisfying the above conditions is called the transportation polytope T(a,b).

Now suppose there ate costifunctions cij, where cij(a) is the cost of

sending an amount a from source Al to sink B Then the cost of a

particular transportation scheme x is simply

C(x) E cij(xi )
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In most practical problems the functions c.. will be concave, whence C is
13

also concave. When the c 's are linear this is an example of a problem in
ij

linear programming, namely to minimize a linear function over a convex poly-

hedron. We know that the minimum is attained at some vertex of the polytope.

(A vertex is an extreme point of a polyhedron.) It is also easy to see that

the set of minimizing points is the convex hull of the set of minimizing

vertices. The subject of linear programming involves various algorithms to

find these minimal vertices. We should like to point out that sometimes this is

not-a simple problem even though there are only finitely many vertices. The

number of vertices may be very large, so that a direct search is impractical.

Further, the polyhedron is generally not given in terms of its vertf.ces but

only as the solution set of a system of linear inequalities,

It is not the purpose of these lectures to discuss practical methods of

solving linear programming problems. However we can sketch the practical

technique usually employed. First find one vertex. (Often this is not

trivial.) There are computationally practical ways whereby, having a

vertex of the polyhedron, one can "look" at all of the adjacent vertices.

Of the adjacent vertices, choose the one which gives the smallest value

to the cost function or which in some other sense represents a maximum

improvement. Then continue the process. It must terminate at a minhmiz-

ing vertex, as follows from a simple theorem in the geometry of polytopes.

This is all for linear cost functions. For concave functions the situation

is much more complicated.

Although linear programming problems are concerned with finding an

optimizing vertex of the feasible region, there are closely related problems

in which one may want to know all of the vertices. An example would be a

18



transportation problem in which an enemy is choosing the non-negative coeffi-

cients c.. of the linear cost function (subject to E c.. = I) in the
13 13

hope of maximizing C(x).

We now study the geometry of T(a,b). We precede this sequence of results

by the remark that the subject itself is not of overwhelming mathematical

interest. It is given simply as a sample of what could be done, in a course

treating convex polytopes, to increase the students' contact with the more

applied aspects of the subject.

Theorem 1. dim T(a,b) = (m-1)(n-1)

We prove this result in several steps.

a) The equality constraints (the row and column conditions) define a flat

of dimension (n-1)(n-1). Each of the row and column sum conditions defines a

hyperplane. The claim is that the intersection of these hyperplanes has the

required dimension. Momentarily, the inequality constraints are being ignored.

To prove a), we note that there are m+n linear functions here. Let, for

th .th
example, p

i
(x) = E. x. (= i-- row sum) and y (x) = E. x.

j
(= 3 column

J l i

sum). These m+n linear functions are not linearly independent, since

E. p. = E. y., However, if we delete y , the remaining m + n - 1 linear
1 1 J J n

functionals are linearly independent, (For example, we may easily arrange to

make any one of these equal to 1, while the others equal 0.) Thus the rank

of this system of linear functions equals m + n - 1 and the dimension of the

flat in question is mn - (m+n-1) = (m-1)(n-1).

%mark. Using the theorem of Caratheodory, this result shows that each

feasible transportation scheme (point of T(a,b)) is a convex combination of

(m-1)(n-1) + 1 or fewer vertices. For n X n doubly stochastic matrices,

the vertices may be identified as the permutation matrices. Thus, everS7
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n X n doubly stochastic matrix is a convex combination of n
2

- 2n -I- 2 or

fewer permutation matrices.)

b) For each i and j, there exists a vertex x of T(a,b) such

that x.. > O.
13

With no losslaigenerality, we may assume i = m, and j = n. Then we use

the "southeast corner rule," x = min(a ,b
n
) and proceed at each stage to

mn m

fill in the southeast corner

a b
m

s
n

0 . . . 0 0 a
m

a
1

b
n

a
m-1

with as large an entry as possible; that is

xij = min(a. - E. x. 2 b. - E. xrj).
3<c=n lc j

Then we claim that the matrix so constructed is a vertex. The proof is by

an easy induction which is left to the reader.

c) There is a point of T(a,b) which is interior to the positive

or thant determined by the inequalities 2c. > 0.
13

To see this, let p be the mn vertices determined in part b). Now

take their average, p = (E. . p..)/mn. Then p is a convex combination of
1,3 13

vertices, hence an element of the polytope. But p clearly has all of its

entries positive and hence is in the interior of the positive orthant.

Finally, the proof of Theorem 1 follows immediately from a) and c), since

T(a,b) is the intersection of a flat of dimension (m-1)(n-1) which passes

through an interior point of the positive orthant.
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Discussion.

The discussion clarified the final part of the proof of Theorem 1. In

addition, the formal definitions of convex and concave functions were pre-

sented, as gtven in the notes. The importance of these functions were stressed

by Klee, insofar as practical maximum and minimum problems were concerned. For

example, the minimum of a concave function is always attained at an extreme

point, while for convex functions, a local minimum is a global minimum.

Problems of minimizing or maximizing nonconvex and nonconcave functions tend to

be much more difficult.

Klee pointed out that transportation problems are a real application, not

a contrived one. In particular, a significant portion of present day computer

time is devoted to the solution of linear programming problems.

The question of computing volumes of polytopes was brought up as a

practical one in geometric probability. The difficulty even for dimensions

2 and 3 was indicated. Two-dimensional problems can be done with some in-

genuity, and higher dimensional problems with a large amount of symmetry can

also be handled. But otherwise, nobody can do it. Klamkin pointed out that

POlya, in his thesis, considered the problem of finding the volume cut off by

two parallel hyperplanes in a cube. Explicit formulas were given and were

derived by Laplace transforms.
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Lecture III.

We continue the discussion of the properties of transportation polytopes

with a theorem about the number of facets of T(a,b). (A facet of a d-dimen-

sional polytope is a face of dimension d-1. In the study of polytopes, the

faces of extrem dimension (namely the facets and the vertices) are usually

the most interesting faces.) The theorem is not of any great importance as

far as applications are concerned, but in proving it we will learn things

about the structure of the problem which are of interest for the applications.

Assume from now on that m g n. This is really not an essential limitation,

since mathematically there is no distinction between sources and sinks.

Theorem 2. T(a,b) has exactly one facet when m = 1 and two facets

when m = n = 2. The number of facets is otherwise between (m-1)n and mn,

each possibility being realized by some transportation polytope.

Proof. The first two cases are trivial. We prove a number of statemedts,

each of which is easy by itself.

a) Each facet of T(a,b) is of the form (x E T(a,b) I a particular

coordinate x
ij

= 03. (This does not assert that each set of this form is a

facet. Note that this does give the upper bound on the number of facets.)

T(a,b) is the intersection of a flat with the positive orthant, but this

orthant itself has exactly mn facets. Thus it suffices to prove that when

P is a polyhedron, V is a flat, and F is a facet of P n V then F is

the intersection of V with som facet of P.

(For example if P is a cube, V a plane

cutting its middle, the facets of P n V

are the four edges of the (middle) square.)

The proof uses a characterization of facets

F of a polyhedron as maximal convex subsets
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of the boundary of the polyhedron.

b) A set of the form in a) is a facet if and only if its dimension

is (n-1)(n-1) - 1.

This is evident, since each set of this form is the intersection of the

polytope (of dimension (n-1)(n-1)) with a supporting hyperplane.

Thus we want to decide for which pairs (i0j) does this form give a facet

of the polytope.

c) Let a = Em
1

a
r
= En

=1
h
c

, and fix (i,j). Note that a is the

r= c

total amount of the commodity shipped, while ai + bj is the sum of the

amount shipped from source Ai and the amount received by the sink B.

a < a. + b iff (x E T(a,b) I xij = 03 misses T(a,b)

a = ai +bj iff (xlx
ij

= 03 determines a vertex of T(a,b),

a> ai +bj iff (xlx
ij

= 03 determines a facet of T(a,b).

This gives a relation between the positive orthant and the flat determined by

the set of a). In general the intersection of a supporting hyperplane with a

polytope may be a facet or a vertex, or a face of some intermediate dimension.

But here the intermediate possibilities cannot occur.

Rather than prove this, we consider a picture of the situation. Each

point of T(a,b) is a matrix x, as shown. Assume (for notational simplicity,

and without loss of generality) that

(i,j) = (msn). The question is: What can

we say about matrices x in T(a,b) with

x = 0? If Et + b
n
> a, i.e.,

mn

bn > a - a
m

=
i=1

a
is

there can be no

non-negative x in T(a,b) for which
b
1

x = 0, for any such x would give b = x Ltn?-1 a If

mn
n i=1 in i=1
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am + b
n
= a it follows that all elements in the last row and column must be

as large as possible. Thus the rest of the matrix must be zero, i.e., the

hyperplane meets T(a,b) at exactly one point, so this point is a vertex of

the polytope. If am + bn < a, the entries in the last row and column may

be chosen less than the maximum amount (e.g., xln < al, etc.), and are sub-

ject only to the two restrictions el
1
x = b

n
and E 111.=1 x

mi
= am. Thus

i= in

(within restrictions) we have a "frce choice" of (m-2)(n-2) elements of the

reduced matrix and (n-2) and (n-2) free choices in the last row and column,

i.e., (im-2)(n-2) + (m-2) + (n-2) = (m-l)(n-1) - 1 free choices. Thus

[xix = 03 determines a facet of T(a,b).
mn

Note that this result is of interest because if an opponent is choosing

the cost function cij, he may make use of the following fact: if

a
i
+ b a then clearly every feasible scheme must send something from

>.

source A to sink .Bj

d) If aNa
r
+ b

s
and aga +b with r4 u,s0v, then

u v

m = n 2. That is, if we have two critical points in distinct rows and

columns of x, then m = n = 2.

This is clear since a
r
a-b=E b by a - au = E , a a ,

s r

with the second and fourth eWe being "=" only if respectively n = 2

and m = 2. Thus 41 these "bad points" (i,j) must be in the same row or

in the same column, and there can be at most n of them (since m n).

But these points (i,j) are precisely the places in the in X n matrix where

[x E T(a,b) 1 x
ij

= 0) is not a facet, by part c). Thus at least

mn n = (m-1)n of these sets must be facets of T(a,b). This proves the

theorem except for showing that all possibilities between (31-1)n and inn

are actually realized.
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We now turn to the number of vertices of T(a,b). We first characterize

the vertices in a useful way. This characterization will not be explicit

enough to allow us to count them in general. Leading up to this, I would like

to mention a standard correspondence between matrices and bipartite graphs

which will be useful in some of the counting processes.

Associated with any m x n matrix we have an undirected graph whose

nodes or vertices are divided into two sets; one set of nodes corresponding

to the rows of the matrix, the other set of nodes corresponding to the columns

th th
of the natrix. We connect the I: row node to the column node if and only

if the corresponding entry in the matrix is non-zero. For example, this

matrix and graph correspond.

1 6 0 0 0 0

0 3 5 8 0 0

0 0 9 2 7 0

0 0 0 4
411100014

(columns)

(rows)

(numbers in each node are
raw or column sums)

These graphs are associated with the transportation problem in a natural

way, since we can think of the raw nodes as sources and the column nodes as

sinks. The arcs may then be labeled with the amount of shipment along that

arc. We will prove that the feasible transportation schemes (i.e., points

x E T(a,b)) which are vertices of T(a,b) are exactly those whose graphs

are trees or "forests" (unions of a finite set of disjoint trees).

Definition. A 122p for the matrix x is a sequence (i1d1)(i1d2)

1) where we successively change only one of the two numbers
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i or j, such that

a) there are no repetitions, and

b) the matrix has non-zero entries in all the indicated places.

Equivalently, a matrix has a loop if and only if its graph has a circuit, since

the only way you can leave a "row" node is to go to a "column" node in a bi-

partite graph, and to leave a column node you must go to a raw node. Thus the

following theorem has a geometric as well as graph-theoretic interest.

Theorem 3. The vertices of the polytope T(a,b) are exactly those

x E T(a,b) such that the matrix x admits no loop.

Proof. Suppose x E T(a,b) and x has a loop (11,j1)(i2,j1)...(is,j5)

(i
1,

j 5) Set 2e = min (x
ij

I (i,j) listed) > 0. Define a matrix y by

= xij if (i,j) is not listed in the loop,

= x
ij

e if (i,j) is in the loop

where e is alternately added and subtracted as we go around the loop. This

has the effect of leaving all row sums and all column SUMS fixed and hence

y, i(x+y), and i(x-y) are all members of the convex polytope T(a,b). But

x = i(x+y) + i(x-y) and thus x is not an extreme point.

Conversely, if x E T(a,b) ev ext T(a,b) we will show that the matrix x

has a loop. If x is not a vertex of T(a,b) then there is some y such

that x y E T(a,b), and the row SUMS and column sums of y must necessarily

all be zero. Now choose y 0 0. Since all row and column sums of y are

ili1
zero we can continue to choose pairs (i,j) which define a loop in y for

which the corresponding yij are non-zero. Since x+y and x-y, being in

T(a,b) must have all non-negative entries, it follows that each xij must be

posittve and me thus have a loop in matrix x. This completes the proof.
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Theorem 4. For any matrix, the following are equivalent:

a) x admits no loop

b) x E T(a,b) is a vertex of T(a,b)

c) every submatrix of x (obtained by deleting certain rows and columns)

admits a distinguished row or column. (Definition: A row or column is

distinguished if it has at most one non-zero element.)

d) any r x c submatrix has at least r c I distinguished rows

when r g c (distinguished columns when c r).

e) every square submatrix has a distinguished row or a distinguished

column

f) every square submatrix has both a distinguished row and a distinguish-

ed column

g) every square submatrix of order k has at most 2k - 1 non-zero

entries.

The conditions of this theorem could, of course, be put into gtaph

theoretic terms. For example, c) implies that the bipartite graph of the matrix

x must have at least one "dead-end," To say a certain row is distinguished

corresponds to saying that a particular row node is joined to at most one other

node. Condition e) asserts that if we pick any set of nodes containing the

same number of row nodes as column nodes, and the arcs which join these chosen

nodes, then there must be at least one dead-end in that subgraph. Condition

f) asserts that there is a dead-end row node and a dead-end column node in

each such subgraph.

None of these conditions allows us te count the vertices of a really

complicated transportation polytope, although they do allow us to look at

certain points x E T(a,b) and say immediately that they are not vertices.
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Discussion.

Housner pointed out that there are only finitely many combinatorial types

of the polytope T(r,b) c: en and yet the combinatorial structure depends upon

,m+n
the continuous parameter (a,b) E L He asked what determined the boundary

of a set of points (a,b) E Elm+
n

which gave a transportation polytope

T(a,b) c en of a particular combinatorial type. (Definition: Polytopes

P and P' are of the same combinatorial type if the lattices 5(P) and

5(P') of their faces are isomorphic.) Klee answered that this was typical of

a class of similar questions that could be asked, most of which are hard.

Perhaps you could prove that two transportation polytopes in en had the

same combinatorial type provided a certain characteristic function x(a,b)

assumed the same value on the pairs (a,b) and (a',b') which defined the

given transportation polytopes. The characteristic function x would be

defined in terms of the class of all subsets of the set of m + n coordinates

of (a,b).

Certain game theory results have applications to econamics or business,

but no one suggested any peaceful applications of the game-theoretic trans-

portation problem in which an enemy is determining the cost function. Klee

remarked that since all "bad points" of a matrix x (i.e., pairs (i,j) for

which a.< a
i
+ b in the notation of Theorem 2) must occur on one row or one

column, there will be one critical source or sink in these cases whose lines

of communication must be closely guarded.
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T.ecture IV.
AO.% .4:1/101/11111

We will continue our discussion of transportation polytopes, but will omit

the details of some of the counting arguments. These would be similar in

spirit to those done above, but c.onsiderably more complicated and time-consum-

ing.

We first consider the possible number of vertices. A transportation

problem determined by (a,b) c:Em-1-11 is called degenerate if the sum of the

elements of same proper subset of (ai Ilgig m3 is equal to the sum of

some proper subset of (bi 1 g j g n3. A problem is degenerate if and only

if some feasible solution has a graph which is disconnected.

Theorem 5. For a general m x n transportation problem (in g n), the

minimum number of vertices is

(n-m41):

and this is achieved in certain examples. For m x n non-degenerate problems

the minimum number of vertices is WI
-1

This gives a complete solution for

the minimum number of vertices.

Only partial results are known about the maximum number of vertices of

the general m x n problem.

Theorem 6. For m x n transportation problems, the number of vertices

of T(a,b) is achieved by non-degenerate problems.

Sketch of proof. Each T(a,b) is the intersection of a posittve orthant

with a flat. This polytope can clearly be approximated as closely as desired

by a polytope which represents a non-degenerate problem. One then makes use of

the fact that the number of vertices of a polytope is a lower semi-continuous

function of the polytope.
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We next consider the maximum number of vertices for regular

(= non-degenerate) problems.

Lemma 7. Two vertices of T(a,b) which have the same pattern of non-

zero entries must be identical.

Proof. Vertices x and y were characterized as matrices without loops.

If x and y have the same non-zero pattern, then so must i(x+y). Clearly

this cannot happen unless x = y because i(x+y) must also be a vertex.

Since every extreme point of T(a,b) has a graph which is a tree, we can

get upper estimates of the number of vertices by counting certain classes of

trees.

Theorem 8. For any m X n transportation problem the number of vertices

is at most the number m
n-1

n
m-1 of spanning trees of the complete bipartite

graph with m vertices in one set, n in the other.

We can restrict ourselves to (connected) trees rather than forests (i.e.,

unions of disjoint trees) in the above theorem, because we have restricted the

problem to the non-degenerate case. It should be noted that m
n-1

n
m-1

is the

number of "generalized" vertices of the d-polytope T(a,b) in the following

sense. Each genuine vertex is the intersection of d hyperplanes determined

by d-facets. However the intersection of d hyperplanes may or may not be in

the polytope and thus it might not be a vertex. The above number counts the

number of such intersections and thus is only an upper bound on the number of

genuine vertices. One could ask, how close to m
n-1

n
m-1 vertices can you get

with a transportation polytope? At present this seems to be a very hard

problem, although some progress has been made.

As an example, suppose we have n sources, each with supply l/n, and

n+1 sinks, each with demand 1/(n+1). Then several observations may be made
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about the graph of a vertex of this polytope:

a) Each source must have at least two arcs leading to sinks, since

l/n > 1/(n+1).

b) Each source must have exactly two arcs leading to sinks, since any

(connected) tree with 2n+1 nodes must have exactly 2n edges. Thus the bi-

partite graph might look like this:

c) For every bipartite graph which is 2-valent at each source node,

there is a feasible transportation scheme which may be assigned to the graph.

For the graph shown above the assigned scheme will be

(where the amount k shown on each arc denotes that k/n(n+1) of the total

commodity moves aiong that arc).

d) The above arguments would work in a similar way if there were n

sources, pn + 1 sinks, and therefore each source was (01)-valent.

e) The problem of determining the number of vertices to the transporta-

tion polytope when we impose these symmetry conditions is again a matter of

counting trees. The number turns out to be (n+1
)n-1

(n!) when there are n

equal source nodes and n+1 equal sink nodes, or

(111n4.1)n."1
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when there are n equal sources and pm + 1 equal sinks.

Our discussion of transportation polytopes will end with the following

comment. Much of the material presented above is well-known but some of it

is new. A much more careful exposition, accompanied by complete references

and proofs, can be found in a forthcoming paper by V. Klee and C. Witzgall.

Discussion.

It was pointed out that the upper bound in Theorem 8 was frequently quite

a bit too large. Several other problems were mentioned which appear similar

to the transportation problem, but which apparently are related only in that

combinatorial techniques are needed.

The symmetry of the last transportation problem example (n equally

strong sources, n+1 equally strong sinks) leads to a question about the

symmetry of the corresponding polytope T(a,b) and the determination of its

facial structure. Klee mentioned that GrUnbaum would consider the problem of

determining the number of facets of a d-polytope with v vertices, and

remarked that it would be interesting to have similar results for the class

of polytopes which had a group of symmetries of a particular order. GrUnbaum

remarked that almost no results of this type are known. Klee pointed out that

theorems on the facial structure of polytopes are of direct interest to linear

programming problems.

Woolf asked how proponents of a geometry course based on convexity, as

GrUnbaum and Klee have discussed, would meet the claim that geometry courses

based on algebraic topology and differential geometry would be of more use to
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a student in his further work. Klee was of the opinion that to do something

well in those two areas, a much better background and level of maturity is

necessary than to do a careful treatment of convexity. In particular many

topics in convexity are more intuitively accessible and elementary. If a

student were going on to research in those areas, then a thorough background

at the undergraduate level could be preferable, but for an undergraduate

general training, a course based on convexity would, in Klee's opinion, be

better. Paul Kelly pointed out that in planning this conference, it was felt

that the place college geometry was least neglected was in differential

geometry, and that it would be better to invite lecturers who would concentrate

on the other parts of geometry which are in more trouble at the college level.
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Lecture V.

We will next consider another topic related to linear programming.

Perhaps this should be called a problem whose answer would lead to an applica-

tion rather than an application of geometry. Much of this lecture can be

found in the last chapters of GrUnbaum's book, Convex Polytopes.

Linear programming problems are frequently solved by choosing a vertex of

the polytope described by the linear constraints, investigating the neighboring

vertices, and thus searching from one vertex to the next for the maximizing

vertex. In such a search process we move along the edges from one vertex to

the next, and it would be useful to have results which give upper bounds to

the number of such iterations that a computer might have to perform. (The

usefulness of a computer in solving problems often depends upon whether you

know the problem will take at most 2 minutes, 2 days, or 2 years!)

Definition. Let G be a graph (for example, the set of edges and

vertices of a polytope). The distance

8(x,y) between vertices x and y is

the length of the shortest path (counting

edges) between x and y. The diameter

of G is max(6(x,y) I x,y vertices of G3.

If P is a polytope, 6(P) denotes the

diameter of the graph of P. For example, if P is a cube, then 6(P) = 3.

Definition. Ab(d,n) is the maximum diameter of a d-polytope with n

facets. (rhe b is for bounded, if the b is omitted.it is the same defini-

tion for the class of (possibly unbounded) polyhedra.)

Definition. A graph G is d-connected if it cannot be separated between

any two vertices by removing fewer than d vertices and their adjoint edges.
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For example, the graph of the cube shawn above is 3-connected. (See GrUnbaum's

lectures, Section 12, for further related results.)

Before stating the main theorems, we make a few observations.

Lemma 1. The graph of a d-polytope is d-connected. Equivalently, for

each pair of distinct vertices of a d-polytope, there exist d disjoint paths

connecting these vertices with only the end-points in common.

The proof is omitted.

Lemma 2. (GrUnbaum-Motzkin) The maximum diameter of a d-polytope with

vertices is

r:EZZ1 + 1.
d

Proof. Suppose x and y are vertices. Consider d independent paths

from x and y and let k be the length of the shortest. Internal to each

path there must be at least k-1 vertices. Thus v (k-1)d 2, so

v-2
k-1 and k g [(v-2)/d] 1.

Lemma 3. Ab(d) is achieved by a simple d-polytope with n facets.

(P is simple if each vertex is d-valent.)

Proof sketch. A small amount of "wiggling" of each face of the polytope

will not increase the number of faces, but can make each vertex d-valent, and

in general will produce additional vertices and edges out of old multi-valent

vertices. Thus P may be assumed to be simple.

This is useful in the 3-dimensional case.

Lemma 4. If d = 3, Ab(3,n) = 411] - 1.

Proof. Letting v, el f denote the number of vertices, edges, and faces,

e f = 2 by Euler's formula. P is simple implies that 2e = 3v. Thus

m 2f - 4. By Lemma 2 and 3, Ab(3,f) g [(v-2)/3] + 1 = [2f/3] - 1. Easy

examples shaw the bound is actually assumed.
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Theorem. Ab(d2n) = [151511113 - d + 2 when d 3 or when n g d+5,

except that Ab(4,9) = 5.

The proof is omitted. These give the only specific values of Ab(d,n)

that are known.

The determination of Ab(d,2d) was a long outstanding problem in linear

programming, and the conjecture that P(d,2d) = d was "proved" for d 5

before it was recently shown to be false even in E
4

. Thus problems of this

type are difficult even though they are very easily stated.

The conjecture of Hirsch was that A(d,n) g n - d. This has been shawn

false even in E
4

. However the bounded version of the conjecture

b
(d,n) g n-d is still open. A related conjecture that is very easy to state,

and yet unsolved is: Any two vertices of a polytope can be joined by a path

which does not "revisit" any facet (i.e., considering a path as a sequence of

vertices, a path may travel around the vertices of a facet as far as desired,

but once it leaves a facet it may never revisit the facet later in the

sequence). If the latter conjecture were true, then the bounded version of

Hirsch's conjecture would be true. Actually, the following stronger form of the

conjecture might be true. In any cell-camplex

any two vertices may be connected by

a path not revisiting any cell. It is

not known whether this conjecture is

true even for 2-dimensional cell complexes

embedded in E3 . I would expect that these

conjectures are probably false when d gets large, say d 9.

Details of these and similar results and problems may be found in

Grunbaum's book.
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Applications of Helly's Theorem.

There are several applications to science of Helly's theorem or related

results (see GrUnbaum's lectures, Section 5) which could well be brought into a

classroom discussion on Helly's theorem. One of these has to do with molecular

genetics.

In studying DNA molecules which specify the structure of certain phage

particles, the following investigation procedure was used. The phage particles

exist both in certain standard forms and in mutant forms. Each mutant arises

from some blemish in the genetic structure. If the structure of the DNA

molecule is represented by a graph, we are interested in knowing the structure

of this graph, and particularly in the part of the graph which contains the

blemished part which produces the mutant forms. There seemed to be experi-

mental reasons for assuming that the blemished portion of each graph was a

sub-arc of the graph rather than just some random subset. Further there was

a way of telling when two of the blemished sub-arcs overlapped. The research-

ers then asked whether this observed intersection pattern is consistent with

the hypothesis that all blemished intervals came from a linear part of the

graph of the DNA molecule. Or is it necessary to use more complicated

structures than a line to observe the intersection pattern?

This leads to the following mathematical problem. Determine completely

what intersection patterns can arise from finite families of intervals on a

line. Helly's theorem on the line gives one limitation at once; namely, if

a finite family of intervals on the line is such that each two have a common

point then their intersection is non-empty. But this does not apply directly

here for we are concerned only with pairwise intersections. The intersection

pattern itself could be thought of as a square matrix of zeros and ones, with

0 in the (i,j)-place when Ii n I = 0 for the mutants i and j, and 1
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in the (i,j)-place if n I. 0 0. The question then becomes, is this

matrix consistent with the assumption that the intervals are chosen from a

line?

A more convenient way of describing this is in graph-theoretic language.

The intersection graph of any finite family of sets is the graph whose nodes

represent the sets, and two nodes are connected by an edge if and only if the

corresponding sets have non-empty intersection. For example, the intersection

graph of the line segments on the line at the left is the graph at the right.

4

3 16
: rrn.

We will say that a graph is an interval graph if it is the intersection graph

of a finite number of intervals on the line. The problem is now to character-

ize all interval graphs in a useful way. We will state only one of the more

satisfying characterizations of interval graphs. Mbst parts of the proof of

this theorem would be understandable and interesting to undergraduates. A

graph has the rigid circuit property if each circuit is decomposable into

triangles, that is, each circuit with more than 3 edges has crossings.

Theorem. G is an interval graph if and only if

(1) it has the rigid circuit property, and

(2) each three vertices of the graph admit an ordering so that every

path from vertex 1 to vertex 3 either goes through vertex 2 or is only one

edge away from vertex 2.

To finish the story, it was shown that for the experimental results which

were obtained, the intersection graph of the several hundred blemished
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intervals in the DNA molecules did indeed form an interval graph. Examples

of this sort point out to students that there are useful and interesting things

that can be said even about the intersection properties of convex sets on a

line.
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An application of barycentric coordinates.

This application of geomotry is of interest in connection with mineral

engineering. It deals with the phase diagram of a multicomponent situation

which is isobaric, isothermal, and in which no solid solutions are formed.

For the sake of illustration, let us consider an example with just three

primary components, labeled A, B, C. Suppose we are interested in all the

possible chemical compounds which could be formed from combining different

amounts of these three primary components and which would be stable at the
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given pressure and temperature. Each such compound D can be represented as

a point in the triangle ABC, where

the unique barycentric coordinates

of D with respect to A, B, and C

determine the relative amounts of

components A, B, and C that are

present in D. (Generally it is

possible only in parts of inorganic

chemistry to determine a compound in

terms of the amounts of the elements

of primary components from which it

is formed. This cannot be done with

carbohydrates, for example, but there are large areas within inorganic chem-

istry where this rule does apply.) Along with all the vertices in this tri-

angle which represent the different possible stable compounds, one has a

decomposition of the triangle into smaller triangles, as shown. Of course,

for a given set of vertices there are many such decompositions possible, but

in fact there is only one such decomposition which represents the following

important aspect of the situation. Suppose we started with a particular

mixture of the compounds A, B, and C, and the relative amounts of each

determine the barycentric coordinates of the point K in the obvious way.

If this mixture is heated to a high temperature, so that all sorts of decom-

position take place, and then is slowly cooled to the original temperature and

pressure, the resulting mixture does not consist of the original 3 compounds

A, B, C. Rather almost all of the resulting mixture will consist of the com-

pounds which are represented by the vertices of the small triangle AED which
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contains K. Furthermore, the relative amounts of the compounds A, E, and

D will be determined by the barycentric coordinates of 't in terms of A, E,

and D.

It is easy to see the importance of this in certain refinery processes.

Given a particular type of ore, for example, this type of scheme is useful in

determining what kinds of compounds can be produced and in what amounts. This

amounts to knowing the compounds in the ore (A, B, and c) and determining

which small simplex (triangle) the ore (point E) lies in, and what its bary-

centric coordinates are. This is rather trivial in the 2-dimensional case

since you can just draw a picture and see what is going on. In fact, this is

just what people do. In the higher dimensional cases, barycentric coordinates

must be computed in the standard ways. The problem mathematically, is the

following. Let po,p1,..,pd be the vertices of a d-dimensional simplex

which contains the smaller simplex whose vertices are cloAy...cid, and

suppose z E conv(po,p12...2pd). We wish to know whether

z E conv(cj02q1,...qd), and if so, what are the affine coordinates of z

in terms of the qi.

This sort of problem shows the student that there really are situations

for which the actual computation of barycentric coordinates is desirable and

a natural thing to do. The first ideas in computing barycentric coordinates

are just the usual techniques with quotients of determinants, but there are

practical refinements of these techniques which soon lead to the attempt to

compute the coordinates in the most efficient manner.
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Discussion.

It was asked how the decomposition of the triangle into smaller triangles

was determined from knowing just the 3 original vertices and the locations of

the interior vertices. Suppose for example, that you knew from the experiment

that DEFG was a part of the diagram,

and you wondered which of the two

diagonals DF or GE should be

added. The standard technique is

to form a mixture whose relative

amounts determine the coordinates

of the point K, heat it, then

cool it, and observe whether compounds

E and G or compounds D and F

result. Analogous techniques exist for the higher dimensional cases.

References for this whole topic are:

P. A. Beck, Journal of Applied Physics 16(1945) 808-815.

L. A. Dahl, journal of Physical and Colloid Chemistry 52(1948) 698-760.

V. Klee, Problem in Barycentric Coordinates, Journal of Apslied physics

Vol. 36, No. 6(1965) 1854-1856.

P. M. Pepper, Journal of Applied Physics 20(1949) 754-760.

Johnson pointed out that another application of barycentric coordinates

has been in the partitioning of an integer number of legislature seats among

various political parties, each of which has received a certain percentage of

the total vote. In this setting the political parties determine the vertices

of a simplex, and the simplex is subdivided into areas which represent certain

divisions of the legislature. An article describing this is in Mathematical

Smapshots by Steinhaus.
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CONVEX SETS AND THE COMBINATORIAL THEORY OF CONVEX POLYTOPES

Lectures by Branko GrUnbaum

(Lecture notes by John Reay)

Convexity is a subject that can easily be taught to undergraduates at the

junior or senior levels, and there are several good reasons for doing so.

First, it is possible to reach significant results without the necessity of a

strong background in other fields. There is no prerequisite of any extensive

techniques. Secondly, convexity is a tool which may be applied in many other

fields of mathematics, including number theory, functional analysis, complex

variables, and others. Also it develops a student's geometric intuition and

intuitive comprehension of the proofs and theorems. It introduces combinatorial

reasoning which has application in many other fields. One of its main advan-

tages, which is rare in other areas of geometry, is that it is possible to

introduce students to many open problems early in the course. This makes it

possible to show that there is much work yet to be done, and problems that have

challenged our best efforts to find a solution. This type of course can be

quite a contrast to many courses which would lead the student to believe that

all mathematics is done and comes in a completed package. Finally, many proofs

of convexity have arguments in 2- and 3-dimensional seJce which makes for easy

understanding, even though the proofs are valid in higher dimensions.

These notes cover only a small fraction of the directions in which con-

vexity has developed. In the first part of the notes (Sections 1-9) a basic

introduction is given to convexity and some of its main tools, applications,

and references. Sample proofs are included, but many of the results are left

in the form of unproved statements or exercises. These sections are not meant

to be a complete review of the topics usually covered in a course on couvexity,
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but they are rather meant to supply a foundtion for the combinatorial theory

of convex polytopes, one of the rapidly expanding areas of convexity. This

second part of the notes (Sections 10-14) is primarily designed to give an

intuitive grasp of the important results, open problems and basic techniques

of this area.
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1. Algebraic prerequisites.

The following facts, generally known from algebra and easily proved, will be

used--without special mention--in the sequel.

If X is a vector space over the reels R, and if A = (a
1
2... ,a

n
) is a

sequence of n vectors in X, any expression of the type Ei=1 Xiai, where

each X. E R, is a linear combination of the vectors in A. We shall say that

A is linearly independent provided 4.1 Xiai = 0 implies Xi = = Xn = 0;

ife.lx.a.=Oispossiblewithsomex.00, we shall say that A is

1=1

linearly dependent. Hence A is linearly dependent if and only if some member

of A is a linear combination of the other members of A.

A maximal linearly independent sequence is called a linear basis of X;

this clearly means that each vector x E X is a linear combination of the

elements of a linear basis of X. Moreover, this linear combination is unique;

its coefficients are the coordinates of x relative to the given linear basis.

Any two bases of the same space X have the same cardinality, known as the

(linear) dimension of X. If X is d-dimensional for some finite cardinal d,

ane if A = (al,...,ad) and B = (hl,...,bd) are two linear bases of X,

there exists a regular linear transformation T of X onto itself such that

Ta. = b
i

for i = 1, Conversely, if A is a linear basis of X and

and T is a regular linear transformation of X onto itself, then

(Tal,...,Tad) is a basis for X. Any linearly independent sequence in X

may be extended to a linear basis for X.

If X is d-dimensional, a sequence A = (a1,...,an) of vectors in X is

linearly independent if and only if the matrix
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a
nl

. . . a
nd

has rank n, where a 2eee, arethecoordinatesofa.relative to a
aid

given linear basis of X.

The linear dimension of the Euclidean d-space E
d

is d. A convenient

linear basis of E
d

is the standard basis formed by the vectors

el = e2 = ed = (0,...,0,l).

If X and X* are two vector spaces of dimension d, and if x
1 d

form a basis of X, and form a basis of X*, a mapping T from
12* 2 d

d *
X to X* may be defined by T(E1

1
. X.x ) = E. X.x. . This mapping T is

an algebraic isomorphism between X and X*; moreover, if both X and X*

are topological vector spaces, T is a homeomorphism.

The scalar product (a,b) of vectors a,b E E
d

is the real number defined

by

(a,b) = 4=1 alpi .

The most important properties of the scalar product are

(a,b) = (b,a)

(Xa,b) = x(a2b)

(a..03,c) = (a,c) + (b,c)

(a,a) 0 with equality if and only if a = 0.

If (a,b) = 0, then a and b are said to be orthogonal, to each other.

If (a,a) = 1, then a is called a unit vector. In the sequel, the letter

u (with or without subscripts) shall be used only for unit vectors.
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A hyperplane H in E is a set which may be defined as

H = (x E Ed
I

(x,y) = al, for suitable y E Ed, y 4 0, and a. An open

halfspace (closed halfspace) is defined as (x E Ed I (x,y) > a) (respec-

tively (x E Ed I (x,y) 2:oi) for suitable y E Ed, y 0, and a. Clearly,

(x E E
d

1 (x,y) <oi is also an open halfspace for y 0, similarly for

closed halfspaces.

If X is a real vector space of finite dimension d, a norm
11 II

may be

defined on X which turns X into a metric space isometric with the Euclidean

d-space E
d

. Thus each d-dimensional X is "essentially" the space E
d

(The

norm in X is defined by JJxJJ =4-77. In order to find an isometry between

X and E
d

, take any basis x
I

x
d

of X and "orthamormalize" it by"
putting y and

74k-1 (xkai)

4k Li=i Yi for k = 2,...,d.

Let ei = yi / 7577.,y1.) for i = 1,...,d. Then el, ,e.ti form a linear

basis of X and, if elp...ped is the standard basis of E
d

, the trans-

formation T such that Te
i

= e' T(E
1

cl

X
i
e
i
) = Ed X et is an isometry

t= i=1 i i

of the required type.)

The affine facts listed below may either be dertved fram their linear

counterparts, or be proved independently.

If X is a vector space over the reals, and if A = (a
1
1...pan) is a

sequence of elements of X, any expression of the type 4.1 X.a , where
i

all X E R and e X = 1 is an affine combination of the elements of A.
i=1

We shall say that A is affinely independent provided no member of A is an
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affine combination of the other members of A; otherwise A is 2ffinely

dependent.

A is affinely dependent if

not all equal to 0, such that

and only if there exist X12...,Xn in R2

E4
1

X a
i
= 0 and e

1
X = 0.

i= i

A = (a
1'

,a
n
) is affinely dependent if and only if the sequence

(a
1

- a
n
2...2an1 - a

n
) is linearly dependent.

-

If X is of (linear) dimension d, and if the elements a
i

of A

have coordinates a
'112

...2a
id

relative to some linear basis of X, then

A is affinely independent if and only if the matrix

cll cYld 1
.

.

.

a
nl

a
nd

1

has rank n.

Any maximal) affinely independent sequence in X is an affiae basis of X.

If A is a linear basis of X then A U (0) is an affine basis of X.

The set of all affine combinations of two different points x2y E E
d

is

the line 14(x2y) = ((1-X)x Xy I X real). If x',y' E L(x,y) and

xl 0 y', then L(x'2374) = L(x2Y).

If a set H has the property that L(x2y) c: H whenever x2y E H,

x 0 y, we call H a flat, or an affine variety. Clearly, the set of all

affine combinations formed from all finite svibsets of a given set A is a

flat; it is denoted by aff A and is called the affine hull of A. The

family of all flats in E
d

contains E
d

, 0, all one-pointed sets, all

lines, all hyperplanes; also, it is intercectional: if all H
a
Is are flats,

so is n H . The affine hull aff A of a set A may equivalently be
a a
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defined as the intersection of all flats which contain A. The formation of

the affine hull is translation invariant, i.e., aff(x+A) = x + aff A. (Note

that aff(A+B) = aff A + aff B is not true in general.)

Every flat H is a translate H = x 4. V of some subspace V of E
d

and is therefore isomorphic to the Euclidean space of a certain dimension

r the dimension of H (and of V) is then r = dim H = dim V.

Each r-dimensional flat contains r+1 affinely independent points, but

each (r+2)-membered set of its points is affinely depeuSent.

A transformation T of E
d

into En is affine provided it preserves

affine combinations; that is,

T(4=1 aixi) = 4=1 aiTxi

whenever xi E Ed and a
i
Is are reals satisfying a = 1.

1=1 i

Images, or inverse images, of flats under affine transformations are again

flats. In particular, an affine transformation A from E
d

to E
1
= R is

determined by Ax = (a,x). If a 0 0, the inverse image by A of any point

a E R is a hms21.121 in E
d

, denoted by

pce) = Cx E Ed Ax = ,x) = ce)

Conversely, each (d-1)-flat in E" is expressible in this form for suitable

a and a and is, consequently, a hyperplane.

The main advantage of the affine notions over the corresponding linear ones

is their invariance under translations. Hence, among other advantages, their

use in proofs avoids "choosing the origin" at some advantageous point.

The assumption that X is a vector space over the reals is irrelevant

to many of the definitions and facts listed above. Any field of characteristic
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0 could be used instead of the real numbers.

Discussion.

It was generally felt that the affine notions (affine independence, trans-

formations, etc.) were usually unfamiliar to the students. It was suggested

that this could be due to a lack of affine topics in most linear algebra

courses. Opinions about how much time was necessary to give an adequate founda-

tion in affine topics varied from one or two hours upwards. Klee suggested

letting the word "blank" stand for any of the words linear, affine, positive,

or convex, and then develop the general ideas of "blank independence," "blank

hulls," etc. as far as possible with comparisons of their differences. See

Klee [1].
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2. Definition and elementary properties of convex sets.

Let X be any vector (linear) space over the reals, of finite or infinite

dimension. A set K C X is called convex provided

(*) whenever x,y E K, then all points of the (straight-line)

segment determined by x and y belong to K.

as

Denoting by R the field of real numbers, condition (*) may be reformulated

(**) whenever x,y E K and A E R satisfies 0 g g 1,

then Ax + (1-70y E K.

Examples of convex sets in any real vector space X:

(i) the empty set 0; any single point; the whole space X:

(ii) any (linear) subspace of X and, more generally, any flat

(i.e., translate of a subspace) in X.

(iii) any (closed or open) halfspace of X (i.e., any set of the

type (x E X y(x) al or (x E X y(x) > a), where a E R and y is a

non-trivial distributive functional on X; this means that y is real-valued,

51(x) 0 0 for some x EX, and y(ax + PY) = ay(x) + pp(y) whenever

x,y E X, a, E R) .

(iv) if X is a normed space, any closed or open ball in X

(i.e., set of the type (x E X I Iix-x011 cv)
or (x E X Ilx-x011 <a), where

xo E X, a E R, and a > 0).

Convex sets are general enough to appear in widely different fields, from

elementary geometry to functional analysis. On the other hand, they have

sufficiently much structure to allow significant results.
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In the sequel we shall mostly assume that X is the d-dimensional

Euclidean space E
d

, though many of the results do not require this restriction,

or may be modified to hold in more general spaces.

We list naw a few fundamental properties of convex sets in E
d
; additional

properties will be discussed later.

1. The family of all convex sets in E
d

is intersectional; that

means that for any non-empty family (Kv) of convex sets in E
d

the inter-

secLion n K is of the same type. All closed convex subsets of E
d

also
v v

form an intersectional family, and so do all bounded convex sets, or all com-

pact convex sets.

2. Any convex combination of points belonging to a convex set

K C Ed belongs to K. This means

(:**) whenever n 1, al,...,an
E R 2 a 0 for i = 1,i

and En a
=1

= 1, then x1"."xn E K implies
i i

E. ce
i
x. E K.

1=1

Clearly, condition (**) used in defining convexity is the special case

n = 2 of (***). On the other hand, (**) implies (***), as is easily seen

by induction on n: assume without loss of generality that an 1, and use

the identity

Li=l CY ii Cnxn

where X = En-1 a

ai
_17 xi,

3. If A is an affine transformation of E
d

into E
d'

, and if

K c Ed and K' c Ed' are convex sets, the AK = tAx I
x E K) is a convex

set, and so is the inverse image by A of K' , A
1K'

= E Ed E 10).
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Hence, in particular, the convexity of a set K is not affected by any

translation (x+K). homothecy (aK), or orthogonal transformation. This may

be used in proofs to reduce the more general situation to one in which a suit-

able point is at the origin. (See, for example, the proof of Theorem 6.10.)

4. If K and K
2

are convex sets in E
d

, then

K
1
+ K

2
m (x

1
+ x2 I xl E

12
x
2

E K
2
) is a convex set.

Note that we shall use the notation -K = (-1)K = [-x 1 x E

and K
1

K
2
= K

1
+ (-IC

2
). Hence "subtraction" of sets (K

1
K
2
) is not

the inverse operltion of the (vector, or Minkowski) "addition" of sets

CK
1
+ K

2
).

5. If Kc:E
d

is convex, then its topological closure el K and

its iaterior int K are also convex. Thus if x,y E int K and

0 N X g 1, then (U{ 4. (1-70y) E int K.

Denoting the distance between points x,y E E
d

by Hx-yll =

the convexity of cl K follows from the observation that if

Ilxi-xil <8 and Oi-51 < 8 then, for 0 g X g 1,

(Xxi + a-7051) (Xx + (1-X)Y)11
(1"X)fiyi-Yll <6. An alternate

proof of the convexity of cl K follows from 1, 3, and 4 above and the

observation that el K = n (K+ 0), where B is the unit ball centered at

the origin. The convexity of int K follaws from the fact that there is some

open d-ball B centered at the origin for which x+Bc K and y + B C K.

Thus if 0 g. X g 1 and if u E B then

(Xx + (1-X)y) + u = X(x+u) -I. (1-X) (y+u) E K

and therefore (Xx + (1-X)y) + B C K, so int K is convex.

6. Similarly, if x E int K and y E K where KC E
d

is convex,

and if 0 < X 1, then Xx + (1-X)Y E int K.
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As in the last proof, if x + B c:K then it follows that

(Xx (1-X)y) + X13 C K.

Remarks

1. The intersectionality of the family of all convex sets in E
d

may be

used to define convex sets, or certain types of convex sets. For example, we

shall see in Section 3 that the family of all closed convex proper subsets of

E
d

may be characterized as the smallest intersectional family of subsets of

E
d which contains all closed halfepaces. Similarly, the family of all compact

convex subsets of E
d

is the smallest intersectional family of subsets of

E
d containing all closed d-balls. All convex proper subsets of E

d
may be

obtained analogously by starting with "semi-spaces". (Semi-spaces may be

explicitly defined in various ways: a particularly appealing definition--

though unsuitable if one intends to use semi-spaces to define convex sets--

is: a semi-space is any maximal, convex set which does not contain a given

point.)

Other instances of this approach to, convexity will be discussed 1ater.

2. Modifications of conditions (**) or (***) are frequently

encountered in the definitions of various families of sets in Euclidean spaces,

or in more general vector spaces. A few examples are:



Type of set Together with x and y Whenever

the set also contains cY2P E R and

(i) (linear) subspace ax + py no other condition

(ii) flat (affine variety) ax + py cy + 0 = 1

(iii) cone olx a >0

(iv) convex cone ax + py a ... 0, 13 > 0

(v) convex set ax + (3y

Linear, affine and positive combinations (generalizing (i), (ii), and

(iv)) are defined similarly to the fashion in which convex combinations were

defined by (***). See Klee [1]. Some of the results on convex combinations

we shall see later have analogues for the other types of combinations (or for

some of them).

A number of other notions related to the above have been studied; such as,

for example, the mid-point convexit (where with x and y the set contains

i(x+y)). Some results are known on combinations with arbitrarily prescribed or

restricted sets of coefficients. See the article by L. Danzer, B. GrUnbaum,

and V. Klee [1] -- referred to hereafter as DGK [1] -- and Motzkin [1].

3. It is sometimes convenient to consider mojective transformations of

convex sets in E
d

A transformation P from E
d

to itself is called

projective provided it is possible to express P in the form

Ax + b= _

(C220-1-45

where A is a linear transformation of E
d

into itself, b,c E Ed, 8 E R,

and at least one of c and 8 is different from 0.

The transformation P is not defined on the set

N(P) = Cy E Ed I (c,y)+6 = 01.
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The set N(P) may be empty (if c = 0 0 8), in which case P is an affine

transformation. If c 0 then N(P) is a hyperplane (which, if A is

regular, is mapped by P onto the "hyperplane at infinity" of the r(2_21essize

d-space containing E
d
).

If K is a set in E
d

and P a projective transformation as above, P

is said to be permissible for K provided K n N(P) = 0. Generalizing

property 3 we have:

If Kc:E
d

is a convex set and if P is a projective transformation

permissible for K, then PK is convex.

4. The notion of convexity has been modified in numerous ways to make it

suitable for settings different from vector spaces over the reals. In

particular see DGK [1], Section 9 especially. We shall mention here a few

of these variants; it is rather instructive to investigate the results we shall

encounter with respect to the modifications needed in their proofs to make

them valid for the different "convexities."

(i) If Q is any ordered field, convexity in any vector space over Q

may be defined by the analogue of (**). This notion is useful in clarifying

the role of completeness, closure, or compactness assumptions in various

theorems. A particularly interesting special case is that in which finite-

dimensional spaces over the field of rational numbers are considered.

(ii) Experi/2nce has shown that the most useful definition of convexity in

the d-dimensional projective space P
d

is:

A subset Kc:P
d

is convex provided there exists a (d-1)-dimensional

subspace of H of P
d such that K n H = 0, and if for each straight line

L of P
d

the set K n L is -.tither empty or connected.
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Note that this setting is not interesting if we are dealing with a single

convex set in P
d

since a projective transformation carries the hyperplane H

onto the hyperplane at infinity and the set K onto a set equivalent to a set

in E
d Note that property 1 does not hold for projective convexity.

(iii) A number of notions of spherical convexity have been found useful.

(See p. 157 of DGK [1] for four different definitions and further references.)

The one we shall have occasion to mention later is the following. Let S
d

denote the unit d-sphere in E
d

, that is, S
d

= (x E E
d+1 ) = I). A

set Kc: S
d

will be called convex provided the set cone
0
K C Ed+1 is convex,

where cone
0
K denotes the union of all closed rays (half-lines) originating at

the origin 0 E E and passing through a point of K.

Exercises

1. Prove in detail the assertions made above.

2. Prove the convaxity of the (closed) unit d-ball

B
d

= (x E E 4 1) c: E
d

.
d

0
,,,

3. Prove the convexity of every d-simplex.

4. Shaw that each closed, midpoint convex subset of E
d

is convex.

5. Let tKv) be a family of convex sets in E
d

. Shaw that if every

denumerable subfamily of (K) has a non-empty intersection, then

n K 0 0.
v v

6. Let K!, K"c E
d

be called "equivalent" provided there exist x E Ed

and A > 0 such that K" = x AK'. Prove that this is an equivalence

relation, and that there are eleven distinct equivalence classes of convex

subsets of E = R. What is the cardinal of the distinct classes of convex

subsets of E
2
?
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7. Let E:c:E
d

have the origin 0 as center of symmetry (i.e., K = -K),

and assume that K is compact and that int K 0 0. Show that the function

cp defined for x E Ed by

tp(x) = inffa OixEaKj

is a norm on E
d

. (That is

(i) (10(x) 0 for all x E Ed, with cp(x) = 0 if and only if x = 0;

(ii) cp(x+y) cp(x) + yo(y) for all x,y E Ed

(iii) cp(ax) = lalcp(x) for all x E Ed and all a E R.)

Equivalently, show that p(x,y) = cp(x-y) is a metric on Ed.

8. If K is a compact convex subset of E
d

and B is the (topological)

boundary of K, and if C = [ix + iy I x,y E E), then K = C. The

example of a closed halfspace shows that "compact" may not be weakened

to ''closed."

Discussion.

Johnson pointed out that one of the various definitions of spherical

convexity is equivalent to t)nvexity in P
d

, and raised the question of

defining convexity in vector spaces over finite fields. This appears to

be a difficult problem.

Klee suggested the following proof of a slightly stronger version of 6:

If q E el K, p E int K, and K is convex, then u = Xq + (l-X)p E int K,

for 0 < 1.
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As before, assume B is an open ball at the origin of radius e for

which p BC K. Consider the open ball B centered at q of radius

X . e, that is, the ball which is the reflection through the point u. Then

l-A

qEciK implies that there is some xEK(110. Then u lies in the

relative interior of the line segment determined by x and some y E p B.

The proof then proceeds as in 6.
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3. Separation and 2222E1.

Let K denote a convex subset of E
d

, d ?.40. We shall first prove:

1. int K 0 0 if and only if K contains d+1 affinely independent

points.

In other words, the interior of K is non-empty if and only if the affine

hull aff K of K is the whole space E
d

.

Indeed, if a maximal affinely independent set of points of K contains d

or fewer points, their affine hull contains K but has dimension d-1 or

less--hence int K = 0. On the other hand, if K contains affinely independent

points xo,...,xd, then K contains the open simplex

CE
0

i=0
Xx

i I i
Ed
=0

X. = 1, X > 0,...,Xd > 0)
0

hence int K 0.

For Ac: E
d

let rel int A and rel bd A denote, respectively, the

interior and the boundary of A considered as a subset of the flat aff A

(Which is isometric to some E
k
). From 1 there follows

2. rel int K 0 whenever K 0 0.

Indeed, the following stronger result holds:

3. int Kc: rel int K = rel int (c1 cl(rel int g) = cl K.

The proof of 3 uses 2 (or 1) and the technique used in the proof of 2.5

(i.e., result 5 in Section 2 ).

Let A1,A2c:E
d

; we shall say that AI and A2 are separatedk a

hutrplane 1.1(1,X) = (x E Ed
I

(u,x) = X) (where u E Ed is a unit vector,

and X E R) provided Al is contained in one and A2 in the other of the

closed halaaa921 = Ht(udo = (x E Ed
I

u,x) X) and If = 117(u,X) =

1

(x E E
d

(u,x) g X). Note that a set may be separated from itself, for

example, a line segment in E
2

We shall say that non-empty sets Ai and A2
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are strictly ,separated, by H(u,X) provided Ai is contained in one and A2

in the other of the aaa halfspaces int H
71-

and int H.

It is immediate that

4. If H = H(u,X) separates AI and A2, then H separates cl A
1

and cl A2, and it strictly separates int Al and int A2.

The fundamental lemma on strict separation is

5. If K
1

and K are compact convex sets in E
d

such that

K1 n K2 = 0, there exists a hyperplane which strictly separates K1 and K2.

Proof. Let a = inf (11y2-y111 I 571 E Kl, y2 E K2) = 8(K1,K2). Since

K
1

and K are compact and disjoint, a > 0 and there exist x
1

E K
1

and x
2
E K

2
such that

2
-x

1
= a. Then, if H

1
denotes the hyperplane

H(x
1
-x

2
, (x1 ,x

1
-x

2
)), and if H

2
= H(x

1
-x

22
(x

22
x
1
-x

2
)) the convexity of

-

K implies that K
1
CH

1
c: int H

2
and K c:H

2
(= int Hi

H
2

Hence, for any X such that 0 <X < 1, the hyperplane

11(x1-x2, (1-20x2, x1-x2)) strictly separates Ki and K2
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Indeed, if some point z of K
I

were in the interior of H-, then

clearly some point on the line segment [z,x1] would be in K1 by convexity,

and be closer to x2 than xl. Note that this argumant is 2-dimensional, even

though the proof is valid in E
d Also note that this is the only point where

the convexity hypothesis enters. The only use made of compactness was to obtain

the existence of xl and x2.

Regarding the separation we have

6. If K
1

and K are bounded convex sets in E
d

such that

aff (K1 U K2) = E
d

, then K1 and K2 may be separated by a hyperplane if

and only if

red int K n rel int K
2
= 0.

1

The "only if" assertion is an easy exercise; Tim shall prove here only the

"if" part of the theorem, assuming without loss of generality (see 3 and 4)

that K
1

and K
2

are closed (hence compact). For 0 < e < 1, let

Kl(e) = xo (1-e)(-x0 Ki) and K2(e) = yo (l-e)(-y0 + K2), where

x
0
E rel int K

1
and y

0
E rel int K are fixed. Then

rel int K. = U
1 0 < e < 1

K (e) for i = 1,2,

K,(e') c:rel int K (e) for 0 < e< e' < 1 and i = 1,2.

Since K(c) and 1(2(e) are compact and disjoint, 5 tmplies the existence

of a hyperplane H(e) = H(u(e), X(e)) which strictly separates Ki(e) and

1(2(e). Since each H(e) intersecto the segment [x02370], the set

(X(e) I 0 < e < 1) is bounded. Together with the compactness of the unit

sphere S
d-1 which contains the set (u(e) 1 0 < e < 1), this implies the

existence of a sequence (01,...,en,...), llm en m 0, for which the following
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limits exist X = lim X(e) and u = lim u(en). Then the hyperplane

H(u,X) is easily seen to separate rel int Kl and rel int K2, hence also

K
1

and K2.

An alternate proof of 5 can be given based upon the following assertion:

If C
I

is a non-empty convex proper subset of E
d and C

2
= E

d
f**0 C iS

also convex, then cl C. is a (closed) halfspace and bd CI = bd C2 = a

hyperplane. (See Hammer [1].) Assume K
1

and K
2

are disjoint convex sets

I. n E
d and x is any point of E

d
. We use the following Lemma: Either

K1 n conv([x) U K2) = 0, or else K2 n conv(tx) U Ki) = 0, where cony A

denotes the smallest convex set which contains A. (See Section 4.)

Well-order all points in the space, and with this Lemma add x
1

to one

of the two sets K
i

to obtain disjoint convex sets K
11,

K
21'

one of which

contains x and for which K c:K In a similar fashion expand these two

sets to two new disjoint convex sets K
122

K
22'

one of which contains x
2*

By transfinite induction, we obtain two disjoint convex sets Kt and 11

whose union is E
d and for which K ail!. By the first assertion these sets

are separated by the hyperplane which forms their common boundary. Thus it

suffices to establish the lemma. Its denial asserts that for some point x,

n conv((x) U K2) it 0 and K2 n conv((x) U K1) 0. Thus there must be

points ki E Ki and a point x E Ed and points

yi E Ki n rel int cony

Y2 E X2 n rel int conv (xlk1).
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E K1

This two-dimensional situation clearly leads to the existence of a point

z E K1 n K2, a contradiction. Thus 5 holds.

Both of 5 and 6 may be strengthened by weakening the hypotheses, but the

basic ideas of these proofs already appear in the above formulations. In 52

for example, we may demand that only one of the closed sets Ki be compact.

Another application of the compactness argument (relative to u(e) and X(0)

allows one to strike "bounded" from 6 and to establish

7. If K
1

and K
2

are convex sets in E
d

such that aff (K
1
U K2) = Ed ,

then K
1

and K may be separated by some hyperplane if and only if

rel int K
1

n rel int K = 0.

As simple consequences of the above we have

8. Each closed convex set K in E
d

is the intersection of all the

closed (or of all the open) halfspaces of E
d

which contain K. Each open

convex set K in E
d

is the intersection of all the open halfspaces of E
d

which contain K.

9. If K is a convex set in E
d

and if C is a convex set such that

bd K, then there exists a hyperplane which separates K and C.

Let A (7- E
d

, let x E Ed be a non-zero vector, and let X E R. The

hyperplane H(x,X) is called a supporting hyperplane of A provided either
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X = sup((x,a) I a E A) or X = inf((x,a) 1 a E Al; in the first case we

shall say that H(x,X) is the supporting hyperplane of A in direction x

(or with outward normal x), and we shall denote it by H(A;x).

From 9 we have:

le . If K c Ed is convex, and if c c bd K is convex (in particular,

if C is a single point of bd K), there exists a supporting hyperplane H

of K such that C c: H.

The following independent proof of 10 can also be given when C is the

single point p. Let B be a closed ball with center p and let y be a

point in B which is farthest from the set K. Now y cl K since p must

be in bd K, so there is a point z E cl K which is closest to y. Let H

be the hyperplane normal to [z,y] through z. As in previous arguments,

y and K are separated by H, so if z = p, then H must be the desired

supporting hyperplane and we are done. If z p then the hyperplane

parallel to H and through y must meet the interior of B. Thus some point

u E B must be farther from K than y, a contradiction. (See Botts DJ.)

A partial converse of 10 is

11. If K(= E
d

is compact and convex, then each supporting hyperplane

H(y,a) contains at least one point x such that (x,y) = a.
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Note that compactness cannot be weakened to "closed" in 11; e.g., let

K = ((a,b) E E2 I a , 0, b > 1/a) and H = ((a2b) I b = 0).

There are two types of separation problems implicit in the above. We may

ask how strong a separation is possible between two convex sets with given

properties. Also me may assume certain conditions on one of the sets and

require a certain type of separation, and ask what properties are necessary

for the second set. In general, the stronger the given conditions on the first

set, the weaker are the necessary conditions on the second set. See Klee [3]

for theorems of this type.

It should also be noted that the separation of a flat and a convex set may

be interpreted in a natural way as the Hahn-Banach theorem.

Exercises.

1. Show that for any convex K c Ed we have rel bd K = if and only if

K = aff K. Is the assumption that K be convex necessary?

2. Prove 2 and 3.

3. If K is not convex, is it possible that all the sets mentioned in 3 be

different? Generalize, by taking repeated closures and relative interiors.

4. Prove that K
1

and K
2

may be [strictly] separated by a hyperplane if and

only if it is possible to [strictly] separate 0 and Ki - K2.

5. Show that 5 remains valid if the assumptions on the convex sets

K
1
,K

2
cEd

are weakened to either

(i) 8(K121(2) > 0;

or (ii) K1 is bounded and cl Kl n cl K2 = 0.
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6. Prove 7, by cmsidering intersections of K
1

and K
2

with a sequence of

balls with radii tending to infinity, and using 6.

7. Find examples in which K c Ed is a closed convex set and H is a

supporting hyperplane of K, but H n K = 0. Shaw that for every bounded

set A and every supporting hyperplane H of A we have H n cl A 0 0.

8. Prove the follawing converse of 10. (Compare the figure.) If A is a

closed subset of E
d

with int A 0 0, and if for each w E bd A there

exists a supporting hyperplane H of A such that w E H, then A is

convex.

-1

V

x,y E A, z E A, v E int A, w E bd A

9. Characterize those convex subsets of E
d which have no supporting hyper-

planes.

10. Prove that each compact convex set in E
d

is the intersection of closed

balls.
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11. If K
1

and K
2

are disjoint compact convex sets, then the set of all

pairs (u,a) such that H(u,a) strictly separates K
1

and K
2

, is an

open subset of S
d-1

x R.

12. Let A denote a non-empty subset of E
d

The supporting function

d.

h(x,A) of A is defined for all x E E by

h(x ,A) = sup( (y,x)
I

y E A) .

If for some non-zero x E Ed we have h(x,A) <op then H(A;x) =

(z E Ed 1 (z,x) = h(x,A)3 is a supporting hyperplane of A in direction

x .

Prove:

The supporting function h(x,A) is positively homogeneous and

convex, that is it satisfies

h (xx ,A) = Xh (x ,A)

and h (x+y ,A) h (x ,A) + h (y ,A)

for all X 0 and x,y E E
d

.

(ii) If A 0 02 X 0, and x,y E Ed then

h(x,y+A) = (x,y) + h(x,A)

h(x,XA) Xh(x,A)

h(x,c1 A) = h(x,A).

(iii) If Al and A2 are non-empty and if 002cEE
d

, then

H(A1 +A2; x) = H(Al; x) + H(A2; x)

(A1 + A2) (1 H(A1 + A2 ; x) = (A1 11 (A1; x) ) (1 (A2 (1 H (A2 ; ) .
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(iv) If h(x) is any postively homogeneous and convex function

on E
d

such that h(0) = 0, there exists a unique non-empty closed

convex set K such that

h(x) = h(xX) for all x E Ed.

13. Find meaningful variants of the notions and results of this section

relevant to spherically, or projectively, convex sets.

14. What becomes of the results of the present section if one considers con-

vexity in the rational d-space?

Discussion.

Hausner suggested that a better nam for "relative interior" would be

"absolute interior," since it depends only on the given set and not the dimen-

sion of the space in which it is embedded. Perhaps it should be treated as

the core of the set. Apparently the only justification for the use of the

word "relative" is that the relative interior is just the usual interior in

the affine subspace determined by the set when this space is given the relative

topology.

Klee pointed out that the transfinite induction argument used in the

second proof of 5 could be modified to a usual induction argument (thus being

more palatable to undergraduates) by considering a countable dense subset of

E
d

rather than well-ordering all the points of E
d

In a discussion of infinite-dimensional separation theorems it was observed

that the algebraic and topological structures are not as closely related as they

are in the finite dimensional case, and a part of the problem is that hyper-
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planes correspond to continuous linear functionals. The separation theorems

are still valid in infinite dimensional space provided suitable hypotheses are

added--indeed, they are major tools in the theory--but it is not true that two

disjoint convex sets may be separated, as the following example shows: Let X

be the (non-complete) vector space of all sequences x = (x
1
,x

2
2...) of real

numbers, all but a finite number of which are zero. Let K1 c: X be the subset

of all sequences whose last non-zero number is positive. Let K2 = -X1 U (03.

Then K
1

and K
2

are convex disjoint subsets of X and K
1
U K

2
= X. Yet

eachLis topologically dense in X. Moreover, if

x = (x12...2%20,02...) E K1

(i.e., xn > 0) and y = (02...0,-1,0,02..0 with -1 in the (n+l)th place,

then the halfray (x ty I
t > 03 c K2 has x E Xi as endpoint. A similar

statement is true for each x E K2. When presenting this example Klee gave the

opinion that infinite-dimensional examples and results should be used to give a

course broader scope whenever this may be easily done with only a little

extra time.

Killgrove and Stratopoulos observed that a certain amount of algebra,

topology and analysis seems to be a prerequisite for any undergraduate course

using this material. After considerable discussion on the level at which a

college geometry course should be taught and the amount of topology to be in-

cluded, Kelly remarked that we are aiming here for an ideal course to be taught

at good untversities by a good staff. The universities have an important in-

fluence on the small colleges and courses designed for high school teachers.

It is important that geometry courses should keep the respect of the professiort

and appear as an alive subject related to the rest of modern mathematics, since
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if it is thus accepted at the good schools, it will filter down to the weaker

schools in perhaps a weaker form, but without the feeling that geometry is a

dead subject that can well be left out of a:crowded curriculum.
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4. Convex hulls.

The space E
d

is convex [and closed], and the intersection of any family

of convex [and closed] sets is again convex [and closed]. Therefore the

follawing definitions make sense:

The convex hull conv A of a subset A of E
d

is the intersection of

all the convex sets in E
d

which contain A. The closed convex hull

cl conv A of A (= E
d is the intersection of all the closed convex subsets

of E
d

which contain A.

Clearly, if A is bounded, so are coav A and cl conv A.

An immediate consequence of the definitions is

1. For every A (= E
d

we have cl(conv A) = cl conv A.

Proposition 8 from the pleceding section implies

2. cl conv A is the intersection of all the closed halfspaces

which contain A.

A useful representation of corm A is given by

3. The convex hull conv A of a non-empty set A (= E
d

is the

set of all points which may be represented as convex combinations of points

of A; that is, points which can be written in the form E
n

a.x., where
i=1 1 1

p

vn
aE Ap O = lp n = lap...xi ai

In many applications the following result is very important.

4. If A is a compact subset of E
d

then cony A is closed;

in other words, for compact A we have cl conv A = conv A.

Using the results of the preceding section it is not hard to give a

direct proof of 4, by induction on the dimension d. Since a much simpler

proof results from Caratheodory's theorem, we defer the proof of 4 till we

establish 5.
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The following theorem is one on the basic results in convexity, and has

important application in other fields.

5. (Caratheodory's theorem) If A is a subset of E
d

2 then each

x E cony A is expressible in the form x = E0. a x where x
i
E A,

i
0, E

i=0
a
i

= 1.

Proof. Let x E conv A be gtven; let x = EL0 aixi (with xi E A,

a. 0, E
i=0

a = 1) be a representation of x as a convex combination of

1

points of A, involving the smallest possible number p+1 of points of A.

We shall prove Caratheodory's theorem by showing p d. Indeed, assuming

p d + 1 it follows that the set (x02...2x ) is affinely dependent. Thus

there exist 01.2 0 5 i p, not all equal to 02 such that 4=0 Oixi = 0

and EP
0

p = 0. Without loss of generality we choose the notation so that

a ai
> 0 and -2. for all those i (0 g i g p-1) for which pi > 0. For

Pp Pi
an ,p-1

a

0 g i g p-12 let yi = ai -r0i. Then Li=0 yi = ai - 4=0 = 1.
vp

Moreover, yi 0; indeed, if Oi g 0 then yi 0, if pi . 0 then

a a
yi = 0,(4 - 0. Thus 4:36 yixi = ei:(1) r ,oxi = aixi = x

A. Pi Pp

is a representation of x as a convex combination of less than p+1 points

of A2 contradicting the assumed minimality of p. This completes the proof

of Caratheodoryls theorem.

The proof of 4 is naw immediate. Indeed, if x E ci conv A, there

exists a sequence xn
E corm A such that x = lim x By Caratheodoryts

r1-41=

theorem each x =Ed X
i
x 2 where x

nli
E A, 0 6. X 1 for

n 1.1=0 n2 n2i

each n. The compactness of [0,1] and of A guarantees the existence

of converging subsequences (X ) and (x ) such that lim X
10.402 mit2i

nk2i
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and lim x = x(i). Then obviously 0 X(i) 1
2

Ed X(i) = 1, x(i) E A,

Ic4c° nteL

i=0

and x = E0 X(i)x(i), as claimed.
i=

A result closely related to Caratheodory's', in the sense that either is

easily derivable from the other, is Radon's theorem:

6. If A is a (d+2)-pointed subset of E
d

, it is possible to find

disjoint subsets A*, A** of A such that conv A* n conv A** 0.

A direct proof of Radon's theorem is very easy. Let A = Ocol x
d 1

)

Since d+.2 points in d-space are affinely dependent there exist ai, not

all equal 0, such that E
d I

a, = 0 and E
:(1+1 a.x. = O. Without loss of

i=0 i=0

generality we choose the notation so that a02..,ap are positive and

°10-12""14+1
non-positive. Then Ogpgd. Leta= e=0 ai > 0 and

ai

define $1. = -E-y. for Ogigp and yi = 77 for p4-1 gigd+1. The

d+1

affine dependence of A can be rewritten in the form 41=0 $ixi =

d+1

Since pi 0, yi 0, and 4=0 $1. = Ei=p+1 yi = 1, this relation expresses

conv(xo" Px ) n conv(cp+
12

... x
d 1

) 0, as claimed by Radon's theorem.

Exercises,

1. Show that a hyperplane f[C: Ed supports a set Ac: Ed if and only

if H supports cony A.

2. Proposition 4 states that the convex hull of a compact set is compact;

show that the convex hull of an open set is open. The convex hull of a closed

set is not necessarily closed; find a closed set A 0 such that conv A

is an open proper subset of the whole space.

3. For Ac: E
d

let T(A) (i(x1+x2) I x1,x2 E Al, let T
I
(A) = T(A),
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and for n I let T
m 1

(A) = T(Tn(A)). Denote T*(A) = U
n 1

Tn(A) Shaw

that cl T*(A) = cl cony A, although in general T*(A) cony A. If A = bd K

where K is a bounded convex set in E
d

, d 2, show that cl K = T(A).

4. For A c: E
d

let 0(A) = (Xx
1
+ (1-X)x

2
I x

12
x
2

E A, 0 g. X g. 13.

Define 01(A) = 0(A) and 01(A) = 8(en(A)) for n 1. Show that

cony A = U
n

0
n
(A). Characterize those convex sets Kc: E

d
for which

K = 0(bd K). See Bonnice - Klee [1], Section I.

5. Prove Steinitz's theorem: If x E int cony A. (= E
d

, there exists

a subset A* of A, containing at most 2d points such that

x E int conv A*. Show that the number 2d may not be decreased in general,

and characterize those A and x for which 2d points are needed in A.

6. Let Ac: E
d be a finite set. Then x E rel int cony A if and

only if x is representable as a convex combination of all pu: of A,

with all coefficients positive.

7. Shaw that in Radon's Theorem 6 the sets A* and A** are unique

if and only if every d+1 points of A are affinely independent. Show also

that in this case two points of A belong to the same set if and only if

they are separated by the hyperplane determined by the remaining d points.

8. What becomes of the above results if convex sets in the d-sphere,

the projective d-space, or the rational d-space are considered?

What are the analogues of the above results if the convex combinations

are replaced by other types of combinations? (See Section 2, remark 2.)
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Discussion.

Klee presented the following alternate proof of 4: Let

6:11-1-(X02". dtd)E0441X....-0,EX.,----1)
which is clearly compact.

Let X denote the compact set

d+1
D x A X ... X A .

d+1 times

Map X into E
d

.by ((X0,...2Xd), ao,...,ad) -0 Ei.0 Xiai. By Caratheodory's

theorem, the image of X is exactly conv A, and the map is clearly ct.,...-

tinuous. The continuous image cony A of the compact set X must be

compact.

GrUnbaum remarked that the original proof of Caratheodory used induction

on the dimension d. This had the disadvantage of needing to know results

about the intersection of compact sets with their supporting hyperplanes, while

the present proof is more elementary.

Klee pointed out that in Caratheodory's theorem, if p E conv A and

x E A, then p E B for some set B c: A of at most d+1 points, one of

which is x. Only one such point x may be thus specified in advance. A

slight modification of the given proof gets this stronger result.

A similar generalization was reported recently by Motzkin [2].

Caratheodory's theorem has had a large number of uses in other fields as well

as convexity; for example, use of Caratheodory's theorem and the separation

theorems have significantly simplified proofs of some results about doubly

stochastic matrices.

Johnson and GrUnbaum mentioned that if the given set of d+2 points in

Radon's theorem is not degenerate, specifically if the points are in general

position, then there is a unique way to divide them into two disjoint subsets
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whose convex hulls meet.

Reay mentioned that if a set A (= E
d

of (d+1) + (k+1) points

(D k d) is in general position, then it may be divided into two disjoint

subsets whose convex hulls meet in a k-dimensional set. Mbre generally, if

A has (r-l)(c1+1) + (k+1) points, then it may be divided into r disjoint

subsets whose convex hulls meet in a k-dimensional set. However, when r > 2,

then an independence stronger than general position is necessary for the set

A. See Reay [1].
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5. Helly's Theorem.

The present section is devoted to a result known as Helly's theorem. It

has many applications to different fields, and it occupies a central position

among combinatorial-geometric problems.

1. (Relay) Let H = (K1,...,K
n

be a finite family of convex sets in

E
d

, d 1. If for each subfamily H' of H, consisting of at most d+1

sets, there exists a point common to all members of H', then there exists

a point common to all sets of H.

It is easy to give examples which show that the convexity of each set

K. is necessary. If Kn C E
1

is the closed ray En,a) for each integer

n, all hypotheses hold except the finiteness of H, yet the conclusion

fails. So H must be finite. (See 2 below.)

We shall give two proofs of Helly's theorem; each of them exhibits

certain features which reappear in the proofs of many combinatorial-geometric

results. Note that no generality is lost in assuming n d + 2.

The first proof is due to Helly himself. It consists of two technically

distinct steps.

(i) It is enough to prove the theorem under the additional assumption

that each set is compact. Indeed for each (d+l)-tuple (i i ) c:
0 d

(1,...,n]letx(i0" ..' id)ErldK..LetX.,for j = 1,...,n, be
j=0 1 .7

i

defined by X. = {x(i
0

..,.,i
d
)1 j E [i

0
,...li

d '

11 and let C. = conv X..
j J

SinceXiisafiniteset,eachC.is compact; also, X. c:K. implies

C.CK..bloreover,theintersectionofanydi-IsetsC.,...X. is non-
.] J 30 Jd

empty, since it contains x(j0,...,jd). But if Helly's theorem is assumed

for families of compact convex sets, we have
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nn K. nn C. 0
i 1.=1. i

hence, the validity of Helly's theorem for general convex sets. Note that the

finiteness of H is necessary in this part of the proof.

(ii) In order to prove Helly's theorem for families X consisting of

compact convex sets we first note its validity for d = 1. Indeed, it is

ilmnediatethateachK.(which is, for d = 1, a closed segment, possibly
1

degenerating to a point) contains the rightmost of the left endpoints of the

members of X. Assume now that the theorem is false; among the families for

which it fails, choose one for which d is as small as possible; then

d > 1. Among all the families in that E
d

for which the theorem does not

hold, select a family H with smallest possible cardinality n. Then

n > d + 1, and for each subfamily of H containing n-1 members, the

n

inter-

,-1
section of its members is non-empty. Let K = H. K. 0 0;

1=0 1
then K n Kn = 0

and by Theorem 3.5 there exists a hyperplane H strictly separating K and

for i = 1,...,n-1. Then
1

each C. is a compact convex subset of the (d-1)-dimensional space H;

1mve a non-empty intersection:
1/

=C.n. cj=n (n
1

K. ) 0 because n1. K

Id

has points in Kn
as well

j=

as in K. Hence, by the minimality assumption on X and the choice of H

we have the contradiction 0 Ci = H n (n7:1 K. = H n K = 0. This
ii

completes the first proof of Helly's theorem.

The second proof of Helly's theorem goes back to Radon. We began by

establishing its validity in case n = d + 2. Simplifying the notation used

in (i) above, let, for i = 1, 2, n = d + 2,
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jOi
x. E n K..
1 lgjgn 3

By Radon's Theorem 4.6 there exist sets 31 ,32 (= (1,...,n3 such that

conv (xi I i E J13 n conv (xi
I
i E J23 0.

Let x be any point of this intersection; then x E K. for each j E J2

since each such K. contains all x. with i E J
1

and hence K. contains
1

also their convex hull. Reversing the roles of Ji and J2 we see that

x E K. also for all j E J1, i.e., x E nL1 Ki 0.

Hence Helly's theorem is valid for all families in E
d

consisting of

n g d+2 sets. Now we apply induction on n. From a family X = (K10...21c,

with n > d+2, we form a family 0= (C1,...,Cn_11, where Ci = Ki n

for The intersection of each d+1 members of C. is non-empty

since it coincides with the intersection of some d+2 members of X, which

is non-empty by the abave special case. But the inductive assumption then

implies 0 Ci = 1=1 K and the proof is completed.

Using the standard compactness arguments, it is easy to derive from 1

the following infinite version of Helly's theorem.

2. If X is any family of compact convex subsets of E
d

such that

every d+1 or fewer members of X have a non-empty intersection, then the

intersection of all members of X is non-empty.

An extensive list of results related to Helly's theorem, with references

to the original papers, may be found in the Danzer-GrUnbaum-Klee survey

listed in the bibliography. The following exercises are meant only to give

the reader the opportunity to try his hand at applying either one of the

above versions of Helly's theorem, or the techniques used in their proofs.
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Exercises.

1. Theorem 2 remains valid if the convex sets K
i

are assumed to be

closed, provided some finite subfamily has a bounded intersection. (Even

the "finite" of the preceding sentence may be omitted, but then some additional

facts--e.g., Theorem 7.3--have to be used.)

2. Let X be a family of compact, convex subsets of E
d

such that,

for some fixed k with 1 nkNd+1, each k or fewer members of X have

a common point. Then for every flat L (= Ed of dimension d 1 - k there

exists a flat L' of the same dimension, parallel to L which intersects all

the members of H.

3. Let X be a family of compact convex sets in E
d

and let C (= Ed

be a compact convex set. If for every members of X there exists a

translate of C intersecting all of them, then there exists a translate of

C which intersects all the members of X. A valid statement results also

if "intersecting" is replaced throughout by "containing," or by "contained

in."

A special case of this result was first established by Vincensini [1].

The following simple proof is due to Klee [2].

For each Ki E X, let Ci = (x E Ed
I

(lc C) n Ki 0). Each Ci is

convex, and each d+1 or fewer of the Ci have a point in common. By

Helly's theorem, there is a point x common to all Ci, so (it+ C) n Ki 0

for each K E X.

4. Let A and B be two finite sets of points in Ed. Then A and

B may be strictly separated by a hyperplane if and only if for each

N:c: A U B such that X contains at most d + 2 points, there exists a

hyperplane strictly separating X n A from X n B.
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5. Let 4 be a finite family of parallel line segments in E
2

, each

three of which admit a common line transversal (i.e., a line which intersects

each of them). Then there is a line transversal common to all members of Z.

Assume with no loss of generality that Z has at least three members

and all segments are parallel to the Y-axis. For each segment L E;e let CL

denote the set of all points (a,b) E E
2 such that L is intersected by the

line y = ax + b. Each CL is convex and each three such sets have a common

point, so by Helly's theorem there is a point (a
0'

b
0
) E nL

E,4
C
L.

The line

y =a0 x+b isacommon transversal.
0

Note that this may be eAtended in several ways. Using the first exercise

above, if all the line segments are closed, then the finiteness restriction of

may be relaxed. Instead of using transversal lines, we may use transversal

polynomials of degree n, provided we demand that each (n+2) of the given

segments have a common n-polynamial as transversal.

Also see Rademacher and Schoenberg [1] for other applications of Helly's

theorem.

The general idea of applying Helly's theorem is to prove something for

small sets or fewer elements) of certain objects in order to conclude

that it is true for the set of all the objects. It has frequently happened

that the collection of objects considered in a particular problem was too

small to be suitable for an inductive proof. For example, if we wished

to prove Helly's theorem for the family of all elliptical domains in E
2

,

any attempt to work with the foci or other geometric properties of the

ellipse would probably end in a disaster.
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Discussion.

Klee mentioned that a negative form of Helly's theorem is frequently

very useful, particularly in analysis: If X is a family of convex sets

(with suitable restrictions) with empty intersection, then some small sub-

family must already have empty intersection.

One other application of Helly's theorem is the following (see DGK El]

Theorem 2.5): Let X be an infinite compact set in E
d

(a d-dimensional

art gallery), and suppose that for each 6+1 points of X there is a point

x E X from which each of these d+l points are visible (i.e., [x,uillc:X).

Then X is starshaped (i.e., there is some x E X from which each point of

the art gallery is visible).

This problem leads directly to many unsolved "illumination" problems.

A famous one mentioned by Klee was: Given a triangular billard table, is

there some point and some direction so that a (one-pointed) billard ball will

describe a path which is dense in the triangle? Is it true that from all

points there exists a direction which gives such a path? For general tri-

angles almost all such meaningful questions of this type are unsolved.

It was pointed out that various theorems similar to Exercise 5 are

known where the segments of that exercise are replaced by various other kinds

of sets. These results lead many (including Helly himself) to look for a

version of Helly's theorem that was valid in a much more general setting.

One such generalization was given for non-convex sets and is called Helly's

topological theorem.

It was noted that GrUnbaum has generalized Helly's theorem in the follow-

ing way (see GrUnbaum [1]): Let G be a finite family of convex sets in

E
d

and suppose 0 gik g J. If each h(k) or fewer sets of have an
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intersection which is at least k-dimensional, theo n lc is k-dimensional,

where

h(0) = d + 1

h(k) = 2d + 1 - k (1 Vik d-1)

h(d) = d + 1

Note that this is just Helly's theorem if k = 0 and Vincensini's theorem

if k = d.
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6. Extreme and exposed points, faces and poonems.

Let K be a convex subset of E
d

A point x E K is an extreme point

of K provided 57,z E K, 0 < < 1, and x = ky + (1-k)z imply x = y = z.

In other words, x is an extreme point of K if it does not belong to the

relative interior of any segment contained in K. The set of all extreme points

of K is denoted by ext K. Clearly, if x E ext K then x conv(Kr., (x)).

Let K be a convex subset of E
d A set Fc:K is a face of K if

either F = 0 or F = K, or if there exists a supporting hyperplane H of K

such that F = K n H. 0 and K are called the improper faces of K. The

set of all faces of K is denoted by 3(K). A point x E K is an exposed

point of K if the set (x), consisting of the single point x, is a face

of K. The set of all exposed points of K is denoted by exp K. If K is

a closed convex set, it is obvious that each F E U(K) is closed. The nota-

tions ext K, exp K and 3(K) will in the sequel be used onlz for closed

convex sets K. Note that the definition of exposed point involves the

"outside of K," i.e., supporting hyperplanes, white the definition of extreme

point involves the "inside of K," i.e., segments in K.

The following statements result at once from the definitions:

1. If F E a(K) and if K' c:K is a closed convex set, then

F n K' E (o).

2. If F E 3(K) and if x E F, then x E ext K if and only if

x E ext F; thus, if F E 5(K), then ext F = F n extK.

3. For every convex K C Ed we have exp K a ext K. If K c E
2

is the

convex hull of a circle and an exterior point

then the point y of tangency is an ex-

treme point, but not an exposed point, because

the only face of K containing y is the
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segment [x231]. Note that z is an exposed point with a unique supporang

hyperplane while x admits many suppnrting hyperplanes.

4. Let K be a closed convex set in E
d

, let x E K, and let B be

a solid ball centered at x. Then x E ext K if and only if x E ext(K n B),

while x E exp K if and only if x E exp(K n B).

The next two results explain the role of the extreme points.

5. Let K be a compact convex subset of E
d

Then K = conv(ext K).

Moreover, if K = cony A then ADext K.

Proof. Clearly, K:D conv(ext K). In order to establish Kc:conv(ext 102

we use induction on the dimension of the convex set K, the assertion being

obvious in case dim K is -12 02 or 1. Without loss of generality we assume

E
d
= aff K. Let x E K. If x ext K, let L be a line such that

x E rel int (L n K). Then L n K is a segment [y2z], where obviously

y2z E bd K. Since through each boundary point of the convex set K there

passes a supporting hyperplane, there exist faces F and F
z

of K con-

taining y and z respectively. Naw, the dimensions of F and F
z

are

smaller than dim K; by the inductive assumption, F = conv(ext F ) and

F
z
= conv(ext F

z
). Using statement 2 (above) we have x E conv(y,z) c:

cony (F U Fz) c conv(conv(ext F ) U conv(ext F
z
)) c:conv(ext F U ext F

z
)

conv(ext K), as claimed. The last assertion of the theorem being obvious, this

completes the proof of 5.

An analogous inductive proof yields also

6. Let K be a closed convex subset of E
d

, which contains no line.

Then ext K 0 0.

Regarding exposed points, we have

7. Let K c: Ed be a compact: set and let H = tx E E
d 1

sx2u) > ei
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(where u is a unit vector) be an open halfspace such that 11÷ n K 0 0.

Then le n exp K 0 O.

Proof. Let K* = n K, let y E K*, and denote by e the distance

from y to bd 11+ and by 6 the number 6 = max(p(x,y-eu) J xEKnbd

6
2
+ e

2

Let z = y pu, where p is some fixed number satisfying p >

Denoting by B the solid unit ball centered at the origin, let

p = infIX >0 I z + XB:D 109. Clearly, p 0. Then by the compactness of

cl K*, we have z + pB :D IC* and C = (c1 109 n bd(2 + pE) 0. We claim that

Cnbd Ilt = 0. Indeed, assuming the existence ofapoint vECnbd le, we

would have 8
2

(p(va-eu))
2
= p

2
- (0-e)

2
20e e

2
which implies

2e g 8
2
+ e

2
, in contradiction to the choice of p. Therefore, C C IC*

but clearly each point of C is an exposed point of z + pB and therefore

also of cl K* and of K, as claimed.

Lemma 7, together with 4, 5, and 6 above, 8 from Section 3, and 4 from

Section 4, imply Straszewicz' theorem:

8. If Kc:E
d

is a compact convex set then cl conv exp K = K.

Indeed, let K' = el conv exp K; obviously K' cHK. If K' 0 K, then

there exists an x E K such that x K'. Since the compact convex sets

(x) and K' may be strictly separated, there exists an open halfspace 11+

such that le n K 0. But then le n exp K 0 by Theorem 7, contradicting

the definition of K'.

The reader is invited to prove

9. If K c Ed is a closed convex set, then exp KC ext IC c cl exp K;

therefore, if K contains no line, then exp K 0. [Hint: K closed,

bounded and convex in E
d implies K is compact. (gote that this may not be

true in more general settings.) Hence IC = cl conv exp KC cl conv cl exp E:211
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conv cl exp K = K. Thus by the second part of Theorem 5, ext Kc: cl exp K.]

To get an example in E
3 of a set K for which exp K is not closed,

consider corm (C U S) where C is a circle and S is a closed line segment,

not in the plane of C, whose relative interior meets C.

Regarding the family 3(K) of all faces of a closed convex set K we

have:

10. The intersection F = n. F. of any family [F.3 of faces of a
1=1 1 . 1

closed convex set K is itself a face of K.

Proof. If F = 0 the assertion is true according to our definitions;

thus we shall consider only the case F 0. Without loss of generality, we

may assume that the origin 0 belongs to F, and that each Fi is a proper

faceaK.ThenthefaceLis given by F = K n (x2u.) = 03 where
1

u.issomeunitvectorsuchthatKc(x10 03. Let
1

H = (x
I

(x,v) = 0) where v =
1
u
i

; then clearly K c: [x
I

(xiv) 01.
1=

Since OEKnH, this implies that H isasupporting hyperplane of K.

Now, if x E F, then (x2ui) = 0 for all i and therefore (c,v) = 0;

hence xEHnK and thus Fc:H n K. On the other hand, if x E K F,

then(x0.1.)>Aforatleastorlejand0c,u.)>.
0; thus

3
3

xiHnK. Therefore, F=HnK and F isaface of K, as claimed.

The family (F1) in Theorem 10 may be infinite; in this case the face

of smallest dimension obtainable as an intersection of finite subfamilies of

(F.3equalstheintersectimaallmenabersa(F.).1

It is easy to find examples which show that the following situation is

possible: K is a compact convex set, C E 3(K) and F E 3(C), but F 3(K).

Consider the example in 3 above; F = [y3 and C = [x,y].

This observation leads to the following definition:
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A set F is called a poonem* of the closed convex set K provided there

exist sets F0,...,Fk such that Fo = F, Fk = K, and F1..1 E 3(F1) for

i = 1,...,k. Alternatively, a set P is a poonem of K provided

P = K n aff P and K ',dr° is convex.

By this definition, each face of K is also a poonem of K but the

converse is not true in general. However, each (d-1)-dimensional poonem of

Kc:E
d

is a face (facet) of K, so the facets and (d-1)-poonems coincide.

Clearly, each poonem F is a closed convex set, and ext F = F n ext K.

Thus each extreme point of K is a poonem and conversely, each 0-dimensional

poonem is an extreme point. One of the characteristics of poonems that makes

them a valuable tool is just that fact, namely, the poonems are related to

extreme points analogously to the way faces are related to exposed points of

K. The set of all poonems of a closed convex set K shall be denoted by P(K).

The reader is invited to deduce from Theorem 10 the analogous result:

11Theirmersection.F=11.F.ofafamily(F.)
of poonems of a closed

1

convex set K is in PCK).

12. If F E P(K), then P(F) = (17 E POO I P(= F).

13. If FEa(K) and PENK), then PnFEP(F) and PnFE3(P).

Exercises.

1. A convex cone has at most one exposed point.

2. Let K denote a compact convex set. Show that if dim K V. 2, then

ext K is closed, but exp K is not necessarily closed. Find a F:c:E
3

such

* "Poonem" Is derived from the Hebrew word for "face."
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that exp K ext K cl exp K.

3. If the family 3(K) of all faces of a closed convex set K is

partially ordered by inclusion, then 5(K) is a complete lattice. (For

lattice-theoretic notions see, for example, the books of Birkhoff or Szgsz,)

The same is true for the family P(K) of all poonems of K. (In both cases

the greatest lower bound of a family of elements is their intersection,)

4. If K is a closed convex set and if C is a subset of IC, shaw

that C E P(K) is equivalent to each of the following conditions:

(i) C is convex and for every pair x,y of points of K either the

closed segment Ex,y] is contained in C, or else the open interval (x,y)

does not meet C.

(ii) C = K n aff C and Kr., aff C is convex.

(iii) There is a flat L for which C=KnL and Kr,,14 is convex.

(iv) There exists an x E K such that C is the maximal convex subset

of K satisfying x E rel int C.

5.IfF.E3(K) for Ogign and if F
0
cU. F., then there exists

1 1=1 1

11,suchthatF0 CF..nesameistrueifallF.belong
1
0

1

to P(K) .

6. Let K
1

and K
2

be closed convex sets. Prove:

M If F. ,E :a(Ki) for i = 1,2, then F1 n F2 E 5(K1 n K2).

(LO DE F. E: P(K) for i = 1,2, then Fl n F2 E P(K
1
n K

2
).

1

(iii) If F E P(K1 n K2) there exist F1 E P(K1) and 1'2 E P(K2)

such that F = Fl n F
2.

(iv) If rel int K
1
n rel int K

2
0 0 and if F E 5(K

1
n K

2
), there

exist F1 E 3(K1) and F2 E 3(K2) such that F = F1 n F2.
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(v) Find examples shawing that (iv) is not true if

rel int K
1
n rel int K

2
= 0.

7. Let T be a non-singular projective transformation,

Ax + b
Tx

(c,x) + 6

and let H
+

be the open halfspace H = (x E E
d

(c,x) + 6 > 0). Prove:

(i) If A is any subset of le then T(conv A) = conv TA.

(ii) For every compact convex set K for which T is permissible,

U(TK) = (TF I F E 0(K)) and P(TIO = (TF 1 F E P(K)).

Discussion.

Yale pointed out that the length of the chain F0,...,Fk in the definition

of poonem can be of length at most d+1 if Fk = Kc: Ed. On the other hand,

in each space E
d

there are examples of extreme points [x) = F
0

in a set

K = F
k

for which the length of each such chain is exactly d+1. The example

in 3 above shows this in E
2

.

Klee remarked that contrary to what might be supposed, the relation

between extreme points and exposed points in the boundary can be quite complex.

For example, in E
3

there exist sets which have the following properties:

1) the non-extreme boundary points are dense in the boundary,

2) the extreme but not exposed points are dense in the boundary, and

3) the exposed points are dense in the boundary.

For a number of years it was thought that in some reasonable sense almost all

extreme points should be exposed. In the 2-dimensional example in 3 above,

there are only two extreme points which are not exposed. And in E
2

it is

easy to see that there can be only countably many non-exposed extreme points,
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since each one would have to be the end of some line segment contained in the

boundary of the convex body. Both Klee and Choquet tried to prove a higher

dimensional version of this theorem and failed. A few years ago Corson [1]

showed a 3-dimensional example of a convex body in which almost all (in a

sense that can be made precise) of the extreme points fail to be exposed.

For open problems in this area, see Choquet-Corson-Klee [1].
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7. Unbounded convex sets.

The present section deals with some properties of unbounded convex sets,

1. A closed convex set K c Ed is unbounded V and only if K contains

a ray.

Proof. We shall consider only the non-trivial part of the assertion.

Let x
0
E K, and let S = bd B denote the unit sphere of Ed centered at

the origin. For each X > 0 we consider the radial projection

Px = Tr(K 11 (x0 + XS)) of the compact set K (1 (x0 + XS) onto xo + S, the

point xo serving as center of projection.* Since radial projection is

obviously a homeomorphism between xo + XS and xo + S, the set P
X

is

compact. If K is unbounded, then P
X

0 0 for every X > 0. Since K is

convex and xo E K, we have P C P whenever p, X. Therefore,
X

n P
>0

0. If yo is any porht of this intersection, the ray
X X

(Xyo + (1-X)x0 I X 03 is clearly contained in K. This completes the

proof of 1.

2. Let K c Ed be closed and convex, let L = (Xz I X 03 be a ray

emanating from the origin, and let x,y E K. Then x+LCK if and only if

y + L K.

Proof. Let x + L C K, and let y + Xz E y + L be given, X 0.

Xz
For 0 < p, < 1, consider the point v = (1-p,)y + p,(x + E K. Since

Pi

eo(v ,y Xz) = (0,p,(x-y)) , the distance between y + Xz and v is

Pi

arbitrarily small provided > 0 is sufficiently small. But K is closed,

* If xo E Ed, the radial projection rr, with center of projection x
0)

of E
d

tx
01

onto the unit sphere xo+S is defined by Tr(x+xo
) = x +

0 im
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and therefore v E K implies y + Xz E K. Since x and y play equivalent

1.1

roles, the proof of 2 is completed.

A closed convex set Cc E
d is a cone with am x0

provided -x
0
+ C

is a cone with apex 0. A cone C with apex xo is pointed provided

x E ext C. Let C be a cone with apex 0. The following assertions are

0

easily verified:

(i) The apices of C form a linear subspace C n (-C) of E
d

. There-

fore, either C is pointed, or there exists a line, all points of which are

apices of C.

(ii) C = C + C = XC for every X > 0.

Conversely, if a non-empty closed set C C Ed has property (ii), then

C is a cone with apex 0.

The intersection of any family of cones with common apex xo is a cone

with apex xo. Therefore it is possible to define the cone with apex xo

spanned by a set Ac:E
d

as the intersection of all cones in E
d

which

have apex xo and contain A. Though this notion is rather important in

various investigations, we shall be more interested in another construction

of cones from convex sets.

Let K be a convex set and let x E K. We define

cc K = CY 1 x + Xy E K for all X 03.

Clearly, ccxK is a convex cone which has the origin as an apex. Lemma 2

implies that for closed K we have cc
x
K = cc K for all x,y E K. Thus the

subscript x is unnecessary and may be omitted. The convex cone cat is

called the characteristic cone of K. Using Lemmas 1 and 2, we obtain the

following result:
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3. If Kc: E
d

is a closed convex set, then ccK is a closed convex

cone; moreover, ccK 0 (0j if and only if K is unbounded.

A closed convex set K shall be called line-free provided no (straight)

line is contained in K. Using this terminology, Theorem 6.6 and the last

part of Theorem 6.9 may be formulated as: If K is line-free, then

ext K 0 0 exp K. It is also clear that every line-free cone is pointed.

Returning to Lemma 2, we note that it immediately implies: If L is a

linear subspace of Ed such that x L C K for some x, then y+LCK

for every y E K. Therefore, the following decomposition theorem results:

4. If Kc:E
d

is a closed convex set, there exists a unique linear

subspace L (= Ed of maximal dimension such that a translate of L is con-

tained in K. Moreover, denoting by L* any linear subspace of E
d

comple-

mentary to L, we have K = L n L*), where K n L* is a line-free set.

Some information on the structure of line-free sets is given in the

following theorem.

5. Let KC E
d

be an unbounded, line-free, closed convex set. Then

K = P ccK, where P is the union of all bounded poonems of K.

Proof. We use induction on the dimension of K, the assertion being

obvious if dim K = 1. If dim K > 1 and if x E K, let y E rel bd K and

z E ccK be such that x = y z. (Since K is line-free, such a choice is

possible; indeed, for any t E ccK, t 0 0, there exists a X >0 such that

x Xt E rel bd E4) Let F be any proper face of K such that y E F. If

F is bounded then F C P and x E P ca. If F is not bounded, the

inductive assumption and dim F < dim K imply that y au v where

w E ccF and v belongs to 111, the union of the bounded poonems of F.

Since P' c:P, cat: ccK, and ccK is convex, it follows that
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x = y + z = v w + z E P' + ccK + cac:P + ccK. Since obviously

K P + ccK, this completes the proof of Theorem 5.

Since for each bounded poonem F of K, we have ext F = F n ext K and

F = conv ext F, Theorem 5 implies:

6. Let B:c:E
d

be a line-free, closed convex set. Then

K = ccK + conv ext K.

Exercises.

1. Show that Lemma 1 is valid even without the assumption that K is

closed.

2. If K is any

cc K = cc K. Moreover,

convex set in E
d

, show that x,y E rel int K implies

for x E rel int K the characteristic cone cc
x
K

is closed.

3. Shaw that the decomposition Theorem 4 holds also if K is a rela-

ttvely open convex set.

4. Let B:c:E
d

be a closed convex set; then ccK is the maximal

(with respect to inclusion) subset Tc. E
d

with the property: For every

x E K, x T c K.

5. Let K C Ed be a closed convex set; then ccK = E Ed I (x,u) 0

for all such u that there exists an a with K C (z
f

(x,u) od}.

6. Let K c Ed be a closed convex set such that 0 E rel int K.

Prove that

1
ccK = n

co

(-K).
n

7. Using the notation of the decomposition Theorem 4, let L** denote

another linear subspace of E complementary to L. Shaw that L** n
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is an affine image of L* n K.

8. If Kc: E
d

is a line-free, closed, convex set, then there exists a

hyperplane H such that H n K is compact and dim K = 1 + dim(H n K).

9. If K c Ed is a closed pointed cone with apex xo, there exists

a hyperplane H such that H n K is compact and K is the cone with apex

x
o

spanned by H n K.

10. Prove the following results converse to Theorems 5 and 6.

(i) If K is an unbounded, line-free closed convex set and if

K = C + P, where C is a cone with apex 0, then P contains all bounded

poonems of K.

(ii) If K is a line-free, closed convex set and if K = C + P, where

C is a cone with apex 0 and P 0 0 is a closed, bounded, convex set, then

C = ccK and P.7.) conv(ext K).

11. A convex set K is called reducible provided K = cony rel bd K.

Prove the following results:

(i) If K is a closed convex set then K is the convex hull of the

union of all irreducible members of FI(K).

(ii) Each irreducible closed convex set is either a flat or a closed

half-flat.

12. Shaw that each d-dimensional closed convex set is homomorphic

with one of the following d+2 sets: (i) a closed halfspace of Ed;

(ii) the product Ed-k X Bk for some k with 0 g k d, where Bk

denotes the k-dimensional (solid) unit ball.
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Discussion.

Since Sections 6, 7, and 8 were presented in the same lecture, many of the

comments at the end of each section apply elsewhere as well.

There is no standard way of defining the "vertices" of an arbitrary

closed convex set. If each exposed point is a ertex, then each boundary

point of the circle would be a vertex. One definition could be: a vertex of

Kc:E
d

is an exposed point which admits d independent supporting hyper-

planes. Karlin and Shapley [1] have a discussion of degrees of exposure

of points. A vertex to a set at a boundary point could be defined as a point

which is the intersection of all supporting hyperplanes at the point.

Klee remarked that for a certain class of Banach algebras with unit, the

unit itself is a vertex of the unit ball of the Banach algebra, and many use-

ful results can be derived from this fact. See Bohnenblust and Karlin [1].

There are also simple examples in 2-dimensional rational space of closed

convex sets which are linearly bounded but unbounded. This type of example

can give the student a good feeling for the type of complication which in the

real case arises only in the infinite dimensional spaces. This example also

shows why "compact" is needed in many of these theorems rather than just

"closed and bounded." In the rational plane consider all points between the

"lines" through (-1,0) and (1,0) with a slope vq. Since all lines are
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"rational," this unbounded set is linearly bounded. In this set we can get a

sequence of decreasing nested closed non-empty sets whose intersection is

empty.

Hausner pointed out that each d-dimensional set must have at least 6-1-1

exposed points.

Koehler and GrUnbaum pointed out that the best generalization of polytopes

to countably-faceted bodies was the notion of quasi-polytopes, where the inter-

section with any polytope is a polytope. Dmanding that P be the countable

intersection of closed halfspaces is not a strong restriction, since each

closed convex set KC- E
d

is such a set. A wide variety of sets is also

obtained by allowing finite intersections of either open or closed halfspaces.

Johnson and Prenowitz said it would be nice to get at the geomatric con-

tent of these theorems. Most topological concepts, like compactness, can be

expressed in geometric terms. In the rational example given above, a ray from

an interior point does not have to intersect the boundary because of lack of

completeness. Perhaps a geometric condition like "Any ray from an interior

point meets the set of boundary points" should be imposed. Klee mentioned that

in any finite-dimensional vector space over any ordered field, a line-free,

segmentally-closed convex set is the convex hull of its extreme points together

with its extreme rays. The more general question here appears to be "How far

can you go with elementary geometrical concepts before you must impose further

topological properties?"
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8. Polyhedral sets.

A set K C E
d

is called a polyhedral set provided K is the inter-

section of a finite family of closed halfspaces in E
d

.

Polyhedral sets have many properties which are not shared by all closed

convex sets. One of the most important of these properties is:

1. Each poonem of a polyhedral set K is a face of K.

Before proving Theorem 1, we note a few facts about polyhedral sets.

Lete=bcEEdi(x,u.). (x.), 1gign, be halfspaces, and let

K = n
n

1
H.. Without loss of generality we shall in the present section

i=

assume that dim K = d; we shall also say that a maximal proper face of K

is a facet of K. The family (11+i I
1 i g n) is called irredundant pro-

JOi
vided K. .n

gn
. 1+ Kfor eachi= 1, 2, n.

lgj j

Denoting H. = bd Hi = (x E Ed I (x,ui) = aj, we have

n + +
2.1f1(1-4WywhereM11 gj g n) is irredundant, then

F. = H. fl K is a facet of K.
1

This follows at once from the observation that H. fl mt K. 0 which,

in turn, is a reformulation of the irredundancy assumption. The same assump-

tion also implies

3. bd K = 4=1 Fi, where F. = H. n K are the facets of K.

In particular, for each proper face F of K there exists a facet

F. of K such that F
1 3.

Let F. = H. n K be a facet of K. Then
1 1

JOi jOi

n (n
114) = n (H. n H.).

gign j lgjgn

Thus F. is a polyhedral set, namely the intersection of the sets H. n H.,

1gjg.n,eachawhichiseitherlf.or a halfspace of the (d-1) dimen-
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sional space Hi. Therefore, by Theorem 3, each facet F of F. is of the

form F = F. In rel bd (H. n = F n H. n H. = K n H. n H. = F. n F , f or

1 1 i 1 1 j

a suitable j. Thus:

4. A facet of a facet of a polyhedral set K is the intersection of two

facets of K.

Now we are ready for the proof of the following result which, in view of

Theorem 6.10, clearly implies Theorem 1.

5. Every poonem F of a polyhedral set K is an intersection of facets

of K.

Proof. We shall use induction on dim K, the assertion being obvious

if dim K = 1. If dim K > 1, let x E rel int F. By Theorem 3, there

exists a facet F. of K such that x E Fi , i.e., Fc F.. Theorem 6.12
1

then implies that F is a poonem of F . Using the inductive assumption wesince each facet of F.
1 1

is the intersection of two facets of K, this completes the proof of Theorem

5.

We mention also the following immediate consequence of Theorem 5.

6. If K is a polyhedral set, then the family 3(K) is finite.

Exercises.

1. (See Theorem 7.4 for the notation.) Show that if K is a poly-

hedral set,

then

K = n ( E
d

a. ,ni.1 x E (x,u.)
1)

==nbcEill(xol.)03.ni./
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2. Show that if K is as above, then

cc K DcE Ed 0,01.) 0).

3. Show that if K is as above, and if p E K satisfies (p,ui) = ai

for lgigm, and (p,ui) >. oei for m<ign, then

cone K = n
i=1

(x E Ed

4. Shaw that every affine map of a polyhedral set is a polyhedral set,

and that KI + K2 is a polyhedral set provided K1 and K2 are polyhedral.

Find a polyhedral set K and a projective transformation T (permissible

for K) such that TK is not a polyhedral set.
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Part II

The material of the second week of these lectures is a departure into a

more specialized area than that of last week. The present material would not

be suitable for a year-long course in undergraduate geometry, but it would be

appropriate for a number of one-quarter courses or honors papers at the senior

level. In the second part of these lectures I will try to present more ideas

and results, and therefore fewer proofs than last week. Much of this material

has relatively easy proofs provided the correct sequence of proving these

results is found. In general, since we wrk with finite systems, less back-

ground in analysis and topology is required. A student can get by with only

an algebra background.

Unfortunately, the terminology in this area has not been standardized.

Throughout this part of the notes the (perhaps unbounded) intersection of a

finite number of closed halfspaces will be called a polyhedral set. A d-poly-

tope will always denote a bounded d-dimensional polyhedral set in E
d

.

These definitions, as well

proofs of Part II are presented

as most of the other notions, results and

in detail in the book GrUnbaum [1].
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10. Number of facets of polytopes.

As mentioned before, the timing problem for computer programs has led to

the general question "Given a polytope in E
d

with f facets, how many

vertices may it have?" Until about five years ago the answer was unknown

except for certain easy cases. Thanks to some new ideas by Klee [23 in 1962

the problem is now almost solved. The little residue of the problem that is

still left, however, is very challenging and strange.

Rather than attack the problem as stated, we will use the dual procedure,

namely, find the maximum number of facets of a polytope given its dimension

and the number of its Nertices. These are really equivalent problems because

of the existence of duality among polytopes. Here d = dimension of the poly-

tope P, v = number of its vertices, (v,d) = maximum number of facets of a

polytope in E
d

with v vertices. To avoid trivial cases (analogous to many

problems with the empty set) let us from now on assume d 2. This keeps a

result like "(v,d) is a strictly increasing function of v" from being

false or ill-defined. We also let f
k
(P) = the number of k-faces of P,

-1 k N d, and if P is understood we write fk. The first result is

immediate.

1. p(v,2) = v

2. In E
3

, f2 gf0,3) = 2f0 - 4.

For a proof of 2, we just combine the following facts.

(1) fo fl f2 = 2 (Euler's equation)

(2) Assume without loss of generality that P is a simplicial polytope (i.e.,

all its facets are (d-1)-simplices = triangles)

(3) counting the incidences of edges and facets of simplicial 3-polytopes

in two different ways, 2f1 = 3f2.
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From (1) and (3), f2 = 2f0 - 4 = p(f0,3).

(4) Vote that for each fo 4 we can get examples which show that these

upper bounds are assumed.

In higher dimensions we try to go through these same steps but in general

their proofs are harder, and together they might not always get the result.

Further they frequently lead to unsolved problems.

We first turn to a discussion of Euler's formula, the analogue of step

(1) above.

3.
.

Ei=-1

Since f
-1

= f
d

= 1 for all d-polytopes, the formula frequently is

d-1
&Lim' the form (-1)1 = 1 - (-1)

d This formula was knawn to
Ei=0

Schlafli as early as 1852 but the first published proofs of it came in the

early 1880's when a number of independent proofs were published, all of which

were incorrect (or rather incomplete) in their reasoning. (See GrUnbaum [l],

Chapter 8.) The basic idea in E
3 of each of these proofs was to start with

one facet (and its associated edges and vertices) and note that

f
0

- f
1
+ f

2
= 1 holds. This formula remains valid if a second adjoining

facet is added. These authors assumed that it is possible to always suc-

cessively add facets of P (and their faces) in such a fashion that the

newly added facet meets the already present 2-complex ((d-1)-complex) in

a simply connected polygonal line segment ((d-2)-complex). This continues,

d-1
preserving the formula fo - fl + f2 = 1 (or Ei=0 (-1)

i
fi = 1) until

the last facet which must then be added individually, thus giving Euler's

formula. The critical assumption of these proofs is certainly not obvious,

even for d = 3. In case d = 3 the assumption may be established by an

argument using the Jordan curve theorem. For d 4 the problem is still
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open and in fact, certain examples cast doubts on the validity of the assump-

tion. There are simplicial complexes in E
3 for which the assumption is

false, though none of these is known to correspond to a polytope. While

Poincare seems to have given the first valid proof in 1899, the old proof

continued to appear in books (e.g., Sommerville [2]). Most modern proofs

used heavy topological machinery, and it was only in 1955 (Hadwiger [1])

and 1963 (Klee [1]) that elementary proofs were given, and even these had

algebraic akrertones. The follawing proof is completely elementary and stays

within the framework of convex polygopes:

(1) Euler's equation obviously

holds for d = 1 and d = 2,

thus starting the induction

on d.

(2) It holds if P is a

prismoid, i.e., the convex

hull of two polytopes

p
0

and P
2'

for which

(aff P
0
) n (aff P

2
) n P = 0.

To see this, let P
1

be the intersection of a hyperplane H with

int P, where H is a hyperplane from the pencil of hyperplanes determined

by aff Po and aff P2. Then fo(P) = f0(P0) f0(P2). Also if

1 k g d-1, a k-face of P is either a face of Po or P2 or else

it has vertices in both P
0

and P
22

in which case it corresponds to a

(k-1)-face of P
1

. Thus f
k (P) fk(P0) fk(P2) fk-1(P1)

when

1 k d-l. Summing over k we get

d-1 k d1 k

Ek=0 (-1) fk(P) Ek-=0 (-1) (fk(P0) fk(P2))
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By the induction applied to Pi, we see that Euler's formula holds:

E
d= -1

(-1)
k
f
k
(P) = 2 - (1 - (-1)

d-1
) = 1 -

k0

(3) Euler's formula is similarly easy to deduce for any d-simplex, or any

d-pyramid, i.e., the convex hull of a (d-1)-polytope and a point.

(4) Let P be any d-polytope, and let H be any hyperplane which meets

int P and wtich contains

exactly one vertex x of

P. Let P+ = H+ n P and

P- = H- n P. If Euler's

formula holds for the

d-polytopes P
+

and P-

and for the (d-l)-polytope

Po = P+ n P- = H n P,

then it is valid for

P = P+ U P- .

The proof is analogous to that of part (2) above when we notice that

the following formulas hold:

f(p)
f0(p+) fO(P-) 2f0(P0) 1

f(p)
fl(p4") f1(P-) 2f1(P0) f0(P0) + 1

and if 2 g k d-2,

fk(P) fk(Iii") fk(P-) 2fk(P0) fk-1(P0).

(5) If P is any polytope in Ed, there is a hyperplane H such that

no translate of H contains two or more vertices of P.

(6) Let Pc Ed be given, let Hi,...,Hv be parallel hyperplanes each of

which meets P in exactly one vertex, and let Pl,P20...0P be the parts

of P into which the H
i

divide P. Note that P
1

and P
1

are
v-
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d-pyramids, while P2,...,Pv-2
are prismoids. By (2) and

formula holds for each P
i

. By repeated use of (4), Euler's

for P = U
v-1

P
i

. This proves the theorem.
i=1

(3) Euler's

formula holds

We next turn to the reduction assumption in part (2) of Theorem 2

above.

4. In determining the maximal possible number of facets of a d-

polytope P with v vertices, we may assume without loss of generality that

P is a simplicial polytoze.

An argument that comes to mind at once to establish this result is of

the following type: If there is a facet F which is not a simplex, then F

admits a (d-2)-diagonal G. Including in the set of inters,::cting halfspaces

which determine P a halfspace which is close to F-4- but rotated slightly

about G we will "slice off" a piece of P. For example, if F is the top

face of a cube, ther

becomes

If the amount "cut off" is small, so that the number of vertices remains the

same, then the number of facets is increased, and repeated such operations

gives a simplicial polytope and 4 is true.

However, the following example shows that

it is not obvious that this sort of thing

can be done without an increase in the

number of vertices.
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Another (and successful) way to approach the proof of 4 is by the use of

the following theorem (Eggleston-Gnbaum-Klee [1]).

5. For each d-polytope P, there exists an e> 0 such that if

P' is another d-polytope with p(P,P') < e, then fk(1") fk(P) for all k.

The Hausdorff metric p is defined by

p(P,P') = inqa > 0 P C (P'4101B) and P' c: (P4aB)3

where B is the unit ball at the origin.

This theorem gives us the reduction to simplicial polytopes as follows.

If P is not simplicial, then there are too many vertices on one facet.

It is then possible to move one of the vertices away from P by an amount

sufficiently small to assure that all other vertices remain vertices. This

It pulling out" operation does not increase the number of vertices. The com-

binatorial structure might have changed quite a lot, but we are interested

in only fd-1(1")'
and Theorem 5 implies f

d-1
(P') f

d-1
(P) as long as

the distinguished vertex moves by less than e(P). If P' still has non-

simplicial facets we continue this "pulling out" process, at each step

changing each successive polytope by a very small amount (with respect to

the Hausdorff metric), keeping the number of vertices the same, and increasing

(non-strictly) the number of facets until we obtain a simplicial polytope.

This establishes Theorem 4.

It is well-known that if p(P,P') is small, and if Yk denotes the

k-dimensional content of the k-faces, then Y
d
(P) and Y

d
(P') are close,

and Y
d-1

(P) and Y
d-1

(P') are close. Easy examples show that in general

the (d-2)-dimensional contents need not behave similarly: in E
3

let P

be a cube and P' the similar cube with one of its edges "sliced off."

However, it may be proved that Yk(P) is a lower semicontinuous function of
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P for all k, and that Y
k
(P) may be extended to the family of all compact

convex sets under preservation of this property (allowing value +00)

(Eggleston-GrUnbaum-Klee [1]). This observation leads to a wealth of isoperi-

metric type problems concerned with d-polytopes such as the following. For a

g'ven d-polytope P whose k-faces have k-dimensional content Y
k
(P) = 1,

what can be said about T.(P) for i k, 1 i d? In particular, no

one has proved that the convex set P in E
3 with largest volume, for which

Y
1
(P) = 1, must be a polytope and not have an infinite number of vertices,

nor is the maximal volume known.

We now turn to a generalization of the third step of the proof of

Theorem 2. We noted that for simplicial polytopes in E3, 2f1 = 3f2.

The generalization again counts certain objects in two different ways. For

Ogi,jgd'arldforad-polytopeK,let gi.j
(K) denote the number of

incidences of an i-face of K with a j-face. The object we count in two

different mays is

2.,i=j (-1)
for j fixed.

RLcall that when we changed the problem from that of finding a bound on the

number of vertices to that of finding a bound on the number of facets of a

polytope, ve mentioned that it was the natural duality that made these

problems equivalent. We again make use of this duality. A k-face (and its

faces) is itself a k-polytope which satisfies Euler's formula. In the dual

setting the k-face becomes a (d-l-k)-face of the dual polytope and each

i-face of the k-face becomes a (d-l-i)-face of the dual which contains the

0-140-face.Leth.(F) denote the number of i-faces of K incident

with the k-face F of K. Because of this duality, these must satisfy

the Euler relation
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d-1
(-1)1hi(F) = (-1)d-1

Note that this is just Euler's formula when k = -1, F = 0 and hi(F)

becomes f.(K). Using this formula we get

(*) = L=j (-1)1 hi(F)

. (-1)ihi(F)L=J

= (-1)
d-1

f
i2

where E indicates summation over all j-faces F. On the other hand, count-

ing the same thing, but considering i-faces rather than j-faces we get

(*) = (-1) i hi (F (i))

ifd-1

L=j (-1):1)fi 2

where E indicates summation over all i-faces F This last equality

comes from answering the question "How many j-simplices are determined by

an i-face?" Since the reduction to simplicial polytopes assures us that

eachi-faceisani-simplex,itisclearthath.(F(i)) = Both of

these formulas are valid for each fixed j where -1 gj g d-2. Combining

them we get the equations

(**)
S-Cd

-1
f_10- =
` " j..1.1/ `

It would be nice here if these d equations in the d variables

fO'fl"'"fd-1
would allow us to obtain f

d-1
algebraically as a function

of f
0'

However they were obtained under the assumption that K was a

simplicial polytope, and it turns out that only
r+1
---- of these equations
2

are independent. ([z] denotes the greatest integer in z.) We state

this result and the corresponding result about all d-polytopes in a more
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formal form. For each d-polytope K let f(K) denote the vector

f (K) = (f0 (K) ,f1 (K) , fd-l(K)) E Ed.

6. The dimension of the affine hull of the set

(f(K) I K is a d-polytope) is d-1.

7. The dimension of the affine hull of the set

(f(K) I K is a simplicial d-polytope) is [d/2].

Note that Euler's formula requires that the dimension of the flat

in 6 be at most d-1, since each vector f(K) lies on the hyperplane

H(u,a) c: E
d

where u =
d-1

) E E
d

and a = 1 -

Proofs of these results are omitted.

Even though only about half of the equations (**) are independent,

they will still be useful in the following form. It is possible to find

independent equations giving each fi, i [d/2] in terms of the

f., i < [d/2]. For example in E
4 these equations become

in E
5 the equations become

f
2
= 2f

1
- 2f

0

f
3

= f
1

- f
0'

f
2
= 4f

1
- 10f0 + 20

f
3
= 5f

1
- 15f0 + 30

f
4
= 2f

1
- 6f

0
+ 12,'

while in E
6 the equations become

f
3
= 3f

2
- 5f

1
+ 5f

0

f
4
= 3f

2
- 6f

1
+ 6f

0

f
5

= f
2

- 2f
1
+ 2f

0'

These equations were first found in 1905 by Max Dehn [1] for d = 4 and 5

in a complicated way as the by-product of some other results. In 1927
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Sommerville [1] worked out similar equations in E
d These were ignored (even

by Sommerville in his 1929 book LZ]) until the 1960's. In 1962 Klee [3]

independently found these equations and more besides.

While the Dehn-Sommerville equations (**) will prove useful, they still

do not allow us to find p(v,d) for large values of d. What is now needed

istogetsomerelationbetweenfoandf.for all 0 s i < [d/2] so that

the Dehn-Sommerville equations may be expressed in terms of f
o

above. As a

first (and apparently crude) estimate, note that each i-face has vertices

and for two i-faces to be different they must differ in at least one vertex,

20so fi * (i1 ) for i sd. In a certain rather surprising sense these are

also best possible when i < [d/2], namely, there exist certain polytopes,

the cyclic polytopes among others, for which equality holds in these cases.

We will use this fact, together with the Dehn-Sommerville equations to evaluate

(v,d) in some cases. But first we investigate the cyclic polytopes following

Gale [1,2].

Let t E El be a real parameter and define p(t) E E
d

by

p(t) = (t,t2,...,td). The set (p(t) t is realj is called the moment curve

in E . If t
1
< t

2
< < t

v
are any d+1 or more distinct values of t,

then the d-polytope C(v,d) = conv(p(t1 "") p(tv)3 c:E
d

is called a cyclic

polytope. It may be shown that the combinatorial type of C(v,d) is not

dependent upon the particular choices of the t..

8. Let C(v,d) be a cyclic po1yt6pe with any number v d+1 of

vertices. For any number n g Ed/2], let Vn = (p(t1),...,p(tn)3 be an

arbitrary subset of n vertices of C(v,d). Then Vn determines an (n-1)-face

of C(v1d). Therefore, fi(C(v,d)) = (J.1) if 0 g i < [d/2].

To show this we give the equation of a hyperplane H and note that each
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p(t. E V
n

lies on H, while all other vertices p(t) lie in one open half-

)
space determined by H. Consider the polynomial

0 (t-t.
)

2
= 0

0
+

1
t + +

2n
t
2n

ni=1 1

pends only on the constants
Pi

which determine the points of V
n

Note that t1,...,tn are the only roots of

the polynomial and the polynomial is non-negative. Thus if

b = E E
d

, we see that (p(t),b) -00 for all t

and equality holds if and only if t = ti for some i. Thus H(b,-00) is

the hyperplane, and the proof is camplete.

It is easy to show that the cyclic polytopes are simplicial polytopes.

This is useful because it implies that the Dehn-Sommerville equations hold for

cyclic polytopes. Furthermore, using just the properties of C(v,d), it is

possible to calculate the number f. of i-dimensional faces of C(v,d).

In particular, the general formulas for the (d-1)-faces of cyclic polytopes are

f
d-1

(C(v,d)) = v (v-11
v-n n /

2(v-

:

-1)

if d = 2n

if d = 2n 1- 1.

In E
4

if we apply f. g (v) = ( fo ) to the Dehn-Sommerville equations

1 2 2

we get

f f
0
(f

0
-3)

2

f
3 0

(f
0
-3)

and Theorem 8 shows that equality holds for the cyclic polytopes. This gives

the complete solution to our problem if d = 4, and similar reasoning works

when d = 5. To summarize: letting pk(v,d) equal the maximum possible

number of k-faces in any d-polytope with v vertices, we have
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9. 113(v,4) = iv(v-3)

p2(v,4) = v(v-3)

pi(v,4) = iv(v-1)

Similarly,

10. In E5, since f4 = 2f1 - 6f0 + 12 and fl g (f2) with

equality holding for C(f0,5), it follows that p4(v,5) = v2 - 7v + 12.

Analogous equations may be found for pk(v,5), 1 g k g 3. Unfortunately,

this method already breaks down if d = 6. We know that f2 g (fT) and

fi g (f2p) are true (and that equality holds for cyclic polytopes) but these

are not of use in the Dehn-Sommerville equation f
5
= f

2
- 2f

1
+ 2f

0
because

the f. have alternating signs in this equation. For larger values of d

even the Dehn-Sommerville equations (**) get out of hand. It is possible

to solve for f
d-1

ingeneralintermsofthef.for i < [d/2], and note

thatthecoefficientsofthef.have alternating signs. But for values of

k strictly between [d/2] and d-1, the coefficients of fi in the repre-

sentation of f
k

are so complicated in general that no one has even proved

that they have alternating signs.

For this reason we now concentrate on finding p(v,d) = pd_1(v,d) for

the larger values of d. The appropriate Dehn-Sommerville equation for this

case is easier to express in the even and odd case separately: If d = 2n

and if d = 2n+1

We also know that f

(-1)
n+i+1(1±1)(2n-2-0.,

f
2n-1 n n-1 ill

f
2n =-1

(.1)n+14-1(2n-l-if
n

fn
) if 0 i < [d/2] in simplicial polytopes with

i+1

equality holding for the cyclic polytopes. It was this latter result that
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Klee generalized in 1962, thereby providing the major break-through that lets

us determine p(v,d) in most cases. Klee's result is (see Klee [2])

11. For every simplicial polytope, fs is related to f5...1 by

the formula: (s+l)f
s 0

s (f - s)fs..1. Furthermore, this is independent of

the dimension of the polytope, and equality holds if and only if the polytope

is (s+l)-neighborly (i.e., each (s+1) vertices determine an s-face).

This result is proved by the above process of counting things in two

different ways, and it may be extended to the following relation between fs

and f .

s-3
s(+1 1--s)ff s ( f0

41
\j/s j s-j

for 0 g j s. In particular, equality holds in the above formulae for the

cyclic polytopes when 0 g s < [d/2] (because cyclic polytopes are Ed/21-

neighborly).

As an example, we will illustrate how this result can be used to obtain an

upper bound for fd_l for simplicial polytopes when d = 8.

a) f
7
= f

3
- 3f

2
+ 5f

1
- 5f

0

b) 4f3 g (f0-3)f2

12
c) f7 g f3(1 - 73) + 5f1 - 5f0

(1 12 \(f0 5(f0\ 5f
d) f

o
-31\4 I \2 I 0

if f
o

15

Dehn-Sommerville equation

Theorem 11 for simplicial polytopes

a) and b)

and assuming that

(1 - 1123) 0, i.e., fo 15.

0

e) = f
7
(C(f

02
8)) if fo 15 all inequalities are equalities in

the case of cyclic polytopes.

It is possible that the term (1 - 12/(f0-3)) in d) might be negative, and

thus make the estimate in the step to d) invalid. But this can only happen
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if f
0

< 15. Hence the above proof is valid only if f
0

..?.-.. 15. Similar argu-

ments work in the case of general d provided

n
2

- 1 where d = 2n

f
0

(n+1)
2

- 2 where d = 2n+1

For any particular value of d, these results can also be e2ctended to get

values of f
k

for all intermediate values of k, provided, as in the above

case, that f
0

is sufficiently large compared with d.

The above arguments show that for all polytopes P in E
d

with

sufficiently many vertices, the maximum of f
d-1

(P) is assumed when P is

a cyclic polytope. The question now arises, when do the cyclic polytopes

determine the maximum value of f
k

(for fixed f
0

and d) over all polytopes?

The upper bound con ecture asserts that this is always the case. Stated in

other terms, we know that fk(C(v,d)) g pk(v,d); the upper bound conjecture

asserts that equality always holds. The following theorem lists all the cases

for which this conjecture has been established (loy an elaboration cf the above

methods, or by other means).

12. The upper bound conjecture pk(v,d) = fk(C(v,d)) is true at

least in the following cases:

(1) for every k, 1 k g d-1, provided v is sufficiently large

(2) for every k, lg_kgd-1, provided vg d+3

(3) for k = d-1 provided

n
2

- 2

(n+1)2 - 3

(4) for k = [d/2] provided

i(n2 + 3n - 6) if d = 2n

i(n2 + 5n - 4) if d = 2n+1

if d = 2n

if d = 2n + 1
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(5) for all (allowable) v and k provided d 8.

The values of pk(v,3) and pk(v,4) have been known since at least the

first of this century. The cases for d = 5 and 6 were established in 1961.

The most important parts of Theorem 12 were established in separate papers by

Klee [2] and Gale [3] in 1964. The upper bound conjecture itself is due to

Motzkin [1] who categorically stated in a 1957 research announcement that it

was true. But since no detailed exposition has appeared in the intervening

years it seems reasonable to refel to it as a conjecture.

Discussion.

Johnson pointed out that the first argument of Theorem 4 is further com-

plicated by the fact that there exist non-convex simply-connected polytopes

in E
3 for which there is no simplicial subdivision by diagonals. He also

asked if Theorem 3 could be proved by use of Schlegel diagrams. (Definition:

A Schlegel diagram of the d-polytope P is obtained by choosing a point x 0 P

sufficiently near the interior of a facet F of P, and then projecting P

radially from x onto the facet F. This gives a (d-1)-dimensional representa-

tion of the faces of P, all of which (except F itself) appear in a cellular

division of F. For example: a

2-dimensional Schlegel diagram of

the cube in E
3

is shown. (gote

that it is what you see if you "peek

in a face,") GrUnbaum pointed out

that the questionable assumption in the
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early proofs of Euler's formula (Theorem 3) is still far from obvious in general,

even in this reduced 2-dimensional case.

GrUnbaum also presented the following related problem posed by J. Steiner

more than a century ago, which shows a difficulty in the idea of "slightly

moving vertices." Given a d-polytope P, can you find a d-polytope P' which

is combinatorially equivalent to P (i.e., 5(P) and 5(P') are isomorphic

lattices) and which has all its vertices on a sphere? In his 1900 book,

BrUckner stated the answer was obviously "yes" if the polytope was simplicial.

His false argument said: project P to a containing sphere, and take P' to

be the convex hull of the projections of the vertices. The main trouble occurs

in that you may wish that four

particular points on the sphere

determine the triangles shown

above, while in fact they

determine the triangles shown

below. This projection provides

a homeomorphism but the question

is whether the cells have affine

representation, and if this is made to be so, is the resulting figure still

convex? In 1928 Steinitz [2] showed not only that BrUckner's proof is false,

but even proved there are lots of polytopes (simplicial ones among them) for

which there does not exist any representation with vertices on a sphere.

Steinitz's proof is more readily explained in the dual formulation involving

3-polytopes with an inscribed sphere. There is a wide class of 3-polytopes

which do not have any realization with an inscribed sphere meeting each face.

Start with any polytope which has more vertices than faces, fJr example, the
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cube. Slice off each vertex to form v new faces. If only a little is sliced

off then these new faces will be pairwise disjoint. Assume such a polytope P

has an inscribed sphere. Each edge

subtends the same angle from the

two points of tangency in the

adjoining faces. But since there

are more "newer" faces than "old"

the sum of the subtended angles in

the new faces must be more than the same sum for the old feces. But this

implies that two "new" faces must have an edge in common, a contradiction. The

dual of any such example becomes an example where the vertices cannot be in-

scribed in a sphere.

A different approach establishes the existence of a family of simple

3-polytopes which have no combinatorially equivalent representative inscribed

in a sphere. To explain this approach, consider K, a cube in E
3

with

one vertex sliced off. If we "peek in" the triangular face, the resulting

Schlegel diagram for this polytope is clearly seen to be
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Assume that this sliced cube had each vertex on a sphere S. Also assume that

the projection used to obtain the figure above was of the following special sort.

Take a point z on S above the triangle, and take the usual stereographic

projection onto the opposite supporting plane P. This stereographic projec-

tion sends circles on S (not containing z) onto circles in P. The quadri-

lateral ADGF (= P is thus inscribed in a circle (the image of the circle which

is the intersection of S with the corresponding facet of P). Similarly the

quadrilaterals BDGE and CEGF are inscribed in circles, as ere the pentagons

ADBIJ, BECHI, AFCHJ. Using the fact that opposite angles of any quadrilateral

inscribed in a circle add up to 1800, it follaws that D, E, F lie on the

sides of the triangle ABC. Thus, for example, A, D, B are collinear, a

contradiction to their being on a (proper) circle. This proves that no poly-

tope with the combinatorial type of K can have its vertices on a sphere.

Yale asked what the motivation was for using the wrd "cyclic" in cyclic

polytopes. The moment curve is not the only curve which can be used to generate

neighborly polytopes. Another curve with this property and described in terms

of the real parameter t is the set of all points in E
2n

of the form

(sin t, cos t, sin 2t, cos 2t,..., sin nt, cos nt). This curve was used sixty

years ago by Caratheodory in his studies of analytic functions. Notice that it

is a bounded, periodic curve, i.e., it "cycles" in E
2n Caratheodory's work

with cyclic polytopes was forgotten until the 1950's, when Gale [1, 2] first

independently described neighborly polytopes in a complicated way, rediscovered

Caratheodory's work, and then went beyond Caratheodory to get simple proofs to
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further results on cyclic and neighborly polytopes. The names are due to Gale.

Coxeter suggested that the mathematical community should read

Ha choose b" rather than Ha over b."

as

Theorem 11 of Klee is valid for all simplicial complexes. It is still an

open problem as to whether this can be extended to non-simplicial polytopes.
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11. Related results and zublems.

In the last section we worked directly toward an answer to the problem

"What is
Ild-1(v2d)?"

In answering that question we presented many results

which lead to interesting generalizations or problems on their own. Several

of these are discussed in the present section.

We first consider various generalizations of Euler's formula. There are

many similar equations associated with other characteristics of polytopes.

The first example we shall give is a generalization of a fact kaawn to Euclid:

the sum of the interior angles of an n-gon in E
2

is (n-2)n, or (n-2)/2

full angles. Let P bead-polytope, F any k-face of P, Ogkg d,

and denote by c(F,P) the convex cone spanned by P from the vertex at the

centroid of F. Let y(F) be the fraction of E
d

taken up by the cone

c(F,P). (Intersect c(F,P) with the unit sphere whose center is at the

vertex of c(F,P) to make this defiaition precise.) In the planar case

where P is a convex polygon,

if F = P

y(F) = if F is an edge

(the interior angle at P)/2rr if F is a vertex.

For each k = 0,1,...,d, define the angle sum ak(P) by

k
(P) = E y (F) where the sum is taken over all k-faces F of P.

Thus the result known to Euclid could be rephrased; for all 2-polytopes P

a (P) = = (f
1
-2)/2 = a

1
(P) - 1. This result has the following

0 0

generalization.

3Foreverycl-polytopepPei-4(1)1..(p) = (-1)
d-1

i=0 al

The special case d = 3 was discovered by Gram in 1874. It is well-

known that in E
3

2 if all faces of P are of the same type, then they must
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be either triangles or quadrilaterals or pentagons. No generalization of this

fact for higher dimensions was known until recently when Perles and Shephard

[1] obtained results of this type using these angle sums ak(P). Even if we

know that all facets of a 4-polytope are 3-polytopes of a particular combina-

torial type, there is no bound on the number of vertices of these 3-polytopes

in different examples. Perles and Shephard showed the possibility of using

certain classes of polytopes as facets and the impossibility of so using

certain other classes.

It is interesting to note that the equation of Theorem 1 is unique in

the following sense.

-1
2. Ii Edi.0 (-l)

ipei(P) = pd(-1)
d-1 holds for al/ d-polytopes P,

then po = 0/ = = pd.

We now turn to an example of a Euler-type equation involving d-polytopes

which is a vector equation rather than a scalar equation. For each vertex

x E P, consider the cone generated by the outward normals to all hyperplanes

which support P at x. As in the last example, consider the content *(x)

of this exterior cone. For obvious geometrical reasons 41(x) is called the

exterior angle of P at x. We form the vector sum of these vertex points

using the content of the cones as weights, and define the resulting vector

S(P) to be the Steiner point of the polytope P. That is,

S(P) = E Ilf(x) x (summed over all 0-faces x).

The most useful properties of S(P) are given by

3. (a) S(P) depends upon neither the dimension of the space which

contains P nor the location of the origin in that space. (b) For all real

oe,0 and all polytopes PA,

S(uP + 00:1) = uS(P) + ps(Q)

where addition on the left is vector addition.
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Now each i-face 0 * i d-1, is also itself a polytope and therefore

admits its own Steiner point S(F). For each i, 0 gig d-1, let us define

a vector pi(P) by

pi(P) = E S(F) (summed over all i-faces F of P).

Note that pi(P) definitely depends upon the location of the origin and in

general will not be in the polyhedron P. Yet taken together they satisfy

the Euler-type vector equation

-d1
4. Ei.cs (-1)1 . = (1 + (-1)

d-1
)5(P).

It has recently been shown by Sallee [1] that the Steiner points also have a

nice valuation property, namely, when Pi are polytopes and P1 U P2 is

convex S(P1) + 5(P2) = S(P1 + P2) = S(P/ U P2) + S(P1 n P2).

The points S(P) have been called Steiner points because in 1843

J. Steiner proposed studying the center of gravity of a mass distribution on

a curve in E
2

2 where the mass at a point on the curve is proportional to

the curvature at the point. The Steiner point as defined here for a polytope

is the discrete analog of the center of gravity of such a mass distribution.

It might be noted that if the support function of a convex set is

developed in a Fourier series, then a translation of the origin changes only

the first-order coefficients of the Fourier series. If the origin is trans-

lated to the Steiner point then these first order coefficients will be zero.

Similarly in higher dimensions, if the support function is developed in

spherical harmonics of the appropriate dimension, the origin is at the

Steiner point if and only if the first order terms are zero. Since the

supporting functions add when convex sets are added, it is thus reasonable

to expect that S(P + Q) = S(P) + S(Q).
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We next turn to a generalization of Klee's inequality (rheorem 10.11)

which is valid for all simplicial complexes rather than just those simpliclal

complexes realized by simplicial polytopes. If a given simplicial complex

has f
k

k-faces, it is natural to ask what is the best possible lower

[respectively, upper] bound on the number f
i

of i-faces of the complex,

when i k [respectively, i k]. This problem has been solved by 3. B.

Kruskal [1] using a rather complicated proof. We will illustrate Kruskal's

result by an example. Suppose it is knawn that in a given simplicial complex

f
4
= 30. We write f

4
in a certain canonical form:

£4

In general the canonical form of f
k

starts with (
k+1
a ) + (

b
) . We

choose the constants a,b,c,... as follows. Choose a as large as possible

a
so that f4 -..,-i (5). Having chosen a (a = 7 in this example) choose b as

a o
large as possible so that f

4
.. ( ) + (

4
) Continue this process until

5

equality is reached at some stage. Thus f4 = 30 = (75) + () (131) is a

canonical representation. Then for i, the best possible bounds on fi are

(

ia

.1: ( c )
...r.given by .. where this representation continues

1 +1 i/

as long as the representation of f4. (Terms like ( n.) are zero terms,
a+.1

j 1.) Thus in our example,

£3 (74) (4) 51

and

f6 (77) (:) (45) (77) 1'

It must be emphasized that these are the best possible bounds for the class of

all simplicial complexes. Even though they are bounds for the f. in terms

of f
k

for polytopes, they are generally not the best bounds. Nevertheless,

Kruskal's result has proved its usefulness as a tool in the theory of polytopes
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by helping to establish several cases of the upper bound conjecture. In

particular it allows us to establish the upper bound conjecture in the case

d = 7, and the case d = 8 follows from the case d = 7 by a rather simple

argument.

It would be interesting to know how Kruskal's results might be extended

when extra geometric conditions are added. We know that we can embed

topologically, or even rectilinearly, each simplicial k-complex in E
2101

But suppose that a simplicial ku,complex can be embedded in E
k+1

. This

adds restrictions which conceivably can be used to obtain better bounds on

the f..
i.

A problem similar to the one considered in Section 10 is, Given a

d-polytope with v vertices, haw small may fk be? The answer is easy

if d = 3, and is knawn for most cases if k = d-1, but almost nothing

is knawn for intermediate values of k. We first show that as much is

known about the lower bounds on f
d-1

as the upper bounds. For a fixed dimen-

sion d, plot fo > d against f
1d-,

placing a dot on the graph whenever

there is a d-polytope having this

number of vertices and facets. It is . .

clear from the duality which takes

f
d-1

f into f
d-1

that this graph must be
f0

0

symmetric about the diagonal. Thus the lower bounds on f can be found

from knowing the upper bounds on fd.l. This technique does not wozk for

fd..2. In the dual setting we are then asking for upper bounds on fd.1 in
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terms of f
1'

the number of edges. Thus these intermediate cases for k < d-1

do not reduce to the results of Section 10.

For the upper bounds on fd_l we saw that it was sufficient to look at

only simplicial polytopes. It would be nice to get a similarly restricted

class of polytopes in which the lower bounds are always assumed. Unfortunately

the simplicial polytopes do not have this property. In fact no reasonable

conjecture has even been made as to a class of d-polytopes which minimize

Nevertheless, it is still interesting to restrict our attention to the

simplicial polytopes and ask for the lower bounds on f
k

there. A certain

adding process which builds up simplicial polytopes in E3 has lead to

specific conjectures in E
d

as to what the lawer bound for f should be

for simplicial polytopes. In particular, suppose that a particular simplicial

polytope in E
d

with a given number of vertices minimizes f
d-1'

If we add

an extra vertex we must add at least d edges, and similarly at least (d-1)

facets. This process has lead to the lower bound coniecture: If vk(v,d)

is the best lower bound on f
k

for all simplicial d-polytopes with v

vertices, then

(itd)v t,

vk(v,d)
\k--1/"

for 1 k d-2

vd_1(v,d) = (d-1)v (d+1)(d-2).

This is easily checked in E3, but in E4 it is not at all clear that the

process of adding an extra vertex gtves analogous results. The lower bound

conjecture has, in fact, only been proved for those cases where an actual

enumeration was made for all polytopes with this number of vertices. Perles

has a few days ago reported that the lower bound conjecture is true whenever

there are at most di-9 vertices, thus in particular when vo 6., 13. The

methods used do not seem to allow for significant improvement.
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One immediate application of results of the type of Section 10 is to the

coloring problems. The famous 4-color problem has been generalized in

different ways to higher dimensions, and also to surfaces other than the

sphere in E
3

. In the higher dimensions most formulations of the problem do

not admit upper bounds in the sense that no finite number of colors is

sufficient to color all examples. The coloring problem generally turns out

to be solvable on surfaces in E
3 other than the sphere. A minor reduction

of the 4-color problem is easily obtained, namely it is equivalent to the

coloring of the 2-faces of all simple 3-polytopes (i,e., polytopes with each

vertex trivalent).

The duals of the cyclic polytopes in E
4 show that there are 4-polytopes

with as many 3-faces as desired, each two having a common 2-face. The Schlegel

diagram in E
3

of each such 4-polytope gives an example of as many 3-

polytopes as desired in E3, properly meeting at their boundaries, and each

two of them mill have a 2-face in common. This was independently discovered

by Eggleston, Besicovitch, and Redo about fifteen years ago.

There is, however, at least one meaningful variant of the 4-color problem

for d-polytopes which has a non-trivial solution, namely:

5. The 2-faces of any simple d-polytopes (d 4) may be colored

using at most 6d - 12 colors. (The coloring is supposed to assign different

colors to pairs of 2-faces which have a common edge.)

An open problem in this area that appears to be very difficult is the

following. It is well-knawn that maps in 2-manifolds in E
3

may need a large

number of colors if the genus is sufficiently large. If we consider manifolds

that are not just topological, but also locally-affine in the sense that each

11 country" is a planar convex polygon, then there might be an upper limit on
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the number of colors necessary, independent of the genus of the manifold. A

very shakey guess would be that this universal upper limit on the number of

necessary colors is 6.

Discussion.

Since many of the results of the last two sections concern cell complexes,

there was a discussiun on how this is related to algebraic topology. GrUnbaum

pointed out that usually a topologist is not interested in any particular cell

decomposition, but rather quickly passes to subdivisions and uses them as a tool.

On the other hand a graph theorist will tend to consider one graph or complex

and analyze its particular structure. Perhaps something could be done between

these two positions, but many such problemo are quite hard. For example, no

reasonable conditions on a 2-complex are known which guarantee that it can be

embedded in a space of dimension less than 5. Each 2-complex may be embedded

in E
5

, and if it is also a manifold then it may be embedded in E
4

. But it

would be nice to know, for example, which 2-complexes may be embedded in E
3

,

both topologically and piece-wise linearly. Note that even though a refine-

ment of a 2-complex may be geometrically as well as topologically embedded in

E
3

, this does not imply that the original 2-complex is so embedable. This is

in contrast to the one-dimensional case, where every 1-complex may be embedded

in E
3

, and if it goes into E
2

as well, then it may be embedded geometri-

cally, that is with straight line segments.

As km example, consider a 2-complex which is the union of 9 hexagons as

shown below. This manifold is topologically a torus, with the similarly labeled
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vertices identified in the obvious way. It is easy to shaw that if this can

be topologically and geometrically embedded (with "flat" hexagons) in any

higher dimensional space, then it can be embedded in E
3

Assuming it

is embedded in E
3

2 let us count the

sum of the interior face angles of the

hexagons in two different ways. The

sum of the face angles in each hexagon

is 417. Thus the sum of all interior

face angles is (417)9 = 3617. On the

other hand, 6 # of hexagons) = 7

3(# of vertices), by counting the

number of edges in two different ways.

Also, the sum of the interior face

angles around a vertex is at mnst

Zu and equals 2ff only if the

3 hexagons at that vertex lie in a

plane. Combining these results, we

can conclude that all the hexagons

must be in one plane, a contradiction.
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12. Polytopes in E
3

Much more is known about polytopes in E
3 than about higher dimensional

polytopes, in part since it is actually possible to construct models of them.

It is much easier to guess what the solutions of a problem should be when there

is an actual model to look at. Further, 3-polytopes actually do have a simpler

structure than 4-po1ytopes, just as 1-manifolds are simpler than higher dimen-

sional manifolds.

Part of our familarity with 3-polytopes is due to the possibility of

representing them in the plane. The results and methods of graph theory may

be applied to the 1-skeleton (set of vertices and edges) of the Schlegel dia-

gram of a 3-polytope. It is clearly seen that the Schlegel diagram of a 3-

polytope is planar. The converse question was open for a long time, namely;

which configurations in E
2

of convex polygons meeting properly on their edges

will be Schlegel diagrams of 3-poly-

topes? We want each such configura-

tion to have at least four vertices,

and each vertex must be at least 3-

valent. Further properties are

necessary, since the graph in this

figure can obviously not represent all

but one of the faces of a 3-polytope.

In this section a graph means a finite set of nodes (vertices) and a set

of edges which connect certain pairs of these nodes. A graph is n-connected

if for each pair x,y of vertices there are at least n disjoint paths along

the edges which connect x to y. (Two such paths are disjoint if they have

only x and y in common.) Equivalently, a graph with at least n 1
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nodes is n-connected if any n-1 or fewer nodes and their adjacent edges may

be removed, and the graph remains connected. For example, the graph with solid

lines is not 3-connected because the removal of x and y and their adjacent

edges leaves u and v in separate

components° Equivalently, each path

from u to v goes through either

x or y, and thus there are not

three distinct such paths. However,

if the dotted line is added as an edge,

then the graph becomes 3-connected.

We say that a graph is 3-realizable
\
\

if it is isomorphic to the graph of

some 3-polytope.

Another well-known property of the graph of every 3-polytope is that each

such graph is 3-connected. About fifty years ago E. Steinitz gave several

proofs of the converse statement unich is one of the most important and deepest

results concerning 3-polytopes. Unfortunately his work was forgotten until

comparatively recently.

1. (E. Steinitz [1]). Every planar, 3-connected graph is 3-realizable.

An immediate corollary is

2. Each planar 3-connected graph may be "stretched" into a shape where

all its edges are straight and all bounded regions in the plane which it

determines are convex polygons. (We interpret our definition of graph to

exclude two distinct edges connecting a pair of vertices, and the ends of each

edge must be distinct vertices.)
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The proof of Theorem 1 is very difficult. We will just present its main

ideas and point out the difficulties.

For a graph to be 3-connected, it clearly must have at least six edges,

and it will have exactly six edges only when it is the complete graph on four

nodes. Since we observe that this graph is 3-realizable (by the tetrahedron),

we have started our induction proof on the number of edges of the graph. Hence,

assume that we are given a graph with at least seven edges. To sketch how the

proof will go, we first establish that the graph has 3-valent faces or vertices.

Secondly, we will list two ways to transform a graph G into a graph G' such

that if G' is 3-realizable, then a 3-polytope P may be constructed which

realizes the graph G. These transformations will be called elementary trans-

formations. Thirdly, we will show that if a 3-connected graph G has a 3-

valent vertex on a triangular face, then there exists an elementary transfor-

mation of G to a 3-connected graph G' with fewer edges than G. The

induction hypothesis implies G' is 3-realizable and hence G is 3-realizable.

Fourthly, if G does not have a 3-va1ent vertex on a triangular face, then a

finite sequence of elementary transformations of G yields such a graph, in

which case the above argument applies, and the proof is complete.

(1) Let v, e, p denote respectively the number of vertices, edges and

facets of a 3-polytope P. Let vk, pk denote the number of vertices or

facets, respectively with exactly k incident edges. Thus v = Es v
k

and

p =
3

p
k

, so Euler's formula may be given the form

It is also clear that

4Ek3 vk 4Ew pk - 8 = 4e.

Ekn kvk = 2e = Ekn kpk,
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or

4e = Ek3 kvk kpk.

Combining these two equations we get

v3 + p3 = 8 + (k-4)(vk + pk) 8.

Thus we conclude that each 3-polytope has at least eight 3-valent elements

(i.e., 3-valent vertices or triangular faces). Since this argument applies to

graphs on the 2-sphere as well, it also applies to planar 3-connected graphs.

(2) If a 3-connected graph G has a triangular face, as shown on the

left below, then we define an elementary transformation 11 on G to obtain

a graph G' = inG by removing the three edges of the triangular face and adding

one new vertex which is then connected to the three vertices which formad the

triangular face; if a vertex of G' is 2-valent, we replace it and the two

edges incident to it by a single edge. A typical 11-transformation is shawn

belaw.

The graph GI is easily seen to be 3-connected. If GI is 3-realizable by a

3-polytope P, it is clear that the "new" vertex may be "sliced off" by a

plane through three points corresponding to the three old vertices, thus obtain-

ing a realization of G. Note that if each vertex of the triangular face is at

least 4-valent, as shown above, then the number of edges remains the same.

However, if one or more of the vertices is 3-valent, as in the example shawn
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below, then the number of edges may be reduced by at least one.

ril

We also define a second type of elementary transformation. A trivalent node

and the three edges incident to it are removed from G, and the nodes con-

nected to it afe pairwise connected by "new" edges (unless some of them are

already edges in G, in which case there is no need for the "new" edge).

Examples of such a transformation w to get a new graph G' are shown below.

r.

If P is a 3-polytope which realizes GI r,:in Eaces P
1
P
2
P
3

are "extended"

to get a realization of G. As the second example shows a new face might also

need to be formed. It can be shawn that it is always possible to obtain a
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realization of G from any realization of G'. In each case, an elementary

transformation does not increase the number of edges.

(3) If a triangular face has at least one 3-valent vertex, then the

transformation 1 reduces the number of edges. In this case the induction

completes the proof.

(4) The proof of the fact that some finite sequence of elementary trans-

formations gets us to case (3) is technical and is omitted. It uses special

properties of 4-valent, planar graphs. This completes our sketch of the proof.

Note that Theorem 1 characterizes which graphs are isomorphic to the graphs

of 3-polytopes. It is also possible to characterize in graph theoretic terms

graphs which are isomorphic to graphs of centrally-symmetric 3-polytopes, or to

graphs of 3-polytopes with a plane of symmetry. We give one other corollary.

3. Every 3-polytope may be obtained from a tetrahedron by a finite

sequence of applications of two particular types of operations. (Each operation

admits several different cases, as we saw abovt.,)

Tile next natural question concerns generalizations of Steinitz's theorem

to higher dimensions. There are not even any conjectures here about what the

conditions in such a theorem should be. For example, suppose a 3-polytope is

partitioned into the union of disjoint 3-dimensional convex polytopesyhich

meet properly along their boundaries, and which have appropriate connectedness

properties. It is reasonable to ask, does there exist a 4-polytope for which

this is its 3-dimensional Schlegel diagram? Such configurations must have

certain obvious properties, but there exist examples which satisfy all such

known properties, but which are not Schlegel diagrams of any 4-polytope. The

smallest simplicial example of this consists of just eight vertices; i.e., a

tetrahedron with only four additional interior vertices which define a partition

into 19 other simplices.
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The 4-color problem concerns the coloring of connected rlanar regions. If

the graph associated with the regions is 3-connected, then Steinitz's theorem

implies that it is the graph of a 3-polytope, and coloring the planar regions

would be equivalent to coloring the facets of the polytope. (4 coloring assumes

that regions or faces with a common edge will have different colors, and asks

for the smallest number of necessary colors.) If the planar graph is not

3-connected, then easy arguments show that there are two subgraphs whose color-

ing would imply the coloring of the whole graph. For example, to color the

graph at the left, it would suffice to color the two graphs at the right.

The corollary below therefore follows from Steinitz's theorem, although other

easier proofs exist.

4. The 4-coloring problem in the plane is equivalent to the coresponding

4-color problem for the faces of 3-polytopes.

*,

For about 100 years, people have been trying to count the number of

different combinatorial types of 3-polytopes with v vertices or p faces.

The problem is hard, and most early papers were attempts to draw pictures,

count them, and hope that none were missed. The problem has been significantly

advanced recently, and it seems reasonable to believe that within a few years it

will be solved, at least for the simple polytopes. (Pad is simple if each
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vertex is 3-valent.)

We now consider a simpler problem which was solved by Eberhard [1] in

1891. As above, let pk(P) be the number of k-gons in a 3-polytope P, and

let p be the total number of facets (2-faces). We say that a sequence

of non-negative integers is 3-realizable provided there is a

simple 3-polytope P such that pk = pk(P). Since for simple 3-polytopes

v = v3, we have

3v = 2e = Ekz.3 kpk.

Together with Euler's formula v + p = e + 2 and

P EkW Pk

we get the following theorem.

CIO

5. A necessary condition for a sequence (n 2 41) to be 3-realizable is

3p3 + 2p4 + p5 = 12 + Ek7 (k-6)pk.

It is interesting that (*) implies that there must be at least four

faces with fiv e. or fewer edges, but it says nothing at all about the number

of faces with six edges. Examples show that two sequences may differ only in

p
6

and yet one is 3-realizable while the other is not. This leads to the

following question. Given a sequence (p3,p4,p5,p7,...) which satisfies (*),

does there exist a value of p
6

which makes (p
3
,p
4
,p

5
,p

6
,p

7
2..0 3-realizable?

Eberhard's theorem says "yes."

6. If (p304,p507,...) satisfies (*), then there is some p6 which

makes the sequence 3-realizable.

The proof of Eberhard was quite hard, but by using Steinitz's theorem the

proof can be simplified. Rather than prove this theorem we will prove another
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related theorem which is easier, and yet which shows the main idea of the proof.

If we work with 4-valent polytopes rather than simple polytopes we must use

4v = 2e rather than 3v = 2e in the above equations. Similar reasoning then

yields

7. If each vertex of P is 4-valefit, then

p3 = 8
`k

(k-4)p
k

.

It5

In an analogous way, this leads us to

8. (GrUnbaum) If (p32p5p6,...) satisfies (k*), then there is some

p4 and same 4-valent polytope P such that P has pk = pk (P) for all k.

The proof is accomplished by actually constructing a 3-connected, planar

graph, with each vertex of valence 4, and with exactly pk faces with k

edges. Then Steinitz's theorem supnlies the desired 3-polytope P. Thus we

need only construct the graph. Each k-gon that we need, k 5, is formed

in the following way from the inside of a square.

5-gon 6-gon 7-gon

It is clear that each such square produces one k-gon, (k-4) triangles,

and a number of quadrilaterals. Thus if we use these squares as building

blocks of our graph, we will preserve the ratios of p3 and pk's in (**)

These building blocks are placed together as shawn on the left below. They
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are used as the "diagonal" of a large basic square, and corresponding edge

Basic square

points of the building blocks are connected to the edge of the basic square

as shown. We naw have a graph which is 4-valent at each vertex except on the

boundary of the basic square, and which contains exactly pk k-gonal regions.

To take care of the edge vertices, 1.e close up the basic square with circular

arcs, as shown on the right above. This uakes each vertex 4-valent, adds lots

of quadrilaterals and exactly eight triangular regions as shown. Thus the

formula (**) is satisfied by the pk's of this graph and the proof of the

theorem is complete.

A similar type of construction is applicable to the proof of Eberhard's

theorem; the details are much more invotved, mainly because of the presence of

three kinds of "small faces." No result analogous to Eberhard's theorem is

known concerning 5-valent polytopes; the e:tuation corresponding to (*) or

(**) does not have any pk missing.
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It would be interesting to know what values of p
6

can appear in

Eberhard's theorem, and how small the value of p6 may be. It was earlier

conjectured that perhaps p6 g n where pn is the last non-zero member of

the given sequence. A recent result of Barnette has disproved this conjecture.

It has not disproved a conjecture that there is a constant c such that

g c E.16 pk. Examples shaw that c must be bigger than one in this con-

jecture, probably the best constant is c = 3. The 1966 result of Barnette

referred to is:

11. If P is a simple polytope, then

2p3 + 2p4 + 2p5 + 2p6 + p7 8 + E1,9 (k-8)pk.

In particular, this equation may be used to obtain a lower bound on the

size of p6. There is no similar result known for 4-valent polytopes.

Discussion.

A discussion of the proof of Steinitz's theorem brought out the following

facts:

(a) We need to apply the elementary transformation 11 to a triangular

face and not a face with more sides. If Tr were the transformation shown

below, for example, and if P were a 3-polytope realizing the graph G'

147



(shown in part on the right), then there is no way to assure that the new

vertex may be "sliced off" with a plane through the four old vertices, since

they may fail to be coplanar.

(b) In the fourth part,of the proof of Steinitz's theorem, we cannot take

a particular trivalent vertex and triangular face and guarantee that they can

be brought together by a finite sequence of elementary transformations. We

only know that such a sequence suffices to bring some pair of 3-valent elements

together. The description of this process does, however, give an algorithm by

which this can actually be accomplished in a finite number of steps; it is not

just an existence statement.

(c) Corollary 2 of Steinitz's theorem may be proved directly with less

work than Steinitz's theorem, but it is not a simple fact, and false proofs

have been published for it even recently. Direct proofs use only the graph

theoretic properties; it does not help to keep track of which bounded regions

are convex as the induction proceeds. Yale pointed out that this was remark-

able in itself, as it supplies the first known admission by GrUnbaum that con-

vexity was not a useful property.

In the discussion it was pointed out that bounds on p
6

in Eberhard's

theorem are known for certain special cases. For example, if p3 = 4, then

p
6

must be zero or some even number greater than or equal to 4. If p
4

= 6,

then p6 must be zero or at least 2. Some similar conditions imply that p6

may only assume odd values. It was also remarked that Eberhard was blind

since his youth.
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13. Polytopes with rational vertices.

We now turn to a topic in integer programming which extends some of the

ideas we discussed after Section 10. I first heard of the following problem

from Klee. For any d-polytope P, does there exist a polytope P' of the

same combinatorial type which has all of its vertices at rational points in

E
d
? Equivalently, we could ask, could all the coordinates of each vertex be

integers? Until a few years ago there was nothing in the literature which

answers this. The answer to the question is clearly "yes" in E
2

2
Is "yes"

but not obviously so in E
3

, is unknown in dimensions 4 through 7, and is "no"

in E
8 If we start with a rational simplex (rational here means that the

vertices have rational coordinates) in E
3 and continue to transform it by the

elementary transformations of Steinitz's theorem as in Corollary 12.3 above,

then it is no loss of generality to assume that each transformed polytope is

again rational. Thus the problem in E
3 can be solved using the proof of

Steinitz's theorem. In E
d

it is always possible to get a rational simplex,

or a rational realization of any simplicial polytope, but in general "moving

a vertex a little" might change the combinatorial type of P even if

p(P,V) g e in the Hausdorff metric.

Perles (see GrUnbaum [1], Section 5.5) has given an example of a (convex)

8-polytope with twelve vertices which has no rational realization. This is

the best example possible in E
8

in the sense that if Pc:E
d

has at most

d+3 vertices, then it has a rational realization. The irrationalities of

Perles' example are not too bad in the sense that we could realize all coordi-

nates of its vertices in the field which is the simple extension of the

rationals by I. More generally, it is possible to obtain realizations of

all d-polytopes using the field of real algebraic numbers. Even in E
8

,
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though, it is not known whether every polytope may be realized ubing a field

which is an extension of the rationals by a finite number of irrationals.

Our next topic will show that this type of occurrence is not too surpris-

ing. We will consider arrangements of lines in the projective plane (or

arrangements of hyperplanes in projective d-space). By an arrangement we mean

a set of lines in the projective plane which do not form a pencil at one point.

We are interested in questions like, what are the regions into which the plane

is divided, how many vertices are there, etc. We can ask when any two arrange-

ments are combinatorially equivalent in the sense that the equivalence pre-

serves the number of lines and vertices and their incidences. In particular

we can ask if every arrangement has an equivalent rational arrangement; i.e.,

an arrangement where the coordinates of all vertices are rational.

In answer to the last question, the arrangement of ten lines and eleven

vertices as shown cannot have a

rational realization. It can be

shown that any arrangement combinator-

ially equivalent to this example is

already projectively equivalent to it.

Hence the cross-ratio (4,B;C,D) is

irrational in each realization. The example is actually larger than necessary.

The subarrangement of nine points and

nine lines as shown has the same

property, and is best possible in the

sense that any arrangement in E
2

with at most eight points or eight

lines has a rational realization.
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Perles' example in E
8

, referred to above, makes use of this last

example. His argument uses a particular transformation which maps a d-dimen-

sional arrangement with v vertices into (v-d-1)-dimensional space. We

have used the word "arrangement" here rather than "configuration," since a

configuration is usually considered to have a constant number of points on

each line.

Discussion.

It was pointed out during a discussion that the two examples in E
2

which do not have rational realizations, can in fact be realized in the

2-dimensional vector space over the field R.(13) (i.e., the simple extension

of the rationals by 1 3). On the other hand, they cannot be realized if the

field is 11(/2).

?he figure with ten lines and eleven vertices is "self-conjugate" in the

sense that any combinatorially equivalent arrangement is either essentially

the same or is one where the five vertices on the points exchange places with

the five vertices on the inner pentagon.
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