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Experimental Course Report/Grade Nine

Background

?

The Madison Project, a curriculum development project of Syracuse University and

Webster College, has, for the past seven years, been engaged in developing mathematics

curriculum ideas and materials for Kindergarten through grade 10, and for college courses.

The most fully-developed portions of this curriculum provide a supplementary program in

modern algebra, logic, and geometry for grades 2 through 8; this material is presented in

four books, and in a sequence of films (cf. Appendix A).

At two grade levels the Madison Project program is not supplementary, but forms in-

stead the entire mathematics program for that grade. This occlos at the kindergarten. level

(because there was no pre-existing established program at this level), and in grade 9, where

a complete and unified course is a reasonable expectation.

During the academic year 1963-1964, a 9th grade class of 31 students at Nerinx Hall

High School, a Catholic high school in Webster Groves, Missouri, was taught jointly by

Professor Robert B. Davis of Syracuse University, and by Sister Francine, S. L. , of the

Lc\ Nerinx faculty.
Prtri The present report is concerned solely with that portion of the course taught by Pro-

fessor Davis. As discussed above, this was intended to be the entire course, but could not
Ui

be, due to a schedule of out-of-town commitments that required Professor Davis to be away

from the Nerinx campus about 30% of the time. During Professor Davis's absences, the class

(\6 was taught by Sister Francine, generally according to the contents of the 9th grade algebra

book ordinarily used at Nerinx, namely
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Dolciana, Berman, and Freilich, Modern Algebra:
Structure and Method. Book I, Houghton Mifflin Co.,
Boston, 1962.

The school is an all-girl school, containing (in one building) grades 9- 12. Since

the students had attended grades K -8 elsewhere, their backgrounds were diverse. It was

assumed that none of them had had any previous contact with "modern" school mathematics

curricula, and this was an appropriate assumption in nearly all cases.

Because of the presence of Sister Francine's portion of the course, it could be assumed

that all essential parts of the "traditional" ninth-grade program were included, although

they might not appear in the present report. This does not contradict the assertion that the

experimental ninth-grade course outlined here is not merely supplementary, but is intended

to become the basic ninth-grade course. Indeed, one might say that the "traditional" topics

were supplementary to the modern portion of the course. That such a haphazard arrangement
WOMEN, IMMIN1010 OMNI mwt.1111111

produced an adequately articulated course is due to the wisdom and flexibility of Sister

Francine, and to the ninth-grade students themselves. To both, the author wishes to re-

affirm his deepest thanks.
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II. General Purpose and Orientation of the Course

To discuss the reason for developing a new ninth-grade mathematics course, we might

consider first the "traditional" ninth-grade algebra course which we sought to replace. 1

The four outstanding attributes of the "traditional" ninth-grade "algebra" course were

probably those:

1. The students experienced a long sequence of pedestrian intellectual tasks

which were hardly capable of inspiring enthusiasm or commitment, nor of calling

forth any sustained, original, and creative effort.

2. The course was intended to cause the student to become able to write an

apparently correct mathematical statement, without the need for understanding what

he had written.

3. The pace of the course was remarkably slow, and greatly underestimated

the potential ability of most students.

4. The student was cast in the passive role of listener, or the merely responsive

role of a subject being trained or conditioned. Presumably for this reason, the stu-

dents actually adopted a passive habit of mind, did not avidly grasp out for knowledge

and understanding, and did not learn satisfactorily.

Three points may be left to stand without further comment here, but the second point

deserves some discussion.

1
For a comparison with other "modern" ninth-grade courses, see Section

VII of this report.
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The "traditional" ninth-grade "algebra" course was so preoccupied with written

symbols that it might have been called a course for typesetters, not for mathematicians.

Notice, for example, the preoccupation with written symbolism indicated even in the

usual vocabulary: "removing parentheses," "changing signs," "inverting," "simplifying,"

"multiplying out," "canceling," "transposing," "combining like terms," and so on.

On the other hand, a statement was traditionally written with a mystical optimism

concerning the efficuy of notation, but with no concern as to whether it was true, false,

open, of presently unknown truth value, implied by the preceding statement, contradicted

by the preceding statement, capable of implying the following statement, logically equiva-

lent to the following statement, or whatever. It was merely written. Mathematics thereby

achieved the appearance of consisting of a sequence of written statements related by no

logical structure that anyone cared to talk about, and describing no identifiable mathematical

entities whatsoever. The name became substituted for the thing named. The student who

could write

ATT

had somehow penetrated the absolute depths of irrational numbers by the simple act of writing

a radical, without the need to consider the theory of limits of infinite sequences or any of

the other conceptuaf paraphernalia which seems to be required by those who choose to think

as well as to write.

It is interesting to note that observers of our "new" ninth-grade mathematics class have

spontaneously remarked upon the fact that the ratio of discussions to writing during class was

far higher than usual.
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Axioms. We chose to develop an axiomatic approach to algebra primarily for two

reasons: first, any game is more intelligible and more fun if one is allowed to know in ad-

vance what the rules are, and, second, an axiomatic approach is capable of showing the

man-made choices by which the development of our mathematical structures is shaped.

Indeed, the multiplicity of mathematical structures is revealed far more clearly by an axio-

matic approach.

"Clean" Mathematics. The ninth-grade course developed by S. M.S.G.,1 or the axio-

matic algebra which appears at the beginning of Moise's Elementary Geometry from an Ad-

vanced Standpoint 2 appeal to us as fine examples of "clean" mathematics, honest, intelli-

gible, and free from murky discussions of things which are ill-defined. We shall not attempt

to describe this attribute of "clean-ness" with any precision. We do not mean to deny the

important role of intuition, nor do we deny the value of intuitively "sensible" efforts whose

precise content becomes revealed only later, after they have proved fruitful. We do mean

the avoidance of that murkiness which is not even based upon sound intuition, which has an

"out-of-focus" fuzziness that cannot be excised, and which may even be self-contradictory.

An actual example, from a "traditional" course, is:

The absolute value of a number is the numerical value of the

1
School Mathematics Study Group, First Course in Algebra, Part I and

Part II, Teacher's Commentary, and Part I and Part II, Student's Text, Yale
University Press, 1960, 1961.

2 .
Edwin Moise, Elementary Geometry from an Advanced Standpoint,

Addison-Wesley Publishing Co., Inc.; Reading, Massachusetts, 1963.



-6-

number, without regard to its condition or sign. Absolute value

is neither positive nor negative.

The Various Aspects of Mathematics. Although our course was to be primarily a

"clean," abstract, axiomatic approach to the algebra of real numbers, we recognize that

mathematics has many faces, and is seen differently by pure mathematicians, applied mathe-

maticians, statisticians, theoretical physicists, experimental physicists, engineers, actuaries,

behavioral scientists, logicians, philosophers, lawyers, and so on. Each of these visions has

some validity, as their historical survival surely indicates, and as the varied futures of our

students forces us to acknowledge. While 70%, or so, of our course was abstract axiomatic

algebra, the remaining portion included intuitive mathematics for which a careful founda-

tion was not available, it included a brief consideration of problems of measurement and

scientific model building in an actual laboratory situation, it made some use of engineering

drawing and descriptive geometry, it dealt with empirical probability, it opened the door

for further study of mathematical logic, and it included considerafion of some relevant (and

revealing) portions of the history of mathematics. The hope was to win as many converts as

possible, with due regard for variations among our students.

Limits, Cartesian Co-ordinates, and Matrices. We wished to include three areas of

mathematics not commonly found in grade nine, namely the theory of limits of infinite se-

quences, a frequent (one might say ubiquitous) use of Cartesian co-ordinates, and a nearly-

ubiquitous appeal to the algebra of matrices. These topics are discussed in more detail

below.



III. Mathematical Content: List of Topics

The course is not adequately described by a mere list of topics included, but such a

list provides a good starting point. Here it is:

1. True statements, false statements, open sentences

2. Truth sets

3. Variables

4. Functions

5. Graphs of Truth Sets and of Functions

6. Mathematics in the Laboratory: Problems of Measurement

7. Mathematics in the Labcratory: Making Scientific Models

8. Descriptive Statistics: Average, Variance, Range, "Trimmed" Range,

Standard Deviation

9. Empirical Probability

10. Implication, Contradiction, Uniqueness, Truth Tables, Inference Schemes,

Mappings of Cartesian Products of Truth-Value Spaces

11. Identities

12. Quantifiers

13. "Shortening Lists" of Identities by Using Implication

14. More Careful Formulation of 13

15. Axioms and Theorems

16. Axioms for the Non-Negative Integers

17. Axioms for the Integers

18. Axioms for Rational Numbers

19. The Algebra of Matrices
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20. Models of Axiom Systems (Matrices, Finite Fields, Rational Numbers, etc.)

21. Order Axioms

22. The General Cuadratic Equation

23. Simultaneous Equations

24. Isomorphism

25. Linearity, Convexity

26. Transformations or "Mappings"

27. Identities Involving the Distance Function d(p,q)

28. Right-Angle Trigonometry

29. Extension of Definitions (in Various Contexts, Including Page's "Lattices,"
Exponents, Factorials, Trig Functions, etc.)

30. Trigonometric Identities

31. Complex Numbers via Matrices

32. The Complex Plane

33. The Greek Air Paradox

34. Infinite Sequences, Monotonicity, Convergence

35. Axioms for the Real Number System

The way in which this bare list of "topics" was expanded into a sequence of actual

learning experiences -- i.e., into a "course" -- is described in the remaining portions of

this report.

Incidentally, three topics -- Mathematical Induction, Finite Difference Methods, and

Archimedean Sums (for "Definite Integrals") -- which we had originally hoped to include

had to be omitted for lack of time.
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IV. General Educational Flavor

This was not a lecture course.

Une of the key pedagogical ideas underlying this course is the idea of active, creative,

original student participation. The students measure things in a laboratory, and discuss their

results. The students choose sets of axioms, and the teacher argues with them about limita-

tions of their chosen set. The teacher accepts "wrong" answers and waits for some students

to challenge them.

Just how much direction the teacher injects is a subtle question which we shall not

discuss here in detail. In general, the teacher seeks to avoid aimless chaos, but does not

avoid controversy, nor does he quickly resolve issues. Where possible, he leaves open ques-

tions open, for gradual resolution by the students, often over a period of many weeks (pro-

vided, as in the case of the Greek VI paradox, that the matter is sufficiently important to

deserve such sustained interest).
1

Perhaps the pedagogical aspects of the course are best revealed by viewing the films

which were made during the 1963 - 1964 academic year, and which show actual classroom

lessons. For a listing of these films, consult Appendix D of this report.

1Reference
here might bc made to the concept of "demand quality"

of Wolfgang Kghler, or the "tensions" of Kurt Lewin.
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V. Direct Use of Films with Students

Prior to the 1963 - 1964 academic year, and prior to the present ninth-grade course

experiment, the Madison Project had made a number of 16mm. sound films showing actual

classroom mathematics lessons in grades two through eight. Many of these films dealt with

topics which appear in the present ninth-grade course. These films were, of course, in-

tended for teacher training, and are normally used in this way. They are not ordinarily

shown to studonts.

For the present ninth-grade course we made an exception, and experimented with

having tho students view a few of these films, as specific mathematics learning experiences,

rather than as films on pedagogy. Such use of the films appears to have one considerable

strength: wo wish to present mathematics as an on-going human creation. The films help

to do this; in tho filmed lesson, problems are posed, and students make up methods for40.0.1

attacking the problems. The methods are often named after the student who discovered them,
=MM.

aro extended and generalized where apyropriato, and are added to the students' future store

of weapons for attacking future problems. There is no doubt as to where the methods came

from, or why they wore developed.

In a sense, this approach brings the history of mathematics right into the classroom,

and lets each student live through important pieces of mathdmatical history. A "historical

break-through" becomes something that the student knows from first-hand experience.

This point of view was maintained with the historical development of mathematics by

the Nerinx ninth-graders, and it could be clearly observed in the parallel historical devel-

opment of mathematics by the students in the films. The important thing was that the "live"

ninth-grade class and the filmed lessons shared a consistent point of view concerning the

room..
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development of mathematics.

Films giving an a-historical and authoritarian presentation of mathematics would not

be consistent with this approach. Perhaps for this reason, the Project has never made such

films. However, films giving a "problom-to-solution" approach, with all of the explora-

tion, wrong turnings, and gradual accumulation of concepts and techniques, are not incon-

sistent with the actual development of mathematical systems as an on-going human activity.

After our experience with the Norinx ninth-graders, we would recommend continuing

exploration of the direct use of sue, films with students, provided both the "live" course

and the films made consistent use of this "developmental" or "accumulation" approach.

In particular, films made for teacher training may have some potential for direct use

with students.
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VI The Course

Tho present section embodies the main part of this report. It is concerned with taking

the list of topics given in Section III, and building these topics into complete classroom

learning experiences.

1. A "Spiral" Approach. Although we shall discuss the course topic by topic, the

actual classroom lessons represented "mixtures" of these topics, in the following ways:

i) Where it seemed desirable, previous topics were reviewed, were fitted into

a broader perspective, or were revived for use in a new context.

ii) Sometimes a brief advance notice was used to prepare the way for a future

topic, in order to get students thinking about some new problem or some new approach

in advance of the time when this problem would make its "official" appearance in

class.

iii) Difficult and central topics wore spread out over some time, in order for ideas

to mature in the students' heads.

iv) Variations were made for the sake of morale and variety.

v) The teacher made some attempt to follow student initiative, which implies

some non-sequential organization, since student ideas about generalizations and alter-

native approaches cannot be predicted in advance. For example, when the teacher

was working on a sequence leading to the solution of the general quadratic equation

by the method of completing the square, a student (Regina) developed an alternative

method, for real roots, based upon analytic geometry. Again, when the teacher was

developing an approach to 'a" via bounded monotonic sequences, a student (Nancy 0.)



developed an alternative approach to the equation

= 2

by using 2-by-2 matrices.
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This "spiral" approach, then, considerably modified a strictly sequential "topic-by-

topic" approach. Any given topic would usually make its appearance in many different

lessons: as an advance "teaser," as a problem for direct confrontation, as a matter for brief

review, as a matter for re-assessment in the light of subsequent developments, as an alterna-

tive approach (possibly unexpected by the teacher), or simply as something thrown in for the

sake of variety.

2. The First Two Weeks. Because we chose not to assume a previous familiarity with

"modern" mathematics courses, we began in September with two weeks devoted to a quick

tour through tho-contents of Discovery in Mathematics
1 -- that is to say, we provided in-

formal preliminary experiences with true statements, false statements, open sentences, truth

sets, variables, functions, graphs of functions, and algebraic identities. The tone was infor-

mal, honest but not carefully precise, and based upon a tentative use of induction from a

variety of instances. In addition to the kind of thing that is contained in Discovery, we in-

cluded various lessons that wore intondod to show the diverse faces of mathematics, which we

now describe in items 3-8, that follow immediately.

1 Robert B. Davis, Discovery in Mathematics, Addison-Wesley Pub-
lishing Company, Inc., Reading, Massachusetts, 1964.
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3. Guessing Functions. This topic is obvious, but is nonetheless gratifying. Some

students make up a "rule," such as "whatever number we tell them, they will double it and

subtract that from twenty." The class now tell the "rule" team values of x, the "rule" team

use their function and tell the class the corresponding numerical value of f(x). It is the

task of the class to guess what "rule" f(x) is being used, and to write it in proper algebraic

notation.

Many valuable by-products can be derived from this exercise; we mention one: argu-

ment will sooner or later arise as to whether 1

(O+3)x2 = A

and

(2 x 13) + 6 = A

represent the same "rule" or not. This leads to the distinction (suggested by David Blackwell)

between "formula" and "function," and will lead also to a "modern" definition of function as

a set of ordered pairs, etc. It is not fair to oxpect people to guess your formula (cf. for

example,

+ 7 3 + 2 1 = A ),

but it is fair to expect them to guess your function.

Even the dimensionality of the space of numbers of the form

a + b a, b rational

and

1 In x, y notation, these expressions would read

(x + 3) 2 = y

2x + 6 =



-15-

have made their appearance in this "guessing functions" game, as have properties of primes,

of conic sections, of linearity and convexity, of exponential functions, etc.

(Our use of this topic stems from suggestions made by W. Warwick Sawyer.)

4. Mathematics in the Laboratory: Problems of Measurement. 1 We ask four students,

independently, to auess the width of the room. We record all four numbers, compute the

average, and measure the degree of consistency by computing the range, the inner-quartile

range, the average absolute deviation from mean

and the variance

X

We then pass out 6-inch plastic rulers, and have four students independently measure

the width of the room. With these four numbers we again compute the average, and get

measures of the degree of agreement by computing ranges, average absolute deviation, and

variance.

We then pass out yardsticks, and repeat the process.

Finally, we repeat the process with four teams using a surveyor's tape-measure.

1 This topic, as explored (in slightly modified form) by a 6th grade class,
is presented in the film Average and Variance, available from The Madison
Project.

Kr,0714, .
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The notions of averaging, estimating consistency of independent measurements, and

sources of measurement error which are begun in this lesson are mitinued in other labora-

tory work (for example, in tho work on linear and non-linear elasticity).

This topic is based upon suggestions made by Professor William Walton, of Webster

College, and by Professor Frederic Mosteller, of Harvard University.

5. Mathematics in the Laboratory: Making Scientific Models. The students attempt

to study the "stress-vs.-strain" relationships for, first, a spring, and, second, a chain of

rubber bands. It is easy to record data; it is far harder to decide what the data is telling us.

In working with this data, we consider:

i) graphing the data

ii) whether any seeming linearity is a fact of the physical system or an artifact

of our procedure for studying the system

iii) sources of error in measurements

iv) where possible, writing the function algebraically (notice that this builds

smoothly on the earlier work in "guessing functions")

v) dependence or non-dependence upon the historical past of the physical system

(which is of particular interest in the case of the rubber bands)

vi) range of validity of our study (as in "elastic limit").

This material was originally suggested by Professor Robert Karp lus of the University of

California (Berkeley).
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6. Implication, Contradiction, and Uniqueness. The unit we ore about to describe

(based upon Professor David Page's Hidden Numbers) is an "experience" unit. We are not

concerned (yet) with the elegant formulation of this portion of mathematics; what we are

concerned with is providing for our students some experience with implication, contradiction,

and uniqueness, on the grounds that many of the students may not have had previous exper-

ience with these concepts.

What we do is to play a game, according to the following rules:

i) The teacher writes one or more numerals on a piece of paper. Each numeral

refers to a positive integer. (Repetitions are allowed.)

ii) The teacher will begin listing "clues" on the blackboard, identifying clues

by letters, as "A," "B," "C," etc.

iii) The teacher's clues are not necessarily true; indeed, some will usually be

false, and will be designed to produce contradictions.

iv) The students start with a "credit" of 5 points. What happens to this will be

explained next.

v) Whenever a student believes he has found a contradiction in the clues, he

must begin by stating precisely which set of clues he is using (e.g., {A, B, D) ,

He then describes the contradiction. If he is right, the teacher must label all state-

ments used by the student (i.e., A, B, and D) as "True" or "False." If the student is

wrong, the "credit" (which was initially 5 points) is reduced by 1.

vi) In citing a contradiction (item "v" above), a student is wrong if the set of
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statements does n'ot contain a contradiction or if a proper subset contains a contra-

diction. The student is right if the set he cited does contain a contradiction, and if

no proper subset contains a contradiction.

vii) In order to help keep thinking straight, students may write a possible collec-

tion of numerals that they think the teacher wrote on the paper. These "possibilities"

are accumulated, discussed, and ruled out as additional clues may require. No offi-

cial scoring is related to this informal list of "possibilities."

viii) From time to time the teacher writes down additional clues (which, again,

may be true or may be false).

ix) In order to get the teacher to reveal the numbers which he wrote on the

paper, the class must (w an appropriate time) bet the teacher that a certain specific

possibility is the only one which is consistent with all the "true" clues that have accu-

mulated.

If the teacher can write down any other collection of numbers that is consistent

with all of the "true" clues, then the students' "credit" is reduced to zero.

If the teacher cannot write down some other collection of numbers consistent

with all clues marked "T," then he must reveal the paper on which he wrote the origi-

nal "hidden numbers." This is the normal (and desirable) outcome of the game.

x) Whenever the students' "credit" becomes zero, the teacher takes away the

paper on which he wrote the "hidden numbers," and never reveals it to the class. This

is the "penalty" outcome of the game.



xi) The teacher adds clues as necessary, until either the students "win" (the

outcome where the teacher reveals the hidden paper) or else the students "lose" (the

outcome where the student "credit" becomes zero, and the teacher removes the hidden

paper without ever revealing it).

xii) Although clues themselves may be "true" or "false," the teacher never cheats

in his labeling of clues as "T" or "F," whenever he is required to do so by a student

discovery of a contradiction (Rule "v").

Although these rules sound complicated on paper, they have proved simple enough in

practice. This game works smoothly in the classroom.

Many -- indeed, potentially any -- concepts of mathematics can be introduced into

this game. The following clues give a few suggestions:

"All of the numbers are prime."

"All of the numbers are relatively prime."

where

"The two numbers are roots of the equation

x1 20x + 96 = 0."

"The 7 numbers have the form

01, r

esr#(3, 00)0,



then

"All of the numbers are odd."

"The sum of the numbers is less than 37."

"The product of the numbers is 100."

"The sum of the numbers is a minimum, consistent with all other clues."

"The smallest number is 8."

"No two numbers are the same."

"The collection C of numbers that I wrote has the property that, if

n E c,

(n + 1) E C."

-20-

The original idea for this topic is due to Professor David Page, of the University of

Illinois and Educational Services, Incorporated.

7. Truth Tables, Inference Schemes, and Mappings of Cartesian Products of Truth-

Value Spaces. Obviously, at some point we wish to effect a transition from our neo-Egyptian

"empirical" mathematics, based upon generalizing from instances, to a modern neo-Greek

deductive approach. This will depend upon two things: selecting suitable axioms, and de-

veloping a suitable logic.
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It should be clear that, in the work described above, we have begun to lay the ground-

work for a deductive approach. We now carry this further, by some consideration of simple

notions of mathematical logic.

Our approach to logic is divided into three parts.

First, the students are asked to be "sociologists" (or "anthropologists"), and to make

up truth tables based upon the way they and their friends use the words "and," "or,"

"if ... then," "not," etc.

Second, having this before us, we now play a legislative role: we proclaim that,

henceforth in this course, the word "or" shall be used as indicated in our truth tables, and

so on. This clearly gives a new precision to our use of logical connectives.

Finally, we behave as mathematicians: we seek abstract representations for what we

have done, and we seek generalizations. The truth table entries for "and," for example,

P Q P and

can be described as a mapping of the Cartesian product V x V into V, where V is the "truth

value space,"

V = tT, F1.

The "and" mapping can be represented diagrammatically, as Follows:
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T T
T

T F

F T F

F F

"and"

This formulation suggests many interesting questions, such as:

How many different mappings of V x V into V exist? Does each have some

familiar, obvious name? What is the minimum number of mappings in terms of which

all mappings of V x V can be expressed (solved originally by H. M. Sheffer in

1913)? What happens to all of this if V contains more than 2 elements? If, say, V

contains 3 elements, what would the corresponding truth tables and inference schemes

look like?

8. Transformations or "Mappings." Since our work in logic has gotten us well launched

on the notion of mappings, we now develop this further, using numerical examples, the con-

cept of isomorphism, logarithms, the projection mapping in E.2. I and simple substitution

ciphers as mappings of a onto CA., where CL = tA, B, C, D, E, ..., X, Y, Z },

9. Algebraic Identities. We begin by asking the students if they can write a statement

which involves the variable " 0," which will become true whenever we make a numerical

replacement for the variable, no matter what number we use. This question is easy and in-

teresting, and leads to the accumulation of a big list of identities, such as
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0 x 0 = 0

0 x0= 0

0 x 1 = 0
1 x0= 0

0+ 0 = 0
0 +0= 0
0 +6=6+0
O x6=6x0

and so on.

Notice that, still lacking any system of axioms, we cannot approach this topic deduc-

tively.

10. "Shortening Lists" of Identities by Using Implication. This topic, also, is

approached informally for the present. For example, the list of three identities

O +6 =6+0
O x6 = 6x0

A + (B x C) = (C x B) + A

can evidently be "shortened" to two, namely

O +6=6+0
O x6=Ax 0 P

since nothing has been lost thereby; the "missing" identity can be derived from the other

two. We work out such derivations with gradually increasing care and attention to detail.
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11. Quantifiers. Over the past several years we have been becoming increasingly

aware of the role of quantifiers. We have usod them more explicitly than ever before in the

present ninth-grade course, and will probably use them even more prominently in future

trials of this course.

By "quantifiers" we mean primarily two symbols:

x which means "there exists an x"

and

which means "for all x."

We use this last symbol also in a restricted sense, as in

meaning "for all x such that x * 0."

Virtually every "algebraic" statement may be said to involve quantifiers -- although,

of course, they are traditionally omitted. For example, a proper statement of the commuta-

tive law of addition might be

x y
x + y = y + x.

As a further example, we might write

x o
9y such that x y = 1; we shall call

y the "multiplicative inverse of x." The number y

is uniquely determined by the number x.

Somewhat similar to our explicit use of quantifiers is our explicit use of logical infer-

ence, as in this example:
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P: xah 5x + 6 = 0

CI: (x 2) (x 3) = 0

P (-4 a (logical equivalence)

R: x 2 = 0 or x 3 = 0

Or, to give a second example,

P: liw h = r

CI: w h = r 1

P ----4 0 ("13 implies Cr).

We are coming to place similar explicit stress upon the domain of variables, and the

truth sets of open sentences. Not that we are always careful; the degree of care is matched

to the best of our judgment to the need for care in various situations.

12. A More Careful Approach to "Derivations." We have already seen that the no-

tion that CLM and CLA imply A + (B x C) = (C x B) + A has been pursued somewhat infor-

molly. We now take more careful look at what is involved.

i) The meaning of " = ." n the first place, we agree to interpret

A = B

to mean that A names something, and B names something, and (in fact) A and B



name the same thing.
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ii) The "Principle of Names." If we examine what we do in making a deriva-

tion of
A + (B x C) = (C x B) + A,

using CLA and CLM, we find steps such as the following:

A + (B x C) = (B x C) + A

A + (B x C) = (C x B) + A.
using CLM

What we have done, evidently, is to take the known identity

A + (B x C) = (B x C) + A,

to delete a portion of it [lamely one occurrence of (B x Cji , getting

A + (B x C) = + A,

and thereafter to insert into the "gap" (i.e. " ") another name [i.e. (C X

for the same thing.

Attempts to express this in English sentences can be clumsy; we shall make no

such serious attempt, but hope that our meaning is clear.

We can formulate this in moderately careful language if we assert, as a rule of

our logic, the Principle of Names (abbreviated "P.N."), namely:

P. N. : If, in any statement, open sentence, or identity

a name for a thing is replaced (in one or more occurrences)

by another name fcr the same thing, then the truth value

(of the statement), cr the truth set (of the open sentence)

will not be changed.
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We shall henceforth make this a rule of our logic. Note that, for most purposes

we permit quantifiers to appear implicitly rather than explicitly when we use P. N.

When in doubt, however, we pay careful heed to the quantifiers, or to the respective

truth sets and to the replacement sots for the variables.

iii) The "Rule for Substituting." We have, of course, previously established the

"rule for substituting," that requires replacement in every occurrence of a variable if

the replacement occurs in any. Note that this property sharply distinguishes replace-

ment for a variable as against P. N., where changes in one occurrence need not effect

other occurrences of the same original name.

iv) Use of a Variable. Whenever we replace a variable according to the "rule

for substituting," we call the process U.V. ("Use of a Variable"), and add this as a

permissable operation in our logic.

v) Reflexive Property of " = ". We agree that

= x

We note that this might be considered a consequence of our meaning for the

symbol " = " (i.e., as a restriction on how "names" may be assigned to mathematical

entities), or it can be added now as a rule of our logic, or (in fact) it can be inserted

as an axiom of our algebra (that is, 0 = 0 can be added to our list of identities).

With children in grades 3 -8, we have ordinarily pursued the third course (or,

rather, the children have elected the third course and we have gone along with this

o



1

choice). With the present class of ninth-graders, however, wo have preferred the

second alternative, and we add

x
x = x

as a rule of our logic (known, of course, as "R. P.E." for "reflexive property of

equal ity").

vi) Transitive and Symmetric Properties of Equality. We have similarly added,

as further rules of our logic, TPE and SPE, meaning, respectively,

If A = B and B = C, then A = C.

If A = B, then B = A.

We would write these as:

(A = B and B = C) 4 A = C

A = B B = A .

vii) A "Uniqueness" Axiom. In working with additive inverses and with multipli-

cative inverses, especially, it is convenient to have a rule of our logic which asserts

the following:

Let the set 3S contain exactly one element. Let

AeSs , and ietp .41 . Then names the

same thing thatp does, i o. ,

(In films of the Nerinx class, this rule of our logic is referred to as the "Principle

of Maureen," after one of the students in the class.)
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We then have a logic which consists of:

an interpretation of " = "

P. N.

R.P.E.

S.P.E.

T.P.E.

the "Principle of Maureen"

This gives us a rather systematic tool for reshaping statements, identities, and open

sentences. If it is not the elegant and formal tool of the modern logician -- and it is not --

then it can nonetheless quite properly claim to be a very considerable improvement on what

hc4 traditionally been done at the pre-college level.

We now have our logic, and it remains to select a suitable set of axioms for our

algebra.
1

13. Selection of Axioms and Theorems. The task of selecting axioms and theorems

is -- in principle, at least -- left up to the students. (The teacher does, of course, supply

considerable guidance.) In order for a statement or an identity to qualify as a theorem we

Two remarks might be made: first, we choose to separate our logic
from our algebra reasonably carefully; second, we have not defined what
constitutes a "legal name." Part of this latter task is handled via algebraic
closure axioms.
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must, of course, make a derivation for it, using the rules of our logic, and using those alge-

braic axioms which we have previously selected.

Throughout the course, the process of selecting axioms was continuous and cumula-

tive; so was the process of proving theorems. Certain "plateaus" could, however, be iden-

tified, as follows:

I. The point at which the class had a set of axioms for which the non-negative

integers were a model, and from which it seemed possible to prove many of the alge-

braic properties of the non-negative integers. These axioms were not, in fact, cate-

gorical, nor did they provide for order relations, although the students were not, at

this stage, aware of these limitations of the set of axioms which they had chosen.

II. The point at which the class had a set of axioms, generally similar to those

described above, dealing with the system of integers (positive, negative, and zero).

III. The point at which the class had a set of axioms dealing with rational

numbers.

IV. The point at which order relations were included.

V. The introduction of ("rational") complex numbers, by the use of 2-by-2

matrices, without additional axioms.

VI. The introduction of an axiom dealing with the topological completeness of

the real line (stated in terms of sequences), and the consequent ability to deal with

real numbers.
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These various "plateaus" will be discussed in the next few sections.

14. Axioms for the Non-Negative Integers. As discussed above, this was the first

"plateau." The class accumulated a set of axioms that appeared powerful in their ability to

generate theorems concerning the multiplicative and additive algebraic structure of the posi-

tive integers. These axioms did not, in fact, provide a categorical description of the positive

integers, and they omitted order relations, but the students were not, at this point, aware of

these shortcomings in the set of axioms which they had chosen.

The axioms were:

i) closure: If A and B are "legal" names, then A + B is a "legal" name.

If A and B are "legal" names, then A x B is a "legal" name.

ii) CLA: 0 ÷ A = A + 0

(or, alternatively, Vx (y X + y = y + x)

iii) CLM:

iv) D. L. :

OxLS =.8xO
(or, S'X Vy x y = y x)

Ox(A-FV) = (0 xa) + (OxV)

(vx vy v. x . (y + z) = (x . y) + (x . z) )

v) ALA: 0 4- (a-FV) =

vi) ALM: 0 x (ax V) = (Oxa) x c7



Chtl =

(i.e., 3 an element 1 x 1 = x)

viii) ALZ: + 0 = 0

(i.e., -3 an element 0 x + 0 = x)

1

ix) MLZ: 0x0 = 0

(ie I VX I
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[c) (not added until later, when the class was considering "models of axiom

systems"):

1 0

This axiom moved us one step further toward a categorical description; it was

needed for certain later proofs, and was recognized by the class at that time]

Definition: The usual numerals shall be defined recursively, according to the pattern

1 + 1 = 2

2 + 1 = 3

3 + 1 = 4

4 + 1 = 5

1 It was later recognized by the students (probably from collateral reading)
that "WIZ" is, in fact, a theorem. It is not, however, one which students
easily identify as such, anirecWprove.
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From these axioms it is easy to prove theorems such as these:

Theorem:

Theorem:

0+0 = 2x0

(0 +6) x (0 +6) = (0x + +6) x + (6x A)

(where we have omitted one set of parentheses on the right hand

side, by introducing a suitable convention, namely

a + b + c

shall mean

(a + b) + c

Theorem: 6 + 3 = 9

Theorem: A + (B x C) = (C x B) + A

Theorem: (A + 8) x (C + D) = (D + C) x (B + A)

The preceding (with one obvious exception) are to be regarded as identities.

Even at this stage students can begin to get a feeling for algebraic structure. As the

selection of axioms proceeds further, they come to get a real feeling for the use of axioms

in opening up new algebraical structures.



15. Axioms for the Integers. To the preceding list of axioms we now add this:

Existence of Additive Inverses (also called "Law of Opposites";

unfortunately the word "opposite" appears to have too many non-

mathematical connotations):

x the open sentence x + 0 = 0 has

exactly one element in its truth set. One name for

this element is °x .

We now define "subtraction":

def

It is now possible to prove such theorems as:

Theorem: °(°A) = A

°(°A) = A)

Theorem:
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(0 -1-1.) x (0A) = (Ox C) (axa)

(x )1) (x y) = Y).

or, using exponents, Vx V (x + y) (x y) = x1y

Theorem: 5 3 = 2
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As a result of our new axiom, wo (may) now have some new numbers. To help us keep

track of them, we introduce some now symbolism:

0 = 0

+2 = 2

+3 = 3

°(+0) = "0
o(+1)

(+2) = "2

o(+3) -3

Notice that we do not yet have the Law of Trichotomy; many different models for

this axiom system exist, and +10 may name the same number that "2 names (to cite one

obvious example). We do not yet have "positive" and "negative" in the sense of an order

relation. This will appear presently.

16. The Algebra of Matrices. The present brief outline of the course has not followed

the actual time sequence of the Nerinx Hall class. At a much earlier point in the course we

had introduced the addition and multiplication of matrices. This presentation followed the

Madison Project publication entitled "Matrices, Functions, and Other Topics," and so will

not be discussed in detail here. Suffice it to say that the students could add and multiply

matrices, and were in the habit of using matrix algebra as a contrast against the algebra of

real numbers, as this latter gradually unfolds. Thus, for example, CLA is valid for both

systems; CLM holds for real numbers but not for matrices; D. L. holds for both; so does the

existence of additive inverses (however, the search for matrix analogues for 0 and 1 is
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exciting!). Surprisingly, ALM holds for both.

Moreover, the correspondence

A 0

A
)4----1) A

introduces the first "operationally valuable" instance of an isomorphism. By exploiting this

later, we shall deal with

and even, to a limited extent, with

X = 1.4

As we shall see, subsequent work on simuRaneous linear equations will draw on matrix

algebra; and some of the work in trigonometry might have done so, but happened not to.

The picture of Ea as a linear vector space began to emerge from the work with matrices, as

did the picture of the complex plane.

However, one of the greatest values of the system of 2-by-2 matrices was the impor-

tant role that it played, alongside modular arithmetic, in providing examples for our dis-

cussions of "models for an axiom system."

17. Models of Axiom Systems. As the course progressed, it was the natural point of

view of the students to believe that our "careful, legal axiom systems" described some thing

or some things.
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The question then arises: how many mathematical systems satisfy these axioms?

At the first level, if we retain all of our axioms (as stated above) for the non-negative

integers, except that we discard CLM, then we can find many quite different mathematical

systems for which the axioms hold. Major examples are:

the system of non-negative integers

the system of (all) integers

the system of rational numbers

the system of 2-by-2 matrices

"clock" arithmetic on a 12-hour clock

"clock" arithmetic on a 5-hour clock.

Moreover, prior to stating the axiom that

1 # 0,

the axioms were satisfied by a system with a single element, where every "legal" name was,

in fact, a name for 0.

At the second level (all integers), provided again that we temporarily suspend CLM,

all of the structures cited above are still models, except for the first one, which does not

admit additive inverses.

Not only did the discussion of models lead to the axiom

1 o,



but it also led to the following axiom:

"pq = 0 Axiom": pq = 0 (either p = 0 or q = 0),
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From this point on, then, we shall regard CLM and the "pq = 0 Axiom" as being in

force, thereby ruling out the system of 2-by-2 matrices (but notice that certain subsets of

the set of 2-by-2 matrices are still valid models!), and ruling out modular arithmetic

modulo any non-primo integer.

18. Order Axioms. Before proceeding far with rational numbers, we shall need to

be in a position to show that various things are not names for zero. At present our ability

to do this is most severely limited; moreover, as our models show, the limitation is not in

our logic, but rather in the algebraic axioms themselves. We remedy this forthwith: in

effect, we "unroll" our various "clocks," and require them to lie out flat like a properly-

behaved number line.

The process of doing this, as we shall see presently, involves us in one of the subtlest

or most intricate logical situations that is ever encountered in the entire course.

Our general approach will be to describe an adequate order relation axiomatically.

Appealing to our background in models for axiom systems, we shall then ask whether, in

fact, our existing mathematical systems can be made to admit of a model for our ordering

axioms.

For the axiomatic description of an adequate" or "reasonable" ordering system, there

are several standard approaches. One (cf. E. E. Moise Elementary Geometry from an
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Advanced Standpoint, Section 1.4, p. 10 ff) states axioms on a relation ".<," and there-

after defines "positivity" and "negativity" in terms of "< ." The other common approach

(cf. Birkhoff and Mac Lane, A Survey of Modern Algebra, 1944 edition, p. 7) reverses this

procedure, gives an axiomatic description of "positivity," and from this proceeds to define

the relation " (and, of course, "negativity").

For convenience of comparison, we display these two approaches side-by-side:

Axiomatic Description of igc,

0. If andp are any elements of our

03 11Axiomatic Description of "

0. 0' is a set of elements of our mathe-
/

mathematical system, then matical system .

< p
is a statement, and is either true or

false.

1. (Addition axiom) 1/. 64) is algebraically closed under

(a < b) a + c < b + . addition: that is,

(01 E. Op and 16 e OD)

+ p cP.
2. (Multiplication axiom) 2 y is algebraically closed under

(a ` 0 and b > 0) a b > 0. multiplication:

( e 6° and

i.e.,

-e
0))

140' C. P.
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3. (Law of Trichotomy) If c( and 3: (Law of Trichotomy) If (2) is any

are any elements of our system, then element whatsoever of our mathe-

one of the following statements is matical system, then one of the

true, and the other two statements following statements is "True" and

are false: the other two statements are "False":

i)

ii)

iii)

4. Transitivity:

< p and < < y

i) E

in c,j = 0
04 6c,

We now define the set (of The elements of 6) will be called

"axiomatically positive" elements) by "axiomatically positive."

saying: The elements <11 ) Oci CP

E IT) 4-4 < will be called "axiomatically negative."

The set (Y1, of "axiomatically nega-

tive" elements is defined by:

(gN 6 < 0),

The statement ?f < shall

have the same truth value as the statement

E

i.e., Or < g)f-9( 6 0)
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Notice that these two approaches are in fact equivalent. The correspondence of

Trichotomy is obvious. From

a<b o+c

together with the transitivity of " < ," we easily get that is algebraically closed under

addition:

To prove: (0 <01 and n_ < p) 0 <

Proof: o

0 < p
0 + 0 < o

o < +

by transitivity,

0 + 0 < p .

Q . E. D. (CLA and ALZ being assumed)

It is also obvious that 2 implies 21. Consequently, (1, 2, 3, and 4)--y(1/, 21, and 3 ).

Converseley, 31-9..3 and 2 are immediate. Axiom 1 follows from the defi-

nition of " < ," certain algebraic axioms being assumed 6o that (b + c) - (a + c) = b -
That 11 implies 4 is also immediate, since (b - a) + (c - b) = c - a.

We shall use the axiomatic description of (Ps Here We encounter an interesting situ-

ation (cf. T. M. Apostol, Calculus, Vol. I, p.16): we have the notion of "positive" in two

different senses. We have agreed that the elements of any subset 0) of the set of elements
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in our mathematical system deserves to be called "axiomatically positive" if 0) satisfies the

axioms above. But, returning to our basic mathematical system, we already have a set of

elements called "positive," namely 1 (or +1), 2 = 1 + 1 (or +2), 3 = 2 + 1 (or +3),

Now, the question is, is the set

{.1, 2, 3, 4, .)
a legal candidate to be , the set of "axiomatically positive" elements?

If so, then haven't we had (Pall along, so that adding the order axioms on 0) has,

in fact, really added nothing whatsoever?

A consideration of various models of our axiom system makes it clear that we have,

indeed, added something further to our description when we add the order axioms, for they

(and they only) rule out the finite fields represented (for example) by the 7-hour clock.

But if, say, we add Axiom 31 to our previous list of axioms, the set

(1, 2, 3, 4, )
is already defined, and the "Axioms" 11 and 21 should apparently be theorems. Are they?

We did not try to resolve this question with the 9th graders. One approach might have

been via the introduction of mathematical induction. We did not pursue this further with the

Nerinx class.

If we add Axioms 0/, 1/, 2/, and 3 to our list of axioms (even realizing that there

lurks here the possibility of either redundancy or contradiction), we can prove all of the

theorems that we require.

For example, we can prove that 7 # 9.
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Proof: 1) 7 + 1 = 8

2) 8 + 1 = 9

) Note use of P.N.
93) (7 + 1) + 1 =

4) 7 + (1 + 1) = 9

5) 7 + 2 = 9

6) Hence (various steps omitted here), 9 7 = 2

7) 2 E

8) 9 7 (Note use of P.N.)

9) 7 < 9

10) . 9 4 7 (by Law of Trichotomy)

Q . E. D.

Notice that (as a consideration of various models for our axiom system at various

stages of its development shows), it has not always been true (at some earlier stages of our

axiom system) that 7 was necessarily different from 9. At various earlier stages it was quite

possible that "7" dkl name the same element that "9" named.

Consequently, we surely have added something additional to our description when we

added the order axioms. To look at it another way, we have gained many additional

theorems (one of which is: 7* 9).
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19. Axioms for the System of Rational Numbers. Since we are now in a position,

thanks to the order axioms, to be able to tell when we do (or do not) have a name for 0,

we can proceed to axioms for the rational numbers.

This extension, using "division," parallels precisely our earlier extension to the

system of integers, via additive inverses. Evidently, the key axiom here will be:

x o
the open sentence x 0 = 1 has a truth set

that contains exactly one element. One name for this element

shall be:

x .

(As an alternative notation here, we can write:

let c7x denote the truth set for the open sentence

x 0 = 1. Then

and

We now define "fractions" -lb to mean

axrb,

and we define division in the same way:

= x r

We can now easily prove such theorems as:



Theorem: 4 2 = 2

Theorem:

Theorem:

and so on.

a c ad
T3-7 =

ad + bc
bd
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20. The General Ouadratic Equation. Our development here is fairly well docu-

1

mented in three films.

2The underlying idea follows Polya's approach to problem-solving, which might be

paraphrased roughly as the construction of a suitable sequence of questions which the would-

be problem-solver poses to himself, such as:

What do I already know about this topic?

What does this remind me or

What changes in the problem would make it easier? What changes would

make it harder?

What parts of the problem seem to be making it difficult? What parts are

unfamiliar to me?

1 The films are: Derivation of the Quadratic Formula -- First Beginnine,
Derivation of the Quadratic Formula -- Final Summary, and Quadratic Equa-
tions.

2 George Polya How to Solve It, Doubleday, 1957.
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Now that I have solved such-and-such a problem, whore can I go from

hero? How can I extend my solution? How can I extend my method? Where

else can I use my method? What now problems can I reduce to this one that

I have now solved?

Following such a sequence of questions, the students follow a familiar and "traditional"

approach to the quadratic formula, namely, the derivation by "completing the square."
1

The expected sequence goes like this:

0. We want to solve quadratic equations, by a powerful general method if we

can find one.

1. Let's try some easy quadratic equations. Do we know any?

Yes: xl = 4 The truth set is f+2, "21.

2. Can we extend this?

1 Cf. Robert B. Davis, "Solving Problems and Constructing Systems

Quadratic Equations and Vectors," Report of an Orientation Conference for
SMSG Experimental Centers, Chicago, I linois, Septem er 19, 1959, pp. 97-101;
CirsT,Mile pert B. Davis, Matrices, Functions, and Other Topics, Student Discussion
Guide, and Matrices, Functions, and Other Topics, A Text for Teachers, The
MaMon Prolia",-19637

OVUM
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Yes: x2 = p The truth set is (lip-, (4715"), provided that we can

find a square root of p._

3. When can we find a square root of p'?

i) We can find If; if p E (0, 1, 4, 9, 16, .1

ii) We can find 113 (by using matrices) if p E f.-1, -.4,

a2iii) We can find lir if p = , where a and b are integers (and,

obviously, b # e).

iv) Otherwise we have trouble. We'll leave this for the moment, and

come back and think about it later.

4. Can we extend our method for x2 = p?

Yes: (x - 1)1 = p requires x 1 E fvfr, td, hence

x E fvic Ric +

5. Can we extend this?

Yes: The "1" was not crucial. (x - a) = p has the truth set

'4- '1' 03.

6. Are we now able to solve all the quadratic equations in the world? Are

there any that we can't solve (immediately, that is)?
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There are others: we can't (immediately) solve

- 8x + 16 = 49 ,

2
X was WC *T" 12 = 4 .

7. Can we reduce either of these new problems to our already-solved form

(x = p?

Yes: For xt - 8x + 16 = 49, we can use P. N. to delete the left-

hand side

= 49

and to replace it by (x - 4)1. :

(x - 4)2 = 49 .

This is justified because of the identity 1

x - ux -r 16 = (x - 4)1 .

1 In the Nerinx Hall class, a girl named Mary Catherine both devised
these identities, and used them to solve this particular problem. This was a
significant "technological break-through" -- or "historical break-through."

All of the students appreciated the importance of this break-through.
We (the teachers) are interested in the fact that this kind of "discovery"
course in effect brings mo'i'hematical history into the classroom. All of these
students really know wh-GITEIGircll brook-through means. They have lived
through it. They know the pre-dawn doubts: Have we reached the limits?
Is it possible to go further? Then they have seen the tentative new sugges-
tion, and gradually grasped its relevance and its utility.

We (the faculty) often found the history of mathematics a meaningless
recital of names and (slates. For these students, the history of mathematics
describes something they have lived through, themselves. Is this the deepest
value of this kind of "discovery" course, that it gives us a deeper and personal
perspective on our cultural heritage?
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Now, the equation

is of tha form

(x 4)2° = 49

= pi

and we can write the truth set by a mere replacement of variables (U.V.):

The truth set

then becomes

which is, evidently,

ie.,

4 .4 a
49 p

tiq a, 417 + al

{'NO + 4, 942-1§- + 4)

7 + 4, + 4)

8. Will Mary Catherine's method work for the equation

6x + 12 = 4 ?

No, not directly, because we can't find a "Mary Catherine"-type

identity

xt 6x + 12 = (x a)
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9. When can we find a suitable "Mary Catherine"-type identity?

Answer (given by Regina): For the expression

Ax + B ,

we can find a suitable "Mary Catherine" identity if and only if

10. What can we do about the equation

xa 6x + 12 = 4 ?

Answer (given by Kathy):

6

31 = 9

12 9 = 3

Subtract 3 from each side of the equation. (This depends, of course,

upon earlier work on "equivalent equations" and "transform operations."

It is easy to complete this chain of reasoning. In the Nerinx Hall class, a

major contribution to the final answer was made by Clare.

1
Robert B. Davis, Discovery in Mathematics: A Text fcr Teachers,

Addison-Wesley Publishing Co., Reading, Massachusetts, 1964, pp.139-153.

1
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What precedes was the line of attack expected by the teacher. As can be seen in the
0111

films, it did, in fact, occur with three different classes (grades 5, 7, and 9). However,

with the 9th grade class, in addition to this approach, the students devised an alternative

approach. If the approach above is describod as predominantly algebraic, the alternative

approach might be described as an analytic geometry approach. It was invented mainly by

Regina.

Regina's geometric method:

Let Q(x) be a quadratic expression of the form

Q(x) = + B.

Then the graph of

y = Q(x)

will be a parabola in what we might call the "hanging cable" position:

N

Now, to solve the quadratic equation

Q(x) = p,

graph y = Q(x), and (on the same axes) graph

=

....+0
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and find the x-coordinates of the points of intersection.

Will Regina's geometric method always work?

1) It will produce two roots if the parabola and straight line intersect in two

points with rational co-ordinates:

2) It will produce one root if the parabola and straight line are tangent:

3) It will produce no roots if the parabola and straight line fail to intersect:

(The teacher, perhaps unwisely, told the class that this case corresponded to

the need for matrices -- i.e., complex numbers.)
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4) The most interesting case occurs when the parabola and straight line inter-

sect in two points whose precise x-coordinates keep eluding our search. For example,

6x + 10 = 6.

parabola: y = xt 6x + 10

line: y = 6

0 10

1 5

2 2

3 1

4 2

5 5

If we seek the x-coordinate for the left-hand point of intersection, we see that

x = 1 is too large

x = 0 is too small.
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1We can try 7 as a replacement for the variable x;

cz(T) + 10 = 10-7 - 31 6 1

4
11

1and so, by looking at the graph, we seo that -2- is too small a value for x (we are

evidently to the left of the actual point of intersection).

At this point we really brought a significant piece of mathematical history into the

classroom, and enacted it as a living reality. We became involved in the most exciting

mathematical argument the author has ever witnessed in any of his classes. We re-lived the

ancient Greek 'VT controversy.

21. The Ancient Greek 1/-2 Controversy. Pat, looking at the earlier algebraic

1

isolutions dentified this as the task of finding a number whose square was 5. She pointed

out:

2 is too small, since 21 = 4 < 5

3 is too large, since 31 = 9 > 5

2.5 is too large, since 2.5 1. = 6.25 > 5

2.1 is too small, since 2.11 = 4.41 < 5

1 For the equation x2' 6x + 10 = 6, subtract 1 from each side, to get
x°' 6x + 9 = 5, or (x 3) = 5.



2.2 is too small, since 2.22 = 4.84 < 5

2.3 is too large, since 2.32. = 5.29 > 5

and so on.

Pat argued that the "correct" answer would continue to elude us; we could never find

a number r such that

r% = 5.

Nancy F., thinking of the geometric picture, argued that there clearly was a point of

intersection of the parcbola and the straight line, and that it must have some x-coordinate.

Probably every girl in class chose sides in this argument, though some occasionally

shifted on what seemed to be the weight of new evidence.

Where, after all, did this "parabola" come from? First we grcphed integers, then

fractions -- then we drew a smooth line through them. Were we entitled to? Did we, at
NONNI

this step, fill in lots of little "holes," without any justification for doing so?

The teacher used the pattern

A b 46,1 El

tyvi AI
to establish the Theorem of Pythagoras for isosceles right triangles (evidently mainly a geo-

metric matter). Hence the Greeks had a geometric reason for believing that there existed

a number s such that

= 2.
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We then used a standard algebraic argument to show that, p and q being positive

integers,

P"
2

q
2

led to a contradktion. Thus the Greek's had an algebraic reason for believing that there

did not exist, within Greek arithmetic, any number whatsoever such that

= 2.

We had paralleled the Greeks precisely.

They were led -- it is said -- to drink hemlock. What should we do?

Nancy 0. contributed a major break-through, but one whose implications are hard

to discern, by translating

via isomorphism, into matrix language

(A B

C Di

and solving it (1) with the matrix

x
3. = 2,

(A

C

B 0

D

\
0 2 )

0 2 \

1 0)

(Anyone interested in following the contributions of individual students should observe

that "Nancy 0. * Nancy F.")
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The further pursuit of this controversy led us to consider the smallest integer that was

A
too large, the largest integer that was too small, the smallest number N + To that was too

large, etc thereby getting two sequences,

2, 1.5, 1.42, 1.415,

1, 1.4, 1.41, 1.414,

Now, if A and B are any sets, if A < B, and if n( 0( ) is any numerical attribute of

o{ , then it must be true that

max n( o( ) < max n(0( )
cs( E A 0( E B

i.e., the richest person in this building is at least as rich as the richest person in this room.

In this way, one sees that the first sequence

2, 1.5, 1.42,

must be monotonically'cletreasing (that is,

Vn un un+ )

because it depends upon minima, and the other sequence must be monotonically increasing

(i.e.,

We now turn to the study of monotonic sequences.



cf.)

22. Monotonic Sequences. By considering various examples, and in particular by

trying to fill in every triangular cell in the classification scheme

bounded above not bounded above

monotonical ly
increasing

...........0.0/IWIMP...

convergent

divergent

convergent

divergent

monotonically
decreasing

convergent

divergent

convergent

divergent

the students were lead to conjecture that "every monotonically-increasing sequence that is

bounded above converges," and "every monotonically-decreasing sequence that is bounded

below converges."

After some thought, a student (very wisely indeed) conjectured that "algebraic" axioms

such as CLA, DL, etc., could never suffice to prove these exciting new statements.

Consequently it was decided, for the time being at least, to add these two new state-

ments as two new axioms.

From this point it was possible to settle the 1r2. controversy, and to discuss the system

of real numbers. A completely adequate theory of limits of infinite sequences had to be

1deferred until next year.

1

Cf. , however, the experimental film Limits.

dv
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23. Convergence. It might, however, be worth a remark or two about the approach

to convergence that was used. In the first place, the actual word "limit" was never intro-

duced nor used, since in our experience it has many connotations which mislead the intuition,

rather than aiding it. Ninth-graders do not have the sophistication of Lewis Carroll, to say

"it is a question of who is going to be boss [ihe word or

Since, however, the task for the class (as it was historically for Newton, Euler, and

Cauchy) is to use one's intuition as a foundation on which to build a more formal treatment,

we used the following approach, in order to clarify intuitive ideas as much as possible:

For any sequence made up by himself, or by the class, the teacher either assigned an

ISassociated number, " or else said that he refused, and labelled the sequence divergent. To

give some examples:

sequence

1 1

.1

11 0.
-5.1 41 51

0.9, 0.99, 0.999,

11 01 1, 0, 1, 0, 0

associated number

0

1

none (divergent)

1, 1, 1, 1, 1,
.

1

and so on.

This brought the activity into a framework often used before by these students: you

are to guess "What's My Rule?"

As student guesses revealed part, but not all, of the truth, the teacher proposed new

sequences as counter-examples, thereby continuing the process of refining the formal verbal

statement.
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24. Simultaneous Equations. Actually, the work on infinite sequences closed the

year's course, but we shall now go backwards in time and mention various other topics that

had been treated earner.

One such topic was simultaneous equations, especially two equations in two unknowns.

Various approaches were used, especially via graphs and intersecting lines, and via matrix

inversion. For the actual task of matrix inversion itself several different approaches were

again used,

25. Isomorphism. The use of the concept of isomorphism has been discussed above;

we list it here for emphasis. This is, above all, a useful concept that aids in the solution of

many Oroblems (cf., for example, some of the earlier versions of the UICSN't materials, in

relation to the "bookstore" problem).

26. Linearity and Convexity. One of the common errors of college freshmen is to

replace

by

or to assume that

sin 2x
2x

sin x

sin (A + B) = sin A + sin B



or

'VA + B = ALT +ART.

In an attempt to clarify this issue, we spent some time on linearity and convexity,

especially via graphs, and in relation to examples from physics, the "law of diminishing

returns" in economics, etc.

27. Transformations or Mappings. The general concept of transformation or mapping

was presented in various forms, including:

isomorphisms between number systems

isomorphisms between number systems and matrices

geometric mappings of E > E

simple substitution ciphers, where the set a of all letters of the alphabet

was mapped onto itself

mappings of V x V ---> V, where V {T,F }, as discussed above in the

section on "Logic."

As an example of this "code" technique, which proved popular, we might obtain a

cipher from the mapping



a 4

"::,Z.""

28. identities in the Distance Function d(P,Q). This topic was presented by asking

the students to make up identities involving d(P,C), where P and Q are points on the

number line.

Most of the standard results were obtained from student lists, including

d(P,Q) =

d(P,Q) =

d(P,Q) 0

d(P, P) = 0

(P ---> d(P,Q) # 0

29. Complex Numbers and the Complex Plane. As mentioned above, the extension

of the rational number system to the "rational" complex number system was achieved by

using matrices, and preceded any discussion of irrational numbers. The isomorphism



(A
< > A

A

permits us to rewrite the equaHon

= -4

as

A rational
110111M

B

C DB ) (-40 o4)

for whkh

is an element of the truth set. So also is

/Own.
OWN*

We introduce the notation (where c,{ is a rational number)

c.4

and the symbol

(A B def. A B)

\C D C dD

0

volving closure, we are dealing with the system

A and B rational.

B

A



We now try to use the matrices of this last form above to name points in E.

The use of
( 0 0

\ 0 0

at (0,0), and of
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(A 0
at (A,0) is obvious. Once

A

we elect to use A as a name for (0,1), the die is cast. All other correspondences between

matrices of the form

(A B

A )
and points of E.3. are now determined.

Addition of such matrices has the obvious geometric meaning of vector addition:

and the question arises, how about multiplication?

This latter question can be regarded as a question in empirical science, and we can

formulate "experiments" (i.e. , select specific products to work out) from which we hope a

general picture will emerge.

If the students knew the "double-angle" identities in trigonometry, they could, of

course, settle the matter of multiplication completely. At this point in the course, the

Nerinx students did not know these "double-angle" identities.

30. Extensions of Definitions. What we mean here is essentially the celebrated
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IIcorrespondence principle" of quantum mechanics, or a primitive analog of "analytic con-

tinuation" in classical complex variables. 1

An effective tool for introducing the subject is David Page's "Maneuvers on Lattices."

This goes as follows:

First, we draw part of an infinite array:

21 22 23 24 25 26 27 28 29 30

11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 3 9 10

Then we tell the students that

21 -4

is the name of a number; we ask them to find a more familiar name for this number (note

that we have not told them what 21 --> means). They respond with

21 > = 22

which is what we had hoped for.

The students then work out these names:

25 = 15

16 ,-7/ = 27

Cf. Eves and Newsom, An Introduction to the Foundation and
Fundamental Concepts of Mathematics, Holt, Rinehart, and Winston, 1964,
pp. 120-121, concerning the work of George Peacock.
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27 \I = 18

18 --> = 20

8 4 = 7

5 < = 14

and so on, working intuitively and with no official meaning for these new symbols.

We note many standard algebraic laws, such as:

15,--> = 15

16 -0 = 16

5 = 5

3 -4 -4 = 4

103 -4 -4 -> = 104

and so on.

We have still not said what we mean by these new symbols.

Still worldng with each individual student's intuitive and unverbalized notion of what

-4 I , etc., mean, we note certain apparent laws:

i) ("inverses") 5 5 5 = 0 -4 etc.

ii) ("vector addition") 0 .2r =01\-3 or

e otc.



and

SO

iii) ("commutative") 0 = 0 1

But wait!, Do these "laws" really hold? Surely

5 > =

5 -4 -3 -4 -4

5 .4_4 _4 -> = 5 _.>

However, suppose we replace the variable D with 9, rather than 5. Then

9-4 = 10,

and what does

9 > --4

-67-

mean?

At this point we ask students to verbalize their various meanings for 4, 1', etc.

Fortunately, it has always happened in our classes (perhaps because the predominantly geo-

metric orientation of this topic has introduced a psychological "mental set") that most

students speak in terms of actual motions on the lattice array of numerals. This definition,

which we hoped for, has the pedagogical advantage that it breaks down when we reach the

end of the array, and will require suitable extension.

What shall we mean by

10 4

Various commonly suggested answers:

10 ---> 0 (when you "fail off the edge," call it zero)

10 --> = 10 (when you can't move, stay put)



10 = 20 (when you hit a boundary, go up)

10 = 1 (the array is wrapped around a cylinder)

10 -4 = 11 (the array is wrapped spirally around a cylinder, like a barber pole)

II means "add 1," " I " means "add 10," u means "subtract 10," " "11

means "add 11," etc. (this always worked in the interior of the array, and it still makes

sense at the boundary).

These various suggestions can be checked against what happens to our "laws" such as

O -4> -4 4- = 0 -4 -4

O 7.V- =

O -41`2= 07-0
and so forth. The desirable features of a legitimate extension of a definition can be illus-

trated clearly.

This notion of the "extension of a definition" can now be brought to bear upon:

ni) exponents: am an am + , etc., as we go beyond positive integer

exponents.
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ii) the definition of 01

iii) trigonometric functions for 909 < CD or 0.

iv) (if the students are ready) summability of infinite series by Abel summation,

Cesaro summation, etc. (not done with the Nerinx Hall class)

v) the arithmetic of signed numbers.

We illustrate this last instance in more detail:

We assume that the arithmetic of positive integers is already established. We also

assume that, using only integral values, the discrete linear graphs are already familiar;

that is, for example

(3 x =

with the discrete graph (for integral values)
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We shall extend these straight-line patterns to include points in all 4 quadrants. The

identification of the proper graph can be carried out independently of the process of multi-

plication, by extending from a few established cases, and by construing " -1" to mean

"down" if " +1" means "up" (as has been done earlier on the number line).

We now define fm(x) to be the function obtained from the graph, through (0,0), with

the pattern "over one to the right and up m." This can be read from suitable graphs, and

can be done independently of multiplication.

We now define

m x n

to mean

fm(n).

It is now simple to verify that, for familiar cases, we get familiar answers

f1(3) = 6

f2.(2) = 4

fl (5) = 5

fs(1) = 5

fa(2) = 6

and so on. It is also simple fro use this extension to get "new" results:

f (-1) = +1
.

and so forth.

This use of graphs as a foundation for multiplication was suggested by Professor Paul

Rosenbloom, of the University of Minnesota. In the present course it is not the only approach

to the arithmetic of signed numbers, but is used alongside "models" ("pebbles-in-the-bag"

and "postman stories"), and alongside a carefut axiomatic approach. 1

1 Cf. the Madison Project film entitled Negative One Times Negative
One Equals Positive One, the film A Lesson with SeconcaZI---F--1t e
film Postman Stories.
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How is the present course different from other "modern" ninth-grade "algebra"

courses?

In general, we believe it differs in these respects:

0 the inclusion of the study of infinite sequences, and the use of bounded mon-

otonic sequences as a foundation for irrational numbers

ii) the inclusion of matrix algebra

iii) the emphasis upon an axiomatic approach

iv) the "developmental" approach by which sets of axioms are gradually modified

as new needs arise or as new potentialities come into view

v) the inclusion of logic

vi) the inclusion of laboratory experiments, and a statistical approach to meas-

urement problems

vii) the emphasis upon co-ordiante geometry

viii) the unusually high degree of student participation, and the emphasis on stu-

dent "discovery" (e.g., the students choose the sets of axioms, subject to argument

by the teacher)

ix) the considerably faster pace of moving ahead.

Obviously, it is for each teacher to decide on such matters for himself. However,

we believe there is enough difference to justify one additional version of ninth-grade

algebra.
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Appendix A

The Supplementary Algebra and Geometry Pro ram,

for Grades Two Through Eight

The Madison Project's supplementary algebra and geometry program for grades two

through eight is presented in four books, and in a sequence of films. The books are:

Robert B. Davis, Discovery in Mathematics: Text for Teachers, Addison-
Wesley Publishing Co., Reading, Massachusetts, 1964.

Robert B. Davis, Discovery in Mathematics: Student Discussion Guide,
Addison-Wesley Publ is ing Co., Reading, Massac usetts, 1964.

Robert B. Davis, ivlatrices, Functions, and Other Topics: Text for Teachers

(available from The Madison Project, Webster College, Webster Groves,

Missouri, 63119).

Robert B. Davis, Matrices, Functions, and Other Topics: Student Discussion

Guide (available fi--7)77ri T le Madison Project, Webster College, Webster Groves,
ivlissouri, 63119).

The films are:

A Lesson with Second Graders

First Lesson (grades 3 7 in an "ungraded" class)

Second Lesson (grades 3 7 in an "ungraded" class)

Graphs and Truth Sets (2nd graders)

Experience with Fractions: Number Line and String (2nd graders)

Accumulating a List of Identities



r

Average and Variance (6th graders)

Axioms and Theorems (6th graders)

Complex Numbers via Matrices (7th graders)

Circle and Parabola

Dividing Fractions (4th graders)

Education Report: The New Math (grades 2-7)

Experience with Area

Experience with Empirical Probability

Experience with Fractions

Experience with identities

Experience with Linear Graphs

Experience Estimating and Measuring Angles

Experience with Angles and Rotations

Graphing an Ellipse (7th graders)

Introduction to Truth Tables and Inference Schemes

Limits (8th graders)

Matrices (5th and 6th graders)

Postman Stories (6th and 7th graders)

Derivation of the Quadratic Formula -- First Beginnings

Derivation of the Quadratic Formula -- Final Summary

Solving Equations with Matrices (6th graders)

Weights and Springs
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Appendix B

Partial Listing of Madison Project Personnel

Director: Professor Robert B. Davis, Syracuse University and Webster College

Associate Director: Professor Katharine Kharas, Webster College

Research Associate and Senior Film Editor: Beryl S. Cochran, Weston, Connecticut

Film Producer: Morton Schindel, President, Weston Woods Studios, Weston, Connecticut

Co-ordinators for Syracuse University:

Vice President Frank Piskor
Professor Donald E. Kibbey

Co-ordinator for Webster College: Sister M. Jacqueline, S.L.

Director for Early Childhood Education: Doris M. Diamant

Co-ordinator for Physical Sciences: Professor William Walton, Webster College

Special ist Teachers:

Donald Cohen
Gordon Bennett
Lila Page
Frank van Atta
Knowles Dougherty
Sophie Ciola
Marilyn de Santa

Project Fiscal Officer: Roy Hajek

Administrative Assistant: Martha Bowen

ivtanuscript Production: Bernice Talamante

Design: Peter Geist
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Mathematics Advisory Panel:

Professor George Springer, University of Kansas
Professor E. E. Moise, Harvard University
Professor Gail Young, Tulane University
Professor Robert Rosenbaum, Wesleyan University
Professor Alvin N. Feldzamen, University of Wisconsin

Special Advisor on Mathematical Logic: Professor Robert Exner, Syracuse University

Project Psychologists:

Professor Carl Pitts, Webster College
Herbert Barrett, Weston, Connecticut Public Schools

Special Psychological Advisor: Professor Richard de Charms, Washington University

Special Advisor on Education and Measurement: J. Robert Cleary, Educational Testing
Service, Princeton, New Jersey

Significant influence on Project work has come from the following persons, not offi.

dial ly associated with the Project:

Professor Andrew Gleason, Harvard University
Professor Stewart Moredock, Sacramento State College
Professor Jerrold Zacharias, Massachusetts Institute of Technology
Professor David Page, University of Illinois
Professor Max Beberman, University of Illinois
Professor Robert Karp lus, University of California (Berkeley)
Professor David Hawkins, Educational Services, Incorporated
Paul ivierrick, Educational Services, Incorporated
Professor Marshall Stone, University of Chicago
Professor R. C. Buck, University of Wisconsin
Professor Paul Rosenbloom, University of Minnesota
Professor Gerald Thompson, Carnegie Institute of Technology
Professor Erik Hemmingsen, Syracuse University
Professor Patrick Suppes, Stanford University
Professor George Polya, Stanford University
Professor Warwick Sawyer, Wesleyan University



Professor Paul Johnson, University of California (Los Angeles)
Dr. C. Brooks Fry, M.D., Los Angeles Public Schools
Dr. Carol Fry, ;v1. D., University of California (Los Angeles)
Professor Jerome Bruner, Harvard University
Professor Jerome Kagan, Fels Research Institute
Professor Francis Friedman, iv1assachusetts Institute of Technology

Dean Lawrence Schmeckebier, Syracuse University
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Appendix C

Identification of Classes That Appear on Films

The Nerinx Hall ninth-graders who took the course described in this report had no

previous history of Madison Project work, nor of any other "new" mathematics curriculum.

This, however, is somewhat unusual in Project work. In genoral, the Madison Project

attempts to follow the same students for as many years as possible. Any serious differences

among curricula must surely relate to long-term differences in student growth and attitudes,

rather than to short-term effects. In order to help identify the various classes, they have

been designated by letters. A portion of this listing is included here:

Class A. Began study of Madison Project materials in 5th grade, during the 1959-1960

academic year. In June, 1964, they are 9th graders.

Name tags read: "Lex," "Bruce," "Geoff," "Jeff," "Ann," "Sarah," "Debby H.,"

"Ellen," etc.

In grade 8 this class studied the limit of a sequence, and made the experimental film

entitled "Limits." Other films: Graphing an Ellipse and Complex Numbers via Matrices.

Class B. Began the study of Madison Project materials as 4th graders, during the

academic year 1959-1960. In June, 1964, they are finishing the 8th grade.

Name tags read: "Beth," "Jean-Anne," "Toby," "Mark," "Flint," etc.

They appear, with Class C, in the film entitled Matrices. When this film was made,

Class B were 6th graders.
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Class C. Began the study of Madison Project materials when they were 3rd graders,

during the academic year 1959-1960.

Name tags read: "Jeff," "Ricky," "Mary," "Pam," "Lill i," "Windy," "Jono,"

"Geoff," "Greg," "Kris," "Val," "Miklos," "Jill," "Jennifer," etc.

Films include: Matrices (with Class B) Axioms and Theorems Average and Variance,

Weights and Springs, Solving Equations with Matrices.

For information on Classes D-M, inclusive, please refer to:

Robert B. Davis, Report on Madison Project Activities,
September 1962-Novemgn963. Report submitted to
the National Science Foundation, December 16, 1963.
Copies available from the Madison Project.

Class N. This is the Nerinx Hall 9th grade class discussed in the present report. They

began the study of Madison Project materials in September, 1963, when they were in grade

nine.

Name tags read: "Bev," "Marybeth," "Pat C.," "Carol," "ivlichele," "Pam,"

"Pat D.," "Susie," "Nancy F." "Suzi," "Maureen," "Eileen," "Donna," "Kathy V.,"

"Kathy W.," "Cathy," "Regina," "Karen," "Chris Hebert," "Sandy," "Pat H.,"

"Chris Hohl," "Kathy H.," "Kathy K. ," "Marian," "Clare," "Mary Catherine," "Patty,11

"Mary Ann," "Janice," "Nancy O."

Class N made films on the following dates: December 21, 1963, May 9, 1964, and

May 23, 1964.
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Appendix D

Films of the Nerinx 9th Grade Class

This class, designated as "Class N" (see Appendix C), has made the following films

during the academic year 1963 - 1964, while in grade nine:

I. Recording session December 21, 1963

1. (no official title assigned as yet) Video Tape Number 35. Taping Session at

KETC - TV, St. Louis, Missouri, Saturday, Dec. 21, 1963. There are two topics in this

lesson, which runs for 59 minutes. The first topic is concerned with selection of algebraic

axioms and selection of rules of logic, with the subsequer;. proofs of these theorems:

a) (A + B) x + = (D + C) x (B + A)

b) 2 + 2 = 4

c) A + (B x C) = (Cx B) + A

The second topic is some work with implication, contradiction, and uniqueness,

based upon a sophisticated version of Nvid Page's Hidden Numbers.

2. (no official title assigned as yet) Video Tape Number 36. Taping Session at

KETC - TV, St. Louis, Missouri, Saturday, Dec. 21, 1963.

There are two topics on this tape, which runs 54 minutes. The first topic continues

the axiomatic algebra from Video Tape Number 35, with emphasis upon theorems involving
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additive inverses, including the theorem

The second topic deals with truth tables, and with the mapping of the Cartesian pro-

duct V x V into V, where V is the "truth value space,"

= (T, F).

3. Negative One Times Negative One Equals Positive One. Video Tape Number 37,

recorded at I(ETC, St. Louis, Dec. 21, 1963. This lesson includes three approaches to the

statement

1 x 1 = +1 .

The three approaches are:

i) use of a "model" ("postman stories")

ii) an axiomatic proof of the theorem

iii) an approach via "extension of a definition," using linear graphs, following

a suggestion of Paul Rosenbloom.

II. Recording Session May 9, 1964 (KETC, St. Louis)

4. Quadratic Equations. A lesson on the derivation of the quadratic formula,(Video

Tape Number 43)
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5. Introduction to Infinite Sequences. This is the first time these students encounter

this topic. It arises out of two monotonic sequences related to VT, which in turn arises out

of the attempt to achieve a general quadratic formula, (Video Tape Number 44)

III. Recording Session May 23, 1964 (I ETC, St. Louis)

6. What Is Convergence? This continues the work on infinite sequences which was

begun on V.T. Number 44. The approach is somewhat similar to the "What's My Rule?"

approach to functions: the teacher associates numbers with various sequences, or else de-

clines to do so (saying "that sequence is divergent"), and the students are asked to describe,

as precisely they can, the procedure that the teacher is using. (Video Tape Number 46)

7. Bour_deciLtmtzisis_seataLIces. This continues the work on sequences from Video

Tapes 44 and 46. Two of the students decide that every bounded monotonic sequence con-

verges, and another student decides that, since it seems unlikely that this could ever be

proved from CLA, DL, etc., it needs to be added as an additional axiom. (Video Tape

Number 47)

8. Introduction to the Complex Plane. Ititatrix names are given to points of E

(Video Tape Number 48)
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Appendix E

Some Behavioral Objectives of Madison Project Teaching

It is becoming apparent that some of the differences in mathematics teaching are

largely differences in objectives. The linguistic resources available for a discussion of ob-

jectives seem inadequate to the task, but we (perhaps unwisely) include a few remarks on

the matter. 1

Within the more narrowly "mathematical" or "technical" abilities that we seek to

develop, we would include these:

i) The ability to discover pattern in abstract situations, and (where possible)

enough relevant experience to have good judgment in selecting the most significant

patterns;

ii) The ability to use independent creative explorations to extend "open-ended"

mathematical situations. Cf., for example, the works of Polya, and the booklet

Supplementary Problems for 18.01, by A. Niattuck (1963). 2 Professor E. J. McShane

of the University of Virginia has cited, as an excellent textbook problem in mathe-

matics, the following, which is quoted in full:

A pile of coal catches on fire.

Cf. the article: Robert B. Davis, "Report on the Madison Project,"
Science Education News (1962), December, pp. 15-16 (available from the
American Association for the Advancement of Science). Cf. also Bert Y.
Kersh, "Learning by discovery: what is learned?" The Arithmetic Teacher,
Vol. 11, No. 4 (1964), April, pp. 226-232.

2 Available from the Mathematics Department, Massachusetts
Institute of Technology.
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iii) The possession of a suitable set of mental symbols that serve to picture mathe-

matical situations in a pseudo-geometrical pseudo-isomorphic fashion, somewhat as

1

described by Polya, Leibnitz, and the psychologist Tolman. (This is the kind of

mental imagery that permits one to "visualize" Hilbert space, to "see" orthogonal

functions, etc. );2

iv) A good understanding of fundamental mathematical concepts -- i.e., those

that are operationally and organizationally fundamental, not those that are "logically

fundamental." We would include such concepts as: variable, function, Cartesian

co-ordinates, open sentence, truth set, matrices, implication, contradiction, axioms

and theorems, uniqueness, mapping or transformation, linearity, etc.;

v) Reasonable mastery of important techniques;

vi) Knowledge of mathematical facts;

vii) Ability to read mathematics.

In addition to the objectives listed above, there are some broader or more general

behavioral attributes which Madison Project teaching seeks to foster. These include:

i) A belief that mathematics is discoverable. (Indeed, our "ideal" student

would probably be a sceptic who believed very little on authority, but who KNEW

1 Cf. Edward Chace Tolman, "Cognitive Maps in Rats and Men," Chapter
19 of the volume Behavior and Psychological Man, University of California
Press, 1958.

2 Cf. Walter J. Sanders, "The use of models in mathematics instruction,"
The Arithmetic Teacher, Vol. 11, No. 3 (1964), March, pp. 157-165.
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that mathematics is discoverable be,:ause he was in the habit of seeing it discovered

every day in his classroom.)

ii) A realistic assessment of one's own personal proficiency in discovering mathe-

matics, and a generally positive feeling toward the prospect of further personal growth

in this direction.

iii) A personal recognition of the "open-endedness" of mathematics.

iv) Honest and wise personal self-critical ability. (That student is most hope-

lessly lost who "knows not, and knows not that he knows not.")

v) A personal commitment to the value -- in its proper places -- of abstract

rational analysis. (We would not wish to turn out former students who would say

"Oh, that's all a lot of theory," or who, in personal, political, or business matters

cast rationality to the winds.)

vi) Recognition of the valuable role of "educated intuition."

vii) A feeling that mathematics is "exciting" or "challenging" or "fun" or "re-

warding" or "worthwhile." This includes a feeling that the study of mathematics for

its own sake is worthwhile and understandable as a human activity, and that the rele-

vance of mathematics to the rest of life is often considerable.

Actually, there is another objective which is both mathematical and cultural: we

would wish the student to come to know mathematics as a part of his cultural heritage. This

involves a skillful and rare combining of mathematical concepts, dilemmas, and historical

breakthroughs, with a cultural history of mathematics. We would seriously claim that this
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kind of view of one's cultural heritage goes toward answering "who am 1" and "who are we

who live in the United States in 1964': " Unfortunately, we do not claim great achievements

in this direction for our own teaching, but this over-view of mathematics is one of our ob-

jectives, The student should come to know, as quickly as possible, "what is mathematics

in 1964" and "how did it get this way?"

The highest achievement toward this instructional goal of which we are presently

aware is:

Eves and Newsom, An Introduction to the Foundations
and Fundamental Concepts of Mathematics. Holt,
Rinehart, and Winston, 1964.


