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About This Booklet . . .

In the first year of publication, over 7,000 copies of these recom-
mendations have been distributed to departments of mathematics and
individual college teachers. Reaction from readers indicates a need
for several comments on the constructive use of this booklet:

. . THE INTRODUCTORY PAGES 4-12 SHOULD BE READ
CAREFULLY BEFORE THE COURSE OUTLINES WHICH
FOLLOW. These passages describe the underlying idealized objec-
tives of the recommendations. Failure to understand these goals can
result in misinterpretation of the spirit of the outlines.

. . THE COURSE OUTLINES BEGINNING ON PAGE 13
ARE ILLUSTRATIVE SAMPLES WHICH MAY BE MODI-
FIED TO FIT LOCAL SITUATIONS. Taken as a whole, they
represent achievement of long-range goals; however, the reader is
urged to use them as sources of mathematical ideas out of which to
construct his own first steps toward these goals.

. . . THE BOOKLET CAN BE USED AS A GUIDE TO SEV-
ERAL LEVELS OF TRAINING IN MATHEMATICS. The ma-
terial in the outlines for Basic Undergraduate Mathematics together
with roughly half of the algebra course on pages 55, 56 is generally
considered adequate undergraduate preparation for CURRENT grad-
uate programs. Departments and students are urged to use the booklet
in planning curricula and individual programs of study.

READ THE INTRODUCTORY PAGES 4-12 BEFORE THE
COURSE OUTLINES.
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lished a Panel on Pregraduate Training, with membership as
follows:

RICHARD D. ANDERSON (1962-1967)
LOUIS AUSLANDER (1965-1967)
PAUL T. BATEMAN (1965-1967)
RALPH P. BOAS (1963-1965)
D. W. BUSHAW (1965-1967)
DAN E. CHRISTIE (1963-1965)
EARL A. CODDINGTON (1959-1963)
LEON W. COHEN (1959-1966)
LESLIE A. DWIGHT (1964-1966)
ELDON DYER (1959-1963)
SAMUEL EILENBERG (1963-1965)
LEONARD GILLMAN (1965-1967)
GEORGE E. HAY (1964-1966)
LEON A. HENICIN (1962-1965)
SAMUEL KARLIN (1962-1963)
VICTOR L. KLEE (1965-1967)
PETER D. LAX (1962-1964)
KENNETH 0. MAY (1959-1962)
HERMAN MEYER (1965-1967)
Rex C. MOORE (1959-1964)
IVAN NIVEN (1962-1963)
I. M. SINGER (1960-1964)
A. D. WALLACE (1959-1963)
GERARD WASHNITZER (1962-1964)
A. B. Wn,Lcox (1965-1967)

Louisiana State University
Yeshiva University
University of Illinois
Northwestern University
Washington State University
Bowdoin College
University of California, Los Angeles
University of Maryland
Southeastern State College
Rice University
Columbia University
University of Rochester
University of Michigan
University of California, Berkeley
Stanford University
University of Washington
New York University
Carleton College
University of Miami
Princeton University
University of Oregon
Massachusetts Institute of Technology
University of Florida
Johns Hopkins University
Amherst College

The Panel gratefully acknowledges the aid of many other mathe-
maticians who have assisted with technical details, made various
penetrating suggestions, and given their views on the program de-
veloped by the Panel.

The ultimate job of the Panel on Pregraduate Training is indi-
cated in its title: to study the needs of and to recommend programs
for undergraduate students who intend to study mathematics at
the graduate level. As a first step, the Panel has constructed exam-
ples of idealized course outlines, including considerable detail.
These courses are designed to lead the undergraduate student
rapidly toward the frontiers of mathematical research and the
Ph.D. These outlines purposely overlook local problems which
may exist, caused by inadequate preparation at the secondary
school level or by lack of staff at the college level. This report pre-
sents a program embodying these outlines.
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BASIC ASSUMPTIONS

As already explained, the recommendations presented in this
booklet are idealized, as are most educational programs described
in print. Hence, it is necessary to reveal some assumptions which
were made by the Panel in constructing the suggested program
and the Course Outlines. It is fully realized that the assump-
tions are somewhat unrealistic in the sense that few pregraduate
programs can now include such courses in all detail. However,
"honors" programs may well be able now to include some of these
proposals. Such developments may lead to an absorption of the
ideas into regular curricula, and the next task of the Panel is to
provide indications as to how this may be done.

/ The program set forth here is designed for the first four years of
a sequence of formal course study leading to the Ph.D. It is hoped
that full-time students seeking a career in research mathematics
will obtain the Ph.D. in a total of seven years, with the last year
spent mainly in seminars and completion of the dissertation.
Clearly, the number of beginning college students now possessing
the knowledge and motivation necessary for entry into such a
program is small indeed. If they realize their ambitions, these
people can be expected to contribute to society as producers of
mathematicshence the title of the booklet.

We have thus assumed that the students will begin the program
with some prior appreciation of mathematical proof, with a sec-
ondary school background conforming to the highest recommenda-
tions of such groups as the School Mathematics Study Group.
More significantly, the program is directed toward all students
who have profited fully from the mathematical opportunities af-
forded in their formal study, who hunger for deeper insight and
more powerful techniques, who are intellectually curious and are
capable of appreciating the elegance, scope, and excitement of
mathematics.

Many persons may feel that no action need be taken to help
this restricted group of students, and indeed, that it is impossible
to prevent them from becoming creative, gifted mathematicians.
Admittedly, this assertion is most often made by those who them-
selves have survived despite all adversity. The counter examples,
of course, do not survive to testify.

But the present document does much more than merely recom-
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mend a program for gifted students. It will also serve as a guide
and source of ideas to persons interested in evaluating and modi-
fying mathematical curricula. The Panel has spent more than two
years in a critical examination of the basic structure of college
mathematics, in relation to present mathematical research. It has
attempted to discern important underlying patterns and to effect
some unity, both of viewpoint and of technique, within a four year
curriculum. It has attempted to make use of the simplification of
concept and technique resulting from recent discoveries, without
sacrificing intelligibility.

The Panel has also agreed upon certain broad objectives for the
college mathematics program. The student should be introduced to
the language of mathematics, both in its rigorous and idiomatic
forms. He should be able to give clear explanations of the meaning
of certain fundamental concepts, statements, and notations. He
should acquire a degree of facility with selected mathematical
techniques, know proofs of a collection of basic theorems, and have
experience with the construction of proofs. He should be ready to
read appropriate mathematical literature with understanding and
enjoyment. He should learn from illustration and experience to cul-
tivate curiosity and the habit of experimentation, to look beyond
immediate objectives, and to make and test conjectures.

The student should by these means be led to seek an under-
standing of the place of mathematics in our culture, in particular,
to appreciate the interplay between mathematics and the sciences.
The proposed program, in the portions dealing with analysis, ex-
hibits the traditional role of the physical sciences as a source of
mathematical ideas and techniques. The outlines offered for
courses in probability and statistics also indicate the emergence of
parts of mathematics from problems in the biological and social
sciences.

A list of objectives such as these is largely independent of the
content of courses and cannot be implemented completely by even
the best collection of texts. This only emphasizes the obvious point
that the quality of the mathematical education of the nation rests
finally upon the caliber and initiative of teachers. We hope that
the present document will stimulate widespread interest in a con-
tinuing examination and reformulation of mathematics programs
in the college.



--

5- 6 Committee on the Undergraduate Program in Mathematics

THE PROGRAM

The proposed program of pregraduate mathematical studies
falls naturally into two parts: Introductory Undergraduate Mathe-
matics occupies the first two years, Higher Undergraduate the
last two. As to subject matter, the former naturally is focused on
the differential and integral calculus, and the latter is devoted
mainly to basic material in the fields of analysis, algebra, and
geometry. Each of these terms, however, is stretched beyond its
traditional meaning to take account of contemporary mathemati-
cal development. Each of these principal areas is to be supple-
mented by related studies. And the two parts of the program are
to be distinguished by their method of presentation as well as by
their subject matter. In particular, the first two years must be
shaped so as to lead gradually to an appreciation of the nature
and role of definitions and proofs, and an ability to employ mathe-
matical language with precision. The last two years must be de-
signed to merge smoothly with beginning graduate study, forming
a period in which the most basic mathematical concepts, results,
and methods are secured so as to provide a firm base for subsequent
specialization and concentrated research.

We have recognized the pervasive character of linearity by
recommending the early introduction of linear algebra and the
recurrent use of linearity in the analysis courses. At the same
time the analysis courses reflect the traditional role of the em-
pirical sciences as a source of mathematical concepts and methods.

Geometry is construed so broadly as to contain differential
geometry, differential topology, and algebraic topology, among
others, but the spirit of classical geometry has been retained by
emphasizing theorems having a geometric formulation.

Breadth, including a knowledge of fields of application, is of
great value for the most significant mathematical research. Al-
though difficult to achieve during the undergraduate years, at
least a beginning is essential. For those students able to fit in a
considerable variety of courses it is important to attempt to
achieve as integrated a picture of mathematics as can be assim-
ilated. In the present program the unity of mathematics is illus-
trated by emphasizing algebraic and topological ideas throughout.
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It is important to emphasize that the ability to follow and
formulate rigorous proofs must be balanced with the development
of a free-ranging intuition in each mathematical field. Generally
speaking, a rigorous treatment of some elements of the material
should appear even in the earliest courses, and the rigorous seg-
ments should increase in length as the student advances to more
recondite material. But failure to nurture intuition at any level
can be stifling.

The idealized assumptions adopted by the Panel and described
in the previous section, while simplifying the problem of formulat-
ing curriculum by abstracting from the host of practical problems
which beset individual mathematics departments, are still far
from sufficient to characterize a unique solution. Members of the
Panel found themselves with continuing differences of opinion con-
cerning such questions as the extent to which courses should deal
with applications outside of mathematics, the order and relative
emphasis to be given to certain groups of loosely associated topics,
and the nature of subject development which is required by
pedagogical considerations. These differences within the Panel
are reflections, of course, of the varied attitudes, often strongly
held, which prevail within the broader mathematical community.

In order to convey a fairly concrete idea of the nature of the
program conceived by the Panel, course outlines are furnished in
the Appendices which follow. To accommodate the variety of
viewpoints which prevail, more than one outline is presented for
certain basic courses. Each outline is prefaced by an indication of
its scope and intended context, and is supplemented by a list of
references appropriate to its material.
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INTRODUCTORY UNDERGRADUATE MATHEMATICS

Under the assumption of a student audience with strong mathe-
matical training in high school and with excellent motivation, a
unified two-year sequence of what might be called "vector space
calculus" is recommended as a proper basis for the pregraduate
program. Consistent with the historical development of calculus
and with the flavor of modern mathematics, the program suggests
that calculus be presented so as to introduce and utilize significant
notions of linear algebra and geometry in the construction of ana-
lytic tools for the study of transformations of one Euclidean space
into another. This demands that the material be arranged and
presented in such a manner that students are ever mindful of
mathematics as an interrelated whole rather than a collection of
isolated disciplines. The presentation also needs a healthy balance
of well-formulated mathematical arguments, of opportunity for
discovery through independent work in solving problems and
proving theorems, and of mathematical and physical motivation.
The student must learn early that a highly significant aspect of
mathematics is that of posing the right question.

This program of Introductory Undergraduate Mathematics
comprises approximately fifteen semester hours. Since the standard
subjects are integrated, only a rough estimate of their proportions
can be indicated: about nine semester hours of analytic geometry
and calculus, with the remainder divided between linear algebra
and differential equations.

Presented in Appendix A are three Course Outlines which dis-
play the embodiment of these ideas. The subdivisions in these Out-
lines are in terms of topics and not in terms of days or weeks. The
major differences between the Outlines are explained at the outset
in Appendix A.
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HIGHER UNDERGRADUATE MATHEMATICS

This part of the program builds upon the foundation laid by
the Introductory Undergraduate Mathematics curriculum. Assum-
ing the ability to appreciate and handle rigor and abstraction, it is
intended to broaden the areas of the student's mathematical
knowledge with sufficient depth to provide a firm basis for later
research and to allow for the formation of individual mathematical
taste.

Courses appropriate for this part of the program should be con-
sidered as at the "undergraduate-graduate level," for the same
type of course will be needed at the beginning of graduate study.
Indeed, it is an historical "accident," certainly not related to in-
trinsic mathematical considerations, that the undergraduate de-
gree is granted after four years of post-high-school study. For this
reason institutions with limited facilities should strive to provide
courses with a full degree of depth and challenge even if this entails
offering a narrower range of subjects. The student who comes to
graduate school with one solid course behind him is ready to take
a second in another field ; but the one who comes with the equiva-
lent of two half-courses is often forced either to repeat material or
to proceed to more advanced work with a deficient background.

The advanced part of the program will reflect the interest of the
faculty, as well as the needs of the student.- Small institutions will
concentrate on courses in the mathematical areas of primary in-
terest to their professors. And the selection of materials and
modes of presentation within each course will reflect the way in
which the individual instructor looks at the subject.

Every college department undertaking this program should pro-
vide courses relevant to the central areas of mathematics:

Real analysis
Complex analysis
Abstract algebra
Geometry-topology
Probability or mathematical physics

Not every student will take courses in all of these areas; choices will
depend on the student's intent. (See Appendix B for sample course
outlines.)
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In addition, to achieve a richer and more comprehensive pro-
gram, a department should offer, as far as its resources will permit,
a balanced selection of courses in:

Algebra
Analysis
Applied mathematics (in both the natural and social sciences)
Foundations and logic
Geometry (algebraic, differential, projective)
Mathematical statistics
Number theory
Topology

(See Appendix C for sample outlines of some of these courses.)
For the student, we recommend the following principles:

(a) for the upperclass years, at least three of the following
four categories should be represented in the course pro-
gram: (1) algebra; (2) analysis; (3) applied mathematics;
(4) geometry-topology.

(b) included in the program there Should be, in order to
achieve depth, at least two full year-coursesthat is,
courses in which the first semester is an essential prerequi-
site to the second.

(c) a major in mathematics should have at least seven semes-
ter courses beyond our suggested Introductory Under-
graduate Mathematics.

-=mmramorratrmm....



Committee on the Undergraduate Program in Mathematics 11

INITIATIVE AND INDEPENDENCE

So far in presenting the program, the greatest attention has been
paid to describing the mathematical content of an idealized under-
graduate curriculum in contemporary mathematics. In view of our
assumptions, students participating in the program will not be
satisfied to participate in a passive fashion, and so methods to en-
gage the student as an active partner in scholarship should be de-
vised. Indeed, independent intellectual activity of the student
must be nurtured in preparation for the time when he will be
independent of his professors and join them as a colleague. Thus,
the student must increasingly take the initiative, not only to con-
struct proofs by himself, but to develop his imaginative powers so
that he can make conjectures for proof or disproof, perhaps even
going on to contribute by creating new concepts or theories.

This process has its beginning in a small way when the student
solves textbook problems. Another component is added when the
student learns to read the textual material by himself, later making
the passage to the reading of papers in the journals, which are more
compactly written and therefore more difficult to read. There are
other ways in which the undergraduate student can develop his
initiative. Without attempting an exhaustive list, we mention a
few common patterns.

There are seminars and colloquia wherein the student makes re-
ports. There is the undergraduate thesis in which a student makes
a contribution, original for him but not usually original in the
larger sense. There is the developmental course, a version of the
Socratic method, in which the student is led to develop a body of
mathematical material under the guidance of the professor. The
number of teachers who employ the developmental method com-
pletely is not large, but they are an enthusiastic band of people in
their devotion to the procedure; a modified use of the developmen-
tal method is employed widely. Other devices have been developed
to take advantage of special local conditions, or in line with experi-
mental ideas reflecting special interests.

It would be desirable for all schools to give attention to the prob-
lem of enrolling the student actively in the study of mathematics,
and so we urge that every pregraduate curriculum be designed to
include some appropriate scheme.
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PRESENT ACTION AND FUTURE PLANS

Copies of this document are available now and may be obtained
from the Committee free of charge. It is hoped that the booklet
will serve as a basis for discussion of pregraduate mathematics pro-
grams at mathematics departmental meetings, at section meetings
of the Mathematical Association of America, and at meetings of
other interested groups. Experimentation with the proposals is
taking place at several institutions, and the results of such experi-
mentation will assist the Panel in keeping its recommendations
current, most probably through periodic modifications of this docu-
ment.

It is hoped that this report will encourage the writing of text ma-
terials embodying the ideas presented in the Outlines. Until text-
books are available, instructors desiring to incorporate portions
of the suggested material will have to improvise; it can be hoped
that mimeographed notes will be prepared covering one or more of
the suggested topics and that authors will inform CUPM of their
existence. Instructors who desire to include some part of the out-
lined material without the labor of preparing their own notes are
invited to correspond with CUPM, which is willing to serve as a
clearing house.

For the future, the Panel on Pregraduate Training will modify
these proposals to fit other situations wherein the assumptions
which led to the idealized programs are not fully realized. We wel-
come remarks and suggestions, and we stand ready to help in any
way we can those teachers who wish to implement CUPM pro-
posals. Correspondence, including requests for additional free
copies of this report, should be addressed to:

COMMITTEE ON THE UNDERGRADUATE
PROGRAM IN MATHEMATICS
P. 0. Box 1024
Berkeley 1, California
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APPENDIX A:

INTRODUCTORY UNDERGRADUATE MATHEMATICS

w Contained in this Appendix are three Outlines for the proposed
Introductory Undergraduate Mathematics program, each display-
ing an initial two-year sequence of idealized college mathematics.
The three Course Outlines which follow have different points of
view, and so they differ in emphasis and arrangement of material.
The major mathematical differences are these:

(1) Outline I includes a self-contained section on linear algebra
in the calculus, but a separate course in differential equations. Out-
line II has a separate course in linear algebra, but includes topics
in differential equations in the main body. Outline III has no
separate courses. It has a section on differential equations, and
develops linear algebra topics as they are needed to solve various
problems in analysis.

(2) Outlines I and H introduce integration before differentiation
while Outline III does the opposite.

(3) Outlines I and II treat integration via step functions while
Outline III approaches the integral as a linear functional on the
space of continuous functions.

(4) Outline II is more ambitious than Outline I. It includes,
for example, a good deal of elementary point set topology in the
second year.

Aside from such explicit differences, there are some subtler
distinctions in attitude between Outline III and the other Out-
lines. A prime motivation of Outlines I and II is concern for the
internal structure of calculus and of linear algebra; applications
are made when appropriate. In these Outlines, the generalized
Stokes theorem is a fitting climax because of the merging of con-
cepts in algebra, topology, and analysis needed in reaching it
and because of its important applications in mathematics and
physics. The approach in Outline III is to de ielop mathematical
concepts directly as needed for the solution of important problems
that arise in mathematics and physics. In particular, linear algebra
is so treated. In addition, Outline III is oriented more in the direc-
tion of classical analysis: more emphasis on inequalities; Stokes'
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theorem is thought of as but one of a number of important theo-
rems beyond the traditional calculus. Outlines I and II are more
rigid than Outline III. the attitude being that these are the things
juniors should know, and here is a reasonable order of doing it.
Outline III is more flexible, the attitude being: it is more important
to learn how mathematics is developed to solve problems than to
insist that the students know a given amount of mathematics.

INTRODUCTORY UNDERGRADUATE
MATHEMATICS

OUTLINE I, FIRST YEAR:
FUNCTIONS OF ONE VARIABLE AND LINEAR ALGEBRA

1, Review of function concept, the algebra of real numbers, order.
Algebra of functions.

2. The historical background of the calculus: the problem of
areas, the problem of tangents, the problem of instantaneous
velocity. Heuristic discussion of area as an additive set func-
tion whose value is determined on rectangles. Transition to the
integral of a function via negative areas. Definition of the in-
tegral of a step function. Uniqueness. The integral as a positive
linear functional on the family of step functions on an interval.

3. Extension of the integral to other functions via upper and
lower approximation by step functions. The family of integra-
ble functions on a bounded closed interval. Show this family
closed under addition and multiplication by scalars. The in-
tegral as a finitely additive interval function. Integrability of
polynomials and the sine function (using summation formulae
and trigonometric identities--the trigonometric functions are
used here as learned in secondary school: precise definitions
will come during the second semester). What other functions
are integrable?

4. Definition of continuity in terms of neighborhoods (open in-
tervals). Statement that a continuous function on a bounded
closed interval is integrable (proof postponed). The continuous
functions are closed under addition and multiplication by real
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numbers. Statement of uniform continuity of a continuous
function on a bounded closed interval. Derivation of this from
axiom that such intervals are compact (defined in terms of
coverings by open intervals).

5. Proof that continuous functions are integrable (using uniform
continuity). Some applications of the integral: moments,
energy, work, etc.

6. Approximate integration (piecewise constant, linear, and
quadratic approximation). Examples. The problem of a better
method of calculation awaits solution. Ways in which functions
depart from continuity; kinds of discontinuity. This leads to
definition of limit in terms of deleted neighborhoods.

7. Continuity phrased in terms of limit. Continuity of composites
of continuous functions. Algebra of limits. Continuity of prod-
ucts and quotients of continuous functions.

8. Problem of tangents. Heuristic geometric definition of a tan-
gent line to a curve. Calculation of the slope of a nonvertical
tangent leads to the derivative of a function. Problem of in-
stantaneous velocity does the same. Examples.

9. Rules for differentiation of sums, products, quotients, compos-
ites. Derivatives of identity function and of constant func-
tions give derivatives of rational functions. Derivative of sine
function gives derivatives of trigonometric functions.

10. Equations for derivatives from equations for functions give
derivativ2s of algebraic functions (exact definition of fractional
exponents next semester). Calculation of tangents to various
second degree curves. Implicit definition of functions.

11. Examples of maxima and minima problems. Attainment of
maxima and minima by continuous functions on compact sets.
Vanishing derivative test. Rolle's theorem and the Mean
Value theorem. Geometric interpretation.

12. Application of Mean Value theorem to determine where a dif-
ferentiable function is increasing, decreasing, constant. Higher
derivatives and the second derivative test for maxima (min-
ima). Intermediate value theorem on intervals. Applications
to graphing. The Mean Value theorem for integrals.

13. The indefinite integral. Continuity of the indefinite integral
of integrable functions. Derivability of same at points of con-
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tinuity of the integrand, and evaluation of the derivative.
Geometric interpretation of this theorem.

14. Reduction of the problem of integration of piecewise contin-
uous functions to that of finding primitives. Applications of
this theorem: the practical solution of the problem of integra-
tion.

15. New functions. Log defined by indefinite integral. Properties
of log. Its derivative. Inverse functions in general. Case in
point: exp function. Its derivative and integral.

16. The number e=exp (1). Arbitrary real powers of e in terms of
exp. Arbitrary real powers of positive real numbers. Deriva-
tive and integral of xa, a real. Definition of inverse trigono-
metric functions: the difficulty that trigonometric functions
are not on a solid foundation. This leads to problem of arc
length.

17. Analysis of arc length in terms of the integral. Definition of
arcsine in terms of an indefinite integral. Other inverse trigono-
metric functions. Reprise of trigonometric functions, their
derivatives and integrals, now solidly grounded.

18. Difficulty of integrating log and arcsine leads to integration
by parts. Substitution. Certain trigonometric substitutions.
Completion of square.

19. Integration of rational functions. Functions not integrable by
elementary means leads to idea of uniform approximation.
1 ff fg l <fl f g I . Sequences of numbers and their limits.
Maximum norm of a continuous function. Uniform conver-
gence of sequences of functions. Pointwise convergence.

20. Taylor's theorem with integral remainder. Same with deriva-
tive remainder. Notion of a power series.

21. Series in general. Convergence of geometric series. Archi-
medean axiom introduced to prove L.U.B. theorem. Corollary:
the monotone convergence theorem. Comparison test.

22. Existence of radius of convergence of a power series. Uniform
convergence on bounded closed intervals within the interval
of convergence. Invariance of the radius of convergence under
formal differentiation and integration. Justification of term by
term differentiation and integration.

23. Parametrized curves in R2 and R3. Reprise of function idea.
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Linearly parametrized lines in R2, lines and planes in R3 are
functions. Addition of points in R2 and R3 and multiplication
by real numbers introduced as a notational convenience.
Definition of Rn, curves in Rn, vector operations in Rn. Linear
and affine functions from Rn to Rm. Linear equations in terms
of a single linear function equation.

24. Properties satisfied by the vector operations in Rn. Abstract
notion of a vector space over R; linear and affine functions
between vector spaces. Examples: function spaces, differentia-
tion, definite and indefinite integral. Vector and affine sub-
spaces: reprise of examples from Section 23, polynomial sub-
spaces, solution space of a system of linear equations, direct
and inverse images of affine subspaces under affine functions.

25. Dimension and linear independence, linear span. Basis. The
standard basis of Rn. Representation of an n-dimensional vec-
tor space as Rn .

26. Representation of linear transformations with respect to bases.
Matrix notation. The standard matrix of a linear transforma-
tion from Rn to Rm . The algebra of linear transformations and
matrices.

27. Change of basis and similarity of matrices. Reprise of systems
of linear equations as a single linear transformation equation.
Rank and nullity theorem. Matrix notation for linear equa-
tions. (Column) rank and nullity of a matrix. General theorems
on the dimension of the solution space of a linear system.

28. Elementary column operations and column equivalence of
matrices. Echelon form of matrices. The use of this form to
solve linear systems explicitly; comments on the numerical
problem involved.

OUTLINE I, SECOND YEAR:
FUNCTIONS OF SEVERAL VARIABLES AND LINEAR ALGEBRA

1. Review of carfesian products of sets. Cartesian products of n
vector spaces. Multilinear functions with values in a vector
space. Sums and real multiples of these.

2. Explicit solution of 2 X2 and 3 X3 systems of equations moti-
vates notion of determinant. The determinant as the function
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of the columns of a matrix: multilinear, alternating, and uni-
modular on the standard ordered basis of R. The permuta-
tions of {1, - - , n }. Theorem: Let X1, - , Xn be an ordered
basis of V and let YEW ; then there is a unique alternating
multilinear function F such that F(X1, - - , X.) = Y. Corol-
iary: existence and uniqueness of the determinant, and an
explicit formula for it. Corollary: the basis-free definition of
the determinant of a linear transformation.

3. Multiplication of determinants; the group of nonsingular
linear transformations. Theorem: An alternating m-linear
function on an n-dimensional vector space, m>n, is necessarily
zero. The solution of the equation F(X)= A where F is a
linear transformation from V into itself. Cramer's rule.

4. Invariant subspace of linear transformations; internal direct
sums of subspaces. Consequences for matrix representation.
One-dimensional invariant subspaces. The characteristic equa-
tion and eigenvalues. Cayley-Hamilton theorem.

5. Discussion of length and angle leads to notion of inner product.
Length and norm. Schwarz inequality and definition of angle.
Example of the integral inner product on the continuous func-
tions on [a, b]. Trigonometric polynomials of order <m. Ortho-
normal basis and the Gram-Schmidt process. The standard
form of the inner product.

6. Symmetric and orthogonal linear transformations and mat-
rices. Polar decomposition. Diagonalization theorem.

7. Application to conics and quadrics. Volume of a parallelo-
piped in terms of determinant. Orientation: defined by alter-
nating function. Cross product in dimension 3, given an inner
product and an orientation (use representation theorem for
real valued linear functions).

8. Neighborhoods of points as open spheres. Continuous func-
tions between vector spaces with inner product, or more
generally with a norm. Examples, including the continuity of
the integral in the uniform norm. A linear transformation be-
tween two finite-dimensional inner product spaces is continu-
ous.

9. Open and closed sets. Continuity in terms of open sets. Unions



Committee on the Undergraduate Program in Mathematics 19

and intersections of open and closed sets. Interior, closure, and
boundary of a set. Sequential limits. Characterization of pre-
vious notions using sequential limits.

10. Limit points in general. Theorem: An infinite subset of a com-
pact (Heine-Borel) set S always has a limit point in S. Corol-
lary: compact sets are closed. Closed subsets of compact sets
are compact. Continuous images of compact sets are com-
pact; real continuous functions on a compact set attain their
maxima.

11. Closed bounded sets in a finite-dimensional normed vector
space are compact. Corollary: any two norms on a finite-
dimensional normed vector space are equivalent. Cauchy
criterion and completeness for a finite-dimensional normed
vector space.

12. Uniform continuity of continuous functions on compact sets.
Sequences of functions and uniform convergence of same.
Completeness of space of continuous functions. Ascoli theorem.

13. Connectedness; the Intermediate Value theorem for real-
v alued functions.

14. Problem of volume in Rn. Heuristic discussion of volume as an
additive set function whose value is determined on boxes.
Problem of bad boundaries.

15. Volume of a don.ain with nice boundary. The integral defined
in terms of step functions and its connection with signed vol-
ume under a hypersurface. The integre as a uniformly con-
tinuous positive /inear function.

16. The integrability of continuous functions. The integral as a
finitely additive set function. Differentiability of set functions.

17. Characterization of uniformly differentiable set functions.
Reduction of multiple integration to iterated integration,
calculation. Setting up iterated integrals.

18. Functions on open domains. The derivative

F(X tY) F(X)
F' (X, Y) = lim

(--s)

Class C1 and the linearity of F' (X , .). Geometric interpreta-
tion. Interpret F(X0)+F'(Xo, X X0) as "best" affine ap-
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proximation to F at Xo. Matrix representation of F'(X, -) and
partial derivatives.

19. Mean Value theorem. Higher derivatives defined recursively:

i(n)(X, Y1, , Yn)

= lim
Foz-1)(X-FtY, Yi, , Yn-1)F(n.-1)(X, Y1, ,

t*0 I

The differentiability classes Cn. Symmetry and linearity of
Fo)a, - , - - , -) with F E C. Tayloi's formula.

20. Derivatives of composites and the ordinary chain rule (a
matrix equation). Jacobians. Local one-one theorem for J00.
Differentiability of invertible F with J00. J(F) = J(F)-1.

21. Implicit Function theorem. Critical points. Lagrange mul-
tipliers.

22. Formula for volume change under C1 function. ff
=f(f o F) I J(F) 1 . This leads to notion of a differentiable n-
form on Rn; 211(X, Y1, , Yn), alternating miltilinear in the
Y's.

23. Heuristic arguments concerning work and total flux integrals
lead to notions of a differential p-form on an n-dimensional
vector space and the definition of the integral of same over a
parametrized p-cell. Singular simplices. Differential p-forms
as functions from differential simplices to the reals.

24. Representation of 0-forms by real functions and (given a
scalar product) of 1-forms by vector fields. Representation of
(n-1)-forms by vector fields and n-forms by real functions,
given a scalar product and an orientation. The integral of a
differential p-form over a totally nondegenerate singular p-
simplex is independent of the parametrization.

25. d: 0-form)1-form, by taking the derivative. The gradient.
The extension of the notion to p-forms by differentiation and
skew-symmetrization. d2= 0. Divergence and (dim V =3) curl
of a vector field. Curl o grad =0; div o curl =0.

26. Multiplication of forms as ordinary multiplication of functions
skew-symmetrized. Representation of forms with respect to
coordinate functions; d in terms of a coordinate system.

27. Stokes theorem over standard n-cell in R. General case of
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Stokes theorem, classical Stokes theorem, Gauss theorem,
Green's theorem, and the fundamental theorem of the cal-
culus. The meaning of curl and div in fluid dynamics.

REFERENCE
The Panel wishes to call attention to the following new text which is

relevant to all of the second year calculus courses:
Fleming, W. Functions of Several Variables. Reading: Addison-Wesley

Publishing Company, Inc. (Preliminary edition).
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OUTLINE I. DIFFERENTIAL EQUATIONS

An adequate preparation for the course outlined here is the
successful completion of the first one and a half years' work of
Outline I.

The course is designed for a semester:

(i) to give the student the basic existence and uniqueness
results for ordinary differential equations and systems
of equations;

(ii) to develop in detail the properties of solutions of some
important types of linear systemsconstant coefficients,
analytic coefficients, and systems with regular singular
pointsby exploiting the student's earlier preparation in
linear algebra; and

(iii) to introduce the student to some topics of current re-
search interest: stability of nonlinear systems, eigenvalue
problems, elementary partial differential equations.

1. Complex numbers. Complex-valued functions. Polynomials.
Complex series and the exponential function. Complex n-
dimensional space and functions defined on it.

2. Examples of problems involving differential equations: New-
ton's laws of motion, heat flow, vibration problems. Initial
value problems and boundary value problems.

3. Local existence of solutions to initial value problems for
y'= f(x, y), where x, y real, and f real-valued. The method of
successive approximations (fixed point theorem) using a Lip-
schitz condition. The polygon method, using the Ascoli lemma.
Nonlocal existence, using a Lipschitz condition on f in a strip
I xxol <a, lyi < '3- Approximations to, and uniqueness of,
solutions. Extension of results to case where x real, y complex,
f complex-valued.

4. Existence and uniqueness for systems using vector, and vector-
valued, functions. Extension of material in Section 2 to this
case. Example: central forces and planetary motion. Applica-
tion to equations of nth order.

5. General results on homogeneous linear systems y' =A(x, y),
where A is linear in yECn. The space of solutions as a vector



:

K.

:

Committee on Me Undergraduate Program in Mathematics 23

space of dimension ?I. Non local existence in this case. The solu-
tion of the nonhomogeneous system y' = A (x, y)-1-b(x). Appli-
cation to linear equations of nth order.

6. Linear systems with constant coefficients y'=A6?). Explicit
structure of space of solutions using exp A, and assuming Jor-
dan canonical form for A. Explicit form that variation of con-
stants takes in this case. Application to nth order equations.
The case n=2 in detail.

7. Linear systems with analytic coefficients (convergent power
series as coefficients). Solutions as convergent power series.
Application to nth order equations. Example: the Legendre
equation.

8. Linear systems with regular singular points: y' =x-'A(x)y,
with A having convergent power series expansion. Structure of
solution space using vt=exp (A log x). Application to second
order equations with regular singular points. Examples: the
Euler equation and the Bessel equation.

9. Introduction to nonlinear theory. Perturbations of two-di-
mensional real autonomous systems. Classification of simple
critical points. Phase portraits. Stability. Asymptotic stabil-
ity. Relation of nonlinear case to linear approximation.

10. Poincare-Bendixson theory (optional).
11. Self-adjoint eigenvalue problems for second order linear equa-

tionsthe regular case. The space of continuous functions e
as a linear manifold in L2. The existence of eigenvalues using
complete continuity of the Green's operator in e. Bessel's in-
equality and the Parseval equality. Expansion theorem.

12. Second order linear partial differential equations. Classifica-
tion : hyperbolic, elliptic, parabolic. Equations with constant
coefficients. Typical initial and boundary value problems in
each case. Application of results in Section 11.

REFERENCES

1. Birkhoff and Rota. Ordinary Differential Equations. Boston: Ginn and
Company, 1962.

2. Coddington and Levinson. Theory of Ordinary Differential Equations.
New York: McGraw-Hill Book Company, Inc., 1955.

3. Hurewicz, W. Lectures on Ordinary Differential Equations. New York:
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John Wiley and Sons, Inc., 1958. Cambridge, Mass.: The M.I.T.
Press.

4. Lefschetz, S. Differential Equations: Geometric Theory. New York:
Interscience Publishers, Inc., 1957.

5. Petrovsky, I. G. Lectures on Partial Differential Equations. New York:
Interscience Publishers, Inc., 1955.
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OUTLINE II, FIRST YEAR:
FUNCTIONS OF ONE VARIABLE

1. Functions and the real numbers. Review of the general con-
cept of function. Characterization of the real numbers, the
Archimedean axiom, and suprema. The algebra of real func-
tions defined on a set, polynomial functions from the reals to
the reals.

2. The problems of area. Historical background including the
work of Archimedes. Heuristic discussion of the problem of
defining area as an additive set function whose value is deter-
mined on rectangles. Transition to the integral of a function
via negative areas. Definition of the integral of a step function,
uniqueness. The integral as a positive linear functional on the
family of step functions on an interval.

3. Extension of the integral to more general functions. Upper
and lower approximations. The family of integrable functions
on a bounded closed interval. The observation that this family
is closed under addition and scalar multiplication. Discussion
of some functions which are integrable, monotone functions,
sums of monotone functions. Integration of some explicit
functions such as polynomial functions, and some of the
trigonometric functions, assuming that at least an intuitive
definition of these functions together with their principal
algebraic and geometric properties has been learned in an
earlier study of mathematics. Approximations to the integral
and estimates of error.

4. Continuous functions. Definition of continuity in terms of
open intervals. Observation that the continuous functions are
closed under both addition and multiplication. Continuity of
the polynomial functions. Derivation of uniform continuity of
a continuous function on a closed bounded interval, assuming
such intervals are compact (defined in terms of coverings by
open intervals).

5. Integrability of continuous functions. Applications of integrals
to problems such as calculating areas, moments, work, and
energy.

6. Approximations to the integral. Piecewise constant, linear, and
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quadratic approximations. Estimates of error. Ways in which
functions depart from continuity; discontinuities. Definition
of approximations.

7. The algebra of continuous functions. Continuity in terms of
limits. Continuity of composites, products, and (under ap-
propriate circumstances) quotients. The algebra of limits.

8. Historical background of the problem of tangents. Heuristic
geometric definitions of the tangent to a curve at a point. The
problem of velocity. Definition of the derivative of a function.
Derived function and its geometric interpretation as the func-
tion which to every point assigns the slope of the tangent of
the original function.

9. Formal differentiation. Derivation of rules for calculating
derivatives of sums, products, quotients, and composites.
Numerous calculations to develop techniques. Algebraic func-
tions. Calculation of tangents to various second degree curves.
Implicitly defined functions.

10. Maxima and minima. P7oof that a continuous function on a
closed bounded interval attains its maximum. Criteria for
determination of maxima. Vanishing derivative test. Intro-
duction of the second derivative. Sufficient conditions for local
maxima. Graphs, geometric ideas of convexity, and maxima.
Interpretation of the second derivative as acceleration. Rolle's
theorem and the Mean Value theorem. Intermediate Value
theorem on intervals. Application of the preceding to problems
involving graphing, velocity, and acceleration. The Mean
Value theorem for integrals.

11. Relation between integration and differentiation. The indefi-
nite integral, and continuity of functions defined by integration
of integrable functions. Differentiability of such functions at
points of continuity of the integral. Geometric interpretation
of the preceding. Piecewise continuous functions and reduction
of the problem of integrating such functions to the problem
of finding primitives. Various calculations via this last result.

12. Functions defined by integrals. The logarithm function and its
properties. Inverse functions in general. The exponential func-
tion and its properties. The number e=exp (1). Arbitrary real
power of e and hence of any positive real number.
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13. Methods of integration. The difficulty of integrating the loga-
rithm function. Integration by parts. Substitutions, including
certain trigonometric substitutions. Completion of the square.
Integration of rational functions.

14. Uniform approximation. Functions not integrable by ele-
mentary methods. Approximations of the integral of such
functions by approximating the function itself uniformly by
functions with elementary integrals. Sequences of numbers and
their limits. The sup norm of a continuous function. Uniform
limits of continuous functions. Space of continuous functions
closed under uniform limits. Pointwise limits.

15. Taylor's theorem with remainder. Various forms of the re-
mainder. Use of Taylor's theorem to approximate functions
by polynomials; esti.nates of the error of approximation in
concrete examples. The idea of a power series.

16. Series in general. Infinite series of real numbers. Various tests
for convergence, including the comparison test, nth root test,
and the ratio test. Power series. Radii of convergence of power
series and their determinations. Uniform convergence of the
partial sums on bounded closed intervals within the interval
of convergence. Proof of the invariance of the radius of con-
vergence under formal differentiation and integration. Justi-
fication of term by term integration and differentiation.

17. Further properties of power series. The algebra of power
series converging in a fixed radius. Analytic functions, Taylor's
theorem, and power series. The possibility of defining func-
tions by means of power series. The power series for certain
classical functions, particularly the exponential. Possibility
of defining sine and cosine functions by power series and ob-
servation that this would eliminate the difficulty that they
have not been well-defined until this time.

18. Definition of Rn as n-tuples of real numbers. Distances and
limits in Rn, the norm, and perpendicularity. R2 and R.3 dis-
cussed explicitly, together with th,-; physical intuition con-
cerning them. Addition and scalar mult iplication in Rn. Linear
functions mapping intervals in RI into Rn, with particular
attention to lines in R2 and R3.

19. Integration of functions from intervalg to Rn. Observation
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that in the definition of the integral of real functions, it was
important that the domain be a subset of the line, but that
only certain properties of the range entered. Introduction of
some examples. Differentiation of functions from intervals to
Rn. The derivatives of such functions are defined directly,
and then it is observed that they could have been obtained
from the coordinate functions.

20. Curves in Rn and their tangents. Newton's laws of motion.
Two curves f, g meet at a point t if AO = g(I). Their order of
contact at such a point is the largest integer n such that

lim
I f( s) g(s)I

= 0,
s In

or co if no such integer n exists. Tangent lines and the order of
contact of a tangent line with a curve.

21. Taylor's theorem for functions from an interval to Rn. Geo-
metric relation of Taylor's theorem with the order of contact
of a curve and a "polynomial" curve. Approximation of a curve
by "polynomial" curves. Arc length in Rn studied carefully.
Inverse trigonometric functions and arc length in R2. Prin-
cipal normal to a curve. Curves in R2 and R3 and their curva-
ture. The osculating circle as an approximation to such a curve.

22. Velocity, acceleration, Newton's laws of motion. Other physi-
cal problems involving differential equations (e.g., vibrating
string). Families of curves and differential equations. Solu-
tions of certain simple differential equations. Initial and
boundary value problems.

23. First order differential equations. Approximation to solutions.
Lipschitz condition and the existence and uniqueness of solu-
tion, both local and nonlocal, by the Picard method. Cauchy's
proof of existence. Examples of differential equations with
distinct solutions passing through a point. Application to
central forces and planetary motion.

24. Power series and linear differential equations with analytic
coefficients. Existence of solutions. The possibility of defining
functions as the solution of certain differential equations, illus-
trated by examples such as sine and cosine. Derivation of
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properties of the sine and cosine from their defining differen-
tial equations.

OUTLINE II, SECOND YEAR:
TOPOLOGY AND FUNCTIONS OF SEVERAL VARIABLES

1. Definition of topological space; continuous mapping in terms
of open sets. Definition of metric space, the associated topo-
logical space of a metric space, continuity at a point for func-
tions mapping one metric space into another, and the equiv-
alence of continuity with continuity at all points. The ex-
amples of Euclidean spaces, spheres, and real projective spaces
(defined as quotients of spheres).

2. Subspaces, quotient spaces, and product spaces of topological
spaces; restriction of continuous mappings. Subspaces and
product spaces for metric spaces, and relation with the same
operations on topological spaces. The examples furnished by
Euclidean spaces and tori.

3. The notion of Hausdorff space, and proof of its stability under
the operations of taking subspaces or products. Observation
that metric spaces are Hausdorff. Examples to show that
quotient spaces of Hausdorff spaces are not necessarily
Hausdorff.

4. The notion of compactness defined for a Hausdorff space by
the finite covering property. Closed bounded subsets of
Euclidean spaces are compact. Proof that a metric space is
compact if and only if it is complete and totally bounded.

5. Tychonoff's theorem for finite products. The notion of local
compactness, and proof that finite products of locally compact
spaces are locally compact. Euclidean spaces and tori.

6. Introduction of complex numbers. Real and complex topo-
logical vector spaces. Uniqueness of the topology on finite-
dimensional vector spaces.

7. Real and complex projective spaces as the lines in real or
complex n-space. Equivalence of this definition of real projec-
tive space with the earlier definition. Complex projective
spaces as quotient spaces of spheres. Properties of quotient
spaces when the set of points equivalent to any point is com-
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pact. Conditions ensuring that the quotient of a metric space
is metric.

8. Inner products and norms on topological vector spaces.
Equivalence of norms of finite-dimensional vector spaces.
Isometry of inner product spaces having the same dimension.
Cauchy criterion and completeness.

9. Uniform continuity of continuous functions on compact sets.
Sequences of functions; the proof that the set of continuous
functions is complete. Ascoli's theorem.

10. Connected spaces and components. Continuous images of
connected spaces are connected. The Intermediate Value
theorem for real valued functions on connected topological
spaces.

11. Contraction maps in metric spaces and the fixed point theorem
for contractions in complete metric spaces. Relation of this
theorem to Picard's method for the existence of solutions of
ordinary differential equations in open domains in Euclidean
space.

12. General results on homogeneous linear systems of differential
equations. The solution space. Nonhomogeneous systems.
Applications to linear equations of the nth order.

13. Linear system with constant coefficients. Explicit structure of
the solution space using Jordan canonical form and exponen-
tial. Application to nth order equations.

14. Integration and volume in Euclidean spaces. Volume of boxes.
Domain with smooth boundaries; difficulties involved with bad
boundaries. Integral defined using step function and shown to
be a uniformly continuous positive linear function. Inte-
grability of continuous functions. The integral as a finitely
additive set function. Reduction of multiple integration to
iterated integration. Examples and calculations using iterated
integrals.

15. The idea of two functions, defined on a domain in Euclidean
space with values in a Euclidean space, touching at a point.
Explicitly, two continuous functions f and g have order of
contact n at x if

lim
I f(

1Y)
g(iy) I

o,
r-Ke

...

!
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and touching means order of contact 1. Proof that if an affine
function touches f at x, it is unique; f is defined to be differ-
entiable at x if such an affine function exists. Continuously
differentiable functions.

16. Geometric implications of order of contact with particular
emphasis on touching. Connection cf differentiability with
differentiability along lines and with affine approximations.
Examples, formulae, and matrix representation using the
standard coordinates in Euclidean space.

17. Mean Value theorem. Recursive definition of higher deriva-
tives. The class of n-times continuo,..sly differentiable func-
tions. Taylor's formula, and proof that an n-times differenti-
able function f has order of contact n at x with the standard
approximation to f obtained using the first n derivatives of
f at x.

18. Derivatives of composite functions, the chain rule using linear
transformations. The Jacobian matrix; examples involving the
Jacobian matrix.

19. The inverse and implicit function theorems in geometric form.
Their formulation using coordinates. Invariance of domain
under diffeomorphism.

20. Changes of volume induced by a continuously differentiable
function. Calculations for a range of examples. The notion
of an n-form on a domain in n-space; connection with volume
and volume change.

21. Intuitive discussion of differential forms on Euclidean n-space,
their use in Newtonian mechanics. Intuitive description of the
integral of a q-form over a differentiable singular q-simplex.

22. Exterior algebras for finite-dimensional vector spaces. Mor-
phisms of same induced by linear transformations. Orienta-
tions of real vector spaces via the exterior algebra. Duality
between q-forms and (n 0-vectors in an oriented vector
space.

23. Introduction of differential forms and vector fields on domains
in Euclidean space. Duality between q-forms and fields of
(n q)-vectors. Integration of differentials over differentiable
singular chains.

24. The star isomorphism in the exterior algebra of a Euclidean
vector space and its extension to forms and vector fields on a
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domain in Euclidean space. Morphisms of forms and vector
fields induced by differentiable functions.

25. The connection of integration of n- Corms over singular n-chains
in domains in n-space with the integration of functions defined
earlier. Subdivision of domains with smooth boundary and
singular chains. Volume, exterior algebras, determinants, and
the idea of a Riemannian metric.

26. The exterior derivative and its properties. Connection with
gradients; further geometric ideas. Poincaré lemma for convex
regions. Interpretation of Poincaré lemma in terms of existence
of solutions of differential equations. Exact equations, inte-
grating factors, and calculations in low dimensions. Special
properties of 3-space. Curl, divergence, and the exterior deriva-
tive.

27. The general Stokes theorem integrating q-forms over singular
q-chains. Classical form of Stokes theorem, including Gauss
theorem, Green's theorem, and the fundamental theorem of
calculus. Physical interpretations: study of flows, charges, etc.

28. Further applications of the calculus of differential forms to
physical problems, including Maxwell's equations in both
Newtonian and relativistic form. Hamilton's equations in
dynamics.

OUTLINE II:
LINEAR ALGEBRA

This one semester course, as part of Outline II, presents sepa-
rately the fundamental notions of linear algebra which are recom-
mended as suitable for Introductory Undergraduate Mathematics.
The course can be presented during any part of the first two years
that is deemed appropriate for the students involved.

It is noted here that Chapters 1 through 13 of this course are
designated as prerequisite to the algebra courses outlined in Ap-
pendix B. This is consistent with the amount of linear algebra in
Outlines I and II of Introductory Undergraduate Mathematics.
1. The complex numbers and subfields of the complex numbers.

The integers modulo p.
2. Vector spaces and linear transformations. Examples of vector
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spaces, particularly spaces of n-tuples and spaces of functions.
Subspaces, quotient vector spaces. Linear independence, gen-
erating sets, and the notion of basis.

3. Dimension for finite-dimensional vector spaces, invariance of
dimension, finite-dimensional subspaces of general vector
spaces. Behavior of dimension with respect to subspaces and
quotient vector spaces.

4. Inner products for real vector spaces; length and volume.
Euclidean vector spaces defined as finite-dimensional vector
spaces with inner product. Orthogonal bases. Gram-Schmidt
process and its relation to volumes. Subspaces, complementary
subspaces, and their relation with quotient vector spaces.
Lines, planes, hyperplanes, and distances.

5. Hermitian vector spaces defined as complex vector spaces with
a complex (Hermitian) inner product. Length of vector, vol-
ume of boxes, the associated Euclidean vector space of a
Hermitian vector space. Orthogonal bases. Gram-Schmidt
process and its relation to volumes. Subspaces, complementary
subspaces; lines, planes, hyperplanes, distances.

6. Recollection of definition of linear transformations. Definition
of matrix; representation of linear transformations by mat-
rices. Composition of linear transformations. Change of basis.

7. Orthogonal, symmetric, and skew-symmetric transformations
of Euclidean vector spaces; their relation with matrices and
bases.

8. Unitary, Hermitian symmetric, and skew-Hermitian trans-
formations of Hermitian vector spaces; their relation with
matrices.and bases.

9. Inductive definition of the determinant of a matrix. Relation
of determinants to volumes of boxes.

10. Permutations. New definition of determinant and equivalence
with the old. Multiplicative properties of the determinant.
The determinant of orthogonal and unitary matrices, and of
the transposed matrix.

11. Inverses, adjoints, elementary matrices, and reduction to
diagonal form. Applications to systems of linear equations.

12. Proof that in a Euclidean space any nonsingular linear trans-
formation is the product of a positive definite symmetric trans-
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formation and an orthogonal transformation. The idea of
Euclidean geometry. Invariance under rotations and transla-
tions.

13. Proof that in a Hermitian space any nonsingular linear trans-
formation is the product of a positive definite symmetric and
a unitary transformation. FIermitian geometry.

14. Decompositions of a vector space into irreducible cyclic sub-
spaces relative to a linear transformation. Jordan canonical
form.

15. Definition of minimal polynomial. The characteristic poly-
nomial as a product of certain minimal polynomials of irreduc-
ible subspaces of a cyclic decomposition.

16. Characteristic vectors, characteristic values, relations with the
characteristic polynomial. Special cases involving orthogonal,
symmetric, unitary, and Hermitian symmetric transforma-
tions.

OUTLINE III, FIRST YEAR:
FUNCTIONS OF ONE VARIABLE

The questions of what to teach in calculus and how are notori-
ously difficult to answer, and the answer has to be reargued by each
generation. The main difficulty is that calculus has to be both
problem oriented and theory oriented. The former means that the
student must be made aware of how theories arise to deal with con-
crete problems, that these concrete problems often originate in the
external world, and that the external world is an important source
of our intuition (and of our aesthetic criteria). The latter means
that the basic concepts should be introduced in the same spirit in
which they are used by working mathematicians, and that proofs
ought to have the same clarity and elegance which distinguishes all
first rate mathematics.

Fortunately, the two views do not conflict but complement each
other: to demonstrate how an abstract theory is developed to
deal with a concrete problem and unify what is common in various
problems is one of the most valuable lessons for budding young
mathematicians, far more valuable than merely presenting the
postulates for real numbers or the axioms of linear algebra.
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The choice of subjects and their arrangement is not entirely
rigid, e.g., the construction of the real numbers which is put at the
beginning can just as reasonably be done later. The same goes
for the uniform continuity of continuous functions over compact
intervals.

1. Real numbers. The intuitive notion of the continuum of real
numbers. The gaps in the rational numbers (Pythagorean
theorem); construction of the real number system, either by
nested intervals, Dedekind cuts, or infinite decimals. The to-
pology of real numbers; the algebra of limits.

Three basic theorems: the real numbers are complete; closed
bounded intervals are compact; and, a bounded set of real
numbers has a supremum.

Nondenumerability of real numbers, denumerability of
rational and algebraic numbers.

Mathematical induction.
2. Analytic geometry. Points of two, three, and n-dimensional

space as ordered n-tuples of real numbers. Addition, multipli-
cation by scalars. Straight lines, convex sets, hyperplanes,
linear subspaces. Dimension of linear subspaces.

Euclidean distance, scalar product, Schwarz inequality.
Orthogonality. Gram-Schmidt process.

Complex numbers.
3. Differentiation. The concept of a function; illustration, graph-

ical representation. Intuitive notion and rigorous definition of
a continuous function. The algebra of continuous functions.

Intuitive notion and rigorous definition of the derivative as
slope and instantaneous velocity. Derivatives of polynomials.
Algebraic rules for differentiating sums, differences, constant
multiples, products, and quotients of functions.

Differentiation of trigonometric functions, based on geomet-
ric definition.

Linear approximation to functions; derivation of the chain
rule.

Local existence and differentiability of the inverse of a func-
tion with nonzero derivative. Newton's method.

4. Integration. The intuitive notion of integral as signed area,
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work; examples of integrals which can be calculated by a direct
passage to the limit.

Existence of the integral of a uniformly continuous function
over a finite interval.

Basic property of the integral: linearity, positivity. The
Mean Value theorem.

The integral as function of its upper limit. Differentiation as
the inverse of integration. The log function and its inverse.
Statement of the theorem that a function with zero derivative
is constant. Integration as antidifferentiation. The inverse
trigonometric functions. Techniques of integration, partial
fractions, integration by parts, change of variables.

Estimation of integrals, Stirling's formula.
Arc length, surface area, and volume of bodies of revolution.

5. More about continuous and differentiable functions. Three
theorems about continuous functions: existence of maximum
and minimum over a finite closed interval, existence of inter-
mediate values and uniform continuity of continuous func-
tion in compact intervals.

Proof of the Mean Value theorem. Proof that if f' = 0, then
f is constant.

Calculation of maxima and minima.
Higher derivatives; their geometric and physical signifi-

cance.
Taylor's theorem with remainder (both derivative and inte-

gral form). Taylor series for the exponential and trigonometric
functions, the logarithm, the binomial series. Examples of
functions (e.g., exp 1/x2) which are not represented by
Taylor series.

The notion of the maximum norm; uniform convergence.
The completeness of the continuous functions under the maxi-
mum norm. Continuity of the integral with respect to the max-
imum norm.

Term-wise differentiation of series.
The interval of convergence of a power series; calculus of

convergent power series.
Improper integrals.
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OUTLINE III, SECOND YEAR:
LINEAR ALGEBRA AND FUNCTIONS OF SEVERAL VARIABLES

Again, the choice of subjects and their arrangement is not en-
tirely rigid. Sections 6 and 7 contain more advanced topics; some
fraction of these may be covered if there is time.

1. Vector and matrix valued functions and their applications in
geometry and mechanics. Linear transformations of the plane
and three-space into themselves; their description with the aid
of matrices. Definition of a matrix as a linear transformation of
R. into R.. The multiplication of matrices via the composition
of transformations.

Definition of symmetric, antisymrnetric, and orthogonal
matrices. Orthogonal matrices form a noncommutative group.
Description of orthogonal matrices in two- and three-dimen-
sions in terms of rotation and reflection.

Curves in n-dimensional space as vector-valued functions.
The notion of continuity and differentiability of vector-valued
and matrix-valued functions. Algebraic rules for differentiating
scalar and matrix products of functions.

Arc length and curvature in two- and three-dimensional
space.

Orthogonal transformations depending on a parameter;
their derivative expressed in terms of antisymmetric transfor-
mations. Geometric interpretation as infinitesimal rotation.
Introduction of vector product in three-dimensional space.

Mechanics: Newton's laws for particles. Systems of particles
acting on each other by central forces. Center of mass, the
moment of forces. Rate of change of momentum, angular mo-
mentum, and energy.

Motion of rigid systems of particles. Moment of inertia.
2. Ordinary differential equations; application of some notions

from linear algebra. Examples of differential equations from
physics, chemistry, and geometry, and their explicit solution
in terms of elementary functions.

Radioactive decay, vibrating spring, law of mass action,
two-body problem, oscillation of electric circuits, trajectories
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of simple vector fields, etc. Examples where physical intuitionsuggests the qualitative behavior of solution: under- and
over-damp, etc.

Examples of differential equations which cannot be solved
explicitly: the three-body problem, etc. The need for a theory,
i.e., existence and uniqueness theorems, qualitative estimates,
and methods for finding approximate solutions.

Statement and motivation of the existence and uniquenesstheorem for the initial value problem. Proof of uniqueness by
conservation of energy in special situations (e.g., vibrating
spring). Solution of analytic initial value problems by power
series; recovery of the exponential and trigonometric func-tions.

Difference methods for solving the initial value problem.
Comparison of exact and approximate solutions in simple
cases which ,can be handled explicitly.

The fixed point theorem for contracting transformations ofa complete metric space. Proof of the existence and uniqueness
theorem (do it in the special but typical case of a single first
order equation).

The abstract notion of a linear space over the complex num-bers. Dimension, coordinates. Linear transformations.
The notion of an operator mapping a certain class of func-

tions into another. Linear operators, linear differential oper-ators.
The set of solutions of a homogeneous linear differential

equation forms a linear space. Calculation of the dimension
of this space by the existence and uniqueness theorem.

First order matrix equations y' = A (t)y. The solution opera-
tor V(t) defined by y(t)=U(t)y. Solution of the inhomogeneous
equation y' = A (t)y -1-f given by y(t) = U(t)fott1-1(s)f(s)ds.

The algebra of scalar differential operators with constant
coefficients: factorization, commutation. Main theorem: ifLi, , Lk are pairwise relatively prime, then the nullspace of
their product is the direct sum of their nullspaces. Proof based
on main lemma about relatively prime polynomials. Solutionof (D X) nu = 0 in terms of exponentials and polynomials.
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Existence of a complete set of generalized eigenvectors of a
linear transformation of a linear space into itself, based on
main lemma about polynomials. Triangular form of a matrix.

Differentiation transforms any solution of a linear differ-
ential equation with constant coefficients into another solu-
tion. The eigenvectors of this transformation are exponentials
times polynomials.

The signature of a quadratic form.
The spectral theory of symmetric matrices. Extremal prop-

erty of eigenvalues. Positive definiteness. Spectral theory of
unitary matrices.

Small vibrations of mechanical systems. Monotonic depend-
ence of characteristic frequencies on the potential energy.

Sturm separation theorem. Simple two-point boundary
value problems. Characteristic frequencies, resonance.

3. Differentiation of functions of several variables. Determinants
as alternating multilinear functionals.

Open and closed subsets of n-dimensional space. Compact-
ness of bounded, closed subsets.

Functions defined on subsets of n-space. Continuity. Exist-
ence of maxima and minima on compact sets. Uniform con-
tinuity on compact sets.

Differentiability at interior points in terms of approximation
by linear functions. Chain rule. Partial derivatives of first
order. Maxima and minima, stationary points. Geometric in-
terpretation of grad f in Euclidean space as normal to surface
f = const. Examples.

Functions k times differentiable; approximation by poly-
nomials of kth order. Higher partial derivatives; commutation
of partial differentiation. Classification of stationary points.
Examples.

Extreme values under side conditions; Lagrange multiplier.
Vector fields; fields of force, gradient fields, conservation of

energy, Newtonian potential.
Mapping of n-space into m-space ; Jacobian. Composition of

mappings. Implicit and inverse function theorem.
Conformal mapping.
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The degree of a mapping, following the method of E. Heinz,
Journal of Mathematics and Mechanics, vol. 8, 1959, P. 231-
247.

4. Integration of functions of several variables. The intuitive
notion of the integral in Euclidean space: volume, mass,
momentum, moment of inertia, potential of mass, etc.

Rigorous definition, starting with the integral of continuous
functions with compact support defined by using rectangles in
a fixed orthogonal frame. Properties of the integral: linearity,
positivity, translation invariance.

THEOREM. These properties characterize the integral up to
a positive multiple. Proof. Let I(f) be a linear, transla-
tion invariant positive functional defined for all continu-
ous functions with compact support. Denote by r(s) the
"roof" function graphed below:

j
Nut:N.

jk)'sN'N11 *; '; f.:./ i

Denote r(ms) by rm(s). Every piecewise linear function
whose derivatives are discontinuous only at the points i/m,
i an integer, can be expressed as a linear combination of
rrn(s) and its translates. In particular,

Define now

m

li(x) = II r (xi)
1-1

11-.(x) = 11(mx)
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Putting s=x; and multiplying we get

k
h(x) = E ak..h. (x + ),

in

k a multi-index,

= Inn .
k

So, using the first two properties of I, we get

I (h) = mnI(h.).

Every piecewise linear function 1(x) in Rn whose deriva-
tives are discontinuous only on the hyperplanes x =ijm,
i an integer, can be expressed as a linear combination of
h, and its translates. This shows that I(1) can be expressed
in terms of I(h). Since every continuous function f with
compact support can be approximated by such piecewise
linear functions, it follows that I(f) can be expressed in
terms of I(h).
Corollary 1. Volume integral =repeated integral.
Corollary 2. Integral is independent of orthogonal frame

chosen (consider functions which depend only on Ix! ).
Corollary 3. Under a linear change of variables, the integral

is multiplied by a factor, which is a multiplicative functional
of the matrix of the transformation.

Corollary 4. This factor is the absolute value of the determi-
nant of the matrix of the transformation. (Proof by writing the
matrix as a product of orthogonal and diagonal transforma-
tions and using the first three Corollaries.)

The formula for integration by parts:

ffzigdx = ffgx5clx

follows from Corollary 1.
Integration over open sets. Intuitive notion of volume of an
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open set in terms of filling it up with cubes of unequal size.
Rigorous definition:

V(D) = Supffdx,
< 1 in D

f
< 0 outside D.

Corollary. Volume is unchanged under rotation and transla-
tion. Interpretation of determinant as volume.

Intuitive notion of the integral of a function over an open
set in terms of approximating sums over cubes of unequal size.
Rigorous definition:

ifdx = Supf gdx,

Corollary.

< f in D
g < 0 outside D.

I. fdx < V(D) I f Imax.

Evaluation of integral over D by repeated integration when f
is continuous up to the boundary of D and the boundary of D
is nice, i.e., each line cuts it only in a finite number of places
(convex domains and unions of convex domains). Examples.

Change of variables in one-to-one multiple integrals: Let
x---31 be a mapping of an open set D in x-space onto a set G in
y-space with continuous first derivatives and nonzero Jacob-
ian. Let f(y) be a continuous function with support in G. Then

(*)
ay

dx = f f(y)dy.
aX G

rroof. Let Epi(y) =71 be a smooth partition of unity in
y-space, g5(y) =pAny) a refinement of it. Write the left
side of (*) as

Efgau(x)y(y(x» 3_,I 1 dx.
i ax

For j fixed, replace the Jacobian by its value at x J, y(x)
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by a linear approximation to it. By Corollary 4, the result-
ing integral equals fg5(y)f(y)dy; the total error committed
is easily estimated and tends to zero with increasing n.

Examples: Change to polar coordinates. Evaluation of vari-
ous integrals, such as the error integral.

Area preserving maps. Canonical transformations.
Domain with smooth boundary defined by possibility of

smooth local parametrization. Proof that f(x) <0 has a smooth
boundary if grad f O. Intuitive notion of surface area. Defini-
tion by integral; independence of parametrization. Surface
integrals.

Integration by parts over domains with smooth boundaries.
Continuous functions form a Euclidean space under scalar

product (f, g)=--ffgdx. Notion of a linear operator. Symmetry
and positivity of the Laplace operator under boundary condi-
tion u= 0 or du/dn =0. Analogy to symmetric positive
matrices. Uniqueness of boundary value problem for the
Laplace equation and the mixed initial and boundary value
problem for the wave equation.

5. Exterior forms. The Gauss and Stokes theorems in special
cases. Their interpretation for flows and in the theory of elec-
tricity and magnetism.

Definition of exterior form, Grassmann algebra, differential
of a function.

Integration of forms over singular chains.
The exterior derivative; gradient, curl, and divergence as

special cases. The Poincare lemma.
The general Stokes theorem. Applications to Cauchy's inte-

gral theorem.
6. Introduction to the calculus of variations. Examples of prob-

lems in the calculus of variations for functions of one variable.
The general problem of finding extrema for

ff(x, y,

The Euler equation; examples where the Euler equation can
be solved explicitly.

-
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Quadratic variational problems. Proof that the integral is
definite if the underlying interval is short enough.

The second variation; examples where the second variation
is not positive (catenoid) ; conjugate points. Geodesics; ex-
ample of the Poincare half plane.

Variational problems for functions of several variables. The
Dirichlet integral. Plateau's problem.

7. Harmonic analysis. Fourier transform, Parseval's formula.
Convolution.
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APPENDIX B:

HIGHER UNDERGRADUATE MATHEMATICS

In this section, we have placed one or more outlines for each of
the courses which the Panel suggests should be provided by every
college department undertaking the program and which are rele-
vant to the central areas of mathematics:

Real analysis
Complex analysis
Abstract algebra
Geometry-topology
Probability or mathematical physics

It is not intended that these outlines shall be construed as com-
pletely determining the content of these courses; alternatives will
be welcomed by the Panel.

REAL ANALYSIS (ONE YEAR)

This outline deals with the following three major topics in real
analysis:

(1) Various classes of generalized functions, such as L1, L2, L.,,,
distributions, etc.

(2) Measure theory.
(3) Nondiscrete decomposition.

These topics are basic in a wide variety of fields in analysis, such as
the theory of differential equations, the calculus of variations,
harmonic analysis, complex variables, probability theory, topo-
logical dynamics, spectral theory, and many others.

We advocate presenting this material, notably that listed under
(1), within the framework of general topology and functional anal-
ysis. The necessary background is developed in Sections 3, 4, and
5; to a certain extent this constitutes a review of material already
covered in the Introductory Undergraduate Mathematics. As the
outline shows, we believe strongly, as did the founding fathers, in
dealing first with special cases and in presenting applications along
with the general theory.
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Perhaps our most radical departure from tradition is advocating
the presentation of the notions of strong derivatives in the sense of
Friedrichs and Sobolev, and distributions in the sense of Schwartz,
rather than the Lebesgue theory of differentiation. We feel that
this is justified by the simplicity and general usefulness of the
newer theories.

There is more material presented here than would fit into a
year's course. Sections 8-12 are offered as a variety to choose
from. The subjects in the first seven Sections are basic, but the
material outlined is a little more than what is strictly necessary
for a self-contained treatment.

Fortunately, most of the subjects discussed in the outline are
available in textbooks, although not all within the covers of one
text. A sample bibliography is appended, with Section-by-Section
references.
1. Set theory. Review of the terminology of set theory. One-to-

one correspondence, countable and uncountable sets; the un-
countability of the real numbers and of other interesting sets.
Equivalence relations, order. The Schroeder-Bernstein theo-
rem. The axiom of choice and Zorn's lemma.

References: [4], [10], [14].
2. Real numbers. The construction of real numbers by comple-

tion (equivalence classes of Cauchy sequences). The compact-
ness of closed, finite intervals. Hamel basis.

References: [4], [6], [16], [31].
3. Metric spaces. Definition, examPles: the continuous functions,

L1, L22 Lr; the Schwarz and Holder inequalities. Open and
closed sets, dense and nowhere dense sets, separability. Bern-
stein polynomials and the Weierstrass approximation theo-
rem; Chebyshev's theorem on best approximation.

Completeness and the process of completion. Fixed point
theorem and its application. Baire category theorem and
its applications. Continuous functions; Tietze's extension
theorem.

Compactness and local compactness, Arzela.-Ascoli and Rel-
lich compactness theorems and applications.

References: [4], [6], [16], [31 ].
4. Topological spaces. Definition, examples. Open and closed sets.

Hausdorff spaces. Separability. Compactness; Stone-Weier-

7
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strass theorem, Tychonoff's theorem. Topological groups.
References: [19], [21], [31].

5. Normed linear spaces. Hilbert space: definition, orthonormal
base, projection theorem, representation of linear functionals.
Bounded operators, adjoints, symmetric and unitary oper-
ators.

Banach spaces: definition, linear functionals, dual space,
bounded linear operators.

Banach-Steinhaus theorem, applications. Hahn-Banach
theorem, applications (moment problems).

References: [2], [3 ], [6], [9], [16, Vol. II ], [20 ], [25 ], [32].
6. Integrals and measures. There are two competing approaches,

neither of which should be slighted. (A) is functional analysis
oriented with applications in classical analysis generally (e.g.,
orthogonal series, differential and integral equations, class-
ical probability theory). (B) is measure-theoretical, with appli-
cations in stochastic processes, ergodic theory, and statistics.

(A) The space Co of continuous functions on a complete,
locally compact metric space. Signed and complex measures.
Relation of measures: absolute continuity, Radon-Nikodym
theorem. Convergence theorems. Fubini's theorem. Riesz
representation theorem.

.(B) Classical general measure-theoretic methods: outer
measure, extension of a measure through outer measure, Kol-
mogorov consistency criterion, conditional measures. Product
measure. Mention of finitely additive measures.

References: [11], [18, Part I], [19], [21], [22], [26],
[27], [28].

7. Differentiation. Functions in n-dimensional Cartesian space.
Strong derivatives in the sense of Friedrichs and Sobolev.
Sobolev's theorem. Applications to differential equations.
Schwartz theory of distributions; applications.

Vitali covering theorem and differentiation almost every-
where.

References: [7 ], [12 ], [15 ], [17 ], [21 ], [25 ], [26 ], [27 ],
[29], 130].

8. Applications to classical analysis. Orthonormal series, Fourier
and other transforms, Riesz-Fischer theorem, Fourier trans-
forms of L2 and of tempered distributions. Convolution. Class-

i

..,

,
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ical inequalities based on convexity. Theory of approximation.
Applications.

References: [1 ], [5 1, [8], [13], [24].
9. Integration on groups. Construction of the Haar measure.

Examples.
References: [19], [22], [23].

10. Measure spaces. Definition of an abstract measure space.
Measure on the Cartesian product of a countable number of
circles. Application: the convergence of random series.

References: [11], [281
11. Banach algebras. Definition, the Gelfand theorem on the exist-

ence of multiplicative linear functionals. Applications to
Fourier series and function theory.

References: [20], [23], [31].
12. Spectral resolution of self-adjoint operators. The spectral reso-

lution of bounded, symmetric operators. The discrete, singular
and absolutely continuous parts of the spectrum.

References: [20], [21].

REFERENCES
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Publishing Company, 1933.
3. Berberian, S. K. Introduction to Hilbert Space. New York: Oxford

University Press, 1963.
4. Boas, R. P., Jr. A Primer of Real Functions (Carus Monographs, No.

13), The Mathematical Association of America. New York: John
Wiley and Sons, Inc., 1960.

5. Bochner, S. Lectures on Fourier Integrals. Princeton, N. J.: Princeton
University Press, 1959.

6. Dieudonné, J. A. Foundations of Modern Analysis. New York: Aca-
demic Press, Inc., 1960.

7. Friedman, A. Generalized Functions and Partial Differential Equa-
tions. Englewood Cliffs, N. J.: Prentice-Hall, Inc., 1956.

8. Goldberg, R. R. Fourier Transforms. New York: Cambridge Univer-
sity Press, 1961.

9. Halmos, P. R. Introduction to Hilbert Space and the Theory of Spectral
Multiplicity. New York: Chelsea Publishing Company, 1957.

10. Halmos, P. R. Naive Set Theory. Princeton, N. J.: D. Van Nostrand
Company, Inc., 1960.
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11. Halmos, P. R. Measure Theory. Princeton, N. J.: D. Van Nostrand
Company, Inc., 1950.

12. Halperin and Schwaitz. Introduction to the Theory of Distributions.
Toronto: University of Toronto Press, 1952.

13. Hardy and Rogosinski. Fourier Series. New York: Cambridge Univer-
sity Press, 1963.

14. Hausdorff, F. Grundzage der Mengenlehre. New York: Chelsea Pub-
lishing Company, 1949 [1914].

15. H6rmander, L., Partial Differential Equations, Berlin: Springer, 1963.
16. Kolmogorov and Fomin. Elements of the Theory of Functions and

Functional Analysis, Vols. I, II. New York: Gray lock Press and
Academic Press, Inc. Vol. I: Metric and Normed Spaces, 1957. Vol.
II: Measure, Lebesgue Integrals, and Hilbert Space; translation by
N. Brunswick and A. Jeffrey, 1961.

17. Lighthill, M. J. Introduction to Fourier Analysis and Generalized Func-
tions. New York: Cambridge University Press, 1958, paper 1960.

18. Loeve, M. Probability Theory, 3rd ed. Princeton, N. J.: D. Van
Nostrand, Inc., 1963.

19. Loomis, L. H. An Introduction to Abstract Harmonic Analysis. Prince-
ton, N. J.: D. Van Nostrand Company, Inc., 1953.

20. Lorch, E. R., Spectral Theory, New York: Oxford University Press,
1962.

21. McShane and Botts. Real Analysis. Princeton, N. J.: D. Van Nostrand
Company, Inc., 1959.

22. Munroe, M. E. Introduction to Measure and Integration. Reading,
Mass.: Addison-Wesley Publishing Company, Inc., 1953.

23. Naimark, M. A. Normed Rings. Groningen, Netherlands: Erven P.
Noordhoff, Ltd., 1959.

24. Natanson, I. P. Theory of Functions of a Real Variable, Vols. I, II.
New York: Frederick Ungar Publishing Company; Vol. I, ed. by
Leo F. Boron and Edwin Hewitt, 1955; Vol. II, ed. by Leo F.
Boron, 1959.

25. Riesz and Nagy. Functional Analysis. New York: Frederick Ungar
Publishing Company, 1955.

26. Royden, H. L. Real Analysis. New York: The Macmillan Company,
1963.

27. Rudin, W. Principles of Mathematical Analysis. New York: McGraw-
Hill Book Company, Inc., 1953.

28. Saks, S. Theory of the Integral, tr. by L. C. Young, 2nd ed. rev. New
York: Stechert-Hafner Publishing Company, 1937.

29. Schwartz, L. Théorie des Distributions. Paris: Hermann, 1957.
30. Schwartz, L. Theorie des Distributions, 2nd ed. Paris: Hermann,

1957.
31. Simmons, G. F. Introduction to Topology and Modern Analysis. New

York: The McGraw-Hill Book Company, Inc.; 1963.
32. Taylor, A. E. Introduction to Functional Analysis. New York: John

Wiley and Sons, Inc., 1958.
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COMPLEX ANALYSIS, OUTLINE I (ONE YEAR)

The first semester of this course, covering Sections 1-8, includes
the standard elementary (but basic) topics from the theory of
functions of one complex variable. The content of the second
semester centers about the conformal mapping theorems for
regions of finite connectivity, including the necessary tools for
their proof. Other suitable topics for the second semester may be
found in [2 ] and [4] of the References.

1. Complex numbers as ordereG pairs of reals, field properties.
Conjugate and absolute value, geometric properties. Polar
representation. Stereographic projection and the extended
plane.

2. Elementary functions. The derivative. Analytic functions on
open connected sets. Detailed treatment of examples: poly-
nomials, rational functions, the group of linear fractional func-
tions, exponential and trigonometric functions.

3. Conformal mapping by elementary functions. Proof that an
analytic function is conformal at points where its derivative
does not vanish. Specific conformal mappings.

4. Integration along piecewise continuously differentiable curves.
Cauchy's theorem for rectangle and circular disk. Integral
representation of the derivative. Morera's theorem, Liouville's
theorem, and the fundamental theorem of algebra.

5. Taylor series development. Proof that the uniform limit of
analytic functions is analytic. Classification of isolated singu-
laritiesremovable, poles, essential singularities. Zeros of non-
trivial analytic functions are isolated. Laurent series.

6. Nonconstant analytic functions are open. The maximum mod-
ulus theorem. Schwarz lemma. The one-to-one analytic maps
of the unit disk onto itself.

7. Cauchy's theorem and homology. Simply and multiply con-
nected regions. The residue theorem. Argument principle.
Rouches theorem. Evaluation of definite integrals using the
residue theorem. Implicit function theorem.

8. Analytic continuation.
9. Meromorphic functions. Infinite products; the Weierstrass

factorization theorem. Mittag-Leffler theorem.
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10. Compact families of analytic functions. Montel's theorem.
Conformal equivalence of simply-connected regions. The Rie-
mann mapping theorem.

11. Harmonic functions. Elementary properties: mean value theo-
rem, maximum principle, kolated singularities.

12. The Dirichlet problem for the disk, with continuous boundary
values. The Poisson integral.

13. Applications of the Poisson integral: a continuous function
having the mean-value property is harmonic, uniform limit of
harmonic functions is harmonic. Harnack inequalities and
convergence theorem.

14. Subharmonic functions. Elementary properties. Perron's
theorem.

15. The Dirichlet problem for a region. Sufficient conditions for
existence of a solution. Barriers.

16. Green's function for a region. Relation with, conformal map-
ping of the region. Regions of finite connectivity. Harmonic
measures.

17. Conformal mappings of regions of finite connectivity onto
standard regions.

18. The Hardy HP-spaces of analytic functions on the unit disk.
(This Section assumes some knowledge of Lebesgue integra-
tion.) Fatou's theorem; Herglotz's theorem.

REFERENCES
1. Ahlfors, L. Complex Analysis. New York: McGraw-Hill Book Com-

pany, Inc., 1953.
2. Heins, M. Selected Topics in the Classical Theory of Functions of a

Complex Variable. New York: Holt, Rinehart and Winston, Inc.
1962.

3. Hi lle, E. Analytic Function Theory, Vols. I, II. Boston: Ginn and Com-
pany; Vol. I, 1959; Vol. II, 1962.

4. Hoffman, K. Banach Spaces of Analytic Functions. Englewood Cliffs,
N. J.: Prentice-Hall. Inc., 1962.
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COMPLEX ANALYSIS, OUTLINE II (ONE YEAR)

Complex analysis offers a unique opportunity to convince the
young student who has only a minimal knowledge of algebra and
topology that these subjects can interact with analysis in a useful
way. The aim in this outline is to present the few key concepts
which are remembered by mathematicians of all fields. Simplicity
and a hope to excite the student with continuing ideas are empha-
sized at the expense of an occasional time-honored result or point
of view. It is assumed that the student will be familiar with topo-
logical concepts appropriate to the plane, including properties of
continuous mappings and of arcwise connectivity.

1. The complex field. Characterization of the real field, complex
numbers as pairs of real numbers, the complex field C as a
field with valuation and conjugation as its automorphism,
geometric interpretations, intuitive and rigorous adjunction of
a point at infinity as a compactification of the plane.

2. Power series. The ring of formal power series Kuxil over a
field K, operations with series (formal derivative, reciprocal,
inverse), convergent series (K=R or C), uniform convergence
of a series of functions, radius of convergence of a formal series,
operations with convergent power series (differentiation, re-
ciprocal, inverse), exponential function and logarithm func-
tions.

3. Analytic functions. Real and complex analytic functions
defined as functions, on open sets, which are locally power
series, and the algebra of functions analytic on a region D;
principle of analytic continuation (uniqueness of continua-
tion), zeros of an analytic function (discreteness), rational
function, poles, the .deld of meromorphic functions on D.

4. Integration. Differential forms Pdx+Qdy =co, differential
chains 7, integration Act), exact chains, closed forms, complex
forms, homotopy, winding number of closed chain, generalized
principle of argument, and Rouche theorem for mappings.

5. Holomorphic functions. f is holornorphic at zo if f' (zo) exists.
Cauchy-Riemann equations, Cauchy theorem (if f is holo-
morphic in D,f(z)dz is a closed form); existence of local primi-
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tives that are holomorphk, Cauchy integral representation,
holomorphic functions are analytic, Morera's theorem.

6. Applications of integration. Liouville theorem, algebraic closure
of C, maximum modulus theorem, open mapping theorem,
Schwarz lemma, Laurent representation, isolated singular
points, residues, calculation of contour integrals, counting of
zeros and poles of a meromorphic function, Schwarz reflection,
doubly periodic functions.

7. Functions of several variables. Formal power series in several
variables, domain of convergence, operation with series, ana-
lytic functions in several variables, principle of analytic con-
tinuation; harmonic functions, holomorphic functions are
(complex variable) harmonic functions, every real harmonic
function is (locally) the real part of a holomorphic function,
harmonic functions are analytic.

8. Global problems. The Riemann sphere, functions holomorphic
in regions on the sphere, the fundamental group ir(D) of a
a region D, integration as a homomorphism of ir(D) into the
additive group of C, generators of ir(D), the covering space of
D and general solution of the problem Re(f) =u, where u is
harmonic in D, subcovering spaces and normal subgroups
of ir(D).

9. Holomorphic function of several variables. Cauchy theorem,
Taylor theorem, composition of functions and the implicit
function theorem, statement of Hartogs' theorem.

10. Spaces of holomorphic functions. The space C(D) and H(D) of
functions continuous in D and holomorphic in D, fundamental
theorems on convergence in compact sets in D, continuity of
differentiation in H(D), the univalent functions as a subset of
H(D), series of meromorphic functions, the Weierstrass peri-
odic function; infinite products of holomorphic functions,
representation of sin (lrz) and 1/r(z) ; closed bounded sets in
H(D) are compact.

11. Holomorphic mappings. Local properties of a mapping co =f(z),
special mappings, the conformal automorphisms of a disc, of
the plane, and of the Riemann sphere; the Riemann mapping
theorem.
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12. Analytic spaces. The general notion of an analytic space, holo-
morphic mappings of analytic spaces, meromorphic functions
on an analytic space, fundamental theorem on conformal
equivalence of simply connected analytic spaces, differential
forms on an analytic space; Riemann surfaces, analytic con-
tinuation.

13. Application to differential equations. Existence theorem and
uniqueness theorem, dependence upon initial conditions,
higher order equations.

REFERENCES
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ABSTRACT ALGEBRA (ONE YEAR)

The purpose of this course is to introduce the student to basic
structures of abstract algebra and to provide an introduction to
applications to various branches of mathematics. The prerequisite
for this course consists of the material in Chapters 1-13 of the se-
mester course in linear algebra appearing in Outline II of Appen-
dix A.

The main body of the course is divided into nine Sections out-
lined below. This initial segment should cover approximately

semesters; and for the remaining semester, five options are
presented, each starting with Section 10, and each representing an
introduction to further specialized study.

1. Groups. Definition of groups and morphisms of groups. Notion
of subgroup; quotient group. The permutation groups, repre-
sentation of any group as a group of permutations; groups of
some regular solids. Groups of linear transformations. Orthog-
onal groups, unitary groups, etc. Abelian groups; abelianiza-
tion of an arbitrary group.

2. Commutative rings. The definition of commutative ring and
discussion of examples including the integers, Gaussian inte-
gers, and, the integers modulo n. Definition of ideal and quo-
tient ring; further examples. The definition of field, integral
domains, Euclidean domains, and principal ideal domains.
The Euclidean algorithm. Maximal ideals. The problem of
unique factorization; proof that principal ideal domains are
unique factorization domains. Examples showing that not all
integral domains are unique factorization domains.

3. Commutative rings. Definition of a commutative algebra.
Polynomial algebras in a finite number of indeterminates, in-
cluding both existence and universal properties. The poly-
nomial algebra in one indeterminate over a field as a Euclidean
ring. Proof that polynomial algebras in a finite number of in-
determinates over a unique factorization domain are again
unique factorization domains.

4. Modules over commutative rings. Definition of module,
morphism, epimorphism, monomorphism and isomorphism;
examples including vector spaces and abelian groups. Sums
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and products of modules including explicit constructions and
universal properties. Observations that finite sums and prod-
ucts coincide. Exact sequences of modules, submodule, quo-
tient module, modules of morphisms. The fundamental de-
composition theorem for modules over principal ideal domains;
application such as a review of cyclic decompositions of vector
spaces and Jordan canonical form.

5. Graded and exterior algebra. Representation of morphisms of
finitely generated free modules by matrices; dual modules,
dual bases, duals of morphisms; relation with matrices, trans-
poses, etc. Graded algebras, commutative graded algebras;
examples including free associative algebras, polynomial alge-
bras. Exterior algebras, rank, invariance of dimension of free
modules, traces, determinants via the exterior algebra.

6. Polynomial algebras and finite dimensional vector spaces.
Given a vector space over a field, and a linear transformation,
the vector space becomes a module over the polynomial ring
in one indeterminate over a field. Cyclic decompositions. Mini-
mal polynomial and characteristic polynomials of linear trans-
formations; the Cayley-Hamilton theorem. The Jordan and
other canonical forms of matrices. Trace and determinant via
the characteristic polynomial. Eigenvectors and eigenvalues.

7. Field theory. Splitting field of a polynomial, prime factors,
finite fields, and fields of fractions. Algebraic extensions, sepa-
rability, inseparability, norms and traces. Roots of unity, alge-
braic number field, the theorem of the primitive element.
Algebraically closed fields; existence and uniqueness of the
algebraic closure.

8. Group theory. Isomorphism theorems for group theory. Com-
position series; Jordan-Holder-Schreier theorem. Products of
groups. The Remak decomposition for finite groups. Solvable
groups, the Sy low theorems; examples. Further study of the
permutation groups. Simplicity of the alternating group for
n > 4.

9. Galois theory. Automorphism of fields, fixed fields of groups
of automorphisrns of the splitting field of a polynomial as a
permutation group. Galois extensions defined using finite

_

,

.



Committee on the Undergraduate Program in Mathematics 57

automorphism groups; criteria for an extension to be Galois.
Fundamental theorem of Galois theory from the Artin point
of view; discussion of other proofs. Fields of fractions of
polynomial rings. Galois extensions with a symmetric group
or Galois group, solvable extensions and relations with solv-
ability of equations by radicals.

Option I: Algebraic Number Theory

IQ. Rings of integers. Finite extensions of the rational number
field ; calculation of sample Galois groups. Definitions of rings
of integers, calculations of the primes and prime ideal in
various examples; examples of rings of integers in number
fields which are not principal ideal domains, and examples
which are principal ideal domains but not Euclidean rings.
Definition of Dedekind ring; proof that the rings of integers
in finite separable extensions of the field of fractions of a
Dedekind ring are again Dedekind. Various characterizations
of Dedekind rings. Study of the rings of integers in quadratic
extensions of the rationals.

11. Dedeldnd rings and modules. Fractional ideals, classical ideal
theory for Dedekind rings; examples. Modules over Dedekind
rings; fundamental theorem for finitely generated modules.
The ideal class group. Finite:1m- via Minkowski's lemma. Class
numbers. Finitely gea. ..rated torsion-free modules are char-
acterized up to isomorphiqrii by their rank and ideal class using
the exterior algebra to debamine the ideal class of the module.
Calculations of id:al class groups for a few simple examples.

12. Introductory algebraic number theory. Integral bases, ex-
amples, and proof of existence in general. Units, the cyclotonic
fields, units in quadratic extensions. The Dirichlet-Minkowski
theorem on units. Calculation of various examples.

13. Further introductoi y number theory. Ramified and unrami-
fied primes; examples. Decomposition groups, ramification
groups, etc.; examples. Abelian extensions. Cyclotomic and
quadratic fields; quadratic reciprocity law.
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Option H: Noetherian Rings and Modules

10. Rings with minimum condition. Definition and fundamental
properties, equivalence with descending chain condition. Cor-
respondence to rings with no nonzero nilpotent (left) ideals.
Reduction to semisimple rings, matrix characterization of
simple rings. Modules and their structure as sums of a mini-
mal ideal, fields; quadratic specialization to vector spaces.

11. Noetherian rings. Definition and fundamental properties,
equivalence with ascending chain condition. Hilbert basis
theorem. Normal decompositions. Correspondence with local
rings, decompositions again.

12. Dedekind domains. Definition and some equivalent notions.
Characterization of ideals. Finitely generated modules, torsion-
free characterization. Torsion modules, connections with
matrices. Hilbert zero theorem. Special case: ideal theory for
quadratic number fields.

13. Representation theory of groups. Representation of degree
n (over an algebraically closed field F whose character does
not divide order of the group 0, equivalent representations,
connections with finitely generated left F (G)-module. Char-
act( rs, equivalence, direct sum decomposition, irreducible
characters. Computation for the symmetric group.

Option HI: Geometry of Classical Groups

10. Affine and projective geometry. Affine geometry; synthetic
approach and construction of a field. Desargues theorem,
Pappus theorem and commutativity. Projective geometry,
introduction and fundamental theorems. Examples of pro-
jective geometries; the projective plane.

11. Quadratic forms. Definition of quadratic forms and their ele-
mentary geometry. Orthogonal quadratic forms, orthogonal
sum of subspaces. Orthogonal geometry (especially over finite
fields). Symplectic forms, symplectic geometry (especially
over finite fields).

12. Orthogonal and symplectic groups. Euclidean orthogonal
groups. General orthogonal groups, Clifford algebras, spinor
norms. Structure of the orthogonal group; structure of the
symplectic group.
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Option IV: Equations of Fifth Degree

10. Representations of finite groups. Definitions and general
properties of representations. Characters; complete reducibil-
ity (under the appropriate assumption concerning the char-
acteristic of the field). Schur's lemma; relations on characters
(over the complex numbers). Some computations for the sym-
metric group. Invariants of finite groups.

11. Equations of fifth degree. Liiroth's theorem; group of auto-
morphism of a rational function field of one variable. Deter-
mination of all finite subgroups (and their invariants for
character zero); peculiarities of the modular case. The icosa-
hedral equation. Bring's equation. The icosahedral equation
as resolvent ,of the general equation of the fifth degree.
Kronecker's theorem on the nonexistence of rational resolvents
for general equations of degree greater than or equal to five.

Option V: Elliptic Function Fields

10. Algebraic function fields of one variable. Places and valua-
tions; completion of a field with respect to a valuation. Exist-
ence of places; order functions. Divisors and divisor classes.
Differentials. Special cases: partial fractions for rational func-
tion fields; Rieniann-Roch theorem for elliptic function fields.
Riemann-Roch theorem for hyper-elliptic function fields.
Analogies with quadratic number fields.

11. Algebra of elliptic functions. Algebraic group structure of a
nonsingular plane cubic curve; the absolute invariant. Addi-
tion theorem for elliptic functions, multiplication and division
of elliptic functions. Divisor classes of finite order in an elliptic
function field. Modular equations (e.g., their Galois groups).
Euler's theory of elliptic functions. Gauss theory of the lem-
niscate. Function theoretic viewpoint.

REFERENCES
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GEOMETRY-TOPOLOGY

Aspects of point set topology are prerequisite to most beginning
graduate programse.g., metric spaces, compactness, connected
ness, effects of continuous mappings on such properties, uniformly
continuous mappings, Tychonoff theorem. A substantial part of
this material is discussed in the Introductory Undergraduate
Mathematics, and it is not regarded as necessary that a separate
course in point set topology be in the undergraduate curriculum.

It is, however, highly desirable that every undergraduate take
part in some sustained, deep geometric development. Such a
variety of significant geometric developments is possible, differing
in method and aim from the very start, that the Panel is reluctant
to suggest any one or two of them as belonging to every under-
graduate's program. Instead, we propose a larger number of
courses and recommend that each student take one or two of them.
The specific ones of these courses that may be offered in a given
college depend on the interests and training of its staff. Hopefully,
this will lead to a wide divergence in the types of geometers
eventually produced.

We have also felt that the hybrid title "Geometry-Topology"
is more descriptive of this area than either title alone.

OUTLINE I : SET THEORETIC TOPOLOGY (ONE YEAR)

The set theoretic topology included in the calculus course is
limited to that needed for the multi-dimensional calculus. In this
course it is developed in a more abstract setting. These techniques
and results are then applied to study topological groups, covering
spaces, the fundamental group, and two-dimensional manifolds.

The course outlined is a one-year course. However, Sections 10
through 17 and 18 through 26 are independent. This permits
various choices as determined by the interests of the group con-
cerned.

1. Hausdorff spaces. Compactness, local compactness, one point
compactification, sequential compactness. Continuous, open,
closed mappings. Uniform continuity.
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2. Connectedness, local connectedness, components. Preserva-
tion under mappings. Non local connectedness.

3. Product spaces, quotient spaces. The Hilbert cube. Hausdorff
maximality principle or the axiom of choice. Product of com-
pact spaces is compact.

4. Separability, 2nd countability. Countability arguments (Brou-
wer reduction theorem; i.e., irreducibility). Baire category
theorem and general method of argument.

5. Metric spaces, equivalent metrics, completeness, topological
completeness. Ga-sets. Baire category theorem in complete
metric spaces.

6. Urysohn's lemma, Tietze extension theorem, metrizability for
locally compact second countable Hausdorff spaces. Para-
compactness and Smirnov metrization theorem.

7. Upper semi-continuous and continuous decompositions of com-
pact metric spaces. Hausdorff metric. Relationship of decom-
positions to mappings.

8. Hahn-Mazurkiewicz theorem, arcwise connectivity.
9. Characterizations of arcs and one-manifolds.

10. Topological groups, nuclei, quotient spaces.
11. Projection mapping G--K7/H is closed mapping if H is com-

pact. G is compact (locally compact) if His compact and G/H
is compact (locally compact). Examples: orthogonal and uni-
tary groups, Stiefel manifolds.

12. Local isomorphism of topological groups; G--4G/N is a local
isomorphism if N is a discrete normal subgroup. If G and G'
are locally isomorphic, there exists H with discrete normal
subgroups N and N' so that G is isomorphic to H/N and G'
is isomorphic to H/N'.

13. Paths, homotopies of paths, fundamental group. Pathspace
PX of a topological space X with base point e; continuity of
projection map ir:PX--)X.

14. Pathspace of topological group is topological group and ir is
a homomorphism ; ir is open, onto if X is a pathwise connected,
locally pathwise connected topological group.

15. 2X=ir-1(e), e the unit of X, and SZ0X, the identity component
of X, are closed normal subgroups of PX;2=PX/SloX is the
universal covering group of X and v:1--,X induced by ir is
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the covering map. The kernel of (p is 2.7fAX and co is open,
onto, continuous homomorphism if X is pathwise connected
and locally pathwise connected.

16. If X is a pathwise connected, locally pathwise connected,
semi-locally simply connected topological group, then co: X-4.X.
is a local isomorphism with kernel N =S2X /120X =fundamental
group of X; ..k- is simply connected.

17. In the class of all pathwise connected, locally pathwise con-
nected, semi-locally simply connected topological groups
which are locally isomorphic to one such group, there is
uniquely, up to isomorphism, a simply connected group C* in
the class, and for any C in the class, C*/NC, where N is the
fundamental group of C and is in the center of C*

18. Fundamental group of the unit circle (as topological group).
Winding number of closed path in the plane relative to a
point (as element of fundamental group of punctured plane).
Fundamental theorem of algebra. Simple arc does not discon-
nect the plane.

19. Jordan curve theorem.
20. Arcwise accessibility of points of arcs and simple closed curves

in the plane from their complements. Schoenflies theorem (as
in [8 ]).

21. Simplicial complex, abstract complex, geometric realizations
and polyhedra. Imbedding theorem for n-dimensional com-
plexes. Simplicial approximation theorem. Fixed point theorem
for n-cells (Hirsch's proof [4]).

22. Manifolds. Triangulability of compact two-manifolds. Haupt-
vermutung for compact two-manifolds.

23. Cuts and handles. Orientability.
24. Invariance of Euler characteristic. Connectivity of two-mani-

folds.
25. Classification of two-manifolds.
26. Bicollaring, Brown-Mazur theorem.
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OUTLINE II: ALGEBRAIC TOPOLOGY (ONE YEAR)

This course introduces the student to the tools and techniques
of homology theory through a continuation of the study of differen-
tial forms as in Outline II of the Introductory Undergraduate
Mathematics. For those with a background from Outlines I or
III, several topics in Outline II must be studied first.

1. Differentiable manifolds of various classes, charts, atlases.
Differentiable mappings. Orientation.

2. Differential forms in coordinate neighborhoods, morphisms,
coordinate transformations. Differential forms on manifolds.

3. Exterior derivative, effect on products and transformations
and of iteration. The differential forms P(M) on a differential
manifold M and exterior derivative viewed as a cochain
complex, with product. Contravariant homomorphism induced
by differentiable mappings of manifolds; compositions.

4. The standard and affine simplices in Euclidean space, face
operation. Singular and differential chain group. Boundary of
affine and singular chains. Induced mappings and commuta-
tion with boundary, aa= 0. Stokes theorem on compact
manifolds.

5. Closed and exact differential forms; cycles and boundaries;
cohomology of forms and homology of singular (differentiable)
chains. Stokes theorem establishing dualities between the
various classes of forms and chains. Closed forms as linear
functionals on homology classes.

6. Definition of singular homology groups and the de Rham
groups (i.e., graded quotients of closed by exact forms). State-
ment of de Rham's theorem in form that the de Rham groups
are dual vector spaces to the singular homology groups.

7. Local triviality of the singular and de Rham groups for con-
tractible (or differentially contractible) spaces; in the case of
de Rham groups, by integration by parts; introduction of
chain and cochain homotopies. Cone construction for singular
groups.

8. Singular cohomology groups. Singular cochains with coeffi-
cients in an abelian group G as the group of homomorphisms
of the group of singular chains into G. Coboundary operator
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as Horn (a). Cocycles, coboundaries, cohornology. Properties
under rnappings. Isornorphisrn HP (X ; G),==Hom (14(X); G)
for divisible groups. Restatement of de Rharn's theorern as
saying the de Rham groups RP (2f)-2HP (M; R), where R is
the real nurnbers.

9. Sub-cochain cornplexes, quotientz; hornornorphisrns of cochain
complexes; Bockstein exact sequence for cohornology for a
short exact sequence of coefficient groups.

10. Systern of local coefficients for the singular chain cornplex;
cochains with local coefficients; cohornology. Hornornorphisrns
of local coefficient systems; short exact sequences and the
Bockstein sequence.

11. Sirnplicial complexes, abstract sirnplicial complexes, polyhedra,
geornetric realization; sirnplicial mappings. Oriented sirnplicial
chain complex; alternating sirnplicial cochain groups. Natural
rnapping of simplicial homology of an abstract simplicial
complex into the singular homology of its geornetric realiza-
tion; sarne for cohornology; proof later of its isomorphisrn.
Local coefficients for sirnplicial complexes.

12. Nerve, N, of a covering; presheaves ; cohomology of the nerve
with coefficients in the local systern of the presheaf. Examples;
significance of H°(N; G).

13. Proof that for a contractible (differentially) covering { U} of
the connected manifold M, if eP(ffP) is the presheaf of singular
p-cochains (differential p-forms), as a system of local coeffi-
cients on the nerve of I U1, we have

0 a 0 0
0 .- eP-4--) er-1-, eP * 0 is exact, p > 0, eo = G, constant

0 d o 0
0 ---,ffP-1>ffP-4--5 ffp * 0 is exact, p > 0, ff° = R,

o

where eP-1 is the local system of (p 1)-cocycles, etc. (local
triviality). Proof that for a finite open covering of M with
nerve N, HP(N, e) E--zHP(N; ffq) =0 for p > 0, q...>..0. (Use par-
tition [differentiable] of unity subordinate to the covering.)

14. Existence of a differentiably contractible finite open covering
on a cornpact differentiable rnanifold (assume sorne elementary
Riemannian geornetry). For such a covering, observe by use
of Bockstein sequence that
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RP(M)R1(N;(4P-4)-E12(.1V;l4P-2)1=-f: - - -'-...11P(N,149ilP(N;R)

HP(M; G)71'(N; gP-1)2(N - 16P--2)"-: - - -HP(N ; 16°).a--'

HP (N . G)

and conclude de Rham's theorem. Similarly, obtain isomor-
phism of siniplicial and singular cohomology.

15. Eilenberg-Steenrod axioms for singular homology and co-
homology.

16. Cell-complexes; cellular-homology; isomorphism with singular
theory; isomorphism with simplicial theory, when defined.

17. Computations; suspensions; complex projective space, real
projective space, homology homomorphism induced by the
double covering of real projective n-space by the n-sphere.

18. Tensor products of modules; right exactness; homology with
coefficients. Bockstein sequence for homology.

19. The functor Tor; universal coefficient theorem for homology.
20. The Eilenberg-Zilber theorem; Kiinneth sequence for the

singular homology of a direct product.
21. Exterior cross-product in cohomology; cup product, proper-

ties. Chain approximation to diagonal map for regular cell-
complexes, uniqueness.

22. Computation cf chain approximation to diagonal for n-sphere;
for mod 2 chains on real projective space ; for integral chains
on complex projective space. Ring structure of R*(.13.(R) ;Z2)
and II* (P.(C) ;Z).

23. Borsuk-Ulam theorem; Flores nonembedding examples, in-
variance of domain.

24. Euler-Poincare formula; Lefschetz fixed point theorem; appli-
cation to existence of vector fields on manifolds.

REFERENCES
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i

,

I

,

68 Committee on the Underpraduate Program in Mathematir-s

OUTLINE III: SURFACE THEORY (ONE YEAR)

This course consists of a year's study of surfaces, their topo-
logical, differential geometric, conformal, and algebraic structure.
Much modern mathematics consists of partial generalizations of
what happens on surfaces. The student should find this material
a good source of concrete examples in depth of subjects he will
meet as a graduate student. It should develop his geometric in-
sight and show him how analysis and algebra implement geometric
intuition. It should solidify his previous mathematical training
because it draws heavily on his knowledge of advanced calculus,
complex variables, and algebra. Finally, it will display the inter-
play and overlap of various fields: the genus occurring topologically,
geometrically via Gauss-Bonnet, and analytically via holomorphic
differentials; or the surfaces of constant curvature, the simply con-
nected complex 1-manifolds, and the non-Euclidean and Euclidean
geometries.

1. Combinatorial topology. Homotopy of curves, the funda-
mental group, covering spaces, deck transformations.

Simplicial complexes, barycentric subdivisions, simplicial
approximation theorem.

Simplicial homology. Betti numbers, Euler characteristic,
genus.

Classification of triangulable compact 2-manifolds; the
only simply connected triangulated 2-manifolds are S2 and R2.

The de Rham theorem for triangulated 2-manifolds.
2. Differential geometry. Definition of Riemannian 2-manifold.

Bundle of frames. Riemannian connection. Parallel transla-
tionmotivation via surface in R3.

Geodesics, minimizing property of geodesics. Structural
equations. Curvature. Exponential map. Gauss lemma; Gauss-
Bonnet theorem for simply connected region bounded by
broken curve (as an application of Stokes theorem); global
Gauss-Bonnet theorem for triangulated compact 2-manifold.

Surfaces of constant curvature; Poincaré model for negative
curvature; uniqueness theorem for simply connected complete
2-manifolds of constant curvature, constant curvature math-
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folds as models of hyperbolic and elliptic non-Euclidean
geometries.

Surfaces in R. 2nd fundamental form and the spherical
map. Curvature again. Gauss-Codazzi equation. Uniqueness
of the imbedding, given the 2nd fundamental form.

The spherical map for compact surfaces with positive
curvature. Rigidity theorem.

Flat surfaces in R3. The tangent developable. Geometric
interpretation of parallel translation via the tangent develop-
able. The only complete fiat surface in R3 is a cylinder.

Minimal surfaces; spherical map for minimal surfaces.
3. Complex manifolds. Definition of a complex 1-manifold. Com-

plex tangent space. Conformal mapping. Reinterpretation of
Cauchy-Riemann equations. Review of analytic continuation
and examples of complex 1-manifolds as Riemann surfaces of
an analytic function element.

Existence of isothermal coordinates in a Riemann 2-mani-
fold; every Riemannian 2-manifold carries a complex struc-
ture.

Riemann mapping theorem; the three different simply con-
nected complex 1-manifolds. Relation with 2-manifolds of
constant curvature.

The spherical map of a minimal surface is conjugate con-
formal. Complete minimal surfaces in R3.

Potential theory. Hodge theorem. The dimension of the
space of holomorphic differentials is the topological genus.

4. Algebraic geometry. Algebraic function fields of one variable
over the complex numbers. Places. The Riemann surface of a
function field, the meromorphic functions of this Riemann sur-
face, the meromorphic functions on the Riemann surface of an
analytic function element as an algebraic function field.

Algebraic curves in the complex projective plane. Pictures
of singularities. The Riemann surface of a nonsingular curve.
Birational equivalence of nonsingular curves is the same as
conformal equivalence of their Riemann surfaces and the
same as algebraic isomorphism of their function fields.

Application of the Hodge theorem to show that any com-

,
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pact complex 1-manifold is the Riemann surface of an alge-
braic function field.

Divisors as 0-chains. The divisor of meromorphic functions.
Bilinear relations. The Riemann-Roch theorem via potential
theory. Abel's theorem, and other applications of Riemann-
Roth.

Genus zero and the rational functions in the plane. Genus
one and the study of the complex structures on the torus.
Elliptic functions.
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PROBABILITY (ONE SEMESTER)

The development of classical mathematics was principally in-
spired by problems of physics and engineering. In the usual clas-
sical engineering problem, the variables of the system are assumed
to satisfy a set of well defined and deterministic relations. These
are analyzed, by and large, by the methods of ordinary and partial
differential equations and related mathematical techniques. Such
deterministic concepts and methods are no longer entirely suitable
for treating mathematical problems in the biological and social
sciences; furthermore, even in the physical sciences there arise
problems which involve uncertainties and variability. Probability
theory and stochastic processes provide language and tools by
which to analyze such problems.

The course outlined here is designed to develop facility in the
language, concepts, motivation and techniques of probability
theory. Stress is put on those stochastic models which are of
mathematical importance as well as of interest in other disciplines.
The course should aim at rigor in its treatment of both theory and
applications.

The subject of probability and stochastic processes combines
intuitive and analytical aspects. It draws upon and interacts with
much of real analysis, functional analysis, linear alpebra, complex
variables, etc. It is also a basic subject for many applications.
Many of these areas of application signal new directions for pure
mathematical research.

1. This Section introduces the basic concepts and terminology,
suggesting both an axiomatic and intuitive formulation of the
mathematical model underlying probability structure.

Sample space and probability distributions, empirical back-
ground, frequency concept, relations amongst events, axio-
matic foundations (Kolmogoroff formulation).

2. Occupancy problems, random walks, realization of in among
N events, coin tossing, run theory.

3. Random variables, conditional probabilities. Stochastic inde-
pendence, Bayes theorem, repeated trials, joint and marginal
probabilities.
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4. This Section seeks to develop certain analytical methods and
classical distribution examples.

Expectations, variance, moments of distributions, char-
acteristic functions, generating functions, convolutions, com-
pounding, Chebyshev's inequality, Kolmogoroff inequality,
three series theorem, correlation coefficients, classical ex-
amples: binomial, Poisson, normal, gamma, t and F distribu-
tions, multivariate distributions, etc.

5. The classical limit theorems of probability theory are the con-
tent of the material.

Borel-Cantelli theorem, law of large numbers, central limit
theorem, law of iterated logarithm.

6. Introduction to stochastic processes. The structure of stochas-
tic processes is delimited and its classification is outlined.

Time parameter, state space, dependence relaCons, intro-
duction to Markoff processes, independent increments proc-
esses, stationary processes, martingales, diffusion.

7. This Section introduces the principal concepts of stochastic
processes.

Recurrence and absorption, renewal theorems, first passage
probabilities, transient states, arc sine laws, occupation time
of a given state.

8. Important categories of stochastic procesaes.
Random walk, Poisson process, birth and death, Brownian

motion, branching processes.
Formulation and analysis of some simple stochastic proc-

esses occurring in physics, engineering, biology, and the social
sciences (e.g., Ornstein-Uhlenbeck procPss, gene frequency
and population growth models of Wright and Feller, learning
models, etc.).

REFERENCES
1. Feller, W. An Introduction to Probability Theory and Its Applications,
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2. Gnedenko, B. V. Theory of Probability. New York: Chelsea Publishing
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MATHEMATICAL PHYSICS (ONE SEMESTER)*

A large part of analysis originates in problems of the physical
sciences; our intuition and our sense of what is important is partly
based on experience in dealing with problems of the physical world.
This has been so in the past and likely to remain so in the future,
although mathematicians will increasingly look for inspiration to
the biological and social sciences, and to computing.

It is of greatest importance for the continued vigor of mathe-
matics to keep open the channels of communication with other
sciences; colleges should offer courses on a high intellectual plane
to accomplish this. The courses must then deal with fundamental
ideas as well as techniques, modern analytical concepts and
methods should be employed, and subjects of current research
interest need to be introduced. Unfortunately, in most American
colleges there is no tradition for teaching such courses, there is not
a wide enough variety of suitable texts, nor are there enough
people inclined or able to teach them. The Panel presents the
present outline as a step toward filling the gap.

1. Equilibrium problems. Derivation of the Laplace and Poisson
equations for: the equilibrium position of a stretched mem-
brane, electrostatic and gravitational potential, steady state
incompressible, irrotational flow.

Statement and physical motivation of boundary value
problems.

Uniqucaess theorems (a) via the maximum principle (proved
by Mean Value theorem) and (b) via the Dirichlet integral.

Invariance of harmonic functions under various groups of
transformations: translation, rotation, contraction. Special
solutions which are eigenfunctions under these transformations
(generalization of the principle that a finite set of commuting
matrices have common eigenfunctions). Application to the
representation of the orthogonal group.

ore semester to allow for individual variations.
*Though we e recommending a one-semester course, we include enough material for two or

m s,

principle of reflection.
ar

The fundamental solution of Laplace's equation and its
physical significance. Green's function. Explicit construction
of Green's function for the half-plane, circle, and sphere by the
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Construction of the Poisson kernel for a half-plane by sim-
ilarity.

Invariance of harmonic functions under conformal map.
Conjugate harmonic functions; relation of harmonic and
analytic functions. Role of conjugate harmonic functions for
flows. The relation of Green's function of a domain to the
conformal mapping function.

Dhichlet's principle and the basic principles of the calculus
of variations. The Euler equation. The equations of elasticity
and of minimal surfaces.

The Laplace difference equation ; its relation to random walk.
Free boundary value problems of hydrodynamics.

2. Conservative time-dependent problems (wave propagation).
Newton's laws of motion. Derivation from physical principles
of the equations governing the motion of a vibrating string
and membrane, and the equations of acoustics. The wave
equation.

Statement and physical motivation of initial and of mixed
initial and boundary value problems.

Uniqueness theorems based on the Haar Maximum Prin-
ciple and on the energy method. The notion of domain of
dependence and speed of propagation of signals.

Invariance of the wave equation under translation; expo-
nential solutions. Plane waves and the D'Alembert solution.
Hamilton's principle. The equations of time dependent com-
pressible flow; shock waves. The equations governing the flow
of traffic. Finite difference approximations to the wave equa-
tion.

3. Dissipative time-dependent equations. Derivation of the
equations governing heat conduction, diffusion, and viscous
flow.

Statement and physical motivation of initial and mixed
problems for the heat equation.

Uniqueness theorems based on the maximum principle, and
on the energy method.

Translation and rotation invariance, exponential solutions,
radial separation. The fundamental solution derived by sim-
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ilarity. Uniqueness and existence of solutions to the initial
value problem in the entire space.

Relation of the heat equation to probability theory. Finite
difference approximation to the heat equation.

4. Introduction to Hilbert space and operator theory. A brief
review of linear algebra; Hilbert space. Orthonormal sets,
completeness. Bessel inequality, Parseval relation. Projection
theorem.

Examples of orthogonal systems: Fourier series and classical
orthogonal polynomials. Weierstrass approximation theorem.
Gram-Schmidt procedure.

Notion of symmetric operator. Orthogonality of eigenvec-
tors. Completeness of eigenvectors of compact operators.
Compactness of integral operators; discussion of the inverse of
a differential operator.

Positive definite operators.
Operational calculus for symmetric operators. Definition of

exp A through 1) operational calculus, 2) contour integral, 3)
eigenvector expansion, 4) Yosida formula (semi-groups).

Theory of Fourier transform; the classes L2 and .2. Applica-
tion of Fourier series and integral to solve anew the boundary
value problem for the Laplace equation in the circle and half-
plane, and the initial value problem for the wave and heat
equations on the real axis, with and without periodicity.

Determination of eigenfunctions and eigenvalues of the
Laplace operator in simple geometries.

5. Existence theorems. Solution of various boundary value prob-
lems for the Laplace equation by the method of orthogonal
projection, the Hahn-Banach theorem, or one of the many
other methods.

Using the existence theory for the Laplace operator and the
operational calculus developed in Section 4 to treat the initial
value problem for the wave equation tigt =Au and the heat
equation ut.Au.

6. Quantum theory and statistical mechanics.
1) The harmonic oscillator in classical and quantum me-

chanics:
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Let IA, be the normalized eigenfunction of thesystem with
energy E. Then the probability that its position is between
a and b is

i 1 tpn(x) 12dx

This tends in the classical limit (hA), E7i--4E) to the pro-
portion of time which the classical harmonic oscillator
spends between a and b (proof based on asymptotic proper-
ties of Hermite polynomials).

2) The motion of electrons in crystals:
Consider the Schrodinger equationr V(x)sb = EP

with a periodic potential V. Show that there exist solutions
bounded for all x only when E lies in certain intervals, and
identify these with conduction bands.

3) The classical and quantum-mechanical partition functions;
limiting behavior as h tends to zero. For an ideal gas, we
are led to the problem of asymptotic distribution of the
eigenvalues of the Laplacian under the boundary cendi-
don u = 0 on the boundary of the container. Since the
thermodynamical properties do not depend on the shape of
the container, this suggests that the asymptotic distribu-
tion of the eigenvalues depends only on the volume
(Weyl's theorem). Explicit determination for a cube.

Further suggested subjects: The time-dependent Schrö-
dinger equation, the application of group representations in
quantum theory.

REFERENCES
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APPENDIX C:

HIGHER UNDERGRADUATE MATHEMATICS

This Appentlix contains some sample outlines of courses in
Higher Undergraduate Mathematics which might be considered
for inclusion in a program already containing basic courses which
cover the fields of Appendix B. Future reports of the Panel will
contain additional outlines for this section.

MATHEMATICAL METHODS IN THE SOCIAL SCIENCES:
GAME THEORY, PROGRAMMING, AND
MATHEMATICAL ECONOMICS (ONE SEMESTER)

The desire to formulate quantitative methods for analyzing
phenomena in the social, management, and behavioral sciences
has led to new types of mathematical problems. The tools needed
in dealing with such problems combine principally probabilistic,
statistical, and decision-theoretic concepts and techniques. Three
specific developments of this kind, inter alia, are exemplified by
the.areas. of mathematical research known as game theory, pro-
gramming, and mathematical economics. The structure of game
theory seems suitable for describing some monopolistic practices
in addition to providing a norm for certain patterns of rational
behavior. The methods of mathematical programming are par-
ticularly appropriate for determining optimal policies in a variety
of management problems. The formulation of mathematical
economics is useful in explaining the workings of some economic
systems.

These disciplines appeal to devices from topology (e.g., fixed
point theorems), the stability theory of nonlinear differential equa-
tions, methods of the calculus of variations, inequalities, linear
algebra, convexity, and similar subjects. The intuitive content of
the underlying economic interpretation frequently suggests new
mathematical theorems. The influence of these disciplines on de-
velopments in statistics and probability has also been substantial.

.1. Game theory. Classification of games (number of players, zero
sum versus nonzero sum, personal and chance moves, infor-
mation structure, utility concepts).

Zero sum matrix games, minimax theorem, dominance con-
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cepts, Snow-Shapley characterization :if extremal solution,
completely mixed games, dimension relations of solutions,
examples.

Infinite zero sum games (optional material). Separable
games (polynomial kernels), convex games, games of timing,
bell-shaped games, games over function space, recursive
games, games of survival.

ii person games, cooperative and noncooperative games,
coalitions, von Neumann solution, simple games, Shapley
value, Nash equilibrium point, examples.

2. Linear programming. Formulation of linear and dual linear
programming problems. Examples, optimal assignment prob-
lem, transportation model, network flow models, etc.

Two principal theorems of linear programming:
(i) Existence theorem of solution.
(ii) Duality theorem.
Interpretations of dual problem in terms of shadow prices.
Computing algorithms for solutions. Simplex method,

primal and dual algorithm, special methods for the transpor-
tation problem, application to minimal cut maximal flow
theorem.

Equivalence of linear programming and game theory.
3. Nonlinear programming. Equivalence to saddle point problem,

Kuhn-Tucker theorem, Arrow-Hurwitz gradient method.
Fenchel formulation of nonlinear programming problem.

4. Methods of mathematical economics and management science.
Production, consumption and competitive equilibrium models.

Frobenius theory of positive matrices. Application to linear
production model (Leontief model), Samuelson substitution
theorem, formulation of theories of consumer preference.
Axiomatic approach. Principle of revealed preference. Deriva-
tion of consumer preference relation as a utility maximiza-
tion. Relation of production theory and nonlinear program-
ming problem. Existence of competitive equilibrium. Formu-
lations of Arrow-Debreu, Wald, McKenzie, and others.

5. Welfare economics, stability theory, and balanced growth.
Relation of welfare economics and the vector nonlinear pro-
gramming problems. Characterization of Pareto optimum
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solutions. Local and global stability properties of competitive
equilibrium. Gross substitutibility, models of balanced
growth, von Neumann model of expanding economy, turn-
pike theorem.

6. Control problems in management sciences and economics.
Hohn-Modigliani model of smoothed production, models of
optimal inventory analysis, application of Pontryagin maxi-
mal principle to two sector growth mode.s, introduction to
replacement programs, repairmen problems, queueing theory,
reliability models.
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MATHEMATICAL LOGIC (ONE YEAR)

Many mathematicians think of logic as having, for its principal
purpose, the laying of a firm "foundation" on which the rest of
mathematics can be built securely. This can be understood
historically, because it was the discovery of paradoxes in set
theory which first led a broad segment of mathematicians to take
up the study of logic in a quest for consistency proofs.

To make headway toward the twin aims of developing a founda-
tional logic and providing guarantees of consistency,,it was neces-
sary sharply to restrict the mathematical methods employed. In
particular, early workers laid great stress on the "constructive"
character of their work.

AS with Other brancheS of mathematics, so with logic: the
-original aims were partly realized, partly found" unrealizable, and
partly altered to conform to the broadened perspective arising
out of new discoveries. Some logicians began to notice the mathe-
matical structures arising in the earlier work and became interested
in these for their oWn sake. Through the study of these structures,
contact has been made with other parts of mathematics at points
far removed from 'the "foundtional level" which was the starting
point. -

As a result of this development, it seems fair to say that the
idea ascribed above to "many mathethaticians," that the prin-
Cipal tourpose of logic is to lay "foundations," does not accurately
reflect the spectrum of current activities in the field. Roughly,
logicians are now concerned with two large areas of work. One,
based on the notion of recursive function, deals with such things
as abstract computing machines, nonexistence of decision methods,
hierarchical classification of sets of numbers and functions on
numbers, and recursive analogues of portions of set theory and
analysis. The other, combining Boole's original impulse to alge-
braize wift Tarski's mathematical analysis of semantical notions,
includes portions of the field which have come to be known as
"algebraic logic" and "theory of models." In both of these prin-
cipal areas, the bulk of the work is carried on without restriction
to "elementary" or "constructive" methods. The basic attitude is
that any method may be used if it answers a questionand any
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question may be raised which is interesting! Particularly in model
theory, there is generally a heavy use of set theory.

Despite this turn of events, almost all textbook treatments of
logic lay great emphasis on the restriction to constructive methods
and seem to concern themselves principally with demonstrating
how logic can be developed so as to provide a foundationi.e., to
be a beginningof mathematics. It seems time to attempt a pres-
entation of the subject more closely related to current events.
The foundational role of logic is explained as one aspect of the
subject, but this is not allowed to restrict and distort the method-
ology.

In formulating a first course, one might either attempt to give
introductions to the concepts in both of the principal areas men-
tioned above, or to go more deeply in one of these directions. Very
likely both schemes have merit, but we have preferred to follow
the latter. Our judgement has been that for students proceeding
toward a Ph.D. in mathematics, serious acquaintance with the
ideas of algebraic logic and theory of models is of greatest value.

What do we presuppose of the student entering our course?
Competent books on logic are now available for use in the bth
grade; indeed, grade school seems the proper place to compute
with truth-functions and thereby learn the mathematical meaning
of sentential connectives. High school seems to be the proper
place to learn how to formalize sentences employing quantifiers
and to learn (in an informal way) some of the elementary rules for
handling quantifiers. The early college years will begin to develop
the student's ability to apply effectively the basic apparatus of set
theory. The proposed course carries on from there.

It is customary to approach mathematical logic by considering
first sentential logic and then (first-order) quantifier logic. The
course outline given below follows this pattern, except that we
interpolate between these parts of the course a substantial section
on quantifier-free predicate logic. If we were concerned solely with
formal deductive systems for logically valid formulas, this would
be ridiculous, since the axiom schemes and rules of inference of
(q.f.) predicate logic are indistinguishable from those of sentential
logic. However, when we deal with model-theoretic aspects of the
subject, the situation is quite otherwise. And the section on predi-
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cate logic forms a valuable bridge, both from the mathematical
and the pedagogical viewpoints, between sentential logic and
quantifier logic.-

To undorstand properly the role of logic in mathematics, it is
necessary to deal with (i) systems of symbols, (ii) the use of these
systems in languages interpreted as referring to mathematical
structures, and (iii) the manipulation of symbolie expressions ac-
cording to formal deductive rules and the relation of such rules to
the semantical concepts of (ii). Each section of logical material
sentential, predicate, and quantifieris subdivided according to
the classifications (i), (II), (iii).

It is possible to treat the high points-of sentential and quantifier
logic in a single semester. However, to explore the subject in the
depth desirable for achieving both a full understanding of the rela-
tion of logic to other parts of mathematics and a firm basis for
future graduate work, two semesters is not excessive. During
1962-63, an experimental course patterned after the following
outline is actually being given, and despite the encouragement of
excellent students, there is difficulty in fitting all of the material
into two semesters. But it is felt that after accumulating eve:
rience in teathing material so organized, and if a Suitable text be-
comes available, it should be possible to incorporate substantially
all of the material in the indicated time.

1. Historical background. Intuitive account of principal con-
cepts such as consequence, deduction; role of sentential con-
nectives in natural languages.

2. Systems of formulas (absolutely free algebraic systems). Axio-
matic treatment; various examples and their interrelations;
fundamental existence theorem (justifying definition by re-
cursion over formulas) ; definition of substitution, part, oc-
currence, and derivation of their fundamental properties from
axioms.

3. Truth functions. Relation to connectives; projections, compo-
sition of functionsi, closed sets (examples); generating bases
(mention of Post's theorem) ; proofs of definability and non-
definability (of a given function in terms of a given set of
functions) ; lattice of closed sets; Boolean algebra 3,, of n-placed
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truth-functions, n=1, 2, - - - , co; isomorphisms Bn--0+1,
and the direct limit of B1, B2, ' , as subalgebra of B.; infinite
sums and products in B.; topological aspects of B.; compact-
ness.

4. Semantical concepts of sentential logic. (Classical) models
(truth-value assignments), associated homorphism of system
of formulas into algebra of truth values, validity, consequence,
satisfiability, equivalence, independence; their interrelations;
fundamental laws for consequence-relation; connection with
substitution; equivalence as congruence relation (replacement
law) ; positive and negative parts of formulas (partial replace-
ment); natural mapping of formulas into B.; definability by
formulas; significance of the consequence relation in B.;
finitary character of consequence from compactness; Boolean
algebras as models; the consequence relation determined by a
Boolean ideal; normal forms; interpolation theorem; non-
classical interpretations (n-valued, intuitionistic, modal).

5. Deductive aspects of sentential logic. Axioms for derivations;*
consequence satisfies these; basic laws obtained from axioms;
effective proof of weak completeness (every valid formula
derivable from empty set, for any derivation); proof by Zorn's
lemma of strong completeness (semantical consequence is the
minimal derivation); connection with compactness; character-
ization of finitary derivations; derivations defined by formal
axioms and rules of inference; discussion of deductive logic as
foundation for mathematics. Fragments of sentential logic;
their deductive interconnections.

6. Systems of open predicate formulas (individual symbols, rela-
tion symbols, operation symbols). Terms and formulas; funda-
mental existence theorem; substitution, part.

7. Semantical concepts of predicate logic. Relational systems;
models and variable-assignments; values of terms and formu-
las; validity, satisfiability, implication, definability, equiva-
lencewith respect to a model and to a class of models; ex-
amples; properties of the class of definable relations, character-
ization of such classes; concept of a Boolean substitution alge-

The word 'derivation" is not in common use. It is employed to indicateany relation (betweensets of formulas and formulas) which satisfies certain laws for the consequence relation.
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bra; predicate implication =propositional implication; com-
pactness; decision procedure; Skolem-Lowenheim; implica-don
relative to class of equality-models and its relation to predi-
cate implication; compactness, decision-procedure, and S-L
for predicate-equality logic; simple applications of compact-
ness (e.g., condition for abelian semi-group to be imbeddable in
group); subsystemst homomorphisms, direct products, direct
limits, etc., for relational systems; invariance of validity for
sets of equations, and of more general formulas, under these
operations; characterization Of equational classes and uni-
versal classes.

8. Deductive aspects of predicate logic. Formal axioms and
rules of inference for predicate logic reduce to those for sen-
tential logic (strong completeness); treatment of predicate-
equality logic; complications of formalization for these systems
if variables in some of the hypotheses of an implication are
treated as universalized; detailed consideration of a mathe-
matical z.--nample, such as natural numbers under addition,
obtaining complete axiomatization, detailed description of
definable relations, decision procedure, strong incomplete-
ness, analysis of nonstandard models.

9. Systems of quantifier-formulas (first order). Free and bound
occurrences of variables, complications with substitution; sen-
tences and formulas. Semantical concepts of quantifier-logic:
same notion of model as in predicate logic; modified notions
of variable-assignment and value-of-formula; same definitions
of validity, satisfiability, implication, definability, and equiva-
lence; class of definable relations, characterization of such
classes; concept of polyadic algebra; prenex normal forms;
reduction of validity and implication for quantifier logic to
that of predicate logic via added individual constants or opera-
tion symbols; semantical versions of Herbrand's theorem and
Slcolem normal forms; Skolem-Lowenheim theorem, compact-
ness, applications to algebra; treatment of quantifier-equality
logic; equivalence of any formula with one having variables in
standard order; simplified description of definable relations;
concept of cylindric algebra; reduced products and ultraprod-
ucts of relational systems; invariance of validity for quantifier-
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formulas under latter; characterization of elementary classes;
use of ultraproducts to replace compactness arguments in
algebraic constructions.

10. Deductive aspects of quantifier logic. Formal axioms and rules
of inference (with and without equality); notions of formal
proof and formal theorem, formal deduction and formal impli-
cation, consistency for sets of sentences; derivation of basic
laws of logic (i.e., properties of formal implication) ; strong
completeness (alternative proof of compactness); Craig's inter-
polation theorem, Beth's theorem on definability, version of
A. Robinson; Lyndon's characterization of sentences invariant
under homomorphisms; detailed consideration of quantifier
theory of natural numbers under addition, axiomatization,
method of elimination of quantifiers applied to obtain com-
plete description of definable relations, decision procedure,
strong incompleteness, analysis of nonstandard models.

REFERENCES
As suggested in the preliminary discussion, there is no book which
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with are generally handled from a point of view far removed from ours.
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source of ideas concerning the relation between symbolic systems of sen-
tential logic, and the systems of truth functions used in their interpreta-
tion, is [7], although the writing is obscured by faulty notation and lack of
precision. Many of the basic semantical and metamathematical concepts
can be apprehended by browsing in [8]. An introduction to model theory
can be obtained through [9] (and its bibliography) and to algebraic logic
through [2]. More details of model theory are found in [6] which is also
an excellent source of applications of logic to algebra. Some ideas concern-
ing an axiomatic treatment of systems of symbols can be mined from
[4], along with [8].

1. Church, A. Introduction to Mathematical Logk. Princeton, N. J.:
Princeton University Press, 1956.

2. Halmos, P. R. Algebraic Logic. New York: Chelsea Publishing Com-
pany, 1962.

3. Hilbert and Ackermann. Principles of Mathematical Logic. New York:
Chelsea Publishing Company, 1950.



86 Committee on the Undergraduate Program in Mathematics

4. Kleene, S. C. Introduction to Metamathematics. Princeton, N. J.:
D. Van Nostrand and Company, Inc., 1952.

5. Quine, W. Mathematical Logic, rev. ed. Cambridge, Mass.: Harvard
University Press, 1951.

6. Robinson, A. Introduction to Model Theory and Metamathematics of
Algebra. Amsterdam: North Holland, 1963.

7. Rosenbloom, P. The Elements of Mathematical Logic. New York:
Dover Publications, Inc., 1950.

8. Tarski, A. Logic, Semantics, Metamathematics, tr. by J. H. Woodger.
New York: Oxford University Press, 1956.

9. Tarski, A. Contributions to the Theory of Models, Indagationes Mathe-
maticae, Vol. 16, 1954, pp. 572-588 and Vol. 17, p. 56.



I

;

I

r9

,

Committee on the Undergraduate Program in Mathematics 87

DIFFERENTIAL GEOMETRY (ONE SEMESTER)

This outline of a one semester course in differential geometry
differs from the classical course in these respects: elementary
theory of manifolds is presented; some of the classical matrix
groups are studied; the Frenet formulas are given in n dimensions;
intrinsic Riemannian geometry is studied before imbedded hyper-
surfaces; and some global theorems are included.

1. Basic facts about smooth manifolds and mappings between
them.

2. The rotation group R(n), Euclidean group, and afline group as
"examples of manifolds. Invariant one-forms on these groups.
The Lie algebras as matrix Lie algebras. Fundamental Unique-
ness theorem: two maps of a manifold into G differ by a left
translation if and only if the left invariant one-forms of G
pulled back by the two maps are equal.

3. Parameterized curves in R. Canonical parameterization via
arc length. Adapted frames and mapping of curve into Eu-
clidean group. Curvature and higher torsions. Frenet formulas.
Application of uniqueness theorem to give determination of
curve up to Euclidean motion.

4. Introduction of Riemannian metric. Bundle of frames. Rie-
mannian connection. Parallel translation. Structural equa-
tions. Curvature. Geodesics and minimizing property. Expo-
nential mapping. Gauss lemma. Specialization to 2-manifolds.
Gauss-Bonnet theorem for 2-manifolds.

5. Manifolds of constant curvature. Uniqueness for simply con-
nected ones.

6. Hypersurfaces in Rn+1. Induced Riemannian metric. 2nd fun-
damental form and spherical map. Mapping of bundle of
frames into Euclidean group. Curvature in terms of second
fundamental form. Gauss-Codazzi equation. Application of
fundamental uniqueness theorem to give determination of sur-
face up to a Euclidean motion. Principal curvatures, mean
curvature, umbilical and parabolic points, curvature and
asymptotic lines, for two manifolds in R3.

7. Rigidity theorem for compact hypersurfaces of positive curva-
ture.
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8. Flat hypersurfaces. Tangent developable. Geometric interpre-
tation of parallel translation using tangent developable. A
complete flat 2-surface in three space is a cylinder.

9. Isothermal coordinates. A Riemannian 2-manifold as a com-
plex 1-manifold. Minimal surfaces and their spherical maps.
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STATISTICS (ONE SEMESTER)

Probability theory and stochastic processes provide mathemat-
ical tools for a descriptive analysis of certain mathematical models.
Statistics gives a means of testing the adequacy of the model. The
statistics course outlined below is designed to cover the methodol-
ogy and basic theory of statistical analysis. The approach is a com-
bination of the classical and the modern, emphasizing at the start
the stanilard procedures of statistics, while the latter part contains
the general theory' of statistical decisions.

Statistical techniqueS lean heavily on probability theory, real
analysis, and linear algebra. Its contept motivates and inspires
problems in convexity, inequalities, real analysis, and probability
theory. The" outline presumes a course in probability theory as pre-
requisite.

1. Review of probability. Emphasis on theoretical distributions
including the important examples of Chi square, C, F, distribu.
tions of order statistics and functions of order statistics. Multi-
variate distributions and similarity.

2. SaMpling. Description of sample data-means, staridard devia-
tion, frequency histogram, etc. Distribution theory of various
statistics arising in sampling from normal populations, asymp-
totic distribution theory of various statis tics,

3. Estimation. Formulation of the probleni. Discussion of cri,
teria for estithators (unbiasedness, consistency, efficiency,
minimizing mean square error, absolute etror, etc).

The concePtof Sufficiency. Fisher-Neyman characterization,
applications to the exponential family of distributions, ex..
-tremal range Aistributions,. principle ,of completeness, Rao-
Blackwell inequality for improving estimates using sufficient
statistics, Cramer-Rao inequality.

Confidence interval estimation. Maximum likelihood esti..
, mators and its properties.

4. Testing hypothesis. Formulation of the general problem: Anal-
ysis of the case of a simple hypothesis versus simple alternate
hypothesis including the celebrated Neyman-Pearson theorem.

Discussion of the composite hypothesis problem, concept of
uniformly most powerful test. Tests derived from likelihood
ratio criteria.

:714
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5. Statistical decision theory. The preceding approach was clas-
sical. Formulation of the Wald statistical decision theory. The i
concepts of utility, loss and risk should be discussed. The deri-
vation of the simplest complete class and "admissibility" theo-
rems should be given. 1

Principles to be explored: Bayes criteria, minimax, invari-
ance, etc. Comparisons to classical statistical procedures.

Introduction to sequential analysis.
6. Regression theory and design of experiments. The formula-

tion of the general linear hypothesis, linear regression. The
Markov principle and the method of least squares. Analysis of
variance.

7. Nonparametric statistics. Order statistics and derivation of
confidence intervals for percentiles. Tolerance limits, goodness
of fit, two sample problem. Kolomogorov-Smirnov statistics,
rank procedures.

NUMBER THEORY (ONE SEMESTER)

The theory of numbers has some attractive features which make
it a very appropriate topic in the undergraduate curriculum. Hav-
ing flourished over a very extensive period of time, number theory
can be classified among those mathematical topics having a steady
appeal. Perhaps this is due in part to its close relationship to alge-
bra and analysis, an aspect of number theory that has been given
greater emphasis in recent textbooks on the subject.

Number theory is not related to analysis in quite the same way
it is related to algebra, however. Analysis is used in number theory
primarily as a matter of powerful analytic techniques of proof ; for
example, in the prime number theorem and in various proofs of
transcendency of numbers. On the other hand, algebra has found
in number theory a rich source of examples for the study of alge-
braic structures. It is not surprising to find in many books on alge-
bra, therefore, an introductory chapter on the theory of numbers.
Indeed, there are mathematical topics that are not easily classified
as algebra proper or as number theory; the theory of algebraic
numbers is an example of this.

The theory of numbers is an excellent vehicle for clarifying in
the mind of the student the nature of proof. It may be that by the
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junior year in college, a student should have no doubt about what
is and what is not a proof. Nevertheless, since even some graduate
students have occasional difficulty with this, the wide variety of
proof techniques used in number theory can serve as excellent
models for the student's attention. Furthermore, there is in the
theory of numbers much for the student to do over and above
examining the basic results. There is an almost unparalleled wealth
of problems, including not only applications and examples of the
theory, but also extensions and alternative formulations of the
theory. Thus, the student has an opportunity both to develop his
ingenuity and to discover results for himself through a program of
exploration, conjecture, and attempts at proof. This aspect of
number theory, often a source of frustration for the average student
of mathematics, provides the superior student with much satis-
faction andpleasure.

The following topics are presumed to be known by the student
at the start of the course: unique factorization of integers, greatest
common divisor, least common multiple, simple observations on
the distribution of prime and composite numbers.

1. Congruences and residue classes. Congruences as an equiva-
lence relation, basic properties of congruences, changes of
moduli; residue classes as groups, rings, and fields; theorems of
Fermat and Euler on powers of residue; the language of alge-
bra (order of an element of a group, generator, etc.) and the
language of number theory (belonging to an exponent, primi-
tive root, etc.); general theorems on solutions of congruences
of degree n.

2. Quadratic residues. The Legendre and Jacobi symbols and
their properties; the Gaussian reciprocity law.

3. Diophantine equations. The linear case and its relationship to
linear congruences and greatest common divisor;

x2 + y2 = z2,
4

x2 + y2 = n
2

E xi2 = n

impossibility of x4-1-y4 =z4; ax2 +by2 +cz2 =0.
4. Number theoretic functions. Euler 0-function, divisor func-

tion, sum of divisors function; multiplicativeand totally multi-
plicative functions; the Möbius function and the inversion
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formula; estimates of the order of magnitude of various num-
ber theoretic functions, including lattice points in various con-
figurations; recurrence functions, Fibonacci sequences; the
partition function.

5. The approximation of irrationals by rationals. Farey se-
quences, continued fractions; the best possible theorem (Hur-
witz) on approximations; the uniform distribution of the frac-
tional parts of the multiples of an irrational number.

6. Quadratic forms. Definite and indefinite forms; equivalence
classes and the class number; questions of representation.

7. Prime numbers. Bertrand's theorem (a prime between n and
2n); the prime number theorem (either by an analytic proof or
the "elementary" proof, or, if there is not the time for either of
these, the weaker form of the theorem due to Tchebycheff).

8. Algebraic and transcendental numbers. Algebraic numbers
form a field, algebraic integers and integral domains, quadratic
fields, the Euclidean algorithm, unique factorization; the irra-
tionality of 7 and e, the transcendence of e.

9. Optional topics. Infinitude of primes in an arithmetic progres-
sion; arithmetic properties of roots of unity, cyclotomic poly-
nomials.
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GEOMETRY: CONVEX SETS (ONE SEMESTER)

The study of convex figures is one of the oldest branches of
mathematics; indeed, most figures studied by the classical geom-
eters were either convex or stars. On the other hand, many
branches of modern mathematics, e.g., functional analysis, game
theory, numerical analysis, etc., have found that many problems
in their scope are related to problems of convexity. Neither of these
points of view of convexity, either as a branch of classical geom-
etry or as a tool for other subjects, catches the essence of the
theory. As witnessed by the publication dates of the books in the
bibliography, as well as by the further references in these books,
the geometry of convexity is very much alive today. A course in
convexity should try to preserve the geometry as much as possible,
even though in higher dimensions rigor often demands analytical
technique. With this in mind, the course outlined below attempts
to develop the subject starting from the simple intuitive notions
and ending on the borders of the unknown in such a fashion that
the geometric relationships are always in sight.

Most of the material that follows can be found in [4], [7], [8],
[10], and [11]. Wherever possible, accessible English sources have
been listed in preference to sources with other merits; [8] and
[11] are especially good sources of interesting problems and applica-
tions inE2, while [9] promises to be an excellent problem source in E3.

The course outlined below is intended for one semester. The
material listed is more than enough for that length of time. Sections
8, 9, and 10 ar r. all independent of one another and may be consid-
erably shorte.-:ed and used in any order without serious harm to the
course.

1. Elementary properties of E. Coordinate systems and vectors.
Scalar products, norm, and distance. Limits. Topological no-
tions. Equivalence of topological definition of limit, n-dimen-
sional analogs of the Bolzano-Weierstrass theorem, Heine-
Borel theorem, and the theorem that a filter of closed bounded
sets with finite intersection property has nonempty intersec-
tion. k-flats in parametric form and as solution space of in-
homogeneous linear equations. Incidence properties and affine
invariance.
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2. Properties of individual convex sets. Dimension of a convex
set. Interior and boundary, relative interior and boundary.
Intersection properties of k-flats with boundary and interior.
Preservation of convexity under affine transformations, in-
terior and closure operations, projections, intersection and lim
inf operations. The existence of a support plane at every bound-
ary point and in every direction. Regular points. Characteri-
zation by support planes of closed convex sets. Separation
properties. Hull operator. Equivalence of intersection defini-
tion with constructive definition. The existence of exposed
points for a closed bounded convex set (CBCS). Every exposed
point is extreme. Every (interior) point of a CBCS is in the
(interior of) the hull of (2n)n-F1 extreme points. A CBCS is
characterized by its extreme points. The hull of a closed
bounded set, S, is a CBCS, namely the intersection of all
closed half spaces containing S.

3. Convex cones [6] and polyhedra [9]; polarity. Support planes,
extreme points and rays, and hull formation. Projecting cones
and asymptotic cones. Polarity or duality theory for cones and
polyhedra, and equivalence of various definitions of poly-
hedra. Applications to dual systems of linear inequalities, and
to game theory and linear programming.

4. The algebra of convex sets. The sum of convex sets is a convex
set. Addition is associative, commutative, and satisfies the
usual rules for positive scalar multiplication. The sum of
closed (open) sets is closed (open). Essential invariance under
choice of origin. The same for cartesian products. Relations
between sums, products, and scalar multiplication. Faces,
support planes, and diameters of sum in terms of those of
summands.

5. Symmetrization operation. Steiner symmetrization in E2; its
relation to area and perimeter, diameter, and width. The sym-
metral of the sum of two sets. Similar results for Steiner sym-
metrization about a hyperplane in E. Steiner symmetrization
about a k-flat in E. Central symmetrization

K K
2
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Its relation with volume, area, diameter, etc.
6. Helly's theorem for a finite family of convex sets. Extension to

infinite families of CBCS. Further generalizations and rela-
tives of Helly's theorem. Applications: Tchebycheff's approxi-
mation theorem, Jung's theorem, KrasnoselskiFs theorem,
solutions of convex inequalities. See especially [3] and [10].

7. The space of CBCS's, Kn. The inner and outer parallel sets of
a CBCS [7]. The distance A(K1, K2) between two CBCS's. K.
is a complete metric space. The polyhedra are a countable
dense subset. Bolzano-Weierstrass, Heine-Borel, and Filter
theorems for Kn. Continuity of volume, area, diameter, sum,
symmetrization, etc. Applications: surface area problems, iso-
perimetric problem, etc.

8. Brann-Minkowski theorem. Linear arrays.
9. Convex functions. Distance and support functions of CBCS,

and polar reciprocals. Continuity of convex functions. f(Z) is
convex with convex domain in En if and only if

{ (z1, z2, - - - , Z., r) I r AZ1, Z2, ' , Zn) }

is convex in En.g. Preservation of convexity under transforma-
tion of domain, sup, composition with monotone increasing
convex functions, etc. Differential conditions which imply con-
vexity. The a.e. differentiability of a convex function, i.e.,
almost all points of the boundary of a convex set are regular
([2], [6]) (possibly only the case n= 2). Extrema of convex
functions with convex domain. Helly's theorem for convex
functions [6]. The convexity of certain special functions; e.g.,
Hadamard's 3-circle theorem.

10. Constant width sets. A set has constant width if and only if it
is equivalent in breadth to a sphere. Projection properties.
Properties involving area, perimeter, -etc. (it= 2). See [4].

11. Further refinements and generalizations. Some comments on
separation theorenis (infinite dimensional spaces, for open and
closed sets). Introduction to convex topologies. Hahn-Banach
theoremapplications. Applications to constructive function
theory (summability of series, etc.). Derivation of classical
inequalities (e.g., Holder, Minkowski, etc.). Non-Euclidean
spaces. ( [10] is good for much of this material.)
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