REPORT RESUMES

ED. 020 904

SE 004 901

DEVELOPMENT OF A MULTI-COORDINATE VOCABULARY, CHEMICAL PHYSICS.

BY- LERNER, RITA G.

AMERICAN INST. OF PHYSICS, NEW YORK, N.Y.

PUB DATE MAR 68

EDRS PRICE MF-\$0.25 HC-\$1.04 24P.

DESCRIPTORS- *COLLEGE SCIENCE, *CHEMISTRY, *INFORMATION SCIENCE, *INFORMATION RETRIEVAL, *THESAURI, VOCABULARY, GRADUATE STUDY, PHYSICS, SCIENTIFIC RESEARCH, AMERICAN INSTITUTE OF PHYSICS, NATIONAL SCIENCE FOUNDATION,

THIS PAPER DESCRIBES A METHOD (SCHEME) FOR THE DEVELOPMENT OF A VOCABULARY IN THE FIELD OF CHEMICAL PHYSICS FROM PRIMARY JOURNAL ARTICLES. ALL TERMS APPEARING IN A RECENT JOURNAL (VOL. 39, JOURNAL OF CHEMICAL PHYSICS) JUDGED TO BE IMPORTANT WERE DIVIDED INTO THREE CATEGORIES -- (1) PROFERTIES, PROCESSES, PHENOMENA, (2) OBJECTS, INCLUDING SYSTEMS AND MATERIALS, AND (3) METHODS, INCLUDING DEVICES. IN ADDITION TO THESE THREE CLASSIFICATIONS, TERMS SPECIFYING SPECIAL CONDITIONS WERE ALSO USED SUCH AS MASS, ENERGY, AND TEMPERATURE. BY THE THREE MAJOR CLASSIFICATIONS AND APPROPRIATE ADDITIONAL TERMS DESCRIBING CONDITIONS, A MULTI-COORDINATED INDEX IS ESTABLISHED. THE THESAURUS WAS REVIEWED BY SPECIALISTS WHO GAVE SUGGESTIONS FOR REVISIONS AND ADDITIONS. ADDITIONAL TERMS WERE ADDED IN THE PROCESS OF USING THE THESAURUS IN EXPERIMENTAL RETRIEVAL. THE COMPLETE VOCABULARY IS INCLUDED IN THE PAPER. METHODS USED TO DEVELOP THIS THESAURUS WERE ALSO USED TO DEVELOP THESAURI FOR THE FIELDS OF PLASMA PHYSICS AND LASERS AND MASERS. THE PAPERS WHICH WERE INDEXED ACCORDING TO THIS SYSTEM FORM THE DATA BASE FOR A NUMBER OF EXPERIMENTS CURRENTLY BEING CONDUCTED ON RETRIEVAL MECHANISMS. (DH)

Received in RSP	4/17/68	ID 68-	-3
No. of copies		(March	1968)
Grant (Contract)	No. GN-549	7	
U.S. DEPARTMENT OF HEA OFFICE OI	LITH, EDUCATION &	WELFARE	•

THIS DOCUMENT HAS BEEN REPRODUCED EXACTLY AS RECEIVED FROM THE PERSON OR ORGANIZATION ORIGINATING IT. POINTS OF VIEW OR OPINIONS TATED DO NOT NECESSARILY REPRESENT OFFICIAL OFFICE OF EDUCATION POSITION OR POLICY.

DEVELOPMENT OF A MULTI-COORDINATE VOCABULARY:

CHEMICAL PHYSICS

Rita G. Lerner

Information Division

AMERICAN INSTITUTE OF PHYSICS - 335 East 45 Street, New York, N. Y. 10017

This program supported by the National Science Foundation under Grant No. NSF-GN-549

Development of a Multi-coordinate Vocabulary: Chemical Physics

Rita G. Lerner

A number of the sauri have been created in the past by bringing together groups of subject experts to determine relevant terms, or by merging lists of terms derived from various sources within a field. This paper describes a method of creating of a vocabulary derived from primary journal articles. The method is applied to the development of a vocabulary in the field of chemical physics. The vocabulary takes the form of a set of authority lists.

The chemical physics vocabulary was created directly from a group of articles published in the largest journal in the field of chemical physics. Volume 39 of the Journal of Chemical Physics (a total of about 860 articles) was read through, and all terms appearing in the title, abstract or body of the paper which were judged to be important terms by the author were placed on cards. Taking the defination of physics to be "the study of the properties of objects by methods," it was then possible to divide the cards into the following lists or coordinates:

- 1. Properties, Processes and Phenomena.
- 2. Objects, including systems and materials.
- 3. Methods, including devices.

Additional terms describe whether the paper is experimental, theoretical or both, and special conditions such as mass, energy, frequency, temperature or pressure ranges. One can then classify a paper by assigning one or more descriptors from each of the three lists plus appropriate additional terms describing conditions, producing a multi-coordinate index.

The thesaurus developed in this manner contained only terms referring to articles appearing in Vol. 39 of JCP. It was then reviewed by subject specialists who gave suggestions for revisions and additions. Some additional terms were added

ERIC

to the thesaurus as the need for them appeared during the process of indexing papers for experiments in retrieval. The complete vocabulary appears in Appendix A.

The list of properties, processes and phenomena is organized hierarchically, with synonyms or very closely related terms (quasi-synonyms) treated as one descriptor. Papers are indexed at the most specific level possible, but can be searched for at a broader level. For example, Fluid Properties has a subheading Fluid Transport Properties, with further subdivisions into terms such as Thermal Conductivity and Viscosity; Viscosity is further subdivided into Volume Viscosity and Shear Viscosity. A particular journal article may report an experimental measurement of Shear Viscosity which may be relevant to the interests of someone working in the general field of Fluid Transport Properties or may be of interest to someone who wants the specific measurement. In a computer search, it should then be possible to ask for all papers on Viscosity or all papers on Fluid Transport Properties, including Viscosity; in our system it is possible to cover a range of related terms in a computer search merely by specifying the first and last terms to be included in the search. For convenience in handling the indexed papers within the computer, all of our index terms were converted to 7digit code numbers, which indicate the coordinate of the term (property, object or method) as well as the term's level in the hierarchy. An internal dictionary converts the code numbers back to English language for the printed output.

The list of objects is a faceted list. The facets consist of the following:

 An identification of the physical nature of the object, e.g., electron, atom, molecule, etc., together with a nonunique notation of the chemical formula. 2. The physical class of the object, i.e., semiconductor, polymer, etc.

. The physical state of the object, i.e., single crystal,

monolayer film, etc.

4. Systems, such as rigid rotors or spin systems.

5. Shape of the object, used primarily for theoretical papers in chemical physics in which a shape must be assumed in order to perform calculations on a particular model of the object.

One object has several facets. If the paper deals, however, with the properties of several objects, the article may be treated as if it were a series of papers, each object being indexed by the appropriate set of properties.

The list of methods describes experimental and theoretical methods, and some of the devices used to make measurements. The revised thesaurus was used to index some 4,000 articles from the Journal of Chemical Physics volumes 41-44 July, 1964 - June, 1966. Examples of indexed papers appear in Appendix B.

The method used to develop this thesaurus was also used to develop the-sauri for the fields of plasma physics and lasers and masers.

The approximately 850 papers appearing in volume 44 of the Journal of Chemical Physics which were indexed according to this method form the data base for several experiments now being conducted on retrieval mechanisms. One of these is a joint experiment with the Chemical Abstracts Service to determine the needs of chemical physicists and physical chemists, and the types of indexing necessary to meet these needs. Another experiment with this data base will produce a printed index permuted on the property and methods lists. The results of these experiments will be discussed in later reports.

Acknowledgment

The author gratefully acknowledges helpful discussions with the following, during the development of the chemical physics vocabulary:

Prof. Benjamin P. Dailey	Columbia University
Prof. George K. Fraenkel	Columbia University
Prof. Martin Goldstein	Yeshiva University
Prof. Martin Karplus	Harvard University
Prof. Daniel Kivelson	U.C.L.A.
Prof. Jeremy Musher	Yeshiva University
Prof. Irwin Oppenheim	M.I.T.
Prof. William Spindel	Yeshiva University

Prof. William Spindel

APPENDIX A CHEMICAL PHYSICS VOCABULARY

PROPERTIES, PROCESSES AND PHENOMENA

Acoustics and Ultrasonics
Sound Velocity

Ultrasonic Attenuation

Bond Structure

Bond Hybridization
Bond Resonance Integral
Covalence and Ionic Character
Conjugation and Hyperconjugation
Electronegativity

Hydrogen Bonding

Charge Distribution (see also Electron Properties)

Charge Transfer

Charge-transfer cross-section

Charge-transfer energy

Multipole Interaction

Dipole-Dipole Interaction

Dipole-Quadrupole Interaction

Dipole-Induced Dipole Interaction

Induced Dipole-Induced Dipole Interaction

Quadrupole -Quadrupole Interaction

Electric Field Gradient

Electronic Structure

Induced Dipole

Polarizability

Nuclear Quadrupole Resonance

Spectra

Frequency Intensity

Line Shape

Line Width

Quadrupole

Asymmetry Parameter Quadrupole Moment

Quadrupole Coupling Constant

Chemical Properties

Catalysis

Catalysis, Temperature Dependence

Heterogeneous Catalysis

Homogeneous Catalysis

Kinetics of Reaction

Activation Energy

Equilibria

Rates of Reaction

Reaction Cross-section; Reaction Probability

Reaction Mechanism

Reduction and Oxidation

Collision Processes and Scattering (see also Energy Transfer)

Angular Distributions and Trajectories

Collisions

Capture Cross-sections

Collision Cross-sections; Collision Diameters; Collision Efficiency

Elastic Collisions

Inelastic Collisions

Scattering

Energy-Dependent Scattering

Energy-Independent Scattering

Energy-Loss Parameter; Energy Loss Spectra

Energy-transfer Cross-section

Scattering Cross-section

Colloidal Properties

Stability

Micelle Formation

Micelle Structure

Detonation and Shock Waves

Activation Energy

Mechanism of Initiation

Induction Time

Electric and Dielectric Properties

Conductivity

Dielectric Constant

Dielectric Loss

Dielectric Relaxation Time

Hysteresis

Dielectric Strength

Ionic Mobility

Transport Number

Electrical Resistance

Electron Properties

Electron Charge Density

Electron Spin Density

Electron Transfer

Rotation-Electron Spin Interaction

Spin-Orbit Interaction

Electronic States

Electronic Spectra

Absorption Cross-section; Absorption Coefficient

Band Width

Frequency

Intensity

Lifetime

Stark Effect, Electronic Spectra

Term Values

Transition Probability

Electronic Energy Transfer

Vibronic Coupling

Energy Transfer (see also Collision Processes and Scattering; Luminescence) Electronic Energy Transfer

Energy Transfer between rotation and vibrational degrees of freedom

Energy Transfer Cross-section

Energy Transfer Mechanism

Radiationless Transition

Thermal Energy Transfer

Energy Transfer Probability; Transition Probability

Energy Transfer, Translational-Vibrational

Energy Transfer, Electronic-Vibrational

Energy and Potentials (see also Wave Functions, Eigenfunctions and Integrals)

Binding Energy; Dissociation Energy

Charge Transfer Energy

Electron-Electron Repulsion Energy

Electron-Nuclear Attraction Energy

Energy Derivatives

Energy Level

Energy Level Density

Excitation Energy

Ground State Energy

Hartree-Fock Energy

Interaction Potential

Ionization Energy; Electron Affinity

Lattice Energy

Kinetic Energy

Orbital Energy

Pi-electron Energy

Potential Energy; Potential Energy Surface; Barrier Heights and Widths

Potential Function; Potential Constants

Predissociation

Relativistic Energy

Resonance Energy

Rotational Energy

Sigma-electron Energy

Strain Energy

Total Energy

Translational Energy

Tunneling

Vibrational Energy

Torsional Energy

Fluid Properties (see also Solutions; Thermodynamic Properties; Transport Properties

Critical Properties

Critical Opalescence

Dielectric Relaxation Time

Equation of State

Virial Coefficients

Volume

Pressure

Flow Birefringence

Interaction Properties; Intermolecular Interaction

Intramolecular Interaction Pair Potential Distribution Function; Correlation Function Scattering Potential Fluid Structure; Structural Domains Structural Relaxation Time Surface Tension Transport Properties Diffusion and Self-Diffusion Coefficients Thermal Diffusion Coefficient Electrical Conductivity Density Ionic Mobility Sedimentation Viscosity Volume Viscosity Shear Viscosity Thermal Conductivity Viscoelastic Properties Transport Numbers Triplet Distribution Cluster Integrals Effusion

Ionic Properties (see also Photoionization)
Auto-ionization
Donnan Equilibrium Parameter
Ionic Mobility
Ion Exchange

Distribution Coefficients
Thickness of effective boundary layers
Kinetic Energy
Ion Mass
Ion Formation
Ionic Vibrational Levels
Ionization Potential; Ionization Energy
Ionization Processes
Ionization Cross-section; Ion Yields
Field Ionization

Isotope Effects (see also Nuclide Properties)

Equilibrium Isotope Effects
Intermolecular Isotope Effects
Intramolecular Isotope Effects
Isotope Separation; Isotope Separation Factor
Kinetic Isotope Effects

Laser and Maser Properties

Liquid Crystal Properties

Domains

Electric and Magnetic Field Effects
Optical Properties

the last transfer of the section in the section of the power of the section of th

Luminescence (see also Energy Transfer)
Spectra

Intensities

Lifetime; Quenching; Quenching Cross-section

Yield

Chemiluminescence

Thermoluminescence

Macromolecular Properties (see also Kinetics of Reaction; Thermodynamic Properties; Transport Properties)

Donnan Equilibrium Parameter

Molecular Shape

Molecular Size

Molecular Weight Distribution

Polymer Formation

Polymer Length

Hydrodynamic Interaction Parameter

Magnetic Properties

Anisotropy, Magnetic

Antiferromagnetism

Neel Temperature

Curie Temperature

Electron Paramagnetic Resonance

Correlation Time

Gyromagnetic Ratio

Hyperfine Interactions

Relaxation Time

Spectra

Frequency

Line Shape

Line Width

Intensity

Double Quantum Transitions

Superhyperfine Interactions

Zero-field Splitting

· Spin-Spin Coupling

Magnetic Coupling Constant

Magnetization

Magnetic Entropy

Magnetic Moment

Rotational Magnetic Moment

Magnetic Susceptibility

Nuclear Magnetic Resonance

Spectra

First Moments

Second Moments

Double Quantum Transitions

Chemical Shift

Double Resonance

Line Shape

Line Width

Nuclear Spin-Spin Coupling
Nuclear Spin-Rotation Interaction
Nuclear Shielding Constants
Nuclear Spin Relaxation Time
Ferromagnetism
Overhauser Effect

Mass Spectra

Ionization and Appearance Potentials Ionization Probability Partial Ionization Cross-section

Mossbauer Spectra

Molecular Structure
Bond Distances and Bond Angles
Isomerism
Molecular Shape
Molecular Size
Steric Effects
Moment of Inertia; Rotational Constants

Nuclear Properties (see also Nuclear Magnetic Resonance; Nuclear Quadrupole Resonance)
Nuclear Shielding Constants
Spin Conversion, ortho-para
Nuclear Spin Relaxation Time

Nuclide Properties
Abundance
Mass
Spin

Optical Properties
Anisotropy, Optical
Birefringence
Dichroism
Diffraction
Gouy Fringes
Optical Rotation
Photon Effects

Lifetime Photoconduction

Activation Energy

Quantum Yield, Photoconduction

Photoelectric Effect (includes photosensitivity)

Photoemission

Photochemical Decomposition and Formation

Quantum Yield, Photochemistry

Photoionization

Multi-Photon Processes

Pleochroism

Reflectance; Reflectivity Refraction

Index of Refraction; Refractive Index Scattering Properties, Optical; Transmission Coefficients, Optical

Quantum Mechanical Properties

Hamiltonians
Spin Hamiltonian

Symmetry Properties
Parity
Time Reversal

Wave Functions and Eigenfunctions
Eigenfunctions
Orbital Angular Momentum Wave Functions
Orthogonalized Orbitals
Spin Eigenfunctions

Wave Function Integrals and Matrix Elements
Expectation Values
Overlap Integrals
Transition Probabilities
Bond Resonance Integrals
One-electron, One-center Integrals
One-electron, Two-center Integrals
Three-center and Four-center Integrals

Radiation Effects
Conductance
Ion Formation
Ion Yield
Ionization
Ionization Energy
Ionization Probability; Ionization Cross-Section
Radiation Products

Stability of Radiation Products
Temperature Dependence, Radiation Effects

Radiochemistry

Spontaneous Transmutation, Beta-Decay Radiative Neutron Capture Decay Schemes Isomeric Transitions Positronium Lifetime

Relaxation Time and Relaxation
Dissociation Relaxation Time
Electron Spin Resonance Relaxation Time
Dielectric Relaxation Time
Ionization Relaxation Time

Nuclear Spin Relaxation Time
Relaxation Time Spectra
Rotational Relaxation Time
Structural Relaxation Time
Vibrational Relaxation Time
Thermal Relaxation Time
Quadrupole-Coupled Relaxation
Magnetic Dipole Spin-Spin Relaxation

Rotation

Coriolis Effects Internal Rotation Molecular Rotation Rotational Spectra

Frequency
Line Shape
Line Width

Rotational Constants; Moment of Inertia

Selection Rules
Stark Effect
Zeeman Effect
Lambda Doubling
Intensity

Nuclear Spin-Rotation Interaction Rotation-Electron Spin Interaction Rotation-Vibration Interaction Rotational Relaxation Time Rotational-Vibronic Interaction

Solid State Properties

Crystal Structure and Crystal Dynamics

Atom Position
Cation Distribution
Defects
Lattice Energy

Lattice Parameters Lattice Vibrations

Crystal Surfaces

Microstructure

Surface Distortion
Surface Energy

Unit Cell

Crystal Growth

Rate of Nucleation

Crystal Spectra

Crystalline Field Parameters

Electric and Magnetic Dipole Transitions

Irreducible Representations

Intensity
Frequency
Stark Effect

Temperature Dependence of Spectra

Zeeman Effect

Optical Properties of Solids (see also Optical Properties)

Color Centers

Photoemission

Photoeffects

Reflectivity

Electric and Magnetic Properties of Solids

Carrier Mobility

Tonic Conductivity

Electron Mobility

Holes

Ionic Diffusion

Photoconductivity

Piezoelectricity

Polarizability

Transition from Semiconductor to Metallic State

Thermoelectric Effects

Seebeck Coefficients

Trap Depths

Transport Properties

Electrical Conductivity

Thermal Conductivity

Thermal Diffusion Coefficient

Diffusion

Viscoelastic Properties

Solutions (see also Fluid Properties)

Donnan Equilibrium Parameter

Reaction Mechanisms

Structure of Solutions

Solvent Effects

Ionic Mobility

Critical Properties

Spin Properties

Electron Spin-Rotation Interaction

Electron Spin-Spin Coupling

Nuclear Spin-Spin Coupling

Spin Conversion, ortho-para

Nuclear Spin-Rotation Interaction

Spin Hamiltonian

Spin-Orbit Coupling

Spin Susceptibility

Electron Spin Relaxation Time

Nuclear Spin Relaxation Time

Surface and Film Properties (see also Solid State Properties)

Accommodation Coefficients

Sorption

Absorption

Adsorption

Chemisorption

Desorption

Film Thickness

Surface Tension

The second secon

Thermodynamic Properties and Thermal Properties Accommodation Coefficients Activity Compressibility Critical Properties Critical Point Density Energy Configurational Energy Energy of Activation Energy of Formation and Dissociation Energy of Fusion Energy of Hydration Energy of Mixing Energy of Solution Energy of Transition Energy of Vaporization Energy of Evaporation Energy of Sublimation Zero-point Energy Enthalpy Enthalpy of Activation Enthalpy of Formation and Dissociation Enthalpy of Fusion Enthalpy of Hydration Enthalpy of Mixing Enthalpy of Solution Enthalpy of Transition Enthalpy of Vaporization Enthalpy of Evaporation Enthalpy of Sublimation Entropy Entropy of Activation Entropy of Formation and Dissociation Entropy of Fusion Entropy of Hydration Entropy of Mixing Entropy of Solution Entropy of Transition Entropy of Vaporization Entropy of Evaporation Entropy of Sublimation Equation of State Virial Coefficients Formation Constant; Association Constant Free Energy Free Energy of Activation Free Energy of Formation and Dissociation Free Energy of Fusion Free Energy of Hydration Free Energy of Mixing

Free Energy of Solution

Free Energy of Transition
Free Energy of Vaporization
Free Energy of Evaporation
Free Energy of Sublimation

Heat Capacity
Partition Functions
Phase Transition
Phase Diagram
Pressure

Partial Pressure Vapor Pressure

Temperature
Thermal Conductivity
Thermal Diffusion
Thermal Expansion Coefficient
Volume

Free Volume
Partial Molar Volume
Work Function

Vibrational Properties
Rotation-Vibration Interaction
Vibrational Energy
Vibrational Coupling
Vibrational Spectra
Anharmonicity
Force Constants
Infrared Spectra

Intensities

Raman Spectra
Intermolecular Coupling
Potential Function; Potential Constants
Selection Rules, Symmetry Classifications and Irreducible Representations
Torsional Oscillations
Pressure Effects
Line Shape

Normal Coordinates Fundamental Modes

X-ray Spectra

APPENDIX A CHEMICAL PHYSICS VOCABULARY

METHODS

Acoustics and Ultrasonics
Atomic and Molecular Spectroscopy

Mass Spectroscopy

Time-of-flight mass spectrometer

Mossbauer Spectroscopy

Neutron Diffraction

X-Ray Diffraction

Emission Spectroscopy

Ultraviolet and Visible Spectroscopy

Infrared and Near Infrared Spectroscopy

Raman Spectroscopy

Far Infrared Spectroscopy

Microwave Spectroscopy

Beam-maser Microwave Spectroscopy
Non-resonant Microwave Spectroscopy
Electron Paramagnetic Resonance
Nuclear Magnetic Resonance
Nuclear Quadrupole Resonance

X-Ray Spectroscopy

Beams

Atomic Beams
Electron Beams
Molecular Beams

Chemical Processes

Chemical Analysis Chromatography

Gas

Ion Exchange

Liquid

Combustion and Flames

Detonation and Shock Waves

Electrochemistry; Polarography

Electrolyte Theory

Isotope Effects; Isotope Fractionation

Isotope Exchange; Isotope Separation

Kinetics

Photochemistry

Flash Photolysis

Radiation Chemistry

Radiochemistry

Positronium Chemistry

Crystal Field Theory

Electricity and Magnetism

Dielectric Relaxation

Electrical Measurements

Electromagnetic Theory

Electrostatics

Magnetic Weighing

METHODS (CONT.)

Electron Methods
Electron Beams

Electron Diffraction

Electron Scattering; Electron Impact

Electron Swarm

Heat and Thermodynamic Processes

Cryoscopy

Temperature Measurements

Thermal Analysis

Classical Thermodynamics

Statistical Mechanics; Statistical Thermodynamics

Quantum Statistical Mechanics

Irreversible Thermodynamics; Non-equilibrium Statistical Mechanics

Lasers, Masers, and Optical Pumping Ligand Field Theory Luminescence

Mathematical Methods

Analytical Geometry

Differential Equations

Group Theory

Hilbert Space Theory

Statistics

Mechanics (classical)

Microscopy

Electron Microscopy

Field Emission Microscopy

Optical Microscopy

Nucleation

Optical Methods (Non-spectroscopic)

Interferometry

Polarimetry

Non-linear optics (two-photon processes)

Optical Birefringence

Polarization

Reflection

Quantum Mechanics

Quantum mechanics, general theory

Quantum mechanics, methods and calculations

Density matrix methods

Wave function methods

Approximation methods

Perturbation theory

time-dependent

time-independent

Variation theory

WKB

Group theoretical methods

METHODS (CONT.)

Ligand field theory Molecular orbital calculations LCAO SCF CI PPP split p electron correlation Huckel as well as electrons MO theories including Quantum mechanics, intermolecular interactions; scattering theory Quantum electrodynamics Field theory Scattering Electron Scattering Light Scattering Elastic Inelastic Neutron Scattering Proton Scattering Scattering Theory X-Ray Scattering Sorption Absorption Adsorption Desorption Transport Processes (see also Statistical Mechanics) Collision Theory; Kinetic Theory of Gases Diffusion Effusion Hydrodynamics Thermal Conduction Thermal Diffusion Transpiration Transport Theory Viscoelastic and Rheological Measurements

DEVICES

Calorimeters
Computer Programs
Counters
Densitometers
Dilatometers
Dosimeters
Electrodes
Knudsen Cell
Magnetometers
Pressure Gauges; Manometers
Spectrophotometers
Viscometers

APPENDIX A CHEMICAL PHYSICS VOCABULARY

OBJECTS

Particles Subnuclear Electrons Neutrons Protons Nucleus Atom Hot Stable Unstable Molecule Inorganic Metallo-organic Organic Transition-metal complexes and compounds Octahedral Tetrahedral Ion Negative Positive Catalysts Chelates Chromophore Clathrates Dyes Electrolytes Excitons Ferroelectrics Free Radicals Impurities Insulators Laser and Maser Materials Macromolecules and Proteins Metals Photoconductors Polymers Semiconductors Fluids Gases Ideal Real Liquids Fluid Mixtures Gas Mixtures Liquid Mixtures and Solutions Liquid Crystals Solids Crystals Single Crystals Polycrystalline Materials - A 15 -

OBJECTS (CONT.)

Thin Films Monolayers Multilayers Solid Matrix Fibers Glasses Dispersions (colloids) Solid Solutions Interfaces Surfaces Non-equilibrium systems and steady states Stationary States Acid-base systems Charge-transfer complexes Excited states Ion-exchange systems (including proton transfer) Ion-molecule interactions Polar media Singlet state Triplet state Dipoles Electrodes Oscillator systems Harmonic oscillators Anharmonic oscillators Rotors Non-rigid Rigid Spin systems S=<u>국</u> S><u>국</u> n-particle systems (n>3) Three-particle systems. cube fat helix hard plate long random coil round short rodsphere soft square thin disc

APPENDIX B

Analysis of Carr-Purcell Spin-Echo NMR Experiments on Multiple-Spin Systems. I. The Effect of Homonuclear Coupling*

ADAM ALLERHAND

Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland

(Received 26 August 1965)

The effect of homonuclear coupling in a molecule on Carr-Purcell spin-echo (CPSE) nuclear magnetic resonance experiments is investigated. A density-matrix approach is used to derive a general equation for the CPSE train of multiple-spin molecules in the liquid state. This general equation predicts a CPSE train modulated with one or more frequencies, whose relative amplitudes are, in general, not equal. Unmodulated contributions may also arise. It is shown that the modulation frequencies and their relative amplitudes are functions not only of the relative chemical shifts and coupling constants, but are strongly dependent on the separation between the 180° pulses, l_{ep} . In addition, the modulation can always be eliminated by making the pulse repetition rate, $1/l_{ep}$, large with respect to all the relative chemical shifts and coupling constants. It is also shown that, for weak coupling, it is possible to derive simplified equations by neglecting the nonsecular part of the coupling Hamiltonian, but this approximation is valid only when $1/l_{ep}$ is of the order of, or smaller than the relative chemical shifts.

Procedures for solving the general equation to obtain closed formulas for the CPSE train of a specific system are discussed. Solutions for spin- $\frac{1}{2}$ nuclei are treated in detail. Closed equations are derived for the AB, A₂B, and A₂B systems, and they are used in some numerical calculations. Simplified weak-coupling formulas are also derived for these systems, and their range of validity is discussed.

A very brief discussion of heteronuclear coupling is presented.

J. Chem. Phys. 44, 1 (1966)

Theoretical

Property
Spin-spin coupling
Chemical shift

Object
Molecule
Liquid
Spin system = ½

Method Nuclear Magnetic Resonance Density Matrix

J. Chem. Phys. 44, 1 (1966)

Theoretical

Property
Spin-spin coupling
Chemical shift

Object
Molecule
Liquid
Spin system> \frac{1}{2}

Method Nuclear Magnetic Resonance Density Matrix

Molecular Orbital Theory for Octahedral and Tetrahedral Metal Complexes

HAROLD BASCH, ARLEN VISTE,* AND HARRY B. GRAY

The Department of Chemistry, Columbia University, New York, New York

(Received 4 May 1965)

Self-consistent charge and configuration (SCCC) molecular orbital calculations are reported for 32 selected octahedral and tetrahedral first-row transition-metal complexes containing halide and chalcogenide ligands. It is found that for the range of metal oxidation states II through IV, F_{σ} , chosen to fit the experimental Δ , is a function of only the metal atomic number for constant F_{σ} . In the range of formal metal oxidation numbers V through VII, F_{σ} is also a function of oxidation number.

Calculated and observed trends in covalency, Δ values, and first L \rightarrow M charge-transfer energies are compared. The conclusion is drawn that the molecular orbital method, in its present formulation, gives a reasonable account of the ground states and low excited states in simple metal complexes.

J. Chem. Phys. 44, 10 (1966)

Theoretical

Property
Charge-transfer energy
Covalence and ionic character
Ionization potential

Object
Transition-metal complexes - octahedral

Method Ligand field theory

J. Chem. Phys. 44, 10 (1966)

Theoretical

Property
Charge-transfer energy
Covalence and ionic character
Ionization potential

Object
Transition-metal complexes - tetrahedral

Method Ligand field theory

Electronic Spectrum of (2, 2)Paracyclophane. II*

ARZA RON AND O. SCHNEPP

Department of Chemistry, Israel Institute of Technology, Haifa, Israel

(Received 16 July 1965)

The studies of the absorption and fluorescence spectra of single crystals of (2,2) paracyclophane in the region 3300-3100 Å reported in a previous paper have been extended. Well-characterized samples with the (hk0) developed crystal plane were used. In absorption two distinct spectra were obtained in the two polarization components. The fluorescence was strongly polarized in one direction (parallel to the fourfold ϵ axis) zation components. The fluorescence was strongly polarized absorption component. It was concluded that and represents the mirror image of the equally polarized absorption components represent transitions to two different electronic states, with an energy difference of 369 cm⁻¹. The lowest-energy transition tions to two different electronic states, with an energy difference of 369 cm⁻¹. The lowest-energy transition certainly contains the 0-0 line and all available evidence supports the conclusion that also the second transition has allowed character. The only interpretation consistent with all observed features of the spectra is as follows. The two observed states are the gerade dimer states ($B_{2\theta}$ and $B_{2\theta}$ in D_{2h}) being the out-of-phase combinations of the B_{2u} and B_{1u} benzene moiety states. The transitions have allowed character due to a torsional distortion of the molecule in the excited state. The interpretation is fully consistent with theoretical energy calculations.

J. Chem. Phys. 44, 19 (1966

Experimental

Property
Luminescence spectra
Electronic spectra
Torsional energy

Object
Crystal, single
Molecule, organic
Excited state

C16H6

Method Ultraviolet and visible spectroscopy Densitometer

3100 - 3300 Å.

SE

FROM:

ERIC FACILITY
SUITE 601
1735 EYE STREET, N. W.
WASHINGTON, D. C. 20006

ERIC