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FOREWORD

In the very near future, it is probable that small computers

such as the Wyle Scientific will be used in most secondary

schools as an aid in teaching mathematics. All computer

courses given today in our colleges and universities emphasise

programing and data processing. Al guide is needed which

explains how a computer can be used in mathematics education

in conjunction with the regular course of study. This

publication has been designed to serve that need.

The objectives of using a computer in mathmatics education

and the methods of achieving those objectives with the use
of a computer are detailed in this material. Also, a variety

of problems that can be used in this type of program are

included.

P.OBERT B. 10MM
Associate Superintendent
Division of Secondary Education
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INTRODUCTION

Let's talk about our pupils. Many Of them are able but completely
uninterested in mathematics as well as in school. We do not have to

search far to find reasons for this attitude. This youngster is wise

in the ways of the street. He knows exactly how far to push an adult

to gain status in the eyes of his peers. His needs are real and

evident if we will but search them out. He needs success. He needs

peer approval. He needs self-esteem. He knows that none of these are
available to bin, in the classroom, by playing the game our way. Re
tried; but having failed has arrived at a set of rules which work for

him.

He attends six or more classes per day and very quickly learns the
personality, quirks and the strengths and weaknesses of each of his

teachers. He uses these to achieve his aims. My pupil capable of
formulating his own gene, and asking us play it, is not unintelligent.

He hasn't played our game because he is not successful at it. It

isn't fun. He plays his own game because he has a formula which works

to give him a form of success and status. He could never and mould

never tell us what he is doing, but we should be able to recognise the

pattern. How do we proceed to change his attitude and behavior? We

recognise his primary need--self-esteem. We must change our behavior
and our school patterns in order that he may achieve a high degree

of success in the classroom situation.

Computers, at the present time, are held in awe by most adults and

certainly by all pupils in our secondary schools. There seems to be

an aura of mystery surrounding this machine and there appears to be

a belief, albeit false, that only a genius can operate one. It is this

very aspect of the computer that can be used very effectively, in a
mathematics classroom, to motivate pupils. When he is convinced that
he can operate a computer; when he becomes familiar with programing a
computer, then, indeed, we "have him ". His self-image soars and all
frustrations due to past failures in mathematics seem to evaporate.
"If I can operate a computer, then surely I can succeed in mathematics,"

he feels. Our task is clear. The game must be changed. No longer

will our primary task be to present subject matter. No longer need the
pupil reject this -game and substitute his own.. Now we play together.
lit can find immediate satisfaction in successful operation of a computer;
something even the "brain" will envy. His self-esteem soars'. He has

peer acceptance. He is successful. He is happy. We are achieving our

goals. Real learning can now take place.

Ile have made our first step; we have him hooked. Now we must very
carefully formulate our activities to utilize his interest. It is
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our intention to carmine, step by step, specific activities which work.

Realistically, this is not the only program ubidt will provide the

-stmulation and opportunity for success needed. It is hopefully only

a first step and will have to be refined and developed as the reader

applies and adapts it to his oun needs. It is hoped that your discoveries

can be incorporated into this program as you find um, different, and

wore effective variations on these ideas.

The author feels that particular attention paid to Units I, II, and

IV will reward the reader with a set of new, effective tools for

motivating students. The remaining units are provided to encourage

emperimentation with related 'material but eve not as essential to the

reader's immediate needs.
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UNIT 1

FLOW CHARTS

Part I. The Need for Computer Education

The following statement best summarizes the need and future of computer

education at the secondary school level:

Every high school and college graduate has from 30 to,40 years of

working life ahead of him. During this time, the accumulation of

knowledge will be doubling every ten years (or less). This will

have a tremendous effect on the working and living environments of

most of these people. They should learn as early is possible as

much as they can about the information processing technology. so

that they will be enlightened instead of frightened by the changes
which will take place.

Every engineer and scientist will have to learn how to use the

.computer as a tool to solve problems or retrieve information. Every

lawyer and loctor will have to understand the possibilities of

information retrieval and preliminary case-screening and analysis.

Every banker and insurance man will have to understand something

about statistics as well as information, transmission- and retrieval.

Every technician should know something about the use of machines in
his field, from drafting to printing, from photography to nursing,

from social work to laboratory analysis.

Every teacher will have to know how the data processing technology

affects his field of interest so that. he can improve his

understanding, teaching, and research in, his chosen field.

Every businessman and administrator will have to know how to use

machines to get information and to help him make the best possible

decisions for the successful running of his business or organization.

Every clerk and workman should understand something about the

machines with which he will be working and which will, in one sense

or another, be used in planning his work.*

rt of the Conference on uter Oriented Mathematics and the Seconda School.

Washington, D.C. National Council of Teachers of Mathematics.

(See pp. 49-52, Publication Procedures) "May 24-25, 1963.
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Part II. Objectives of Computer Education

1. Increase Skills

The computer will be used as a computational device. Pupils

will perform calculations to check the validity of algorithk.a.

Computational skills are expected to increase.

2. Aid in Concept Understanding

Computer programing methods will be used to generate concept

formation and understanding.

3. Increase Ability in Problem Solving

Settings will be provided to use the computerto solve

problems. Different approaches to the solution of a problem

will be explored.

4. Stimulate Individual Exploration and Research

Because the use of the computer is a uniquely personal

experience, it is the most powerful tool available to help the

pupil learn to see himself as a future creator and explorer.

5. Develop Desirable Habits

Habits of neatness, organization, and facility in working with

basic instructions will be developed through the use of flow

charting and programing.

6. Enhance Self-Image

The computer is a very powerful tool in motivating interest

in mathematics. The pupil always experiences success and

satisfaction. Additional motivation involves the clamor of

working with a computer.

A discUssion of these objectives, as well as problems, and methods to

obtain them, appears in Unit 4.

.Note:

While flow charting is the logical approach to a study of computer

programing, we must not lose sight of the pupil's pressing needs. It

is highly recommended that the pupil experience a "hands on"

situation, with the computer, the first day.

Operational procedures of the Wyle Scientific are presented in Unit 2.

4
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Flow Charting

Flow charting is a technique of listing steps to be performed in sequence.

When solving a problem with a digital computer, it is necessary to work

out in advance definite logical procedures, or algorithms, which the

machine can follow without further need for supervision. This is usually

called a "program,"and an excellent way of presenting the steps in a

program is by means of a flow chart.

Flow charts are an integral part of all documentation, and as such,

should accompany all documentation. Adherence to standard techniques

for the preparation of flowcharts greatly increases effectiveness of

communication between the programer analyst and the many groups with whom

he deals. In order to encourage this standardization in the use of

symbols, IBM (International Business Machines Corp.) has made available

a Flowcharting Template (X20-8020). This template includes

all the symbols necessary for both system and program flowcharts.

For greater simplicity, we will not make use of all these symbols. The

only symbols we w1.lr...1,1take use of, however, are shown in Figure 1-2.

These symbols are used to represent what is occurring at any point in

the flow.

Part IV. Uses of Flow Charts

Because of the variety of uses of flow charting in the mathematics

class, apart from its use with the computer, it would perhaps be

beneficial to digress from the main purpose in this unit and discuss

some of these uses.

In order to depict the logical sequence of a flow chart, any adage or

aphorism may be used. However, all students must be completely familiar

with what we use.

We might start with the simple proverb "a stitch in time saves nine."

After a discussion of this proverb and making sure that all pupils understand

it, put it on the board in the following manner:

Figure 1-1

5

ii



Note: Flow Chart Symbols are not used since it is not necessary to
represent what is occurring in the flow.

Discuss with the pupils, the meaning of the arrows and the logical sequence

of the flow chart. This could be a fascinating game and a lot of fun.
Furthermore it lends itself very nicely to applications in many branches

of mathematics. The following problems apply flow charting to increasing
Imputational skills and to problem solving.

FLOW CHARTING SYMBOLS AND THEIR DESCRIPTIONS

SYMBOL MEANING

-...

Terminal - The beginning or end of a program

Instruction - Any instruction which performs

a processing function of the program

Decision - Used when variable conditions
offer alternate paths

e... .4 1

i
Flow Direction - The direction of flow of

the diagram

Offpage connector - Need to designate entry

to or exit from a page

Punched Card - Any type of punched card(

6



Problem 1
Flow Chart the following problem in addition.

Figure 1-3

Many pupils will add the various combinations, in pairs of the numbers

shown in Figure 1-3, This will give them needed drill in addition. All

pupils should be led, eventually, to realize that either 34 or 41 must

be the sum, and consequently we must add 14 and 27 to obtain the required

answer. The solution to this problem follows:

Solution to Problem 1

Figure 1-4

This type of flow chart can, of course, be applied to all operations of

arithmetic. Vocabulary can be stressed by using the words Istak, plus,

sum, etc., instead of the symbols in the chart.

7



Problem 2
If you have $1.60 and spend 50Q, how much of the $L60 will you have
left? Solve this problem using the flow chart below and write the
answer in the empty circle.

(50Q

minus

Figure 1-5

Figure 1-5 eliminates the difficulty of translating the word problem into
a mathematical sentence. The only thing that the pupil must decide is
whether to use the plus or the minus in this flow chart. Eventually the
pupil should be able to solve this type of problem and set up his own flow
chart. Problems can increase in complexity as the pupil gains more
confidence in his ability to solve word problems.

Problem 3
If you have $1.60 and spend one half of this
you have left?
This type of problem may be flow charted and
approaches. Two of these approaches are sho

amount, how much money will

solved through different
wn in Figures 1-6 and 1-7.

Figure 1-6

Figure 1-7

8



When flow charting a program to be used in a compute; it is necessary

to represent what is occurring in the flow as well as giving the direction

of the flow. For this representation the symbols in Figure 1-2 are used.

The following things are fun to flow chart and furnish an insight into

prograoing.
1. Getting to school in the morning

2. Repairing a part of an automobile

3. Getting to work
4. Crossing a street
5. Rating dinner

Number 1 (Getting to school in the morning) could be flow charted in the

following simple fashion.

Turn on StumbleCrawl out Clean

of bed lights into
bathroom

up

Eat
breakfast

Kiss
mother

411111111111111111110111111116

Figure 1 -8

Walk to
school

Figure 1-8 could get much more complicated by involving alarm clock, heat,

decisions, etc.

The flow chart in Figure 1-9
van

wac 41.1011maa.a....u...^was -----ww

9



GETTING TO SCHOOL IN THE HORNING

Wait for
breakfast

yes

Figure 1-9

10



START

....._......)

FLOW CHART FOR y

.
ENTER X

)1
COMPUTE
5X166

Figure 1-10

This instructional bulletin was written primarily to be used with the Wyle

Scientific. However, all computers will require that each mathematics

problem be broken down into discrete steps. The computer requires this

because it cannot "think." We are ready to utilize this fact because it
forces our pupil to examine his problem in order to find ways to communicate

it to the computer. Even more, it forces him to examine the problem to

think through, step by step, what has to be done to arrive at a solution.

EXPANDED FLOW CHART FOR y = 5X t 6

1=1INNIVAMMIVIIMIO

Initialize

CLEAR ALL
REGISTERS

........)1ENTER 5

ENTER 6

Figure 1-11

11
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Initialize

CLEAR ALL
1EGISTEIS

FLOW CHART FOR c 4,27,17.

(TILT.
bb

ENTER a

AO') a
..........--*

MULT.
aa

STORE a
2

_......),

41=onA iii1
EXTRACT
SQUARE ROOT
of a2.4.1)2

Figure 1-12

P'WELENS

ENTER b

I. :Yraw an appropriate flow chart of the following problems.

1. y r.. 5X-6 when N. =4

2. P ..= 2L-1-21!,. when L = 4 1! ":7; 2

3. V ----.4Trr - 2irr when r tr-' 7

4. C":-' 2Trr for all r

5. y -::: 3X+4Xt 5 when :: '= 4

J. Va2 4. b2 +V:17i. cii ....

12
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UNIT 2

THE COMPUTER AND OPERATIONAL PROCEDURES

art I. Introduction

As pointed out in the note in Unit 1, Part 1, the computer is our

motivational tool. Since experience shows that once the student is

challenged, he will set his own rapid pace, it is imperative that he be

allowed to experiment with the computer the first day. He can not hurt

the computer. Therefore, gather the class around and let the students

try their hand. A. word or two of direction to help make them effective

may be necessary. Questions flow, and the teacher becomes a resource

person. All instruction, flow charts, operating procedure, and problem

anaiysis become welcome adjuncts to a pupil and his machine. Just

don't get in the way. Class work, and even self-assigned homework will

be attempted if the pupil feels it will make him a more effective

operator.

art II. Computer System

A computer is a device which accepts information, performs mathematical

or logical operations with this information, and then supplies the

results of these operations as new information. This process can be

represented by a diagram, as follows:

Basic
Information

Operations
Performed
on Basic
Information

Figurb 2-1

)1

Results
Produced

This diagram may be simplified further by expressing the three

basic concepts involved as the terms input, operation, and

output. They may be diagramed as follows:

Operation

Figure 2-2

13
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A computer system consists of the following:

1. Hardware - An array of processors and "devices" for storage

or communication. An example would be the Wyle Scientific.

2. Software - Everything that is part of the system except the

hardware. An example would be the Wyle cards.

3. Library - A collection of applications-oriented routines to

be used as building blocks in the construction of object

programs. A program for cubing a number might be found in

such a collection.

The two basic types of computers are analog and digital.

1. Analog Computer

The analog process relies on some method of continuously

measuring a physical quantity, such as weight, thickness, or

resistance. Examples of this process are the odometer and the

speedometer. The analog computer has one major disadvantage,

as compared with the digital computer, in that it cannot

modify while a program is in progress; that is, each new

problem must be rewired. The digital computer, however, can

modify while a program is in progress.

2. Digital Computer

In general, the digital process relies on some method of

counting a sequence of discrete steps. A good example of

this process is in the turnstile.

The digital computer is physically analogous to a desk

calculator, differing in only three main aspects: the computer

has a memory, is faster, and can make decisions based upon

predetermined criteria. Figure 2.3 can now be expanded to show

all five principal computer components.

Input.]

14

trithmetic
and

Logical

Figure 2 -3



In order to gain some insight into the workings of a computer, let

us follow an actual operation. The key to the operation is the

"control unit." This component is capable of retrieving contents from

memory in an orderly fashion. Each bit of information from memory

goes to the control unit and is interpreted as a discrete instruction.

It is then executed. Executing an instruction involves calling into

action one or more of the other main computer components. As an

example, in performing an arithmetical calculation, the arithmetic unit

and memory may be involved.

In its most simplified form, the use of a computer involves a process

which places in memory a sequence of instructions in the order in

which they will be selected, interpreted, and executed. Al group of

instructions so arranged that executica results in a certain assignment

may be called a program.

Part III. Clarification of Computer Capabilities

The Desk Calculator - Given the problem of adding three numbers (call

then A, B, and C) and dividing by a fourth number (call it D), the

sequence of operations is as follows:

1. Press the CLEAR button. This removes from the machine any data

which may have remained from previous usage.

2. Key in the first number to be added: A.

3. Press the ADD button. This causes A to be added to the number

that was already in the machine - -in this case, zero--and replaces

the previous number with the sum ( A+ 0 = A )

4. Key in the second number to be added: B.

5. Press the ADD button. After this operation is completed, the sum,

B, remains in the machine.

6. Key in the third number to be added: C.

7. Press the ADD button. This operation results in the sum, A+ 13+ C.

8. Key in the divisor: D.

9. Press the DIVIDE button. This causes the number in the machine,

A + B t C, to be divided by the new number, D, and, upon completion

of the operation, leaves both the quotient and the remainder in

the machine.

The Stored Program Concept - Consider the example given for the desk

calculator. The sequence of operations showed nine steps or operations

necessary to obtain the solution to (A+ B C) /D.

1. Clear

2. Enter A

15
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3. Add A

4. Enter B

5. Add B

6. Enter C

7. Add C

8. Enter D

9. Divide by D

The tenth necessary operation is to enable the computer to stop.

10. Stop

If this were a stored-program within the computer, some of the above

operations would not be necessary. These are operations 2, 4, 6, and

8 (because the values A, B, C, and D already would be stored in the

memory of the computer).

shown in Figure 2-4.

Program Step

The program for

Operation

a hypothetical computer is

Remarks

1 CLEAR Clear accumulator register

2 ADD (A) Add A to the accumulator

3 ADD (B) Form A+ B

4 ADD (C) Form A+ B C

5 DIV (D) Form (A+ B+C) /D

6 STOP Stop the computer

=M.

Figure 2-4

This same program for the Wyle Scientific is shown in Figure 2-5.

16



Program Step

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Instruction Remarks

Anus ,...e...r... ,,MAC

Clear MQ, Entry, and &emulator

To Ent

Stop

Manually enter A

To Acc

Stop

Manually enter B

Add

Clear Ent

To Entry

Stop

Manually enter C

Add

Clear Mg and Ent

To Ent

Stop

Manually enter D

Divide

Stop

A in Ent

B in Acc

A + B in Acc

C in Ent

A+B +C in Acc

D in Ent

(A+B+C) /D in MQ

Figure

Part IV. Characteristics of the Wyle Scientific

Display (See Figure 2 -6.)

1. The top line of the display is the Multiplier - Quotient Register,

abbreviated MQ. This register is used to hold the multiplier in
multiplication operations, the quotient in division operations,

and the answer in square root operations.

2. Underneath the Mg register is the Entry register, abbreviated Ent. This

register holds the multiplicand in multiplication operations, the divisor

in division operations, and the minuend in subtraction operations. It

Is the normal register for data entry, and its contents are added to the

17



accumulator register in the normal addition operation.

3. Underneath the Ent register is the accumulator register, abbreviated

Acc. This register is used to hold the original number (radicand)

in square root operations, the dividend in division operations,

the subtrahend in subtraction, and the product in multiplication.

4. Underneath the Acc register are the three storage registers numbered

1, 2 and 3 from top to bottom. These registers are abbreviated

R1, R2 and R3. They are used to store constants or intermediate

answers which may be required at a later stage in the calculation.

Numbers can be transferred to any of these registers from any other

register and from any of these registers to any other register.

5. An indicator zero appears on the far left; in Figure 2-6 it is shown

aligned with the MQ Register. This indicates which register has

been selected as the "From" register. In one register, one of the

24 digits will be intensified. This is the register selected as

the "To" register. When the transfer key is depressed, the contents

of the selected "From" register will automatically be transferred

to the "To" register. In the illustration, this is shown as the

initial zero of the Am. register.

HQ Register

Entry Register

ACC. Register

Storage Reg. 1

Storage Reg. 2

Storage Reg. 3

0 000

000

'000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

001

000

000

000

000

000

. 414

. 000

. 000

. 000

. 000

. 000

213

000

000

000

000

000

562

000

000

000

000

000

373

000

000

000

000

000

Clearing the
are cleared;
keys located
are labeled:

Wyle SCIENTIFIC Visual Display

Figure 2-6

Registers - The three arithmetic registers (MQ, Entry, Acc)

that is, the contents are eliminated by means of the three

in the lower right hand section of the keyboard. These

Clear Entry
Clear MQ
Clear Acc

and each key eliminates all data in the corresponding register. When

a register is cleared,it is automatically addressed "To."

To clear Registers 1, 2 and 3, "Transfer To" the selected register from

same other register which is already cleared.
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Ata Entry - Numerical data is entered via the nvnerical keys located

in the center of the keyboard. Data will appear in the selected "To"

register. The "To" register is identified by the "To" marker, and the
position of this marker indicates the position where the next digit will

be entered.

Numbers are entered exactly as read, including the decimal point. As

an example, the following steps:

Depress To Acc
4 Key
3 Key
5 Key
Decimal point (1) Key
0 Key
1 Key
4 Key

will place 435.014 in the selected "To" register, properly aligned

about the preselected decimal point.

Forward and BaCkApace - The "Forward Space" and "Back Space" keys,

located in the top center section of the keyboard, position the "To"

marker one digit at a time. This enables you to correct an erroneous

entry without re-entering the data.

Shift Left and Shift Right - These keys move the entire number in the

selected "To" register to either the left or right, one space each

time the keys are depressed.

Decimal Point - The Wyle Scientific handles the decimal point automatically;

however, as a convenience, the decimal point may be positioned in steps

of three digits. This permits calculations using numbers through the

range between a 3-digit whole number with a 21-digit fraction and a 21-digit

Whole number with a 3-digit fraction.

Mathematical Operktion

1. Addition

When the add ($) key is depressed with the "Add Any Register" switch

off (down), the contents of the Entry register are added to the

contents of the Acc register. The sum appears in the Ace display.

In symbolic notation:
(Entry) -f (Acc) Acc

2. Subtraction

When the Sub key is depressed with the "Add Any Register" switch

off (down):
(Acc) - (Entry) -----> Acc

3. Clear and Multiply

Depressing this key first clears the Acc to zero and then:

(MQ) x (Entry) Acc
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4. Multiply and Add

Depressing the (Mbit+) key results in:

(Acc) I(MQ) x Acc

5. Mtandfli__......ibtract

Depressing the Obit ) key results in:

(Acc I (MQ) x (Entry) Acc

6. Divide

Depressing the ) key results in:

(Acc) MQ

7. Square Root

Depressing the ) key results in:

ArrAcc MQ

Transfer

Depressing the "Transfer" key will transfer the contents of the selected

"From" register to the selected "To" register (See Part IV- 4).

Specigl Operations

Part IVof this unit has, up to this point, described those operations

which must be mastered to use the Wyle Scientific with a degree of

competence. The following describes operations which are useful in

more complex problems and which extend appreciably the capabilities of

the machine.

1. Add from any Register

When this switch is in the "on" (up) position, the contents of the

selected "From" register may be added to or subtracted from the

contents of the Acc register. In the "off" (down) position, only

the contents of the Entry register can be added to or subtracted

from the contents of the Acc register.

Example 1

Clear all
Place Add
Depress
Enter
Depress
Enter
Depress

Registers
(from) Any Reg. key in "on" (up) position

To Acc

25
To R1
18

From R1
Add

25 1. 18 I". 43 appears in Acc

Note: Contents of R1 added to contents of Acc

(R1)-f- (Acc) Acc

The number being added is not erased in this mode

of operation; 18 would remain in R.I.
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2. OVERFLOW (See Figure 2-7.)

When the "Overflow Lock Off" Switch is in the "off" (up) position,

the overflow lockout is inhibited. Overflow normally occurs when

the answer to an operation exceeds the capacity of the machine,

as for example, when two seven-digit numbers are multiplied together

with the decimal in the center position (only 12 digits available

for product). Overflow indication consists of all digits in the

display intensified, plus a line of zeros at the far right edge of

the display. Overflow may be unlocked by depressing the TO (or any

"TO" key). The problem may be repeated after moving the decimal

point appropriately.

Jacm1.12.

Place overflow lock down.

Multiply 7 863 571. by 8 436 211. with decimal point set at middle

position. Overflow occurs. The correct answer is 66 338 744 169 481,

obtained by moving the decimal point 3 places to the right and

repeating the operation. With the decimal point in the center

position and overflow lock off (up), repeat the multiplication.

The answer in the accumulator is incorrect.

This exercise shows that the overflow lock should be "on" (down)

when performing large number operations. It should be "off" only

under conditions shown in Example 2A.

Perform Example 2A with overflow lock "ON" (down).

Example 2A

Clear NQ, ENTRY and ACCUMULATOR

Depress TO ENTRY

Enter 15.

Depress FROMNTRY

ADD

CLEAR ENTRY

Enter 16.

Depress SUB

The accumulator contains the ten complement of the Answer - 1.

Depress CLEAR ENTRY

Enter 2.

Depress ADD

The machine overflows, since we were adding 2. to 999 999 999 999.

21



MQ Register

Entry Register

ACC. Register

Storage Reg. 1

Storage Reg. 2

Storage Reg. 3

0 000 007 863 571 . 000 000 000 000 0

863 571 000 000 000 000 000 000 0

000 000 000 000 . 000 000 000 000 0

000 000 000 000 . 000 000 000 COO 0

000 000 000 000 . 000 000 000 000 0

000 000 000 000 . 000 000 000 000 0

Example 2: Overflow indication

MQ Register

Entry Register

ACC. Register

Storage Reg. 1

Storage Reg. 2

Storage Reg. 3

0 000 000 000 000 . 000 000 000 000 0

000 000 000 002 . 000 000 000 000 0

000 000 000 001 . 000 000 000 000 0

000 000 000 000 . 000 000 000 000 0

000 000 000 000 . 000 000 000 000 0

000 000 000 000 . 000 000 000 000 0

Example 2A: Overflow on adding 2. to 999 999 999 999

(the tens complement of - 1)

Figure 2-7
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Repeat example 2A with overflow lock "off" (up). The correct

answer ( 1. -IF 2. = 1.) appears in the accumulator.

The example illustrates that the overflow lock, when off, permits

ADD and SUB, and both negative and positive cumulative multiplication

operation in the negative number region, the answer being in true

form if it is negative.

Cwlementing

When the answer is in complement form (negative), the re-complementing

operation is as follows:

Perform example 2A up to the first subtraction; then, continue as in

example 3.

Example 3

Depress From Acc

To Entry

Transfer

Clear Acc

From Entry

The correct answer 1. appears in the Acc. It should be remembered

that it is negative.

4. Keep Remainders

When the KEEP REMNDR switch is on (up), both the divisor and the

remainder are displayed after all division operations. The divisor

stays in the Entry register but is shifted left so that the first

digit of the divisor is one place to the left of the first digit of

the quotient. The remainder appears in the Acc register and is shifted

left one more time than the divisor is shifted. Also, twice the root

is retained in the Entry register after a square root operation, and

10 times the true remainder is retained in the Ace register. For

example, with KEEP REMNDR "on", perform Example 4.

Example 4

Depress Clear Acc

Depress To Acc

Enter 144

Depress To Entry

Enter 13

Depress Divide (4-)
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The quotient 11.076 923 076 923 appears in the MQ register. The divisor

is in the Entry register but is shifted left one place so that the

first digit is one place to the left of the first digit of the quotient.

The divisor therefore appears as 130. The remainder of 1. is in the

ACC register but is shifted left two places (one more than the divisor

is shifted) and appears as 100.
Depress
Depress
Depress

The digits to the right of the decimal are

quotient. This operation may be continued

of division that may be required.

5. Punched Card Pro ramie

To Atc
Shift Bight
Divide (4-)

additional digits of the
indefinitely for any precision

Programs to be executed are punched on one or more 40-column cards of

the type shown below. This is a conventional card, aver-printed with

a pattern which identifies the various columns. The PC-01 reads a row

at a time,and there are 39 possible punch positions in each row. The

40th column is a strobe column (located in the center of the card) and

is punched in all rows.

Thirty-eight of the columns correspond to the 38 keys on the SCIENTIFIC

keyboard. A punch in the far right hand column, the STOP column, causes

the PC-01 to stop reading so that data or instructions can be entered

manually from the keyboard. Holes are punched in the card in the same

sequence as the manual keyboard would be operated to accomplish the

same task.

Cards are pre-scored and can be punched with a simple stylus or a

ball point pen. Unscored cards are also available and cards can be

duplicated on conventional keypunch equipment.

If a program requires more than one card, as is usually the case,

cards can be taped together, edge to edge, with black tape. Transparent,

or semi-opaque tape should not be used for this purpose since the

photo-electric reading circuits may react to light passed thruugh the tape.

Sample Program

The card shown in Figure 2-8 is punched with the program to compute a,

where a2 = b2 + c2.

Step
No.

1

3

Instruction

CLEAR MQ-
CLEAR ENTRY

TO HQ-
TO ENTRY

STOP

Notes

Two CLEAR instructions may be punched on

a single row. Up to 3 registers may be
addressed TO in a single row.

Manually enter b.
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Step

No. Instruction

4 CLEAR AND
MULTIPLY

5 CLEAR MQ

6 TO tip-

TO ENTRY

7 STOP

8 MULTIPLY AND ADD

9 SQUARE ROOT (r)

10 STOP

Notes

2b.>Acc

Manually enter c.

b21. Acc

c2." MQ

Answer appears
in MQ register

a

FROM TO
,

NUMBER OPERATION EDIT CLEAR. MI. MEMSIMINIMIONIMMODOSEMEMIDIMMIINiM 1 = MII li 1

2
11111

'a

2

MUIllirll.
3

5
210

MO 1E111111111 45
4

ENT ENT IMIkill I.
I A C

I
ACC

6
6 I

M

R2

M

ii

I

111611

1111=111I
7

8

R3 13 1111i=111
0

1

ll '
1111 i 1

11 i

I.............-

Figure 2-8
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6. programiRestrictions

A. FROM any register, TO a maximum of three registers, and TRANSFER

may be punched on the same line on the Wyle card, providing that

no more than two of these registers are storage -tee:A:eta.

B. In the "Add Any Register" mode, both the "From" address and the

"Add" (or Sub) command may be punched in a single row.

C. All three arithmetic registers can be cleared on the same line

on the Wyle card.

D. Enter to a maximum of three registers, on the same line on the

Wyle card, providing no more than two of the registers are storage

registers.

E. Both the "To" and "From" addresses and the "Transfer" command

can be punched in a single row.

7. Problem Solvini

To solve a problem with a computer system requires, in roughly chronological

order, the following steps:

1. Statement of the problem

2. Organization of the problem including a flow chart

3. Detailed design and coding of routines

4. "Debugging" (testing and correcting routine)

5. Execution of the program

These steps can best be explained by programinc a simple problem on the

Wyle computer.

Example

Program y = 5 x 4. 6 on the Wyle Scientific

Statement of the.Problem
Program y= 5 LI + 6

Organization..__..nd Flow Chart

1. Initialize
2. Enter variable

3. Form 5 x

4. Form 5 x if 6

5. Stop
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Flow Chart

START

ENTER X

Figure 2-9

.400"\s.

COMPUTE:--
4-6

STOP

5 x

Note: See Figure 1-2 for an explanation of flow chart symbols used in

Figure 2-9. Initialize includes clearing of all registers, depressing
To MQ key and entering 5 in MQ, depressing To Entry key.

Coding of Routine Comments

1. Clear MQ, Entry, Acc, R1, R2, R3

2. To MQ - enter 5 5 in MQ

3. To Entry

4. Stop - enter variable x x in Entry

5. To Acc - enter 6 6 in Ace.

6. Multiply and Add 5 x +6 in Acc.
7. Stop

Debugging

Put any value of X into the equation (say X = 3); "program" into
the computer; and the answer, in the Acc., should be 21. If it is,

then the problem is probably programed correctly.

Execution of the Program

Punch the 7 steps shown under "coding of routine" onto Wyle program
card in exact sequence as displayed. Each step is to be punched

on a separate line of the Wyle program card.

The "Coding of routine" could be done in different ways.
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PROBLEMS

Chart the following problems in detail and program on the Wyle card.

1. A+ B C

2. A+ BC
2

4. AB C

3

5. Y -7- 9 X for all values of X
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UNIT 3

LOOP PROCESSES

Part I. Looping - The Single -Loop Process

Looping is basic to any study of programing and coding. To

service from a computer, it usually is necessary to arrange
.e Cmassums.4.4^elha *oh Un, riew4^11....5A im4nc..101-411A11s nrimmninva ammu say uy

for doing this is known as looping. Figure 3-1 is a simple
the single-loop process.

START

STOP

get useful
for groups
technique
example of

Figure 3-1. Single-Loop Process

Note that the sequence is interrupted by a loop and that certain steps
are repeated; then, the sequence is continued; it is interrupted again
by another loop; and, finally, it proceeds to the stopping point.

The most obvious advantages of looping are:

1. The writing of instructions does not involve repetitive,
monotonous work. Looping provides for repetition.
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2. Debugging is made relatively easy. In general, if any

digit in the instructions is wrong, the whole loop will

collapse, usually making it easy to detect coding errors.

3. The loop can readily be modified to fit changing conditions.

In order to reduce the chances for error in coding, the following check

should be made to assure that a loop is correctly written; at least, for

the number of times it will be executed. Pretend that you wrote it to

do the job just once. Then, determine the change neceslary in the test

to do the job n times. If it still looks correct, the chances are excellent

that it will work.

Example 1

Find the sum of the first ten counting numbers.

13

No

Yes

A+1 A

Figure 3-2

30

SI' sum

A = a counting number

STOP



Counting Cycles in a Loop

You will notice i.n Figure 3-2 that we have let the computer do the heavy

tedious work for us. By initializing n 10, A=1 and building in a loop

we do not have to write program instructions for each of the additions

performed. Step through the loop a few times and you will see how the

sum is increasing, the counter A is keeping track of the number of cycles,

and the decision instruction allows us to :Leave the loop at the appropriate

time. If n were 1000 imagine how much effort this would save us. Actually,

all computers have a finite amount of storage and without looping, we

would exhaust storage just trying to put in our program.

The sum of the first n integers Szin (114-1), might be introduced here

2

to point out that some problems are better done by thinking pupils rather

than by computers.

Example 2
Find the greatest common divisor (G.C.D.) or the highest common

factor (H.C.F.) of two integers.

Euclid is responsible for this algorithm, which involves

repeated division. The steps in this algorithm are as follows:

1. Divide the large integer, 11, by the smaller

integer, 12, and call the remainder Ri.

2. Divide 12 by Rl; the remainder being R2.

3. Divide Ri by R2; the remainder being R3.

4. Continue this process until any remainder equals zero (Rn=0).

The last divisor used is the greatest common divisor. To find

the greatest common divisor of 15 and 25, using Euclid's algorithm:

10:25, 12:=15

1

1.5/S
15

10

Rir- 10 IS

10

5

2

R2 5
5 /TT

10

0

Since 5 is the last divisor used for which Rn=0, the greatest

common divisor of 15 and 25 is 5.

31
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ISELECT TWO INTEGERS Kn AND Kn..1

YES

NO

Interchange
Kn and Kn.'

NO

YES

SET THE VALUE OF N (A Cycle Count)
EQUAL to ONE

Figure 3-3. Finding the Greatest Common Divisor of Two Integers -- Using Words
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The cycle count referred to in Figure 3-3 can best be explained as

follows:

The algorithm for finding the greatest common divisor is:

Q1

21176 ..t0

A..gal

R2j/R1
A2

1111111110=1.41,

Q3
R3 R2

A3

etc.

Each cycle of this algorithm can be represented as:

Qn

An

Rnfl

where n represents the number of the cycle and increases as the process

continues. When the remainder, Rtwl, becanes zero, the greatest common

divisor has been found, and it is 11+1.1 =_-Rn

There is a very simple and clever flow chart for Example 2. This is shown

in Figure 3-4.

However three new symbols must be introduced, in order to understand this

flow chart. These symbols are as follows:

1. - A. means that the value of B takes the value of B A.

2. Be. A means the values of A and B are interchanged.

3. gi denotes the greatest integer n such that n X.

To find [4 , therefore, we "round off" the decimal

representation of X.to the next lowest whole number.

Thus: T7:3,1 1, -1

The relative simplicity and beauty of the flow chart shown in Figure 3-4

is obvious when it is compared to tb.,,! flow chart of this same problem,

as shown in Figure 3-3, using words instead of symbols.

Figure 3-4, thus, is an excellent example of how a complicated flow chart,

as shown in Figure 3-3, can be simplified by use of a different approach

to the problem, as well as by using proper symbols.
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Examples of single-loop flow charts follow.

Let A and B represent any two integers.

START

..n.=MWMwMgilMmmm'----FT!ppmmmrr,QmPwmPRWTTTMT7

IB4------) A

Figure 3-4. Finding the Greatest Common Divisor of

Two Integers -- Using Symbols
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ExaraLl?,3 Draw a flow chart showing multiplication by repeated addition.

One way to multiply one nonzero number by another is to add successively
the multiplicand and subtract I from the multiplier for each addition.
When the result o2 the subtraction sequence becomes zero, the process is
finished and the product
15 by 5.

Step number (N)

is equal to

Multiplicand

= 00

the final sum. For example, multiply

=15

Multiplier Difference

0

1 0+15 7.: 15 5 - 1 = 4

2 15+15 = 30 4 - 1 = 3

3 30+15 45 3- 1 =." 2

4 45+15 :::60 2 - 1 = 1

5 60+15 7.7.75 1 - 1.0

Step 5 shows the subtraction sequence equal to zero; therefore, the final

sum (75) is the aT

NOTE: The cycle count in Example 3 would be N = 5.



Set the Value of N (A Cycle Count)
Equal to Zero

./

S = A (N-1) + A

B - 1

Record Final S

STOP

NO

Figure 3-5. Multiplication by Repeated Addition



art II. The Nested-Loop Process

The nested loop is distinguished from the single loop by the fact that

it has a loop within a loop. That part of the sequence which is repeated

is again repeated in its entirety. Figure 3-5 is a diagram of this process.

Figure 3-6. Nested-Loop Process

A good example of nested looping is shown in Figure 3-6,

Find all the prime factors of an integer.



... .-................*..........*~IMIWS.VMAFOV.: ird. '''
,:.

A - Any integer

B =41.

C Any integer0 A

R Remainder

YES

Record Factor YES

YES

NO

Figure 3-7. Prime Factors of an Integer
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In Figure 3-7, when the first loop is completed, it then is programed

through the entire flow diagram again. This makes it a nested loop.

To check the accuracy of the flow chart shown in Figure 3-7. let A, the

integer, be equal to 30. The problem, then, is to find all the prime

factors of 30.

Note that for a given integer, the integer itself and 1 are not considered

factors.

1. Try 2 as a factor.
A=30 II= 2 A/B trz 15 = C. Since C is an integer not

equal to A, we record the factor 2. Since C 1, we put C

in place of A. Therefore, A Im15.

2. On this first loop, A=15; B (next number) 3. ,

A/B-z---15/3=--5 C. Again, since C is an integeria A,

record the factor 3. Cp 1, so we again put C in place

of A. Therefore, ALm=5.

3. On the second loop, A=5; B (next number) = 4.
A/B:=5/4.0Einteger and we loop back to beginning. The reader

should continue through the problem until it is completed.

To check the accuracy of the loop on the right side of the flow chart,

let A=15.

1. Try the first (neat) prime, 2, as a factor.

A=15 B=2 A/B=73/4 =-C.

2. Since C is not an integer, and since C 1, we take the first loop.

3. B (next prime)=3; A.1=15 AO:=5. Therefore, 3 will be recorded.

4. Continuing this process, 5 also will be recorded. This process can

be diagramed as follows:
2a2 3L15.-

3/Z_

50.
1

Therefore, 30=2.3.5 15=== 3e5

Exgmple 5

Find the greatest common divisor (G.C.D.) or the highest common

factor (H.C.F.) of two integers.

Note that this is exactly the same problem as Example 2. However

Example 2 vas solved using a single loop. The solution shown in

Figure 3-8 has a loop within a loop, or a nested loop.

To check the accuracy of the flow chart shown in Figure 3-8, the

equality AILT=B and both inequalities An and AO should be used.
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NO

YES

4

YES

A 4+ B

NO

B B A

Figure 3-8 Greatest Common Divisor

or

Highest Common Factor
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IF AFB, Let A.-- 20 B--- 20

A 0

B4--B-A

B - A = 0

B =0

On first loop, A=20, B=0

A3 B

A <--1fr B

A=0, B=20

Answer =20

If A.<B, Let A=20, 13=-30

A74 0

BieB -A

B - Av.--.10

B =10

On first loop, Asur20, B-10

B
A4c----"B

A=-.10, B=20

A40

B4-B -A

B -A =10

B= 10

On second loop, A 21Ir 10, B=110

Au= B

Azit 0

B4-B-A
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B - A.= 0

B =0

On third loop, A =10, B 0

A3B

AE>B

A=0, b =10

Answer = 10

If Let A = 25, B =10

A3ZB

AE B
A.=.10, B =25

A-14 0

BE---->B A

B - A = 15

B==15

On first loop, A am..10, B =15

A<B

A yt 0

-A

B - A = 5

Bas
On second loop, A 10, R .4= 5

AB
A 4--)B

A gm 5, B am 10

A 1& 0

B4 -B - A

B - A =5

B 5 42

-wgp- sk-vm.'-'70475,1-174



On third loop, A wir5, B=. 5

Asir B

AI 0

B*---B - A

B - /vim `,`,

B = 0

On fourth loop, Aim 5, B'smr 0

AB

AE-*B

0 ,A= B= 5

Answer MIIII5
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PROBLEMS

1. Draw a flow chart for the following algorithms:

A. Division by repeated subtraction

B. Greatest common divisor of more than two integers

2. Plan the use of the Wyle computer with a unit of work.
Use the following format in your lesson plan:

A. Organize the problem. Provide for the most economic use

of time and program cards.

B. Plan the approach. Prepare specific problems to be

presented to the pupils.

C. Code the problem. Use the Wyle Coding Sheet. Remarks are

very important; for example, it might be noted that the
Wyle Computer does not handle negative numbers per se.

D. Test -check with a simple test case.

In the lesson plan, include involvement of all pupils. Consider what

other class members will be doing while the computer is being used by

only a few of the pupils.



DEVELOPING EXAMPLES AND METHODS TO OBTAIN "OBJECTIVES OF COMPUTER PROGRAM"

Choosing the type of computer to be used is of extreme importance. We must

constantly keep our sights on the goals. This is not to be a course in

teaching programing. The computer is to be used as an aid in teaching

mathematics. Consequently, there are certain things we do not want the

computer to do. For example, the Wyle Scientific cannot handle negative

numbers. This forces the pupil to learn about complements. Furthermore,

this computer does not give the complement. The pupil must perform the

operation of subtraction in order to obtain the desired result. Actually.

the most elementary type of computer is the most effective for our purposes.

Three arithmetic registers and three storage registers have proved very

satisfactory.

Since the Wyle has only limited storage and limited capabilities, the

student will be able to develop facility in handling problems. An equally

important facet of these limitations is that every problem must be

carefully analyzed and understood by the student as he prepares his

program. If he needs the sine function, he must develop the series.

By involving the student completely in individual research, in a problem-

solving situation, he must make his own critical decisions. Which attack

on a problem will be most fruitful? What steps must be taken in which order?

What are personal weaknesses which must be overcome to succeed? The fact

that a powerful computer can obediently do his will, if properly addressed,

has a motivational quality much like that teenagers feel for automobiles.

To obtain the six objectives set ford: in Unit 1, problems and methods of

presentation must be developed that make the most effective use of the

,capabilities of the computer. Following are some of the problems and

methods that have been used successfully in obtaining these objectives.

A. Skills

Example 1. The teacher programs multiplication facts; for example 9 x 0

through 9 x 9. However, 9 x 4 is programed to give an answer

of 35. The Wyle card is programed to stop when the

multiplication problem appears on the display screen. The

pupil then mechanically places his answer into R 1 (register

#1). The card reader is then punched, and the programed

answer appears in the accumulator. T?,e pupil compares the

answer in the accumulator with his answer in R 1. If the

answers are the same, he continues to the next problem; if

they are different, he challenges the machine. To do this,

he must recognize that multiplication is repeated addition.

In the problem of 9 x 4=35, the pupil must add 94-9i-9-11-9

in order to determine whether he or the machine is correct.

He should do this addition with pencil and paper.

Example 2. The following homework assignment may be given: Make up any

problem in an operation of ariUmetic and check the answer

on the computer when you come to class. Pupils will add a

group of numbers containing 7 rows and 7 columns; they will
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Example 3.

multiply 7 digits by 7 digits; they will divide 10 digits

by 5 digits, etc. This is true of pupils who would not
ordinarily do a single homework problem no matter how easy
it was. It is the challenge of the computer that gets them.
No pupil wants to check out an easy problem, and all pupils
look forward to checking the answer on the computer.

Divide 2600 by 145 and give the answer as a mixed number.
The answer to this problem is 17 135. To check this answer

145

on the Wyle Scientific, the fraction must be changed to a
decimal, since the Wyle does not deal in fractions. The
amount of computation that is necessary in a problem of this

type is obvious. Again, due to the motivation of the computer,
pupils will work on this type of problem long and diligently.

B. Coacept Formation

Example 1. Program the formula for perimeter of a rectangle in four

different ways.

Example 2.

Example 3.

The formula would take the following forms which would be

programed:
P= 2L +-2W

P= 2W+ 2L
P=2 (W.i-L)
P= (W+ L) 2

The properties of commutativity of addition and multiplication
can be explored as well as factoring.

Most pupils will remember this formula, after programing it
in the above four ways, without trying to "formally" commit

it to memory.

Program the formula for the area of a square for:
S=2, 5, 9, and 16

Substituting the values for S in the formula AtTS2 should

begin to develop in the pupil an idea of variable. As we

vary S, A varies. It may be desirable, at this point, to
introduce the concepts of dependent and independent variable

and show how the value of A depends on the value assigned

to S. Therefore, A is called the dependent variable and S

the independent variable.

Give an addition problem involving 5 rows and 5 columns.

Have the pupils find the sum. Now ask whether the sum would

be the same if the addition were done from the bottom row

going up. Let the pupils check this out with pencil and

paper. When they are convinced that the sum is the same,
interchange the places of the first two numbers and add..
Allow the pupils to use the computer now and check the sum
for all possible combinations of these five addends. The
"add any register" can be used very effectively in this type

of problem.

Example 4. Place 534 into Ent; 247 into Acc; 700 into R1; 70 into R2;

11 into R3. These two sums should be the same. Why?



Al variation of the above problem would be to place a

different integer into RI, R2, and R3. The problem would

be to find what integers must be placed in Ent and Acc so

that Rl 4 R2 + R3 would be equal to Ent plus Acc.

Example 5. Dividing 2600 by 145 gives a quotient of 17 and a remainder

of 135. Check this answer on the ccmputere

Place 17 into M Q
145 into Ent
135 into Acc
Depress "Multiply and Add" button
2600 will appear in the Ace

When the pupils can perform the above five steps, a clear

understanding of division and remainders is shown.

C. Problem Solving

This is, without a doubt, the most difficult aspect of mathematics to

teach. The computer offers an opportunity for a fresh and novel approach

to the solution of word problems. Through the use of flow charting, as

described in IV of Unit 1, the problem can be changed from one of words

to one of simply identifying the operation needed for the solution.

Through this approach, pupils with reading difficulties or under-achievers

may advance to the solution of more difficult types of problems.

The following type of problem, which can be used with the more capable

pupils, is more readily understood whn a computer is used as an aid in

the solution. These problems are classed as Diophantine-type problems.

They are easily solved as a computer with a cut-and-try approach.

However, as will be seen, understanding and insiglat must be developed

before the cut-and-try is attempted. An example of this type of problem

and its solution follows.

Ekample 1. A farmer has $100 and wishes to buy exactly 100 farm animals.

Chickens cost 50 cents each, horses $10 each, and turkeys

$3 each. He must buy at least one of each. How many of each

does he buy?

Let us first solve this problem through the use of algebra

and then see how we could have solved it, :r.n a much simpler

manner, using the computer.

Let c = number of chickens
h = number of horses
t ..-= -. number of turkeys

Then, c -1-h + t =100

.5c 10h-f- 3t 100

Eliminating c in theme equations we obtain

5t = 100 -1 19h

We now have one equation in two unknowns, which seems

to have an infinite number of solutions, However,

there is another condition on t and h which aids in
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Another
follows.

the solution. This condition is that t and h are

both positive integers. Now, since there are two
conditions and two unknowns, we know there may exist

a unique solution to this equation.

Solve the equation for t

t 100 - 19h
5

Since t must be integral, the right member of the equation

must also be integral. We can then separate the right member

into two parts; one pari, already integral, the other to be

made integral:

t =100 - 3h - 4 h
5 5

100 and 3h are integral, since h is. Therefore, 4 h

5 5

must be made integral by choosing a suitable value of h.

Let 4 h= I
5

ha= 5 1=1+1 I
4 4

Continuing in the above manner:

1 2 = M

4

I = 4 M

The smallest integer for N that would make I an integer is 1.

Therefore, set M 7. 1. Substituang values back into the various

equations, we obtain the answer to our problem, which is: 5

t=--1
c =94

We could have used the equation 5t iww100 - 19h and

solved this problem on the computer. Knowing that

t and h must be integral, and also recognizing that

h cannot be larger than 9, it is a simple problem

to obtain the answer on the computer through the

cut-and-try method.

type of problem, with which the computer can be used effectively,

Example 2. The integers, 1, 3, 8, N. have the property that the product

of any two when added to unity yields a square. What is N?

This problem asks that the three following conditions be

satisfied:



1. N -) 1 rz--- perfect square
2. 3N + 1 = perfect square
3. 8N + 1 =perfect square

Now N could equal any of the following numbers.
N=15, 24, 35, 48, 63, 80, 90, 120, 123, 165, etc.

However N cannot be any integer not listed above.
Th.,. reason f^r this is as follows:

15 1=16= 42

24 1-1 =25 =5
35 1-1 vc.36 =62

etc.

Performing the necessary operations on the computer, we find
that 120 is the integer which satisfies the three conditions
given above.

D. Individual_Explosation and Research

Example 1. Using the computer, multiply 143 by 1 through 9 and then
multiply each product by 7. For example:

143 x 1=143 143 x 7 = 1001
143 x 2= 286 286 x 7 =2002

The pattern should be recognized before multiplication by
9 is veached.

Example 2. Using the computer, find the pattern in the following:

7 x 49
67 x 67= 4489

667 x 667 =444889

Example 3. Using the computer, find the pattern for the following:

22 x 22
1+ 2 t-1

333 x 333
1+ 2+3+ 24 1

4444 x 4444
1+ 2+ 3+4+3+ 2+ 1

999999999 x 999999999
11. 2-f 3 + 4 + 5 + 6 -1- 7 8 9 1- 8+ 7+ 6+ 5-1 4 + 3 + 2 + 1

Example 4. Find the formula for the sum of an arithmetic progression:

Put the integer 1 into the Acc. and then add 2, 3, 4, etc.
List the partial sums as follows:
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1+2=3
11-24.3=6
1-1-2+3+4-=10

1 +24-3 n ztn in 4- 1)

9

In like manner, the forAula for a geometric-progression

could be found.

E. Develop Desirable Habits

Flow charting and writing programing instructions on the "'biyle Coding

Sheet" furnish practice in organizing one's thoughts and in putting

them down in a neat, logical order.

Programing on the Wyle program card takes care and accuracy.

Programing is difficult, so a pupil soon learns to be very

careful in his work and strives to mr ,. as few errors as possible.

Programers rarely obtain a correct pr,3ram the first time through.

Debugging takes place following or during a computer run. It is

this attitude of working with the '..omputer to achieve results that

may be considered positive. Debugging is a necessary check in

trying to write a program. It is perfectly 'normal to make mistakes;

that is precisely the reason for debugging. .

The loss of a homework paper or of a program card could mean that

the pupil would not be permitted to use the computer that day.

Consequently, pupils very rarely come to class without the homework

assignment and almost never lose the program card.

F. Enhance Self-Imaat

All that is necessary for enhancing that self-image is for the pupil

to be capable .of writing a program and seeing it work on the computer.

The Wyle Scientific uses a very simple language and consequently is

very easy to program. Every pupil should meet with success.
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PROBLEMS

l, Divide 3700 by 133. Give the answer as a mixed number and check this

answer on the computer.

2. The area of a triangle is 1 bh uhere,b is the bane and h is the altitude.

Write a program for this formula :n four different ways.

3. ':rite a program for the average of n numbers.

4. Write programs and flow charts for the following formulas.

A. S=P (1+ i)w

B. /4 = 47711

C. a Telb2 c2 - 2 be cos A (Law of Cosines)
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UNIT 5

NUMBER NOTATION SYSTEMS

art I. Decimal Number System

To understand the internal operation o. many digital computers, it is

essential to understand scales of notation other than the decimal scale.

The most widely used scales at the present time are binary, octal,

and hexadecimal. Since all scales of notation are directly related

and since we are most familiar with the decimal system, we will just

relate these scales to the decimal scale and then to each other,

Any system of notation is essentially a means of counting. For example,

in the decimal system we use 10 digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9).

Notice, in Figure 5-1 (Page 56), there is no repetition of any digit in the

BO column in the first ten digits. Then the digits are repeated. In

column B1 each digit is used 10 times before the next one is used 10

times. In column B2 each digit is used 100 times before the next digit

is used 100 times. In the B3 column each digit is used 1000 times, etc.

Using Figure 5-1, we can represent any number. For example, 345 can be

represented as

B2 B1 BO

3 4 5

In other words, we take the 5 from 0, the 4 from Bl, and the 3 from B2.

In this case, the base (B) is 10, so this number can be represented as

follows:

3 (10)2+ 4 (10)14- 5 (10)°

The general representation of any integer I can be written as follows:

I Cn (10)n+ C2 (10)2 . Cl (10)1 4. Co (10)

Part II. Binary and Octal Number Systems

Figure 5-2 (Page 57), shows a comparison of the Binary and Octal number

systems and their relationship to the decimal system.

Referring back to Figure 5-1, we recall that when B 10, the B° column

repeats the ten digits (0 to 9) after the first ten digits, and it

repeats these digits after each succeeding ten digits. Notice also

that the digits in this column change every BO times, or every one time.

The digits in the Bi column change after being used 10 times, etc. Now,
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referring to Figure 5-2, it is readily seen that for B 8, the B°

or 8° column repeats the first 8 digits (0 to 7) after the first 8 digits,
and it repeats these digits after each succeeding eight digits. The
digits in this column change every 80 times, or every one time. The

digits in the B1= 81 colunr change after being used 8 times, the digits

in the B2 = 82 column change after being used 82, or 64 times, etc.

In the binary table, it is readily seen that this sane pattern exists.
The BO = 20 column changes every one time; in the B1 = 21 column, the

digits change after being used two times; in the B2 = 22 column, the
digits change after being used four times; in -he B3 = 2S column, the
digits caange after being used 23, or 8 tir es; et

The general representation of a number in any base is:

4- N3 B2 + N2 B 1 4-111 B° +14115" 1 I2 B24. 0000e411

where B represents the base being used, N1 represents the units digits,
N2 the tens digit, N3 the hundreds digit, etc.; and MI represents the
tenths digit, N2 the huneredths digit, etc.

There is a very interesting and useful relationship between binary and
octal numbers, as shown in Figure 5-2. This relationship shows how
certain concepts can be tied together and expanded upon to produce a
result whiea at.first glance seems an astounding coincidence, but which,
upon further study, is readily accepted as a natural outgrowth of certain

mathematical laws. Therein lies the beauty, grace, mystery, and majesty

of mathematics.

In order to investigate this relationship, it is necessary to Introduce

the terms "bit" and "bit pattern" into our mathematical vocabulary.

A "bit" is a binary digit (0 or 1).
A "bit pattern" is a combination of N binary digits.

For example: 00 is a 2-bit pattern.
000 is a 3-bit pattern.

Any "bit pattern" of N binary digits represents 2N possible choices;

e.g., a 2-bit pattern represents 22, or 4 possible combinations, as

follows:
00
01

10

11

A 3-bit pattern represents 23, or 8 possible combinations, as follows:

000
001

010
011
100

101

110

111
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Now, suppose we list the binary numbers shown in. Figure 5-2, in a 3-bit

.tattern, and the equivalent octal numbers next to them, as in Figure 5-3

(Page 57). Notice that we have one octal digit for each 3-bit pattern in

the equivalent binary number. Furthermore (and this is the interesting

and important part), each 3-bit pattern of a binary number represents the

value of the patterr, in binary, as an octal digit. This permits us to

interchange binary and octal numbers by sight.

For example, the binary mmber 010000000011 may be displayed in 3-bit

pattern as:

010 000 000 011 .

2 0 0 3

Under each "bit pattern" is the value of that 3-bit pattern taken by

itself as a binar y number. The numeral 2003 which was obtained in this

manner is the octal representation of 010000000011 (base 2).

Part III. Hexadecimal (base 16) Number System

If we desire to interchange binary and hexadecimal numbers by sight,

the 2N becomes 24, since the hexadecimal number system has 16 digits

and 24 is equal to 16. Therefore, N = 4, which means we will use a

4-bit pattern in our binary numbers. Figure 5-4 (Page 511 uses this

4-bit pattern.

Notice that all "bits" have been used; we have a total of 24, or 16,

different "bits." Notice also that we have skipped the number 10 and

used A for the hexadecimal equivalent of 1010 in base 2. The reason

for this becomes clear if we look at the binary number 10000 in

Figure 5-4. 10000 in base 2 is equivalent to 16 in base 10, and we

desire it to be 10 in base 16.

Part IV. Comparing Number Systems

The teacher must not lose sight of his primary purpose: mathematics

education. While binary, octal, and hexadecimal number systems can

be interesting, the teacher must continue to draw parallels between

these systems and the de4maI system. Studying other systems highlights

the meaning of place value. It can also be used to clarify the

multiplication and division algorithms we use.



DECIMAL SYSTEM OF NUMERATION

0 0 0
0 0 1

0 0 2

0 0 3
0 0 4
0 0 5

0 0 6

0 0 7

0 0 8
0 0 9
0 1 0
0 1 1

0 1 2
0 1 3
0 1 4
0 1 5
0 1 6

0 1 7
0 1 8
0 1 9
0 2 0
0 2 3.

0 2 2
0 2 3
0 2 4
0 2 5
0 2 6
0 2 7
0 2 8
0 2 9
0 3 0
0 3 1

0 3 2
0 3 3
0 3 4
0 J' 5
0 3 6
0 3 7
0 3 8
0

-/-;

9
0 0
0 4 1

Figure 5-1
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COMPARISON OF DECIMAL, OCTAL, AND BINARY SYSTEMS OF NUMERATION

Decimal

82

Octal

8081

0 0 0 0

1 0 0 1

2 0 0 2

3 0 0 3

4 0 0 4

5 0 0 5

6 0 0 6

7 0 0 7

8 0 1 0

9 0 1 1

10 0 1 2

11 0 1 3

12 0 1 4

13 0 1 5

14 0 1 6

15 0 1 7

16 0 2 0

17 0 2 1

18 0 2 2

19 0 2 3

20 0 2 4

21 0 2 5

22 0 2 6

23 0 2 7

24 0 3 0

25 0 3 1

26 0 3 2

27 0 3 3

28 0 3 4
29 0 3 5

30 0 3 6

31 0 3 7

32 0 4 0

33 0 4 1

34 0 4 2

35 0 4 3

36 0 4 4
37 0 4 5

38 0 4 6

39 0 4 7

40 0 5 0

41 0 5 1

Figure 5-2
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25 24 23 22 21 20

0
1

1 0

1 1

1 0 0

1 0 1

1 1 0

1 1 1

1 0 0 0

1 0 0 1

1 0 1

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

1 0 0 0 0

1 0 0 0 1

1 0 0 1 0

1 0 0 1 1

1 0 1 0 0

1 0 1 0 1

1 0 1 1 0

1 0 1 1 1

1 1 0 0 0

1 1 0 0 1

1 1 0 1 0

1 1 0 1 1

1 1 1 0 0

1 1 1 0 1

1 1 1 1 0

1 1 1 1 1

1 0 0 0 0 0

1 0 0 0 0 1

1 0 0 0 1 0

1 0 0 0 1 1

1 0 0 1 0 0

1 0 0 1 0 1

J. 0 0 1 1 0

1 0 0 1 1 1

1 0 1 0 0 0

1 0 1 0 0 1



conroasoN OF BINARY AND OCTAL NUMBERS

Binary number Octal number

000 0

001 1

010 2

011 3

100 4

101 5

110 6

111 7

001 000 10

001 001 11

001 010 12

001 011 13

001 100 14

001 101 15

001 110 16

001 111 17

010 000 20

Figure 5-3
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COIIPARISON OF BINARY AND HEXADECIMAL NUMBERS

Binary Hexadecimal

0000 0
0001 1
0010 2
0011 3
9100 4
0101 5
0110 6
r .1. 7
'Ld00 8
1001 9
1010 A
1011
1100
1101
1110
1111

0001 0000 10
0001 0001 11
0001 0010 12
0001 0011 13
0001 0100 14
0001 0101 15

Figure 5-4
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UNIT 6

AIDS TO USING A COMPUTER

Part I. Subroutines

Suppose we had a code in which the sane set of instructions was needed

in two or more places. These: instructions could be copied into each

place, but this would be a waste of storage space and of our own time.

Also, it would invite error as we repeated the same set of instructions.

In our discussion on "looping," we showed that whenever we repeat the

same job, a better method must exist. One of these better methods is

subroutining, which permits us to write the instructions once, rather

than each time they are needed.

Subroutine subprograms can be completely independent of the main program;

yet, it is easy to set up "Communication" between the main program and

the sutktrograms. This means that a large program can be divided into

parts that can be compiled individually, making it possible to correct

errors in one subprogram without recompiling the entire program.

Subroutines are presently in such demand and their use so widespread

that libraries are being developed where certain subroutines are

available.

To use a set of instructions as a subrouti.t, we must always do two things:

1. Arrange to return to the mainstream of code immediately

following the subroutine instructions.

2. After the desired instructions are transmitted to the

subroutine, the result that is obtained is transmitted back

to the mainstream of code.

There are two types of subroutines:

1. Open subroutine--This is a subroutine that is inserted into

the main grogram at a point where it is used. This type is

used when the subroutine is used only once.

2. Closed subroutine--This is a subroutine that is used as often

as is necessary within one main program.

REM211:

Compute 3 =.1.0 Cos 0 4-Fa R Cos 4, where C, N, and R are

constants, and 0, P, and 4 are variables. Use N log P for Pn.

Note that we have to compute the cosine twice; once for Cos 0,

and again for Cos 4.. We resort to subroutining: The subroutine

can take the form of open or closed; in each case it would look

as shown in Figures 6-1 and 6-2.
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Wyle
Card

Open Subroutine

Main Program

0 4.. ..~42.1. 4.WI.1.

I

L 1

1 1---

r---

I I

End

Figure 6-1

OS
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Log
Subroutine

Cosine
Subroutine



Wyle
Card

Closed Subroutine

ruin Program

Start

I
End

Figure 6-2
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Cosine
Subroutine

Log
Subroutine



The flow chart for programing this equation appears as follows:

Clear All
Registers

IMIMMOINflar

Compute and
Store

C Cos 0.-*Ri

Figure 6-3
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art II. Transparencies

Transparencies can be used very effectively in conjunction with a

computer in a mathematics classroom. Copies showing the content of the

transparencies that have been developed for this program are included in

this unit. However, teachers, as they become familiar with this program

and recognize its potential, should develop additional transparencies.

The following is a list of the materials necessary for producing

transparencies.
Mounting frames

Instructo color transparent pencils
Pen, wick, disposable, for overhead transparencies

(5 colors) - chisel point and fineline

Cellulose acetate, clear, .005" (10"x10")

Tape, page mending clear, colorless 3/4" wide, Scotch #810.

Scissors
1/4" Grid paper (for masters)
No. 2 pencils - Scripto
12" ruler with lettering guide
Film, transparency, thermofax type 127

Trans - Hinges (for hinging overlays)

Lettering pens and ink (Leroy or Koh-I-moor)

Film, adhesive, colored. Thermofax type 720.

(4 colors, for adding color to transparencies).

Fourteen transparencies are recommended as an aid in using the Wyle

Scientific in the mathematics classroom. Copies of the masters for

these transparencies accompany this publication. The teacher may use

these copies to make the fourteen transparencies. The masters numbered 1

through 9, 11, and 12 are for use specifically with the Wyle

The masters numbered 10, 13, and 14, however, may be used in a mathematics

class not using any computer.

Should a teacher desire to eliminate the numbers at the bottom of the

masters, he can easily block these numbers out with white tape.

Transparencies 1, 2. and 3 eve used to explain the physical makeup of

the Wyle computer and to introduce the operations and machine language

that is characteristic of this computer. Transparency may be used

to explain the function of the three arithmetic registers and the three

storage registers. This transparency also should be used for pupil

participation. Transpamliesi_j_mil are an extension of Transparency

4 and permit a greater variety of problems to aid the pupil in understanding

the operations of the machine. TonmagmsieLlAnd 8 are copies of the

Wyle program card and are invaluable in explaining the function of all

columns on this cardc, =Immoral is used as the coding sheet. Its

use is shown in Tramamulra.11. However, we want a blank coding sheet

transparency to use for pupil participation. It is advisable to run off

a few hundred of these coding sheets, on a ditto machine, for pupil use in

solving problems. IrammalsaLyauILLELI2 show the flow chart,
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coding, and program, respectively, of a typical expression.
Transparency 13 consists of seven masters. However, the finished
product of the seven masters consists of one transparency with
six overlays. This trapparency is used to show the visual
representation of (AtB)t.,,AM-2ABfB2 and (A-B)2j-2mtB2.

The visual representation of (A+B)2 consists of a transparency
with 6.1-13p nvpritim ac

A

B

AFB

A B

13A

Overlay No. 2 hinged
from the bottom (13F)

Figure 6-4
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B

Overlay No. 1
hinged from the
right side (13E)

Overlay No. 3
hinged from the
bottom (13G)



The visual representation of (A-B) consists of a transparency

with three overlays, as follows:

A

B-4

s

Ap-B

wD>

13A

I

Overlay No. 2 hinged
from the left side (13B)

Figure 6-5

4 Overlay No. 1 hinged
from the left side (13C)

Overlay No. 3 hinged from
the left side (13D)

For easier viewing and better understanding, color should be

used on Transparency 11. For example, 13A could be plain, 13E

and 13R could be yellow, and 13G could be blue.

Transparency 14 is a visual representation of finding areas of

regions by subtracting areas of subregions from the total region.

In making this transparency, 14A is the static frame; 14B is

hinged from the left side; and 14C is hinged from the right side.

Note that the masters for Transparencies 13 and 14 all have a

small circle in the upper left and right corners. If these

circles are matched on all overlays when they are hinged, the

overlays will automatically fall into the proper position.
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PROBLEMS

1. Make an addition and multiplication table in base 8.

2. Using the tables in Problem 1, make similar tables in base 2 and base 16 by

sight:

3. Using Transparency 4, place 34.7 into MQ, 16.9 into ENT and 586.43 into ACC.

What operation has been performed?

Note that this problem should lead into a discussion of

multiplication and division being inverse operations.

4. a. Program (A18)2 and A42AB+82 separately and in the general form as given.

b. Using the above programed cards, substitute the following values for A and

B and find the answers to these expressions on the computer.

1.

2.

3.

4.

A=3

A=3.9

Az(4.3 5.6)

A=3.7456859

B-15

B=5.6

13::(7.8 3.4)

Bz4.87563

Note that discussion concerning results should follow, and

then Tra...L..rayIsaic13 should be shown and discussed.

5. a. Using Transparency 14 with R=15 andn1:10, find the area between the two circles.

b. Program the general formula for finding the area between the two circles.

6. a. Using Transparency 14, find the area of the shaded region in the following

diagram.

2R

b. Program the formula for finding the shaded region in 6.a. in two different

ways.
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UNIT 7

FORTRAN PROGRAMING

Part I. The Compiler

Problem solving procedure must be presented to a computer in a language

it can understand. A computer's basic language consists of elementary

instructions, such as add, subtract, multiply, divide, shift a number

left or right, punch a card, etc. The translation of these simple

instructions for the computer is called soks, or programing. This

can be carried out by a person, or the computer may assist in the process

by use of a compiler. The compiler, in essence, translates the

mathematical language used by the programer into a machine language

understood by the computer.

Part II. Fixed and Floating Points

A. Fixed Points
A fixed point number is just an integer. It may be 0, positive,

or negative, and its limit is based upon the machine being used.

B. Floating Point
A floating point number is treated like a fraction (between 0.1

and 1.0) times a power of 10. This number may be an integer or

may have a fractional part, as is discussed later in this unit.

The computer automatically lines up decimal points before adding,

subtracting, etc. This is the reason for the term "floating point."

The number 3 is a fixed point constant; 3.0 is a floating point

constant. These two numbers are not interchangeable, since the

computer stores and processes them in entirely different ways.

C. Examples

Fixed point numbers or constants

0, -10, 203, -1463

Floating point numbers or constants

12.78, 0.0, 8.0, 4., -300., -.003,4..000006

In representing floating point constants, the letter E is used for

exponentiation. Therefore, the above constants would be represented

in the following way:

12.78 1.278E1.1278E2--,
4. 4. .4E1

-.3E-2 -.03E-1-.003
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Note that any number represented in the above three groups is

interchangeable within that group and may be used in the given

form.

The decimal point must always appear in a floating point number. It

may appear at the beginning of a number, at the end of a number, or

between digits of a number.

Part III. Variables

A variable is a symbol or name which refers to a place in memory where

the number or value represented by that symbol or name is stored.

The name of any variable consists solely of one or more alphabetic or

numerical characters, the first of which must be alphabetic (A through

Z), and the last of which must not be the letter F, since functions

end in F. A variable may be a fixed or floating point quantity. If

it is a fixed point variable, the name must start with any one of the

following letters: I, J, K, L. M, or N. A floating point variable

begins with any letter other than these six letters used for a fixed

point variable.

Examples of fixed point variables:

I, KJEL, MAL, 11432, I7N2J

Examples of floating point variables:

AKV, B42J, C, J05

The following would not be interpreted as variables of either type,

for the reasons given.

3AK - (begins with a constant)

*005 - (begins with an operation)

EF - (contains an operation)

G4.6 - (cnatains a decimal point)

The compiler places no significance on names; it merely inspects the first

letter to see whether the variable is a fixed point or a floating point.

Part IV. FORTRAN Symbols

The FORTaAN symbols for the operations of arithmetic are:

Operation FORLIALEmAkill

add

subtract -

multiply
divide
ex onentiation **
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The following are a few simple rules for writing expressions involving

operations.

a. Parentheses are used in exactly the same manner AS in mathematical

notation: L*+B is invalid; L *(tB) is correct.

b. When it is not clear which operation comes first, the sequence is

exponentiation, multiplication and division, addition and subtraction.

c. Among operations of equal precedence, the operations are performed

from left to right. Example: X /Y *Z x.,,

Y

Although the above three rules are not all the rules involved in working

with operations, they will suffice for our purposes.

Part V. Statements

DO: The function of the DO statement is control. With it we can control

the repeated execution of succeeding statements in a manner ensuring

useful results. It is a very powerful statement.

IF: This statement is the fundamental decision-making step of the FORTRAN

language. Any question that is reducible to testing a numerical

value for 0, negative or positive, can be expressed as an IF statement.

Example: IF ( Z-A (J) ) 10, 30, 20 is interpreted as follows:

Whenever Z-A (J)40 or, in other words, Z4CAd, the next statement

to be executed in sequence is the statement labeled 10. Whenever

ViA(J) is equal to zero execute the statement labeled 30. Whenever

3-g.1)) 0 execute the statement labeled 20.

Note that A (5) means A sub j and is written Aj. K=A (5) means

place the contents of location Aj into the memory location called K.

CONTINUE.: This statement means "Do nothing; just proceed from here." It is

used to provide an executable statement with which to terminate

a DO.

INPUT: This statement specifies by name the items of information to be

transferred from the input documents, e.g., punch cards. This

statement also refers by number to a format code which describes

the form of the input information. One of the commonly used forms

of input is given by the statement READ.

Example: READ 11, A(J). This is an input statement ordering the

computer to read in data. 11 refers to the format of the data and

this data will be utilised whenever the program refers to A(J).

71



DIMENSION: This 3tatement specifies how many items of data are to be used.

OUTPUT: This statement specifies the items that are to be retrieved from

memory. 4 common form of output statement is PAINT.

Example: InINT 21, Z. The format code is 21, and items are to

be printed from memory location called Z.

The following problems and solutions may be an aid to better

understanding of IV and V of this unit.

Example 1: rite the appropriate FORT, for the given

mathematical expression. Ci,

Answer: C (I) (A(I)*A (I) 74- B (I)*B (I)) ?we. 5 or

C (I) (L(I )**2 B (I)**2)**. 5

Example 2: Find the largest number in a collection of 100 numbers.

The flow chart for this problem follows:

F877(71).1,7:4 1 t2.9.1

>Q

Figure 7-1
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The FORTRAN language program for Example 2 is as follows:

Label Statement

orRiLsTnN ACt.(1n)

READ 11, A(J)
Z= A(1)
D920J 2, 100, 1

IF(Z-A(J) )10,20,20
10 Z= A(J)

20 CONTINUE
PRINT 21,Z

The meanings of the above statements are as follows:

Line 1. There are 100 items.

Line 2. The format code is number 11, and we are inputting A(J).

Line 3. These two lines contain arithmetical substitution statements.
and Z= A(1) means place the contents of location called A(1) into
Line 6. memory location called Z. Z=A(J) means that the contents

of A(J) are to be placed in Z. Therefore, Z has the current
value of A(J).

Line 4. Execute repeatedly the statements which follow, down to
and including the one labeled 20. Vary index J from an
initial value of 2, in increments of 1, up through and
including 3=100.

Line 5. Whenever Z<Aj, the next statement to be executed in
sequence is 10. If ZihAj, go to 20.

Line 7. Control passes to statement 20 either from the conditional
IF statement, or from statement 10 immediately preceding 20.

Line 8. This is explained in OUTPUT statement in Section V.

The brief treatment given in this unit is not intended to give an
understanding of the use of FORTRAN, but rather, is presented to give a
glimpse of its range and usefulness.
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SOLE POPULAR COMPUTER LANGUAGES

Aulm. Alsnritimaie Language

BAIGOL Burroughs Corporation 220 Algol Compiler

COBOL Common Business Oriented Language

FORTRAN Formula Translation

JOVIAL Jules (Swartz) Own Version of International Algebraic
Language

MAD Michigan Algorithm Decoder

NELIAC Navy Electronics Laboratory International Algol Compilers

QUIKOMP Designed by Monroe International to provide a rapid, simple

means of using the Monrobot XI Computer as a mathematical tool

JOSS Johnniac Open-Shop System

77

=r010.01.1144,..1104.01,....,

1



GLOSSARY

ACCUMULATOR REGISTER (ACC) Used to hold the original number (radicand) in square
root operations, the dividend in division operations,
and the subtrahend in subtraction operations. The
answers to all addition, subtraction, and
multiplication operations of all types apprar in
this register.

ALGORITHM A sequence of precisely defined steps showing the
solution to a problem.

ANALOG COMPUTER A computer which relies on some method of continuously
measuring a physical quantity, such as weight,
thickness, or resistance. Examples of this process

are the odometer and the speedometer.

ARITHMETIC OPERATION A computer operation using numerical calculations.

BINARY DIGIT A digit in the binary scale of notation, such as zero

or one.

BINARY HUMBER A number written in binary notation bit; a binary digit.

CODE The language used in preparing instructions for the
computer.

COMPILER A special program for a specific machine which translates
instructions from some program language into the basic
language of the specific machine.

COMPUTER A device which accepts information, performs mathematical
or logical operations with this information, and than

supplies the results of these operations as new
information.

DATA PROCESSING A logical sequence of operations performed on data.

DIGITAL COMPUTER A computer which represents information in discrete
form. An example is the turnstile.
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FIXED POINT A fixed point number is just an integer. It may be

zero, positive, or negative, and its limit is based

upon the machine being used. Examples of fixed

point numbers are 9, *9, 203, -1463.

FLOATING POINT A floating point number is treated like a fraction
(between 0.1 and 1.0) times a power of 10. This

number may be an integer, or may have a fractional

part. Examples of floating point numbers are 12.78,

0.0, 8.0, 4., -.003, +.00006.

FLOW DIAGRAM A sequence of operations represented graphically.

HARDWARE An array of processors and devices for storage or

communication.

INITIALIZE To set registers to their initial values immediately
preceding a loop.

INPUT Information fed into the internal storage of a computer.

LIBRARY A collection of routines and subroutines which may
be used in larger routines in a program.

LOOP A coding technique whereby certain steps of a program

are repeated. The sequence is then continued.

(See Unit 3.)

MACHINE LANGUAGE A language for programing instructions directly into

a computer.

NUMERATION SYSTEM A set of symbols used for naming numbers.

OUTPUT Information transmitted from a computer to an output

device.

OVERFLOW This occurs when attempting an input of a quantity

which is greater than the capacity of a register.
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MOGRAII A sequence of instructions for solving a problem;

should include flow diagram.

READ To transfer information from an input device to

internal storage.

BEGISTEa A device for storing information.

SOFTMRE A collection of routines concerned with the system

itself, rather than with applications.

STO1AGE LOOATIOU A place for storing data or instructions.

SUE OUTINE A routine which can be made a part of a larger routine.

SYIMOLIC CUING Instructions written in non-machine language.
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2n n 2-n

TABLE OF POWERS OF 2

1 0 1.0
2 1 0.5
4 2 0.25
8 3 0.125

16
32
64
128

256
512

1 024
2 048

4 096
8 192

16 384
32 768

65 536
131 072
262 144
524 288

4 0.062 5
5 0.031 25
6 0.015 625
7 0.007 812 5

8 0.003 906 25
9 0.001 953 125

lo 0.000 976 562 5
11 0.000 488 281 25

12 0.000 244 140 625
13 0.000 122 070 312 5
14 0.000 061 035 156 25
15 0.000 030 517 578 125

16 0.000 015 258 789 062 5
17 0.000 007 629 394 531 25
18 0.000 003 814 697 265 625
19 0.000 001 907 348 632 812 5

1 048 576 20
2 097 152 21
4 194 304 22
8 388 608 23

16 777 216
33 554 432
67 108 864

134 217 728

268 435 456
536 87o 912

1 073 741 824
2 147 483 648

4 294 967 296
8 589 934 592

17 179 869 184
34 359 738 368

0.000 000 953 674 316 4o6 25
0.000 000 476 837 158 203 125
0.000 000 238 418 579 101 562 5
0.000 000 119 209 289 55o 781 25

24 0.000 000 059 604 644 775 390 625
25 0.000 000 029 802 322 387 695 312 5
26 0.000 000 014 901 161 193 847 656 25
27 0.000 000 007 450 580 596 923 828 125

28 0.000 000 003 725 290 298 461 914 062 5,
29 o.000 000 001 862 645 149 23o 957 031 25
3o 0.000 ow 000 931 3'42 574 615 478 515 625
31

32
33
34
35

'68 719 476 736 36
137 438 953 472 37
74 877 906 944 38
549 755 813 888 39

0.000 000 000

0.000 000 000
0.000 000 000
0.000 000 000
0.000 000 000

0.000 000 000
0.000 000 000
0.000 000 000
0.000 000 000

465 661 287 307 739 257 812 5

232 83o 643 653 869 628 906 25
116 415 321 826 934 814 453 125
058 207 66o 913 467 407 226 562 5

029 103 830 456 733 703 613 281 25
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014 551 915 228 366 851 806 64o 625
007 275 957 614 183 425 903 32o 312 5
003 637 978 807 091 712 951 660 156 25
001 .818 989 403 545.856 475 83o 078 125
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SUMMARY OF OPERATIONS

NORMAL OPERATING CONDiTIONS

1. Decimal point in center (12th) position.

2. "Overflow Lock" Switch on (up).

3. "Add From Any Register" Switch (up).

4. "Keep Remainders" Switch off (down).

ARITHMETIC OPERATIONS

1. Addition (ACC)-1. (ENTRY)

2. Subtraction (ACC) so- (ENTRY) >ACC

3. Clear and (MQ) x (ENTRY) >ACC

Multiply

4. Multiply + (ACCH- FAAQ) x (ENTRY4

5. Multiply (ACC)- Emo x (ENTRY MCC
6. Divide (ACC)+ (ENTRY) > MQ

7. Square VWa-- MQ

Root



MQ

ENT

ACC

MACHINE OPERATIONS

Addition: ACC+ ENT--4 ACC
Subtraction: ACC. ENT-----) ACC

Multiplication: MQ x ENT) ACC
Division: ACC+ ENTi---) MQ
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The flow chart for programing this equation appears as follows:

Clear All
Registers

Compute and
Store

C Cos 0.--O RI
I

PP

Figure 6-3
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