
REPOR T RESUM
ED 020 128
COMPUTER SCIENCES IN ELECTRICAL ENGINEERING.
COMMISSION ON ENGINEERING EDUC., WASHINGTON, D.C.

PUB DATE
EDRSPRICE MF-$0.25 HC-$1.56 37P.

SE 004 120

SEP 67

DESCRIPTORS- *CURRICULUM DEVELOPMENT, *COLLEGE SCIENCE,
*ENGINEERING EDUCATION, *PHYSICAL SCIENCES, BIBLIOGRAPHIES,
COMPUTER ORIENTED PROGRAMS, ELECTRONICS, INFORMATION SCIENCE,
PHYSICS, UNDERGRADUATE STUDY, ASSOCIATION FOR COMPUTING
MACHINERY, MATHEMATICAL ASSOCIATION OF AMERICA,

THE COMMITTEE ON COMPUTER SCIENCES IN ELECTRICAL
ENGINEERING (COSINE COMMITTEE) OF THE COMMISSION ON
ENGINEERING REPORTS ITS EXPLORATION OF THE ROLE OF ELECTRICAL
ENGINEERING IN CONFUTER SCIENCES. GREATER FLEXIBILITY IN
ENGINEERING CURRICULA IS FELT ESSENTIAL TO MEET THE
EDUCATIONAL NEEDS IN SUCH A RAPIDLY CHANGING AND DIVERSE
FIELD. THE MAJOR RECOMMENDATIONS INVOLVE THREE AREAS--(1)
EDUCATION IN THE PRINCIPLES AND PRACTICES OF THE DESIGN OF
GENERAL PURPOSE DIGITAL INFORMATION PROCESSING SYSTEMS, (2)

SHIFT OF INFORMATION PROCESSING TECHNOLOGY mom THE
CONTINUOUS TO THE DISCRETE, AND (3) INTEGRATION OF DIGITAL
COMPUTATION INTO MANY OF THE TRADITIONAL COURSES IN
ELECTRICAL ENGINEERING CURRICULUM. APPENDIXES INCLUDE (1)
SELECTED REFERENCES FOR BASIC SUBJECT AREAS, AND (2) EXISTING
ELECTRICAL ENGINEERING CURRICULA OF SEVERAL SCHOOLS WITH A
CONCENTRATION IN COMPUTER SCIENCE. (DH)

.------nlowilININININ101111111100000

Computer
Sciences
In
Electrical
Engineering
Cosine mmittee

September 1967
U.S. DEPARTMENT OF HEALTH, EDUCATION 8 WELFARE

OFFICE OF EDUCATION

THIS DOCUMENT HAS BEEN REPRODUCED EXACTLY AS RECEIVED FROM THE

PERSON OR ORGANIZATION ORIGINATING IT. POINTS OF VIEW OR OPINIONS

STATED DO NOT NECESSARILY REPRESENT OFFICIAL OFFICE OF EDUCATION

POSITION OR POLICY.

Commission on Engineering Education

COMPUTER SCIENCES IN

ELECTRICAL ENGINEERING

An Interim Report of the

COSINE COMMITTEE

of the

Commission On Engineering Education
1501 New Hampshire Ave., N.W.

Washington, D.C. 20036

September, 196 7

This report has been supported in part by the National Science Foundation under

Grant GY-2108.

COMPUTER SCIENCES IN ELECTRICAL ENGINEERING

ABSTRACT: The vital role that electrical engineering departments must play in pro-
viding undergraduates with special competence in computer sciences is explored.
Three related problem areas are discussed: the needs of students majoring in com-
puter sciences in electrical engineering; bringing into balance the treatment of con-
tinuous and discrete systems so that students have a background in discrete systems
comparable with that which they now acquire in continuous systems; the means for
wider and more effective use of the digital computer as a tool for analysis and design
in all engineering courses. Specific suggestions for meeting these needs are made.

3

The Committee on Computer Sciences in Electrical Engineering (COSINE Com-
mittee) of the Commission on Engineering Education was organized in 1965 to encourage
action and suggest direction to electrical engineering departments in meeting the chal-
lenge posed by the advent of the computer age.

As part of its activities, COSINE has conducted meetings with representatives of
industry, government, and universities on educational needs in computer sciences; has
organized summer institutes in computer sciences at Princeton University; and has
called meetings of electrical engineering department heads to explore problems relat-
ing to computer science programs in electrical engineering.

This report reflects the findings of these meetings and presents the preliminary
recommendations of the COSINE Committee for curricular reform in electrical engi-
neering. This report should not be construed as a definitive document, but merely as
a set of guidelines for action consistent with the resources available at each institution.

During our study, we have maintained liaison with the ACM Curriculum Committee
on Computer Sciences through E. J. McCluskey, and we are espec4ally indebted to
William Viavant of that Committee for his assistance. We also wish to acknowledge the
support of our efforts by the National Science Foundation through the Commission on
Engineering Education, and its executive director, Newman A. Hall.

The COSINE Committee consists of the following:

Jack B. Dennis, Massachusetts Institute of Technology
David C. Evans, University of Utah
William H. Huggins, Johns Hopkins University
Maurice Karnaugh, IBM Federal Systems Division
James F. Kaiser, Bell Telephone Laboratories
Franklin F. Kuo, University of Hawaii
Edward J. McCluskey, Stanford University
Samuel Seely, Educational Consultant (Chairman)
William H. Surber, Princeton University
M. E. Van Valkenburg, Princeton University
Lotfi A. Z adeh, University of California

This report has been prepared under the auspices of the Commission on Engineering
Education whose policy is to encourage the exploration of new ideas in engineering
education. The Commission has been kept informed of the discussions of the COSINE
Committee, but has taken no position on the present report or its recommendations.

4

I. INTRODUCTION

The rapid growth in the accessibility and power of digital computers for purposes
of numerical computation, data processing, storage, control, and retrieval of informa-

tion, is having a deep, though not necessarily uniform, impact on all branches of

science and engineering. While most branches of science and engineering are con-
cerned primarily with the use of digital computers, electrical engineering, by virtue of

its long standing and deep involvement in information processing technology, has vital

concern not only with the use but more importantly, with the conception, design and
construction of digital computers. Furthermore, electrical engineering is deeply

involved in a wide gamut of areas which border on or are contributory to computer

technology, such as: integrated circuits and microelectronics; switching theory; finite

state systems; control systems; communication systems; adaptive and trainable sys-
tems; pattern recognition; decision processes; recording, storage and transmission of

data; information retrieval, and others.

During the past several years, the rapid growth in the use of computers in science,
engineering, business, industry, and many other fields, has tended to shift the emphasis
in computer technology from circuit and component design to system organization and

programming, or in the roughly equivalent, but more succinct terms, from hardware

to software. This trend has given an impetus to the crystallization of what is now
widely referred to as computer sciences, that is, an aggregation of subject areas cen-
tering on the use of computers as large-scale information processing systems. Chief

among these subject areas are: programming systems and languages; machine organi-
zation and logical design; formal languages; automata theory; algorithms; heuristic
programming; numerical methods; etc.

Clearly, it would be unreasonable to equate computer sciences with electrical
engineering, or to regard it as a subset of the latter. Nevertheless, the close relation
between the two is presenting the electrical engineering departments with a special
responsibility for the training of the large number of computer engineers and scientists
who would be needed by industry, government, business, and educational institutions,
in the years ahead.

This responsibility derives not only from the close connections between electrical
engineering and computer technology, but also from the following: (a) the traditional
emphasis in electrical engineering curricula en physical sciences pertinent to informa-
tion processing; (b) the extensive experience in teaching mathematically oriented sub-
jects relating to signals and systems; (c) the tradition of analyzing system behavior on

an abstract level without regard to the physical identity of its variables; (d) the existing

5

expertise in subjects which fall into computer sciences or are closely related thereto;
and (e) the vast resources in facilities and faculty which the electrical engineering
departments have at their disposal.

The emergence of computer sciences as a highly important field of study, coupled
with the growing shift in emphasis in information processing technology from the analog
and the continuous to the digital and the discrete, is creating an urgent need for a major
reorganization of electrical engineering curricula. Such a reorganization must, in the
first place, accommodate the needs of students who wish to major in computer sciences
within elecrical engineering. Second, it must bring into balance the treatment of con-
tinuous and digital systems, and provide all electrical engineering students with a back-
ground in digital systems comparable to that which they currently acquire in continuous
systems. Third, it must result in a much wider and more effective use of the digital
computer as a tool for system analysis and design in all engineering courses.

How can these objectives be achieved? The COSINE Committee strongly feels that,
as an essential first step, electrical engineering curricula should be made substantially
more flexible. The movement toward greater flexibility is already under way in most
engineering curricula; and it is only in the climate of flexibility that engineering educa-
tion can respond to the rapid advances in science and technology, and adapt to the
explosive growth in knowledge that is now taking place.

The need for flexibility is particularly acute in electrical engineering not only
because it is one of the fastest changing fields in natural sciences but also because of
the wide diversity of subject areas within electrical engineering. Apart from computer
sciences, the fields of solid state electronics, quantum and optical electronics, micro-
electronics and integrated circuits, bioelectronics, plasmas, circuits, systems, control,
communication systems, large-scale power systems, are but the more prominent of
the many important subject areas which comprise electrical engineering. Each of these
areas has its own needs and objectives which, in many cases, cannot be satisfactorily
met within the framework of a single curriculum with just a few electives and a large
core of required courses in engineering and electrical engineering.

Thus, a climate of flexibility is essential for the accommodation of the needs of
computer sciences as well as other subject areas within electrical engineering. It
should be noted that some electrical engineering curricula already offer the student
close to a full year of electives with more available by route of petition. In most
cases, this is sufficient to enable a student to focus his studies in an area of concentra-
tion which may be computer sciences or computer sciences in combination with such
areas as circuits, systems, control, or solid state devices. The Committee feels that
flexibility of this order of magnitude would permit many diverse educational programs
to thrive within electrical engineering and make it possible for students in such pro-
grams to acquire excellent training in both the foundation subjects in electrical engi-
neering and the more specialized subjects in their particular fields of interest. Indeed,
such training would serve well not only the needs of students who would continue their
studies toward higher degrees, but also those who would terminate their formal
education at the undergraduate level.

6

The major recommendations made in this report are in three parts. These are
detailed under the headings, II. A Computer Science Program in Electrical Engineering;
III. The Implication of the Digitalization of Information Processing Technology; IV. The
Impact of Computers on Courses in Circuits, Systems, and Related Areas. As the title
implies, Part II is concerned, in the main, with education in the principles and practice
of the design of general purpose digital information processing systems. Part III fo-
cuses attention on the shift of information processing technology from the continuous
to the discrete, a shift which demands radical changes in the conceptual framework of
electrical engineering education. Part IV is concerned with the integration of digital
computation into many of the traditional courses in the electrical engineering curric-
ulum. A number of specific suggestions concerning courses in the systems area,
such as circuits, linear systems and control systems, are discussed. These show the
manner and establish a pattern of change that might be used in other courses in the
electrical engineering program.

II. A COMPUTER SCIENCE PROGRAM

IN ELECTRICAL ENGINEERING

By a computer science program in electrical engineering, the Committee' means a

curriculum in electrical engineering education which allows the student to acquire

substantive competence in computer sciences and related fields, comparable, but not

necessarily similar in content, to that acquired by students in a typical computer sci-

ence department. Such a program must fulfill the following aims:

a. It must provide the student with a thorough understanding of computer systems

and their use that is based on fundamental principles of long term value rather

than the salient facts of contemporary practice.

b. It must give the student a background in the relevant discrete mathematics (set

theory, mathematical logic, and algebra) including familiarity with methods of

deduction as applied to abstract models relevant to the field of computation.

c. It mast give the student access to a variety of subjects covering specialized

and advanced aspects of computer science.

d. It must provide the student with sufficient technical and general knowledge so

that he can readily broaden his education through continuing study, and remain

adaptable to the changing demands of society throughout his professional life.

Our discussion relates to the first three of these objectives; achieving the last objective

is left to the discretion of each university.

The Committee recognizes the inherent difficulty in attemptingto specify a detailed

curriculum in computer science; no single curriculum could possibly fit into the variety

of programs and organizational frameworks present in electrical engineering depart-

ments. We have, therefore, organized the material into subject areas as shown in

Table II-1. Each subject area is a collection of related topics having certain cohesion

and purpose. In describing a subject area, the Committee does not wish to imply that

it necessarily corresponds to a single one-semester course. For example, subject

area A-4: Machines, Languages and Algorithms, might be covered in a one semester

course, or possibly in a two semester or two quarter sequence. Furthermore, the

description provided for each subject area is intended only to indicate what the Com-

mittee regards as a reasonable set of topics and their logical order, without implying

that strict adherence to the description is to be expected.

9

TABLE II-1. Subject Areas for a Computer Science Program
in Electrical Engineering

Category A: Basic Subject Areas

A-1. Programming Principles

A-2. Computation Structures

A-3. Introduction to Discrete Mathematics

A-4. Machines, Languages and Algorithms

Category B: Recommended Elective Subject Areas

B-1. Digital Devices and Circuits

B-2. Switching Theory and Logical Design

B-3. Programming Systems

B-4. Operating Systems

B-5. Numerical Methods

B-6. Optimization Techniques

B-7. Circuit and System Theory

B-8. Information Theory and Coding

B-9. Functional Analysis

B-10. Combinatorics and Applications

B-11. Probability and Statistics

B-12. Symbol Manipulation and Heuristic Programming

As seen in Table 11-1, the subject areas are divided into two categories. Category
A comprises four basic subject areas which, the Committee feels, are of central
importance, and are basic to an adequate education in computer science. Other sub-
ject areas, which are less central but which, nonetheless, cover important related and
specialized material, are listed in Category B. The Committee feels that these subject
areas should be available to students in the computer science program. However, we do
not view the Category B list as necessarily complete, since there are legitimate dif-
ferences of opinion about whether certain additional areas should be offered.

A computer science program in electrical engineering can assume a variety of
forms. It can start at the freshman, the sophomore, or the junior level. It can be
structured as an option with specified required courses, restricted electives, and un-
restricted electives. It can be realized by allowing for enough electives in a standard

10

electrical engineering curriculum to make it possible for a student (with the help of a
faculty advisor) to put together a program of his own in computer sciences. It may or
may not include a core of required electrical engineering courses in areas outside of
computer sciences, e.g., network and system analysis, electronic circuits and devices,
electromagnetic theory and its applications, etc. Accordingly, the subject outlines pre-
sented below should be regarded as guidelines that are intended to assist electrical
engineering departments in devising curricula in computer sciences which are com-
mensurate with their particular needs, circumstances, and available resources.

Finally, the Committee takes no position on jurisdictional questions relating to the
departmental responsibility for particular courses. However, since information proc-
essing in all of its forms will continue to be of major concern to electrical engineering
departments, the Committee feels that electrical engineering faculties should strive
to develop strong expertise in computer sciences and related areas. At the same time,
it is essential that electrical engineering departments cooperate closely with all
departments having interests in computer sciences and share with them the responsi-
bility for providing instruction in computer-oriented courses, and for conducting re-
search in computers and computer-related areas.

11-1. Category A: Basic Subject Areas

We suppose that the student embarking on this programhas had a previous ex-
posure to the use of automatic computing, whether in high school or in work experience.
In some schools it might be desirable for students in computer science to take im-
mediately the basic course in "Programming Principles." In such cases, some
arrangement to provide an early introduction to elementary numerical methods should
be provided.

The four subject areas of Category A comprise material that is essential back-
ground for all students of computer science. The two subject areas, "Programming
Principles" and "Computation Structures" are intended to give students fundamental
knowledge of the operation of general purpose computer systems, and the important
features of programming languages, with emphasis on computer hardware as the means
of realizing programming features. The indicated sequence of development shows our
preference for developing familiarity with programming features prior to the dis-
cussion of issues of machine organization, instruction, code design, and addressing
mechanisms. In this way, it is possible to motivate aspects of machine organization by
the language features they serve to implement. This approach also places the con-
ventional machine organization in a less sacred light, and should lead students to con-
sider and evaluate alternative implementations.

The subject area labeled, "Introduction to Discrete Mathematics," is intended to
familiarize the student with the mathematical concepts and techniques which are basic
to the study of discrete systems. Such familiarity is essential for computer science
majors, and certainly very desirable for all electrical engineering students.

11

The subject area, "Machines, Languages and Algorithms" serves to introduce
students to abstract formulations of certain important and related areas of knowledge
concerning computation. These areas are not only important in their own right, but
they give the student the background and experience that will enable him to make sig-
nificant use of abstract modeling in his future professional. work.

A-X. Programming Principles

This material should be designed to familiarize the student with important con-
cepts in the description of algorithms, the frequently occurring data types and their
associated operators, and methods of defining programming languages syntactically
and semantically.

A reasonable selection of topics might include the following: Practice in algorithm
design and programming to provide familiarity with the-primitive operations on com-
monly encountered data types, e.g., truth values, integers, real numbers, arrays,
symbol strings, queues, stacks, trees and lists. Infix and polish notation for expres-
sions and the use of a pushdown list for their intertranslation and evaluation. Assign-
ment operator; conditional expressions; iteration and subscripting. Programs as
defining functions with certain domains and ranges. Building complex programs
(functions) through the composition (nesting) of more elementary routines: binding of
arguments; local and global identifiers and their scopes; sharing; recursion.

A formalism for defining the syntax of programming languages (e.g., Backus-Naur
Form (BNF)) should be introduced and the notions of derivation and ambiguity treated.
To the extent reasonable, programming constructs should be defined in terms of sim-
pler constructs in order to provide some precision in the treatment of programming
language semantics.

Students should acquire a thorough understanding of these concepts through the
design of algorithms in which they play important roles, including appropriate use of
computing facilities to the extent practicable.

Advanced topics that merit study because of their anticipated importance in future
computing systems are: parallelism in the description of algorithms; interprocess
communication; and formal systems for defining the semantics of programming
languages.

Reference List: See Appendix A-1.

A-2. Computation Structures

The objective of this area of study is to teach the student to appreciate the capa-
bilities and limitations of computer systems technology in realizing the programming
features developed in the "Programming Principles" subject. Considerable emphasis

12

should be placed on the interrelation and trade-offs between hardware and software
techniques.

A knowledge of logical design fundamentals is an essential component of this sub-
ject. Topics include: the realization of Boolean functions by combinational gate logic,
the flip-flop, and registers as ordered sets of flip-flops, register transfer operations,
and theory and design of sequential control logic.

Basic topics on number representation and the implementation of arithmetic
operations: binary number system; representation of negative numbers; simple mech-
anization of addition, multiplication, division; floating point representations of real
numbers.

Discussion of memory systems: coordinate addressed and associatively addressed
memory structures as abstractions. Practical realizations of memory systems as
direct-access memory (magnetic core) and sequential access devices (disk, drum). It
would be instructive to treat addressing by key transformation ("hash coding") as a
software alternative for associative search.

Discussion of instruction code design is motivated by the process of code genera-
tion, i.e., the translation from source language (e.g., the assignment statement) into
machine language. Problems of storage assignment, optimization of sequencing, etc.
can be discussed. Indexing is introduced as a means of implementing the subscribing
operation.

Discussion of the subroutine as a mechanism for the shared use of procedure
information at distinct points in a program. The use of indexing and indirect addressing
for providing the right context during the execution of shared code. The use of a stack
to implement nested (or possibly recursive) routines; stack as a concept in the design
of instruction codes.

The implementation of string and/or list operations by software, including a treat-
ment of garbage collection. This serves as an introduction to techniques of dynamic
storage allocation.

Discussion of the linking of separately compiled procedures, including the notion of
relocatable code and the operation of linking loaders.

Additional topics of an advanced nature that should be considered are: location-
independent addressing; multilevel memory organization; multiprocessing.

Reference List: See Appendix A-2.

A-3. Introduction to Discrete Mathematics

This subject area is intended to provide a foundation of knowledge upon which the
student may undertake advanced subjects involving applications of discrete mathematics

13

(such as subject area A-4), or deeper study of discrete mathematics itself (e.g., mod-
ern algebra, mathematical logic, etc.). Central to the student's ability in this area is
an understanding of axiom systems and methods of rigorous proof. It is suggested that
these goals could be accomplished by a study of elementary mathematical logic, formal
deduction and proof illustrated by application to important topics in discrete mathe-
matics. A representative set of topics follows: propositional logic; Bco lean algebra;
set-theoretic notation; axiom systems and formal deduction; formal and informal proofs;
proof by contradiction and finite induction; quantification and its use in formalizing
propositions; application to the study of formal properties of number systems, graphs,
fields, groups and semigroups, linear transformations.

Reference List: See Appendix A-3.

A-4. Machines, Languages and Algorithms

This subject area is intended to cover certain theoretical ideas that are closely
related and particularly relevant to a broad knowledge of computation. These ideas
fall into three topics:

1. The finite state model

2. Formal languages

3. Computability

An understanding of the finite state model is important in connection with the operation
of digital hardware, and is frequently applicable to other processes of interest to the
engineer or programmer. The subject, especially when expanded to encompass finite
state languages, serves as excellent preparation in thought patterns and mathematical
method for the later topics.

Concepts from formal linguistics have had a major impact on work in programming
languages. This subject also leads to meaningful and relevant examples of effectively
unsolvable problems.

The topic of computability is essential so that students may understand the limita-
tions of mechanical means of computation, and can appreciate the nature of questions
that are undecidable by machine.

In teaching this material, more or less emphasis may be placed on the formal
methods according to the interest of students and the taste of the instructor. In any
case, the principal results should be motivated through the use of non-mathematical
arguments so that the concepts are not hidden by the formalism. An important objective
is to enhance the student's ability to formulate and work with abstract models of im-
portant practical situations.

The following is a representative selection of topics: the finite state model; state
diagram and flow table descriptions; equivalent states, equivalent machines; state

14

reduction; finite state languages, regular expressions and Kleene's theorem; limitations
of finite state automata. Formal languages; grammers and derivations; context-free
languages and their relation to pushdown storage automata; ambiguity and other
properties; sentence parsing procedures. Computability: Turing machines, universal
Turing machines; the existence of noncomputable functions; the "busy beaver" and
halting problems; unsolvable problems of practical interest, e.g., undecidable properties
of context-free languages; the computability of recursive functions; Post systems;
Church's thesis.

Reference List: See Appendix A-4.

11-2. Category B: Elective Subject Areas

As already noted, the subjects in this category are less central to a computer sci-
ence program than those in Category A. Moreover, the list below is not necessarily
complete, and individual ideas can be reflected in this group. Short descriptions are
given of the subjects to indicate the content and level of the material. The subjects
included may denote courses, and in a few cases, they can represent more than one
course. The description of other related courses are given in Sec. N.

B-1. Digital Devices and Circuits

Modeling of nonlinear circuit elements; approximate analysis of quiescent and
transient circuit behavior; use of time-domain circuit simulation; designing to specifi-
cation with imperfect components; worst case and statistical approaches to circuit
reliability. Application to flip-flop, multivibrator and networks of cascaded gate cir-
cuits; signal transmission methods; integrated circuit technology.

Physical phenomena usable to realize memory function; ferromagnetics, cryo-
genics, electrostatics, photochromic materials, sound waves; address selection prin-
ciples coordinate and serial. High-current switches for inductive loads; sense
amplifier design; techniques for improving signal-to-noise performance.

B-2. Switching Theory and Logical Design

Combinatorial logical design, including the notion of prime implicants. Huffman
theory of sequential machines, synchronous and asynchronous. Hazards and their
resolution. Interconnection of submachines to form larger units. Time-independent
logical design. Identification and diagnosing experiments. Error detecting and correct-
ing codes. Languages for specifying digital systems.

B-3. Programming Systems

Formal methods of specifying language syntax and semantics. Syntactic structure,
parsing methodology, diagnostics. Advanced study of programming features, e.g., data

15

structures, properties of data types, block procedures and the context of identifiers,
parallelism and sharing of data, protection and process monitoring features. Imple-
mentation questions, including symbol table structure, code optimization, efficient
subscripting, flow of control analysis and loop organization, efficient subscripting,
flow-of-control and loop optimization, subroutine linking and parameter passing, syntax
directed compiling.

Comment: See comments on B-4 below.

B-4. Operating Systems

Functions of an operating system: controlling the use of computer system re-
sources by programs submitted for execution by its users; insuring the integrity and
security of information held on behalf of users. Topics suitable for in-depth study are:
the concept of process, the blocking and awakening of processes, the meaning of inter-
rupts, interprocess communication, and process scheduling. The concept of address
space, binding of procedures and data to address space and interprogram linking,
motivation for location-independent addressing and techniques of implementation,
shared information. Storage management: movement of information within a storage
hierarchy, file backup, and issues of data integrity on restart. File access control and
transfer of access privilege.

Comment: The material in systems programming divides into two conventionally
separate subjects, Operating Systems (B-4) and Programming Language Systems (B-3).
However, there is an intimate relationship between the two subjects in that the features
implemented by operating systems have a far-reaching and subtle effect on the con-
struction of programming systems. Dynamic storage allocation, inter-process com-
munication, and file organization, are areas of particular concern. These interactions
should be emphasized in the organization and teaching of these subjects. Perhaps they
should not be offered as -parallel subjects, but as a sequence in which both aspects of
each topic are studied together.

B-5. Numerical Methods

Solution of systems of linear equations (matrix inversion, Gauss elimination,
determinants, etc.); numerical solution of nonlinear algebraic equations, roots of
polynomials, interpolation techniques and curve fitting, numerical integration, solution
of ordinary differential equations, solution of partial differential equations, linear
programming.

Comment;: This course would ordinarily be taken in the senior or junior year.
Unlike conventional courses in numerical analysis in which computation plays a minor
role, this course should be strongly oriented toward the use of computers, and should
stress computational efficiency of various algorithms, the effect of round-off error and
truncation error, convergence of approximations, etc.

16

B-6. Optimization Techniques

Solution of linear inequalities, linear programming algorithms, convex sets and

convex functions, nonlinear programming, quadratic programming, dynamic program-

ming, gradient techniques, maximum principle, Markoffian decision process, optimiza-

tion under vector-valued criteria, search strategies.

Comment: This material would normally be covered in a two-semester course.
The subject matter is primarily of interest to those computer science majors whose

minor is in systems, control, or operations research.

B-7. Circuit and System Theory

Circuits as interconnections of basic elements: passive and active circuits,
characterization of circuits in the time and frequency domains, solutions of differential

input-output relations. State-space formulation: representation by differential and

difference equations. Basic properties of linear systems, time-varying systems and

nonlinear systems. Controllability, observability and stability.

Comment: This is not expected to be a conventional course in circuit analysis.
Rather, it is supposed to be a more general type of course in which fairly heavy em-

phasis is placed on basic concepts in system theory, with particular consideration of

the techniques and applications of state-space formulations. To cover the material in
adequate depth, a two-semester sequence would probably be necessary.

B-8. Information Theory and Coding

Quantitative definition and measurement of information, entropy and uncertainty,
memoryless discrete channel, capacity of a memoryless channel, capacity theorems.
Encoding and decoding of messages, parity check codes, convolutional encoders and

decoders, sequential coding. Practical digital communication systems.

Comment: A familiarity with the concepts and techniques of information theory
should constitute an important part of the basic training of any student who intends to

pursue a career in information processing and related areas. The emphasis in this

course is on discrete signals and channels, for which the student need not possess an
extensive background in probability and statistics.

B -9. Functional Analysis

Functions, functionals and operators. Metric and topological spaces, linear

spaces, Hilbert spaces. Linear functionals, differentiation of abstract functions,
homogeneous forms and polynomials. Stationary problems, fixed point theorems,

gradient techniques. Quasi-linearization. Applications to problems in optimization
and identification.

17

Comment: This course is intended to provide the student with basic mathematical
techniques for dealing with problems in numerical analysis and optimization. It is
envisaged as a broad course, not necessarily oriented specifically toward the needs of !/

computer science majors.

B-10. Combinatorics and Applications

Enumeration techniques, including permutations and combinations, generating
functions, recurrence relations, the principle of inclusion and exclusion, Polya's
theory of counting. Theory of graphs, including planar graphs and duality. Network
flow problems and elementary linear programming.

13-11. Probability and Statistics

The concept of sample space and random variable, probability distributions on
discrete sample spaces, dependent and independent random variables, conditional
distributions, distributions on continuous sample spaces, parameters of probability
distributions, normal distributions, stochastic processes, Markoff chains, waiting' line
and servicing problems, estimation techniques, stochastic approximations, decision

rules.

Comment: A basic course in probability and statistics should be strongly recom-
mended to all students majoring in computer sciences. The course should include a
discussion of time series and Markoff processes, since these topics are of particular
relevance to problems involving the transmission of information, stochastic service
systems, etc.

B-12. Symbol Manipulation and Heuristic Programming

Heuristic versus algorithmic methods; LISP and other relevant programming
methods, game playing programs, question-answer programs, symbolic integration
and differentiation, theorem proving, search techniques, simulation of learning and
concept formation, applications to pattern recognition and information retrieval.

Comment: Although heuristic programming is not as yet a well-developed subject
area, it has considerable potential importance in fields such as game playing, pattern
recognition, information retrieval, etc. in which decision making must be based, for
the most part, on heuristic procedures. The primary purpose of this course is to
introduce the student to computer-oriented heuristic problem solving techniques.

11-3. Computer Sciences in an Electrical Engineering Curriculum

To place the foregoing discussion into the context of a four-year undergraduate
program, refer to Table 11-2. This table contains only the basic courses in Category A

18

plus an introductory course in Programming and Numerical Methods. Appendix B of

this report contains the curricula of several electrical engineering departments, which

show how they have included a concentration in computer sciences.

TABLE 11-2. Skeleton of Program Showing Recommended Courses
in Computer Science

Year Term 1 Term 2

Freshman -MI WM Programming and Numerical
Methods*

Sophomore

Junior Programming Principles** Computation Structures**

IMO OM OM
11110 I=

Senior Machines, Languages and
Algzvzithms**

*The programming course that is normally available at most universities.

**The arrangement of individual topics to form a course or courses will de-

pend on local conditions.

NOTE: The material of course A-3, Introduction to Discrete Mathematics, may be

introduced into the curriculum in various ways depending on the local circumstances.

III. THE IMPLICATIONS OF THE DIGITALIZATION OF
INFORMATION PROCESSING TECHNOLOGY

During the past two decades, as a result of the invention and development of a
number of electronic components, circuits and devices, such as the transistor, the
magnetic core memory, integrated circuits, etc., it has become practicable and eco-
nomical to process large volumes of data in digital form with high speed, accuracy,
and reliability. We have witnessed a rapidly growing trend toward the use of digital
systems in place of analog or continuous systems for purposes of computation, infor-
mation processing and control. Moreover, as a result of the availability of efficient,
economical and reliable digital devices, modern information processing and control
technology is becoming increasingly digital in nature, with all signs pointing toward a
much bigger role for digital as compared with analog systems in the years ahead.

The transition from the analog and the continuous to the digital and the discrete
has not yet been adequately reflected in the orientation of electrical engineering cur-
ricula. Many, and perhaps most, electrical engineering departments still lay a heavy
stress in their curricula on courses in continuous (in time, amplitude, and state) sys-
tems and devices, disregarding the fact that such courses are much less relevant to the
needs of present technology, and certainly much less relevant to the needs of the
future, than they were twenty years ago, in the age of the vacuum tube and the am-
plidyne. The Committee strongly feels that, in this regard, electrical engineering
curricula are in need of a basic reorientation from the entirely analog and the con-
tinuous to reflect the digital and the discrete, and that electrical engineering depart-
ments should make a concentrated effort to prepare their students to deal with digital
systems, be they computers, control systems, or special purpose information and data
processing systems.

How can such a reorientation be implemented? Clearly, a wide-ranging shift in
emphasis from the continuous to the discrete in electrical engineering curricula would
present formidable problems which are not likely to be solved quickly or painlessly.
Deeply entrenched attitudes will have to be changed, new knowledge and skills will have
to be acquired, and new textbooks will have to be written. Indeed, it is beyond the scope
of this report to analyze these problems fully, and to suggest possible solution to them.
Thus, in what follows, the Committee will restrict itself to making a few preliminary
recommendations that suggest evolutionary changes in electrical engineering curricula.
This section will discuss the addition of three new courses dealing wholly or in part
with some of the basic aspects of discrete systems. Section IV will discuss the digital
reorientation of a number of existing courses.

21

III-1. New Course Development

To providc a start toward the development of new courses that have a discrete
state orientation, we discuss three possible courses as indicative of the direction that
such development might take.

Course 1

Onr first recommendation is that serious consideration be given to the develop-
ment of a sophomore or junior level introductory course in circuits, systems and
signals, which would cover the fundamentals of both discrete and continuous type
systems. We envisage that, initially, such a course would be offered as an alternative
to the traditional type of course in which the emphasis is wholly on the techniques of
time- and frequency-domain analyses of linear, time-invariant, continuous-time cir-
cuits and systems. Eventually, courses of this new type would probably replace intro-
ductory courses of the more conventional nature.

An example of the type of course being recommended is that being developed at
MIT by Professors Athans, Dertouzos and Mason, under the title, ELEMENTS, SYS-
TEMS and COMPUTATION. In addition to covering the basic techniques of the analysis
of linear, time-invariant, lumped-parameter networks and systems, this course also
treats basic techniques for the study of nonlinear and discrete-state systems, and
covers computational as well as analytic methods of problem solving in the context of
such systems.

A controversial aspect of a course of this type is that its broader coverage of both
continuous and discrete systems is attained necessarily at the cost of less depth in the
treatment of various types of components and systems. For this reason, it may be
preferable, in the longer run, to treat discrete systems separately in a course that
would precede a course in continuous systems. Although this would represent a de-
parture from the traditional order, it may well be more logical and more sound
pedagogically.

Course 2

Our second recommendation relates to the inclusion of a new type of course at the
junior or senior level which would be concerned, in the main with mathematical con-
cepts and techniques which are central to the analysis and synthesis of discrete, as
contrasted with continuous, systems. The importance of such a course was discussed
in Section 11-2, and is course A-3 of the Category A group.

A representative set of subjects that might be included in a course of this type
would be: elements of set theory, Boolean algebra, elements of mathematical logic,
elements of the theory of relations, groups, fields and rings, elements of Galois theory,

22

etc. A course of this type would serve essentially the same function in relation to

discrete systems that the conventional courses in Laplace transforms, complex vari-
ables, linear algebra, etc. serve in relation to the analysis of linear time-invariant
systems. Clearly, of course, the totality of the mathematical background needed for
the analysis and synthesis of disc-, ate systems cannot be provided in a single course.

A theoretically oriented student majoring in computer sciences might well take

one or more courses in mathematics, in such subjects as: abstract algebra, set theory,
mathematical logic, group theory, etc., in preference to taking a single less specialized
course of the type here being discussed. Thus, the Committee's recommendation is
intended primarily to point to a need in electrical engineering curricula for a broadly

based course in the mathematics of discrete eystems which would be suitable for most
electrical engineering students, and not just for those majoring in computer science.
A desirable first step in this direction may be accomplished by a revision of the usual

two-year mathematics program that exists in almost all electrical engineering curric-
ula (the Calculus program), to a program, one half of which is devoted largely to dis-
crete mathematics, the second half being devoted to topics in continuous mathematics.

Course 3

Our third recommendation relates to the offeringof a course in finite-state systems
at the junior or senior level. The importance of such a course stems from the fact
that finite-state systems constitute a very basic class of systems particularly well-
suited for the introduction of such basic concepts as state, equivalence, identification,
decomposition, etc. Furthermore, they are much better suited for computational pur-
poses than continuous systems, and can frequently be used as approximate models for
the latter. At present, several electrical engineering departments offer courses of this
type, covering such topics as: the characterization of finite-state systems, the notions

of state and system equivalence, identification algorithms, decomposition techniques,
synthesis techniques, etc.

Until a few years ago, the offering of courses on finite-state systems was hampered
by the dearth of texts on this subject, a situation that is now changing. There are
several very good undergraduate level texts on finite-state systems. The teaching of a
course on this subject should be a relatively easy task for most electrical engineering
professors. Consequently, the Committee feels that every electrical engineering
department should consider offering an elective course on finite-state systems as part
of its regular curriculum.

23

IV. IMPACT OF COMPUTERS ON COURSES IN CIRCUITS,
SYSTEMS AND RELATED AREAS

As has already been noted, the digital computer has brought about profound changes
in engineering analysis and design techniques. It is strongly recommended that
electrical engineering curricula should include increased emphasis on computer methods,
wherever this is appropriate, to provide a more realistic preparation for the practice
of engineering. The problem is more than that of merely adding material to traditional
courses, since many traditional approaches to the solution of system equations are not
particularly convenient for digital simulation. For example, the state-variable formu-
lation of systems, which has had increasing acceptance, is especially well adapted to
computer study and should be emphasized at the expense of other formulations. In
addition, the use of approximate analytical methods for studying nonlinear systems is
often far more cumbersome than adopting computer simulation techniques which can
provide numerical solutions.

The implementation of the necessary changes in undergraduate electrical engi-
neering programs has been relatively slow, due to many factors. Since suitable text-
books are not yet generally available, a thorough revision of an electrical engineering
course in a traditional area would involve a major effort by the instructor. As a result,
the need for a computer science viewpoint is often met by merely grafting a few com-
puter examples on top of a conventional presentation. Another factor which has re-
tarded the development of computer-oriented courses is the lack of suitable "educa-
tional software," which would provide easy problem-oriented input instructions and
graphic output.

This section will be concerned with the changes that can be made in course
presentations to take advantage of the existence of large computing systems, and to
acknowledge the greatly increased importance of digital techniques of information
processing.

IV-1. Implementation

To introduce computer techniques in a meaningful way into traditional courses
covering circuit theory, control systems, communication systems, and similar topics,
the following sequence might be used in presenting subject matter: theory, analytical
methods of solution, numerical algorithms, and computational examples. Some general

25

recommendations are outlined below, and a set of more specific examples of course
revisions are given in Section IV-2. These recommendations presuppose a familiarity
with programming principles and elementary numerical methods.

The following may be stated as general objectives:

1. The first course in electrical engineering (usually in the sophomore year)
should be modified to incorporate the use of computers as a tool. A problem-oriented
program having a special language might be used to work exercises relatively early
in the course, without requiring a detailed knowledge of computer programming.

2. Major revisions might be made in the method of presentation for certain
courses, particularly those in the systems area. For programs in control theory, and
communication systems, for example, this might involve changes in emphasis of
some of the traditional material and introducing new material related to computer
operation and limitations.

3. Since the purpose of courses in the systems area is to develop an understanding
of the behavior of these systems, it would be desirable to make available to the students
as analysis and design aids certain fairly elaborate specialized computer programs
with provision for graphic output. This would provide computer-generated results
without the large investment of the student's time that would be required were he
forced to write and debug all of the necessary programs.

4. The academic program should help develop a more thorough understanding of
programming techniques and the limitations of numerical methods of simulation,
particularly in those areas in which the computer is a major factor in the practice of
modern engineering, either as a design tool or as an important part of the system.

5. The use of computers for system simulation should be encouraged as a valuable
supplement to laboratory experiments with physical elements.

IV-2. Examples of Course Revisions

Clearly, there are a large variety of ways in which an electrical engineering cur-
riculum can be organized. Similarly, the content of an individual course will depend on
the sequence of courses in which it is embedded. For example, a course which treats
the state-variable formulation of the system differential equations with analytic and
computational methods of solution requires a certain background in linear algebra.
Whether or not it is necessary to include details of certain aspects of linear algebra
in the engineering courses will depend on the mathematical background of the students.

Each course description given below is intended to illustrate one possible method
of incorporating a computer-oriented approach within one of the standard type courses
usually available in electrical engineering curricula.

26

1. INTRODUCTORY COURSE IN CIRCUIT THEORY (Sophomore Level). The usual
introductory course in circuit theory deals with methods for formulating circuit equa-
tions, and uses analytical methods to describe the dynamic circuit behavior, with little
or no use of digital computation. A suggested sequence is the following: First, some
basic concepts in network topology should be presented. Within the presentation are
included certain algorithms dealing with connectivity, determining the shortest path
between two nodes, etc. Next, Kirchhoff's laws are discussed, and the procedures for
writing branch, mesh, and node equations for d-c networks are given. Once formulated,
these network equations constitute a linear set of algebraic equations. Numerical
algorithms, such as the Gauss-Jordan and Crout methods are introduced to solve the
network equations. Next, steady-state analysis is presented. The numerical algorithm
relevant to this material involves extension of the linear equation solving techniques
to the case of equations with complex coefficients. Computational techniques for mag-
nitude and phase response evaluation, including Bode plots, should also be included.
Then the transient analysis, using ordinary differential equations should be discussed.
Runge-Kutta or equivalent methods are presented in conjunction with the theoretical
discussions. State-space formulation for transient analysis are then given, along with
computational methods for eigenvalue and eigenvector evaluation. Next, various signal
representation schemes are discussed. Computer programs used in conjunction with
this section deal with convolution, correlation, Fourier series, and fast Fourier trans-
forms. Finally, the basic concepts of power and energy are discussed, along with
techniques for numerical integration.

2. ENGINEERING ANALYSIO AND COMPUTATION METHODS (Junior or Senior
Level). The objectives of this course are to provide a study of continuous-time linear
and nonlinear systems, together with a systematic development of numerical methods
and analytical methods for the analysis of the behavior of such systems. The state-
variable method of formulating the system equations is stressed, with emphasis on the
effects of nonlinearities on the behavior of both linear and nonlinear systems. The
analytical methods of solution are compared with techniques based on digital and analog
simulation. Numerical methods are analyzed in sufficient detail to illustrate clearly
their limitations, and thereby provide a sound basis for the use of digital computers in
the study of large systems.

A brief topical description would be: linear and nonlinear models of physical de-
vices and systems; state-variable formulation of system equations, state space solution
trajectories. Methods of solution for linear systems (brief development, partially a
review); time and frequency domains, convolution, Fourier and Laplace transforms,
poles and zeros, stability. Introduction to the analysis of nonlinear systems; phase-
plane methods, Liapunov functions and stability, limit cycle oscillations, describing
functions for periodic excitation. Numerical methods of analysis and the digital simu-
lation of dynamic systems; sampling and interpolation, numerical integration, one-step
(Runge-Kutta) and multi-step (predictor-corrector) methods of solving differential
equations, difference equations and the stability of numerical methods, error analysis.
Comparison of digital and analog simulation techniques.

27

3. LINEAR SYSTEMS THEORY (Senior Level). The traditional development of
linear systems theory for continuous time systems should be modified to include the
parallel development of the linear theory of discrete-time systems. This will better
reflect the rapidly increasing use of digital systems, perhaps including real time com-
puters, and mixtures of continuous-time and discrete-time components with appropriate
interfaces.

4. CONTROL SYSTEMS THEORY (Senior Level). The study of control systems
provides an ideal opportunity to make use of the techniques of digital simulation. Com-
puters are widely used in practice as a design aid in developing control systems, and
are also frequently incorporated as real-time components of large high-performance
controllers. It would be highly desirable, as well as realistic, in the first course in this
area, to stress the use of the computer in exercises as a tool to assist in the analysis
and synthesis of controllers.

Control system theory is a highly developed field, and this discussion will
focus on computer applications. The emphasis should be on the study of the behavior
of feedback control systems, using the computer to supplement the analytical tools.
To do this, however, requires the availability of adequate software. For example, a
computer routine to generate root-locus plots can be used very advantageously by
students to develop an appreciation of how a variation in a parameter of a linear system
affects its overall behavior. This routine should be available in the computer library
and should be provided with a graphical output.

At this stage of their academic program, students should be sufficiently sophisti-
cated to understand the operation of computer numerical analysis routines, including
the type of errors to expect, and how the system equations should be formulated to
minimize them. But they should not be required to divert time from the subject matter
of the course to write and debug elaborate computer programs. The computer must be
a help, and not a hindrance!

The availability of an adequate computer system (including problem-oriented soft-
ware) can be extremely useful by allowing significant results to be obtained without
the laborious computations otherwise required. It also allows the study of nonlinear
systems to be carried out quantitatively almost as easily as for linear systems, it
avoids the restriction of artificial indices of performance, and it easily includes the
study of the effects of parameter tolerances and "worst case" analyses. The behavior
of the system for realistic types of input signals can also be included, i.e., random
signals, rather than step or impulse inputs.

IV-3. Computer Use for Simulated Laboratory Experiments

Digital computer simulation of devices and systems can provide a very valuable
supplement to laboratory experiments with physical elements. Simulation studies,
provided that adequate software is available, can also be used very effectively as

28

alternatives to some problem sessions and homework exercises. It is recommended
that such "computer experiments" on idealized models of physical devices be intro-
duced into the laboratory program early in the curriculum. The essential features of
the behavior of many types of systems can sometimes be explored more readily in

this way than by actual experiments.

Idealized models can, of course, be nonlinear and can provide quite realistic
representations of the true device characteristics. Some advantages of a computer
study are the ease with which the model parameters can be varied over a wide range
without damage to the components, the ability to compute sensitivity coefficients and

make a "worst case" analysis, and the ability to generate and plot performance curves
directly for nonlinear as well as linear systems without tedious experimental tests or
the drudgery of repeated hand computations. Furthermore, this approach allows a
considerable degree of individual initiative to be exercised by the student in the design

of the system model to be simulated.

Observation of the behavior of the actual physical system is very important, of

course, and experiments on real devices and systems should clearly be retained. Both
types of experiments are significant in different ways in helping to develop an intuitive
feeling for system behavior; a balance should be maintained between actual and simu-
lated experiments. A combination of both will be more stimulating than either type
alone, and has the added advantage of providing a basis for appreciating the differences
between the analysis of an "idealized model" and the behavior of the real device. As a
specific example, consider the electronics laboratory described below.

ELECTRONICS LABORATORY. The digital simulation of models of electronic
circuits can be a significant adjunct to the normal electronics laboratory experiments.
A number of quite elaborate electronic circuits analysis computer programs are avail-
able, or are being developed. Although many of these have serious deficiencies from
an educational viewpoint, there is some expectation that this will be rectified in the
relatively near future. An electronic circuit simulator, such as ECAP, when supple-
mented by a graphical output routine, can provide the basis for some very useful
simulation studies in this field.

Examples might include the study of transistor amplifier operating point stability
with respect to parameter variations, the transient and frequency response charac-
teristics of pulse amplifiers, and oscillation phenomena.

IV-4. "Educational" Software

The type of software that is necessary to make a digital computer system into a
really significant tool for undergraduates is similar, in many respects, to that developed
for industrial use in computer-aided design studies. Special subroutines and problem-
oriented programming systems, with relatively simple input instructions and with
graphic output, should be available. Parameter modifications should be readily

29

accomplished. Complete parameter optimization routines, while very valuable indus-
trially, are somewhat less effective educationally. We note that the type of output
which generates masses of data in tabular form provides a very poor match to the
human brain. Even a fairly rough printer plot routine would be quite satisfactory in
many cases.

Frequent student-machine interaction would be very desirable, an on-line access
to the computer with an immediate graphic display output being the most desirable
arrangement. This is not yet generally available. However, a fast turn-around time
should be provided for short jobs.

The most desirable types of specialized software that should be available in the
computer library can be divided into several general categories, as follows:

1. Mathematical subroutines. Examples would, be graphic output subroutines,
programs to solve simultaneous sets of linear equations, to find the roots of polynomi-
als, and to solve sets of ordinary differential equations. These subroutines are pres-
ently available at almost all computer centers. They are far from being sufficient,
however.

2. More elaborate programs to facilitate special types of analysis. Examples
would be: frequency response, root locus and transient solution plotting, Fourier
series analysis routines, parameter optimization routines, and some statistical
analysis routines.

3. Problem oriented programs with special language facilities. Examples of such
programs are: analog system simulators, such as MIMIC and CSMP; digital system
simulators, such as BLODI; and electronic circuit simulators, such as ECAP. Another
significant example is JOBSHOP, which was developed by W. H. Huggins at The Johns
Hopkins University, as a simulator for the circuit design process. Much remains to
be done in the development of suitable software for educational purposes. In addition,
information concerning the availability of the computer programs which do exist, and
their documentation, leaves a great deal to be desired.

30

V. CLOSING COMMENTS

The recommendations presented in this report relate to what the Committee be-
lieves are the central issues in the impact of computers and computer sciences on
electrical engineering education. These are: (a) the need for computer science pro-
grams in electrical engineering, (b) the need for greater emphasis on discrete systems
in electrical engineering curricula, and (c) the need for modifying the content and
underlying philosophy of basic electrical engineering courses, particularly in circuits
and systems, to interwc:nre the use of computers for analysis and design with the
development of basic theory.

These issues are probably the most pressing of the many questions and problems
facing electrical engineering education today. However, they are by no means the only
issues arising out of the advent of the computer age. Clearly, the use of computers will
have to be stressed not only in courses in circuits and systems but, more generally, in
all areas in electrical engineering in which computers can be an effective tool for
analysis, design, or simulation. We have said nothing concerning the roughly three
years of studies which constitute that portion of the B.S. program that reflects the
general base of electrical engineering. However, we do stress that attention must be
given to the revision of introductory courses in mathematics, physics, and other basic
fields, with a view to increasing the emphasis on algorithmic and numerical techniques
in such courses. Also, the traditional role of laboratory courses must be reexamined,
in the light of the possibility of using computers as simulators of physical systems.
Already, in many instances, greater insight into system behavior may be obtained by
studying its performance with the aid of a computer than by measuring the physical
variables and parameters associated with it. Clearly, this will be even more true in
the future.

The Committee plans to consider these and other issues relating to the impact of
computers on electrical engineering education in its later reports. In studying these
issues, the Committee will seek advice, and shall consult with other groups which are
studying the impact of computers in their fields of interest, especially the Curriculum
Committee on Computer Science of the ACM,1 and the Committee on the Undergraduate
Program in Mathematics of the MAA.2 It hardly needs saying that computers and com-
puter sciences are, and will be, of considerable concern to many disciplines in addition
to electrical engineering, and electrical engineering departments will have to cooperate
closely with other academic departments, especially computer sciences and mathe-
matics departments, both in instruction and in research in computers and related
areas.

'Association for Computing Machinery.

2Mathematical Association of America.

31

APPENDIX A

Selected References for Basic Subject Areas

A-1. Programming Principles

1. B. W. Arden, An Introduction to Digital Computing, Addison-Wesley, 1963, Chap-

ters 1, 2, 3, 4, 11, 17, 18.

2. P. M. Sherman, Programming and Coding Digital Computers, John Wiley and

Sons, 1963.

3. Peter Naur, Ed., Revised report on the algorithmic language ALGOL 60. Comm.

of the ACM, Vol. 6, No. 1, January 1963, pp 1-17.

4. H. Bottenbruch, Structure and use of ALGOL 60. Journal of the ACM, Vol. 9,

April 1962, pp 161-221.

5. E. W. Dijkstra, A Primer of ALGOL 60 Programming, Academic Press, 1962,
(includes reference 3)

6. D. J. Farber, R. E. Griswold and I. P. Polonsky, The SNOBOL 3 programming

language. Bell System Technical Journal, Vol. 45, No. 6, July-August 1966,

pp 895-944.

7. John McCarthy, Recursive functions of symbolic expressions and their computa-

tion by machine. Part I. Comm. of the ACM, Vol. 3, No. 4, April 1960, pp 184-

195.

8. J. A. Foster, List Processing, MacDonald, 1967.

9. IBM Corporation, IBM System 1360 Operating System, PL/1: Language Specifi-
cations. Document C28-6571-4.

10. George Radin and H. P. Rogoway, NPL: Highlights of a new programming lan-
guage. Comm. of the ACM, Vol. 8, No. 1, January 1965, pp 9-17.

11. K. E. Iverson, A Programming Language, John Wiley and Sons, 1962.

12. J. K. Iliffe, The use of the GENIE system in numerical calculation. Annual Re-

view in Auto. Prole Vol. 2, Pergamon, London, 1961, pp. 1-28.

13. P. J. Landin, A correspondence between ALGOL 60 and Church's lambda-notation:

Part 1. Comm. of the ACM, Vol. 8, No. 2, February 1965, pp 89-101; Part 2.

Comm. of the ACM, Vol. 8, No. 3, March 1965, pp 158-165.

14. W. H. Burge, A reprogramming machine. Comm. of the ACM, Vol. 9, No. 2,

February 1966, pp 60-66.

15. E. W. Dijkstra, Cooperating Sequential Processes, Technological University,
Eindhoven, The Netherlands, 1965.

Books 1 and 2 are good introductory treatments of programming. References 3, 6,

7, 9, and 11 are descriptions of important programming languages. References 4, 5, 6,

7, 8, 10, 11, 12 include useful discussions of semantic features of programming lan-

guages. Papers 7, 13 and 14 are approaches to a formal treatment of program se-
mantics. Reference 15 is a readable and neatly integrated discussion of parallel

processing.

33

A-2. Computation Structures

1. E. J. McCluskey, Introduction to the Theory of Switching Circuits, McGraw-Hill,
1965.

2. Y. Chu, Digital Computer Design Fundamentals, McGraw-Hill, 1962.

3. G. A. Maley and J. Earle, The Logic Design of Transistor Digital Computers.
Prentice-Hall, 1963.

4. Ivan Flores, The Logic of Computer Arithmetic, Prentice-Hall, 1963.

5. A. D. Falkoff, Algorithms for parallel-search memories. Journal of the ACM, Vol.
9, No. 4, October 1962, pp 488-511.

6. W. W. Petersen, Addressing for random-access storage. IBM Journal of Re-
search and Development, Vol. 1, No. 2, April 1957, pp 130-146.

7. C. L. Hamblin, Translation to and from polish notation. The Computer Journal,
October 1962, pp 210-213.

8. C. B. Carlson, The mechanization of a push-down stack. AFIPS Conference
Proceedings, Vol. 24, Spartan Books, 1963, pp 243-250.

9. R. W. Floyd, An algorithm for coding efficient arithmetic operations. Comm. of
the ACM, Vol. 4, No. 1, January 1961, pp 42-51.

10. B. W. Arden, B. A. Galler, and R. M. Graham, An algorithm for translating
Boolean expressions. Journal of the ACM, Vol. 9, No. 2, April 1962, pp 222-239.

11. Thomas Marill, Computational chains and the simplification of computer programs.
IEEE Transactions, Vol. EC-11, No. 2, April 1962, pp 173-180.

12. T. C. Chen, The overlap design of the IBM System/360 Model 92 central proc-
essing unit. AFIPS Conference Proceedings, Vol. 26, Part II, 1964, pp 73-80.

13. J. F. Thorlin, Code generation for PIE (parallel instruction execution) computers.
AFIPS Conference Proceedings, Vol. 30, Thompson Books, 1967, pp 641-643.

14. L. P. Horwitz, R. M. Karp, R. E. Miller and S. Winograd, Index register alloca-
tion. Journal of the ACM, Vol. 13, No. 1, January 1966, pp 43-61.

15. Kirk Sattley, Allocation of storage for arrays in ALGOL 60. Comm. of the ACM,
Vol. 4, No. 1, January 1961, pp 60-65.

16. E. W. Dijkstra, Recursive programming. Numerische Mathematik, Vol. 2, 1960,
pp 312-318.

17. B. Randell and L. J. Russell, ALGOL 60 Implementation, Academic Press, 1964.

18. T. Kilburn, D. B. G. Edwards, M. J. Lanigan, and F. H. Sumner, One - level, storage
system. IEEE Transactions, Vol. EC-11, No. 2, April 1962, pp 223-235.

19. 3, McCarthy, F. J. Corbato, and M. M. Daggett, The linking segment subprogram
language and linking loader. Comm. o_ f the ACM, Vol. 6, No. 7, July 1963, pp 391-
395.

34

20. J. K. Iliffe and Jane G. Jodeit, A dynamic storage allocation scheme. The Com-

puter Journal, Vol. 5, October 1962, pp 200-209.

21. J. B. Dennis, Segmentation and the design of multiprogrammed computer sys-

tems. Journal of the ACM, Vol. 12, No. 4, October 1965, pp 589-602.

22. B. W. Arden, B. A. Galler, T. C. O'Brien and F. H. Westervelt, Programming
and addressing structure in a time-sharing environment. Journal of the ACM,

Vol. 13, No. 1, January 1966, pp 1-16.

References 1 through 4 cover material on logical design and arithmetic operations.

Partial material for a discussion of memory systems is found in 5 and 6. Material

relating to compiling techniques and code generation is contained in 7 through 17.

Papers 18 through 22 are concerned with program linking, location-independent ad-

dressing and memory hierarchies.

A-3. Introduction fo Discrete Mathematics

1. Paul R. Halmos, Naive Set Theory, D. Van Nostrand, 1960. Chapters 1 through 10.

2. Elliot Mendelson, Introduction to Mathematical Logic, D. Van Nostrand, 1964.

3. S. C. Kleene, Mathematical Logic, John Wiley and Sons, 1967. Chapters 1 through 4.

4. Robert R. Stoll, Set Theory and Logic, W. H. Freeman, 1963. Chapters 1 through 8.

5. Hartley Rogers, Jr., An example in mathematical logic. Amer. Math. Monthly,

Vol. 70, No. 9, November 1963, pp 929-945.

6. Claude Berge, Theory of Graphs and Its Applilations, John Wiley and Sons, 1962.

7. I. N. Herstein, Topics in Algebra, Blaisdell, 1964.

A-4. Machines, Languages and Algorithms

1. Edward F. Moore, Ed. Sequential Machines: Selected Papers, Addison-Wesley,

1964. Esp. the two papers on state graphs and regular expressions: R. McNaughton

and H. Yamada, Regular expressions and state graphs for automata; I. M. Copi,

C. C. Elgot and J. B. Wright, Realization of events by logical nets.

Arthur Gill, Introduction to the Theory of Finite-State Machines, McGraw-Hill,

1962.

3. Yehoshua Bar-Hillel, M. Perles and E. Shamir. On formal properties of simple

phrase structure grammars. Chapters 9 of Bar-Hillel Language and Information,

Addison-Wesley and The Jerusalem Academic Press, 1964.

35

4. Seymour Ginzburg, The Mathematical Theory of Context-Free Languages. McGraw-
Hill, 1966. Principally Chapters 1, 2, 3 and 4.

5. T. V. Griffiths and S. R. Petrick, On the relative efficiencies of context-free
grammar recognizers. Comm. of the ACM, Vol. 8, No. 5, May 1965, pp 289-300.

6. B. A. Trakhtenbrot, Algorithms and Automatic Computing Machines, D. C. Heath,
Boston, 1963.

7. Marvin Minsky, Computation: Finite and Infinite Machines, Prentice Hall, 1967.

References 1 and 2 are the basis for a good development of state diagrams for
finite automata and their relation to "regular expressions" (Kleene's theorem). Al-
though highly mathematical and not pedagogical, 3 and 4 are among the best discussions
of formal linguistics currently available; 5 is a neatly integrated treatment of parsing
procedures. Reference 6 is a brief, informal but well motivated, introduction to com-
putability concepts; Reference 7 is the best available text giving a comprehensive
coverage of this subject area.

36

APPENDIX B

Some Electrical Engineering Curricula
with a Concentration in Computer Science

CURRICULUM LEADING TO DEGREE

B. S. - Computer Science Program

College of Engineering
University of California, Berkeley

FRESHMAN YEAR quarter hours

Mathematics 12
Chemistry 12
Physics
Electives' 14

SOPHOMORE YEAR

Mathematics 12

Physics 12

Electives' 21

JUNIOR YEAR

Electric Circuits
Electronic Circuits
Electronics and Circuits Laboratory
Linear Systems Analysis
Computers and Information Processing
Restricted Electives2
Technical Elective3
Humanistic-social

SENIOR YEAR

8
5
6
4
4

18

Switching and Computer Circuits 6

Digital Computer Systems
Laboratory 2

Restricted Electives2
Technical Electives3 30
Humanistic-social

TOTAL 180 qtr hrs

1The electives for the freshman and sophomore years include at least 15 hours of hu-
manities or social sciences, plus

Computers and their Applications 4
Introduction to Electronic Systems, Circuits and Devices 4
Engineering Mechanics 4
Properties of Materials

2Restricted Electives: 3 courses from an available list, including mathematics, physics,
engineering courses.

3Technical Elective: 25 units of upper division computer science, engineering, mathe-
matics, physics, statistics, or other natural science courses.

Humanistic-social: Total in the program must meet minimum College requirements.

38

TYPICAL CURRICULUM LEADING TO THE DEGREE

S.B. in Electrical Engineering)
(Computer Science Program)

Department of Electrical Engineering
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

FRESHMAN YEAR credit hours5

Calculus 24

Chemistry 12

Physics 24
Introduction to Automatic Computation 6

Humanities 18

Elective 6

SOPHOMORE YEAR

Physics2 12

Physics 12
Elements, Systems and Computation2 12

Elements, Systems and Computation 12
Programming Linguistics3 12

Elective2 12

Humanities 18

JUNIOR YEAR

Circuits, Signals and Systems 12

Electromagnetic Fields and Energy 12

Computation Structures3 12
Computer Systems 3 12

Electives4 24

Humanities 18

SENIOR YEAR

Electives4 60
Humanities 18

Thesis 12

TOTAL 360 credit hrs5

lAn unofficial curriculum presently under consideration.

2Subjects to meet an Institute "science distribution requirement."

3Basic computer science courses now under development.

4A variety of suitable computer science elective subjects is currently available.

5Three credit hours is approximately one semester contact hour.

39

CURRICULUM LEADING TO DEGREE

B.S. in Computer Science

College of Engineering
UNIVERSITY OF UTAH

FRESHMAN YEAR credit hours

Mathematics 15
Chemistry 10
:Freshman University Requirements 17
Introduction to Computer Science 3

SOPHOMORE YEAR

Physics 15
Mathematics (Engr. Math + Algebra) 8
Circuits (EE) 4
Computer Organization and Programming 4
Humanities and Social Sciences 14

JUNIOR YEAR

Mechanics
Electronics
Programming Languages
Computer Organization
Logical Design
Numerical Analysis
Thermodynamics
Electives (14 Humanities and Social Sciences,

6 Technical)

SENIOR YEAR

4
4
4
4
4
4
4

20

Programming Systems 4
Systems (EE) 4
Senior Project 3
Humanities and Social Science Electives 8
Technical Electives 30

TOTAL 186 qtr hrs

40

