
R E P O R T R E S U M E S

ED 019 819
CONTROLLING BEHAVIOR CHANGERS' BEEAVIOR.
BY- MARKLE, DAVID G.
EDRS PRICE MF-$0.25 HC-$0.96 22P.

DESCRIPTORS- RESEARCH METHODOLOGY, *BEHAVIORAL OBJECTIVES,
BEHAVIORAL SCIENCE RESEARCH, BEHAVIOR PATTERNS, BRANCHING,
LINEAR PROGRAMING, *PROGRAMERS, *PROGRAMING PROBLEMS, PROGRAM
DEVELOPMENT, MEASUREMENT TECHNIQUES, *INSTRUMENTATION,
TRANSFER OF TRAINING, *SKILL DEVELOPMENT, PERFORMANCE
CRITERIA, UNIVERSITY OF MICHIGAN

AN EMERGING METHODOLOGY OF PROGRAMING AVOIDS SOME OF THE
UNFORTUNATE EFFECTS ON PROGRAMER BEHAVIOR PRODUCED BY
INTERPRETATIONS OF TWO EARLIER METHODOLOGIES. WHILE
SK/NNZRIAN PROGRAMING OFTEN HAS LED TO TRIVIAL PROGRAMS
THROUGH PROBLEMS OF APPLICATION OF THE CRITERIA OF SPECIFIED
BEHAVIORAL OBJECTIVES AND LOW ERROR RATES, CROWDERIAN
PROGRAMING HAS MET MANY PRACTICAL PROBLEMS STEMMING
PRINCIPALLY FROM THE PROGRAMER'S INABILITY TO ADEQUATELY
EVALUATE THE RELIABILITY OF HIS CRUCIAL MULTIPLE CHOICE
ITMES. SINCE 1962, A NEW METHODOLOGY HAS BEEN DEVELOPING
THROUGH A MONTHLY COURSE IN PROGRAMED INSTRUCTION GIVEN AT
THE UNIVERSITY OF MICHIGAN FOR INDUSTRIAL TRAINING PERSONNEL.
THE PROCESS, WHICH HAS ALTERNATIVE PROCEDURES AT VARIOUS
PHASES OF THE PROGRAM'S DEVELOPMENT, INVOLVES WORKING
SYSTEMATICALLY BACKWARD FROM A FINAL TEST INSTRUMENT WHICH IS
BOTH A NORMAL CRITERION TEST AND A TRANSFER TEST MEASURING
PERFORMANCE ON DIFFERENT BUT RELATED TASKS. THE PROGRAM IS
STRUCTERED ON THIS TEST, AND DEVELOPED THROUGH LEAN
PROGRAMING IN EARLY DRAFTS AND USE OF STUDENT PERFORMANCE
DATA FOR SUCCESSIVE APPROXIMATION OF THE NEEDED INSTRUCTION.
CONTINGENCIES SHOULD BE PROVIDED WHICH ENCOURAGE EMPIRICAL
DEVELOPMENT OF PROGRAMS. EVALUATERS OF PROGRAMS SHOULD
CONSIDER BEHAVIOR PRODUCED RATHER THAN FORMAL ASPECTS OF
PROGRAMS', AND SHOULD CONSIDER EFFICIENCY MORE IN TERMS OF
STUDENT TIME AND LONG TERM VALUE. (BB)

0

CONTROLLING BEHAVIOR CHANGERS' BEHAVIOR

David G. Marklel

Remarkably little behavioral technology has been applied systematically

to controlling the programming behavior of instructional programmers. The

programming systems which were assembled in the late 1950's were based upon

theoretically promising ideas, but the functional rules and models which

were given to programmers had many unfortunate effects. Section I of this

paper reviews some unfortunate controlling effects of two major early pro-

gramming methodologies. Section II outlines an approach which has been

designed to provide beneficial programmer control. Section III

discusses behavior maintenance contingencies which can increase, the prob-

ability of sound instructional engineering.

I

Early Methodologies

§tinntrILn±munglaa

It is appropriate to begin with the Skinnerian "linear" programming

movement for several reasons. It provided the starting point, for the work

to be discussed in later sections of this paper. Also, it is the movement

which should have been most concerned with programmer control, since its

formulators were operant conditioners who freely used words like 'control'

and who drew parallels between operant conditioning and programmed in-

struction. (e.g., Skinner, 1964)

1
Senior Associate, Behavioral Engineering Associates, Los Altos, California.
Consultant to the Social and Educational Research Program, American
Institutes for Research. Consultant to the Center for Programmed Learning
for Business, University of Michigan.

U.S. DEPARTMENT OF HEALTH, EDUCATION & WELFARE

OFFICE OF EDUCATION

1
THIS DOCUMENT HAS BEEN REPRODUCED EXACTLY AS RECEIVED FROM THE
PERSON OR ORGANIZATION ORIGINATING IT. POINTS OF VIEW OR OPINIONS
STATED DO NOT NECESSARILY REPRESENT OFFICIAL OFFICE OF EDUCATION
POSITION OR POLICY.

Although there, were humanist objections to words like 'control', and

moral objections to the idea that learning should be easy and error-free,

it was not obvious that the early Skinnerian formulation would have un-

fortunate effects on programmer behavior. Behavioral objectives should

help the programmer weed out nonfunctional material and make it possible

to validate instruction. Small steps and low error rate should enable the

programmer to produce success where there had been failure. Frequent

overt responses by the student should keep the programmer oriented to

student behavior and give him detailed feedback on it. Similarly, one

would have good expectations of self-pacing, logical sequencing,, and

immediate confirmation.
2

But early programs appear in retrospect to be parodies of the basic

ideas. Premature commercialization played a dominant role in this, and

has caused the field difficulties today. Many commercial programs give

the critic an easy target and give the neophyte programmer a dysfunctional

model. However, the mistakes which were made in the early days of the

movement are related as much to theoretical issues as to premature

commercialization.

The programmer was told to specify objectives in behavioral terms.

Objectives couched in terms of "understanding" or "appreciation" were

forbidden on the grounds of poor inter-observer reliability. But the,

effect this had on many programmers was not to sharpen their analysii skills

as intended, but rather to increase the frequency of less troublesome

trivial objectives. "The salesman will understand objection handling"

2
The questionable equation of formal confirmation and reinforcement which
abounds in the early literature will not be dealt with here. (Hamilton,
1964(4),Ithas had little to do with faults of early programs, except in
the unfortunate cases in which Skinner was misinterpreted to be pre-.
scribing repetition when he stressed reinforcement.

2

would all too often shift to "The salesman will list the five key points

of objection handling." Thus a prescription which was intended to improve

instruction failed in many cases to bring about the intended improvement,

not through a failure of the prescription, but of its implementation.

The programmer who operated with objectives which were related only

to superficial verbal aspects of the desired behavior change had little

guidance in what to ask the student to do at each step. Since each re-

sponse request represents a fine-grained objective, weakness in the general

objectives revealed itself in individual frames like the following:

This is a picture of the model 5200 sales

register. It is your friend. In this

course you will learn to operate the model

5200 s

and

A noun is the name of a person, place, or

thing. The words 'cat' and 'mat' are

n s.

Programmers were told that responses should be relevant. But what is

a relevant response? Within the model of filled-in blanks, programmers

turned to the often irrelevant criterion, "important term". Thus 'noun',

'accrued interest', and 'manager', were typical responses in programs on

grammar, investment, and business management. The requirement for learning

to be comparatively free of errors further contributed to the problem. The

following ficticious example is closer to the truth than one might imagine.

Suppose a programmer of psychology wishes to have the student identify

a reinforcer as such. He might write'The click of the food mechanism is a

conditioned .' The student might respond 'stimulus', which is

3

technically correct, but not what the programmer wanted. In order to in-

crease the probability of the desired response, the programmer might

change the blank ' ' to 'r '. Then to confound things, the

student might respond 'reward', which is technically incorrect. To preempt

this response, the programmer might add 'technical term' or, to carry this

to the extreme, change the blank to 'rein er'. The equally frustrated

student might answer with 'de' instead of 'fore!

The unfortunate translation of the low error criterion to one of

eliminating errors at all costs produced many progressions of this absurd

type as programs passed through developmental tryouts. And many programmers

learned from experience or example to short circuit the tryout process by

producing frames of the 'rein er' type in their first drafts, thus

avoiding being punished by wrong answers from tryout students.

The mistake can be described in two ways. In terms of the observable

behavior of the student, we can say the the addition of formal prompts like

'r', 'rein er's etc., simply changes the correct response from 'rein-

forcer' to 'einforcer° to 'forc'. The programmer did not increase the

probability of the desired response; he changed responses. This same con-

clusion can be made in terms of the total behavioral episode, which includes

unobservable thinking, etc. The student could say to himself, "It begins

with 'r'," or "What word in psychology begins with 'rein' and ends with

'er' ?" Unqualified insistence on correct observed responses often led to

neglect of unobserved mediating behavior. Observable behavior was stressed

for its own sake, not as evidence of a more important underlying behavioral

episode.

Behavioral measures in snake phobia experiments illustrate this point'

(Bandura et al, 1967). The subject is asked to approach a cage which

4

contains a live snake, reach in, pick up the snake, and play with it. If

the experimenter substituted a plastic snake for the live snake in order

to improve the apparent success of his cure, he would be making a similar

mistake.

The basic ideas of the Skinnerian model need not have led programmers

to produce trivial programs, and they did not uniformly. But the frequency

of these effects suggests that there were serious gaps between the basic

theoretical goals and their implementation. These gaps center around the

difficulty of teaching programmers to do brihavi oral analysis. Since this

difficulty has been so pervasive, some general aspects of the problem will

be discussed below, to lay a groundwork for later sections of this paper.

The S-Man Problem

Evaluators of instructional materials can be classified according to

where they look first. Asked to evaluate a lecturer, one might comment on

his mannerisms, the clarity of his speech, his humor or lack thereof, his

organization, his content, or whether he makes his material functionally

relevant to student behavior. These different kinds of evaluation can be

arranged roughly on a continuum, ranging frmm concern with superficial

aspects of the lecturer's behavior, through content related aspects,

finally to consideratiors of his effects on student behavior.

Instructional design problems can also be approached from different

points on the continuum. One can first ask what audio visual devices are

available, how long the course should be, how to organize the content, what

students should do to learn the material, or what the students' final

behavior should be. These and many other points must be considered at one

5

C.

s.

411

time or another. But since decisions about aay one of them will influence

others or even preempt making decisions about others, the starting point is

critical.

The continuum along which these different considerations range can be

split into two basic sections, according to whether the main focus cif

analysis is on the instructional stimuli (S) , or on the responses the

student is to make (R).3 For convenience, a person who looks first at

stimulus dimensions can be called an "S-man", while the person who looks

first at response dimensions can be called an "R-man".4 Thus an audio

visual person is typically a radical S-man, the more content oriented

instructor is a conservative S-man, while a programmer or behavioral

engineer is or ought to be an R-man, who first specifies his goals in terms

of what he wants his students to be able to do, then works back to the

resources available to him on the "S" side of the continuum.

The major difficulties met by the Skinnerian approach appear to be a

function of the strong S-man bias we have had at least since Socrates

(whose token use of ,responses was hamstrung by the assumption that the

student already "knew"). The simplest S-man mistake is the widespread

assumption that programmed instruction has to look a certain way. A

3

4

This is an oversimplification, since treating responses itivacuo is the

very mistake discussed earlier, of not accounting for changiiiri the

discriminative stimuli which change the behavioral episode. In the

current discussion, take 'response' .to include the episode and any

critical SD's. .

Talk of S-men and R-men comes from George Geis' more detailed discussions

of four,points of view in psychology, S (stimulus), 0 (organism), R (re-
sponse), S (reinforcer), and the effects of focusing on any one in designing

instruction. The R category in this discussion is broader than in Geis',

partly to simplify the exposition, and partly because a somewhat different

point is being made.

6

R.

tradition of evaluating textbooks, lectures, etc., by looking at them has

made it natural to classify and evaluate programmed instruction visually,

by such irrelevant aspects as frame area and shape, and number of words per

frame.

Early trainers of programmers wanted their students to write frames

which requested "relevant" responses. Instead, students of programming

often produced materials which resemaed lectures more than successive

behavioral steps. Lacking effective ways to teach behavioral analysis,

they fell back on an S-man approach and gave students artificial restric-

tions.on format and the number of words they could use in a frame. These

restrictions did little to strengthen the response component of programs.

They simply translated the intuitive, response-related concept of step

size into a rigid stimulus dimension. The neophyte programmer's natural first

concern was to match the appearance of the model, not to engineer behavior.

This has been called stuffing sheep into wolf's clothing.5

The basic reason for stressing an R-man approach in this paper lies

in its strategic power to provide the programmer with a non-intuitive

decision making tool. For example, the concept of small step can be

redefined as the largest step the student can take successfully., if an

empirical R-man strategy is adopted. The R-man strategy emphasized here

is independent of the reasons which are often offered in support of

either response oriented or stimulus oriented instruction (Klaus, 1965).

Those arguments concern the nature of the final product--not the develop-

ment process. There is clear evidence that observable responses are not

. 5
N. Hamilton, personal communication, Jan. 1968.

7

necessarily required for learning to occur, although they are required for

its measurement (Bandura, 1965). In most instances the important part of

a response is what takes place before the overt behavior. Adoption of the

R-man strategies discussed in Section II does not automatically preclude

developing a stimulus oriented product.

Consider, for example, using an R-man approach to produce a motion

picture film which is intended for normal, non-interrupted viewing.

Criterion items which require observable responses can be used throughout

the development process, but be dropped from the final version. A related

procedure for making instruction more efficient is to convert criterion

questions which have very low error frequencies to statement form in the

final product (Markle, 1965a, 1967).

Crowderian Plogrammta

In contrast with Skinner's behavioristic "control" model, Norman

Crowder put forth a programming model based on "communication" and "feedback"

ideas (Crowder, 1960). Although this model differs from the Skinnerian in

basic theorizing and most details of execution, there are interesting

parallels between the two in terms of the unfortunate controlling effects

they had upon programmers.

The basic ideas of the Crowderian model are not without appeal,

although they lack the potential power of behavioral analysis and empirical

development. In particular, the idea that a program should adapt to

individual differences in more ways than rate of progress through a fixed

sequence distinguishes the Crowderian model from the early Skinnerian model.

The Crowderian programmer was told to write a page of text, then pose

a multiple-choice question to test a detail of the "communication intended

1

P- by the text. He was required to write different feedback for each choice,

either confirming the correctness of the answer or admonishing the student

for his incorrect answer. The "correct answer" feedback page would

contain the next sequential material. The incorrect answer feedback

pages for an item would reinstruct the student and, if necessary, lead

him through a supplementary sequence of instructional steps to remedy his

deficiency.

The practical problems which face the Crowderian programmer are

formidable. First, he must predict errors in the manner of a

multiple choice test item writer. Second, he must write feedback and

remedial branches which make students less likely to make those errors in

the future. Lacking empirical data on which to base his programming, the

programmer is under the control of unfortunate variables. A typical

pattern is to omit critical information from one of the "communication"

paragraphs in order to predict error reliably. Some critics label this

technique sadistic, but consider the problem facing the (poor) programmer.

He must write at least one paragraph of remedial text for each wrong

choice. If he writes' four-choice questions, three feedback paragraphs are

required for wrong answers. He may also need to write remedial sequences.

Thus at least three-fourths of the differential feedback and "branched"

instruction he produces is devoted to wrong answers. It is the rare

programmer who will design low error materials when under the control of

these contingencies. Who would write a program with the expectation that

a large proportion of it would go unread?

Since the first draft Crowderian program is intended to provide

appropriate feedback Tor errors, the errors themselves are acceptable.

9

Programmers were thus never forced to deaf with one of the most important

programmer controlling contingencies provided by the Skinnerian model:

student feedback to the programmer. Section II develops this aspect of

program design.

The lack of an empirical base permits the omission of a kind of analysis

which is essential if branching is to accomplish its aims. According to the

basic model, students are presented with different feedback and/or instruc-

tion on the basis of a single multiple choice response. No data are pro-

vided by the system to enable the programmer to evaluate the reliability of

these critical multiple choice items. The unreliability of a single multiple

choice item makes this a critical flaw. Interestingly, many students have

discovered this flaw themselves, realizing that it led programmers to skip

them over material they didn't know. As a result, students often read all

pages in the book, right and wrong answer branches alike, to be certain not

to miss anything.

Just as difficulties with the application of behavioral objectives low

error, etc., cannot be taken to be criticisms of the basic Skinnerian ideas,

the unfortunate effects of asking the programmer to write in.the Crowderian

branching mode in no way invalidate the desired gcal of instruction which

is adaptive to individual differences. The difficulty lies in the super-

.ficial formal model which, like the misinterpretations of the Skinnerian

ideas, has led to undesirable programmer behavior. Some possibilities for

empirically based applications of branching will be suggested in Section II.

10

L

,

A Developing Methodology

Early History

In 1962 at the University of Michigan a mixed group of specialists in

Skinnerian provamming and business management
6

cooperated in designing a

week-long course in programmed instruction for industrial training personnel.

The course has been given monthly since then, and follow-up work has been

done with many of the participants. As a result, staff members have had the

chance to observe the real world effects of what is taught, and have been

in a position to modify the methodology and the design of the course gradually

in the light of this feedback.

In the early years of the workshops, needs for changes in the methodology

were signaled by undesirable programmer behavior of the types discussed in

Section I. Participants could learn readily to make things which looked like

frames by following the inadvertent S-man prescriptions of the early method-

61oly. Having just learned these new skills, they were then understandably

resistant to staff attempts to counter the control exercised by the method-

ology. The eventual solution was, of course, to change what was taught.

At first, the changes were primarily ones of omission--omission of

programs which dealt with the more troublesome aspects of the early method-.

ology. Gradually, materials which stressed analysis, criterion item design,

and empirical revision were introduced (e.g., Brethower et al, 1963, 1965,

Markle, 1965(b)). The.most recently introduced lessons treat programming

6lnitially, D. M. Brethower, D. G. Markle, G. A. Rummler, and A. W. Schrader,
III. Since then, many contributions have been made by new staff members
and associates.

as a sequential information gathering, decision making process. Strong

emphasis is.placed on the use of decision strategies and student perform-

ance data to answer design questions which previously would have been

answered by fiat.

Current Practice

The basic procedure is one of working systematically backward from a

final test instrument. Objectives may initially be specified in verbal

statements,and analysis may involve flow charts, matrices, etc. However,

the proof of objectives specification lies in designing an exhaustive set

of final performance measures which simulate task performance as closely

as cost-effectiveness estimates indicate is. needed. Even very carefully

worded statements of behavioral objectives have been found to exercise

inadequate control over subsequent programming behavior, whereas the actual

response requests which will be given to students are difficult to ignore.

Readers may rightly object that this is simply teaching for the test.

However, traditional objections to teaching for the test rest on the in-

adequacy of the test. Teaching for "transfer" involves two tests. One

functions as a normal criterion test, while the other is a measure of

performance on different but related tasks. In formal transfer experiments

both tests are of course developed and administered as part of the experi-

mental design (Ellis, 1965). In normal educational practice, however, "transfer"

measure, which usually involves real world performance, is seldom made

explicit. For example, the civics teacher is unlikely to have hehavioral

measures of "good adult citizenship" which can be used either toguide

explicitly the design of instruction, or to determine for whom and to what

extent the more global goals of the instruction have been met.

12

The methodology under discussion rests on the assumption that "both"

tests should be dealt with explicitly by prespecifying the range of all

relevant testing parameters, including those of "transfer" measures.

According to this view, a failure of performance to transfer from the

final criterion test to real world performance is potentially attributable

to faulty selection of the range of one or more testing parameters or of

unrealistic expectations for "transferh.7 Descriptions of different methods

of exhaustively specifying and sampling from the universe of test items can

be found in Hamilton (1964b,1968) and Markle (1967).

Once the final criterion measures have been developed, the designer

can choose among several strategies to determine what to do next, according

to his uncertainty, the potential seriousness of a mistake, and other

economic considerations. To minimize the risk of erring and maximize his

knowledge of the student population, he can adopt a radical empirical

strategy and administer subsets of the criterion measure to trained and

untrained members of the population to gather data on their instructional

needs. This "ideal" strategy may not be the best strategy under certain

constraints. A more moderate but more uncertain approach would be to pre-

test only items which are judged to be potentially in the entering reper-

toires of the students. Testing of either type typically leads to changes

in the objectives.

Next, the programmer develops an evaluation structure around which the

program will be built. The structure is composed of criterion items sampled

from the final set, and/or newly generated subordinate criterion items.

These are arranged to form a sequence of sub-tests for the program. According

7
There may be other causes, such as inappropriate maintenance contingencies
in the environment.

13

to strategy decisions similar to the above, this sequence can range from

coarse-grained to fine-grained, and may or may not be subjected to extensive

empirical trial.

The most rigorous empirical strategy at this point involves testing a

coarse-grained performance structure, composed only of major criterion

items, then using the data to estimate where subordinate response requests

are needed. This process can be thought of either as a further identifica-

tion of entering behavior, or as a first step in determining "step size"

empirically. Alternatively the programmer can fill in the majority of the

questions needed in the structure on the basis of analysis and intuition.

He then converts the performance structure into a program by adding in-

structional materials.

Again, he has a number of strategies available. He might treat the

bare performance structure as a first draft program and test it on students

with the expectation that many errors will be made. This is the extreme

version of the "lean" programming approach. A more moderate version of

lean programming is to omit potentially needed teaching material only when

in doubt about whether students will need it. Although this leaves the

door opdh for rationalization about "needed" content, its inherent risks

can be balanced by improved efficiency when a great deal is known about the

student population, or when the subject matter is entirely foreign to them.

Regardless of strategy, however, the programmer has the performance structure

to guide each small addition. He is never in the position of designing
1,

instructional materials, then having an irrelevant variable like the con-

tinuity of his prose or the cutting of his film determine what questions

to ask his students. For that matter, he never has to write a "teaching

14

frame" per se, since the addition of teaching material to a performance

structure automatically converts some response requests to "teaching

frames".

The emphasis upon successively approximating the needed instruction

rests on two basic principles. .The first is the arbitrary or philosophical

one that student performance data should be used as much as possible in de-

signing instruction. The second is a'methodological point which is con-

cerned with minimizing the limitations inherent in using student perform-

ance data as an information source.

Student performance data can be divided into two classes: correct

answers and incorrect answers. Correct answers appear to indicate that the

program is working; incorrect answers appear to indicate that it is not.

This simple analysis does not hold up when the question of the legitimacy

or spuriousness of the answer is introduced. Answers can be correct for

legitimate or spurious reasons; similarly, they can be incorrect for

legitimate or spurious reasons.

The legitimately correct answer indicates that the program is working,

but unfortunately the programmer cannot easily distinguish between

legitimately correct answers (right for the right reasons) and spuriously

correct answers (right for the wrong reasons). Even if we discount that

difficulty, the correct answer cannot be relied upon as the positive feed-

back it appears to be. Correct answers, whether legitimate or spurious, do

not signal either excess redundancy or irrelevant content.

Negative feedback, in the form of wrong answers, is potentially more

useful to the programmer. Even spuriously wrong answers indicate that

some kind of change is necessary, if only to clarify the response requests

themselves. While incorrect answers

needed changes or additions, they do

can be depended upon to indicate

not signal excess redundancy or

irrelevant contentcontent any better than do correct answers. They are most

valuable to the programmer before he has added large amounts of instruc-

tional material. Thus the objective of the lean programming strategy is

to maximize the chances that the programmer will get reliable feedback

on what to add or change, and to minimize the chances that he will start

off with excess material which will not be identified by student tryout'

data.

The process-product confusion has arisen with lean programming as it

did with the early methodologies. The word 'lean', intended to describe

the programmer's first drafts and the deliberate use of parsimony in the

early developmental stages, has been misinterpreted to describe the final

product. There are those who feel that lean programming will produce dry,

difficult, cut-to-the-bone, high-error programs, rather than the intended

well-tailored programs. There is no reason why the rigorously empirical

lean programmer might not on some occasions find that his final product

turns out to be far more detailed and redundant seeming than he ever

predicted would be needed, simply because his prediction. was based upon a

misevaluation of the students' entering behavior.

A striking effect of this broad scale use of tryout data to guide

programmer decision making has been to relocate many decision points in the

developmental process. For example, media decisions are best delayed

until after fine-grained decisions about needed instructional 'content are

made. Finalization of objectives is delayed until after several rounds of

16

developmental-tryouts.. Decisions about "linear" vs "branching" need never

be made atiall on a large scale. If empirical strategies are followed, the

decision is not whether to write, a branching program, but whether to use

branching to handle a specific problem revealed by tryout data.

Elements of the developing, methodology which have not been dealt with

here include criterion measure and lesson design strategies which involve

simulation and examples rather than rules, and sequencing plans which in-

volve both logical and empirical analysis. They also include some in-

completely formulated but promising notions like specifying behavioral

objectives in academic areas by looking for subject matter relevant be-

haviors which experts engage in with high frequency. If an expert finds

a specific activity worthwhile, perhaps the student will, if it can be

engineered properly.Forexample, the historian engages in a kind of detective work

with on reports of historical events more frequently than he

memorizes dates, presumably because it is more rewarding. This has clear

implications for how to specify objectives for students of history.

III

Programmer Behavior Maintenance

The first two sections of this.paper have sketched out how inter-

pretations of two methodologies had unfortunate effects on programmer be-

havior, and have outlined an emerging discipline which avoids some of

these effects. The discussion has focused on immediate effects of the

methodologies, rather than long term effects, although many of the unde-

sired immediate effects persist in the programmer's repertoire after an

initial training period.

17

Even without a clear formulation of the essentially negative character

of feedback and the resulting need for a parsimonious or "lean" approach,

feedback from student tryouts was a critical feature of the early Skinnerian

methodology. Yet it was the most fragile from the standpoint of programmer

behavior maintenance. The contingencies which operated against good empirical

work still apply to the current methodology, so this fragility is worth re-

examining.

As discussed in Section I, student errors, which should have been wel-

comed in developmental tryouts, often functioned as punishment of the pro-

grammer. This tended to increase the frequency of trivially preempted

errors, and decrease the probability that further empirical trials would be

engaged in. A surprising additional result of the low error criterion was

adopted by some commercial program publishers: in order to achieve an

arbitrary low % error value, they would add easy items to a sequence in

order to spread the existing errors over a large base.

The use of errors as a deliberately sought guide to decision-making,

as discussed in Section II, has minimized their punishing effects for pro-

grammers who fully adopt the new methodology, but there are other con-

tingencies. In industrial settings, real or perceived time and cost

pressures discourage careful empirical work unless strong moves are made to

counter these pressures. It has not been customary to do a careful economic

analysis of the potential benefits of achieving one set of objectives versus

another set of objectives, compared with the comparative costs of achieving

them. Nor has it been customary to balance the increased developmental

18

costs of achieving an objective more efficiently against the savings in

manpower costs which can result. The introduction and refinement of

economic analyses of objectives and of the different strategies which can

be used to achieve them should provide contingencies which encourage rather

than discourage empirical development.

At first sight, it seems more difficult to apply economic criteria to

the development of materials for the schools than for industry, and is thus

more difficult to justify rigorous empirical development. However, there

is no reason why the value of student time cannot be used in the suggested

economic model, to say nothing of using the estimated long term value of the

instruction.

Because economic analyses are not likely to affect programmer control

contingencies in the near future as much as might be desired, short range .

considerations are in order. The S-man problem applies to the evaluators

of programmers' output as well as to programmers. Accustomed to evaluating

a product in terms of its appearance rather than in terms of the behavior

change it Produces, supervisors of programmers and purchasers of instruc-

tional systems will reinforce attention to formal and stylistic aspects

unless efforts are made to emphasize more relevant but less obvious aspects

of instructional engineering., It is a double contingency management problem.

The programmer must clarify his own function so that he will in turn receive

appropriate reinforcement.

Programmer behavior maintenance problems have until now been primarily

involved with the simple issue of whether or not an empirical approach is

used. As more varied objectives specification methods are developed and the

19

range of empirical methods becomes better delineated, decision processes

for the appropriateness of different approaches will become fundamental parts

of instructional technology. An important criterion for evaluating these

developments is the degree to which they control and maintain desirable

programmer behavior in the face of the wide range of countercontingencies.

20

a.

References

Bandura, A. Vicarious processes: A case of no-trial learning. In L.
Berkowitz (Ed.), Advances in ex erimental social s cholo Vol. II.
New York: Academic Press, 1965. Pp. -55.

Bandura, A., Blanchard, E. D., & Ritter, B. J. The relative efficacy of
desensitization and modeling therapeutic approaches for inducing
behavioral, affective and attitudinal changes. Unpublished manu-
script, Stanford University, 1967.

Brethower, D. M., Markle, D. G., Rummfer, G. A., Schrader, A. W. III, &
Smith, D. E. P. Programmed learning: A practicum, Test Version 3.
Ann Arbor: Center for Programmed Learning for Business, 1963.

Brethower, D. M., Markle, D. G.; Rummler, G. A., Schrader, A. W. III, &
Smith, D. E. P. Programmed learning: A practicum. Ann Arbor:
Ann Arbor Publishers, 1965.

Crowder, N. A. Automatic tutoring by intrinsic programming. In A. A.
Lumsdaine and R. Glaser (Ed.), Teachino machines and programmed
lulling. Washington, D. C.: National Education Association, 1960.

Ellis, H. C. The transfer of learning. New York: Macmillan, 1965.

N5ie
Hamilton, N. R. The,,,of reinforcement in meaningful verbal learning

explication involving self- instructional programs. Paper read
American Institute for Research scientific meeting, Washington
March 1964. (a)

Hamilton,, N. R. Effects of logical versus random sequencing of items in an
autoinstructional program under two conditions of covert response.
Journal of Educational Psychology, 1964,.

. 55, 258-266. (b)

Hamilton, N. R. Differential response to instruction as a function of
spatial and verbal aptitudes. Unpublished doctoral dissertation,
Stanford University, 1968.

Klaus, D. J. An analysis of programing techniques. In R. Glaser (Ed.),
Teaching machines and programed learning, II. Washington, D. C.,
National Education Association, 1965. Pp. 118-161.

Markle, D. G. Empirical film development. tIpIILS2cielyforhmgnmEni
Instruction Journal, 1965, 4, 6, 9-11. a

Markle, D. G. Programed instruction: The development process. 1965. 16mm
color motion picture film developed under Contract OE 3- 16-036, Title VII-
139 Oblic law 85-864 for the U. S. Office of Education. (b)

: An
at the

, D. C.,

21

Markle, D. G. Final report: The development of the Bell System first aid
and personal safety course. Palo Alto: American Institutes for
Research, 1967. (AIR-E81-4/67-FR)

Skinner, B. F. The science of learning and the art of teaching. Harvard
Educational'Review, 1964, 24, 86-97.

22

