
R E F O R T T R ESUMES
ED 019 632 AL GOO 577

SYSTEM DESIGN FOR COMPUTATIONAL LINGUISTICS.
BY- JONAS, RONALD W.
TEXAS UNIV., AUSTIN, LINGUISTICS RES. CTR.

PUB DATE JUN 67

EDRS PRICE MF-$0.25 HC-$1.44 34P.

DESCRIPTORS- *COMPUTATIONAL LINGUISTICS, *LANGUAGE RESEARCH,
PROGRAMING, INFORMATION STORAGE, INFORMATION RETRIEVAL, DEEP
STRUCTURE, SURFACE STRUCTURE, *TRANSFORMATION GENERATIVE
GRAMMAR, TRANSFORMATIONS (LANGUAGE), SYNTAX; *CONTEXT FREE
GRAMMAR, *MACHINE TRANSLATION, SEMANTICS,

THIS PAPER IS THE FIRST IN A SERIES PRESENTING THE
FEATURES OF SYSTEMS DESIGNED FOR COMPUTATIONAL LINGUISTICS AT
THE LINGUISTICS RESEARCH CENTER (LRC) OF THE UNIVERSITY OF
TEXAS AT AUSTIN. ONGOING RESEARCH IS EXPANDING THE
APPLICATION OF THESE SYSTEMS TO INCLUDE NOT ONLY NATURAL
LANGUAGE BUT PROGRAMING LANGUAGES AS WELL. THIS PAPER
DISCUSSES CURRENT PARSERS, SYNTHESIZERS, AND TRANSLATORS,
GIVING FULLEST TREATMENT TO (1) TYPES OF GRAMMAR MOST
SUITABLE FOR LANGUAGE DESCRIPTION, (2) GRAMMATICAL
DESCRIPTION OF DISCONTINUITIES, AND (3) INTERLINGUAL MAPPING.
ALTERNATIVES ARE SUGGESTED AND CHOICES ARE MADE AS TO WHICH
FEATURES ARE MOST LIKELY TO BENEFIT RESEARCH IN COMPUTATIONAL
LINGUISTICS. FURTHER INFORMATION ON THIS PAPER AND CURRENT
RESEARCH AT LRC MAY BE OBTAINED FROM THE LINGUISTICS RESEARCH
CENTER, THE UNIVERSITY OF TEXAS AT AUSTIN, BOX 7247,
UNIVERSITY STATION, AUSTIN, TEXAS 78712. (AUTHOR/DO)

%Irvin cowl.

POSITION OR POLICY.

SYSTEM DESIGN FOR

COMPUTATIONAL LINGUISTICS

Ronald W. Jonas
"PERMISSION TO REPRODUCE THIS

MATERIAL HAS BEEN GRANTED

BY RO L f) W JcWAs

TO ERIC AND ORGANIZATIONS OPERATo

THIS IS A WORKING PAPER IT MAY BE EXPANDED, MODIFIED

OR WITHDRAWN AT ANY TIME THE VIEWS, CONCLUSIONS,

AND RECOMMENDATIONS EXPRESSED HEREIN DO NOT

NECESSARILY REFLECT THE OFFICIAL VIEWS OF THE SPONSOR

LINGUISTICS RESEARCH CENTER

THE UNIVERSITY OF TEX AS

BOX 7447 UNIVERSITY STATION AUSTIN 12, TEXAS

U.S, DEPARTMENT OF HEALTH, EDUCATION & WELFARE

OFFICE OF EDUCATION

THIS DOCUMENT HAS BEEN REPRODUCED EXACTLY AS RECEIVED FROM THE

PERSON OR ORGANIZATION ORIGINATING IT. POINTS OF VIEW OR OPINIONS

STATED DO NOT NECESSARILY REPRESENT OFFICIAL OFFICE OF EDUCATION

POSITION OR POLICY.

SYSTEM DESIGN.FOR

COMPUTATIONAL LINGUISTICS

Ronald W. Jonas
"PERMISSION TO REPRODUCE THIS

MATERIAL HAS BEEN GRANTED

BY OK) ALD w. 1/4121_4AS

TO ERIC AND ORGANIZATIONS OPERATING

UNDER AGREEMENTS WITH THE U.S. OFFICE OF

EDUCATION. FURTHER REPRODUCTION OIMSIDE

THE ERIC SYSTEM REQUIRES PERMISSION OF

THE IMMO OWNER."

LINGUISTICS RESEARCH CENTER
The University of Texas at Austin

Box 7247, University Station
Austin, Texas 78712

WA -1 LRC 67 June 1967

ABSTRACT

This paper is the first in a series presenting

the features of systems designed for computational linguistics

at the Linguistics Research Center. Ongoing research is

expanding the application of these systems to include not

only natural language but programming languages as well.

From the full range of systems, this paper reports and dis-

cusses the :features of current parsers, synthesizers, and

translators. The fullest treatment is given to the following:

(a) types of grammar most suitable for language description,

(b) grammatical description of discontinuities, and (c) inter-

lingual mapping. Alternatives are suggested and choices are

made as to which features are most likely to benefit research

in computational linguistics.

SYSTEM DESIGN FOR COMPUTATIONAL LINGUISTICS

Members of the Linguistics Research Center staff

have been developing computer systems for the manipulation

of language since 1959. The Center, organized with the pri-

mary goal of achieving machine translation of languages, has

broadened its research scope to embrace the more general

field of computational linguistics.

The types of systems developed at LRC include:

10 Parsers -- Programs which yield the structure

underlying the strings of a language, given the

grammar for that language.

2. Synthesizers -- Programs which produce the

strings of a language, given its abstract structures

and grammar.

3. Translators -- Given the topological

properties of language in the form of specialized

grammar, these programs perform the interlingual

mapping necessary to translate languages. Because

mapping is from abstract structure to abstract

structure, the complete translatign process also

requires the services of parsers and synthesizers.

4, Automatic Classifiers -- Programs which will

find grammatical classes for given raw text have

been under development. These are intended to

code automatically the grammars for various

languages.

5. Information Storage and Retrieval --

Generalized systems have been developed to

manipulate data, given the associated classifi-

catory symbols.

6. Automatic Abstractors -- Programs are planned

which will perform homomorphic transformations on

the output structure of present parsers. Depend-

ing upon the degree of reduction, the result will

be abstracted text or classificatory symbols suit-

able for data storage and retrieval [7].

7. Concordance -- Systems have been developed

to display text and grammars as aids in linguistic

study. More generalized report generators are

planned for future use.

These systems have been used solely for the manipu-

lation of natural language. Research into the use of these

systems for the processing of artificial language, particularly

:,vogramming languages, is now underway. Preliminary results

suggest that both computer logic and programming languages

can be successfully described and manipulated with the avail-

able systems.

systells are now being re-programmed to

operate on the new Control Data 6600 computer installed at The

2

University of Texas at Austin computation center. This

re-programming task has provided an ideal opportunity

for the LRC systems group to improve certt-In features in

the programs for language manipulation. We have chosen

a set of features which appear to be the most desirable

for CD 6600 programs. This paper will specify these

features for the parsers, synthesizers, and translators

and also give thecretical and experimental justification

for the choice. Features chosen for the remaining systems

will be discussed in subsequent papers. We assume here a

general understanding of the LRC model as it has been de-

signed in the past and discuss only those features we propose

to change [10, 11, 12, 13].

The LRC model will be explained in terms of the

transformational theory of grammar, for there appears to be

a more widespread understanding of this theory than of the

model explained in its own terms. We do not imply, however,

that the LRC system is an implementation of transformational

theory. The LRC model differs in known ways from a trans-

formational model and those differences will be noted. It

would, on the other hand, be relatively simple to provide

the LRC model with certain alternative features, causing it

to behave like a transformational system [3, 5]. We plan

to augment the model in this way in the future.

The transformational model has two major components:

base and transformations. The base specifies "deep", perhaps

universal, properties of language, while transformations are

concerned with "surface" properties (i.e., the mapping of

deep structures into utterable strings of some particular

3

language). If we think of the transformational model as pri-

marily generative, the base may be regarded as the first phase

of the process, generating structural trees explicitly stat-

ing basic (deep) properties of language. These trees have

terminal nodes, but they do not necessarily form a string

which is meaningful in any particular language. The repre-

sentation used so far in the base has been an ordered context-

sensitive grammar. Context-sensitivity and ordering are

quite independent of each other, but together they control

the type of deep structures output from the base.

The transformational component, the last phase of

the generative process, is expressed as a grammar having

ordered rules in a highly specialized format. These rules

specify how to take particular basic trees and reshape them

so the terminals of the resultant trees are in the desired

order. The resultant terminals must form a string, reading

left to right, which belongs to the language for which the

transformations are written. This basic tree is one example:

Figure 1

If string abcedf is not a string of language X, then a

transformation may be specified to yield some surface tree

with string abcdef belonging to the language X:

Figure 2

The trees generated by the base are regarded by

Bach [2], among others, as being language-universal state-

ments. Transformations are regarded as a mapping from the

universal statements into language-specific statements. It

has been shown for certain languages that dialectal differences

can be entirely accounted for at the transformational level.

That is, given the same deep structures and the same trans-

formational" rules, dialects may be defined simply by reorder-

ing the application of these rules. This is highly specu-

lative, of course, but it does provide a framework in which to

discuss the LRC model.

The generative process of transformational theory

is roughly analogous to synthesis in the LRC model, although

the two processes are dissimilar in some ways. Both the

base trees and the, surface trees are in an explicit form

in the LRC model. In the generative model, however, the

5

base trees are explicit but the surface trees are not. The

basic trees, together with the appropriate transformations,

form only an abstract surface tree; that is, the final out-

put of the generative model is not a tree like Figure 2.

'Rather it is a tree like Figure 1, plus a notation about

where to move the branch leading to d. The mapping of

basic trees onto surface trees is as minimal as the spe-

cified transformations. No explicit mapping is specified

for those parts of the trees which are common. For an

explanation of the difference in these two processes, it is

necessary to look at parsing, the reverse process, in the

LRC model.

Given an input string, the parser must first find

some surface tree which fits the string. Certain input

,strings may be ambiguous, causing this process to find more

than one surface tree to fit the input. These alternate

surface trees are presumably all the ones which some genera-

tive process could have produced to'yielLi the given string.

Thus, the first step in analysis is to write a grammar which

can be used by the process to discover all (and only) the

surface trees for each input string.

The next step of analysis maps surface trees

(found in the first step) into the basic trees from which

they might have been generated. In terms of the examples

of Figures 1 and 2, this means:

b c d e f a b c e d

(Surface) (Base)

Figure 3

6

The resultant base tree is the desired analysis output.

It is the structure which presumably has universal, or

inter lingual, properties that lend themselves to inter-

language translation.

Interlingual mapping has occurred in the LRC

model in two mutually exclusive modes: syntactic or semantic.

The interlingual mapping of base trees onto base trees has

been the semantic mode; the interlinguaZ mapping of surface

trees onto surface trees has been the syntactic mode. Con-

ceptually, the two modes operate identically, differing not

so much in operation as in the level of tree mapped.

The parallelism of the two modes oi mapping has existed

because the form of the base and surface trees has been the

same -- both explicit. Syntactic translation has been

achieved by mapping the explicit surface trees found in the

first step of analysis directly onto equivalent explicit

surface trees of the output language.. Semantic translation

has involved the mapping of explicit surface trees of the

input language, followed by the direct mapping of the explicit

base trees of the input language onto equivalent explicit base

trees of the output language. It is the resultant base trees

which the synthesis process uses to produce output.

Potentially, this method causes a large duplication

of descriptive and operational effort in interlingual mapping.

Syntactic translation is minimal enough, but the semantic

variety is quite another matter. It is probable that the

base and surface trees associated with a particular string

of some language have a number of common substructures. That

7

is, transformations generally do not alter every part of

a surface tree in the process of converting it to ,a base

tree (and vice versa).

Because the LRC model has been designed in the

semantic mode to map only explicit base trees interlingual-

ly, 1.4 has been necessary to reconstitute all the parts of

the input surface trees into the input base trees before

interlingual mapping. For semantic translation this means

duplicate mapling from surface to base trees and from base

treesIto interlingual classes for all structure which is

common to base and surface trees. This pair of mappings

duplicates the interlingual mapping specified for syntactic

level translation, creating much unnecessary work. A

straightforward simplification can be made.

The transformations of the Chomsky model detail a

mapping from base trees onto surface trees for only those parts

of the two trees which are not identical, creating a rather

economical statement of structure. As mentioned previously,

surface trees are abstract. A minimal statement is achieved

for the generative process with the explicit base trees and

a set,of transformations which would yield a surface tree.

The mapping of base structure into identical surface struc-

ture is not explicitly stated. This kind of mininlal state-

ment has value for the LRC model.

It appears that surface trees must be in an

explicAt form in the analysis process[15]. Given this require-

ment, economy may be achieved by specifying a set of trans-

formation-like operations to define abstract base trees.

8

4

4

This specification will affect the way in which semantic

quality translation operates, but not syntactic. In syn-

tactic translation, the first phase of input language ana-

lysis will continue to use a surface grammar to find explicit

surface trees. These trees will still be interlingually

mapped onto equivalent output language surface trees, followed

by synthesis of output strings.

Second order parsing and interlingual mapping will

be changed for semantic translation. The LRC model has

required a grammatical interface between the first and

second orders of description. That is, all parts of the

surface structure have had to be redefined as second order

primitive classes. This requirement has been a prerequisite

for mapping surface trees into explicit base trees. An

undesirable side effect has been the necessity to re-state

all surface structure in an interface grammar (semantic

level dictionary rules), resulting in a rather large number

of one-member second order primitive classes. Such classes

have merely re-named the already-resolved surface structure

just to meet the interface and explicit base tree require-

ments of semantic translation.

Having decided to use abstract base trees, we

can relax the definition of the second order. The second

order grammar may have complete and direct access to the

surface structures found by the first order. Thus, first

order structure may either be directly referenced by second

order rules or it may be classified into more inclusive

second order terminal rules before higher level second

order rules are applied. These terminal rules would be

9

functional intermediate classifications defining whole

classes of surface structure upon which a higher second

order rule may operate, in contrast with the wholesale

reclassification previously required in the inter-order

interface.

Permitting the second order to reference the

first order directly suggests a minimization in the gram -

mare That is, the second order grammar need only operate

upon those parts of the explicit surface structure which

musk. V,n changed. Correspondingly, interlingual mapping

would be provided only for that base structure mapped from

unlike surface structure, but not for structure which remains

the same. The latter could be mapped with the same inter -

lingua,l mappings used for syntactic translation. There

would be no reason to duplicate the interlingual mappings

for unchanging structure. Therefore, semantic quality

translation would involve transfer of both second-order

structure and remaining (unchanged) first-order structure.

There is no particular reason to posit two

orders, of interlingual mapping. Instead we may think of

translation as a collection of mappings from either or both

orders of structure. If we decided not to run the second-

order parser, the input string could only be resolved into

a surface structure. Correspondingly, only those mappings

for surface structures could be involved in the interlingual

mapping process, resulting in syntactic translation. If we

chose to run the process through both orders of parsin,

interlingual mapping would occur from both levels of structlzre,

yielding the equivalent to what we have been calling semantic

10

translation. Both descriptively and operationally it

would be more efficient.

Additional features might be needed to accom-

plish "semantic" translation. The rules used in the LRC

model for the surface grammar have been; context-free and

unordered. They have not been exactly context-free, how-

ever, for certain operators available on the terms of the

rules have made this a more powerful kind of grammar.

These surface grammars assign superscripts to the surface

structure so the input elements may be reordered. A second-

order grammar, also roughly context-free and unordered,

presumably resolves a little more of the structure. There

are many kinds of grammars with which to describe languages

and there is a great deal of debate among linguists as to

which ones are the most suitable for describing natural

languages. Some formal statements are available concerning

grammars which are unnecessarily restrictive and therefore

unsuitable for describing natural language. There is no

statement, however, about which of the remaining grammars

is best. Most of the known grammars have been put into a

hierarchical arrangement which tells something about their

relative powers for description, as follows:

Unrestricted Rewriting System

Context Sensitive Grammar

Context Free Grammar

1I

.0.0

Meta- linear Grammar

Linear Grammar

One-sided Linear Grammar

The most powerful type of grammar is an un-

restricted rewriting system, which can rewrite any set

of syitbols with any other set of symbols. At the other

end of the scale is something called a one-sided linear

grammar, which is perhaps the weakest. A left one-sided

linear grammar generates structures of the following

type:

A right one-sided linear grammar generates structures

such as:

Neither of these structures, in itself, is adequate for

describing natural languages.

12

4

The power implied by the hierarchical arrange-

ment above is only one of two ways in which grammatical

power can be measured. The grammars near the top of the

scale have a greater weak generative capacity. That is,

they are able to account for more strings of more kinds

of.languages than those at the bottom. Strong generative

capacity increases as it approaches the bottom of this

hierarchy. Grammars with strong,generative capacity assign

the fewest alternate structures to the strings of a language.

Correspondingly, the grammars at the bottom of this hierarchy

are so restrictive that they assign only one structure per

input strings

Somewhere between the extremes is the grammar

best suited to natural language description. LRC has used

context free grammars, whereas transformationalists have

used context sensitive grammars for the base. However, the

grammars used at the MITRE Corporation for transformational

surface parsing have been context free [15]. MITRE linguists

observe that CF grammars generate quite a few more alternate

structures than they prefer. For this reason they have

been experimenting with CS .grammars in order to reduce the

number of alternate surface trees generated by the input

grammar.

According to the measure of strong generative

capacity, CS grammars should generate more alternate sur-

face structures than CF grammars. ny, then, should MITRE

be considering the use of CS grammars for controlling alter-

nate structures? The answer to this apparent paradox lies

in the fact that formal statements about generative capacity

13

can only be made in general. It is, of course, possible to

write a CS grammar which is simply a re-statement of all the

features represented in a CF grammar. In such a case, it

would be impossible to claim that either of these equivalent

grammars had more or less weak or strong generative capacity.

Such CS grammars, which are exceptions to the general state-

ment, will be instrumental in increasing the strong generative

capaCity in the description of particular languages.

In general, CS grammars may impose controls on the

rewriting of strings (by the use of context) which permit

more languages to be described than CF grammars. The cost

of such power is an increase in the number of alternate

structures, depending upon the kinds of things to be accom-

plished with context sensitive grammars. That is, we may

write a rule which has more restrictive context for one pur-

pose and less restrictive context for another purpose. The

two together may provide enough additional power to describe

more strings than a context free grammar. However, if the

more restrictive context of one such rule is included within

the less restrictive context of another rule, overlapping

structures may occur. It is possible to reduce this overlap

or to eliminate it by assuring that the grammar has the same

restrictiveness or lack of it in every rule, i.e. the same

number of context terms. The result of such a restriction

is, in effect, a context free grammar. By increasing its

strong generative capacity we have decreased its weak genera-

tive capacity and reduced the number of strings for which

the grammar is able to account.

The alternation described above is peculiar to

context sensitive rules. There is a second type of alternation,

14

common to both CF and CS grammars. Two completely

independent sections of the same grammar may account for

the same strings in different ways. To the extent that rules

from one of these sections can be discarded, there is out-

right duplication in the grammar -- an accounting for some-

thing already accounted for. This alternation (duplication)

is controllable because the grammar may be improved by

discarding the offending section of rules. The first kind

of alternation is not necessarily controllable; it occurs

when there are two irreducible sections of grammar only a

common subset of whose strings are duplicately accounted for.

Discarding one section of rules would eliminate alternation,

but it would also eliminate the structure for the non-

alternating stTiAgs. The only solution is to rewrite both

sections of the grammar to eliminate the overlap. If CS

rules are required to account for the strings, it may not be

possible to eliminate the overlap completely.

Now let us consider the matter of mixed grammars.

Start with a completely context sensitive grammar of some

language; then divide the grammar into two parts, A and B.

Into part A put the set of CS rules which are strongly

equivalent to some set of context free rules. Into part B

put the remaining rules, which can in no way be reduced to

CF rules. Next, define a subgrammar A' which contains the

set of CF rules equivalent to the CS rules in part A.

It would be tempting to say that part A has

greater weak and lesser strong generative capacities than

part A'. But this simply is not so. They are equivalent.

15

By the same token, a grammar comprised of A and B has

identical capacities with a grammar comprised of A' and B.

If we were able to write a CF grammar strongly equivalent

to CS grammar A -B we would still be forced to admit that

their generative capacities are identical. Particular CS

grammars may be written which are strongly equivalent to

particular CF grammars.

Clearly, this proves that there may be some

particular pair of grammars for which the general statement

about CS generative capacities relative to those of CF does

not hold. More importantly, for particular (sub)strings,

we may write a CS grammar which has greater strong genera-

tive capacity than a corresponding CF grammar. For example,

consider a language with a single string aaan to which we

want to assign only the following structure:

Figure 4

The following unordered CS grammar will yield only this

structure:

16

a 4 A

n a N

AA 4 A/ N

AN 4 X

There is no unordered CF grammar which can assign only this

structure. We must settle for a CF grammar like the following:

a 4 A

.n N

AA 4 A

AN 4 X

It is undeniably true that particular (sub)strings

may be describable by particular CS grammars with greater

strong generative capacity than CF grammars. It happens to

be true in this example because rule AA 4 A is applicable

in fewer contexts with the CS grammar than.with the CF

grammar. Such examples may well occur in natural language.

With proper care, we should be able to partition a language

into sets of substrings so that the subgrammars for these

sets are mutually exclusive. It is entirely plausible that

fore any given set of substrings we may write a CS grammar

with greater strong generative capacity than any CF grammar.

If each particular subgrammar is written to obtain the greatest

strong generative capacity, the total grammar is assured of

having the greatest strong generative capacity. Any Eau-
cular such grammar may well have a mixture of CS and CF

rules.

The LRC model has the capacity to handle CS as

well as CF rules. However, in the interest of establishing

minimal operating systems on the CD 6600 as soon as possible,

implementation of context sensitivity will be delayed. As

17

soon as a context free parser is available for linguistic

use, an augmented version (with CS features) will be added.

One other matter to be considered is ordering

versus non-ordering of the grammatical rules. Ordering

places restrictions on the application of the grammar.'

Out of all the possible structures one could get by freely

applying the rules in any order, ordering causes only a

subiet to be realized. Any grammar may be applied in an

ordered or unordered manner. Ordering has to do only with

the application process, not the type of grammar. The LRC

parser uses unordered grammars, while transformationalists

use ordered grammars. McCawley[8] has questioned the use

of ordering in the base component of transformational grammars.

At this time, the arguments for and against ordering seem

equally valid. In the absence of a definitive statement, the

LRC parser will continue to apply grammars in an unordered

fashion.

The next problem of some importance in the model

is accounting for discontinuity of elements. Its solution

involves bringing together (potentially) isolated parts of

the structure so they may function as a unit. There are

many ways in which this may be accomplished. Transforma-

tionalists specify transformations to reshape the structure.

The solution in the LRC model has been: the right-hand terms

of the surface grammar rules are numbered with superscripts

(using S operators), which may assign the terms a standard

or non-standard order, reading left to right. When surface

parsing has been completed for a given input string, derived

18

La101061111mm._._.__

superscripts are calculated. This process assigns each

branch of the surface tree a unique number by comparing

superscripts of the branches with respect to each other.

The derived superscripts define a new, standardized order

for the elements of the input string. So, by the proper

assignment of superscripts in the surface grammar, we are

able to logically, if not physically, bring together dis-

continuous elements of the input string. The standardized

string is then made available to second-order parsing, which

is able to recognize the previously discontinuous elements

with immediate-constituent rules.

There is, however, a serious deficiency in this

method of handling discontinuity. Trans.ormational theory

provides the power to operate upon a tree iteratively. A

series of transformations may be specified which reshape a

tree many times before it arrives at its final form.

Obviously with only two levels of analysis, the LRC parser

has permitted only one set of transformations, not an itera-

tion. To achieve iterative operations upon discontinuities

one would need n orders of analysis, with n superscripted

grammars to match. Derived superscripts would be calculated

after each order, and the input string logically reordered

each time.

Certainly an analysis of n orders is unthinkable.

Whether we need iterative access to discontinuities at all

is questionable. For the majority of cases we can probably,

dispense with iterative methods and simulate iterate treat-

ment of a particular discontinuity in a single order of

19

parsing, which is all the LRC model has been prepared to

handle. Even if we could "artifically" handle all discon-

tinuity in this manner, superscripting would still be

cumbersome. The more complex a discontinuity (the more

elements there are involved in a total structure) the more

difficult the task of assigning superscripts becomes.

In all intractable cases, we would probably have to write

separate subgrammars in order to acquire the proper derived

superscripts. Such a practice would undoubtedly lead to

outright duplication in the surface grammar, all for the

sake of producing different orderings of the input string

for second-order analysis. It is questionable whether

language can be adequately described in such a manner and

whether the surface parser can handle the burden of the

redundant grammars.

There is no reason to handle discontinuity in

this manner, for iterative or non-iterative treatment of

discontinuity can be handled by application of discontinuous

rules. Such rules are more disorderly than immediate-

constituent rules, but they permit us to free the parser

from the constraints imposed by superscripting. The appli-

cation of discontinuous rules would be the primary function

of the new second order. The question is: why separate

the treatment of discontinuity into a special order, parti-

cularly into the second order rather than the first? We

might say that "bringing together isolated parts of the

structure so they may function as a unit" is in the nature

of mapping surface structure into the base structure. In

other words, discontinuous elements are separated because

20

the. surface structure dictates that they should be. When we

say that discontinuous elements are functioning as a unit, we

are simply noting that in the basic structure they are

immediate neighbors and structurally related, despite their

surface relationship. Thus, second order application of

discontinuous rules becomes the mapping of elements which

were discontinuous in the surface structure into adjacent

positions in the base structure.

How can second order use of discontinuous rules

be made to function properly in the translation process?

They would appear to classify isolated elements of the input

without any contextual reference. How, without this reference,

is the synthesis process able to decide where to put the

corresponding discontinuous elements? The answer is simply

that there always is contextual reference. Because these

rules operate at the second order upon the first order

structure, the surface,structure gives the context. When

the parser applies a discontinuous rule, it "remembers"

where it found the elements and what their relationship was

to all the other elements in the surface structure. The

translation process preserves this information gleaned by

analysis, carries it through interlingual mapping, and

makes it available when synthesis is trying to construct an

output surface tree.

If we now regard interlingual mapping as occurring

at all levels of structure simultaneously, the interlingual

transfer of discontinuity information is descriptively mini-

mal. Consider the following equivalent examples:

21

Figure S

T
6

T
1

T
2

T
S.

The structure below the left-hand example is intended to

reflect second order structure. There is no reason to

require that the second order resolution of wait on involve

second order resolution of bedienen. The treatment of dis-

continuity entails minimal description so long as the inter-

lingual mappings (Tx) are common to all structural levels

and the equivalent structures are commonly named (T6 in

particular).

Discontinuous rules do not eliminate the need

for superscripting in the model. Superscripts are also used

to preserve information concerning connections between inter-

lingual classes. The argument that discontinuity is better

handled by discontinuous rules than by superscripts has

already been advanced. A preferable scheme for maintaining

interlingual class connection information will be offered

22

here. Thus, the use of superscripts in monolingual grammars

will no longer exist as a feature of the model. Their func-

tion will be replaced by discontinuous rules and the following

scheme for coding interlingual connection information in the

interlingual grammars.

In the examples of Figure 5, each Tx is connected

to other Tx's at particular branch points of the monolingual

structure. As mentioned earlier, the set of derived super-

scripts computed for any such structure assigns unique

numbers to each branch of the tree.: These unique numbers

are used in transferring connection information from one

languAge to another. There is no reason to give a name to

every branch of the monolingual structure; names are needed

only at the connection points. Monolingual grammars cannot

contain information about which branches meet these

qualifications, but interlingual grammars can and do.

Interlingual rules have always contained operators de-

fining connection points within each class. For example,

the rules for interlingual class T1 in the examples of

Figure 5 would have only two such operators. These operators

tell :the translation process which branch-names of the mono-

lingual structure to "remember" as interlingual connection

points. The process correspondingly remembers the (unique)

derived superscript numbers of the appropriate branches of

the input structure. These names become the interlingual

connection points of the output structures having correspond-

ing derived superscripts.

There is no reason for the process to "remember"

a derived superscript' number just to name each connection

point indicated by an interlingual rule. A unique name could

be coded with each. connection operator in the interlingual

rule. It is not at all necessary for every connection

operator in the grammar to have a unique name; connection

names need only be unique within each interlingual class.

In any event, putting the connection names into the inter-

lingual rules reduces the amount of branch naming previously

inducod by the superscripts in the monolingual grammars.

Consider the following examples:

::put

Figure 6

uaoe

X's serve as interlingual class names and Greek letters as

connection branch names. Interlingual parsing would assign

these names from its grammar, as above, and then create

connection information. This information would specify

which interlingual class was connected at each connecting

branch:

24

[Xi, a] : X
4

[X1, B] : X
3

1X1, y] : X
2

[X2, a] : X5

There' is no connecting information for classes X3, X4, and

X
5
because they are terminal.

To reorder interlingual classes for the output

language, it is necessary to control the assignment of

connecting names in interlingual rules. Connecting names

need be unique only within an interlingual class, and they

are common to all languages having that class. In the example,

the connection names have been assigned in such a way as to

cause the dependent classes X4, X3, X2 of the input language

to be reordered as X3, X2, X4 in the output language. This

is accomplished in synthesis as follows. Starting with Xi,

in the output language, synthesis may decide to connect the

proper class at branch 0. Looking in the table of connection

information, it finds that X3 is to be connected there.

Synthesis then finds all output language structures inter-

lingually classified as X3 and tries to connect them at

Xi - 3. Next it may decide to extend X1 y, etc., until all

connections have been made in the output language.

The consequences of this sequence for the

descriptive process are obvious. First, we may define a

set of interlingual classes which are mutually satisfactory

for all languages. Then each language may be described with

structures completely satisfactory to that particular

25

language, just so long as it is possible to map all the

structural pieces of that language into the chosen inter-

lingual classes. When the various languages have been indi-

vidually described, it is merely necessary to return to the

collection of interlingual classes and agree upon mutual

names for the branches involved in connecting the inter-

lingual classes. For example, in order to assure that the

branches for one language structure mapped into interlingual

class X
1
are in a different order with respect to those for

another language, it is necessary to define a set of names

for interlingual class X1 and assign them 'to the connecting

branches for interlingual class X1 in such a way that the

corresponding branches in the two languages have the same

name.

There is one further matter to be considered with

regard to interlingual mapping. In the LRC model it has

been necessary for all structures mapped into the same inter-

lingual class to have the same degree, i.e. the same number

of connecting branches. If, for example, five interlingual

classes are connected on the input, five have been required

in the output. Thus, the problem of specifying what the

process is to do when there are different amounts of struc-

ture interlingually mapped is avoided. With the new type

of mapping, we can re-examine this restriction and loosen

it up a bit. Consider, for example, Xs to be some kind

92 distinction in the input language that is not needed in

the output language. Why not write X2 in such a way

that the input language has a connecting branch named a

(for X5) while the output has no corresponding branch for

X2? The synthesis process would then ignore X5 because

there would be no place to correct it. As i:"lustrated, the

output language would involve only four of the interlingual

classes discovered for the input language.

The loss of X5 in translation is not at all

unnatural. Furthermore, as suggested in the examples, both

structures classified as X
2

are well-formed. It happens

that for X2 the input language has a rule with one terminal,

and one non-terminal symbol, while the output language has

a rule with only terminal symbols (four). A problem would

arise, of course, if we wanted to translate in the reverse

direction. In effect it would be necessary to acquire the

distinction X5 not made in the input language.

There are two ways to handle this problem. First.,

we could simply say that we do not have any such thing as

a reversable translation. Rather, we write our grammars in

such a way that the input language always has greater than

or equal to the number of interlingual classes of the output

language. Secondly, we could solve the problem in this way.

If, for example, the class X5 appears in the output, not

having appeared in the input, we might let the monolingual

grammar of the output language be of assistance. Synthesis

is Aide to detect that class X2 has a connecting branch in

the output language which was not in the input. This

is easily recognized because the output monolingual rule

for X 2 has a connecting branch but there is no combination

(X
2'

a) in the connection table. This could signal that

synthesis is responsible for generating certain new structure

27

in the output which was not in the input. In particular,

,the distinction made by interlingual class Xc could be generated.
4

The unsatisfied connection point will have a non-terminal

symbol. The synthesis process can be made to generate all

possible subtrees starting with that non-terminal symbol,

it should generate all possible distinctions Xs. Further

thought must be given to how we would want this generation to

be controlled. Meanwhile, we can require that the input lan-

guage always have the same or a greater number of connecting

branches than the output for each interlingual class.

Finally, there is the minor matter of deciding just

what is an equal number of branch names in the interlingual

class being translated. To do this, we count the number of

different connecting branch names occurring within each

interlingual class for the input language and the output lan-

guage and compare them. Languages with and without reflexivity

may be mapped into each other more freely by reusing connecting

branch names for related parts. For example:

Figure 7

28

In this case,T1 is considered to have the same degree (2)

in both languages.

In summary, feattire changes proposed for the

parsers, synthesizers, and translators of the LRC model are:

1. Eliminate superscripting in monolingual

grammars.

2. Cause interlingual mapping across all

levels of structure, which would reduce

second order structure to a minimum.

3. Code interlingual connection information

on interlingual rules.

4. Introduce discontinuous rules to the

second order parser.

5. Add context-sensitivity to the parsing and

synthesizing grammars.

Details of the remaining processes of the LRC model

wil:lbe presented in later papers.

29

BIBLIOGRAPHY

1. Emmon W. Bach, An Introduction to Transformational
Grammars, New York=r7Trrie546irrrffiligr6777064.

Emmon W. Bach, "Nouns and Noun Phrases," paper
presented at the Symposium on Universals in Linguistic
Theory, The University of Texas at Austin, April 14,

1967.

Noam Chomsky, Si4tactic Structures, The Hague: Mouton

and Company, 19

4. Nodm Chomsky, "Formal Properties of Grammars," Handbook
of Mathematical Ps cholo , Vol. II, edited by rae,
planter an New ork: Wiley and Sons, 1963.

5. Noam Chomsky, As effects of the Theory of
The M.I.T. Press, 1965.

6. Jerrold J. Katz and Jerry A. Fodor, "The Structure of
a Semantic Theory," The Structure of Lanalue, edited

by Fodor and Katz, EriETOUUTTIrrfrr Prentice-Hall,'
1905, pp. 4'/9-5180

7. Susumu Kuno, "A System for Transformational Analysis,"
MATHEMATICAL LINGUISTICS AND AUTOMATIC TRANSLATION,
Cambridge: Harvard University Computation Laboratory,

August, 1965

8. James D. McCawley, "Concerning the Base Component of a

Transformational Grammar," Ditto (Revised), Chicago:
University of Chicago, August, 1966.

9. Readin s in Automatic Language Processing, David G.

lays, e itor7=77751: merican Elsevier Publishing

Company, 1966.

10. Arnold C. Satterthwait, "Programming Languages for
Computational Linguistics," Advances in Computers,,
7:221-225, edited by Franz 147XTralinkrris Rubinoff,
New York: Academic Press, 1966.

30

11. "Symposium on the Current Status of Research," LRC 63
SR-1, Austin: Linguistics Research Center, October,
1963.

12. "Thirteenth Quarterly Progress Report (1 May 1962-
31 July 1962)," Austin: Linguistics Research Center,
July, 1962.

13. Wayne Tosh, Syntactic Translation,, The Hague: Mouton
and Company, 1665.

14. Victor H. Yngve, "A Framework for Syntactic Translation,"
Mechanical Translation, 4:59-65 (December, 1957).

15. Arnold M. Zwicky, et al, "The MITRE Syntactic Analysis
Procedure for Transformational Grammars," AFIPS Con-
ference Proceedings, 1965, (Fall Joint Computer
ConrerenCe), 21:317-32-67

