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PREFACE

The Division of Building Research of the National

Research Council of Canada gladly includes this annotated

bibliography in its series of publications as a part of

its share in this joint venture with McGill University.

Architectural acoustics is a subject of growing im-

portance in Canada and is an important subject in the Di-

vision's research program. DBR/NRC was, therefore, glad to

co-operate with Professor John Bland, Director of the McGill

School of Architecture, and the author, in the work result-

ing in this publication and to provide some financial as-

si stance.

The author is an acoustical consultant of Montreal who

now lectures on architectural acoustics at both McGill Uni-

versity and the University of Montreal. The work represented

by this Bibliography was carried out at McGill University in

partial fulfillment of the requirements for the degree of

Master of Architecture, a degree which he now holds.

The4inished Bibliography is considered by the Division

to be of real value. It is hoped, and indeed expected, that

this volume will prove of value to architects and all con-

cerned with architectural acoustics not only in Canada but

wherever attention is being given to the improvement of

acoustics as a part of the steady advance of building design.

January 1965 Robert F. Legget
Director
Division of Building Research
National Research Council
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INTRODUCTION

The enormous increase of noise sources inside and outside

our buildings, the simultaneous shift from heavy, traditional

building constructions to thin, light-weight, moveable and pre-

fabricated building elements, in conjunction with the growing

demand for improved hearing conditions in Auditoria, have made

architectural acoustics an essential component in the environ-

mental control of buildings.

Architectural acoustics, in both the fields of scientific re-

search and practical application, has progressed further in the

past few decades than during all preceding time, and consequently

the amount of pertinent literature has reached an unprecedented

high. It seemed to be worthy, therefore, to prepare an annotated

bibliography on architectural acoustics for the assistance of

those involved in architectural design problems, i.e., the archi-

tect, the engineer (mechanical and structural), the town planner,

the builder, and the student of architecture and architectural

acoustics. Less directly this work will be of value to anybody

interested in the practical application of acoustics.

In compiling this annotated bibliography it was not intended

to add another reference book on architectural acoustics to

those already available, instead, the purpose was:

(a) to compile a classified bibliography, including most of

those publications (books, booklets, articles, research

papers, reports, bulletins, pamphlets, standards, codes,

etc.) on architectural acoustics, published in English,

French,and German which, in the writer's opinion, can

supply a useful and up-to-date source of information

for those encountering any architectural-acoustical de-

sign problem;

(b) to classify the entire field of architectural acoustics

into a comprehensive system within which every related

topic has its distinct place; and



(c) to stress the close relationship between acoustical per-

formance and architectural expression throughout the at-

tire field of architectural acoustics.

The bibliography is, therefore, the essential part of this

work and in order to ensure its efficient use, it has been divided

into several parts called "References", each one attached to the

corresponding Section. Thus, for example, bibliographical entries

relayed to Section G, "Acoustical Design of Rooms for Speech",

will be found at the end of Section G. Whenever the text refers

to art entry in the "References", the letter designating the re-

levant Section will be used hyphenated to the item number'of the

respective bibliographic entry in question; for example, "J.46"

refers to the 76th entry within the "References" listed at the

end of Section. J, "Acoustical Design of Studios" ("Broadcast

Studio Redesign by L.L. Beranek. J. MOTE, vol. 64, Oct. 1955,

p. 550-559.").

Near the end of this work a "GENERAL BIBLIOGRAPHY" will be

found, listing various publications of universal scope on archit-

ectural acoustics. When referring in the text to entries of this

"GENERAL BIBLIOGRAPHY", the letters GB will be used, hyphenated

to the item number of that particular bibliographic entry in
,1

question; for example, "GB-43" refers to the 43rd item of the

"GENERAL BIBLIOGRAPHY" ("Acoustics, Noise and Buildings by P.H.

Parkin and H.R. Humphreys. Frederick A. Praeger, New York, 1958,

pp. 331").

By and large, the "References" and the "GENERAL BIBLIOGRAPHY"

contain moat of the publications written on architectural acous-

tics published after 1940 in the English, French and German lan-

guages. However, some publications, written before 1940, which

either supply in some way useful information or are of signifi-

cance in the development of certain aspects in architectural

acoustics, have also been incorporated in this work.

4.

Pt
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Of the publications which deal with identical or similar

subjects, only those have been included in the "References"

which, in the writer's opinion, are the most instructive. Pub-

lications discussing subjects of purely local interest or with-

out noteworthy contribution to the solution of problems in ar-

chitectural acoustics have been omitted from the "References".

Due to the large number of entries included in the "Referen-

ces" and considering the fact that the time allotted by the de-

signers of buildings for research in the technical literature is

usually very limited, it seemed to be advisable to mark with "4."

those entries which, from a purely practical point of view, are

particularly recommended for reading. This marking, however, does

not intend to suggest a qualitative rating of the publications.

The reading of the publications listed without this mark is

equally recommended, if the reader has sufficient time to do so.

Abbreviations used in the "References" and in the "GENERAL

BIBLIOGRAPHT" have been listed previous to this Introduction.

Quick reference to any subject in architectural acoustics

can be found either by the use of the "Table of Contents" or

through the "Subject Index" at the end of this work.

This annotated bibliography has been divided into three

parts, as follows:

PART I. ARCHITECTURAL ACOUSTICS IN GENERAL. This part

outlines the significance of acoustics in architectural

design and determines its position within the environ-

mental control of buildings;

points to noteworthy achievements in the history of ar-

chitectural acoustics; and

- discusses briefly acoustical relationships and terms of

importance (such as frequency, loudness, the ear and hear-

ing, timbre, masking, etc.) which will be used or re-

ferred to in succeeding Sections.



PART II. ROOM ACOUSTICS. This part

- deals with acoustical phenomena in enclosed spaces (such

as sound reflection, sound absorption, reverberation,

diffusion, etc.);

- classifies and describes the materials and constructions

used for architectural-acoustic purposes;

- discusses acoustical requirements in Auditorium design;

- divides the architectural spaces, used for listening

purposes, into four groups: (1) Auditoria for speech,

e.g.,Theaters, Lecture Halls, Congress Halls, Conference

Rooms, etc.; (2) Rooms for music, such as Concert Halls,

Opera Houses, etc.; (3) Places of assembly with mixed

acoustical requirements, i.e., used for speech and music,

such as Churches, Motion Picture Theaters, Open -Air

Theaters, etc.; (4) Studios, requiring special consid-

eration and care in their acoustical design, such as

Radio and Television Studios, etc.;

describes ways in which the acoustics of an Auditorium

can be checked during the design stage and after the

completion of the building;

- gives information on sound amplification systems used

in various Auditoria.

PART III. NOISE CONTROL. This part

- refers to the general principles of noise control and

advises on the methods to be followed in the elimination

or reduction of noises in buildings;

- deals with sound insulating building constructions,

such as,walls, floors, doors and windows, and calls at-

tention to the factors affecting the acoustical perfor-

mance of these enclosures;

outlines the control of mechanical noises and vibrations

dine to water systems, ventilating and air-conditioning

equipment and machinery;

4,
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surveys the various noise criteria usually discussed in

the literature and used in practice;

- describes practical aspects to be followed in the noise

control of various types of buildings; such as, Auditoria,

Residential Buildings, Schools, Hospitals, Offices, Sound

Laboratories, Industrial Buildings, etc.

For practical reasons, theoretical aspects of architectural

acoustics and also mathematical relationships have been reduced

to a minimum in the annotations.

Experience has proven that the acoustical performance of a

building will eventually depend on the attention that has been

given by the designer to acoustical aspects in the design, de-

tailing and specifying of that particular job. To do so, the de-

signers of the buildings must have a basic understanding of the

relevant architectural acoustical principles and their appropri-

ate application. It is for this reason that in the preparation

of this annotated bibliography particular attention has been

given to the specific needs of those responsible for building

design. Although it may be necessary to retain the services

of a competent acoustical consultant, it rests with the architect

to see that acoustical requirements are recognised and respected

in the initial stages of architectural design. Society right-

fully expects that ideal environmental conditions, essential to

our comfort, health and happiness, and necessary to free our

energies for productive work, be achieved in our buildings by

their designers.
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PART I.
ARCHITECTURAL ACOUSTICS

IN GENERAL
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Section A. Significance of Acoustics in Architectural Design

A.1 The place of architectural acoustics in the
environmental control of buildings

A.2 Acoustical problems in contemporary architect-
ural design

References
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A.1 The place of architectural acoustics in the environmental

control of buildings

The remarkable development of the engineering sciences has

reached the stage where, in today's architectural practice, a

building does much more than simply provide shelter and pro-

tection for its occupants against the extremities and fluctu-

ations (thermal, atmospheric, sonic, luminous and spatial) of

the exterior world. Contemporary environmental control can cre-

ate a complex, artificial environment in buildings, that will

meet all the physical, physiological and psychological demands

of the occupants. This artilcially-created, "synthetic" environ-

ment is, therefore, in many respects superior to the natural one.

Thus, Sound Control, constituting a branch in the environment-

al control of buildings, can create an artificial sonic environ-

ment in which:

(a) ideal hearing conditions will be provided both in en-

closed spaces and in the open air; and

(b) the occupants of the buildings will be adequately pro-

tected against excessive noises and vibrations harmful

to human well-being, health and productivity.

Accordingly, the sound control of buildings has two goals:

(a) to provide the most favorable hearing conditions for the

production, transmission and perception of wanted sounds

(speech, music, etc.) inside the rooms used for various

listening purposes, or in the open air. This field of

sound control is called ROOM ACOUSTICS and will be cover-

ed in Part

(b) the exclusion or reasonable reduction of noises (unwanted

sounds) and vibrations. This range of sound control is

termed as NOISE CONTROL and will be dealt with in Part III.
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The problems of ROOM ACOUSTICS and NOISE CONTROL are natur-

ally interrelated and interdependentjand cannot be separated

from one another. As will be discussed later, the elimination

of noise plays an important role in the room acoustical design

of Auditoria; similarly, room acoustical problems are involved

in the noire control of rooms.

A.2 Acoustical problems in contemporary architectural design

Continuous improvements during the last decade in building
technology and a gradual shift in the basic concept of architec-
tural design have made acoustics an important factor affecting
the performance of architectural spaces (A-20). Following are
the main factors which have made architectural acoustics a con-
tributing participant in the environmental control of buildings

(A-1, A-3):
(A) An incredible number of Auditoria (i.e., Theaters,

Churches, Lecture Halls, Studios, Concert Halls, etc.)
are being built all over the world. The large sizes and

capacities of many of these Auditoria have created room

acoustical problems which definitely could not have

been resolved a few decades ago. In addition, the con-

temporary trend in architectural design practice of

using plain, uninterrupted, hard (i.e.,sound reflective)

surface treatments with little, if any, ornamentation,

has had a detrimental affect upon the acoustics of

Auditoria.

(B) In the structural and constructional field there is a

continuously and rapidly increasing use of light-weight

building materials and constructions. Prefabricated

elements are being used for both exterior and interior

walls, for partitions, floors, and suspended ceilings
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(A-21). Furthermore there is a growing demand for the
flexibility and movability of partitions. All these
elements lack the most important feature of an efficient
sound insulating enclosure, i.e., sass. In addition, un-
fortunately, they do promote the harmful transmission
of noise through gaps and open spaces created by the
jointing of prefabricated elements and by the noise-
radiating characteristics of thin, light-weight building

panels.

(C) A gradual change can be observed in the basic concept

of architectural design. This trend advocates that spaces

in a building, instead of being separated from one an-

other, should be rather integrated into visually undi-
vided, large units without enclosures, continuing through
open screens, grilles, space dividers, glazed barriers

and curtain walls (A-20). Even though this design con-

cept generally creates pleasant interiors, it must be

noted that the desire for open plans and undivided in-
terior spaces conflicts with the exclusion of unwanted,

penetrating noises and brings about noise control prob..

leas (A-21).

(D) In the mechanical field the buildings are becoming in-
creasingly mechanized; many components of the heating,

ventilating and air conditioning systems (fans, diffusers,

compressors, cooling towers, etc.), the various work as-

chines (such as typewriters, computers, etc.) and also
various household articles of equipment unfortunately
all contribute to the noise pattern of a building (A-16).

A contemporary office building is, in fact, entirely in-
terwoven with a most comprehensive network of noise and
vibration transmitting ducts, shafts, cables, conduits,

wiring, etc. (A-21). In addition to these interior (me-
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chanical) noisea new exterior noise sources are coming

into existence, originating from the existing and new

industries and from transportation (jets, trucks, etc.).

The exclusion or reasonable reduction of these interior

and exterior noises constitutes a serious acoustical

problem.

The increasing demand for various Auditoria all over the

world involves not only quantitative but also qualitative re-

quirements. No longer will an audience or a professional critic

excuse the erection of an Auditorium having any serious acous-

tical defect. Church Halls, built in the past with long rever-

beration times for services in which musical and choral presen-

tations prevailed, today are also used for sermons with special

emphasis laid on the intelligibility of the speech. It is a

difficult problem, even for a qualified acoustical expert, to

provide equally favorable hearing conditions within the same Church

Hall for organ, nhoirAnd sermon alike, without altering the rever-

beration time, Large multi-purpose Auditoria are today utilized

- mainly due to bokL.office policy - for a multitude of purposes;

such as,lectures, political rallies, panel discussions, recitals,

stage presentations, concerts, etc. The manifold use of the same

Auditorium imposes a particular task upon the designers which

under normal economic conditions can be solved by an acoustic

compromise only (A-25).

Two circumstances are effectively contributing to the evol-

ution of satisfactory solutions for the diverse acoustical prob-

lems in architectural design:

(A) Since the turn of the 20th centm4 but particularly in

the last few decades, a large amount of theoretical and

practical research work has been conducted in North

America, Europe and Australia, the results of which have

been published and constitute an important part of the

References and GENERAL BIBLIOGRAPHY of this work (A-19).
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Furthermore a large range of electronic instruments has

become available that has enabled us to find answers to

previously unknown acoustical phenomena, many of which

had been labelled before as mysterious.

(B) Simultaneously, the mass production of acoustical maps

terials provides us with the necessary means to control

the various acoustical defects in rooms.

Clearly designers of buildings must possess a basic under-

standing of the acoustic principles and requirements if they are

to solve their pertinent problems (A-2, A-9). They must remember

that it is not the acoustic treatments alone which affeot hearing

conditions in a room. The acoustics of any Auditorium will be

considerably affeoted by a series of seemingly purely architect-

ural considerations with regard to room shape, room proportions,

layout of enclosures, dimensions and distribution of exposed

structural elements (A-16), surface irregularities, fixtures,

seating layout and capacity, decorations, etc. (A-25). Practi-

cally,every detail within the enclosed space contributes to a

greater or lesser extent to the acoustical performance of that

particular Auditorium.

The design of an acoustically efficient sound insulating

enclosure will require equally special attention on the part of

the designer. It is not only the material proper of that parti-

cular enclosure that determines efficiency of acoustical insul-

ation but other aspects; such aslconnections to adjacent enclo-

sures, construction joints left unfilled between elements and

around doors, windows, fixtures, pipes or other equipments that

penetrate the enclosure or surface treatment. These details, and

°there'd° affect the sound insulation performance of any en-

closure.

The designers of buildings can be assured that the workman-

like solution of acoustical requirements does not curtail or even

restrict their design freedom. All acoustical problems oan be
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attacked in a number of ways. Contemporary constructional and

interior decorating practice permits that acoustical principles

and requirements be satisfactorily translated into the language

of good architecture (A-18, A-20).

A number of practical examples of Auditoria that combine

high acoustical performance with distinctive architectural ex-

pression will be referred to later in this work.
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The Auditorium, as a place for hearing, has developed from

the classical Open-Air Theaters; however, no reliable evidence

exists that particular consideration was given to acoustical

principles when natural sites were selected and Open-Air Thea-

ters built by the Greeks and Romans (B-10).

There is a considerable literature on the acoustics of the

ancient Open-Air Theaters (B-6, B-7 B-8, 0-13, G-17, I-99,

I-109) but probably too much credit is given to the Greeks and

Romans for acoustical sense in planning. They may well have at-

tempted to solve only the line-of-sight problem and just obtained

reasonable hearing conditions at the same time. They tried to

locate the audience as close as possible to the elevated acting

area or "logeion" (speaking place) by shaping the steeply banked

seating area in a semi-circle which naturally resulted in reason-

ably good hearing. Besides this, the perforaers used large masks

partly to exaggerate their facial expressions and partly to re-

inforce their voice power. Later the Romans built large slanting

roofs above and at both sides of the acting areas which provided

efficient sound reflectors and resulted in at least moderately

satisfactory intelligibility at the remote seats (8 -10).

The Theater at Orange, in France, built about 50 A.D. by

the Romans (Figure B.1) represents a typical example of the an-

cient Open-Air Theaters. The audience area is 340 ft in diameter

and it has a large sound reflective canopy above the acting

area (Bao, B-11, a-a).
The first reference to architectural acoustics in recorded

history is made by Vitruvius (1st century B.C.). In his book

"De Architecture" he describes sounding vases ( "echeia") as being

used in certain Open-Air Theaters but no trace tit these vases;

has ever been found in any ancient Theater.

The Middle Ages inherited from the classical times only an

empirical knowledge of the acoustics of enclosed spaces, conm

sequently, the acoustics of medieval Church Halls, except those
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Figure BA. Theater at Orange (Prance), built about
A.D. 50 by the Romans, representing a
typical example of the ancient Open Air
Theaters. (Reprinted from A History of
Architecture on the Comparative Method
by B. Fletcher, B.T. Botsford, London,
1946).
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small in volume and capacity, can be characterized by their

overwhelming fullness of tone (see subsection H.1), excessive

reverberation and poor intelligibility.

In subsequent centuries a remarkable number of Theaters

were built, sometimes with surprisingly large capacities. The

Teatro Olimpico at Vicenza (Italy), designed by Palladio and

built in 1589 by Scamozzi, had an audience of 3000 (GB-42). The

Teatro Farnese at Parma (Italy), designed by G.B. Aleotti and

built in 1618, had a capacity of 2500. Available descriptions

do not reveal any particular acoustical deficiencies of these

and other contemporary Auditoria (G-13, G-17) .

Until about the beginning of the 19th century, in the de-

sign of Auditoria used primarily for the performance of music

(such as Churches, Opera Houses and Ballrooms), acoustical as-

pects of enclosed spaces, being entirely unknown to the design-

ers, had to be subordinated to other interests. In fact, sound

programs during these centuries (church music, chorale, opera,

symphonic music, etc.) attempted to fit into the prevailing sk.0

coustical conditions of existing Auditoria. Bachls organ music

(in the first half of the 18th century) was composed to fit the

acoustics of Thomas Church in Leipzig (I-11, I-28, I-31). Baroque

and classical music (represented by Handel, Mozart, Beethoven,

etc., from 1600 to 1820) was writ%en to fit the acoustical atmos-

phere of the ballrooms of the aristocrats. The sounds of the

Italian Opera (represented by Donizetti, Rossini, Verdi, etc.,

in the 19th century) fitted into the acoustical environment of

the horseshoe shaped Opera Houses of Milan, London, Paris,

Vienna, New York, etc. (H-120, H-131, H-133, H-134, H-136,

H-137, H-141). Composers of the romantic period (Mendelssohn,

Brahma, Liszt, Debussy, Tchaikovsky, etc.) 19th century) had the

Concert Halls of Vienna, Leipzig, Glasgow, Basel, etc., in mind

(H -22, H-59, H-83 H-88, H-93, H-98, H-106, H-110). Many of
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these 19th century Concert Halls represent 1.° even to day - the

greatest achievements of empirical acoustics before the enormous

progress in the scientific research of the 20th century defined

the problems of contemporary room acoustics (H-3, H-5, H-6).

The designers' attitude in the 19th century is best re-

flected in the following words of Charles Gamier, architect of

the Paris Opera House (Bm10): "I must explain that I have adop-

ted no principle, that ay plan has been based on no theory, and

that I leave success or failure to chance alone" (C. Gamier:

"L' Opera, Paris", 1880).

Before the 20th century only one Auditorium was acoustically

designed in the sense that some consideration was given to emus-

tical requirements and this was Wegner's Festival Opera House,

in Bayreuth, Germany, dedicated in 1876 (H-135, H-140).

In the second half of the 19th century Lord Rayleigh pub-

lished his classical exposition on "The Theory of Sound", how-

ever, it was not until the advent of the 20th century that Prof.

W.C. Sabine of Harvard University did his pioneer work on room

acoustical design (B-2, B-3). It was he who first devised the

coefficient of sound absorption and arrived at a simple relation

between the volume of a room, the amount of sound absorbing mate-

rial in it and its reverberation time. W.C. Sabine thus took

Auditorium acoustics out of the realm of guesswork and estab-

lished it as a systematic branch of engineering science.

From this start the new subject of architectural acous-

tics advanced rapidly. Scientists and engineers undertook theo-

retical and practical research work in room acoustics; its prin-

ciples became established. A large range of electronic instru-

ments became available enabling the physicists to find answers

to previously unknown, sometimes mysterious acoustical problems,

also in the field of auditory phenomena.

In the 30's of this century the cinema has found its voice

(I-98). From this date the high quality recording, amplifying
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and reproducing of sound started to play an important role in

several walks of the scientific, educational, cultural and soc-

ial life. The extraordinary development of radio and television

broadcasting has presented new acoustical problems to solve and

aroused general interest in listening to music.

The mass production of architectural-acoustic materials

has supplied the designers of buildings with the necessary

means to control sound in architectural spaces. The number of

Auditoria which are being built all over the world and require

acoustical considerations, is virtually infinite.

Considering the formidable development of architectural

acoustics, it is noticeable that in the first half of the

20th century progress was more pronounced in the field of

room acoustics. However, in view of today's increasingly

worsening noise conditions and also because of gradual intro-

duction of thin, light-weight and prefabricated constructions

in the building industry, it is anticipated (and in fact has

already been experienced) that in the years to come a compa-

rable progress will take place in the other, hitherto neg-

lected offspring of architectural acoustics, i.e., noise

control.
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C.1 Origin and propagation of sound. Speed of sound

The word"SOUNDPhas two definitions:

(a) physically speaking it is a fluctuation in pressure, a

particle displacement in an elastic medium, like air;

this is objective sound;
(b) physiologically it is an auditory sensation evoked by

the fluctuation described before; this is sub

jective sound.
In this study SOUND will express an auditory sensation pro-

duced through the ear and created by fluctuations in the pres-

sure of air (C-4, C-32). The fluctuations are usually set up

by some vibrating object, e.g. a struck key of a piano or a

plucked string of a guitar.

Sound wave motion is created by outwardly traveling layers

of compression and rarefaction of the air particles, i.e. by

pressure fluctuations (C-1). The air particles that transmit

sound waves do not change their normal positions (C-2); they

vibrate about their equilibrium positions only (which are their

positions when no sound waves are transmitted). The pressure

fluctuations are superimposed on the more or less steady atmos-

pheric pressure and will be picked up by the ear.

A single, full displacement "activity" of the particle is

called a cycle. The distance the particle moves from its

rest position is called amplitude.
The speed of the sound wave motion at 68°P (200C)

room temperature is about 1130 ft per sec (344 m per sec).

In later discussions it will be shown that it is this relative-

ly low speed of sound that leads to the well known acoustical

defects, such as echo and excessive reverberation.
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C.2 Frequency, pitch, wavelength

The number of displacements (vibrations) that the particles

undergo in one second is called frequencyrusually

stated in cycles per second (abbreviated cps or r/s); e.g., if

a string undergoes 261 oscillations in one seccild (261 cps),

it will produce in the ':-ardrum of an observer the subjective

tone of middle "C". Frequency is an objectiTe physical pheno-

menon which can be measured by instruments (C-1, C-2, C-3).

The attribute of an auditory sensation: which enables us to

order sounds on a scale extending from low to high is called

Pitch. It is the subjective physiolclgical equivalent of

frequency. The pitch depends primarily ,Appn the frequency of

the sound stimulus (C-32)0

A sound sensation having pitch is called t o n e

Pure tone (or simple tone) is a sound sensation of a

single frequency characterized, therefore, by its singleness

of pitch. It can be produced by striking a tuning fork. C o m -

p 1 e x tone isasound sensation characterized by more

than one pitch, e.g., that produced on musical instruments.

Whether or not a person heerL a tone as simple or complex de-

pends on ability, experience and listening attitude.

The distance that a sound wave travels during each complete

cycle of vibration, i.e., the distance between the layers of

compression, is called wavelength. The following

constant relationship exists between wavelength, frequency and

speed of sound:

wavelength x frequency = speed of sound.

A normal ear responds to sounds within the audible (audio)

frequency range of about 20 to 20,000 cps, however, frequen-

cies higher than 10,000 cps are of negligible importance for

the intelligibility of speech or for the enjoyment of even

Hi-Fi music. This audio-frequency range varies remarkably with
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different people and different ages (C-7i C-10).

The wavelength of sounds within the frequency range of

20 to 10,000 cps extends from 56 ft to about 1". The consid-

eration of the relationship between frequencies and wave-

lengths of sound waves is quite important in the acoustical

design of Auditoria. Efficient sound absorptive, sound re-

flective or diffusive room enclosures have to be designed in

a fashion so that their dimensions will be comparable to the

wavelengths of those frequencies which have to be absorbed,

reflected or diffused respectively.

C.3 Sound pressure, sound intensity, loudness

The fluctuation in the atmospheric pressure caused by the

vibration of air particles due to a sound wave is called

sound pressure,measured in dyn/cm2 The ear res-

ponds to a very wide range of sound pressures, nevertheless the

pressures themselves are small; e.g., at 1000 cps the faintest

sound that will evoke an auditory sensation in the average per-

son's ear must have a pressure of 0.0003 dyn/cm2 (threshold of

audibility), while sound waves with a pressure of 300 dyn/cm
2

will cause actual pain in the ear (threshold of pain). This

means that the range of sounds which can be perceived by the

human ear vary by a factor of one million in their pressure

(C-1, C-4) .

The dyn/cm
2

scale extends over a too wide range which makes

it somewhat awkward to deal with it. Furthermore it does not

take into account the fact that the ear does not respond equally

to changes of pressures at all levels of intensity. For these

reasons it seemed convenient to measure sound pressures on a

logarithmic scale, called the decibel (abbreviated: dB)

scale. This scale approximately fits the human perception of
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the loudness of sound which is roughly proportional to the lo-

garithm of the sound energy. This implies that sound energies

proportional to 10, 100, and 1000 would produce in the ear

effects proportional to their logarithm, 1, 2, and

3 respectively. If we multiply numbers of this logarithmic

scalc=ty 10, we have established the decibel scale. The unit

of this scale, the decibel, is the smallest Chang' in sound

energy that the average ear can detect (C-25, N-95). The sound

pressure measured on the decibel scale is called sound pressure

level. Sound pressure and sound pressure level are pure physical

quantities (C-5).

Sound pressure levels are measured by a sound level meter.

This consists of a microphone, amplifier and output instrument

which measures the effective sound pressure level in dB. Vari-

ous accessories can be attached to or incorporated into the

basic instrument, according to its required purpose; such as,

frequency analyzer, weighting network, recorder, etc, Sound

level meters, manufactured in various sizes and by many firms,

can be used for a number of purposes in architectural acoustics;

they provide an important instrument in the evaluation and cont-

rol of noise and vibration.

The sound intensity inaspecified direction
at a point is the average rate of sound energy transmitted in

the specified direction through a unit area normal to this di-

rection at the point considered (C-32). Sound intensity is ex-

pressed in watt /cm2. The reference intensity generally used for

zero level is 10-16 watt/m2. The sound intensity levels are ex-

pressed in dD-s above this zero level. Multiplying the intensity

by 10 at any point in the scale raises the sound level 10 dB.

Doubling the intensity of sound at any point along the scale

always raises the sound level about 3 dB (C-5). A 3 dB change

in the sound level is generally perceptible, 5 dB is clearly
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noticeable. An increase of 10 dB sounds twice as loud, 15 dB

means an appreciable change and an increase of 20 dB results

in a sound very much louder than the original (GB-51).

Table C.1 lists examples of various sound intensities exp.

pressed in dBiws.

Table C.1 Intensities of various sound cources

expressed in decibels.

Sound source Intensity
dB

Threshold of audibility 0

Quiet Church Hall 10

Rustle of leaves, average whisper 20

Average Auditorium 30

Average Office 40

Average Store 50

Office with typewriters 60

Average machine shop 70

Noisy street corner 80

Pull volume radio music 90

Boiler factory 100

Orchestral music,fortissimo 110

Jet aircraft engine 120

Threshold of pain 130

Loudness is the intensive attribute of an auditory

sensation, in terms of which sounds may be ordered on a scale,

extending from soft to loud (C-32). It is the subjective res-

ponse to sound pressure and intensity. The loudness level of a

sound in phone is numerically equal to the sound pressure

level (in dB, relative to 0.0002 dyn/cm2) of a pure tone of

1000 cps frequency which is judged by listeners to be equally

loud (C-2, C-32). The phon scale takes into account the varying
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sensitivity of the ear to sounds of different frequencies, con-

sequently it is an objective measure (C-13, C-17).

The phon is the unit of loudness level, while the unit of

the loudness itself is called s o n e (C-18, C-19). By de-

finition, a simple tone of 1000 cps frequency, 40 dB above a

listener's threshold of hearing, produces a loudness of 1 sone.

The loudness of any sound that is judged by the listener to be

"n" times that of the 1 sone tone is "n" sones (C -32).

C.4 Acoustical power of sound sources

The average acoustical power generated by all sound sources

is surprisingly small. The acoustical power which a speaker

has to produce in a room to make himself adequately understood

will vary between 10 and 50 microwatts (usually depending on

the size of the room), consequently the resulting sound pres-

sure is very small.

The minute amount of acoustical power produced by a speaker

will be illustrated by the following. The simultaneous loud

speech of 4 million people would produce the power necessary

to burn a single 40 watts light bulb; or, as Knudsen describes

it, it would require no fewer than 15,000,000 speakers to ge-

nerate a single horse power of acoustical energy (C-1).

A singing voice or a musical instrument radiates several

hundreds or even thousands of microwatts acoustical power. This

explains the ease with which a singer with his voice or a mu-

sician with his instrument's tore can fill the volume of an

Auditorium that is otherwise too large for unamplified speech.

0.5 The human ear and hearing

When alternating pressures of a sound wave reach our cuter
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ear, the vibrations received by the eardrum will be multiplied

by means of small bones in the middle ear and transmitted

through a fluid to nerve endings within the inner ear. The

nerves finally transmit the impulses to the brain where the

final process of hearing takes place; thus the sensation of

sound is created (C-12, C-15, C-22, C-30, C-31).

The perception of the human ear, as mentioned before, is

limited in range to frequencies between about 20 cps at the

lower end and 20,000 cps at the higher end of the scale (C - ?,

C-10, C-15).

The minimum sound pressure level of a sound that is capable

of evoking an auditory sensation in the ears of an observer was

called in subsection C.3 the threshold of audibility. When the

pressure of the sound is increased anci the sound becomes louder

and louder, eventually it will reach a level at which the sen-

sation of hearing becomes uncomfortable. That minimum sound

pressure level of a sound which will stimulate the ear to a

point at which discomfort gives way to definite pain, was called

the threshold of pain (C-4, C-32). Between audibility and pain

a pressure increase of one million tines is involved which shows

the extremely wide range of sound pressure to which the ear res-

ponds. The curves of the threshold of audibility and of the

threshold of pain, as functions of frequency, enclose the au-

ditory sensation area of the human ear and are shown, after Ro-

binson and Dadson (1956),in Figure C.1. In this figure the

frequency (in cps) is shown along the horizontal axis; the values

of sound levels (in dB-s) are indicated along the vertical axis;

plotted against these two variables are curves of equal loud-

ness (GB -52, 0-1). It is noticeable that the ear's sensitivity

varies remarkably for sounds of different frequencies. Looking,

for example, at the curve of threshold of audibility, it will

be seen that at 1000 cps a minimum sound pressure level of about
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4 dB is necessary to be barely perceived by the ear, while at

50 cps the ear will not respond to any sound unless its pres-

sure reaches a minimum level of about 41 dB. To a certain deg-

ree we are deaf to low frequency sounds. The reduced sensitivity

of our ears in the lower frequency range is most fortunate. It

releaves us of being unnecessarily annoyed by low frequency

noises continuously originating from our atmospheric environ-

ment and also from certain physiological functions of the human

body (GB-52). On the other hand it is propitious that the ear

is more sensitive to sounds in the frequency range between about

400 and 5000 cps which are essential for speech intelligibility

(C-1) and for the full enjoyment of music.

The restricted sensitivity of the human ear in the lower

frequency range applies to sounds of not too loud nature only

because to sounds of a higher sound pressure level the ear is

almost equally sensitive at all frequencies.

Figure C.1 also illustrates that sounds of the same pressure

but of different frequencies will not be judged by the ear as

equally loud. If two tones, e.g.,125 cps and 4000 cps, both have

a sound pressure level of 30 dB, the former will be judged as

16 phon, while the latter as 37 phon. The sound pressure level

of the 125 cps tone must be 45 dB if it is to evoke the same

loudness sensation as the 4000 cps tone of 30 dB sound pressure

level. In other words, the ear is less sensitive to the low

frequency 125 cps than to the high frequency 4000 cps sound.

On the other hand, a 4000 cps tone having a sound pressure

level of only 20 dB sounds as loud as a 63 cps tone having

a sound pressure level of 50 dB. Both will have a loudness level

of 27 phon.

At low frequencies a given change in sound pressure level

produces a much larger change in loudness level than does the

same change at higher frequencies (C-1).
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It must be noted that at 1000 cps the sound pressure levels

in dB are the same as the loudness levels in phone, e.g., a sound

pressure level of 80 dB has a loudness of 80 phons. The graph

on Figure C.1 also enables us to transpose any single tone from

dB-s into phons, or vice versa; e.g., a tone at 4000 cps at a

sound pressure level of 70 dB will have a loudness of about

80 phone.

C.6 Timbre

It has been mentioned before that musical sounds usually

do not contain a single frequency component only (as created

e.g.,by a tuning fork). They include several frequencies: low,

medium and high frequency components; they are called complex

tones.

The component of lowest frequency present in a complex tone

is called the fundamental ,while components of

higher frequencies are called partials. If the frequen-

cies of the partials are simple, integral multiples of the fun-

damental, they are called harmonics. Some musical in-

struments generate sounds with as many as thirty or forty har-

monics in the audible frequency range. In some cases the har-

monics may be more prominent than the fundamentals (C-1). For

many musical sounds the pitch of the entire complex to seems

to be the same as that of the fundamental, nevertheless, the

partials add distinctive qualities to the tone. It is the re-

lative number, prominence, pitch and intensity of the harmonics

or partials which contribute to the quality or timbre

of the musical sounds. Timbre is that attribute of auditory

sensation in terms of which a person can distinguish between

sounds, similarly presented on different musical instruments,

having the same pitch and loudness (C -32).
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C.7 Directionality of sound sources

Although sound sources radiate sound waves in all directions,

nevertheless, in a region free from reflecting surfaces the in-

tensity of the emitted sound will be most pronounced in one di-

rection. To put it more precisely, the radiation pattern will

vary with the frequency of the emitted sound wave. This pheno-

menon is noticeable with the human voice, with musical instru-

ments, with loudspeakers and also with many noise sources (C-8,

C-27).

The directionality of the human voice in a horizontal plane,

visualized through the mouth, is shown. in Figure C.2. It illus-

trates that the radiation of high frequency speech sounds is

more pronounced along the longitudinal axis, while the distri-

bution of the medium (and also low) frequencies is more uniform

in all directions. This can be particularly observed in exces-

sively wide Auditoria where the high frequency components of

speech are not as efficiently radiated to the side seats of the

front rows as to the center seats, resulting in a pronounced

loss of intelligibility at these side seats. experience has

shown, however, that in the radiation pattern of the human voice

the frequency discrimination is negligible over a total angle

of 90° in the forward direction.

C.8 Masking

It is well known that while even a subdued voice will be un-

derstandable in a quiet room, it will be extremely difficult to

understand even a raised voice above the roar of an airplane en-

gine. This drowning out, or masking, occurs because the

auditory nerves in the ear are unable to carry all the impulses

to the brain at one time (C-4).
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Figure C.2. Directionality of the human voice
in a horizontal plane visualized
through the mouth.
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Masking is a frequent phenomenon in Auditoria of inadequate

acoustical design when undesired noise makes it difficult or im-

possible to hear and understand or appreciate the desired sound.

According to the standard definition, masking is the process by

which the threshold of audibility for one sound, e.g.,speech in

an Auditorium, is raised by the presence of another (masking)

sound, e.g., street noise or ventilating noise.

Low frequency sounds produce a considerable masking effect

upon high frequency sounds, particularly if these low frequency

sounds are significantly loud. Excessive low frequency noises

constitute, therefore, a serious source of interference for

listening to speech or music, since they will mask wanted sounds

of the entire audio-frequency range. The elimination of these

low frequency noises is an important goal in the acoustical de-

sign of Auditoria.

High frequency sounds create only a limited masking upon low

frequency sounds. The masking effect is most pronounced when the

masking sound has almost the same frequency as the masked sound.

C.9 Sound and distance. Propagation of sound in the open air

In a free field (free from reflecting surfaces) a sound wave

travels outward from its source in a spherical wave front, con-

sequently, its energy will be spread over a continuously exten-

ding surface. Since the area of a sphere is proportional to the

square of its radius, it follows that the intensity of sound at

any point is inversely proportional to the square of the dis-

tance from the source to that point (C-4, C-5). This is known

as the inverse square law in architectural acoustics (C-9, C-14,

C-21, C-24).

Where there are no reflecting surfaces the reduction of the

intensity of sound can be regarded to be 6 dB every time the dis-

tance from the source is doubled (C-4, C-28, GB-53).
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If it is essential to preserve the intensity of sound in

the open air (e.g., in the case of Open-Air Theaters), its rapid

attenuation can be counterbalanced by the application of sound

reflectors around the sound source. Properly located and effi-

ciently detailed wound reflectors will create a remarkable in-

crease in sound level over the audience area. The increased ab-

sorbing effect of the audience itself and the masking effect of

the background noise (a mixture of all sources of interfering

interior and exterior noises) will be compensated to some ex-

tent by sloping the audience area upwards and by shielding the

affected area against exterior noises. These conditions of im-

proved acoustics in an Open-Air Theater are illustrated in

Figure C.3.

/,
A



Rapid attenuation of
sound level in the open
sir can be reduced by
the application of sound
reflectors close to the
sound sourceG

Sound from an orchestra
shell in an open field
with horizontally seated
audience. The loudness
of sound decreases rap-
idly as it travels over
the audience.

So and from an orchestra
shell in an open field
with audience on raked
seats. The loudness of
sound at the rear of
the audience is enhanced
by sloping the seating
upwards, and by shiel-
ding the affected area
against exterior noise.
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Figure C.3. Acoustically improved listening conditions in am
Open -Air Theater. (Reprinted from Music, Acoustics
and Architecture by L.L. Beranek, John Wiley and
Sons, New York, l962)0
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ROOM ACOUSTICS



54

Section D. Acoustical Phenomena in an Enclosed Space

D.1 Sound reflection
D.2 Diffraction
D.3 Sound absorption. Absorption
D.4 Diffusion
D.5 Growth and decay of sound in

beration time

D.6 Room resonance. Normal nodes

References

coefficient

a room. Bever



55

It was mentioned in the preceding Section that in a free

field the energy of sound waves, travelinz outwards from their

original source in a continuously extending spherical wave

front, will gradually attenuate as the distance from their

source increases.

In architectural design, however, room acoustical problems

of enclosed spaces are mostly encountered. The propagation and

behaviour of sound waves in enclosed spaces is more complex

than in the open air and it will certainly require experience

and imagination to follow the rather complicated path of even

a single sound wave inside a room.

The study of the behaviour of sound waves in a room can be

simplified if we substitute the outwardly spreading layers of

coapression and rarefaction with imaginary sound rays, perpen-

dicular to the advancing wave front, traveling in straight lines

in every direction of the space, quite similarly to beams of

light in optics. This approach in architectural acoustics, that

likens the behaviour of sound waves to those of light rays, is

called geometric acoustics. Figure D.1 illustrates that when

sound waves strike the enclosures of a room, part of their energy

will be reflected, part of it will be absorbed, and part of it

will be transmitted through the structure into other rooms of

the building.

The behaviour of sound in enclosed spaces will be discussed

in this Section (D-1, D-2, D.3, D-8, D-28).

D.1 Sound reflection

Hard, rigid and flan surfaces, such as concrete, plaster,

glass, etc.,will reflect almost all incident sound energy strik-

ing these surfaces. This phenomenon of sound reflection is

quite similar to the well known reflection of light (D-1),

sincet(a) the incident and the reflected sound rays lie in the
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Figure D.1. The behaviour of sound in an enolosed space.

1 incident sound
2 direct wave front
3 reflected sound
4 reflected wave front
5 sound transmitted through enclosure
6 sound absorbed at wall surface
7 sound absorbed in the air
8 sound energy dissipated within the structure
9 structure-borne sound conducted to other parts
e the building

10 sound radiated by flexural vibration of the

enclosure
11 acoustic shadow
12 diffraction of sound through opening
13 multiple sound reflection contributing to

reverberation
14 diffused sound due to surface irregularities
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same plane, and (b) the angle of the incident sound wave will

equal the angle of reflection (law of reflection). In Figure

D.l sound rays 1 and 3 illustrate the phenomenon of sound refleo-

tion. It must be remembered, however, that the wavelengths of

sound waves are much larger than those of the light rays,

and the law of sound reflection is valid only if the wave-

lengths of the sound waves are small compared to the dimensions

of the reflecting surfaces. This means that the application of

this law must be very critically considered for low frequency

sounds and for small rooms (GB-52).

Concave reflecting surfaces will tend to concentrate while

convex surfaces will disperse the reflected sou7d waves in the

rooms (D-1, D-38, GB-53).

In medium and large size Auditoria hearing conuitions can

be considerably improved by the application of large and suitab-

ly located sound reflectors (further discussed in Section F).

D.2 Diffraction

Diffraction is the acoustical phenomenon which causes the

sound waves to be bent and scattered around obstacles (corners,

piers, columns, walls, beams, etc.), so that these elements do

not cast a complete acoustic shadow as shown at area 11 of Figure

D.l, but wave "fringes" will develop around the obstacles, as

shown at area 12 of the same Figure (D-1, D-38, GB-53). Diffrac-

tion, i.e.i,the bending and scattering of sound waves around ob-

stacles, is more pronounced for low frequency sounds than for

high frequency sounds. This repeatedly proves that the laws of

geometric acoustics are inadequate to predict precisely the be-

haviour of sound in enclosed spaces because the obstacles usually

encountered in room acoustics are too small compared to the wave-

lengths of the audible sound waves. Geometric acoustics, a use-

ful approach in the problems related to high frequency sounds,
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is hardly applicable to frequencies below 250 cps (D-73), ',11

other words, low frequency sounds (of long wavelengths) will

not respect the laws of geometric acoustics if they encounter

architectural elements of small dimensions; in particular, (a)

they will not travel in "rectilinear" directions through an

opening, and (b) they will not diffract, or be scattered by

small scale architectural elements such acJ' beams, coffers, pi-

lasters, cornices, etc.lof small dimensions (D-38, D-73).

Experience gives ample evidence that deep galleries cast

an acoustic shadow on the audience underneath, causing a notice-

able loss in the high frequency sounds (with short wavelengths)

which do not bend around the protruding balcony edge. This con-

dition creates poor hearing conditions under the balcony. It is

the diffraction, however, that lessens this acoustical defect,

but only at the lower region of the audio-frequency range.

D.3 Sound absorption. Absorption coefficient

It is well known that soft, porous materials, fabric furnish-

ings and people absorb a considerable portion of the sound waves

bouncing on them, in other words, they are sound absorbers. By

definition, sound absorption is the change of sound energy into

some other form, usually heat, in passing through a material or

on striking a surface (C-32). The amount of heat produced by the

conversion of sound energy into heat energy is ertremelj small.

Practically all the building materials absorb sound in some

degree; however, effective sound control of buildings will re--

quire the application of materials which are efficient sound ab-

sorbents, often termed "acoustical" materials.

In the various types of Auditoria, the following elements

contribute to the overall sound absorption of the room: (a) the



59

surface treatments of the room enclosures, such as walls, floor,

ceiling (see area 6 of Figure D.1); (b) room contents, such as

the audience, seats, draperies, carpets, flowers, etc., (c) the

air of the room (see area 7 of Figure D.1). The various types

of sound absorbing materials, properly classified, and other e-

lerents contributing to sound absorption, will be discussed later

in Section E.

The efficiency of the sound absorption of a material at a

specified frequency is rated by the sound a b s o r p -

tion coefficient. By definition, the sound ab.

sorption coefficient of a surface is the fraction of incident

sound energy absorbed or otherwise not reflected by the surface

(C -32). It is denoted by the Greek letter alpha 00. The cc

value of the various materials can vary between 0 and 1; e.g.,

if at 500 cps an acoustical material absorbs 65 % of the incident

sound energy and reflects 35 % of it, then the sound absorption

coefficient of this particular material is 0.65. The sound ab-

sorption coefficient varies with the angle at which the sound

wave impinges on the material and also with the frequency (D-34).

Values of sound absorption coefficients at a certain frequency,

published in the architectural acoustical literature, are ave-

raged over all angles of incidence at that particular frequency

(random incidence).

For practical purposes it is a standard practice to list OC

values at representative frequencies throughout the most impor-

tant part of the audio-frequency range, i.e.,at 128, 256, 512,

11024, 2048 and 4096 cps, or at 125, 250, 500, 1000, 2000 and

4000 cps. For all practical purposes the two series of frequen-

cies can be regarded as identical (0-21). In the sound control

calculation of acoustically sensitive rooms (such as Concert

Halls, Radio and Television Studios, etc.) it is essential to

consider additional OC values below and above this frequency

range (D6.30). The sound absorption coefficient of the various
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buildtng and acoustical materials will also depend on many other

far tors which will be dealt with in Section E.

In the architectural acoustical literature and in informat-

ion sheets published by manufacturers and dealers, commercial

acoustical materials are sometimes characterized by their

noise reduction coefficient (abbre.
Adapted NRC) which is the arithmetic average of the sound absorp-

tion coefficients at the frequencies 250, 500, 1000 and 2000 cps,

expressed to the nearest multiple of 0.05 (E-12). This value

might be of some use in comparing the acoustical efficiency of

standard acoustical materials to be used for simple noise re-

duction purposes; however, the NRC values are seldom used in a-

coustical calculations.

The sound absorption of a surface is measures in sabins
having the dimensions of ft2 (in the metric system: 42). For

example, an acoustical treatment extending over an area of 160 ft2

and having a sound absorotion coefficient of 0( 38 0.50, has a

total absorption of Sot - 160 x 0.50 = 80 sabins. W.C. Sabine

called the absorption units "open window units" because they are

the equivalent in absorption to an identical area of open window,

which naturally absorbs 100 of the incident sound energy and,

therefore, has an absorption coefficient of 10. The "open win-

dow unit" expression has been renamed "sabins" to commemorate

Professor Sabine.

D.4 Diffusion

If the sound pressure is the same in all parts of an Audit-

oil= and it is probable that sound waves are traveling in all

directions, the sound field in such a room is said to be homo-

geneous, in other wordstsound diffusion prevails in the room.

Adequate sound diffusion is an important acoustical characteris-

tic of certain types of Auditoria (Concert Halls, Radio and Re-
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cording Studios, Music Rooms) because it promotes a uniform dis-

tribution of sonud, it accentuates the natural qualities of

speech and music, and prevents the rise of various acoustical de-

fects (D-21, D-41, D-44, D-46, D-58, GB-21).

Diffusion of sound can be created in several ways: (a) by

the generous application of surface irregularities and scatte-

ring elements; such as, pilasters, piers, exposed beams, coffered

ceilings, serrated enclosures, etc.; (b) by the alternate appli-

cation of sound reflective and sound absorptive surface treat-

ments, and (c) by the irregular and random distribution of the

sound absorptive treatments. It must be remembered again, that

the overall dimensions of the surface protrusions and of the

patches of absorptive treatments must be comparable to the wave-

length of every saundwave within the entire audio-frequency range.

The projections of the surface irregularities must reach at least

1/7 of the wavelengths of those sound waves which have to be

diffused (D-1, D-11, D-18, D-56, D-60, D-61, D-63, D-67) .

D.5 Growth and decay of sound in a room. Reverberation time

When a steady sound is generated in a room the sound pres-

sure will gradually build up and it will take some time, in most

rooms about 1 second, until it reaches its steady state value

(D.1). If the sound field is diffuse in the room, i.e.,the sound

energy is uniformly spread over all the room, and sound waves

are traveling in all directions, then, the steady state sound

pressure level will be directly proportional to the acoustic

power output of the source and inversely proportional to the

total absorption of the room (GB-32).

Similarly, when the source of the sound has stopped, a notice-

able time will elapse before the sound will die away (decay) to

inaudibility. This prolongation of sound as a result of succes-

sive reflections it an enclosed space after the source of sound.
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is "turned off", is called reverberation (C-32).

Reverberation has a distinct effect on the hearing conditions

of Auditoria because its presence will modify the perception of

transient sounds (i.e.,those having sudden starting or

stopping characteristics). It is an important goal in the rever-

beration control of Auditoria that transient sounds of speech

and music be most favorably preserved to secure the highest in-

telligibility of speech and the full enjoyment of music. Speech

transients (consonant sounds and syllables) follow one another

at the rapid rate of about 10 to 12 per second. The rate of suc-

cession of musical sounds widely varies depending on the type

of music but can be as high as 20 notes a second. It is, there-

fore, obvious that excessive reverberation will create an acous-

tical condition, under which transients preceding the ones upon

which momentary attention is focussed remain perceptible, mas-

king and overlapping subsequent speech or musical sounds (D.-1,

D-25, D-33, GB-21).

The unfavorable (often disastrous) acoustical conditions pre-

vailing in highly reverberant Auditoria (mainly Churches, such as

the Cathedrals of Cologne and Milan, St. Peter's in Rome, etc.)

are well known to everybody. Speech intelligibility is practi-

cally non-existent in those Auditoria (D-29).

The importance of reverberation control in the acoustical

design of Auditoria has necessitated the introduction of a rele-

vant standard of measure: the reverberation time
(abbreviated: R.T. in subsequent discussions). This is the time

for the sound pressure level in a room to decrease 60 dB after

the source of the sound is stopped (C-32).

As mentioned before, W.C. Sabine of Harvard University was

the first who established quantitative relationship between

ReT.9 the volume of the room and the total amount of absorption

applied along the enclosures of the room (B-1, B-2). The Sabine
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formula for the calculation of R.T. is:

R.T.
0.4)

A

where R.T. is the reverberation time in seconds,

0.049 is a constant,

V is the volume of the room in ft3, and

4 is the total absorption in ft2 units.

The absorption of a surface is found by multiplying its area

by its absorption coefficient (DC ),and the total absorption "A"

is obtained by the addition of these products with the inclusion

of the absorption provided by the audience and other room con-

tents (seats, furnishings, etc.). Thus

A = 3 0( S 01( S Co( S1 I 2 2 3 3 D.

where 31 "' 8n are the individual areas in ft2 and

0(1 0(n are their respective absorption

coefficients.

In simple cases the Sabine formula is sufficiently accurate

to give a quick idea as to the R.T. of a room, however, for

more precise calculations the following improved formula is

used, developed by Jiger, Norris, and Eyring (D-4, D-5, D-26,

D-35, D-48, D-73):

R.T.
0 0 V

-2.30 logio 1-oc

where S is the total surface area of the room

in ft
2

,

a is the average absorption coefficient

of all the room surfaces, and

x is the air absorption coefficient de-

pendent on the temperature and humidity

of the air, and also on the frequency

of the sound.
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Since the air absorption is negligible in the lower frequen-

cy range, the term xV is considered at the higher frequencies

only (at 1000 cps and above). Table D.1 gives values of the air

absorption xV in ft2 units, for a volume of 1000 ft', and for

a room temperature of 700 F (Es-122).

Table D.1. Air absorption xV, in ft2 units,

for a volume of 1000 ft', and for a room

temperature of 70° F.

Frequency
cps

Relative humidity %
40 50 60 70

1000

2000

4000

6000

8000

3.5

12

28

47

1

2.5

9

21

35

1

2.5

7

16

28

1
2

6

13

23

1 1

2 2

5 5

11 10

20 17

The average absorption coefficient a can be obtained from

the following equation:
& at 11

where A is the total absorption in ft2 units, and

S is the total surface area of the room in
ft2.

Whenever the average absorption coefficient lit is small, evg.,

0.10 or less, the tern[-2.30 log10 & )11s numerically very

close to & therefore, for values of Ek less than 0.10 the

following simplified formula can be used:

R.T. = A +xi'

When a is more than 0.10, the more complete formula should

be used for the calculation of the R.T. in which values of

E.2.30 log10 (1- ac )1 for given values of oc can be obtained

from Table D.2 (D-73) .
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Table D.2. Values 0+2.30 logo (1 -Cc)l for

given values of ge

6i -2.30 10gl0 (1.CR) Ek .2.30 log10 (1-ik)

.01 .0100 .31 .3706

.02 .0202 .52 .3852

.03 .0304 .33 .4000

.04 .0408 .34 .4151

.05 .0513 .35 .4303

.06 .0618 .36 .4458

.07 .0725 .37 .4615

.08 .0833 I .38 .4775

.09 .0942 .39 .4937

.10 .1052 .40 .5103

.11 .1164 .41 .5270

.12 .1277 .42 .5441

.13 .1391 .43 .5615

.14 .1506 .44 .5792

.15 .1623 .45 .5972

.16 .1742 .46 .6155

.17 .1861 .47 .6342

.18 .1982 .48 .6532

.19 .2105 .49 .6726

.20 .2229 .50 .6924

.21 .2355 .51 .7125

22 .2482 .52 .7331

.23 .2611 .53 .7542

.24 .2741 .54 .7757

.25 .2874 .55 .7976

.26 .3008 .56 .8201

.27 .3144 .57 .8430

.28 .3281 .58 .8665

.29 .3421 .59 .8906

.30 .3565 .60 .9153

It must be stressed that all reverberation formulae apply

only to Auditoria in which the sound is diffuse, i.e.,the sound

energy is evenly distributed all over the room and therefore the

sound dies away in a smooth, even manner, free from disturbing

fluctuations. The sound field cannot be considered as diffuse

in rooms (a) which have acoustical treatments concentrated on

just a single area (or very few areas), (b) which have enclosures
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creating reflected sound concentrations (highly reflective domes,

curved and acoustically untreated walls, etc.), (c) if one room

dimension is disproportionately different from the other two di-

mensions (GB-21). In reality, few Auditoria exist in which the

sound field is truly diffuse. For this reason considerable dis-

crepancy will be observed between measured and calculated R.T.

values in most Auditoria. Fortunately, the achievement of a per-

fectly diffuse sound field in a room is not necessary either, be-

cause under completely diffuse conditions the directional charac-

teristic of the approaching sound waves would fade away.

Since the absorption of the various materials and finishes

used in the design of Auditoria varies with frequency (often very

considerably), naturally the R.T. values will also vary with

frequency. It is, therefore, essential to specify or calculate

the R.T. for a number of representative frequencies of the audio-

frequency range. The number of these representative frequencies

will depend on the importance attached to acoustical considerat-

ions. If reference is made to a R.T. value without referring to

any particular frequency, this is generally agreed to be the R.T.

at 512 (or 500) cps (GB-21) .

Figure D.2 illustrates reverberation time diagrams of various

well known Auditoria.

Excessively long R.T. can be easily detected in an existing

Auditorium by simply listening,because speech will be probably

unintelligible and music unenjoyable in such a room. However, if

the acoustical correction of such an existing Auditorium is in-

evitable, the correct steps to be taken cannot be based on lis-

tening experience, i.e.tsubjective judgement alone (D-65). Pre-

cise acoustical measurements will have to be conducted in such

cases to establish the amount of acoustical treatment that is

necessary in the room (D-17, D-53).
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Figure D.2. Reverberation diagrams of various outstanding Audi-
toria. A : Musikvereinssaal, Vienna (volume= 530,000 ft;
audience-1680); B : Beethovenhalle, Bonn (volume in
555,000 ft:;, audience - 1407); C : Kresge Auditorium,
Cambridge, Mass. (volume is 354,000 ft3, audience =1238) ;
D : Royal Festival Hall, London, England (volume =
775,000 ft3, audience = 3000); E : Teatro all* Scala,
Milan (volume = 397,000 ft3, audience = 2689).
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D.6 Room resonance. Normal modes

If water is poured into a jar, it will create a gurgling

tone, the frequency of which will gradually increase as the

amount of water in the jar increases. The jar resonates at

certain frequencies, similar to a bathroom which, by its own

resonance, often encourages the vocal ambitions of home sing-

ers. It appears that an enclosed room with sound reflective

interior surfaces will accentuate certain frequencies called

the normal modes of vibration of

the room (D-1, D-9, D-19, D-31) .

Rooms, depending on their shapes and dimensions, will have

an extremely large number of normal modes (also called re-

sonant frequencies or eigentones of the room). When a complex

sound is produced in a room, it will excite the room modes

nearest in frequency to the components of, the original sound.

If only a few prominent modes are excited, there may be un-

desirable fluctuations during the growth and decay of sound

(D-20).

The deleterious effect of too few modes is particularly

noticeable (a) at the lower frequency range where these modes

are unequally distributed and therefore will stand out more

strikingly, and (b) in small and medium sized rooms of com-

parable dimensions to the wavelengths of the audible low

frequency sounds (D-13, D-23, D-47, D-49).

The number of the normal modes of vibration cannot be al-

tered within the same room but their distribution can be ren-

dered more uniform and so their detrimental contribution can

be reduced (a) by acoustically favorable room proportions

(discussed in Section F), (b) by irregularly laid out room

enclosures, (c) by abundantly applied surface irregularities

of large dimensions, and (d) by the uniform distribution of

absorptive treatments along the boundary enclosures (D-1,D-44)
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All building materials and finishes used in the construction

of Auditoria have the capability of absorbing sound in some

degree. In this Section, however, only those proprietary or

custom designed building materials and room contents will be

considered which will contribute significantly to the reverbe-

ration control of Auditoria, or to the noise reduction of rooms

E-5).

Although, under special conditions, many of the sound ab-

sorptive building materials and acoustical materials are also

successfully used in sound insulating constructions (to be dis-

cussed in Section M), yet sound absorption should not be con-

fused with sound insulation.

On striking any surface, sound will be either reflected or

absorbed; the sound energy which is absorbed by the absorbing

material will be partially converted into heat energy, but most-

ly transmitted to the other side of the absorbing material, un-

less such transmission is restrained by a backing of a hard, im-

pervious and heavy barrier. In other words,a good sound absor-

ber is an efficient sound transmitter and, consequently, an in-

efficient sound insulator. An effective sound insulating en-

closure, on the other hand, will prevent the transmission of

sound from its one side to the other.

Sound absorbing materials and constructions used in the a-

coustical design of Auditoria or for the sound control of noisy

rooms can be classified as: (1) porous materials, (2) membrane

absorbers, and (3) cavity resonators.

Acoustical materials from any of these classifications, and

also the combinations of these materials (as individual:lards-

signed acoustical treatments),can be mounted on the room en-

closures or suspended in the air as space absorbers.

This Section describes the most frequently used acoustical

materials and also the various room contents which contribute

to the overall sound absorption in rooms. It reviews their a-
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coustical properties and their methods of installation; it em-

phasizes the requirements that must be met in the choice of

acoustical finishes and gives some information on the measure-

ment of sound absorption. At the end of the Section tables list

the sound absorption coefficients of various building materials,

acoustical finishes and room contents which contribute to the

sound absorption in rooms.

La Porous materials

The basic acoustical characteristic of all porous materials

(such as fibreboards, mineral wools, insulation blankets, etc.)

is a cellular network of minute interlocking pores which will

convert the incident sound energy into heat energy by the fric-

tional and viscous resistance within these pores and by vib-

ration of their small fibres (E-3). The fraction of the inci-

dent sound, thus converted into heat, will be absorbed, while

the remainder, reduced in energy, will be reflected from the

surface of the material (Em.188). Cellular materials with closed

and non-interlocking cells, such as foamed resins, cellular

rubbers, foamglasspetc.n. are ineffective as porous absorbents

(E-9, Foal, E-32, E-62, E-158).

Figure E.1 illustrates typical characteristics of porous

absorbents: (a) their sound absorption is more efficient at

the high than at the low frequencies, and (b) their acoustical

efficiency improves in the low frequency region with increased

thickness and if spaced away from their solid backing.

Commercial porous materials can be divided into the following

3 categories: (a) prefabricated acoustical units, (b) acoustical

plasters and sprayed-on materials, and (c) acoustical blankets.

E.1.1 Prefabricated acoustical units

For the convenience of those interested, these types of acous-

tical materials, produced in an immense quantity and wide va-
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riety by the acoustical materials industry, are described,

grouped, and classified in the annual Bulletin of the Acous-

tical Materials Association, "Performance Data - Architect-

ural Acoustical Materials" (E -12).

Various types of perforated, smooth, fissured or textured

cellulose and mineral fibre tiles, lay-in panels, perforated

metal pans with absorbent pads, etc., constitute typical, gem

neral purpose units in this group. The various catalogues dis-

tributed by representatives or agents of the acoustical mater-

ials industry, usually contain a detailed description and in-

formation on size, thickness, finish, methods of installation,

acoustical efficiency, maintenance, flame resistance and other

important properties of these prefabricated acoustical units.

It is imperative that acoustical properties of these units, as

included in the catalogues and pamphlets, should be supplied

by accredited acoustical laboratories so that pertinent values

of acoustical efficiencies may be compared on an equal basis

(Em10).

The use of prefabricated acoustical units offer the following

advantages: they possess a reliable, factory-guaranteed absorp-

tion value; their installation and maintenance is relatively easy

and economic; many of them can be redecorated without causing

any serious deterioration in their absorption. Their applicat-

ion, on the other hand, undoubtedly presents a few design prob-

lems, such as: it is difficult to conceal joints between adja-

cent units (Em3); their relatively soft structure is subjected

to mechanical injuries if installed at lower levels of the en-

closures; difficulty is usually encountered when these mass-

produced units have to be aesthetically integrated into an in-

dividual architectural design (Em3, E-4, E-7, E-11,

E.1.2 Acoustical plasters and sprayed-on materials

These acoustical finishes are used mostly for noise reduct-
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ion purposes and sometimes in Auditoria where the application

of any other acoustical treatment would be impractical due to

the curved or irregular shape of the surface.

Their acoustical efficiency will depend largely on several

local job conditions, such as thickness and composition of the

plaster mixture, the amount of binder, the state of the under-

coat at the time of application, the manner in which the finish

is applied, etc. In order to obtain the desired acoustical re-

sult, it is essential that the job be executed by competent and

responsible workmen and that the manufacturers' specifications

be followed strictly (E-4, E-7, E-63, E-l13).

The maintenance of acoustical plasters and sprayed-on fi-

nishes (sprayed mineral fibers) certainly offers some difficul-

ties. Redecoration may create serious deterioration of their a-

coustical properties unless manufacturers' pertinent instruct-

ions are fully respected (E-3).

E.1.3 Acoustical blankets

Acoustical blankets are manufactured from rockwool, glass

fibres, wood fibres, hairfelt, etc. Usually installed between

a wood or metal framing system, these blankets are used for a-

coustical purposes in varying thicknesses between about 1" and

6". Their absorption increases with thickness, particularly at

the low frequencies; if space is available a considerable degree

of low frequency absorption, a characteristic usually missing

in other porous absorbents, can be achieved by use of a 3" to

4" thick acoustical blanket. By choice of adequate thickness,

density and method of installation, acoustical blankets will

supply a remarkable variety of absorption characteristics

(E-3, E-9).

Since acoustical blankets do not constitute an aesthetically

satisfactory acoustical finish, they are normally covered with
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a suitable type of perforated board, wood slats, flyscreening,

etc., placed over the blankets and fastened to the framing sys-

tem (discussed in paragraph E.3.2).

E.2 Non-perforated panel or membrane absorbers.

The non-perforated panels or membrane absoroers represent

the second group of sound absorbing materials. Any impervious

material, installed on a solid backing but separated from it

by an air space, will be set to vibration when struck by sound

waves (Em-3, E-4, E-8, E-16, E-17, E-56, E49, E-71, E-76). The

flexural vibration of the panel absorber will then absorb a

certain amount of the incident sound energy by converting it

into heat energy. The theory of absorption provided by a vib-

rating panel is rather complicated but it is a fair approximat-

ion to assume that maximum absorption will occur in the region

of the resonance frequency of the panel.
This may be calculated from the formula (E-3, E-4, E-8, E-11):

fres = m

where f
res

is the resonance frequency in cps

m is the surface density in lb/ft? and

d is the depth of air space behind the panel
in inches.

The resonance frequency is normally at the lower end of

the audio-frequency range9 thereforelpanel absorbers are effi-

cient as low frequency absorbers* When selected properly, panel

absorbers will balance the somewhat excessive medium and high

frequency absorption supplied by porous absorbers and room con-

tents. Thus, panel absorbers will contribute efficiently to the

production of a uniform reverberation characteristic over the

entire audio-frequency range (E-110, E-116, E-179).
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Figure E.2 illustrates the absorption-frequency character-

istics of a 3/16" thick plywood panel, spaced 2" from the wall

with and without porous absorbent in the air apace (E-11). Max-

imum absorption occurs at about 150 cps and the application of

porous absorber in the air space increases the absorption at

the resonance frequency, broadening the otherwise narrow region

of increased absorption.

Amongst various Auditorium finishes and constructions the

following panel absorbers will contribute significantly to low

frequency absorption: wood and hardboard panelings, gypsum

boards, suspended plaster ceilings, furred out plasters, rigid

plastic boards, windows, glazings, doors, wood floors and plat-

forms, etc. Because of increased resistance against wear and

abrasion, many of these non-perforated panel absorbers are often

installed on the lower parts of walls, thereby providing a

suitable finish for the dado (E-2, E-10, E-110, E1281

E-147, E-179).

Porous materials, spaced away from their solid backing will

also act as vibrating panel absorbers, favorably contributing

to absorption at low frequencies.

E.3 Cavity (or Helmholtz) resonators

The cavity or Helmholtz resonators constitute the third and

last group of sound absorbents. They consist of an enclosed

body of air confined within rigid walls and connected by a

narrow opening (called the neck) with the surrounding space

in which the sound waves travel (E-3, E-4, E-175).

A cavity resonator of this type will absorb maximum sound

energy in the region of its resonance frequency.

An empty jar or bottle, as described in paragraph D.6, also

acts as a cavity resonator; however, its maximum absorption is

confined to a very narrow frequency band, i.e.,it is extremely
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selective in its absorption, as illustrated in Figure E.3

(Em.8).

Cavity resonators can be applied (a) as individual units,

(b) as perforated panel resonators, or (c) as slit resonator

panels. These will be discussed in the following paragraphs.

E.3.1 Individual cavity resonators

Individual cavity resonators were used a very long time ago

in Scandinavian Churches. These resonators were made of empty

clay vessels, in different sizes, so that their effective ab-

sorption (at resonance frequencies) was spread between 100 and

400 cps (E-3, E-4).

In contemporary room acoustical practice their application

is restricted to particular cases when individual low frequency

peaks within an exceptionally long R.T. of a room have to be

reduced drastically, without affecting the R.T. at medium and

high frequencies (E-8).

E.3.2 Perforated panel resonators

Perforated panels, spaced away from a solid backing, pro-

vide a widely used practical application of the cavity resonator

principle. They contain a large number of necks, constituting

the perforation of the panel, thus functioning as an array of

cavity resonators. The perforations are usually circular, sel-

dom slotted. The air space behind the perforation forms the

undivided body of the resonator, separated into bays by hori-

zontal and vertical elements of the framing system (E-4, E-l0,

E-50, E-77, E-82).

Perforated panel resonators do not provide such a selective

absorption (i.e., restricted to an extremely narrow frequency

band) as do single cavity resonators, particularly if an ab-

sorbent blanket is installed in the air space behind the visual-

ly exposed perforated board. If properly selected, with ade-

quate open area (sometimes called sound transparency), the ab-
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Figure C.3. Absorption characteristic of a cavity or
Helmholtz resonator. (Reprinted from
Acoustics, Noise and Buildings by P. H.
Parkin and H. R. Humphreys, Frederick A.

Praeger, New York, 1958).
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sorbent blanket reduces the peak absorption but increases the

overall efficiency by broadening the frequency region in which

considerable absorption can be expected (E-3, E-4, E-104,

E-125) .

The absorption frequency curves of perforated panel reson-

ators mostly show a maximum (peak) value in the medium region

of the frequency scale with an apparent drop above 1000 cps.

Therefore, if the same perforated panel treatment were to be

used extensively in an Auditorium the R.T. would be unfavor-

ably short at this peak value. A reasonably even and uniform

reverberation characteristic can be provided in a room if those

peak values in the absorption diagram of the perforated panel

treatments are shifted to several different regions of the

frequency range. This can be achieved by varying (a) the thick-

ness of the perforated panel, (b) the size and spacing of the

holes, (c) the depth of air space behind the perforated. panel,

(d) the type, thickness,and density of the applied acoustical

blankets behind the perforated panels, and (e) the spacings

between the elements of the furring system (E-3, E-4, S-11).

Various standard commercial panels or boards are available

on the market in perforated form, suitable for application as

perforated panel absorbers; such as, cement asbestos sheets

(Transite panels), hardboard (Masonite), plain and corrugated

metal (steel, aluminum, etc.) sheets, rigid plastic sheets,

wood and plywood panels, reinforced fiberglas panels, plastic

coated steel sheets, etc.

Surface treatment of the exposed perforated panels must be

carried out in a manner such that the holes are not clogged by

paint.

Figure E.4 illustrates examples of perforated panel reson-

ators applied as acoustical treatments in various Auditoria.
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E.3.3 Slit resonator absorbers

Slit resonator absorbers have a series of exposed narrow,

continuous openings (gaps) created by unidirectional slats of

relatively sa &.l cross section, installed along the surface

of this acoustical treatment. In many respects they are construc-

ted similarly to the kerforated panel resonators, in that they

also have an air space behind the surface, mostly filled (part-

/ally or totally) with a suitable acoustical blanket. The area

of opening (slits) should be at least 30 1g of the total area

to secure adequate sound transparency (14, ER42, E-171).

Their popularity in architectural design is due to the fact

that they offer a wide choice for individual design, even though

they are more expensive than the commercial and sometimes mono-

tonous standard acoustical materials.

The characteristic feature of this acoustical treatment is

a system of slats, which can be wood, steel, aluminum, plastic

or other material. Figure E.5 illustrates examples of alit re-

sonators as applied in Auditoria.

E.4 Space absorbers

When the regular boundary enclosures of an Auditorium do not

provide suitable or adequate area for conventional acoustical

treatments, sound absorbing objects, called space absorbers or

functional absorbers, can be suspended as individual units

from the ceiling (E-3, E-?, Sm10, E.45, E-59).

They can be easily installed or removed, without interfe-

rence with existing fixtures or equipments. Since sound waves

will probably hit all sides of these absorbers, their absorp-

tion is quite powerful compared to standard, commercial acous-

tical materials. These advantageous features make space ab-

sorbers a particularly suitable acoustical treatment for noisy

industrial areas.
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Space absorbers are made of perforated sheets (steel, alu-

minum, hardboard, etc.), in the shapes of panels, prisms, cubes,

spheres, cylinders, single or double conical shells, and are

generally filled or lined with sound absorbing materials such

as rockwool, glasswool, etc.

The sound absorption of space absorbers is specified as the

number of absorption units (sabins ) supplied per individual

unit. Their acoustical efficiency will depend on their spacing

and will approach a constant value at wide spacings (E -.7).

E.5 Variable absorbers

Since various usages of the same Auditorium, as will be seen

later, would require various reverberation times, it has long

been an aim of acousticians to design special sound absorbing

constructions that could change the R.T., i.e.,the acoustical

coaditions within a room.

Several attempts have been made in the past to implement

this objective, particularly in Radio Studios, where a notice-

able change in the R.T. was frequently necessary. For this pur-

pose various sliding, hinged, movable and rotatable panels have

been constructed that can expose either absorptive or reflec-

tive surfaces; draperies have been installed that can spread

out over walls or can be pulled back into suitable pockets,

thus arbitrarily increasing or reducing the effective absorp-

tive treatment in a room (B-3).

The construction of such variable absorbers is justified

only if it will be capable of producing a reasonable (at least

20 %) change of the total absorption over a considerable region

of the audio-frequency range (E-65).

Experience has given evidence that variable absorption-pro-

ducing devices are practicable only for rooms which are perma-

nently maintained and serviced by competent personnel, as might
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be the case for Radio or Recording Studios. It appears, however,

that even in Studios the control of R.T. through conventional

variable absorbers will be soon rendered obsolete due to the

widely expanding application of electronically operated rever-

beration control.

E.6 Air absorption

It has been mentioned before, that besides the various acous-

tical finishes and room content s, the absorption of the air

(due to radiation, scattering, molecular absorption and other

phenomena) will also contribute to the overall room absorption

(E-3, E-11, E-14, E0-122, E-I32, E -185). The air absorption is

affected by the temperature and humidity of the air, and repre-

sents a significant value only above 1000 cps (see Table D.1 in

preceding Section).

E.7 Mounting and distribution of acoustic finishes

The sound absorption characteristic of acoustical materials

should not be considered as their intrinsic property but rather

as a feature largely dependent on their physical properties,

installation details, and local conditions (E-3, E-?, E-21, E-62,

E-84, E -96, E.4.14).

Since the way acoustical materials are installed will

have a marked effect on their absorptive properties, com-

parisons between the absorption coefficients of different ma-

terials should be based on data obtained from teats conducted

in an accredited laboratory and under identical mounting con-

ditione. Typical mountings used in conducting standard sound

absorption tests by the Acoustical Materials Association (335

East 45th Street, New York 17, N.Y.) are illustrated in Figure

E.6 (E-12).
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There is no specific type of mounting that can be recom-

mended as optimum for every installation. Various aspects have

to be considered simultaneously, such as:

- physical properties of the acoustical material;

- strength, surface texture and location of the room en-

closure on which the acoustical material will be installed;

- the space available for the treatment;

- the time required for the labor;

probability of removal in the future;

- costs, etc.

Methods of mounting for an installation on a new construction

might be basically different from those feasible in an existing

building (B-3).

As mentioned before, the absorption coefficient of most a-

coustical materials can be increased, particularly at the low

frequencies, when spaced away from their solid backing. This is

illustrated for acoustic plaster and acoustic tile in Figure

Ea, but the principle holds true for panel absorbers, perfo-

rated panel resonators and slit resonator absorbers alike.

The installation of acoustical treatments should always be

performed by a competent contractor who is able to check whether

or not conditions are suitable for a workmanlike execution of

the acoustical trade. And since the acoustical work on a job

is always affected by the work of many other trades, the ar-

chitect should specify clearly the responsibilities of the

various contractors involved.

The distribution of acoustical materials requires care in

order to achieve maximum absorption and the most favorable

effect on hearing conditions. The acoustical finishes should

be distributed over the room enclosures as evenly as possible,

partly to reduce the detrimental effect of certain normal modes

of vibration and pa:tly to provide good diffusion (E-3, E -148).

The uniform distribution of acoustical finishes istin most in-
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stancesvextremely difficult for several reasoas: (a) the audi-

ence always constitutes an area of concentral:ed absorption;

(b) in the interest of adequate loudness and uniform sound

distribution the room enclosures close to the sound source are

usually treated reflectivelvitherefore, the accommodation of any

acoustical treatment in this area is practically impossible; and

(c) the rear wall of an Auditorium (opposite the sound source)

mostly forms an unbroken area of absorptive treatment in order

to prevent the rise of echo or too long delayed reflections

from this wall (E-3, E-4, E-25, E-40, E-108, E-186) .

E.8 The choice of sound absorbing materials

Since architectural acoustical materials are supposed to
ccabine the functions of sound absorption and interior finish,
it is obvious that in the selection of acoustical finishes a
number of considerations, other than acoustical, must be taken

into account simultaneously (E-3, E-37, E-66, E-67, E-89,
E-106, E-113 B-168, E-170, E488).

If the main purpose is to achieve a uniform (flat) rever-

beration diagram over the entire audio-frequency range, those

acoustical finishes have to be chosen which together will pro-

duce a uniform (not necessarily high) absorption characteristic

throughout the audio-frequency range. If the application of

high frequency absorbents (perforated panel resonators or slit

resonator absorbers) is favored, their somewhat excessive high

frequency absorption can be counterbalanced by the installation

of a reasonable amount of low frequency panel absorbers. If a-

coustically detrimental back reflections (echoes, too long de-

layed corner reflections) have to be eliminated or avoided, then

the dangerous reflecting surfaces must be treated with acoustical

materials of highly absorptive character.

The following aspects should be examined in the selection
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of sound absorbing finishes or constructions (EM10, 8-12, 3-114,

E437* E -182):

(a) sound absorption coefficients at representative frequenm

otos of the audio-frequency range (EM12, Em131),

(b) appearance (sizes, edges, joints, colors, textures);

(C) resistance to flame spread and fire penetration (5-92) ;

(d) installation cost;

(e) ease of installation (3-93);

(f) permanence (resistance to impacts, mechanical injuries

and abrasion);

(g) light reflectance (3 -28);

(k) maintenance, cleaning, effect of redecoration upon

sound absorption, maintenance cost (3-18, 3-88, Em120);

(i) job conditions (temperature, humidity during instal-

lation, readiness of backings);

(j) integration of room elements (doors, windows, lighting
fixtures, grilles, radiators, etc.) into the acoustical

finish;

(k) thickness;

(1) weight;

(a) moisture and condensation resistance, once the room is

in use (EMU);

(n) access to suspended ceilings or furred spaces;

(o) thermal insulation value (E47),

(p) attraction for vermin, dry rot, fungus;

(r) removability (sometimes a temporary requirement to make

possible adjustments of acoustical blankets);

(a) simultaneous requirement for adequate sound insulation

(3 -154).

3.9 Measurement of sound absorption

Various methods for the measurement of the sound absorption
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coefficients of acoustical materials are widely discussed in

the acoustical literature. Two of these methods are of parti-

cular interest: (1) the tube method, and (2) the reverberation

chamber method (E-4, E-11, E-53, E-90, E-107).

E.9.l Tube method

This is used to measure the sound absorption coefficients

of small sized samples of acoustical materials for sound waves

traveling perpendicular to the surface of the sample (normal

incidence). The measurement will :give an indication of the

sound absorption coefficient in the frequency range of about

200 to 3000 cps (&63).

This method is unsuitable for the general measurement of _

sound absorption coefficients because of its limitations;

it disregards the fact that sound waves in a room will strike

the sound absorbing materials at various angles, and further-

more the size and method of mounting of the test sample has no

similarity whatsoever to actual job conditions. For these

reasons, results obtained by the tube method should be used for

theoretical work, in the development of new or in the compari-

son of existing acoustical materials and also for quality con-

trol (Em-, E-11, E-42, E.85, E-192, GB-52).

7

E.9.2 Reverberation chamber method

This method utilizes a bare chamber with a long reverberat-

ion time. A large-sized sample or several samples of a sound ab-

sorbing material are installed in the chamber, thereby reducing

its R.T. The sound absorption coefficient of the absorbing mate-

rial is then calculated from the decrease in the R.T. of the

chamber, created by the sample of the sound absorbing material.

It is essential that the sound field should be diffuse in the

chamber and that sound waves should hit the test sample at
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all possible angles (random incidence).

The size of the test specimen may vary from 60 to 100 ft2,

depending on the individual dimensions of the reverberation

chamber (E-149, E-156). The standard sample area, usually spe-

cified by the testing laboratories, can be varied within the

same chamber to accommodate standard size samples of the acous-

tical treatment under test. The samples may be tested by pla-

cing them on the floor, on the walls or ceiling of the chamber.

It is essential that the sample should be installed in a manner

simulating existing or predictable field conditions (E-4, E-11,

E-13, E-15, E-143, E-145, E-161, E-163, GB-52).

The test sound may consist of a frequency-modulated (warble)

tone or a "white noise" which causes the sound waves to hit the

test sample at a greater number of angles. Measurements are

made at representative frequencies along the audio-frequency

range.

The sound absorption coefficient of a sound absorbing mater-

ial, measured in a reverberation chamber, should not be con-

sidered as a constant of the material because this will depend

on the size of the sample, its position and distribution in the

chamber, the way it is mounted and also on individual physical

characteristics of the chamber itself, Therefore, values of

sound absorption coefficients measured in different laboratories

should be compared with caution.

For the measurement of the sound absorption coefficient of

acoustical materials, contemporary testing facilities in Canada

are available at the National Research Council in Ottawa (Divi-

sion of Building Research), In the U.S.A. the following are

considered as accredited testing laboratories: the National

Bureau of Standards in Washington; the Riverbank Acoustical

Laboratory in Geneva, Illinois; and the Geiger and Hamme Lab-

oratory at the University of Michigan (E-176, E-191, E-193).
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E.10 Classification of materials and room contents contributing
to sound absorption

Subsequent tables of absorption coefficients, covering the

most common building materials, acoustical materials and room

contents, are classified into 3 groups:

(1) common building materials,

(2) acoustically efficient absorbing materials, and

(3) room contents (E-80, E*118, E-120, E-155, BP-165).

The coefficients are given for six representative frequen-

cies, i.e.,for 125, 250, 500, 1000, 2000 and 4000 cps, these

being the moat important in general acoustical design prao-

tice. Values of absorption coefficients below and above this

frequency region are of use to acoustical experts only.

Sound absorption coefficients of standard acoustical mater-

ials, generally published in manufacturers' pamphlets, are, as

a rule, not included in the Tables. The inclusion of a few com-

mercial acoustical materials does not necessarily mean that they

are endorsed in any way, they merely constitute typical examples

of their kind.

In the data references are made to their sources (testing

authorities) as follows:

1. Acoustical Materials Association, New York (EF-12),

2. V.O. Knudsen and C.M. Harris (GB-21).

3. L.L. Beranek (GB-34).

4. P. Ingerslev (GB-29).

5. P.H. Parkin and H.R. Humphreys (GB-43).

6. M. Adam (GB-44).

70 National Research Council, Ottawa.

S. Geiger and Hamme.

9. Riverbank Acoustical Laboratory.

10. Johns- Manville Research Laboratory.

11. Manufacturers' own pamphlets.
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Table E.1. Sound absorption coefficients of com-

mon building materials,

I

Description frequency cps Source
125' 250 500 1000 2000 4000

Brick, unglazed, exposed, un-
painted .03 .03 .03 .04 .05 .07 1

same, painted .01 .01 .02 .02 .02 .03 1

Concrete, poured, exposed,
unpainted .01 .01 .02 .02 .02 .03 3

same, painted .01 .01 .01 .02 .02 .02 3

Concrete block, exposed, un-
painted .36 .44 .31 .29 .39 .25 1

same, painted .10 .05 .06 .07 .09 .08 1

Floors

concrete or terrazzo

linoleum, asphalt, rubber
or cork tile on concrete

parquet flooring with sub-
floors on sleepers

parquet flooring in as-
phalt on concrete

.01

.02

.05

.04

.01

.03

.03

.04

.01

.03

.06

.07

.02

.03

.09

.06

.02

.03

.10

.06

.02

.02

.20

.07

1

varnished wood joist floor

wood platform with large
space beneath

.15

.40

.11

.30

.10

.20

.07

.17

.06

.15

.07

.10

Glass, large panes of heavy
plate glass .18 .06 .04 .03 .02 .02 1

ordinary window .35 .25 .18 .12 .07 .04 1

Gypsum board, 1/2", nailed to
2"x4"-s, 16"o.c. .29 .10 .05 .04 .07 .09 1

Marble or glazed tile .01 .01 .01 .01 .02 .02 1

Plasters

gypsum or lime, smooth
finish on tile or brick .01 .01 .02 .03 .04 .05 1

same, on metal lath

same, on lath, over air
space or on joists or studs

.08

.30

.06

.15

.05

.10

.04

.05

.04

.04

.04

.05

7
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Table E.2. Sound absorption coefficients of

acoustically efficient absorbing materials

Description
125

Acoustical plaster ("Zono-
lite") 1/2", trowel applicat-
ion

same, 1" thick

Acoustile, surface glazed and
perforated structural clay
tile, perforated surface
backed with 1" glass fiber
blanket of 1 lb/ft3 density

Fiberboards

1/2" normal soft, mounted
against solid backing, un-
painted

same, painted

1/2", normal soft, mounted
over 1" air space, un-
painted

same, painted

Fiberglas insulation blankets

0100, 1", mounting # 4

same, 2", mounting # 4

AF530, 1", mounting # 4

same, 2",mounting # 4

same, 4 ", mounting # 4

Flexboard, 3/16" unperforated
cement-asbestos board, mount-
ed over 2" air space

Geocoustic, 13 1/2"x 13 1/2",
2" thick cellular glass tile,
installed 32" o.c., per unit

.33.

.25

.26

w05

.05

.30

.30

.07

.19

.09

.20

.39

Hardboard panel, 1/8", 1 lb/ft2
with bituminous roofing felt
stuck to back, mounted over
2" air space

.18

13

frequency cps
2501 5001100012000

.32

.45

.57

.10

.10

.52

.78

.63

.15

.10

.30

.15

.23 .42

.51 .79

.25 .60

.56 .89

.91 .99

.11

.74

.45

.09

2.35

.25

.81

.92

.96

.25

.10

.77

.92

.81

.93

.98

.07

2.53

.15

.88

.89

.44

.30

.10

4000

.84

.87

Source

.56

.30

.15

.30

.10

.73 .70

.82 .78

.75 .74

.84 .80

.93 .88

A%
irf,41 ow'

2.03

.10

1.73

.10

9

5

5

5

5

11

11

11

11

11

10

8

5
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Table E.2. Sound absorption coefficients of

acoustically efficient absorbing materials

cont'd.

Description
125

frequency
2501 500 1000

cps
2000 4000

Source

Masonite

i", mounted over 1" air
space .12 .28 .19 .18 .19 .15 7

Mineral or glass wool blan-
ket, 1", 5-12 lb/ft3 densi-
ty, mounted against solid
backing, covered with open-
weave fabric

same, covered with 5%
perforated hardboard

same, covered with 10%
perforated or 20%
slotted hardboard

.15

.10

.15

.35

.35

.30

.70

.85

.75

.85

.85

.85

.90

.35

.75

.90

.15

.40

5

5

5

Mineral or glass wool blan-
ket, 2", 5-12 lb/ft3 densi-
ty, mounted over 1" air
space, covered with open-
weave fabric

same, covered with 10%
perforated or 20
slotted hardboard

.35

.40

.70

.80

.90

.90

.90

.85

.95

.75

.90

.40

5

5

Plywood panels

i", glued to 24" thick
plaster wall on metal
lath .05 .05 .02 3

4", mounted over 3" air
space, with 1" glass-
fiber baits right behind
the panel .60 .30 .10 .09 .09 .09 7
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Table E.2. Sound absorption coefficients of

acoustically efficient absorbing materials

cont'd.

Description
125

frequency cps Source
250 r 500 1030'2000 4000

Rockwool blanket, 2" thick
batt ("Semi-Thik"), mount-
ed against solid backing

mounted over 1" air space

mounted over 2" air space

Rockwool blanket, 2" thick
batt ("Semi-Thik"), covered
with 3/16" thick perforated
cement-asbestos board
(Transite), 11% open area,
mounted against solid back-
ing

mounted over 1" air space

mounted over 2" air space

Rockwool blanket, 4" thick
batt ("Full-Thik") , mounted
against solid backing

mounted over 1" air space

mounted over 2" air space

Rockwool blanket, 4" thick
batt ("Full-Thik") , covered
with 3/16" perforated ce-
ment-asbestos board (Trans-
ite) , 11% open area, mount-
ed against solid backing

mounted over 1" air space

mounted over 2" air space

Roofing felt, bituminous,
two layers, 0.8 lb/ft2,
mounted over 10" air space

34

36

31

.23

.39

.39

.28

.41

.52

.50

.44

.62

.50

.52

.62

.70

.53

.77

.67

.59

.81

.89

.88

.88

.89

.30

.94

.99

.99

.99

.99

.99

.88

.99

.99

.99

.99

.99

.20

.83

.92

.98

.91

.83

.92

.88

.99

.98

.75

.88

.92

.10

.81

.92

.92

.62

.58

.58

.88

.92

.94

.56

.70

.70

.10

.69 10

.86 10

.84 10

.84 10

.50 10

.48 10

.72 10

.83 10

.86 10

.45 10

.30 10

.58 10

.10 5
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Table E.2. Sound absorption coefficients of

acoustically efficient absorbing materials

- contd.

41ro

Description
125

frequency cps
250 50011000 2000 4000

Source

Spincoustic blanket

1", mounted against
solid backing

2", mounted against
solid backing

Spincoustic blanket, 2"
thick, covered with 3/16"
thick perforated cement-as-
bestos board (Transits),
11% open area

Sprayed "Limpet" asbestos

in, 1 coat, unpainted,
on solid backing

same, 1" thick

4", 1 coat, unpainted,
on metal lath

Transite, 3/16" perforated
cement-asbestos board, 11%
open area

mounted against solid
backing

mounted over 1" air space

mounted over 2" air space

mounted over 4" air space

paper-backed board,
mounted over 4" air space

Wood paneling, 3/8" to 4"
thick, mounted over 2" to
4" air space

.13

.45

.25

.08

.30

.41

38

.77

.80

.19

.42

.88

.79 .92

99 .99

.99 .93

.70 .89

.74 .96

.90 .88

01 .02 .02

.02 .05 .06

02 .03 .12

02 .05 .17

'34 57 .77

.25 .20

.83

.91

.72

.95

.95

.91

.05 .03

.16 .19

.27 .06

.17 .11

.79 .43

.17 .15

.76

.78

.58

.85

.96

.81

1

1

10

11

.08 10

.12 10

.09 10

.17 10

.45

.10

10

3
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Table E.3. Sound absorption coefficients of

room contents

Description
125

frequency
250 500

cps
1000 2000 4000

Source

Air (x), per ft3 nil nil nil .001 .002 .006 5

Audience and seats

audience, seated in up-
holstered seats, per
ft2 of floor area

unoccupied cloth-cover-
ed upholstered seats,
per ft2 of floor area

unoccupied leather-
covered upholstered
seats, per ft2 of floor
area

wooden pews, occupied,
per ft2 of floor area

chairs, metal or wood
seats, each, unoccupied

.60

.49

.44

.57

.15

.74

.66

.54

.61

.19

.88

.80

.60

.75

.22

.96

.88

.62

.86

.39

.93

.82

.58

.91

.38

85

.70

.50

.86

.30

1

1

1

1

1

Carpets

heavy, on concrete

same, on 40 oz hairfelt
or foam rubber

same, with impermeable
latex backing, on 40 oz
hairfelt or foam rubber

.02

.08

.08

.06

.24

.27

.14

.57

.39

.37

.69

.34

.60

.71

.65

.73

.63

1

1

1

Curtains

light ve lour, 10 oz
per yd2, hung straight,
In contact with wall

medium velour, 14 oz
per yd2, draped to half
area

.03

.07

.04

.31

.11

.49

.17

.75

.24

.70

.35

.60

1

1
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Table E.3. Sound absorption coefficients of

room contents - conid.

Description
125

heavy velour, 18 oz
per yd2, draped to htlf
area 14

heavy curtain, 3f"
from rigid backing .06

Fiberglas curtain, 6.1
oz per yd2, draped to
half area, 5" from
rigid backing

same, 8.4 oz per yd2 .09

Musician, with seat and
instrument, per person 4.0

Openings

deep balcony, ratio of
balcony depth to height:
2+

same, with ratio:

stage opening, un-
specified

ventilating grilles,
50A open area

Water surface, as in
swimming pool

.08

.30

.40

.30

.30

.01

freqvancy cps
250 503 1000 2000 4000

.35 I .55

.38

.13 .21

.32 .68

8.5 11.5

.50

.65

.40

.50

.01

.72

.63

.29

.83

14.0

.015

.70 .65

.70 I .73

.23 .29

.76 .76

13.0 12.0

.60

.75

.50

.50

.02

Source

.025

1

4

8
8

5

2

2

2

2

1
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F.1 General considerations in the architectural design of rooms

The architectural design of the various types of Auditoria

- an extremely complex problem - has to comply with aesthetical,

functional, constructional, economical and various hygienic

(environmental) requirements. Besides the architecturally

pleasant and structurally sound arrangement of an Auditor/mg

particular care has to be taken in order to provide comfortable

accommodation, good sight and hearing, proper temperature, ven-

tilation, light, etc., at reasonable and proportionate cost.

The listeners should be able to reach their seats easily and

rapidly, and the room should be capable of being evacuated

quickly and safely in case of an emergency or at the end of a

performance (F-3, F-4, F-5).

To sum up,the audience in a contemporary Auditorium expects

comfort, safety, pleasant aesthetics, proper light, good sight

and good sound. Subsequent paragraphs review one of these re-

quirements, namely good hearing.

F.2 Acoustical requirements in room design

The following are the requirements for good hearing condit-

ions in an Auditorium (F-1, F-2, F-4, F-12, F-14, F-27, F-30,

F-35, F-36, F=51, F-54, F-57, F=60, F -62):

(1) there should be adequate loudness in every part of the

Anditorium, particularly at those seats which are fur-

thest away from the sound source;

(2) there should be a uniform distribution of sound energy

in every part of the room, i.e.,the sound should be

equally loud at all seats whether they be near or re-

mote,

(3) the Auditorium should have optimum reverberation char-

acteristics that will allow (a) the most favorable

appreciation of the sound program, i.e.phigh intel-
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ligibility of the spoken word or full enjoyment of

music, as the case may be, and (b) the most efficient

presentation of the sound program by the performers;

(4) the Auditorium should be free from acoustical defects;

such as, echoes, long- delayed reflections, flutter echoes,

sound concentrations, distortion, room resonance, sound

shadows or other undesirable phenomena;

(5) noises and vibrations, which would interfere with the

performance or listening in the Auditorium, should be

excluded or reasonably reduced from every part of the

room.

F.3 Importance of room shape and volume for the proper supply
of sound energy

The shape and size of an Auditorium are factors of outstand-

ing importance in the achievement of adequate loudness in every

part of the audience area. This problem, particularly in medium

and large Auditoria, is brought about by the energy losses of

the traveling sound waves and by the sound absorption due to

acoustical finishes and room contents. These sound energy losses

must be reduced to a miniium and also replaced in the following

ways (P=1, F-2, F-6, F-16, F-30, F-36, F -54, F-61, GB-43, GB-52,

GB-53):

(A) The shape of the Auditorium plan should be established

such that the audience can be located as close as

possible to the sound source, thereby reducing the dis-

tance the sound has to travel. This will suggest the

preference for a tapering (fan shaped) plan as against

a rectangular plan. In larger Auditoria the introduction

of a gallery (or galleries) brings more seats closer to

the sound source, as illustrated in Figure F.Z.
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d = average distance between sound source and lis-
tener.
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(B) The floor area and the volume of the room should be

kept at a reasonable minimum, thereby shortening the

distance the direct and reflected sound has to travel

(F-55).

(C) The audience should be located on a properly raked or

ramped floor because wound is more readily absorbed

when it travels over the audience at grazing incidence

(F-61).

(D) The sound source should be raised as much as possible

in order to secure a free flow of the direct sound waves

(those traveling directly from the sound source, without

reflection) to every auditor.

(E) The sound source should be closely and abundantly sur-

rounded with efficient (flat or slightly convex) sound

reflective surfaces in order to supply additional re-

flected sound to every portion of the audience area but

particularly to the remote seats. The angles of the re-

flective surfaces must be established by the law of

sound reflection outlined in paragraph D.1. The pro-

vision of large sound reflectors around the sound

source is a prerequisite of good hearing conditions

in Auditoria (F-8, F-11, F-26, F-27, F-38, F-59)..

The audience should be seated not only close to the sound

source but should also occupy those parts of the seating area

which are most valuable from the point of view of both sight and

hearing. To avoid acoustically inadequate seats at the extreme

ends of front rows (in an Auditorium with excessive width compared

to its length), the floor plan should be well proportioned; prac-

tically speaking,the average width to maximum length proportion

should fall between 1:1.2 and 1:2.2 (F-1). No aisle should be

located along the longitudinal axis of an Auditorium, since



131

seeing and hearing conditions are most favorable along this

line (F-1, GB-52).

In regard to the ratio of height to width to length of an

Auditorium, the older acoustical literature contains a number

of pertinent suggestions, rigorous adherence to these propor-

tions was considered to be an inaispensable factor in the a-

chievement of perfect room acoustical conditions. Popular for-

mulae give the ratio of height : width : length = 2 : 3 : 5 or

1 : 44 (GB-52). The acoustical efficiency of these pro-

portions is unquestionable, however, it must be mentioned that

the strict consideration of any recommended room proportions

should be limited to the design of acoustically sensitive rooms,

such as Radio or Recording Studios, etc. (discussed in Section

J).
In 'he design of acomstially efficient reflective surfaces

around the sound source it must be remembered that (a) the re-

flectors have to be located closely to the sound source in or-

der to produce powerful reflections following quickly upon the

direct sound, (b) the reflections need to be progressively more

and numerous towards the remote seats (GB-53), and (c) the di-

mensions of the reflecting surfaces must be comparable to the

wavelengths of the sound waves to be reflected (as pointed out

in subsection D.1). The ceiling usually constitutes a suitable

surface for the accommodation of sound reflectors, as illustrat

ted diagrammatically in Figure Fa. In reality, the successful

integration of an acoustically efficient system of ceiling re-

flectors into the overall architectural, structuraltmechanical,

and electrical layout of the ceiling is one of the most difficult

problems in the design of a contemporary Auditorium. It will de-

finitely require full attention from the architect,and his close

cooperation with structural, mechanical, electrical and acous-

tical consultants will be particularly important. For additional

examples of acoustically efficient ceiling reflectors see Figures

G.8, H.1, H.2, 1.5 and I.6.
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CEILING REFLECTION IN AUDITORIA
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Figure F.2. A properly shaped ceiling reflector
(Section "A") will provide uniform
sound energy distribution over the
remote rows. A poorly shaped ceiling
(Section "B") will create acoustically
poor spots.
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Parallel boundary surfaces, particularly close to he sound

source, should be avoided in the design of the room aaape.

In addition to those reflective surfaces which serve to re-

inforce the direct sound by reflections toward the audience,

additional reflective surfaces have to be provided which will

direct the sound back to the performers. This is particularly

necessary in Auditoria designed for musical or vocal purposes

(GB-43).

If besides the primary sound source,generally located at

the front part of the Auditorium, additional sound sources exist

in other parts of the room (e.g.pChurch organ or choir gallery

opposite the altar end of the nave), these sound sources also

have to be surrounded by sound reflective surfaces. It is es-

sential that in every Auditorium a condition be created under

which the greatest possible amount of sound energy is directed

from all 'wending" positions to all "receiving" areas,

Correctly located sound reflectors, in addition to providing

for the required reinforcement of the sound energy supply, also

create an environmental condition known as "space effect", which

is brought about when sound is received by an auditor from

numerous directions; this condition is typical of an enclosed

space and entirely missing in an Open -Ai Theater.

The proper design and location of sound reflective surfaces

will compensate adequately for the sound energy losses in small

and medium size rooms, In large Auditoria, however, the design

of a high-quality sound amplification system is indispensable

(P4); sound systems will be discussed in Section Ia.

Galleries should not protrude too far into the air space of

an Auditorium, since the audience seated below deep galleries

can hardly, if at all, be supplied with sufficient direct and

reflected sound energy (see paragraph P.6.8).
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P.4 Provision for diffusion of sound

If the sound energy is uniformly distributed in an Audi-

torium (requirement No. 2 of subsection. F.2) and the sound

waves are traveling in every direction, the phenomenon of acous-

tical diffusion will be experienced (F-33$ P-38). Subsection

D.4 has described the ways in which acoustical diffusion can

be achieved. Two important aspects have to be considered in

the effort to provide diffusion in a room: the surface irreg-

ularities must be abundantly applied and they must be of reason-

ably large size (V6l, F-2, F610, F-28, F-33, F-54) .

For reasons of economy and aesthetics, particularly in small

rooms, the application of surface irregularities is often diffi-

cult. In such cases, the random distribution of absorbing mate-

rial or the alternate application of sound reflective and sound

absorptive treatment are other means of promoting diffusio.

The application of acoustical diffusers is particularly im-

portant for Concert Halls, Opera Rouses, Radio and Recording

Studios and Music Rooms. For examples of efficiently applied

acoustical diffusers see Figures G.2, H.1, R.2, H.10, H.12 and

1.7.

The beneficial effect of acoustical diffusers upon the a-

coustical conditions of Auditoria is quite remarkable. It has

been found that in certain rooms with rather excessive rever-

beration times, in which a reasonable number of properly sized

surface irregularities have been installed, hearing conditions

are better than is normally expected (GB-52). This is probably

due to the fact that the diffusers have created a uniformity

in the rate of growth and decay of the transient sounds (see

subsection D.5).

F.5 Control of reverberation time

For every Auditorium there exist opsisnui reverberation
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characteristics that will enable all frequency components of

speech and music to grow and decay at such rates during their

transient states, and to be maintained at such levels during

their steady states, as will result in perfect intelligibility

of speech and ideal conditions for the production, transmission

and appreciation of music (F=1). Optimum reverberation charac-

teristics of a room, depending on its volume and function, im-

plies (a) favorable R.T. vs. frequency characteristics, (b)

propitious ratio of reverberant to direct sound reaching the

audience (P-27), and (0) optimum nature of the growth and de-

cay of sound (P-1, F-2, F-4, F-34, F-36, GB-43, GB-52).

At present the control of R.T. is a most important step in

the acoustical design of Auditoria. The optimum R.T. of an Au-

ditorium is represented by a diagram which gives ideal values

of R.T. as functions of representative frequencies throughout

the audio - frequency range.

Figure P.3 gives a reasonable summary of optimum reverber-

Olen times of Auditoria, plotted against their volume, as re-

commended by the following authorities: V.O. Knudsen and C.M.

Harris (P-1), P. Ingerslev (P-2), Acoustical Materials Asso-

ciation, New York (F=4), F. Bruckmayer (P-60), B.Y. Kinzey

and H.M. Sharp (P-62), W. Kuhl (J-71), L.L. Beranek (GB-34),

P.H. Parkin and H.R. Humphreys (0-43), and W. Rarer (GB-52).

The reverberation times shown on Figure F.3 apply to the mid-

frequency region of 500 to 1000 cps; these values usually

serve as reliable factors of the hearing conditions in Au-

ditoria. Experience has proved that excessive variation of

R.T. at frequencies other than the mid-frequency value will

create unsatisfactory hearing conditions. Various curves of

R.T. vs. frequency' have been suggested (F-1, GB-34); these

generally recommend a flat curve above 500 cps. For music, a

curve rising to about 1.5 times the 500 cps value at 125 cps
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is proposed, while for speech, the curve should remain flat

down to 100 cps. For Multi-Purpose Auditoria, the R.T. vs.

frequency curve below 500 cps may lie anywhere between these

limits (F-4). A deviation of about 5 to 10 v; from a selected

optimum R.T. value is generally considered acceptable, par-

ticularly in Auditoria with a high degree of diffusion. Figure

F.3 clearly indicates that rooms used for speech require a

shorter R.T. than rooms of the same volume used for musical

or vocal purposes; these aspects will be described in Section

G, "Acoustical Design of Rooms for Speech", and in Section E4

"Acoustical Design of Rooms for Music".

During the acoustical design of an Auditorium, once the

optimum R.T. at the mid- frequency range has been selectedpand

the R.T. vs. frequency relationship below 500 cps settled,

then the reverberatiln control consists of establishing the

total amount of room absorption to be supplied by the room

finishes, room contents, etc., that will produce the selected

value of R.T. For this calculation, the formula discussed in

paragraph D.5, is used (F-1, F-44, F-48, GB-43, GB-52):

R.T.= 0.0 V
[-2.30 log10 ]-1-xV

This formula distinctly shows that the larger the room

volume, the longer will be the R.T., and that the wre ab-

sorption introduced into the room, the shorter will be the

R.T. Tables F.1 and F.2 illustrate the effect of room volume

and audience absorption on R.T. in various Auditoria reputed

for their acoustics.

The distribution and selection of th, most suitable a-

coustical treatments, under given circumstances, have been

discussed in subsections E.7 and E.8. As a general rule, ab-

sorbing: materials should be placed along those boundary sur-

faces of the Auditorium which are liable to produce acous-
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Table 7.1
Una Of HOOK VOLUM ON INVENBRATI011 TIM

Longitudinal Sections

floor plane

Gamin Blisibeth
Theater, Vancouver

7.LHann Concert Hall,
Tel-MU, Israel

Philharmonic Nall,
Now York

%N.,.

1(IDD

Volume (ft3) 525,500 750,000 865,000

Number of slats 2800 2715 2644

Volume per seat (ft3) 188 216 327

--larfroquency
reverberation time (sec) 1,35 1,55 1,9

Year of dedication 1959 1957 1962

Table F. 2
EFFECT OF HOOK ABSORPTION ON REVERBERATION TD

Concert Hall
Turku, Finland

Kresge Auditorium,
Cambridge, U.S.A.

I Teatrcs Alla Scala,
Milan, Italy

Longitudinal Sections

Floor plans

lath

--,,,,,,,p))'

Volume (ft3) 340,000 35k, 000 397,000

Number of seats 1002 1238 2289

Audience area (ft2) 8000 9280 14,000

Kid-frequency
reverberation time (sec) 1,6 1,47 1,2

Year of dedication 1953 1955 1778
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tical defects; such as, echoes, too long-delayed reflections,

sound concentrations, etc. (to be discussed in subsection F.6).

In Auditoria with widely fluctuating audience attendance,

hearing conditions should also be satisfactory in the partial

or total absence of the audience. The most effective way,

though certainly not inexpensive, to achieve this is to re-

place the possible loss of audience absorption by upholstered

seats, with the bottom side of the seats also rendered ab-

sorptive (F-54).

F.6 Elimination of acoustical defects

Besides the provision for positive acoustical attributes in

an Auditorium, such as adequate loudness (subsection F.3), uni-

form distribution of sound energy (subsection 11.4), and the

control of reverberation (subsection F.5), it is essential that

various acoustical defects should be eliminated from Auditoria.

The following are the most common acoustical defects that can

impair, and sometimes destroy, otherwise acceptable acoustical

conditions within a room:

F.6.1 Echo

This will be noticeable when the sound is being reflected

from any boundary surface of the Auditorium with sufficient

magnitude and delay to be perceived as a sound distinct from

that which travels directly from the sound source (GB-73).

Echo occurs if a time interval of 1/10 to 1/25 second elapses

between the perception of the direct and reflected sounds

originating from the same source. These time intervals corres-

pond to path differences of 45 to 113 ft between direct and re-

flected sound. The exact time lag between direct and reflected

sound that is necessary to produce echo, in other words, the

distance between sound source and echo-producing reflective

boundary surface, will depend on the type of sound program,
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the position of sound source and listener, the size and shape

of ;h' reflecting surface, reverberation conditions in the room,

and sensitivity of the ear.

A sound reflective rear wall, opposite the sound source, is

a potential echo-producing surface in an Auditorium (see Figure

F.4), unless this rear wall is underneath a deep balcony (7-1,

F-2, P-22, GB-43, GB-52, GB-53) .

P.6.21long-delayed reflections

These are basically echoes with a shorter delay; they

produce a blurring or masking of the direct sound (GB-43).

F.6.3Flutter echo

Consisting of a rapid succession of noticeable echoes, a

flutter echo can be observed if a short burst of sound, such

as a clap or shot, is produced between parallel, sound reflec-

tive surfaces, while the other pairs of opp4,,Jite surfaces in

the room are non-parallel, or relatively absorbent, or diffu-

sive (F-1, F-2, GB-43). Elimination of parallelism between

opposite reflecting surfaces is one way to avoid flutter echoes.

No flutter echo will be noticeable if the sound source is not

located between the critical parallel surfaces.

Echoes, long - delayed reflections and flutter echoes generally

can be prevented by the application of sound absorbing materials

along the defect - producing reflective surfaces. If the instal-

lation of acoustical finishes along these critical areas is

not feasible, they should be rendered diffusive, or tilted,

to produce beneficial reflections as shown diagrammatically in

Figure F.5 (F-1, F-2).

F.6.4Sound concentrations

Often referred to as "hot" spots, sound concentrations are
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0 10 20 30 ft1===r=ri PLAN

Figure P.4. The rise of echo in an Auditorium. The
distance V" between sound source and
echo producing rear wall will depend
on the type of the sound program, posi
tion of sound source and listener,size
and shape of reflecting surface, re
verbere.tion conditions in the room, and
sensitivity of the oar.
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B) ABSORPTIVE REAR WALL

D) BENEFICIALLY REFLECTIVE
REAR WALL

Figure F.5. Reflective rear wall (A), liable to produce
acoustical defects, should be treated acous-
tically (B), or rendered diffusive (C), or

tilted, to produce beneficial reflections (D).
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created by sound reflections from concave surfaces. The loud-

ness of sound at these "hot" spots is unnaturally high, which

always happens at the expense of other parts of the room, call-

ed "dead" spots, where hearing conditions are poor. The pre-

sence of "hot" and "dead" spots create a non-uniform distri-

bution of sound energy in rooms (F-1, F-2, GB-43, GB -53); the

elimination of this phenomenon is an important goal of room

acoustics. A typical example of undesirable sound concentration

can be observed near a speaker whose sound is reflected back to

him from adjacent concave surfaces, creating the false subjec-

tive illusion that he talks too loudly. HA will, therefore,

overestizate the loudness of his own voice and will be inclined

to speak softer than is necessary to be heard by an audience

(F-1).

Large, unbroken, concave enclosures, particularly those

having large radii of curvature, should be eliminated from Au-

ditoria, or treated with efficient sound absorbing materials.

If the application of large concave surfaces cannot be avoided

and their acoustical treatment is not feasible, then these con-

cave surfaces should be shaped such that they focus in space

outside the audience area or room (F-2).

A suitably selected and properly installed sound amplifi-

cation system will reduce, but never entirely remedy, the det-

rimental acoustical effects of echoes,lons-delayed reflections,

flutter echoes and sound concentrations.

F.6.5 Coupled spaces

If an Auditorium is connected to an adjacent reverberant

space (such as a foyer, stair-hall, corridor, stage tower,

baptistry, etc.) by means of open doorways, the two rooms

will form coupled spaces (F-21). As long as the air spaces of

the coupled rooms are interconnected, an inflow of reverberant
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sound into the main Auditorium from the adjacent space will be

noticeable, although reverberation might have been properly

controlled in the main room. This phenomenon will particularly

disturb the audience seated close to the open doorways, no mat-

ter how much consideration was given to the reverbera ion con-

trol of the main Auditorium (F=1, F-2).

The undesirable effect created by coupled spaces can be

overcome either by adequate acoustical separation between the

coupled spaces or by providing approximately the same decay

rate in both spaces.

F.6.6Distortion

This phenomenon is an undesired change in the quality of

musical sounds due to the uneven or excessive sound absorption

at different frequencies of boundary surfaces. This will be

avoided if the applied acoustical finishes have balanced ab-

sorption characteristics over the entire audio-frequency range.

F.6.7Room resonance

Sometimes called "coloration", this will occur when sounds

within a narrow frequency band tend to sound louder than other

frequencies. This phenomenon is created by parallel reflective

surfaces if the wavelength of the sound is equal to the distance

between the surfaces or to a submultiple of it (GB-34), The

avoidance of this acoustical defect is particularly important

in the design of Broadcasting and Recording Studios

F.6.8Sound shadow

Under-balcony spaces, with a depth exceeding twice the height,

should be avoided (Figure H.7), since they will prevent the remote

seats underneath from receiving an adequate amount of direct
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and reflected sounds, creating, thereby, poor audibility in this

region of the Auditorium (GB-53).

F.6.9Whispering galleries

High frequencies of sound have the tendency to "creep" a-

long large concave surfaces, such as hemispherical domes (St.

Paul's Cathedral in London, Royal Theater in Copenhagen, etc.).

A very soft sound like a whisper created close to such a dome

will be surprisingly audible at the opposite side of the struc-

ture. A whispering gallery might be a sensational and harmless

phenomenon in an Auditorium but never a contributing factor to

its acoustics (P-1, P-2).

F.7 Noise and vibration control of Auditoria

The exclusion or reasonable reduction of interfering noises

and vibratons from Auditoria, constituting an important re-

quirement in the acoustical design of rooms, will be discussed

in detail in PART III NOISE CONTROL (F-35).
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In the acoustical design of Auditoria for speech the pri-

mary requirement is intelligibility, i.e., the speaker should

be understood clearly and easily (G-3).

G.1 Nature of speech sounds

Speech sounds contain vowels and consonants, woven into an

individual pattern of predominant tones, sometimes called

"formants" (GB-73). These formants, consisting mostly of vowels,

endow a person's voice with distinctive characteristics, con-

tributing to the basic tone of speech. Consonant sounds, often

very high frequency sounds with extremely short and rapid suc-

cession, have only a limited acoustical power compared to the

vowels.

Vowels emphasize the basic tone and the natural qualities

of speech, and since intelligibility depends to a large extent

on the proper recognition of consonant sounds, the preserva-

tion of both vowels and consonant sounds is therefore an im-

portant factor in the achievement of favorable speech emus-

tics (G-3).

G.2 Effects of rooms on speech

The physical and acoustical features of an Auditorium, such

as size and shape of the room, reverberation characteristics,

prevailing noise conditions, etc., will have an influence on

speech in the room (G-4, G-5, G-6).

The larger an Auditorium is - assuming the absence of a

sound amplification system - the more effort must be exerted

by a speaksir in order to make himself understood in every part

of the room but particularly at the remote seats.

Reverberation will reinforce the loudness of speech, how-

ever, excessive, reverberation will be harmful to intelligibility;
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it will blur and mask the spoken syllables by the still audi-

ble reverberation of previously uttered syllables (0-7, G-9,

G-11). Under such reverberant conditionspa speaker, besides

being annoyed, will also be inclined to talk softer, slower

and more articulately than he would otherwise (G-1).

G.3 Acoustical requirements of Auditoria for speech

All the requirements and recommendations discussed in

Section F1 "Acoustical Requirements in Auditorium Design"

naturally apply; in particular, the design of rooms for speech

must comply with two basic requirements: speech intelligibility

must be secured above all,and a R.T. ideal for speech must be
provide6.

To secure a high degree of intelligibility (G-10) and also
to enable the audience to appreciate the subtleties or dramatic

effects being sought by a speaker (e.g.tactor, preacher, polit-

ical speaker, etc.), it is essential that:

(A) Ample direct sound waves should reach the listeners;

this requires adequately raked seats, a raised speaker's

platform and the elimination of any obstructing element

(column, deep balcony front) from the room.

The paths of direct sound waves should be as short as

possible to reduce sound energy losses in the air.

This requires a compact room shape with a low volume

per seat value of about 100 to 175 ft3, preferably

nearer to the lower figure (G-3, GB-29) . Itfolaomsfrom

the R.T. formula that, other conditions being equal,

the lower the volume per seat value is in a room, the

less acoustical treatment will be required for the pro-
vision of the same R.T.

The direct sound waves should be reinforced with ample

short- delayed reflections arriving at the listeners

(B)

(C)
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with a path difference of possibly not more than about

30 ft compared to the direct sound (G-3).

(D) The seats should be layed out in a pattern such that

they do not fall outside an angle of about 140° sub-

tended at the position of the speaker (G-3, 0-14, G-17).

This is necessary in order to preserve the high frequen-

cy speech sounds whose power would drop badly outside

this angle, because of their directional characteristics.

(E) The acoustical finishes applied in the Auditorium should

possess uniform absorption characteristics between 250

and 7000 cps (v-1) to prevent the undesired excessive

absorption of vowels or consonant sounds within this

frequency range.

(F) The R.T. of the Auditorium should be as close as possible

to the ideal value throughout the entire audio-frequency

range, as it is shown in Figure F.3 (G-3) . It must be

noted, however, that the achievement of a short R.T.

alone, as suggested in this Figure, is no guarantee of

good hearing conditions in rooms for speech.

The speech intelligibility in an Auditorium can be deter-

mined quantitatively by articulation testing which will be dis-

cussed in Section K (G-12, GB-73).

0.4 Auditoria for speech

The recommendations given in Section F, "Acoustical Require-

ments in Auditorium Design", and in subsection G.3, "Acoustical

requirements of Auditoria for speech", apply completely to the

acoustical design of the various Auditoria discussed in this

Section. The architectural and structural design of specific

Auditoria, however, will often create special acoustical con-

ditions, thus necessitating the enumeration of a few addi-

tional recommendations.
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4.4.1 Legitimate Theaters

Consideration will be given here to the Legitimate Theater

which is used in the overwhelming majority of performances for

regular stage plays (dramatic performances), without dissoci-

ating this type of Auditorium from occasional musical present-

ations (G-I5, G-16, G17, Gm68).

Acoustical problems encountered in the architectural design

of Legitimate Theaters are ever increasing, due to the fact

that fundamental changes are taking place in the domain of

Theater design. The Theater people (playwrights, producers,

directors, stage aanagers, composers, actors) expect revolution-

ary changes from the architectslor at least considerable im-

provements, in Theater design in order to satisfy their in-

creasing artistic aspirations (Gm18, G-24, G-28, G-35, 0-39,

0-41, G-42, G-46, G-48, G-54, G-56, G-57, G-58, Gm62).

The relationship of performing area to audience area, a

crucial factor in Theater acoustics, is generally set accord-

ing to one of four basic stage forms (Figure G.1): (a) the

proscenium type (picture stage) with the performing

area at one end of the Theatertandvitk the audience watching

through the picture frame of the proscenium opening; it serm

aratee the audience from the performers; (b) the arena
type (Theater-in-the-round), based on the radial layout of the

olassical Amphitheaters, without any separation, between per-

formers and spectators; (c) the apron type (also called

Elizabethan apron) with the performing area protruding into

and being surrounded on three sides by the audience, thus pro-
viding an intimate relationship between actors and spectators;

and (d) the oaliper type with the reversed arena con-

cept where the side stages extend out and surround the spec-

tators. Contemporary stage forms all derive from one or a

combination of these prototypes (G-33, Gm63, 0m71).
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Figure G.1. The basic stage forms used in Theater design.

1
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Figures G.2, 0.3 and 0.4 show typical examples of the pros -

cenium, arena, and apron type stages (0-13, G-14, G-16, 0-19,

G-20, G-23, 0-25, G-27, 0-29, G-30, 0-31, 0-32, 0-35, 0-36,

G-37, G-44, G-45, G-49, 0-55, G-61, G-63, 0-64, 0-65, 0-69,

G41, G-72, 0-73).

Regarding the acoustical requirements specifically appli-

cable to Legitimate Theaters, it must be quite obvious that the

widely differing floor plans and room shapes will certainly

pose serious acoustical problems, in particular:
providing ample and powerful short-delayed reflections
to v e r y part of the audience area;

- securing even distribution of sound throughout the Au-
ditorium;

raising the sound source and raking the audience area;

providing short-delayed back reflections onto the per-
forming area;
obtaining ideal R.T. vs. frequency characteristics for
performances other than stage plays;

- eliminating echoes, long-delayed reflections and sound

concentrations from the frequently used circular fora
without creating an overly dead acoustical environment;

- locating the seats such that sufficient sound waves
(high frequency components of speech) reach those spec-
tators who happen to at behind the performer;
eliminating the coupled space effect between audience
area and fly-tower;
accommodating a sufficiently large and easily demountable
orchestra shell on the acting area with variable capacity;
installing an unobtrusive, high quality sound amplifica-
tion system when the audience capacity exceeds about
1500 (G-3).
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Figure G.2. Queen Elizabeth Theater in Vancouver, B.C.,
representing the proscenium type stage.
Affleck, Desbarats, Dinakopoulos, Lebow
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Beranek and Newman, acoustical consultants.
(Reprinted from Music, Acoustics and Archi,d-
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Figure 0.3. Arena stage in Washington, D.C. Floor plan.
Seating capacity: 752, completed in 1961.
22: stage entrance, 23: stage, 25: smoking
balcony, 31 and 34: boxes, 35: tiers.
R. Weese and Ass., architects and engineers.
(Reprinted from Progr. Arch., Feb. 1962).
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Figure G.4. The Tyrone Guthrie Theater in Minneapolis,
Minnesota, combines an apron stage with a
shallow proscenium stage. Seating capacity:
1437, completed in 1.963. R. Rapson, architect;
R.F. Lambert, acoustical consultant. ( Re-
printed from Progr. Arch., Feb. 1962).
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G.4.2 Lecture Halls, Classrooms

lecture Halls of the various educational institutions,

often termed "Amphitheaters", and normally seating more than

about 100 persons, should be designed in accordance with the

relevant acoustical principles discussed above in order to se-

cure the most favorable conditions for the intelligibility of

speech (G -75). This means that an optimum shape and size of the

room, an adequate and correctly directed supply of short-de-

layed sound reflections, the provision for the required short

R.T., full elimination of possible acoustical defects, reason-

able noise control, etc.,should all be carefully considered

and secured. The optical and'acomstical requirements in Lecture

Halls are in complete agreement: suitable room proportion and

shape will contribute equally to good sight and good. hearing.

The exact purpose of a Lecture Hall should be ascertained

and clarified well in advance because rooms to be used for de-

monstration purposes or for audio-visual education (G-74, G-86)

will require particular care in their acoustical design and de-

tailing.

In the interest of exterior noise exclusion, contemporary

Lecture Halls are seldom designed with natural light and venti-

lation. This will necessitate the design of a complex ceiling

incorporating various mechanical and lighting components, neces-

sarily creating acoustical problems in the design of the sound

reflective ceiling (G-77, G-79, G-80, G-83, G-84, G-85, G-89).

In the R.T. calculation of Lecture Halls it is customary

to assume about two thirds of the capacity audience.

Lecture Halls with volumes of up to about 50,000 ft', or

for an audience of up to about 500, will not require a sound

amplification system if their acoustical design is based on

the principles and recommendations discussed so far. Figure G.5
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Figure 0.5. Plan of a lecture Hall at the Wolfson
Institute, Postgraduate Medical School
of London University, England. The Hall
seats 471 persons, it was completed in
1961. 3: lecture Hall, 4: projector
pit. Lyons, Israel and Ellis, architects;
H. Bagenal, acoustical consultant. (Re-
printed from Arch. Des., Ag. 1961).
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and Figure G.6 illustrate the plan and section of an exemplary

lecture Hall at the Wolfson Institute, London, England (G -84).

Classrooms with rectangular shapes and level floors, their

Moor areas normally varying between about 600 and 1000 ft2,

and their volumes between about 6000 and 12,000 ft3, seldom

create any serious acoustical problem (G-75). The rear wall,

opposite the lecturer, even if acoustically untreated, will sel-

dom cause any audible acoustical defect (such as echo, long-de-

layed reflection) because the length of the Classroom is small

and the usually installed pin-up boards, wall tables, built-in

book shelves and cupboards will dissipate and diffuse incident

sound.

The R.T. of the Classrooms should be approximately 0.6 to

0.9 sec at the midfrequency when full, depending on their volume

(G-74, G-78, G-81, G-89). This requirement is mostly fulfillea

if the rooms are.occupied,well furnished. with built-in acces-

sories (shelves, cupboards, etc4, and if light-weight, prefab-

ricated building panels (plaster boards, drywall construction,

suspended ceiling, etc.), large glazed areas, luminous fixtures,

etc"are installed in the Classroom. If the application of ad-

ditional absorbent treatment seems to be necessary, this should

be installed along the edges of the ceiling or on the upper

parts of the side and rear walls (G-3, G-81, G-89, GB-52). No

matter how much additional absorbent finishes are required in

the Classroom, the middle portion of the ceiling should always

be kept reflective to provide uniform sound energy distribution,

originating from any part of the room (G-81, G-87).

The i'9ise control of Lecture Halls and Classrooms, a re-

quiremont of importance, will be dealt with in Section S.

A-
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Figure G.6. Section of the Lecture Hall shown in
Figure G.5. (Reprinted from Arch. Des.)
Ag. 1961).
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G.4.3 Assembly Halls, Congress Halls

This paragraph reviews Assembly Halls of educational build-

ings or of other large establishments (Office Factory), and

Congress Halls in which precedence is given to sound programs,

such as lectures, plays performed by amateur groups, panel dis-

cussions, debates, vocational or political meetings, congresses,

etc., and which require primarily the intelligibility of the

spoken word. These Auditoria, although constructed without

stage facilities and equipment, are occasionally used for mu-

sical programs and film projections. Usually housing an audi-

ence of considerable number, they should always be equipped

with a speech reinforcement system.

In their acoustical design, besides considering the prin-

ciples described so far, particular attention should be paid

to the following points (G-90, G-92, G-98, G-99, H-104):

(a) compact room shape and size,

(b) natural reinforcement of direct sound energy supply,

(c) ample distribution of direct sound,

(d) sound diffusion by wall and ceiling irregularities,

(e) reasonable compromise in M., close to speech re-

quirements,

(f) heavily .upholstered seats,

(g) carpeted aisles,

(h) acoustically treated rear wall in case of danger of

harmful reflections,

(i) removable orchestra shell, adjustable in size,

(j) high quality speech reinforcement system, providing

uniform coverage with amplified sound,

(k) exclusion of exterior noise, provision for low back-

ground noise.
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Figure G.7 illustrates an Assembly Hall, and Figure G.8

shows a Congress Hall (0-90, G-91, G-93, G-94, G-95, 0-96,

G-97, 0-100, G-101, G-102, G-103, G-105).

G.4.4 Conference Rooms, Court Rooms, Chambers for Local and
National Government

From an acoustical point of view, Auditoria in which ad-

ministrative, debating, judicial and legislative activities

take place, have the following acoustical requirements in

common (0-3, G-107):

- the provision for high intelligibility of speech must

receive top priority, and

- good hearing conditions are required for sources of speech

sound originating from many different positions in the

room.

The requirement for a low volume per seat value, recomaended

at 100 to 175 ft3 in paragraph G.3, unfortunately conflicts with

aesthetic aspects aiming at a dignified and impressive interior

in many of these Auditoria. For Conference Rooms and Court Rooms,

booluseoftheir relatively lower ceiling heights, the achievement

of a volume per seat figure of about 100 to 150 ft3 is feasible;

in Parliament Chambers, however, this figure will often reach

the 350-400 ft, value at capacity attendance; it may raise to

as high as 1000 ft3 in case of low attendance, not infrequent

in the history of Legislative Assemblies. Under such conditions

a very poor speech intelligibility can be expected.

Seating arrangements will obviously vary according to archi-

tectural layout, capacity and purpose of the room, however, po-

tential speaking members of the participating audience should

face each other, within the limits of possibility. Since semi-

circular and horseshoe shaped floor areas will best meet this

requirement, attention should be given to the elimination of
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Figure G.7. Assembly Hall of the University of Caracas,
Venezuela. C.R. Villanueva, architect; Bolt,
Beranek and Newman, acoustical consultants.
(Reprinted from Music, Acoustics and Archi-
tecture by L.L. Beranek, John Wiley and Sons,
New York, 1962).
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back-reflections and sound concentrations from curved boundary

surfaces.,

The following items should be checked, in addition to tt_ae

dealt with in preceding paragraphs, during the acoustical de-

sign of Conference Rooms, Court Rooms, and Chambers for Local

or National Government (G-3, G-107, G-111, GB-52, GB-53):

(a) greatest economy in floor area and volume,

(b) minimum ceiling height,

(c) reflective and dispersive ceiling treatment,

(d) steeply tiered seating and raised dais,

(e) short R.T. as required in Auditoria for speech,

(f) soft floor finish, particularly along the aisles,

(g) fixed and well absorbent (upholstered) seating,

(h) selection of a high quality speech reinforcement system

if this is required by the room volume,

(i) exclusion of exterior noise, in view of the fact that

these Auditoria are usually located in the noisiest

districts of the city,

(j) achievement of low background noise level (see also

Section M) if no sound amplification system will be used.

If these Auditoria are provided with space for public atten-

dance, this should take the form of a secluded seating area

(e.g., gallery), suitably separated from the main floor area.

This public area should be treated acoustically as "dead" as

possible with highly absorbing acoustical finishes, carpeted

floors,and upholstered seats (G-108, G-109, G-110, G-111, G-112,

G-113, G-114).

Figure G.9 shows the floor plans of three Council Chambers

located in the Conference Building of the UN Headquarters, in

New York.

Figure G.10 illustrates the floor plan of the Municipal

Council Chamber in the City Hall of Yalta, Japan (G-114).
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Figure G.9. Plan of three Council Chambers in the
United Nations Building, New York.
A. Arneberg, F. Juhi, and 8. Markelius,
architects. (Reprinted from Arch. Fo
rum, Ap. 1952).
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I. assembly hall 2. visitors' gallery .3. lobby

4. spare room 5. comittee's room 6. reception room.

7. chairman's room 8. office room 9. tekplione exchange

Figure G.10. Floor plan of a municipal Council Chamber in
the Yaita City Hall, Japan. T. Sato, architect.
(Reprinted from Japan Arch., June 1963).



G.4.5 Gymnasia, Arenas, Swimming Pools, Bowling Alleys

The activities taking place in these Auditoria are often

serious noise producers; this will disturb not only the partic-

ipants and spectators within the Halls (Gymnasia, Swimming

Pools, Bowling Alleys),but constitute objectionable sources of

interference to near-by rooms as well (G-2, G-115). The acous-

tical finishes used in these Auditoria, therefore, should serve

two purposes: they should contribute to a short R.T.,and they

should reduce at the same time the prevailing noise level.

Acoustical finishes installed in Auditoria will contribute

to noise reduction within the Auditoria only, and will not pre-

vent the penetration of noise into adjacent areas; the problem

of noise insulation must be resolved independently. This might

be achieved either by surrounding the noisy Auditorium with

barriers that will provide adequate isolation against noise and

vibration generated in the Auditorium; or by locating the noisy

Auditorium as far as possible from rooms requiring quiet acous-

tical environment. This will be dealt with in Section M.

Because of functional requirements, opposite boundary sur-

faces of these Auditoria are generally parallel, often giving

rise to harmful acoustical phenomena, such as excessive rever-

beration and flutter echoes. Since a marked deviation from the

rectangular room shape is seldom justified in these Auditoria,

the proper distribution of sound absorbing materials and the

abundant application of surface irregularities (exposed struc-

tural elements, recesses, splays, serrations, etc.) is imper-

ative (GB-21).

Acoustical finishes applied in some of the Auditoria clas-

sified under this group have to resist mechanical impacts (in

Gymnasia), and also withstand humidity (in Swimming Pools) (G-126,

G-129, G-130). The choice of acoustical materials in Auditoria

has been reviewed in paragraph E.8.
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Huge arena -type Auditoria are frequently constructed to be
used for a wide range of programs and to accommodate a vast au-
dience (G-116, G-117, G-123, 0-125, G-131). In such casestvarious,
often conflicting, acoustical requirements have to be blended
into a single concept, resulting in a reasonable compromise only
at best.

Figure G.11 illustrates details of the huge Vienna Sports
Hall, in Austria, which is used satisfactorily for stage perform-
ances, skating rink, film projections, cycling competitions,
tennis championships and prize fighting,with a different seating
arrangement for each particular program. The audience capacity
of this Arena can be varied between 2000 and 16,000 (G-121,
0-122, G-124, G-127, G-128)

These huge Auditoria are far too large to provide satis-
factory hearing conditions by natural sound. The installation
of a sound amplification system that will produce uniform cover-
age and naturalness in every part of the seating area is there-
fore indispensable.
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While the acoustical efficiency of rooms for speech can be

measured by objective speech intelligibility tests (G-1, G-2, G-3),

the methods available for the acoustical evaluation of Auditoria

for music are mostly subjective. These subjective methods, based

on the judgement of individuals (musicians, performers, conductors,

music critics and concert-goers), have been tried and tested over

the years and have culminated in a rather complete checklist, com-

piled by L.L. Beranek, against which the musical-acoustical quality

of an Auditorium can be compared and evaluated with reasonable

accuracy (H-6).

H.1 Room acoustical attributes related to the quality of music

The ibllouing are the room acoustical attributes which have an

effect on the quality of music (11-3, 11-5, 11-6, 11-7, 11-8, H-19):

(A)Acoustical intimacy or pre-
sence. An Auditorium has acoustical intimacy if music

played in it gives the impression that it belig performed in

an intimate, small room. Usually it is not possible, nor

is it necessary, for the Auditorium to be limited to this

particular size,but only that it sound as though it were

of this size. The degree of acoustical intimacy of an Au-

di torium will depend on the initial-time-delay gap, i.e.,

the time interval between direct sound received by a lis-

tener and the first reflection from any boundary surface

of the room. If the initial-time-delay gap in a room is

shorter than 20 milliseconds (20 one-thousandths of a

second), corresponding to a path difference of 23 ft, and

the direct sound is not too faint, the room will be found

to be acoustically intimate. Acoustical intimacy is pro-

bably the most outstanding acoustical feature that an Au-

ditorium, used primarily for music, can possess.
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(B)Liveness. An Auditorium will be live if it has

a large volume relative to its audience capacity, with

predominant sound reflective enclosures. A live hall

has a relatively long R.T., particularly at the middle

and high frequencies, resulting in a full, sustained

tone at this frequency range.

(C) Warmth. Music has the quality of warmth when it

has a fullness of the bass tone relative to that of the

mid-frequency and high frequency tones. This will be

noticeable when the reverberation times of the low fre-

quency sounds (250 cps and below) are longer than those

of the middle and high frequency sounds, resulting in

a rich bass.

If the R.T. is adequately controlled over the entire

audio-frequency range,a fullness of tone
will be noticeable. Excessive fullness of tone in a room

makes the sound muddy, blurred and unenjoyable.

( D ) L o u d n e s s of d i r e c t sound. In a
small Auditorium,the audience, even when located in the

remotest seats, will always receive an adequate amount

of direct sound. In large halls, however, the seats must

be steeply ramped, and the sound source must be well ele-

vated, in order to provide a sufficient amount of direct

sound for the remote seats.

(E) Loudness of reverberant sound.
This will depend on two factors: the intensity of the

reflected sounds and R.T. (with capacity audience). There

must be an appropriate balance between room volume and

R.T. in order to provide a satisfactory loudness for the

reverberant sound (Figure F.3).

I.
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(F)Definition or clarity. If the sounds
of the various musical instruments, played simultaneous-

ly in an orchestra, are easily distinguished and if every

note within a rapid passage is heard separately, the room

possesses definition or clarity. Good definition will pre-

vail if (a) a considerable amount of short-time-delayed

reflections have been provided for (i.e.,the hall has in-

timacy), (b) if the room has a relatively small volume

with a short R.T., (c) if the listeners are close e-

nough to the sound source (i.e.,the ratio of direct to

reverberant sound is relatively large).

Definition and fullness of tone are normally inverse-

ly related, i.e., a room possessing a high degree of de-

finition will usually have a short R.T. and vice versa.

(G) Brilliance. This will occur when there is an

abundance of bright and clear high frequency sounds. It

will be more pronounced if the room has a considerable

amount of reflective surfaces, if it has liveness and if

the listeners are close enough to the sound source. If

the Auditorium has acoustical intimacy, liveness and de-

finition, it will certainly have brilliance.

(B)Diffusion. If reflected sound waves approach the

listeners from every direction in approximately equal

amounts, diffusion will be observed in the room. A re-

latively long R.T. and ample wall and surface irregular-

ities will promote diffusion.

(I)Balance. The control of this attribute is partly

in the hands of the conductor. Suitably proportioned re-

flective and diffusive surfaces around the sound source

will strengthen and improve both kinds of balance, i.e.,

(1) between sections of the orchestra, and (2) between

musicians and soloists.
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(3)Blend. If musical sounds are well mixed together

before they reach the listeners, so that they are per-

ceived as harmonious, the "sending end" of the Auditorium

has a good blend. The reflective and diffusive orchestra

enclosures control blend. An orchestra platform or or-

chestra, pit will not have a good blend if it is too

wide.

(K) Ensembl e This is the capability of the musicians

and soloists to perform in unison so that the entire or-

chestra sounds as a well rehearsed and coordinated unit.

Undoubtedly. ensemble is controlled primarily by the con-

ductor, however, it will also be enhanced by a well pro-

portioned and suitably raked stage floor and also if the

stage enclosures will readily project the sounds from

one side of the platform to the other.

(L) Immediacy of response ( orat-
t a c k ). The quality of an Auditorium such that it

responds instantly to the sounds of the performers is

termed as immediacy of response, or attack. This will be
achieved by the following room acoustical phenomena:

(a) the periodical return of back reflections from the

audience area to the performers; (b) the projection of

short-delayed first reflections toward the seating area;

(c) properly controlled R.T. (subsection F.5) ; (d) good

diffusion; (e) suitably proportioned platform area with

ensemble-promoting reflective enclosures; (f) the ab-

sence of echoes and long-delayed reflections.

(M) Texture. The pattern of sound reflections per-

ceived by the listeners in a room, superimposed on the

general impression of the performance, is called texture.

This is beneficial in a room if later sound reflections
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follow uniformly the short-delayed first reflections.

( N ) P r e e d o m f r o m echo. The elimination of

echoes from every Auditorium, discussed in subsection

P.6, is of unquestionable importance.

(0)Preedom from noise. The elimination or
reduction of exterior noise (due to traffic, ventilating

or air-conditioning systems, machinery, etc.) to inaudi-

bility and the reduction of interior noise to an accept-

able minimum is one of the most important requisites of

an Auditorium for music.

( P ) D y n a, m i c range. This is the spread of the

audible sounds within a room, extending from a normal

low level of noise created by the audience to the loudest

tones produced by the orchestra. The loudest sounds should

not reach a level that would cause discomfort to the audi-

tors.

(R)Tonal quality. Similar toafine musical in-
strument, an Auditorium can also have a beautiful tonal

quality. Considerable damage can be afflicted upon the

tonal quality of a room by the creaking of doors, rattles

caused by inadequately joined or fastened surfaces, the

uneven or excessive absorption of materials, flutter echoes,

coloration, etc.

(S)Uniformity. Uniformity of sound over the entire

auaence and performing area is one of the finest room

acoustical qualities an Auditorium can possess. Rather few

halls exist which are entirely devoid of seats (often en-

tire rows) of poor hearing conditions, relative to other

seats. Listening conditions can be comparatively poor (a)

at the extreme aide seats of the front rows in a dispro-

portionately wide hall, (b) under an excessively deep bal.-
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cony overhang, and (c) at locations receiving overly long-

delayed reflections, slap-backs, echoes,etc. Absence of

uniformity of sound can be particularly noticeable in very

large Auditoria with an audience capacity above about 2500.

H.2 Effect of room acoustical attributes on music

Roos acoustical attributes exercise a marked influence on the

various stages of the musical process, i.e.son composition, on per-

formance (productkon) and on listening (H-5, H-6, H-9, H-12, H-13,

H-14, H-15, H-109).

11.2.1 Effect on composition

As already outlined in Section B, "History of Architectural A-

coustics", the music of early composers was largely influenced by

the acoustical setting of the room in which their work was written

or performed.

Composers of Church, music, throughout the centuries, have

never failed to exploit the beneficial effect of fullness of tone

upon their music, a room acoustical feature characteristic of

Churoh Auditoria.

Baroque and classical music was scaled to relatively small,

rectangular Halls, Ballrooves, or Theaters. These rooms were of mo-
derate size, they had reflective enclosures producing a high deg-

ree of acoustical intimacy with short R.T. and excellent definit-

ion, ideal for baroque and classical music.

Composers of the Mozartian or European operas (Rossini, Doni-

zetti, Verdi, etc.) envisaged the Italian-type Opera Houses when

composing their operas which required a high degree of definition,

and a relatively short R.T.

When composers of the romantic period conceived their sympho-

nies and Wagner wrote his operas, they all composed for Auditoria

that possessed remarkable intimacy, fullness of tone and a wide

dynamic range (H-6).
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Since the beginning of the present century music is no longer

composed in terms of room acoustical qualities of existing Halls.

In fact, Auditoria of our times have to satisfy an ever increasing

number of musical-acoustical requirements in order to provide an

optimum sonic environment for the performance of music.

H.2.2 Effect on performance

Since the appreciation of music can never be dissociated from

the acoustical environment of the room in which it is presented,

musicians or soloists normally find it desirable to adjust their

performance to the acoustical qualities of the Auditorium in which

they perform. They are fully aware that their success does not de-

pend solely on their personal artistic talent but to a great extent

on several positive acoustical features of the room. Before selec-

ting a tempo for their performance that they interpret as being in

accordance with the composer's intent, they will have to check on

prevailing room acoustical features; such as, intimacy, fullness of

tone, definition, brilliance, diffusion, attack, tonal quality,

etc: (H -16). Rehearsals also serve the purpose of familiarizing

the performers with important musical-acoustical qualities of the

Auditorium. These room acoustical characteristics will reward the

performers when fully respected, but they can foster a failure

when disregarded. Conductors will always adjust the style and

technique of their performance according to the acoustical char-

acteristics of the hall in question.

H.2.3 Effect on listening

It remains to the audience and the music critic to say the fi-

nal word in accepting or refusing the work of a composer or a per-

formance. Both the audience and the music critic will be influ-

enced greatly by the acoustical qualities of the Auditorium sn

their evaluation of a musical performance; (a) in their approval

or disapproval of the music, and (b) in deciding whether or not

they consider the hall in which they listened suitable for the

performance of music.
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Naturally the selection of the program of a concert and the

number of performers engaged simultaneously in the program al-

ways depend on the basic acoustical attributes of the hall selec-

ted for the concert. No conductor would ever think of presenting,

Bach's Brandenburg Concertos in a highly reverberant Auditorium,

or to interpret Brahms in a "dead" hail.

Extensive research work is being done continuously to dis-

cover and evaluate the audience's preferences as to the optimum

acoustical environment for listening to music of various periods

and styles. An important investigation of this kind was carried

out by W. Kuhl (J -71, J-72). As a conclusion of bis large-scale

tests, competent listeners showed an almost unanimous preference

for the following reverberation times for the various styles of

music (at mid-frequency):

- for classical music (e.g., Mozart's Jupiter Symphony)

about 1.5 sec,

- for romantic music (e.g., Brahm's Fourth Symphony) 2.1 sec,

and

- for modern music (e.g., Stravinsky's Le Sacre du Printemps)

about 1.5 sec.

These values of the preferred reverberation times (plotted

in Figure F.3pand shown in Figure J.1) were not dependent on the

size of the room. Kuhl suggested that the moat favorable compro-

mise for various musical styles is a R.T. of 1.7 sec for rooms

occupied by the audience and orchestra. The results of Kuhl's

tests are in agreement with the findings of L.Z. Beranek's well-

documented study of 54 outstanding Auditoria (H -6).

Although the design of Auditoria is still based generally on

tradition (H-5), the reaction of people to music provides us

with important clues in the design of Auditoria for music.
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H.3 Special considerations in the architectural-acoustical design

of Auditoria for music

Since the architectural design of Auditoria for music has to

satisfy an ever increasing, and often conflicting, range of aes-

thetical, functional, dimensional, structural, environmental, mu-

sical-acoustical, and - last but not least - financial requirements,

relevant recommendations can be made only on a general level. This

assertion is supported by the fact that the acoustical problems in-

volved apply too often to Auditoria of unusual size and shape sel-

dom encountered before (H-21, H-64, H-67, H-70).

From the point of view of floor shapes, Auditoria for music

can be divided into the following six groups:

(A) Rectangular. This floor shape has a remarkable tradition.

Cross reflections between parallel walls contribute to an

increased fullness of tone (H-22, H-36, B-109) with a

certain risk of flutter echo and coloration.

Figure H.1 illustrates the Royal Festival Hall, London,

a contemporary example of an Auditorium with a rectangular

shape (H-34, H-35, H-38, H-39, H-40, H-41, H-42, H-47,

11 -48, H-49, H-50, H-55, R-101, ii..113). Other examples

are: Symphony Hall, Boston (H-83); Grosser Musikvereins-

saal, Vienna (H-88, H-110); Musikhochschule, Berlin (H-91);

St. Andrew's Hall, Glasgow (H-33, H-48 0-98); and Concert-

gebouw, Amsterdam (H-104) .

(B) Fan-shaped. This floor shape brings the audience closer to

the sound source, enabling the construction of balconies

where the balance is usually enhanced (00.53). The curved

rear wall with a curved balcony front, =less acoustically

treated or dispersive, is liable to create long-delayed

reflections, echoes or sound concentrations. Acoustical

conditions under the balcony require special attention.
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The F.R. Mann Concert Hall, shown in Figure H.2, is an

example of a fan-shaped hall (H-63, H-103). Other examples

are: Kleinhans Music Hall, Buffalo (H-84); Tanglewood Music

Shed, Lenox, Mass. (H-74, H-85, H-122) ; and Liederhalle,

Stuttgart, illustrated in Figure H.9 (H-57, H-63, H-95,

H-112).

(C) Horseshoe shaped. This is the traditional shape for Opera

Houses with rings of boxes one atop the other. It provides

a relatively short R.T., suitable for the rapid passages

of the European opera, but too short for orchestral perform-

ances.

Figure H.3 illustrates the Academy of Music, in Phila-

delphia, an example of the horseshoe shaped hall for music

(H-6) . Other examples are: Teatro alla Scala, Milan (H-120,

H-121, Hm137); Carnegie Hall, New York (H-86); Metropolitan

Opera House, New York (H-131); Royal Opera House (Covent

Garden), London (H-136); and Teatro Colon, Buenos Aires

(H-132).

(D) Circular. This floor shape is normally associated with a

dome roof with excessive height. Unless treated acoustic-

ally, the curved enclosures might create echoes, long-de-

layed reflections, and sound concentrations. This shape

should be avoided by all possible means.

The Royal Albert Hall, London, gives an example of a

circular Puditorium, noted for its several acoustical de-

ficiencies (H-26, H-27, H-100); this is shown in Figure H.4.

(E) Irregular. This shape can bring the audience unusually

close to the sound source; it will secure acoustical in-

timacy, definition and brilliance, since surfaces to produce

short-delayed reflections can be easily integrated into the

overall architectural design. The irregular layout offers
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a wide opportunity for the random distribution of absorb-

ent elements and surface irregularities. The freer re-

lationship between audience area and platform offers a

wider scope in design and an increased fulfilment of

several musical-acoustical requirements. It appears that,

from an acoustical point of view, this floor shape offers

hitherto unexplored advantages.

Figure H.5 illustrates the Philharnionie, Berlin, a

recent example of an irregularly shaped Concert Hall (H-80,

H-116, H-119).

(F) Combination of the foregoing shapes. This will permit the

blending of the acoustical advantages of various floor

shapes into a single design, thus eliminating defect-pro-

ducing elements.

The Philharmonic Hall, New York, shown in Figure H.6,

constitutes a mixture of several floor shapes (H-6, H-78,

H-79, H-81, H-108, H-117, H-118) . Other examples are:Kulttu-

uritalo, Helsinki (H-6), Konserttisali, Turku (H-71, H-90),

Beethovenhalle, Bonn, illustrated in Figure H.10 (H-65,

H-69, H-92), and Konserthus, Gothenburg (H-28, H-73, H-105).

In order to achieve the required acoustical conditions in Au-

ditoria for music, in addition to the recommendations outlined in

Section F and subsection H.1, attention should be given to follow-

ing points (H-2, H-5, H -6, H-109, H-115, GB-52):

(A) Unless an Auditorium is designed specifically for a single

musical program (e.g.,for large orchestral performances

only), the R.T. always has to be a meticulously estab-

lished compromise. A carefully controlled R.T. will (a)

increase the fullness of tone, (b) promote diffusion,

(c) contribute to blend, and (d) increase the dynamic

range. The pure fact that a hall has an ideal R.T. at
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printed from Baum vad Wohnen, Doc. 1963).
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the mid-frequency, will not make this room acoustically

excellent for the performance of music. An otherwise too

reverberant space can be rendered acoustically tolerable

if the "sending end" of the room is so designed that it

supplies a considerable amount of direct sounds or short-

delayed first reflections to the entire audience area.

(B) The provision for an adequate supply and distribution

of bass tones over the audience area is a serious acous-

tical problem ( recently iaperienced in Philharmonic

Hall, New York). This is due to several facts, e.g.,fUn-

damentals of a double bass are very weak, and most of

the time only their harmonics are heard. It requires

more effort by the performers to produce low frequency

sounds than to create middle or high frequency sounds,

i.e.plow frequency sounds must be more powerful than

middle or high frequencies in order to be heard equally

well by auditors.

(C) The provision for ample short-delayed reflections is

essential, but this factor by itself will not produce

good hearing conditions in Auditoria for music.

(D) Definition will be satisfactory (a) if the initial-time-

delay gap (paragraph H.1.A) does not exceed 20 milli-

seconds, (b) if the direct sound is loud enough relative

to the reverberant sound (i.e.,listeners are reasonably

close to the sound source), and (c) if there is no echo

in the hall.

(E) Brilliance will be achieved (a) if the I.T. at 500 cps

and at higher frequencies is ideal related to the type

of music, to the volume and purpose of the Auditorium,

(b) if the direct sound is adequately loud, and (c) if

a high degree of acoustical intimacy is present.
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(F) Brilliance and blend will be accomplished if the en-

closures around the sound source thoroughly blend

and mix the sounds of various instruments so that chords

are perceived as harmonious by the listeners.

(G) Immediacy of response will prevail (a) if sounds are

progressively reflected back from the audience area to

the sound source with graduated delays, (b) if the ini-

tial-time-delay gap is markedly short in the room, (c)

if R.T. is properly controlled, (d) if a high degree of

diffusion prevails, and (e) if echoes and long-delayed

reflections have been eliminated from the room.

(H) Echo will be particularly noticeable if the R.T. is short

and diffusion is inadequate. The longer the R.T. in a

room, the less trouble is likely to be expected from

echo; the longer R.T. will "cover up" the single intru-

sions of an echo. In checking e'ho- producing spots, it

should be always borne in mind that the acoustical de-

sign of rooms is a three-dimensional problem.

Flutter echo can be prevented (a) if at least one of

the parallel surfaces is treated with a finiel that is

especially efficient at the medium and high frequencies,

and (b) if parallelism between opposite surfaces is a-

voided.

(I) To achieve uniform quality of sound over the entire

seating area, (a) balconies should not protrude too

deeply into the air space of the room (Figure Ha),

(b) listeners should have unobstructed sight lines so

that they receive ample direct sound, (c) the room

should be of a reasonable size and proportion, and

(d) curved (concave) enclosures should be avoided.
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(b)

Figure 11.7. Diagrammatic layouts of balconies recce
mended for Auditoria for music;

(a) in a Concert Hall D should not exceed I;

(b) in Opera Houses D should not exceed 05.

(Reprinted from Music, Acoustics and Archi-
tecture by L.L. Jeramtk, John Wiley and Sons,
New York, 1962).
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HA Auditoria for music

1.4.1 Concert Halls

There is no specific room shape that can be considered as

being ideal for a Concert Hall. At the present state of affairs,

the irregular shape seems to be the most promising, as expressed

in paragraph, H.3.E. However, the successful integration of the

various requirements will certainly necessitate the closest co-

operation between architect, technical consultants and musical

experts (5-21 11-29, H-31, Ss32, H-36, 8 -37, H-58, H-59) .

During the design. of the platform, the following

items should be checked (H-6, Hp-21, H-23, H-24):

- required floor area, based on space requirements of mu-

sicians, their instruments, conductor and soloists;

- expected dimensions, width to depth relation, raking, etc.,

to secure balance, blend and ensemble (Figure H.8);

- reed for an occasional orchestra shell with variable size

and volume;

- stage height relative to floor of Auditorium;

- relationship to surrounding boundary surfaces in order to

provide intimacy, definition and diffusion;

- integration of mechanical, electrical and acoustical re-

quirements;

- space and acoustical requirement for organ installation;

surface treatment of enclosures around platform, partly to

reduce unnecessary absorption and partly to enhance pro-

jection of sound;

- construction of the platform to enhance bass radiation and

also to reduce overpowering sounds of the percussions;

- spatial relationship to instrument store for quick and uni-

hampored delivery of the instruments to and from the plat-

form.
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Figure H.8. Layout of an orchestra platform with.riser
heights and positions indicated for the
instrumAnts of a symphonic orchestra. (Re-

printed iron Music, Acoustics and Architec-
ture byL.L. Beranek? John Wiley and Sons,

New York, 1962).
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The use of a balcony (or balconies) in large Concert Halls

is advantageous because (a) it brings the audience closer to

the platform, (b) it is relatively easy to supply short-delayed

reflections to the steeply raked seats of the balconies, and (c)

sound waves do not reach the rows of the gallery at grazing in-

cidence as they do on the main seating area. To provide satis-

factory hearing conditions under a balcony, attention is called

to recommendations illustrated in Figure Ha.

Recommended volume per seat values for Concert Halls (1676,

H-109, GB-52) are:

minimum 230 ft3

optimum 250 to 500 ft'

maximum 350 ft3

Figures H.9 and H.10 illustrate two German Concert Halls

built after World War II.

Table HA lists important architectural-acoustical data of

outstanding Concert Halls (H-6).

Table H.1. Architectural-acoustical data of out-

standing Concert Halls (144, H-109).

Name
year of dedication

volume
ft3

aud.
capacity

1' per

aud.
seat

mid-fr.
R.T.(full)

sec

Symphony Hall, Boston; 1900
(11-83)

Tanglewood Music Shed,
Lenox, Naos.° 1938
(R44, R-85)*

Carnegie Hall, Now York;
1891
(H-86)

Philharmonic Hall, New
Uric, 1962
(1678, 11-79, 111-81, 11-108,
16116, 16117, H-118)

662,000

1,500,000

857,000

865,000

2631

6000

2760

2644

252

250

311

327

1.8

2.05

1.7

2.0
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Table H.1. Architectural-acoustical data of out-

standing Concert Halls (H-6, H-109)-cont'd.

Name
year of dedication

volume
ft3

and
capacity

V per
and.
seat

mid-fr.
H.T.(full)

sec

St. Andrew's Hall, Glasgow;
1877 569,000 2133 267 1.9
(H-33, H-48, 5098)

Royal Festival Hall,
London; 1951 775,000 3300 258 1.47
(H-20, H-34, H-39, 11 -42,
H-49, 11 m.,50, H-101)

Beethovenhalle, Born; 1959 555,000 1407 395 1.7
(H-69, H-92)

Liederhalle, Grosser Saal,
Stuttgart; 1956 565,000 2000 283 1.62
(S-57, H-63, H-95, H-112)

Philharmonic, Berlin; 1963 920,000* 2200 355 2.0

(H-80, H-116, H-119)

Grosser Musikvereinasaal,
Vienna; 1870 530,000 140 315 2.05

(H-88, 110.110)

Neues Festspielhaus, Salz-
burg; 1960 547,500 2158 254 1.5
(H-87, H-114)

Konserttisali, Turku; 1953 340,000 1002 339 1.6

(H-71, H-90)

P.R. Mann Concert Hall,
Tel Aviv; 1957 750,000 2715 276 1.55
(H-62, H-103)

Concertgebouw, Amsterdam;
1887 663,000 2206 301 2.0

(H-104)

Konserthus, Gothenburg;
1935 420,000 1371 336 1.7

(H-28, HP.73, 11-105)

Stadt-Casino, Basel; 1876 370,000 1400 264 1.7
(H-106)

estimated figures
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L.L. Beranek, John Wiley and Sons,
New York, 1962).
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11.4.2 Opera Houses

Strictly speaking,an Opera House is the combination of a

Legitimate Theater and a Concert Hall, consequently the perti-

nent recommendations discussed in paragraphs G.4.1 and H.4.1

should be followed (H-21).

The traditional horseshoe shaped, Italian-type Opera

House with its highly absorbent rings of boxes and with its re-

latively short R.T. (about 1.2 sect) still suggests the best ar-

chitectural layout for Mozartian (or European) Operas, illus-

trated in Figure H.11. The State Opera of Hamburg, Germany, is

a contap,porary version of the same type with straightened walls,

illustrated in Figure 11.12 (H-125, H-142).

The Festival Opera, House at Bayreuth, Germany, was construct-

ed to satisfy Wagner' t- musical style exclusively (Figure H.13) .

The tiers of balconies were eliminated in this Auditorium)cre-

ating a R.T. of 1.55 see (with capacity audience), with high

fullness of tcns and reduced definition, unsuitable for European

operas (H-120, R-135, R-140).

During the design of the orchestra pit, the followingitems

should be checked:

required floor area based on space requirements of musi

cians and conductor;

- expected dimensions, width to depth relation in order to

secure balance within orchestra;

- relationship of pit floor level to stage floor and audience

area to provide singer-orchestra balance and also to suit

required dynamic range;

- construction of floor and walls to achieve adequate pro-

jectior of sound into audience area;

adjustability of pi's volume to suit orchestras of different

sizes.
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Figure H.12. State Opera House, Hamburg, Germany, a
contemporary version of the Italian
Opera House. Main floor (bottom) , 1 : main

vestibule, 2: orchestra pit, 3: stage ;
Plan at first balcony level (above), 1:
balcony corridor, 3: space above main
floor, 4: stage tower. G. Veber, archi-
tect; D. Eisenberg, acoustical consultant.
(Reprinted from Architetture Per Lo Spot
tacolo by R. Aloi, Ulrico Hoepli, Milano,
1958).
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Floor Plans

Volume: 364,000 f13 Volume per audience seat: 202 ft3

Midfrequency reverberation tine (full audience): 1.55 sec .3)

(10,300 a7)
Floor area per audience seat: 4.7 ft2 (0.44 a2)

s Hymn Year of dedication: 1876
s 0 s. ss

WAGNER'S FESTIVAL OPERA HOUSE, BAYREUTH. GERMANY.

Figure H.13. An Opera House built to suit Richard
Wagner's personal musical style.
O. Brickwald, architect. (Reprinted
from Music, Acoustics and Ardhitea
ture by L.L. Beranek, John Wiley and
Sons, New York, 1962).
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In the relationship between audience area and stage tower,

"coupled spaces" should be eliminated. The stage tower, however,

should not be rendered too "dead" so that the singers will not

be deprived of the helpful reverberant environment.

The provision for an apron stage, protruding into the audience

area, is recommended. This will reduce the average distance bet-

ween singers and audience, and will render the ceiling reflect-

ors more effective in the supply of short- delayed reflections to

the audience (GB-53).

Recommended volume per seat values for Italian-type Opera

Houses (R-5, H-6, H-109, GB-52) are:

minimum 140 ft3

optimum 150 to 180 ft3

maximum 200 ft3.

Table H.2 lists important architectural-acoustical data of

outstanding Opera Houses (H-6, GB-52).

Table H.2. Architectural-acoustical data of out-

standing Opera Houses (11-6, GB-52).

Name
year of dedication

volume
ft3

and.
capacity

V per
aud.
seat

mid-fr.
R.T.(full)

sec

Academy of Music, Phila-
delphia; 1857
(H-6)

Metropolitan Opera House,
New York; 1883
(H-129)

Royal Opera House, London;
1858
(H-136)

Pestspielhaus, Bayreuth; 1876
(H -135, H-140)

Teatro Colon, Buenos Aires;
1908
(H-132)

533,000

690,000

432,500

364,000

726,300

2836

3639

2180

1800

2487

188

183

196

202

261

1.35

1.2

1.1

1.55

1.7
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Table H.2. Architectural-acoustical data of out-

standing Opera Houses (H-6, GB-52)-cont'd.

Name
year of dedication

volume
ft3

aud.
capacity

V per
aud.
seat

216-fr.
R.T.(full)

sec

Staatsoper, Vienna; 1869 376,600 1658 195 1.3

(H-133, H-141)

Theatre National de l'Opera
Paris; 1875 352,000 2131 158 1.1

(H-134)

Teatro alla Scala, Milan;
1778 397,000 2289 160 1.2

(H-121, H-137)

Staatsoper, Hamburg; 1955 340,000 1650 207 1.25

(5425, H-142)

Staatsoper, Cologne; 1957 305,000 1346 225 1.5

H.4.3 Music Rooms, Rehearsal Rooms

The acoustical requirements reviewed in Section F, subsec-

tions G.3 and H.3,naturally apply, bearing in mind that the a-

chievement of the relevant musical acoustical attributes in

these relatively small rooms will be a lot easier than in Con-

cert Halls or Opera Houses. Suitably shaped room enclosures,

adequately controlled R.T., properly chosen and well distribu-

ted acoustical finishes, and the required degree of noise cont-

rol (in both directions I) will produce acoustically efficient

Music Rooms and Rehearsal Rooms (H-144, H-145, H-147, H-148,

H-149, H-150, H-151) .

If excellent acoustical conditions are expected, the R.T.

should be adjustable to satisfy specific requirements of the

prevailing sound program 0-145, GB-21).

Acoustical conditions in Rehearsal Halls should simulate

those of the Auditorium proper with which they are functionally

connected (GB-43).
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4. H-108 Philharmonic Hall, The Lincoln Center for the per-
forming arts (contained in "Music, Acoustics and
Architecture") by I.L. Beranek. John Wiley and Sons,
New York, 1962, p. 511-540.

4. H-109 Konzertale (contained in "Handbuch der Schalltech-
nik im Hochbau") by F. Bruckmayer. Franz Deuticke,
Vienna, 1962, p. 557 -585.

4 H-110 Grosser Musikvereinssaal in Wien (contained in "Hand-
buch der Schalitechnik im Hochbau") by F. Bruckmayer.
Franz Deuticke, Vienna, 1962, p. 562-566.
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+ H-111 Grosser Konzerthaussaal in Wien (contained in "Hand-
buch der Schalltechnik im Hochbau") by F. Bruckmayer.
Franz Deuticke, Vienna, 1962, p. 566-568.

+ H-112 Grosser Baal der Liederhalle, Stuttgart (contained
in "Handbuth der Schalltechnik im Hochbau") by F.
Bruckmayer. Franz Deuticke, Vienna, 1962, p. 568-577.

+ H-113 Royal Festival Hall in London (contained in "Hand-
buch der Schalltechnik im Hochbau", in German) by F.
Bruckmayer. Franz Deuticke, Vienna, 1962, p. 577-585.

+ H-114 Neues Festspielhaus in Salzburg (contained in "Hand-
buch der Schalltechnik im Hochbau ") by F. Bruckmayer.
Franz Deuticke, Vienna, 1962, p. 611-615.

H-115 iber den Einfluss der DeckenhOhe auf die Klangquali-
tat in Karizertsalen by F. Winckel. Congress Report
No. M37, Fourth International Congress on Acoustics,
Copenhagen, 1962, pp. 4.

H-116 A .;a6k1.e of two cities (Berlin's Philharmonic Hall
and New York's Philharmonic Hall). Arch. Forum, Feb.
1963, p. 94-99.

H-117 Acoustics of the New York Philharmonic Hall; letter
by R.S. Shankland; with "Reply to Shankland's letter"
by L.L. Beranek. J. Acoust. Soc. Am., Vol. 35, 1441
1963, p. 725-726.

+ H-118 Reflectivity of panel arrays in Concert Halls by
B.G. Watters et al. Sound, Vol. 2, May-June 1963,
p. 26-30.

+ H-119 The "Philharmonic:" Concert Hall, Berlin; arch.: H.
Sharoun. Arch. Des., Vol. 33, June 1963, p. 284-287.

(See also references 1-46 to 1-76)

Opera Houses
Articles, papers, reports

+ H-120 The acoustics of the Italian Opera House and the
Wagner Theatre compared by H. Bagenal. J. RIBA, Vol.
38, Dec. 1930, p. 99-103.

H-121 Acoustical tests in the Scala Theater of Milan by
E. Paolini. J. Acoust. Soc. Am., Vol. 19, Mar. 1947,
p. 346-347.

H-122 Tanglewood Opera House; arch.: E. and E. Saarinen.
Arch. Rev., May 1947, p. 163-164.
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Theatre Lyrique du centre musical de Berkshire;
arch.: E. Saarinen, Swanson and E. Saarinen. L'Arch.
d'Auj., Vol. 20, May 1949, p. 19-22.

Die Akustik des Zuschauerraumes der Staatsoper Ber-
lin, lintel den Linden by W. Reichardt. Hochfreq. Tech.
Elektr. Akust. Vol. 64, Ap. 1956, p. 134-144.

L'Opera de Hambourg (W. Germany); arch.: G. Weber.
L'Arch. d'Auj., Vol. 28, Ap.-May 1957, p. 94 -95.

The Slossberg Music Center; arch.: M. Abramowitz.
Arch. Rec., Mar. 1959, p. 178-179.

Opernhaus Essen. Werk, Vol. 47, No. 9, 1960, p. 312-
314.

Planungsgrundlagen and Ergebnisse der akustischen
Ausgestaltung des Zuschauerrauaes der neuen Oper
Leipzig by W. Reichardt. Hochfreq. Tech. Elektr.
Akust., Vol. 70, No. 4, 1961, p. 119-127.

Metropolitan Opera House. Arch. Rec., Sep. 1962,
p. 140-141.

Die akustischen Massnahmen beim Wiederaufbau der
Deutschen Oper Berlin by L. Cremer, J. Nutsch and
H.I. Zemke. Acustica, Vol. 12, No. 6, 1962, p. 428-
432.

New York - Metropolitan Opera House (contained in
"Music, Acoustics and Architecture") by L.L. Bera-
nek. John Wiley and Sons, New York, 1962, p. 159 -164.

Buenos Aires - Teatro Colon (contained in "Music,
Acoustics and Architecture") by L.L. Beranek. John
Wiley and Sons, New York, 1962, p. 181-185.

Vienna - Staatsoper (contained in "Music, Acoustics
and Architecture") by L.L. Beranek. John Wiley and
Sons, New York, 1962, p. 199 -203.

Paris - Theatre National de L'Opera (contained in
"Music, Acoustics and Architecture") by L.L. Beranek.
John Wiley and Sons, New York, 1962, p. 237 -241.

Bayreuth - Festspielhaus (contained in "Music, Acous-
tics and Architecture") by L.L. Beranek. John Wiley
and Sons, New York, 1962, p. 243 -250.

London - Royal Opera House (contained in "Music,
Acoustir.4 and Architecture") by L.L. Beranek. John
Wiley avid Sons, New York, 1962, p. 335 -339.
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H-137 Milan - Teatro Alla Scala (contained in "Music,
Acoustics and Architecture") by L.L. Beranek. John
Wiley and Sons, New York, 1962, p. 359-363.

*pH-138 Grosse Theater (Schauspiel and Oper) (contained in
"Handbuch der Schalltechnik im Hochbau ") by F.
Bruckmayer. Franz Deuticke, Vienna, 1962, p. 586-
631.

+ H-139 Staatsoper Berlin Unter den Linden (contained in
"Handbuch der Schalltechnik im Hochbau") by F. Bruck-
mayer. Franz Deuticke, Vienna, 1962, p. 606-611.

+ H-140 Festspielhaus in Bayreuth (contained in "Handbuch
der Schalltechnik im Hochbau") by F. Bruckmayer.
Franz Deuticke, Vienna, 1962, p. 616-620.

*pH-141 Staatsoper in Wien (contained in "Handbuch der
Schalltechnik im Hochbau") by F. Bruckmayer. Franz
Deuticke, Vienna, 1962, p. 620-622.

+ H-142 Staatsoper Hamburg (contained in "Handbuch der
Schalltechnik im Hochbau") by F. Bruckmayer. Franz
Deuticke, Vienna, 1962, p. 622-626.

*PH-143 Grosses Haus der Bahnen der Stadt Kaln (contained
in "Handbuch der Schalltechnik im Hochbau") by F.
Bruckmayer. Franz Deuticke, Vienna, 1962, p. 627-
631.

Music Rooms, Rehearsal Rooms

Articles, papers, reports

4. H-144 Acoustics of Music Rooms by V.O. Knudsen. J. Acoust.
Soc. Am., Vol. 2, Ap. 1931, P. 434-467.

+ H-145 Music Rooms (contained in "Acoustical Designing in
Architecture") by V.O. Knudsen and C.M. Harris. John
Wiley and Sons, New York, 1950, p. 342-346.

H-146 Conservatoire National de Musique,Ilexico; arch.:
M. Pani. L'Arch. d'Auj., Vol. 22, Dec. 1951, p. 49-
52.

H.147 Acoustical design: School of Music, Montana State
University; arch.: Fox and Ballas. Progr. Arch.,
Vol. 35, Ap. 1954, p. 118-120.
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H -148 Comparison of objective and subjective observations
on Music Rooms by J. Blankenship, R.B. Fitzgerald
and R.N, Lane. J. Acoust. Soc. Am., Vol. 27, July
1955, p. 774-780.

H-149 Study of acoustical requirements for teaching Studios
and Practice Rooms in Music School buildings by R.
N. Lane and E.E. Mikeska. J. Acoust. Soc. Am., Vol.
27, Nov. 1955, p. 1087-1091.

H-150 Acoustics of Music Rooms by V.O. Knudsen. Congress
Report No. M27, Fourth International Congress on
Acoustics, Copenhagen, 1962, pp. 4.

H-151 Acoustics for School Music Departments by L.S. Good-
friend. Sounds Vol. 2, Jan.-Feb. 1963, p. 28-32.
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The Auditoria discussed in preceding Sections are used,with-

out exception,for multiple purposes, nevertheless, in their a-

coustical design priority has to be given either to speech

(Section G) or to music (Section H).

This Section will deal with Places of Assembly in which more

or less equally favorable acoustical conditions must be secured

for both speech and music (I-1, I-14, -17).

IA Churches

Excessive reverberation and absence of speech intelligibility

are the main acoustical features (rather defects) of medieval

Churches, particularly of the larger ones (1-15). These acousti-

cal characteristics have not only influenced the style of organ

music composed for the Church,but hive left their mark on the

liturgical pattern as well; furthermore,the adoption of poly-

phonic choral music, the chanting of spoken words and even per-

haps the use of an archaic tongue must have been associated with

the highly reverberant conditions prevailing in medieval Church

Auditoria (I-1, I-2, 1-3, 1-4, 1-18, 1-39).

The recent revolution in Church architecture seems to attach

growing importance to improved environmental conditions within

Churches.

Church Auditoria usually consist of several coupled spaces

(nave, chancel, chapel, baptistry, confessionals, organ, choir

loft, etc.)pIn their acoustical design, therefore, consideration

must be given to the acoustical requirements cf these individ-

ual spaces (I-1) , as follows:

(a) the chancel area and the pulpit should be well elevated

and surrounded by reflective enclosures to provide fa-

vorable conditions for the projection of speech sound

toward the congregation (Figure 1.1);
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Figure I.1. Sound reflector integrated into the design
of a pulpit. (Reprinted from Progr. Arch.,
Dec. 1959).
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(b) the organ and choir should be located in an area that

provides a favorable acoustical environment for tile gen-

eration of music; they should be surrounded by reflective

surfaces without creating echoes,flutter echoes or sound

concentrations. The spatial relationship between organ-

ist, organ, choir-master and choir must be carefully

considered (1-11, 1-13, 1-16, 1-18, 1-19, 122, 1-23,

1.27, 1-34);

(c) every sector of the congregation should enjoy good lis-

tening conditions for every part of the religious serv-

ice. Since the room volume is always more than necessary

in a Church Auditorium, the control of R.T. will defi-

nitely require the use of a certain amount of acoustical

finishes;

(d) coupled spaces require individual reverberation control

so that reverberation conditions in these spaces will

not conflict with those prevailing in the main body of

the Church Auditorium;

(e) extraordinary care should be exercised in the eliminat-

ion of noises, a prerequisite to peaceful meditation and

prayer.

Acoustical problems become more complicated and more in-

volved as the volume of the Church Auditorium increases (I-16,

1-28, 1-39), particularly if the floor shape is circular or

curved (1-38, 1-45). Circular floor shapes generally are dome

roofed, thereby creating serious acoustical defects (echoes,

sound concentrations, long-delayed reflections, uneven distri-

bution of sound, etc.). These defects can be eliminated by the

upplicationeof highly absorptive finishes over the critical

surfaces or by shielding the curved enclosures from directly

incident sound by large suspended reflectors or diffusers

(1-24, 1-29).
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Figure 1.2 illustrates the floor plan of the well known cy-
lindrical MIT Chapel, at Cambridge, Mass. An undulating wall in-
side the Chapel prevents any focusing of soundtand absorbing

material behind a brick grille controls reverberation; these de-
tails are shown in Figure 1.3 (I-20, I-21).

In the acoustical design of Churches it is essential to con-
sider the nature of the religious service for different denomi-
nations because the optimum R.T. will depend on whether speech
or music is regarded the more important portion of the service.
Preference has to be given to the more important element since
it is not feasible to provide excellent hearing conditions for
both speech and music at the same time. Recommended reverberation
times for Church Auditoria of various religions were shown in
Figure F.3 (I-1, GB-43). Depending on the relative importance of
speech or music in the particular religious service under con-
sideration, the pertinent recommendations discussed in Sections

G and H should be observed.

It is obvious from Figure F.3,thatalddsgaPexists between the
optimum R.T. for speech and for organ. It will be difficult,
therefore,to decide on the most acceptable compromise between
these two types of sound program, particularly in Churches with
special accent on the full effectiveness of an organ installation
(1-11, I-16). This situation might become serious in cases when
room acoustical measures to be taken are in the exclusive hands
of the organ builder. In the interest of an overwhelmingly
soaring organ tone, he will seldom, if ever, hesitate to re-
commend a R.T. that favors organ music only, disregarding the
requirements of speech intelligibility. The serious consequences
of such an attitude (absence of speech intelligibility, thereby
inducing the congregation to lose interest in the sermon) is all
too well known.
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Figure Ia. Floor plan of the cylindrical MIT Chapel,

Cambridge, Mass. Undulating wall prevents
focusing of the sound inside the space.

E. Saarinen, architect; Bolt, Beranek and

Newman, acoustical consultants. (Reprin
ted from Arch. Rec., Jan. 1956).
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Average volume per seat values for Church Auditoria (I -1,

1-16, I -23, 1 -39, 1-42) are:

minimum 200 ft3

optimum 250 to 350 ft3

maximum 420 ft3.

According to T.D. Northwood (1-39), unaided speech is pos-

sible for well-designed volumes as great as 200,000 ft3, but

the range 100,000 to 200,000 ft3 will require careful use of

reflecting surfaces to obtain maximum utilization of the a-

vailable speech power. (See also Section L, pages 292-293).

Figure 1.4 shows the floor plan of the elliptically shaped

Notre Dame d'Anjou Church, in Ville D'Anjou, Quebec. The pulpit

is located very close to one of the focal points of the ellipse.

Sound concentrations have been completely eliminated and rever-

beration has been satisfactorily controlled by the use of pierced

concrete blocks on all curved walls and by the installation of

a directional sound system (1-45).

A speech amplification system should be so designed, layed

out,and operated, that the congregation will be unaware of its

existance. Because of the ever increasing number and intensity of

noise sources inside and outside the Church buildings, the use

of speech amplification systems is gradually becoming necessary

even in Churches of relatively small volumes.

1.2 Multi-Purpose Auditoria, Community Halls

Since this subsection is concerned with Auditoria serving

the widest range of functions, in their acoustical design the

general principles given in Section F, with additional recommend-

ations for speech and music, outlined in Sections G and H res-

pectively, should be followed. School Auditoria and Civic (or

Municipal) Auditoria are typical examples of halls falling in
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Figure 1.4. Floor plan of the elliptically shaped Notre Dame
d'Anjou Church, Ville d'Anjou, Quebec. Sound con-
centrations were eliminated and reverberation was
controlled in the Church Auditorium by the use of
a pierced concrete block wall all around, and by
the installation of a directional speech reinforce -
sent system. 1: entrance, 3: vestibule, 4: confes-
sionals, 5: nave, 10 and 11: chapels, 13: altar,
14: chancel, 15: choir, 16s lectern, 17: pulpit,
19: cry room, 20:baptistry. A.Blottin, architect;

Doelle, acoustical consultant.
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this group. They will best serve their diverse use if the most

reasonable compromise between optimum acoustical properties for

speech and for music is made in their design.

A special acoustical problem is often created in Civic Audi-

toria by the level floor required for particular occasions; such

as, conventions, exhibitions, bazaars, dances, social gatherings,

etc. A level floor introduces the following acoustical problems:

(a) it will be difficult to supply the audience with the required

amount of direct sound (GB-53), (b) if the ceiling is reflective

and horizontal, interreflections (flutter echoes) might originate

between floor and ceiling when the audience area is cleared of

chairs (GB-53), (c) the portable chairs usually have, if at all,

a negligible amount of upholstering, thus furnishing much less

absorption than do those which are fully upholstered (1-46).

In the acoustical design of these, often very large, Auditoria,

(a) the "sending end" should be elevated as high as sight lines

will allow (1-46, GB-53); (b) a large amount of reflective sur-

faces (panels) have to be located near the sound source, and, as

necessary, suspended from the ceiling to provide short-delayed,

reflected sound energy; these reflective surfaces have to be

oriented so as to secure evenly distributed natural sound rein-

forcement throughout the entire Auditorium (1-46, I-47, 1-49,

1-68, I-70, 1-75); (c) the stage should protrude as far as pos-

sible into the audience area (I-46, GB-43, GB-53); (d) an attempt

should be made to accommodate a raked or raised portion of the

floor at least at the sides and at the rear of the main audi-

ence area (GB-53); (e) optimum R.T. should be secured for one

half of capacity audience because a considerable fluctuation

has to be expected with the occupancy of these halls (I-46);

(f) the loudspeaker, if used, should be located somewhat higher

than it would be in an Auditorium with a ramped floor (GB-21).
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For School kuditoria a sound amplification system will be

necessary if the volume is in excess of the following (GB-21):

for Elementary Schools : about 40,000 ft3

for High Schools : about 50,000 ft3

for Colleges and Universities : about 60,000 ft3.

Figure 1.5 illustrates the well known Kresge Auditorium in

Cambridge, Mass. (1-47, I-70) . Fig4re 1.6 shows the all-purpose

Jubilee Auditoria, built from the same planssin Edmonton and

Calgary, Alberta (I-51, I-53, 1-71). Figure I.7 presents the

Place des Arts, in Montreal (I-68). The Queen Elizabeth Theater,

in Vancouver, another fine example of Multi-Purpose Auditoria,

is shown in Figure G.2 (I-72).

1.3 Motion Picture Theaters

In the various types of Auditoria discussed so far both the

sound source and the audience are present and both are "live",

in such Auditoria, assuming any normal sound source, hearing con-

ditions will depend solely upon the acoustical qualities of the

room.

In Motion Picture Theaters the original sound source is not

present, it is only reproduced from the sound track of the film

by the loudspeaker. The reproduced sound, presented in the Cinema

Auditorium, will contain the acoustical characteristics of the

Motion Picture Studio where the particular scene of the film was

shot. It might contain, for example, the acoustical features of

a Cathedral (with a R.T. of 8 sea), or of a snow field ( an

acoustically "dead" space), as the case may be. This means that

the sound track on the film possesses a "built-in" R.T. inde-

pendent of the R.T. of the Motion Picture Theater in which the

audience happens to watch the movie (I-77, I-79, 1-94, I-95, 1-97).

It is an important goal in the acoustical design of Motion

Picture Theaters that the room acoustical effect of the Cinema
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(Reprinted frog Can. Arch., Nov. 1963).
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Auditorium should be reduced to a minimum in order to preserve

the genuine acoustical environment of the film as recorded on

the sound track and as reproduced by the loudspeaker behind the

screen. This goal will be achieved by providing a relatively

short R.T. in the Cinema Auditorium, as recommended in Figure

P.3. The R.T., however, should not be too short, because this

would render the Auditorium "dead", necessitating excessive a-

coustical power from the loudspeaker and resulting in annoying

loudness in the front and central seats (I-77, GB-52, GB-53).

Favorable hearing conditions will be achieved in Motion

Picture Theaters by the following room acoustical measures, in

addition to the previous recommendations outlined in Sections P

and G (1-77, I-79, I-81, I-82, I-83, I-84, 1-88, 1-89, -91, 1-94,

1-95, 1-97, GB-52, GB-53):

(a) by keeping the R.T. as close as possible to the optimum

value (Figure P.3);

(b) by keeping the volume per seat value within the low

110 to 150 ft3, preferably closer to the lower value;

(c) by using overhead reflectors above the screen and keeping

the entire ceiling, or at least its principal central

portion, reflective;

(d) by ramping the audience floor steeply toward the rear in

order to provide clear sight lines for the entire audience,

thereby providing for an ample supply of direct sound;

(e) by adequately elevating the screen and the loudspeaker so

that the entire audience will be well covered by the

sound beam;

(f) by treating acoustically those boundary surfaces which

are liable to produce echoes,long-delayed reflections,

sound concentrations, etc. These harmful sound reflect-

ions are particularly noticeable in a relatively "dead"

room, such as a Motion, Picture Theater;
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(g) by eliminating parallelism between reflective surfaces

close to the screen and making the wall behind the screen

absorbent if too long-delayed reflections are expected

from this surface;

(h) by avoiding an excessive room length (above about 150 ft),

partly to obviate the need for excessive acoustical power

of the loudspeaker and partly to prevent lack of syn-

chronism between sight and sound at the remote seats;

(i) by excluding overly deep balconies;

(j) by keeping a proper distance between the screen and the

first row; this distance depends on the width of the screen;

(k) by installing heavily upholstered seats to counteract det-

rimental room acoustical effects of widely fluctuating

audience attendance (the audience being very absorptive);

(1) by using an eft, fent absorbent treatment on the floor bet-

ween the screen and the first row of seats in order to pre-

vent reflections coming from directions other than the

loudspeaker.

The provision for stereophonic sound reproduction in Motion

Picture Theaters can be expected in the foresemdfis future. This will

require a particularly meticulous approach to the acoustical-design

of Motion Picture Theaters, affecting room shape, R.T., distribut-
ion of acoustical treatments, layout of the sound system, etc.

(1-77, 1-79).

A somewhat higher noise level can be tolerated in Motion Pic-

ture Theaters than in other types of roomsbecause of the higher sound

level produced by the loudspeaker.

The noise originating from the projection booth is often a

source of nuisance, particularly for those seated close to the

projection booth. The penetration of this noise into the audience

area can be prevented, as follows (1-77):
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(a) by treating interior surfaces of the projection booth with

efficient sound absorbing and also fireproof materials;

(b) by using double glazings in the projection and observa-

tion portholes; the glass panes should be of different

thicknesses and hermetically sealed in their frames;

(c) by using a partition wall of adequate sound insulation

between the Cinema Auditorium and the projection room

(discussed in subsection 3.1).

Figure 1.8 illustrates floor plans and section of the Alhambra

Cinema in Mannheim, West Germany (1-79).

Figure 1.9 compares longitudinal sections of three outstanding

European Motion Picture Theaters (GB-42).

1.4 Open-Air Concert Platforms, Open-Air Theaters, Drive-In

Theaters

Contemporary architectil.re really cannot boast of any remarkable

progress in the design of Open-Air Theaters since this type of Au-

ditorium was first built by the Greeks and Romans, except that the

masks, worn by the ancestors of the performers in order to rein-

force their voice power,are being replaced by electronic sound

systems°

Open-Air Theaters are used equally for spoken programs

(live stage presentations) and for musical performances (concerts,

musicals, etc.). If no sound amplification system is in operation,

a musical performance, due to the higher inherent acoustical power

of the instruments, will permit a much larger audience capacity

than a spoken program (I-99, 1-100).

Since the natural reinforcement of the direct sound from near-

by reflective surfaces can be accomplished only to a very limited

extent, a reduction of about 6 dB can be expected in the inten-

sity of the sound every time the distance from the source is

doubled (discussed in subsection C.9). To counteract this exces-
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Figure I.e. Alhambra Cinema, Mannheim, West Germany. Bottom:
ground floor plan. Middle: balcony floor plan.
Top: longitudinal section. 1: entrance, 2: ves-
tibule, 3: candy bar, 4: checkroom, 6: projection
room, 7: exit. P. Bode, architect. (Reprinted
from Kinos by P. Bode, Georg D.W. Canvey, Munich,
1957).
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Figure 1.9. Longitudinal sections of outstanding Motion
Picture Theaters. Top: Elios Cinema, Geneva,
Italy. L.C. Daneri, architect. Middle: UFA
Cinema, Essen, West Germany. H. KlUppelberg
and G. Lichtenhahn, architects. Bottom:
Cinema Etoile, Zurich, Switzerland. W. Frey,
architect. (Reprinted from Architetture Per
LO Spettacolo by R. Aloi, Ulrico Ezepli,
Milano, 1958).
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sive drop of sound intensity in the open air, attention should

be given to following recommendations (1-99, I-100, 1-101, 1-104,

1-109, 1-113, 1-114, GB-52, GB-53):

(a) the site should be carefully selected in view of the

effects of the various topographical and atmospherical

conditions (wind, temperature, etc.),and of exterior

noise sources upon the propagation of sound;

(b) the basic shape, size and capacity of the seating area

should be so determined that it will secure satisfactory

speech intelligibility throughout the entire audience

area. The distance of seats from sound source should be

kept at a reasonable minimum, employing strict economy

in the layout of aisles and gangways;

(c) an attempt should be made to accommodate the maximum

amount of reflective surfaces close to the sound source.

The use of a reflective and diffusive enclosure (band

shell),that will direct the reflected sound waves both

toward the audience and back to the performers,will be

of great advantage around the platform (1-105, 1-107,

I-110, 1-112). A paved space or an artificial streaulet,

or other reflective surfaces, between stage and audience

will effectively improve hearing conditions (I-131);

(d) the platform should be well elevated and the seating

area steeply banked, with increased rake toward the

rear, to provide the maximum amount of direct sound

for the entire audience;

(e) converging back reflections to the platform from the

backs of the concentric benches, particularly noticeable

with partially or totally unoccupied seating area

should be eliminated;

(f) nearby reflective surfaces of existing buildings should be

carefully checked against echoes or harmful reflections.

1
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Many of the recommendations contained in Sections F, G and H

will also apply to Open-Air Theaters if followed sensibly.

If audience capacity exceeds about 600, a high quality sound

amplification system should be inw4alled; its layout and volume

should be such that the audience will be unaware of its existence

(I-77, 1-78, 1-79).

Figure I.10 shows the plan of the Open-Air Theater at Red

Rocks, Colorado, that has been designed with consideration for

the principles discussed in this subsection (1-103, GB-42).

Figure I.11 presents the layout of a Drive-In Theater (GB-42).

The sound system applied in this kind of Open-Air Theater

sets no limit to the size of the audience area, as long as view-

ing is satisfactory (I-102, 1-106, I-108) .
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Figure 1.10. OpenAir Theater in Red Rocks, Colorado.
1: entrance, 2: box office, 5: highrocks,
6: audience area, 7: projection pooth,
8: oroheetra pit, 9: stage 10: rock,
11: access, 12: rasp, 13: service yard,
14: rook, 15: terrace. B. Hoyt, architect.
(Reprinted from Architetture Per Lo Spet
tacolo by R. Aloi, Ulrico Hoepli, Milano,
1958).



Figure 1.11. Site plan of a DriveIn Theater in Rome,
Georgia. 1: projection room, 2: screen, 3:
oandy bar, 4: ticket box, 5: entrance, 6:
exit, 7: advertising sign, 8: lakes, 9: high-
way. McKendree, Tucker and Howell, architects.
(Reprinted from Architetture Per Lo Spettaodlo
by R. Aloi, Ulrico Hoepli, Milano, 1958).
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The design of rooms used primarily for microphone pick-up

is a special subject which is governed, in the main, by purely

technical aspects (J -1, J-2, J-4, J-5, J-108, J-112, GB-52).

In addition to the general acoustical principles and recom-

mendations discussed in preceding Sections, which are equally

applicable to Studio design, the room acoustical requirements

have to be met with greater precision, and a particularly high

degree of isolation must be provided against extraneous noise

and vibration (J-1, J-4, J-29, J-49, J-76, J-112). Pertinent

acoustical calculations are applied to a wider frequency range

than normally, i.e., from 62 cps usually up to 8000 cps (3-4,

J-90).

This meticulous approach in Studio acoustics is necessary

because of the substitution of the human (binaural) listener in

the Studio by the microphone, a most sensitive electronic instru-

ment which picks up the sounds in very much the same way as a

person would do with monaural hearing. The microphone will indi-

cate clearly (a) if reverberation characteristic is not optimum

over a wide frequency range, (b) if diffusion is not high enough,

(c) if any acoustical defect such as echo, room resonance, sound

concentration, etc.,is noticeable, and (d) if the faintest noise

or vibration exists in a Studio (J -1, J-4, J-49, J-76, J-90).

J.1 Acoustical reauirements in Studio design

Studios form an important acoustic link between sound source

and microphone (J -49, J-76). In their design, therefore, parti-

cular attention mustbegiwntoihe following requirements, in ad-

dition to the recommendations dealt with in Sections F, G and H:

(a) an optimum size and shape of the Studio must be estab-

li shed;
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(b) optimum reverberation characteristics must be provided;

(c) high degree of diffusion must be secured; and

(d) noises and vibrations must be completely eliminated.

These aspects are considered in following paragraphs.

J.1.1 Optimum size and shape

The size of a Studio is determined (a) by the physical space

required for its occupants, equipment, and furniture, (b) by the

function for which the room is to be used, and (c) by acoustical

requirements (J -1, J-2, J-4, J-12, J-23, J-29, J-40, j-47, J-49,

J-52, J-56, J-66, J-67, J-69, J-76, J-88, J-90, J-108, J-112).

The smallest dimension should be not less than about 8 ft.

A Studio of minim= size should be acoustically "dead" down to

the lowest frequency in order to avoid the harmful effects of room

resonance (subsection D.6).

In establishing the necessary floor area for a Music Studio,

even though a single instrumentalist occupies only about 6 to

10 ft2 net floor area, it will be found that a total average of

about 15 to 20 ft
2 floor space is required for each musician in

a small Music Studio and about 20 to 40 ft
2 floor space in a

large Studio. The extra space is taken up by circulation, music

stands and by microphone placing. An average floor area of 4 to

6 ft2 is required for singers depending on whether they are

standing or seated. If audience "participation" is required in

the Studio, a separate floor area must be set aside for audi-

ence seating. Table J.1 shows minimum volumes of Music Studios

required by the BBC (J-4, J-112).
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Table J.1. Minimum volumes for Music Studios

required by the BBC

No. of performers Minimum Studio
volume, ft3

.

Volume per
performer, ft'

4 1,500 375

8 4,000 500

16 12,000 750

32 30,000 940

64 82,000 1280

128 220,000 1720

The adoption of specific room proportions will contribute

to a relatively uniform distribution of the normal modes at the

lower end of the audio-frequency range so that no objectionable

grouping of the resonant frequencies will occur (J-1, J-4, 3-17,

J-29, J-35, J-41, J-49, J-55, J-76, J-77, J-86, J-88, J-92, J-108,

GB-52) .

There are no room proportions that are universally recommend-

ed as optimum (discussed in subsections D.6 and F.3). For rec-

tangular Studios the following room proportions are generally

advocated (J -1, J-4, J-112, GB-52):

height : width : length

small Studios 1 1.25 1.60

medium size Studios 1 1.50 2.50

Studios with relatively
low ceiling 1 2.50 3.20

Studios with excessive
length reletive to
their width 1 1.25 3.20
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It must be stressed that the significance of room propor-

tions in Studio acoustics diminish if the following conditions

are fulfilled: (a) the Studio has a floor shape other than rec-

tangular, (b) ideal reverberation characteristics have been a-

chieved; (c) acoustical finishes are evenly distributed, (d) a

high degree of diffusion has been provided, and (e) the volume

of the Studio is above about 25,000 ft3.

Boundary surfaces must be carefully checked against echoes,

flutter echoes, and sound onncentrations. Parallel surfaces must

be eliminated (particularly in medium and large size Studios),

or treated with acoustical materials highly absorptive through-

out the frequency range between 62 and 8000 cps (J-1, J-49).

J.1.2 Optimum reverberation characteristics

Optimum reverberation times for Studios are generally short-

er than those for Auditoria in which the sound program is per-

ceived by binaural listeners (J-1, J-4, J-29, J-74, J-76).

Figure J.1 shows preferred ranges of optimum reverberation

times vs. frequency for small, medium and large Studios, re-

commended by L.L. Beranek (J -76), and based partly on the studies

of W. Kuhl (J-71, J-72). The shaded areas indicate the toleran-

ces that may be permitted without causing noticeable differences

to listeners in the quality of speech or music broadcasted. These

R.T. values are in agreement with those previously shown in

Figure F.3.

An optimum R.T. fcr a Studio is of vital importance to the

final quality of sound; however, the apparent reverberation of

a Studio, as eventually perceived by the listener, will depend

also (a) on the pick-up technique) (distance between sound source

and microphone, number of microphones used simultaneously, etc.);

and (b) on the quality of the microphone and in particular on
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its directional characteristics (41-1, J-4, J-7, J-23, J-29).

The acoustical characteristics of the room in which the broad-

casted or recorded sound is received or reproduced will also

add to the apparent reverberation time (J-4, J-29).

It is essential that acoustical treatments, as required by

reverberation calculations, should be uniformly and proportion-

ately distributed over the three pairs of opposite enclosures

of the Studio, except that low frequency absorbers should be in

greater proportion on the end walls, i.e.,those furthest apart

(J -90). These recommendations are particularly important for

small Studios.

Most broadcasting organizations prefer to have the acoustic-

al treatments, wherever possible, installed in a manner that will

allow temporary removal of the exposed finish treatment for later

adjustment (tuning) if required. For the choice of suitable acous-

tical materials see subsection E.8.

Frequently Broadcasting and Recording Studios must be used

for different programs, thereby requiring the provision for var-

iable reverb oration conditions, which can be achieved as follows:

(a) by variable absorbers on wall or ceiling surfaces; such

as,hinged or sliding panels, rotatable cylinders, ad-

justable drapery, etc. (as outlined in subsection E.5

(b) by portable acoustic screens ("flats"),

(o) by the use of a reverberation chamber (J-4); and

(d) by a special mechanism that controls the R.T. electron-

ically and is operated in the Control Room (J -1, J-4).

J.1.3 Diffusion

The provision for a high degree of diffusion (discussed in

subsections D.4 and F4.4) is of vital importance in Studio a-
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coustics. With good diffusion the number of those positions at

which noticeable sound pressure variations occur are consider-

ably reduced so that the microphone can be placed confidently

in any convenient position of the room (J -1, J-4, J-49, J-76);

in addition, a better balance between performers will be ob-

tained (J-29).

Diffusion will be achieved (J-8, J-20, J-25, J-68):

(a) by the use of surface irregularities which project bold-

ly into the air space of the Studio (e.g., cylindrical,

spherical, prismatic or other irregular protuberances).

The minimum projection of these surface irregularities

must be about one-seventh of the wavelength of the sound

to be diffused, i.e., for sounds down to 100 cps the pro-

jection must be at least 18" (J -4, J-20, J-90),

(b) by the alternate application of reflective and absorp-

tive treatments;

(c) by random, non-symmetrical distribution of the various

types of acoustical treatments (J -1, J-4, J-25, J-49,

J-76); and

(d) by the elimination of parallelism between opposite sur-

faces (J-49, J-76, 3-90).

Surface treatments or irregularities which are acoustically

efficient but aesthetically lacking can always be hidden behind

acoustically transparent grilles, such as perforated board, metal

mesh, slats, etc. (J-112) .

J.1.4 Noise control

This most important aspect of Studio acoustics is covered

in subsection 3.2 (J-1, J-4, J-11, J-12, J-29, J-40, J-47, 3-49,

J-56, 3 -76, J-88, J-96, J-112, J-129, J-134, J-135, GB-52).
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J.2 Radio Studios

The following room elements must be integrated functionally

and aesthetically into the architectural-acoustical design of

Radio Studios (J-54, J-59, J-73, J-83, J-84, J-87, J-94, J-1102,

J-103, J-104, J-106, J-107):

(a) acoustical treatments and surface finishes to produce

the required R.T.;

(b) mechanical and electrical fixtures; such as,grilles,

lighting fixtures, speakers, statuslights, flicklights,

clock, wiremoulds, outlets, etc.;

(c) seating, furniture,and permanently installed or portable

equipment, as required to achieve the desired sound ef-

fect; such aspacoustic screens, turntables, sound effect

equipment, etc.

Studios used for broadcasting purposes can be divided, quite

arbitrarily, into the following types:

(A) Announce Booth. This is the smallest Studio, normally

associated with a larger one. It is used for newscasts,

narrations, commentaries, etc. It has a floor need of up
to about 150 ft2 (J-86). It is visually linked with the

associated Studio by a large sound insulating observation

window (discussed in paragraph N.3.5).

(B) Talk Studio. It is used primarily for newscasts, panel

discussions, addresses, talksland sometimes for recitals.

It has a floor area of up to about 500 ft2.

Particular care should be taken to avoid excessive

low frequency reverberation or low frequency resonance

in Announce Booths or Talk Studios; this can be accom-

plished by the use of efficient low frequency absorbers

(J-29, J-58, J-61).
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(C) Drama Studio. Its floor area covers from about 600

to 1500 ft
2
, sometimes divided into twA parts of con-

trasting acoustics by the use of moveable enclosures

(folding panels or doors, curtains, etc.).

(D) Versatile Studio. Its floor area varies between about

1500 and 4000 ft2. It is used equally for the spoken

word and for musical presentations (J-15). Figure J.2

illustrates a Versatile Studio built in Lausanne,

Switzerland.

(E) Audience Studio. Used for broadcasting the programs

of symphonic orchestras and choirs (J-43), this large

Studio is, in fact, a regular Concert Hall; consequent.

ly,the acoustical requirements and design principles

discussed in Section H, "Acoustical Design of Rooms

for Music" should be strictly adhered to (J-81, J-110,

J-111, J-113, J-115). Besides other technical. rooms,

a Control Room and an Announce Booth are normally lo-

cated adjacent to the Audience Studio, linked to one

another by large sound insulating windows. The use of

a sound amplification system is usually required to

provide adequate sound coverage for the audience (J-1,

J-4, J-29).

Table J.2 lists important architectural -acoustical data of

outstanding Audience Studios (H -6, J-3, J-C1, J-31, J-41, J-60,

-93, 95, J-112, J-114).
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Figure t!.2. Versatile Studio, Lausanne, Switzer
land. W. Farrar, acoustical consul
tant. (Reprinted from J. MOTE, Oct.
1955).
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Table J.2. Architectural -- acoustical data of out-

standing Audience Studios

Name and
year of dedication

Volume
ft3

aid.
capacity
if any

mid-fr.
R.T. (full)

see

Audience Studio, Radio Free
Berlin; 1959 455,700 1120 1.95
(H-6, J-111, J-114)

Audience Studio, Copenhagen
Broadcasting House; 1945 420,000 1093 1.50
(H-6, J-21, J-31, J-110)

Audience StUdio, North German
Radio Hanover; 1963 550,000 1350 1.70e
(3-60S
Audience Studio, Radio
Austria, Vienna; 1936 200,000 390 1.50
(X-112)

Audience Studio, Stuttgart;
1959 160,000 350 1.20
(J-13.2)
Audience Studio, Baden-Baden;
1950 230,000 380 1.30
(J-112)
New Mutual-Don Lee Radio
Studio, Hollywood; 1948 170,000 350 1.5
(J-41),

Audience Studio, Cologne
Broadcasting House; 1953 240,000 720) 1.70
(3-3, J-95)

estimated figures

Figure J.3 illustrates the fan-shaped Audience Studio of the

Copenhagen Broadcasting House (H-6, J-21, J-31, J-110). A large

number of Helmholtz resonators, made of plaster and tuned to

various frequencies below 100 cps, are distributed above the un-

dulating ceiling of this large Studio (J -49).

Figure J.4 illustrates the Audience Studio of the North Ger-

man Radio in Hanover.
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Figure J.3. Audience Studio, Copenhagen, Denmark.
V. Lauritzen, architect; V.Z. Jordan,
acoustical consultant. (Reprinted tom
Music, Acoustics and Architecture by
L.L. Beranek, John Wiley and Sons, New
York, 1962).
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Figure J.4. Audience Studio of the North German Radio,
Hanover. Plan, 1: balcony, 2: stairways ,

3: Studio, 4: orchestra platform, 5: in-
strument store; Section, 1: covered ent-
rance, 2: vestibule, 3,4: foyer and cloak-
rooms, 5: terrace, 6: balcony, 7: Studio,
8: orchestra platform, 10: low frequency
absorber, 13: steel truss, 14: reflective
panels, 15: catwalk, 16: lighting fixtures,
17: wood paneled wall. F.W. Kraemer and
Ass., architects; W.Kuhl, acoustical con-
sultant. (Reprinted from Batten and Wohnen,
Nov. 1963).
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Radio Studios of various sizes are sometimes grouped into

"suites" for special programs or purposes (J -4); such aa,mixer

suites, continuity suites, etc.

Figure 3.5 showstheiamlofthe Oslo Radio House, containing

all the types of Radio Studios listed in this subsection. The Au-

dience Studio seats 200 listeners. Parallelism between opposite

enclosures has been consistently eliminated in all of the Studios;

this is a typical feature in the design of Scandinavian Radio

Studios (J -32, J-49, 3-70).

J.3 Television Studios

Acoustical conditions in Television Studios are not as crit-

ical as those in Radio Studios because the large amount of set-

tings, scenery, properties, acid decor, installed for the duration

of a program, will change the original sonic environment of the

Studio anyway (3-4, J-51, J-66, J-91, J-101, J-105).

Acoustical conditions are basically "dead" in a Television

Studio (J-64); reverberation, if necessary, will be increased

by the use of (a) appropriate settings, and properties, (b) move-

able (portable) acoustical screens, and (a) artificial reverbe-

ration. If more reverberant acoustical conditions are required

for the sake of the performers themselves, the portion of the

television program requiring longer R.T. can be produced in an

adequately reverberant Radio Studio, called "Satellite Audio

Studio" (J -4, J-65, J-96).

Television Studios are constructed in various sizes, accord-

ing -to the required floor area and height. The main types are

(J -4, J-66):

(a) "Theater ' Studios with permanent audience seating; their

area may be as large as 15,000 ft2 and their volume a-

bout 500,000 ft3;

(b) General-Purpose Studios, for all types of programs;
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(c) Small Interview and "Announcer" Studios;

(a) "Dubbing" suites.

A considerable clear height is usually required over the
working area of the larger Studios to allow space necessary
for the lighting grid with its system of catwalks and for fly-
ing the scenery (J-1, J-4, J-62, J-66, J-79) .

Each Television Studio is normally provided with the follow-
ing auxiliary rooms: Production (video) Control Room, with a re-
quired R.T. of about 0.25 sec, Sound (audio) Control Room, Light-
ing Control Room, Sound Effects Room; Announce Booth with a re-
quired R.T. of about 0.25 to 0.30 sec, and a number of various
stores. The Control Rooms, usually grouped in a suite, are often
located one story higher than the Studio floor (J-2, J-4, J-62,
J-66)0

Iii Television Audience Studios the use of a sound amplifi-
cation system is indispensable if the audience is to receive
adequate sound coverage.

Simple and inexpensive acoustical treatments are usually
applied in Television Studios; such as,mineral wool blankets
(covered with metal lath, wire screen, chicken wire mesh, or
perforated board), wood wool slabs, etc. The required low fre-
quency absorption can be obtained by using plywood, hardboard
or plasterboard panels, Which simultaneously form a suitable
dado for the lower 6 to 8 ft high portion of the wall. Most of
the wall treatment is eventually shielded by a cyclorama cur-
tain spaced some 3 to 6 ft away from the wall, thereby prow
viding adequate space for unobtrusive circulation along the
perimeter of the Studio (J-4, J-42, J-51, J-66 J-75, J-96).

Figure J.6 shows the floor plans of a CBS Television Color
Studio, built in New York.
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Figure J.6. CBS Television Color Studio 72, New York,
with lower floor plan (bottom), and up-
per.floor plan (above). (Reprinted from
I. SI4PTE, Oct. 1955).
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J.4 Control Rooms

Every Radio or Television Studio is linked with one or more

Control Rooms, the visual contact between Studio and Control

Room being provided by a wide control window with unobstructed

view of the Studio floor. As long as the Studio floor area does

not exceed about 800 to 1200 ft
2

Control Room and related Studio

can be both located on the same floor level; Control Rooms link-

ed with Studios of larger size need to be elevated accordingly

(J-48).

The size and shape of the Control Room will depend on the

furniture and technical equipment it has to accommodate; such as,

audio console, monitoring and talkback facilities, disc repro-

ducer, tape recorder and playback unit, clock, reverberation

control unit, video monitor, intercom key panel, seats for the

control personnel, etc.

The BBC recommends a R.T. of 0.4 sec at the 500 cps frequency

in Control Rooms (J -88).

J.5 Motion Picture Studios and Recording Rooms

Motion Picture Studios are usually built as large halls with

highly absorbent enclosures so that the sets can contribute their

own acoustical characteristics as required (3-123, J-132).

The site for a Film Studio is chosen generally as a compro-

mise between a quiet surrounding and reasonable accessibility

(J-128, J-129). Economy in the construction and efficiency in

operation suggests that several large size Motion Picture Studios

be grouped together; this will allow set construction and prepa-

ration to be carried out in one or more Studios while normal pro-

duction continues in the adjacent ones. The provision for the

required short R.T. within these Studios and for a high degree

of noise and vibration isolation are main objectives of the a-

coustical design (J-126).
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Recording Studios (or Recording Rooms) are built quite simi-

lar to Radio Studios, with a "dead" acoustical environment (J-68,

J-117, J-118, J-119, J-121, J-122). They are usually connected

with a Control Room and other auxiliary rooms (J-131, J-135).

Their floor area and shape will depend on the furniture and on

the technical equipment they have to accommodate (disc recorders

and reproducers, magnetic tape recorders and reproducers, loud-

speakers, etc.). As a rule, no public is admitted to Recording

Studios, consequently priority can be given to acoustical rather

than aesthetic requirements; temporary changes may be made in

their acoustical treatment irrespective of aesthetics and even a

latitude in experimentation is possible (J-29, J-120).

J.6 Listening Rooms

They are used for checking records, discs, magnetic tapes and

tape-editing,and monitoring of various sound programs. They are

sometimes linked with a Radio or Television Studio by an obser-

vation window providing a wide view of the Studio floor (J-124,

J-125, J-133). Acoustical conditions in Listening Rooms should

resemble those of an average domestic living room (J-4, J-90,

J-127), with a R.T. of about 0.4 to 0.5 sec. Their floor area

and room shape will depend on the furniture and technical equip-

ment to be accommodated (turntable, magnetic tape recorder, loud-

speaker, etc.).
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From the preceding Sections it becomes obvious that the ne-

cessity for a workmanlike sound control of relatively large and

acoustically critical Auditoria is irrefutable. Their periodic

evaluation,during their design and after their construction has

started, is an integral part of their sound control.

The occasional checking of relatively small or seemingly in-

significant Auditoria will also be necessary, and often will prove

most helpful in the provision of favorable acoustical conditions

for both listeners and performers.

A short discussion of the different methods of checking the

acoustical performance of Auditoria, during their design and con-

struction stages and after their completion, is given below.

K.1 Checking during the design

During the design stage of an Auditorium the architect ob-

viously will beangous toiredictithetheror not acoustical conditions

in the completed room will serve satisfactorily the purpose that

has been specified by the client. The methods mentioned here, if

applied in due course and with precision, will foreshadow the a-

coustical performance of the Auditorillm with a reasonable degree

of engineeting accuracy.

K.1.1 Control of reverberation characteristics

This can be achieved by the calculation of the R.T., as de-

scribed previously in subsections D.5, F.5, G.3, H.3 and J.1.2.

K.1.2 Graphic method

The floor plans and building cross sections of Auditoria will

orfer a good opportunity to follow the paths taken by rays of

sound which travel from the source to the listeners (GB-21, K-1,

K-2). It has been assumed in subsection D.1 that these rays will

be reflected from the boundary surfaces at an angle that is equal



304

to the angle of incidence (law of reflection). This rather sim-

plified graphic analysis of the propagation of sound in rooms

will be very useful in revealing acoustical merits and faults

of enclosed spaces (K-2, K-3, K-4, K-23, GB-21, GB-53). Such an

analysis will be useful (see Figure Ka):

(a) to check whether or not the supply of direct sound to all

parts of the seating area is satisfactory, i.e., whether

or not seating area is adequately ramped or raked, and

the sound source elevated;

(b) to ensure that sufficient sound reflections are provided

for the entire seating area, in particular, that reflect-

ed sound increases progressively towards the remote

seats (Figure K.l.A);

(c) to trace surfaces liable to produce acoustical defects;

such as, echoes (Figure F.4), corner echoes (Figure

K.1.13), long-delayed reflections (Figure K.14), sound

concentrations (Figure K.1.D), or flutter echoes;

(d) to locate areas in acoustical shadow (Figures K..1.E and

K.1.F).

Analyzing the paths of sound waves beyond the first and

second reflections is a complex procedure, which, fortunately,

is unimportant because of the loss of sound energy after several

reflections (GB-43).

K.1.3 Model tests

Model tests, when applied, normally use optical or wave me-

thods (K-1, K-2, K-3, K -14, K -21,

K-22, GB-52).

In the first case, conditions of geometrical acoustics are

assumed using wavelengths that are extremely small compared to

the dimensions of the model (light distribution method, ray me-

thod, etc.). In the second case, calculations are based on wave-
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LONGITUDINAL SECTION

Figure IC.1. Graphic analysis as an important tool in
checking the acoustical performance of
an Auditoriva. (Reprinted from Design for
Good Acoustics by J.E. Moore, Architectural
Press, London, 1961).

LONGITUDINAL SECTION
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lengths reduced in the same proportions as the dimensions of

the model (ripple tank method, ultrasonic method, sound pulse

method, etc.)

K.2 Checking during construction and after completion

Before being declared completed and ready for use, every

Auditorium should undergo certain tests to make sure that it has

no acoustical defect that could impair its usage. This test will

enable the architect to take immediate measures for the acous-

tical correction of the Auditorium if it proves to be neces-

sary.

In simple cases the room can be checked for echo flutter

echoes by producing a sharp hand clap at the location of the sound

source and then by listening to the response of the room (K-1).

Siailarly,a person with an acute ear will quickly detect the re-

verberation characteristics of the room.

In medium and large size Auditoria, however, particularly if

importance is attached to good acoustics, a quantitatively and

qualitatively more precise evaluation of the acoustical proper-

ties is necessary. These will be described briefly in subsequent

paragraphs.

K.2.1 Speech intelligibility testing

The intelligibility within a room used for speech can be de-

termined by articulation or intelligibility testing. A speaker

located on the stage or platform reads a number of meaningless

monosyllables or meaningful words (phrases, sentences), and lis-

teners at various parts of the seating area write down or repeat

What they think they hear. The percentage of the words that is

correctly written down or repeated is called percent articulation

or percent inte/tigibility (K-1, K-2, K -15, GB-29, GB-41) . The
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word "articulation" is used when the speech material consists

of meaningless syllables or fragments; the word "intelligibility"

is used when the speech material consists of meaningful, complete

words, phrases or sentences (GB-73).

K.2.2 Test performances, test concerts

Before an Auditorium of particular acoustical importance comes

into regular use, carefully planned test performances should be

held to test the room subjectively for major acoustical faults;

such as, echoes, flutter echoes, incorrect R.T., unusual lack of

low frequency sounds, room resonance, etc. Any defect which might

be found can then be further investigated and probably corrected

before the official opening of the Auditorium,and while the build-

ing contractor is still on the site (H-6, H-49, H-108, I-51).

K.2.3 Objective measurements of acoustical properties

During construction and after completion of an Auditorium se-

veral acoustical characteristics, such as R.T., echoes, diffusion,

balance of high, middle, and low frequencies, sound pressure level,

noise level, etc., can be objectively measured or detected by in-

struments, thus providing a precise quantitative evaluation of the

acoustical performance of the room (K-9, K-10, K-11: K-12, K-20).

Reverberation time measurements during the construction of a

Radio or Television Studio might suggest certain adjustments or mod-

ifications in the planned acoustical treatment of the Studio (3 -41).

Acoustical measurements in completed Radio Studios will reveal

whether or not any change is required in the acoustical treatments,

and whether or not any difficulty will be encountered in microphone

pick-up because of room resonance or overly delayed reflections

K-7).

The measurement of R.T., made at several positions and the re

sults averaged, in a completed Auditorium is a basic criterion in

the ultimate evaluation of its acoustical performance (K-6, K-13).
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It has been mentioned in preceding Sections that the sound

level can be increased in the Tear portion of an Auditorium if

- the shape and volume of the room are acoustically fa-

vorable,

- suitable reflective surfaces have been provided,

- R.T. is optimum,

- acoustical defects have been successfully eliminated, and

disturbing noise has been banished from the Auditorium.

In large halls, however, even though attention has been

given to these aspects, speech level often will be too low for

satisfactory hearing conditions. In large Auditoria, therefore,

and also in outdoor locations, a sound amplification system is

nearly always necessary to secure adequate loudness and good

distribution of sound (1-3, 1-7, L-26, L-37, 1-43, L-52, L-53,

L-57).

It is not possible to specify the exact size or volume of

small or medium size Auditoria above which a sound system is

needed; this will depend on the acoustical conditions of the

room, the strength of the voice of the speaker, the distance

between speaker and listeners and on the ambient background

noise in the room (L-7, L-37, 11-53).

According to V.O. Knudsen and C.M. Harris, if a high degree

of speech intelligibility is desired, a sound amplification

system should be used in Auditoria exceeding a volume of about

50,000 ft3; if the noise level is greater than 40 dB, a sound

system may be necessary even in smaller rooms (11.3).

W. Purrer recommends the installation of a sound amplifi-

cation system in Auditoria whose volumes exceed the following

values (GB-52):
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for the average speaker 105,000 ft3

for the trained speaker 210,000 ft3

for instrumentalists or vocal-
ists 350,000 ft3

for a large symphonic orchestra 700,000 ft3

for a large choir 1,750,000 ft3

According to L.L. Beranek (L-37)1 in an acoustically well

designed Auditorium, a sound system will be needed if the room

volume exceeds about 75,000 ftlanliftbielmioe must travel more

than about 80 ft to a listener. On the other hand, a sound am-

plification system may be required in Auditoria having a volume

greater than about 15,000 ft3 if the room is heavily treated

with absorbing materials and the distance between sound source

and listeners exceeds 40 ft. Generallyla sound system will be

needed for small rooms if they are too noisy (particularly in

the frequency range corresponding to speech sounds), or if the

room is extremely reverberant.

P.R. Parkin and R.R. Humphreys recommend a sound system

for Auditoria accommodating more than 500 audience if the floor

is flatowith some intruding noise. On the other hand, they claim

that an acoustically well designed Theater with trained actors

probably will not need a sound system unless its seating capa-

city exceeds 1500 (L-7).

L.1 Principal uses of sound amplification

Sound amplification systems are used for the following

purposes (1-2, lem-3, 1-6, 1-7, 9, L-12, L-15, L-16, 122,
L-23, L-37, L-38, 39, L-40, 1-43, 11,45, 1-46, L-50, L-51,

L-52, 1-53, L-54, GB-38):

(L) to reinforce the sound level in an Auditorium or in

outdoor locations when the sound source is too weak

to be heard;
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(b) to minimize room reverberation;

(c) to provide amplified sound for overflow audiences;

(d) to increase the sound level on the stage of an Audi-

torium in order to provide an adequate sound level

ror the performers or for listeners seated on the stage;

(e) to provide artificial reverberation in rooms which are

too"dead"for satisfactory listening;

(f) for Motion Picture Theaters;

(g) to distribute radio or recorded programs in factories,

schools, hospitals, hotels, restaurants, recreational

buildings, etc., for entertainment, audio instruction,

or therapeutic purposes, and also to enhance morale,

thus increasing productivity and quality of the product;

(h) to provide paging and announcing in offices, stores,

industrial buildings, schools, hotels, hospitals, trans-

portation buildings or in any other building for the

purpose of transmitting spoken or recorded announce-

ments or for locating individuals;

(i) to provide a multitude of electro-acoustical facilities

in Theaters, Opera Houses, etc., partly for the conve-

nience of the audience, performers and staff, and part-

ly to produce various sound effects;

(j) to provide personal communicating facilities between

individuals at separated locations in the same or dif-

ferent buildings;

(k) to provide hearing aids in Auditoria;

(1) to operate electronic organs, chimes, carillons, etc.;

(m) for signalling, i,e,,to relay instructions for emergency

action or for indicating the beginning and end of work

periods.

Some of these listed functions are often combined.
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In the remainder of this Section mainly sound amplification

systems used to reinforce the sound level in Auditoria will be

discussed. It is generally expected that a sound system (a)

should provide clear and undistorted sound, i.e., high intelli-

gibility, at reasonable loudness; (b) should be free from dis-

turbing echoes;(c) should create a sufficiently low room re-

verberation; and (d) the amplified nature of the sound should

remain undetected. In fact, the audience should be unaware of

the existence of a sound systempand the acoustical excellence

of any performance should be attributed to the performers and

to the acoustics of the Auditorium (L-7, L-37, L-43).

L.2 System Components

Every single - channel sound amplification system is a hook-

up of three essential components: microphone, amplifier and

loudspeaker.

The microphone, placed near the actual sound source, picks

up the sound energy radiated by the source, converts it into

electrical energy and feeds it into the amplifier. The ampli-

fier increases the magnitude of the electrical signal and de-

livers it to the loudspeaker which converts the electrical

signal into air-borne sound waves for distribution to the lis-

teners at a requested level (L-3, L-6, L-33, L-35, IA-40, 14-53)

Figure 11.1.A is a simplified diagram showing basic components

of a single-channel sound amplification system.

A detailed discussion of the system components (micro-

phones, amplifiers and loudspeakers) is beyond the scope of

this work (L-1, L-2, 1-3, L-6, 1-7, L-9, L-15, L-16, L-18,

1-20, L-22, L-25, L-26, L-33, L-35, L-37, L-40, 1-43, L-52,

L-53, GB-38). It must be stressed that a sound system will

give satisfactory asults only if all components are of the

highest quality, if its design is carefully integrated with

the architectural and acoustical characteristics of the Audi-
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torium, and if the system is operated by a competent person

who has a fundamental understanding of the sound program and

of the temperament of the performers (L-3).

1.3 Loudspeaker placing

If the microphones are to be located at the "sending" end

of an Auditorium there are available three principal types of

loudspeaker systems (1-3, L-7, L-37, L-43, 1-53):

(a)centrally located,withasingle
cluster of loudspeakers over the sound source, as shown

in Figure L.1.14

(b)distributed,usingalarge number of over-

head loudspeakers located throughout the Auditorium,

as illustrated in Figure L.14;

(c) stereophonic,with two or more clusters of
loudspeakers around the proscenium opening or the sound

source.

The central system (Figure L.1.33), the most preferred

one, gives maximum realism because the amplified sound comes

from the same direction as the original sound. This will create

the impression of increased loudness and clarity but the audi-

ence will identify the sound with the performer, not with the

loudspeaker (1-3, L-52) .

As a rule, the use of a central loudspeaker system should

be preferred, however, there are many situations in which a

distributed system (Figure 11.14) has to be used; for example

(1-52, 1-53):

(a) in Auditoria with a low ceiling height that is inade-

quate for the installation of a central system;

(b) where a majority of the listeners would not have ade-

quate line-of-sight on a central loudspeaker;



(c) when sound has to be provided for overflow audiences;

(d) in large halls (Convention Halls, Ballrooms, Terminal

Buildings, etc.) where maximum flexibility is required

to amplify sound sources in any part of the hallvand

where the amplified sound has to override the prevailing

high background noise level;

(e) in halls where the possibility exists of dividing the

space into several smaller areas.

Although no realism can be expected from a distributed loud-

speaker system, it does provide a high degree of intelligibility

if the room is not too reverberant.

In the distributed system, several loudspeakers are placed

in the ceiling, facing down towards the audience and operated

at a relatively low but comfortable sound level; each speaker

is placed so that it covers only a specified area.

If amplified sound is supplied through a distributed system

to a listener seated at the rear of a very long room, he will

receive the amplified sound earlier than the natural sound. If

this delay in the arrival of the natural sound is excessive,

the sound will appear to come from the loudspeaker resulting

in loss of intelligibility and disillusion in listening. This

can be overcome if an appropriate time-delay mechanism is in-

troduced in the sound amplification system (1-30, 1-43, L-45,

1-52, 1-53).

The use of a central loudspeaker system is nearly always

preferable to the distributed system as is illustrated and ex-

plained in Figure L.l.D.

The simultaneous use of both the central and the distri-

buted loudspeaker systems in certain Auditoria is feasible,

sometimes quite necessary.
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A stereophonic sound system employs two or more microphones

adequately spaced in front of the performing area, connected

through separate amplifying channels to two or more correspond-

ing loudspeakers spaced in front of the listening area. Such

a system will preserve the illusion that sound is coming from

the original, unemplified source, because (a) sound will, in

fact, approach from loudspeakers above (or below) the original

source at intensities proportional to the distance from the

source to the microphone, and (b) the ear locates sound sources

in the horizontal plane but not in the vertical plane (GB-38).

A stereophonic sound system, used mostly on large stages

where the sound originates from moving sources or grouped

voices and instruments, will preserve the audio illusion in

the spatial distribution of the sound sources. It will create

a remarkable increase in the realism of sound and listening

pleasure (L-22, L-32, L-37, IA-41, L-439 1-47, 1-48,

L-53, L-54).

The use of a stereophonic sound system in Auditoria will

require particular attention in obtaining the optimum layout

of equipment and in the inclusion of the increased number of

system components in the overall design (L-3).

If the microphones are distributed in an Auditorium (Par-

liamentary Halls, Conference Halls, etc.), the loudspeaker

layout will require an individual solution in every case (L-37).

In placing the loudspeakers, in general, it must be remem-

bered that (a) every listener in the room must have line-of-

sight on that particular loudspeaker with which it is planned

to supply him with amplified sound, (b) a loudspeaker cluster

(particularly the central type) will require a great deal of

space, and (c) concealed loudspeakers have to be hidden behind

a sound transparent grille which should not contain large

scale elements (L-53) .
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Loudspeakers should always radiate their sound energy on

the sound absorbing audience with no (or minimum) sound ener-

gy radiated on sound reflecting surfaces. This is particular-

ly important in Auditoria with excessive R.T.

Various types of loudspeakers can be used for both the

central and distributed systems. In certain cases "line" or

"column" loudspeakers are preferable to the conventional ra-

dial or multicellular horns. Column loudspeakers concentrate

most of the sound into a beam which has a wide angular spread

in the horizontal plane and a narrow angular spread in the

vertical plane, shown in Figures .L.2 and L.3 (1-7, 1-37,

L-39).

Even though the selection of the central loudspeaker clus-

ter is in the hands of the electrical engineer, the integrat-

ion of the space-consuming central loudspeaker system with the

architectural concept is always a serious aesthetic problem un-

less it is tackled by the architect from the outset of the de-

sign.

Particular attention must be paid to the locations of mi-

crophones relative to the loudspeakers in both central and

distributed systems, in order to avoid the familiar feedback,

i.e., squealing or howling. This phenomenon, typical of a poor-

ly designed sound system, usually occurs (a) if the sound ra-

diated from the loudspeaker is picked up by the microphone,

(b) whenever reflective surfaces of the room are so located

as to concentrate reflected sound on the microphone, and (c)

in highly reverberant rooms.



Figure L.2.
Diagrammatic illustration
of a "column" loudspeaker,
showing its wide angular
spread in the horizontal
plane and its narrow
angular spread in the ver
tical plane. (Reprinted
frog Acoustics,Noise and
Buildings by P.B. Parkin
and H.R. Humphreys, Fred
erick A. Praeger, IlewYork,
1958)4
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Side Wew

Plan

Figure L.3. Longitudinal section of an Auditorium with central
loudspeaker system; two "column" loudspeakers are
used with narrow angular spreads in the vertical
plane. (Reprinted from Acoustics, Noise and Build
ings by P.R. Parkin and H.R. Humphreys, Frederick
A. Praeger, New York, 1958).
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In the introductory pages of this study it was noted that

buildings today exist in a relatively noisy environment as a

result of the remarkable shift in building technology from

traditional (heavy and thick) structure to contemporary (light -

wtight, thin, and prefabricated) building construction, the

extraordinary increase in noise sourccs, and the architect's

preference for undivided interior spaces (M-2, M-6, M-8, M-17,

M-20, M-81, M-82, M-122).

The elimination or reasonable ,seduction of interior and

exterior noises in buildings, i.f.,the provision for the de-

sired quiet environment, is the purpose of noise control,and

tha subject of this and subsequent Sections. Freedom from noise

is one of the most valuable qualities that a contemporary

building can possess (M-6).

M.1 Effect of noise on people

All sounds regarded as distracting, annoying or harmful to

everyday life (wont, rest, study, entertainment, etc.) are con-

sidered as noises; as a standard definition, any sound deemed

undesirable by the rwApient is regarded as noise (GB-73). Thus

speech or music will also be regarded as noise when their per-

ception is undesired by the recipient (1L -6, M-13, M-17, M-20,

M-27, M-83, M-84, M-122). Whether or not a sound is undesired

by a person will naturally depend on the loudness of the sound,

and also on subjective aspects; such as,origin of sound, the

recipient's momentary state of mind, his state of nerves, etc.

(M-88, M-89, M-103). Music may sound lovely if produced by

one's own record player but it can be quite irritating if it

comes from the neighbor's radio or television set (M-116, M-122,

M-141). Noise created by oneself tends to be ignored if it con-

stitutes a natural accompaniment to work, such as the noise of

a typewriter, of a working machine, etc. (M-11) . Quite often
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noises originating from a nearby railway station or from dis-

tant airflights are not objectionable (provided that their

perception is not unexpected) because their origin is consi-

dered as something necessary and natural (GB-52). As a rule,

noises of mechanical or electrical origin (caused by fans,

transformers, motors, pumps, vacuum cleaners, washing machines,

etc.) are always more annoying than noises of natural origin

(wind, rain, waterfall, etc.). High frequency noises are more

disturbing than low frequency noises (GB-52).

The effects of noises, ranging from distracting to serious,

are well known. Even a faint noise can interfere with listening

to speech or music, causing a masking effect (subsection C.8)

and elevating the threshold of audibility (M-11, M-14, M-162

M-22, M-26, M-44, GB-21). Moderately loud noises may product

nervousness, indisposition, auditory fatigue, indigestion and

circulatory troubles. Very loud noises may induce a serious

deterioration in a person's general state of health; if

long endured, temporary or permanent loss of hearing can re-

sult (M-6, M-11, 14-56, M-84, M-102, M-113).

The detrimental effect of noise on working efficf.-mcy and

production has been numerically proven in several fields of

industry (14-6, M-84, M-119).

M.2 Measurement of noise. Addition of noise levels

Noise can be measured in different ways (M-3, M-16, M-21,

M-45, M-46, M-47, M-70, M-86, M-96, M-97, P1-100, M-125). The

sound pressure level and sound level of noise is measured by

means of a sound pressure level meter in terms of decibels

above 0.0002 microbar (subsection G.3).

The subjective loudness of a sound, however, varies not

only with the sound, pressure level but also with the frequency

of the sound. The way the loudness of a sound varies with



frequency will depend on the sound pressure level of the sound;

in addition, low frequency sounds seem less loud than high fre-

quency sounds which have the same sound pressure level (M-26).

Allowance has been made for this effect for pure tones by in-

corporating so called "weighting networks" in an instrument

that measures sound pressure levels; such an instrument is

called a sound level meter (M-21, M -85, M-96, M-125, M-135).

In order to obtain a high degree of uLiformity among sound

level meters, they provide three alternate frequency-response

characteristics. The three responses are obtained by three

weighting networks, designated A, B, and C, also referred to

as "40 dB", "70 dB", and "flat", respectively, shown on Figure

M.1. These responses selectively discriminate against low and

high frequencies according to the equal-loudness level curves

in Figure C.1, and approximating, to a certain extent, the fre-

quency response of the human ear. If A-weighting is used, for

measuring noise levels below 55 dB, it will indicate the "A-

weighted sound level", and the measurement should be labelled

"dB-A". Similarly for B-weighting, used for noises between

55 dB and 85 dB. 0-weighting is used for noises above 85 dB.

When noises are measured on a sound level meter with the fre-

quency response weighting selected according to the level of

the measured noise, the reading obtained is the sound level.

Readings obtained with the "flat" (or "C") frequency response

are sound pressure levels. It is essential to record the

weighting position with the observed level (M -21).

When the frequency characteristic of a noise has to be in-

vestigated, the sound level meter is used with a spectrum ana-

lyzer. The analyzer has a set of filters allowing a certain band

of frequencies only to pass through a circuit; only those fre-

quencies allowed througll will be measured by the sound level

meter. The usual type of analyzer, called an octave-band ana-



loram
m

im
m

e
m

t cam
IIIIM

IM
IO

M
M

IIIM
W

M
IIIIM

O
M

 N
M

 M
E

r.lim
m

lim
eim

isom
A

m
M

N
E

M
t N

M
I

N
M

III
W

W
I

III
IM

O
II

11111111111111M
IN

I

M
IN

IN
I U

M
W

M
M

M
U

 M
IN

 C
111111111

m
am

alm
m

Irm

r

.1

*A11
II

1

a

I
m
N

E
ECMENNENEN

N
E
E
M
E
H
E

M
R

N
 
O
M
 
N
E

M
N
 
'
M
U
U
M
U
U
.

1

M
U
M
M
 
M
E
M
M
E
M

M
I
N

U
M

M
U
I
M

M
U
M
 
M
E
M
M
A
M
M
.

N
M
 
M
U
M
 
U
M
"

N
N
E
N
N
E
N
 
E
H
N
E
N
'

N
 
E
E
N
 
E
W

m
u
r
m

.

n
i
m
m
u
m
r
s
i
n

.

m
i
s
u
m
 
-

m
m
u
l
i
m
m

!
A
m
m
o

i
m
m
u
m
 
i
 
M
M
.

M
M
O
W
 
M
O
M

A
 
'

M
O
O

O
N
U
M
O
:
N
O
M
M
I

I
A
M
E

-

M
U
 
V
M
 
M
M

!
M
A
U
=
 
M
U
M

m
i
n
 
u
m

o
n
E
E
N
N
E
E
N
N
E
N



333

lyzer, is divided into several bands of one octave each. A

noise is properly specified when one average reading is given

for each octave band on the appropriate weighting network

(M -26).

Sound levels for typical noise sources measured with a

sound level meter are listed in Table M.1 (M-6, N-21, M-28,

M-29, M-30, M-49, M-74, M-75, N-10).

Table M.1. Typical overall noise levels, expressed

in decibels, measured at a given distance from the

noise source. (Levels below 85 dB are weighted).

Noise source noise level,
dB, re 0.0002

mi crobar

Ticking of watch 20

Quiet garden 30

Average residential environment 43

Light traffic (100') 45

Average private business Office 50

Acounting Office 65

Average traffic (100') 67

Boeing 707-120 jet at touch-down (3300') 70

Automobile (20') 74

Heavy traffic (25' to 50') 75

Average light truck in city (20') 77

Lathes (39 80

Cotton spinning machines (3') 85

Inside sedan in city traffic 86

10 HP outboard (50') 88

hoeing 707-120 jet at take off (3300') 90

Inside motor bus 91

Train whistles (500') 92

Average heavy truck (20') 93
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(Table M.1 cont'd.)
noise level,

Noise source dB, re 0.0002
microbar

Subway train (20') 95

Sewing machines (3') 96

Looms (3') 97

Riveting gun (3') 100

Wood saw (3') 100

Inside DC-6 airliner 105

Chipping:hammer (3') 108

Automatic punch press (3') 112

Car horn (31) 114

Pneumatic chipper (5') 123

Large pneumatic riveter (4') 128

Hydraulic press (3') 129

F 84 jet at take-off (80' from tail) 132

50 HP siren (100') 138

If the combined noise level of two or more different noise

sources has to be predicted, the resultant noise level will not

be the sum of the individual levels. The diagram given in Fig-

ure M.2 can be used, with reasonable approximation, for com-

bining two noise levels, but the diagramcanalsobeused succes-

sively to combine any number of noise levels. If the sound

pressure levels Si and S2 of two noise sources have to be

added and if S
2 is greater than

1 then, the total noise le-

vel in decibels is equal to 82-1- N, where N is the increment

to be determined from Figure M.2, corresponding to the diffe-

rence between the two sound pressure levels being added. It

will be seen that when the sound pressure levels of two noise

sources are equal, the difference between them equals zero,

and the resultant noise level is 3 dB higher than the level

of either sound source (M-6, M-21). If several noise sources,

all having the same sound pressure level, have to be added,
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they will have a total sound pressure level which is 10 log10q

decibels above the sound pressure level of one of the noise,

sources, where q is the number of the noise sources (M-11).

Various methods are known and instruments used for the

measurement of vibration; their discussion, however, falls be-

yond the bounds of this study (M -16, M-22, M-53, GB-34).

M.3 Noise sources

The main noise sources of significance in noise control may

be classified in two groups (M-4, M-6, M-11, M-17, M-18, M-37,

M-40, M-122, 5-30, 3-38, S-40, 3-43, GB-52):

(a) noise sources indoors, originating from people, house-

hold equipment, or machinery within the building. Par-

tition walls, floor constructions, doors and windows

inside the building must provide adequate protection

against these noises;

(b) outdoor noises, originating from traffic, transport-

ation, industryoand from sports activity. Exterior walls

and top floors (roofs) must provide the required pro-

tection against outdoor noises.

Even though these noise sources may occur indoors or out-

doors, in subsequent discussions their effect will be considered

from the point of view of the recipients who are assumed to be

indoors (M -18).

If the noise originates in a room, this will be called the

source room,and the room in which the recipient is

located will be termed the receiving room(M-18).

N.3.1 Noise sources indoors

The most common noise sources produced by people (parti-

cularly in Apartment Buildings) are: radio or television sound
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coming from adjacent occupancies, banging of doors, loud con-

versation, traffic on staircase, people moving, children play-

ing, babies crying, etc. (M-11).

Building noises produced by various household equipment,

machinery, etc.,represent more serious sources of interference.

These articles of equipment and machinery are being increasing-

ly replaced by contemporary units of greater output, higher speed,

and consequently of increased noise.

Extremely high noise levels are produced in several indus-

trial buildings due to various manufacturing or production pro-

cesses.

Table M.2 presents average sound levels of characteristic

noises produced in buildings (M-6, GB-52).

Table M.2. Average noise levels of typical noises,

expressed in decibels, produced in buildings

Noise source

Large orchestra in a Concert Hall

peak level
average level
minimum level

Radio music in a noisy Living Room

peak level
average level
minimum level

Radio music in a quiet Living Room

peak level
average level
minimum level

Speech

noise level,
dB, re 0.0002

microbar

110 (C)
)90 (C

50 (C)

83 (C)
70 (C)
58 (C)

78 (C)
65 (C)
47 (C)

loud speech (3'-6" distance) 80 C)
raised voice (3' -6" distance) 74 (C)
normal speech (3'-6" distance) 68 (C)
low-toned conversation (3' -6"

distance) 60 (C)
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(Table M.2 cont'd.)

Noise source
noise level,

dB, re 0.0002
microbar

Average noises in Offices

3 persons 55 (C)
10 persons 60 (C)
50 persons 65 (C)
telephone ring (6' -6" distance) 75 (A)
typewriter, standard (6' -6" distance) 70 (A)
typewriter, noiseless (6'-6" distance) 60 (A)
Office with tabulating machines 78 (B)

Boiler Shop

peak level 127 (C)
average level 114 (C)

Weaving Room 104 (C)

Shoe Factory 104 (C)

Woodworking Shop 108 (C)

Measured noise levels, as given for instance in Table M.2,

provide us with important clues whenever noises have to be re-

duced in the receiving room by the use of appropriate sound

insulating enclosures.

The noise level at any position in a room is made up of

two parts: (a) sound received directly from the source, and

(b) the reflected or reverberant sound reaching the position

under consideration after repeated reflections from the bound-

ary surfaces of the room. This is illustrated in Figure M.3.

Around the noise source the direct sound predominates, gradu-

ally falling off with increasing distance from the source

(M-18). Further away from the noise source the reverberant

sound will prevail, being close to equal strength throughout

the room (provided that the noise source is non-directional),

as illustrated in Figure M.4 (M-18).

If measurements of noise levels are required in a room, it

will be necessary to ascertain whether it is the direct or re-

verberant noise level which is being measured (GB-43). In the
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4
Figure M.3. Direct and reverberant sound in a room. (Re-

printed from Acoustics, Noise and Buildings
by P.H. Parkin and H.R. Humphreys, Frederick
A. Praeger, New York, 1958).

90

80

co

0a 70
V

et

60

Direct sound level

SO

Reverberant sound level

GOMM UNINNIello

2 b 8 10 12 14 lb 18 20

Distance from noise source

Figure M.4. Decrease in intensity of sound with dis-
tance from source. (Reprinted from Acous-
tics, Noise and Buildings by P.R. Parkin
and H.R. Humphreys, Frederick A. Praeger,
New York, 1958).
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design of sound insulating enclosures it will be more important

to know the reverberant sound level than the direct sound level

because it is the reverberant sound that hits the room enclo-

sures,and so is more likely to be transmitted to other rooms

of the buildiLL. If a room noise that has been found to be ex-

cessive for the people in the same room has to be reduced, then

both the direct and reverberant sounds are of interest (M -18);

this will be considered in paragraph M.6.8.

M.3.2 Outdoor noises

Outdoor noises are harmful contributors to noisy buildings.

The most annoying noises of this kind are produced by vehicular,

railroad and air traffic, and transportation. A preliminary

noise survey always should be made at sites chosen for buildings

in which quietness is essential (Churches, Studios, Hospitals,

Schools, etc.) in order to make some preliminary allowance for

the required noise control measures necessitated by outdoor

noises (M-18).

The advent of jet and supersonic aircrafts, for both ci-

vilian and military purposes, has introduced the most complex

types of noise control problems that now confront acoustical

experts (M-17, M-23, M-76, M-88, M-95, M-110, M-123, M-127,

M-128, M-139, N-81, R-25, R-39). Aircraft noises, particularly

during ground run-up and take-off operations, affect not only

living and working conditions around the airport, but also large

areas of densely populated districts, regrettably located along

air routes, are subjected to objectionable noise levels (M-128) .

Noise levels of aircrafts under specified conditions are given

in Table M.1.

The noise level created by vehicular traffic will depend

on the type of vehicles, their number, speed and the frequency

of their occurence, Noise levels of vehicular traffic are given

in Table M.1.
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The reduction of the intensity of outdoor noises with dis-

tance is governed by the inverse square law; a drop of 6 dB

will be noticeable every time the distance between the source

and recipient is doubled (subsection C.9). In addition, there

is attenuation due to molecular absorption, mainly at fre-

quencies above 1000 cps (M-18).

Besides molecular absorption, other weather factors, such

asoind and temperature gradients, snow, clouds, and fog Will

also affect the propagation of noise in the open air (M-18).

An obstruction (wall, embankment, building, etc.) will

contribute to the attenuation of outdoor noises only if the

dimension of the obstruction is comparable with the wavelength

of the noise; the attenuation provided by obstructions is, how-

ever, rather limited (M-18, 14 -25).

M.4 Air-borne sound, structure-borne (impact) sound

Sound can be produced (a) in the air, such as the human

voice or musical sounds, (b) by impacts, such as the dropping

of objects on a floor, the slamming of doors, (c) by machinery

vibration, and (d) by the flow of fluids, such as air in ducts

(M-26). The sound thus generated at the source will travel

through various paths in a building (M-4, M-6, M-11, M-17, M -18,

M-24, M-26) .

If a sound is transmitted through the air only, it is called

air-borne sound.Aspeaking person, a singer,

the violin, the trumpet, etc., generate air-borne sounds. This

is illustrated in Figure M.5 (GB-52).

If a sound source radiates its energy not only through the

air but also simultaneously sets into vibration solid parts of

the building structure, it is termed structure-
borne soundpor impact sound. The sound of a cello,

double bass, and footstep noises represent typical structure-

borne sounds. This is illustrated in Figure M.6 (GB-52) .
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Figure M.5. Sound sources producing air-borne sounds.
(Reprinted from Baum- and Bauakustik,
liarmabwehr by W. Furrer, Birkhguser Ver-
lag, Basel 1961).

Figure M.6. Sound sources producing structure-borne
or impact sounds. (Reprinted from Raum-
und Bauakustik, Isirmabwehr by W. Furrer,
Birkhguser Verlag, Basel, 1961).
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Similar to air-borne sounds and structure-borne sounds,

air-borne noises are to be distinguished from structure-borne

noises. From the point of view of a recipient, structure-borne

noises cannot be separated from air-borne noises. Structure-

borne noises transmitted through the structure will be re-ra-

diated from certain building elements, such as walls, slabs,

panels, suspended ceilings, furred-out plasters, building

boards, etc., anti will eventually reach the recipient as an

air-borne noise.

M.5 Transmission of noise in buildings

The transmission of air-borne sound differs considerably

from that of structure-borne sound (M-6, M-18, GB-52).

Air-borne sounds are attenuated considerably by air ab-

sorption and also by intervening enclosures (walls, floors,

etc.), so that their effect is confined mostly to areas near

their origin.

Structure-borne sounds, by setting solid parts of the

building structure into vibration, virtually multiply the area

of the sounu radiating surface, thereby increasing the radiated

sound pressure. Sometimes this growth of the area of the sound

radiating surface is useful, even desirable, e.g.,with mreical

instruments, such as, cello, double bass, piano, etc. (subsection

H.3). In many cases, however, this phenomenon is very harmful.

A vibrating heating pipe or water pipe alone would radiate a

very small amount of air-borne noise, due to its limited sur-

face; however, if these pipes, as usually is the case, are ri-

gidly anchored to a wall or to a floor slab, additional large

surfaces will be set into vibration, greatly increasing the

radiated noise and transmitting the vibration over surprisingly

long distances.
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The means of suppression of air-borne noises (air-borne

sound insulation) are different from those of insulating

structure-borne noises (structure-borne sound insulation). A

boundary that provides good protection against one type of

noise may be a poor insulator against the other. It is. there-

fore, important to find out whether the noise that has to be

combatted originates from air-borne sounds or from structure-

borne sounds (i1_6, M -1l, A-52, M-53).

M.5.1 Transmission of air-borne noise

Air-borne noises originating in the source room can be

transmitted to the receiving room in the following ways (N-6,

M-18, M-52, GB-29, GB-52):

(A) Along continuous air paths through openings; such as, open

doors and windows; ventilating ducts and ventilpting grilles;

shafts, crawl spaces; gaps and cracks around doors, pipes,

conduits, electrical fixtures, and built in elements, etc.

(B) By means of forced vibrations set up in the boundaries

(walls, floor, ceiling) of the source room and transmitted

to the boundaries of the receiving room; these forced vib-

rations will then be re-radiated in the receiving room.

If source room and receiving room have a cormon boundary

(partition wall or floor), the re-radiated sound might be

particularly noticeable unless the boundary in question

offers sufficient resistance to flexural vibrations (i.e.,

it has adequate mass).

M.5.2 Transmission of structure-borne noise and vibration

Since structure-borne noises and vibrations are readily

transmitted with little attenuation and over great distances

in a building, structure-borne noises and vibrations should

be suppressed right at their source, where possible, or as
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close as possible to it. This will be accomplished (M-6, M-18,
M-53, M-80, M-91):

(a) by the use of adequately resilient flooring (carpeting,

rubber tile, cork tile, etc.) to reduce impact trans-

missions to the floor;

(b) by the use of a segment of flexible (metallic, rubber,

or plastic) hose or canvas in pipes, ducts, etc., to

prevent the transmission of vibrations along them;

(c) by the use of flexible mountings, anti-vibration pads,

floating floors, etc., to prevent the transmission of

vibration and shock from various machinery or ex-

terior sources into nearby precision machines, delicate

-equipment or into the building itself (discussed in

Section N).

M.6 Methods of noise control

Various approaches can be followed to achieve an effective
and economical elimination or reduction of noises in buildings

(M-1, M-2, M-5, M-8, M-13, M-20, M-22, M-33, M-39, M-48, M-5E6

N-18, N-38). It is becoming strikingly obvious that the fight

against the ever increasing number of harmful noises will lead
to satisfactory results only if all those participating in the

design of buildings will take their share of achieving the

common goal (M-99) .

Noise control can also be accomplished by means other than

design, e.g.,through certain modifications of the suurce or

transmission paths, or by adequate reorganization of the entire
noisy area. These measures are in the hands of the manufac-

turers, office management, etc.

The various methods of noise control will be described

iiefly in subsequent paragraphs.
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M.6.1 Suppression of noise at the source

The most economical noise control measure is to suppress

the noise right at the source by using ouietly working ma-

chines and equipment, and also by adopting manufacturing pro-

cesses or working methods which will cause as low a noise level

as possible (M -16, N-49, N-149). For example, a change from ri-

veting to welding, or from hammering to the use of hydraulic

presses, will eliminate serious noises.

Proper maintenance of machinery is always a good noise

control practice because loose housings, guards and vibrating

parts of a machine are always noise sources. Sometimes very

noisy machines can be enclosed in specially designed housings

if they cannot be quieted directly (M-78). An enclosure around

the offending unit should (a) have weight, (b) be impermeable

to air, and (c) be lined with sound absorbing material (M-79,

N-49, N-149).

In the design and manufacturing of competitive typewriters,

vacuum cleaners, motors, fans, compressors, boilers, etc., the

achievement of a relatively noiseless operation is one of the

objectives (M-11).

Footstep noises are easy to reduce at the source by the

use of soft floor finishes; such as, carpet, cork, rubber tile,

vinyl tile, etc. (M-11).

M.6.2 Noise control by means of town planning

The following are the principal types of community noise:

(a) transportation noise, (b) industrial noise, 'Ind (c) noise

produced by people (M-6, M-11, M-88). Noises produced by these

sources can be reduced by suitable layout of traffic arteries

and by careful segregation of residential districts from high-

ways, main streets, railways, and airports (M-37, M-59, M-61,

M-E3, R-20, 8-38).
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Highways should be routed around, not through, areas zoned

for buildings requiring quiet surroundings (Churches, Hospitals,

Schools, Residential Buildings, etc.). Traffic arteries and

railway tracks passing through quiet-requiring areas should be

shielded by means of hiUs, embankments or cuttings along the

edges of the route and should be located a proper distance

from populated areas. They should be planned to permit their

coordination with new residential areas as need arises (M-134).

Trains should enter large metropolitan centres by underground

routes. Residential streets should be protected from the noise

of traffic feeding the houses (M-6, M-ll, M-139).

Contemporary town and community planning with noise abate-

ment in mind(and its implementation through strictly enforced

by-laws and zoning regulations) will protect (a) the residents

from the intrusion of noise on their privacy, (b) the community

against a drop in property value (and hence tax revenue), and

(c) the noise producer (manufacturer, operator of a noisy pro-

cess) from lawsuits and ensuing expenditures for noise control

(M-88, R-20).

Figure Ma shows recommended distances between various in-

dustries and residential areas to prevent noise penetration

and air pollution (M-139, R-4, R-25).

M.6.3 Noise control by means of site planning and landscaping

Experience shows that once an outdoor noise in a certain

area is in existence, it will be difficult to remedy this com-

plaint and to eliminate it from that area. It is, therefore,

essential that buildings requiring quiet sonic environment

(Schools, Hospitals, Churches, etc.) should be located on
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quiet sites, far away from highways, industrial areas, airports,

etc. Under given noise conditions within an area, adequate

site planning, grading and landscaping of the site can posi-

tively contribute to noise attenuation (M-6, M-105, S-30, 5-57).

Linear blocks of buildings should be built with their ends

to traffic routes, i.e., the building should stand at right

angles to the street (M -6, M -139).

It is always advisable, where possible, to set back a

building from the street line in order to make use of the noise-

reducing effect of the increased distance between street line

and building line (m-6, 14-11, M-139).

Buildings not particularly susceptible to noises can be

used as noise baffles and can be placed between noise sources

and areas reouiring quiet (1-6, M-11).

The noise level at the windows of upper floors of high

buildings, originating from street noise, is always less than

that of the lower floors (M -6, m-18).

Table M.3 lists recommended horizontal distances between

a road carryirg continuous heavy traffic and rooms of different

occupancies facing the road; it is assumed that (a) there is

no obstruction between the road and the building containing

the room, (b) single windows have 32 oz glazing and are tightly

closed, (c) double windows consist of two fully sealed leaves

each of 32 oz glazingland separated by a 4" air space with ab-

sorbent in the reveals, and (d) no person in the room is close

to the window (M-105).
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Table ivi.3. Recommended horizontal distances (in ft)
between a road carrying heavy traffic and rooms of
different occupancies facing the road. (Reprinted

from Acoustics, Noise and Buildings by P.H. Parkin

and H.R. Humphreys, Frederick A. Praeger, New York,

1958).

Room Mallow Conditions Maim Digests

Classroom
OPen (a0 sq.. ft)

Single (125 sq. ft)

Double (125 sq. ft)

Idol
Workable
IdealWorkable
IdealWorkable ).

More than 2000
200
150
25

No restriction

Assembly Hall or
Theatre for 500
audience

OPen (100 sq. ft)
Single (1000 sq. ft)
Double (1000 sq. ft)

_ 500
100

No restriction

Conference Room
for 50 Open (2° al' ft')

Single (400 59. ft)

Double (400 sq. ft)

Ideal

Ideal
Workable
Ideral
WorkableWor

1000
300
200
50
50

No restriction

Court Room Open (20 sq. ft)

le (400 sq. ft)Single
A %

Double (400 sq. ft.)

Ideal
Workable
Ideal
Workable
Ideal
Workable

600
200

50
No restriction

Conference Room
for 20 °Pen (2° El' ft)

Single (150 sq. ft)

Double (150 sq. ft)

Ideal

Ideal
Workable
Idea'!
Workable

750
300
125
50
30

No restriction

Small Private'Mice OPen (30 1'1- ft)
,

Single (100 sq. ft)

Double (100 sq. ft)

Ideal
Workable
Ideal
Workable
Ideal
Workable }

750
150
50
15

No restriction



Good architectural planning with attention paid to sound

control requirements is the most logical and also a moat

N.6.4 Noise control by means

350

of architectural design

im-

portant approach to effective and economical noise control of

buildings (M-6, M-11, M-19, M-32, M-115, M-117, M-118, M-129).

Rooms from which noise is eveoted,andlitioh can therefore to-

lerate noise (a) should be isolated from sections of a build-

ing that can least tolerate noise, or (b) should be located

on those parts of the site which will probably be exposed to

other (interior or exterior) noises. Conversely, rooms re-

quiring quiet should be located on the quiet part of the site

or side of the building (GB-43).

Rooms (or buildings) not particularly susceptible to noise

can be located so that they act as screens or baffles between

noisy and quiet areas (GB-43).

In the architectural design of Residential Buildings the

rooms should be grouped into quiet quarters and noisy quarters.

A quiet quarter includes the habitable rooms, in the first place,

the Bedrooms and Study, and in the second place,the Living Room.

A noisy quarter contains the Kitchen, Bathroom, Utility Room,

staircase, elevator shaft, Boiler Room, Fan Room, etc. In a Re-

sidential Building that intends to be soundproof, the following

general design rules should be observed (M-6 M-122, S-30, 3-41,

GB-29, GB-43, GB-52):

(a) quiet and noisy quarters should be concentrated and

separated from each other horizontally and vertically

by means of adequate sound insulating enclosures (dis-

cussed in. Section N), or by rooms not particularly sus-

ceptible to noises; such as, Entry, Corridor, Lobby, cup-

boards, closets, staircase, etc.;

(b) a Living Room in one apartment should not be adjacent

to a Bedroom in another apartment. Bedrooms in a pair

of dwelling units should be adjacent to each other;
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(c) Bedrooms should be located in a relatively quiet part

of the building and should not overlook traffic lines
or driveways;

(d) a Bathroom should be efficiently separated from a
Living Room;

(e) the staircase should not be adjacent to Bedrooms;
(f) the separation between quiet quarters and noisy quart-

ers should always fall within the same dwelling unit.
A design that disregards the above recommendations and yet

intends to produce a soundproof building will have to use par-
ticular sound insulating (and hence expensive) walls and
floors.

Figure M.8 shows the floor plan of an ideally-zoned Family
House. Admittedly built with an unusual amount of ground cover-
age and expense, yet it clearly illustrates the required attri-
butes of an acoustically ideal home.

Figure M.9 illustrates another Family House with outstand-
ing acoustical privacy.

Figure M.10 presents typical floor plans of sound proof
Apartment Houses in Stockholm-H5gdalen and in Basel, incorpor-
ating most of the required features listed above.

The patio house and court-garden house provide a higher
degree of acoustical privacy compared to the single-family de-
tached house (M-25). This is illustrated in Figure M.11.

M.6.5 Noise control by means of structural design

Sensible structural design often entails noise control re-
quirements (M-115); a few examples are given below to sub-
stantiate this statement.

Since the sound insulation of a floor will depend primarily
on the thickness of the structural slab, bearing capacity can-
not be regarded, therefore, as the sole criterion in establish-
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Figure M.8. Floor plan of an ideally zoned family house in
Louisiana, clearly illustrating features of an
acoustically ideal home. Colbert and Lowry, ar
chitects. (Reprinted from Community and Privacy
by S. Chermayeff and C. Alexander, Doubleday and
Co., Garden City, N.Y., 1963).
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Figure M. 10. Typical floor plans oZ soundproof apart-
ment houses. A: point block in Stockholm-
Magdalen, Swaden; Architectural Department,
HSB. B: point block in Basel, Switzerland;
A. Gfeller and H. Mihly, architects. (Re-
printed from Wohnhochhiuser by P. Peters,
Georg D.W. Callway, Munich, 1958).
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Figure M. 11. Court-garden house providing a high degree
of acoustical privacy. (Reprinted from The
Court-Garden House by N. Schoenauer and S.

Seeman, McGill University Press, Montreal,
1962).
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ineits thickness. It must be realized that a 5" thick rein-

forced concrete slab in itself will just provide a bare acous-

tical minimum for the required horizontal separation between

two occupancies, if a higher degree of acoustical privacy is

aimed at, a thickness of more than 5" should be provided.

The thickness of wall established on the basis of its

structural function alone often does not meet the requirement

for adequate sound insulation.

When buildings have to be isolated against vibrations ori-

ginating from adjacent railroad tracks, subways, underground

Railway Stations, or highways with heavy traffic, anti-vibration

pads are often used requiring a careful integration with the

foundation of the respective building (N-41).

M.6.6 Noise control by means of mechanical design

Mechanical installations and equipment can be serious noise

sources. The noise hazard will be greatly reduced if attention

is given to following recommendations:

(a) in the selection of a suitable heating, ventilating or

air-conditioning system and equipment,preference should

be given to silently operating systems, fixtures,, and

equipments (5-41, GB-69);

(b) noise and vibration producing mechanical equipment

(fans, motors, etc.) should be accommodated low down

in the basement if possible. The load bearing structure

associated with these equipments is likely to be heavy,

providing a high degree of insulation against noises and

vibrations at a location where this insulation is most

needed (GB-43);

(c) pipes, ventilating ducts, continuous perimeter heating

strips, etc., can seriously affect, often nullify, the

sound insulating efficiency of enclosures (M -122);
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(d) fixtures recessed back-to-back in partition walls (med-

icine cabinets, switch and outlet boxes, etc.) should

always be staggered to avoid direct transmission of

sound through the partition wall in question (5 -41);

(e) service pipes or mechanical appliances should not be

located close to or recessed into enclosures designed

to provide acoustical separation. These pipes should

be resiliently anchored to walls or suspended from

ceilings if they are likely to transmit noises or vib-

rations (M-122, S-41);

(f) ventilating louvres, if used, should incorporate noise

filters (M-122).

The control of mechanical noises will be discussed in

Section 0.

M.6.7 Noise control by means of organization

If certain noises cannot be eliminatedvorifg; would be un-

economical to take: corrective measures to achieve noise cont-

rol, the situation can be remedied often by way of organization;

e.g.,certain rooms overly exposed to excessive noises can be

regrouped or relocated.

Sometimes too many workers are affected unnecessarily by

noisy machines scattered throughout a Workshop. If the indivi-

dual machines cannot be modified,it will be advisable to con-

sider the regrouping of the machines in a restricted area as

far as possible from the rest of the space (GB-43).

In other casestlarge noisy rooms should be partitioned off

from the rest of the space.

Earplugs or muffs have to be used in excessively noisy areas

where no other reasonable means of reducing the noise are avail -

w able (M-78, R-27).

Anti-noise ordinances, if strictly enforced, constitute

effective means of combatting community noise by means of or-
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ganization (R-2), their discussion is beyond the scope of this

study.

N.6.8 Noise reduction by means of sound absorptive treatment

It was mentioned in paragraph M.3.1 that the noise level in

the receiving room is made up of the direct sound and the re-

flected or reverberant sound.

The noise level of the reverberant sound can be reduced

to a limited extent only by the use of sognd absorptive treat-

ment. This reduction in the noise level due to the installation

of sound absorptive treatment is given by the following formula

(assuming that the sound field is diffused in the room):

A
2

Reduction
noise level = 10 log10 A dB

'1

where Al and A
2
are the total absorptions of the room in ft

2

units before and after treatment, respectively (M-6, M-11,

M-16) , Figure M.12 will facilitate the estimation of the re-

duction in noise level; the change, i.e., the reduction in loud-

ness level, is shown on the vertical axis, and depends on the in-

crease in absorption units plotted on the horizontal axis (M-16).

Figure M.12 clearly shows that it will be necessary to double

the amount of existing absorption in the receiving room in or-

der to obtain a reduction of 3 dB in the reverberant noise

level. If, by installation of various acoustical materials,

the absorption of the room can be increased by a factor of ten,

the reverberant sound level will be reduced by 10 dB. Figure

M.13 illustrates that a reduction of 3 dB in the noise level

means a 22 % reduction in loudness, and a reduction of 10 dB

in the noise level will produce a 54 % reduction in loudness

(M-16, M-31, GB -.43). This Figure also indicates that once a

10 dB reduction has been achieved, very little, if any, addi-



Figure M. 12.

Change (reduction) in
loudness level due to the
use of sound absorptive
treatment in a room. (Re-
printed from Noise Reduc-
tion Manual by P.H.Geiger,
Engineering Research In-
stitute, University of
Michigan, 1956).

Figure M. 13.

Change (reduction) in
loudness due to the use
of sound absorptive
treatment in a room. (Re-
printed from Noise Reduc-
tion Manual by P.H.Geiger,
Engineering Research In-
stitute, University of
Michigan, 1956).
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tional reduction in noise level can be expected in a room by

the Iltsd of sound absorptive treatment.

The use of sound absorbing materials in the receiving room

should not be regarded as a substitute or cure for deficient

sound insulation (M-6).

Introducing as much sound absorptive treatment as is con-

venient in the receiving room has the following advantages

(M-6, 74-8, M-11, M-79, M-126, 3-141, S-149, 5-163, GB-43):

(a) the receiving room will be quieter except for those

located in the direct sound field;

(b) it will reduce the overall sound level. Less sound

energy will fall on the room enclosures which will re-

sult in reduced noise transmission to adjacent rooms.

The acoustical power expended on speaking can be re-

duced, etc.;

(c) it will tend to localize noises to the area of their

origin. This is particularly advantaaeous in Workshops

with machines of various noise levels; the operator of

a relatively auiet machine will not be so annoyed by

the noise from a noisier but remote unit;

(d) the R.T. will be reduced in the room; this is parti-

cularly beneficial in rooms with transient noises (e.g.,

a burst of riveting, a hammer stroke, etc.), because

the reverberation of these transient noises will be re-

duced. In addition, this will permit better mental lo-

calization of sound sources, reducing the feeling of

confusionvand improving the sense of well-being for

workers in noisy rooms.

The sound absorbing materials to be used for noise reduct-

ion purposes in a room are the same as those described in Sec-

tion E (M.62, M-114). The absorbents should be installed as

close as possible to the noisa sources. If available room sur-
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faces do not provide sufficient area for sound absorbing mat-

erials, the use of space absorbers is recommended (subsection

E.4).

Since the sound absorption coefficient of acoustical mater-

ials vary with frequency, the noise reduction achieved will also

be different at various frequencies (M-6, M-11). This must be

considered in the selection of appropriate absorbent treatment

(M-79).

M.6.9 Noise control by means of sound insulating building con-

struction

This will be the subject of Section N.

M.6.10 Noise control with masking noise

In many situations annoying noise control problems can be

cured only by drowning out (or mauling) unwanted noises by the

use of artificially created background noise. This artificial

noise is often referred to as "acoustical perfume", even though

the term "acoustical deodorant" would be more appropriate; it

will suppress minor intrusions which might interrupt the re-

cipients, privacy.

Noise from ventilating systems, from traffic or from

general office activities will contribute to the production

of artificial masking noise (0-86, R-6, R-13, R-15, R-22, 3-15,

GB-69).
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If none of the noise control methods, described briefly in

subsection M.6, can be followed, then the transmission of air-

borne noises, structure-borne noises, impact noises, or vibra-

tions,can be intercepted only by the use of sound insulating

enclosures including walls, floors, doors and windows (N-1,

N-2, N-3, N-4, N-5, N-6).

In subsequent discussionsoth6term partitio nn
means any enclosure (wall, floor, door, or window) that sepa-

rates horizontally or vertically either source room from re-

ceiving room or any other two spaces.

N.1 Insulation against air-borne sound

K01.1 Transmission loss

The transmission loss (abbreviated: TL) of a partition,

stated in decibels, is a measure of its sound insulation

(GB-73); it is equal to the number of decibels by which sound

energy incident on the partition is reduced in transmission

through it. The numerical value of the TL depends on the con-

struction of the partition only; it is independent of the a-

coustical properties of the two spaces separated by the par-

tition (N-1, N-3, N-32, N-54, N-93, N-126, GB-21, GB-34).

N.1.2 Single-leaf partitions

The TL Of homogeneous single-leaf partitions that are

damped (so that they do not ring when struck with a hammer)

will. depend primarily on the product of the surface weight

of the partitions measured in lb per ft2, and the frequency.

The TL of such partitions can be determined from the mass law

curve, illustrated in Figure N.1 (GB-34). This curve assumes

that the sound hits the partition uniformly from all direc-

tions (random incidence). The Figure shows that for damped,
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single-leaf partitions the TL increases about 5 dB for each

doubling of frequency or doubling of weight (N-4, N-54, N-126,

GB-34, GB-43).

Table N.1 shows the surface densities of common building

materials, per 1" thickness (N-70, GB-34).

Table N.1. Surface densities of common

building materials, per 1" thickness

Material Surface weight,
lb/ft2

Acoustic tile 1-1.5

Aluminum 14

Asbestos board (Transite) 9

Brick 9-12

Concrete

dense 12
cinder 6-9
Haydite 7-8
Vermiculite 2-7

Cork board 0.7

Glass 13

Gypsum 5

Hollow clay tile 4-6

Lead 59

Plaster

light- weight aggregate 5
sand aggregate 9

Steel 40

Wood

timber 2-5
fir plywood 3

It must be noted that the TL for single-leaf partitions,

regardless of their weights, cannot be increased limitlessly

because of unavoidable paths of flanking transmission (dis-

cussed in paragraph N.1.6, and illustrated in Figure N.4).
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To achieve an effective TL of a partition, it is necessary

that it be impervious to air flow. Walls built of various po-

rous concrete blocks will not yield a TL in accordance with

their weight and predicted from Figure N.1, due to their po-

rosity. However, the TL of a porous partition may be consider-

ably improved by the use of a sealant (plaster, oil paint, ce-

ment-base paint, etc.) on its exposed surfaces (E-6, N-32, N-141).

There is a limitation of the mass law curve, shown in Fig-

ure N.1, brought about by a special condition called coincidence

effect. Under this condition,the effective TL of a partition

will be considerably lower at certain frequencies than the mass

law would predict (N-70, N-126). The coincidence effect becomes

detrimental if the critical frequency range (called coincidence

frequency), at which the partition is substantially transparent

to the passage of sound, falls in the range of audibility. The

coincidence effect can be reduced or limited if the coincidence

frequency can be kept outside the important subjective range of

freauencies; this will be achieved by the use of thick and very

stiff walls or by heavy and limp walls, with reduced stiffness

(M-18, N-70, N-97).

Additional information on the methods of improving the TL

of partitions is available from many sources (N-9, N-12, N-73,

N-75, N-84, N-86, N-98, N-111, N-136, N-141, N-144, N-154).

N.1.3 Multiple partitions

To achieve a significant improvement over the basic TL of

a single-leaf partition, it will require doubling or tripling

its mass. An increase of this extent in the weight and thickness

of an enclosure is obviously prohibitive, due to its functional,

spatial, structural, and hence economical consequences.

If a high degree of sound insulation is required, it will be

advisable, therefore, to use a partition of multiple construe-
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tion, built of two or three separated leaves (M-6, N-19 N-2,

N-3, N-4, N-23, N-32, GB-52).

Multiple partitions will provide a higher TL than would be

expected from their weight alone, particularly at the higher

frequencies, (a) if the separation between the leaves has been

consistently secured, (b) if the distance between the leaves

has been reasonably determined, (c) if sound absorbing material

is properly mounted in the air space, and (d) if an efficient

sound insulating or vibration isolating material is used between

the leaves of the partition and the building structure (M-6,

N-32, GB-21). Figure N.2 shows the improvement in TL for mul-

tiple partitions with air space over single leaf partitions of

the same total weight (N-126).

It must be noted that the curves shown in Figure N.2 do not

indicate certain, sometimes surprising, dips which might occur

in the TL of multiple partitions at certain frequency ranges,

as a result of a resonance effect. This is caused by the coup-

ling of the two leaves, partly due to the air space between. the

leaves,and partly due to the structural connection between the

leaves. By selecting the proper material and thickness of the

leaves with adequate separation between them, the resonance

effect can be minimized and shifted to less critical frequency

ranges (N-37, N-126, GB-52).

N.1.4 Composite partitions

If a door, window or opening has to be incorporated into a

wall, the overall sound insulation of the resulting composite

partition is determined primarily by its weakest link.

Various methods and simplified diagrams are available for

the rapid calculation of the composite insulation of partitions

made up of several elements with differing TL values (M-18,

N-1, N-76, N-126, GB-34).
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N.1.5 Measurement of transmission loss

The air-borne sound insulation of any partition varies with

frequency, and it is therefore necessary that TL measurements

be made over a frequency range covering those frequencies likely

to be important in noise control problems. Measurement of TL

can be made in a laboratory or in the field (N-32, N-126).

For laboratory measurement of the TL of various enclosures

(walls, floors, doors, windows, etc.) contemporary testing fa-

cilities are available at the National Research Council, in

Ottawa (Division of Building Research). In the U.S.A.9the follow-

ing are considered as accredited testing laboratories for the

measurement of TL: the National Bureau of Standards in Washington,

D.C.; the Riverbank Acoustical Laboratory in Geneva, Ill.; and

the Geiger and Hamme Laboratory at the University of Michigan.

For laboratory measurement,the test specimen, which is to

typify an enclosure, must be large enough to include all the

essential constructional elements. It is usually installed in

a manner as similar as possible to an actual construction. Meas-

urements of TL are normally made at the following nine frequencies:

125, 175, 250, 350, 500, 700, 1000, 2000 and 4000 cps. Test re-

sults are issued in the report of the laboratory, including the

following (M-18, N-94, N-126):

(a) description of the test specimen and all the essen-

tial constructional elements (composition of plaster

mixes, methods of application, surface finish, etc.),

(b) test specimen size, including thickness, weight per ft2

of surface, and mounting conditions;

(c) test results reported as the TL at the frequencies lis-

ted above. If an average TL is reported it should be

the arithmetic mean of the values obtained at these

nine test frequencies;

(d) a statement whether measurements have been performed by

means of warbled tones or by noise (paragraph E.9.2);
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(e) a statement that the test was conducted in accordance

with the latest ASTM Standard; any deviation from the

recommended practice will be listed in the report and

explained.

Average TL values, included in laboratory reports, provide

a simple and convenient method of rating for quick acoustical

evaluation of enclosures. However, an average TL of the nine

test frequencies does not always exhibit an unambiguous picture

of the acoustical performance of the partition under consider-

ation. For example, two different partitions with different

transmission losses at vital frequency readings but with the

same average TL value, could be erroneously considered as acous-

tically identical constructions against air-borne noises if

their average TL were regarded as a characteristic of their

sound insulative performance. Diagrams "A" and "B" in Figure

N.3 show the TL curves of two such partitions, both having by

chance a nine frequency average TL rating of 30 dB. On the basis

of their average TL ratings these two partitions seem to be

equal even though partition "B" shows a serious deficiency (dip)

in the vital frequency range of 700 to 1500 cps.

o avoid the often misleading attribute of an average TL

value, the revised ASTM Standard E 90-61T has adopted a new

type of single-figure rating, called the Sound Transmission

Class (abbreviated: STC) contour which insures that at no fre-

quency will the TL of a partition be less than the level corres-

ponding to the STC, thus eliminating ambiguities of an averaga

TL value. Plotted on a conventional (semilog) paper, the STC

contours consist of horizontal segments from 1400 to 4000 cps,

at a level corresponding to the STC; a middle segment that de-

creases 6 dB from 1400 to 350 cps; and a low frequency segment

that decreases 14 dB from 350 to 125 cps (N-95). STC contours

30 and 19 are shown on diagrams "C" and "D" respectively of



385

C

60

N 50

c 40
0

3°

'220

§ 10

0

60
-co

r: 50

.8 4°

= 30

E 20

-o
S 10
0

0

125 350 1000 4000
Frequency, Cycles Per Second

60

50

40

30

20

10

0
125 350 1000 4000

Class 30
r

B D

11...181MOMMIlle

4

125 350 1000 4000
Frequency, Cycles Per Second

60

50

40

30

20

10

0
125 350 1000 4000

Class 19

Figure N.3. The average TL of a partition often does not re-
present a true characteristic of its insulating
performance against air-borne sounds. Average
TL values of partitions "A" and "B" are the same,
both having an average TL of 30 dB. Corresponding
STC contours "C" and "D", however, reveal the su-
periority of partition "A" over partition "Bit.
(Reprinted from Freedom from Distraction, Hough
Manufacturing Corporation, Janesville, Wisconsin,
1963).



386

Figure N.3, as corresponding contours to partitions "A" and

18"1, respectively, overlaid on the corresponding TL curves.

It will be obvious frdh these diagrams that partition "A",

representing an STC of 30,is far superior to partition "B"

which represents an STC of 19 only.

According to revised ASTM Standard E 90-61T, two ratings

are given for each product in the laboratory reporting:

(a) the STC, and

(b) the nine freauency arithmetic average, for comparison

with previous data and for dealing with specifications

still based on this index.

The preferred criterion, however, is the STC rating.

A slight increase in the accuracy of an average TL figure

can be provided by making an approximate allowance for the

average increase in insulation per octave, i.e.,for the "slope"

of the insulation. It has been found that a slope of 10 dB per

octave makes a partition 2.5 to 3 dB less effective in reduc-

ing the loudness of speech or music than a partition of the

same average TL but with a slope of 5 dB per octave (R-4).

Even though laboratory tests for the measurement of TL are

conducted under ideal testing conditions and according to a

predetermined, well organized procedure, it is the field meas-

urement that can tell the actually achieved isolation designed

on the basis of laboratory TL data (N-66). Experience has prov-

ed that the noise reduction of partitions acnieved on the job

freQuently falls short of the degree predicted on the basis

of laboratory tests. This happens because (a) the size of the

partition being measured in the field is usually different

from the test sample, and (b) there is always some difference

between edge-fixing conditions in the field and in the labora-

tory. In the field,the sound leakage through unpredictable
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flanking paths may be comparable to or greater than that trans-

mitted through the partition itself. In spite of these dis-

crepancies,field measurements still constitute an important

tool in the evaluation of the acoustical performance of en-

closures (N-59, N-66) .

Additional information on the measurement of TL of various

enclosures is available from many sources (N-8, N-11, N-13,

N-15, N-20, N-21, N-22, N-29, N-30, N-37, N-51, N-58, N-61,

N-64, N-69, N-74, N-78, N-99, N-159).

E.1.6 Noise reduction of enclosures

It has been mentioned that the TL is determined by the phy-

sical properties of a partition, irrespective of the acoustical

properties of the rooms separated by the partition.

Noise reduction (abbreviated: NR) is a more general term

than TL for specifying sound insulation between rooms because

it takes into account the effects of the various transmission

paths between source room and receiving room and also the acous-

tical properties of these rooms (N-16, N-52, N-54, N-55, N-126,

GB-34) .

The NR, expressed in decibels, is given by the following

formulae (E-126):

NR = SPL
1

SPL
2

or

A2
NR = TL+ 10 logio

where SPL
1and SPL 2

are the average sound pressure levels

(measured by a sound level meter) in *lie source room

and in the receiving room, respectively,

A
2
is the total acoustical absorption, in ft

2
units,

in the receiving room (as described in subsection D.5),

and

S
w

is the area of the partition, in ft 2, common to both

rooms.
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The NR may be larger or smaller than the TL, depending on

the relationship between acoustical absorption and partition

area in the receiving room. If all boundary surfaces in the

receiving room are completely absorbent, the NR will exceed

the TL by 6 dB, in which case NR = 111,4- 6 dB.

Various nomograms are available in the published litera-

ture for quick determination of the NR between two rooms (N-126).

The NR provided by a partition between source room and re-

ceiving room will be reduced mostly by the so-called "flanking

transmission", i.e.,the sound traveling through any of the

following flanking paths (N-40, N-42, N-54, N-62, R-15) :

- side walls;

- floors;

- openingi in the partition created by joints between pre-

fabricated, or movable elements, cracks, etc.;

joint between partition and mullion;

- openings in the partition for doors or windows;

- ceiling plenums, perforated ceilings without noise

barriers, cross-connected ceiling ducts;

- openings in the partition necessitated by wiring, plumb-

ing, heating, ventilating or air-conditioning ducts and

recessed fixtures;

- cross-connected (continuous) heating units;

- spandrel beams.

Many of these paths of transmission are illustrated in

Figure N.4 (N-32, R-15) .

N.2 Insulation against structure-borne sound. Measurement of

impact noise

Insulation against structure-borne noise or impact noise,

as described in paragraph M05.2, will be achieved by the use

of (a) a soft floor finish, or (b) a floating floor (paragraph



380

P NEL

____,_ _...../. _, . . . .. . /. .
. . . . -- . ^ -- . . . -- . . .. . O. ". . . . . '- : '' ' -- ' '

... . w . . .........
. 5 , .-- -'

E------- --- 7. _or . . , ."414,,..!--1ft . . - - . ..., . 0 I ! 1 I I I. ._r - - ' "'"" Noloop- 7-
... .."--

:" .;

topmaieg_00t 4*-14!!!!!MM45P
-41,11-_irii,-.-0... __..iiItIizTi-Iltk1Ip.-

ECILPENDING
SUSED

141.11140 1.4I I 41;41 I I
SPANDREL
SEAM

FLOOR
SYSTEM

Figure N.4. Transmission of noise between adjacent rooms
through flanking paths. (Reprinted from Arch.
Rec., June 1959).



300

N.3.2). A soft floor finish does not provide extra insulation

against air-borne sounds; a floating floor, on the other hand,

will improve the air-borne sound insulation of an enclosure

(N-1, N-3, N-33, N-53, N-160, GB-29, GB-43, GB-52).

The measurement of impact noise is quite different from

that of air-borne noise. The insulation against impact noise

provided by a given floor can be determined by means of a

standard "tapping" machine which produces a series of uniform

impacts at a uniform rate on the floor under test (N-59, N-160,

GB-29, GB-52). The impact sound pressure levels will be measured

in the receiving room below and analyzed into bands of freauency

so that a curve can be plotted showing sound levels in the re-

ceiving room. The lower the measured sound levels are in the re-

ceiving room,the more insulative the floor is against impact

noise. Figure N.5 illustrates the practical application of the

tapping machine (N-160). This Figure shows a curve of maximum

acceptable impact sound pressure levels for floor constructions

in built Apartment Houses, due to tapping the floor overhead

with the standard tapping machine, as recommended by the Feder-

al Housing Administration (Washington, D.C.). Since the tapping

machine might be used in differently furnished apartments, the

FHA recommends that the measurements be normalized to a re-

ceiving room R.T. of To = 0.5 sec; this is necessary because

the amount of sound absorbing material in the receiving room

will have an effect on the measured sound levels (as described

in paragraph M.6.8).

Additionr1 information regarding the research work on im-

pact noise has been presented in several articles (N-14, N-22,

N-26, N-44, N-47, N-48, N-60, N-161, N-167, N-171, N-185, N-202).

Vibration control will be discussed in Section P.
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N.3 Sound insulating building constructions

N.3.1 Walls

It cannot be stressed too strongly that maximum insulation

against air-borne noise cannot be expected from a partition

wall, unless (N-96, N-105, N-113, N-150, N-151, R-15):

(a) it is installed as a complete, uninterrupted barrier;

(b) it is effectively sealed around its edges and between

its elements, if any;

(c) it has uniformly distributed mass over its entire area;

and

(d) it is either built from structural slab to structural

slab, or, if constructed up to a suspended ceiling

only, adequate measures have been taken for the acous-

tical restoration of its missing portion above the

suspended ceiling.

Figure N.6 shows average TL values for various typical

single-leaf and multiple partitions (walls and floors) mea-

sured in laboratories and in the field. The TL values of the

partitions are arithmetic averages of the measured trans-

mission losses at a number of representative frequencies,

mostly extending from 125 to 2000 cps. The vertical height

of each partition construction illustrated represents the

range of TL that may be encountered in practice.

Table N.2 lists average air-borne transmission losses

of typical wall constructions (M-122).



10
0

jk

320 37747"

0

0
INIEEU

} "I Glassc
830

tailkuif

Q40

.11

50

to yc
1r

--161

Doors

iranelswl{
p g:

nom*
bung

Weather-
stripped

2c sofid

110

Cinder bhck
(unfinished

112:4 studs
N

*nod

Glas

60

clay rPhalef
tile

"fibreboard

4

Finish & rough
flooring

fhish & rough
flooring

Plaster ceifing

Metal bth
& piaster 4%.gi: 4" ova* slab

Concrete block

4" 2" 4"

oA

4" concrete slab

tonvenbonal
amended

4 concrete slab

Wady
suspended cern&

20

30

40

50

60

Figure N.6. Average transmission losses for typical single-
leaf and multiple partitions as measured in la-
boratories and in the field. The vertical height
of each construction shown in the Figure repre-
sents the range of TL that may be expected in
practice. (Reprinted from Acoustics by L.L. Ber-
anek, McGraw-Hill Book Co., New York, 1954).



394

Table N.2. Average TL of typical wall constructions

for air-borne noises. (Reprinted from Noise Trans-

mission in Buildings by T.D. Northwood, Canadian

Building Digest, Division of Building Research,

National Research Council, Ottawa, Oct. 1960).

A. Transmission loss 50 dB or more.(Recommended between
critical areas of adjoining dwellings).

1. Single masonry wall weighing at least 80 lb/ft2
including plaster if any.

2. Masonry cavity wall - 2 leaves of masonry spaced
at least 2" apart, each leaf weighing at least

20 lb /ft2 e ; leaves tied together with butter-

fly ties at 2 ft centres.

3. Composite wall - basic wall masonry weighing at

least 22 lb/ft2 0 ; on one side of basic wall an

additional leaf consisting of 4" gypsum lath
mounted with resilient clips, V sanded gypsum
plaster.

4. Stud wall - 2" x 4" studs; on each face I" gyp-

sum lath mounted with resilient clips, 1" sanded
plaster; paper-wrapped mineral or glass wool

batts between studs.

5. Staggered stud wall - 2" x 3" studs 16" o.c. on

common 2" x 6" plate; on each face 4" gypsum

lath, 1" sanded gypsum plaster; paper-wrapped
mineral or glass wool batts between one set of

studs.

B. Transmission loss 45 to 49 dB. (Recommended between

non-critical areas of adjacent dwellings.)

1. Single masonry wall weighing more than 36 lb/ft2

including plaster if any 41.

2. Composite masonry - as in A.3 except gypsum lath

supported on furring.

3. Staggered stud dry wall - 2 sets of 2" x 3" studs

16" o.c. on common 2" x 4" plate; on each face

2 layers of 5/8" gypsum wallboard, the first

layer nailedy the second cemented; joints stag-

gered and both sets sealed; mineral or glass wool

blanket or batts in the interspace.



t".

395

(Table N.2 cont'd.)

C. Transmission loss 40 to 44 dB.

1. Single masonry wall weighing at least 22 lb/ft2
including plaster if any.

D. Transmission loss 35 to 40 dB.

1. Stud wall - 2" x 3" or 2" x 4" studs, 3/8" gyp-
sum lath and 1" sanded gypsum plaster.

2. Stud wall - 2" x 3" or 2" x 4" studs, 2 layers
of 3/8" plasterboard, the first layer nailed, the
other cemented; joints staggered.

o If porous blocks are used one face of each block
section must be sealed with plaster or heavy paint.

Additional published information on the acoustical perform-

ance of various wail constructions is available from many

sources (N-1, N-3, N-4, N-6, N-28, N-32, N-41, N-42, N-65,

h -69, N-70, N-85, N-86, N-96, N-97, N-99, N-100, N-104, N-106,

N-107, N-109, N-110, N-111, N-112, N-115, N-119, N-120, N-121,

N-122, N-124, N-126, N-127, N-128, N-131, N-133, N-134, N-136,

N-137, N-142, N-143, N-148, N-150, N-154, 3-35, GB-3, GB-6,

GB-9, GB-19, GB-20, GB-21, GB-25, GB-27, GB-28, GB-29, GB-52,

GB-61, GB-62).

N.3.2 Floors, ceilings

A good floor will provide both satisfactory air-borne and

impact sound insulation. A floor that ensures an acceptable

noise level (in the room below the floor under consideration)

due to impacts, might be unsatisfactory as regards air-borne

sound insulation. On the other hand, a very heavy bare concrete

floor will give satisfactory insulation against air-borne

noises but will not necessarily provide an acceptable insulation

against impact noises from the room above (N-33).
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The most common floor constructions are:

(a) wood joist floors (N-33, N-70, N-128);

(b) structural concrete floors (N-33, N-70, N-128);

(c) floors supported by steel joists.

The sound insulating quality of floors can be improved

as follows (N-165):

(a) by the use of a soft, resilient surface; this has neg-

ligible effect on the air-borne sound insulation of

the floor;

(b) by using a floating floor; this provides substantial

improvement against impact noise and a useful increase

against air-borne noise;

(c) by installing a suspended ceiling; this will improve

the insulation against both air-borne and impact noises

by an amount depending on the weight of the suspended

ceiling and the degree of rigidity with which the cei-

ling is attached to the structural floor.

F l o a t i n g floors are supported (a) either

by a continuous layer of resilient blanket, or (b) by sleepers

that can rest on the resilient blanket or can be carried in re-

silient chairs (Figure N.11). In both cases, the floating floor

assembly rests on the structural slab.

For a floating floor to secure the required acoustical per-

formance, its natural resonant frequency should be as low as

possible, and preferably below the lower limit of the audio-

frequency range. This will be achieved if thickness and weight

of the floating part and the elasticity of the resilient blan-

ket have been properly selected (N-70, N-128, N-165).

To obtain maximum efficiency, it is essential that not

only a consistent and uninterrupted separation be provided

between floating floor and structural slab but, at the same

time, any contact between floating floor and surrounding walls
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be also avoided (N-165). The selection of appropriate materials

for a floating floor, its workmanlike detailing and specifi-

cationvis a delicate problem in architectural acoustics.

Figure N.7 shows details of floating concrete and wood

floors.

Additional data on floating floors is available from vari-

ous sources (N-170, N-175, N-180, N-194, N-195).

Suspended ceilings attached to the

structural floor will contribute substantially to the sound

insulating quality of a floor, against both air-borne and im-

pact noises, if they possess the following characteristics

(R-122, N-70, N-165):

(a) the ceiling membrane weighs not less than 5 lb/ft2.

If an absorbent blanket (mineral or glass wool) is

used in the air space above the ceiling, the weight

of the ceiling membrane can be reduced;

(b) the ceiling membrane is not too rigid;

(c) direct paths of noise transmission through the ceiling

membrane are avoided by the use of a solid and air-

tight membrane;

(d) gaps between ceiling and surrounding structure are

sealed, thus avoiding noise penetration through di-

rect air paths;

(e) the number of points of suspension from structural

floor above are reduced to a minimum; the use of re-

silient hangers is preferred to rigid. ones;

(f) air space between ceiling membrane nia structural

floor is increased to a reasonable, maximum.

Walls built only up to ceiling height suffer a serious re-

duction in their TL; it is, therefore, essential that the space

between a suspended ceiling and structural soffit, above the

line of the partition wall, be adequately sealed.
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Manufacturers of various suspended ceiling assemblies seem

insufficiently concerned at the serious reduction in the TL of

a wall built up to a suspended ceiling. This is understandable

because any objection against the reduced acoustical performance

of a suspended ceiling would undermine the manufacturers, claims

for complete flexibility and demountability (N-150).

The annual bulletin of the Acoustical Materials Association

(New York) lists attenuation factors ("AF") of many commercial

suspended ceiling assemblies at representative frequencies (E -12).

These values represent differences, in decibels, between the

sound level in the source room and the sound level in the re-

ceiving room, provided that (a) the sound is transmitted via

the plenum above the ceiling, and (b) the partition between

source room and receiving room extends only to the ceiling.

Where noise transmi.s.on between rooms is likely to occur essen-

tially through the ceiling-plenum path, a formula is given in the

bulletin for the noise reduction (NR) between the rooms. A more

precise treatment is as follows:

NRceiling
= AF+10 log

A2
- 6 db

where AF is the attenuation factor for given acoustical

ceiling assemblies at representative frequencies,

A
2
is the total acoustical absorption, in ft2 units,

in the receiving room (described in subsection

D.5), and

S is the area of the plenum opening over the parti-

tion, in ft2 units.

At present the attenuation factors are given for each fre-

quency, rather than in terms of a single average or rating num-

ber. For purpose of comparison with partition ratings which are

commonly given in terms of the Sound Transmission Class, the

single attel.aation factor for 350 cps is found to be a useful

index (S-123).
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This formula is naturally applicable only where the

same ceiling assembly is used in both source room and

receiving room.

The noise reduction via the ceiling - plenum path can be

compared with that taking place directly through the divi-

ding partition between source room and receiving room (dis-

cussed in paragraph N.1.6), this comparison will reveal the

path that is primarily responsible for the transmission of

noise.

It is an interesting acoustical phenomenon that it is

rather difficult to detect the harmful noise transmission

through a suspended ceiling (N-4). This is due to the so-

called Haas effect (F-22, M-18) which states that if the

same speech sound is picked up from two directions, the

sound that arrives first determines the apparent direction.

In the present case, if speech sound can travel simultane-

ously through the partition and through the suspended ceil-

ing, then the partition will offer the shorter path for the

sound. It will therefore appear as if the sound is coming

through the partition, creating the false illusion that the

partition and not the suspended ceiling is the noise trans-

mitter.

The following Table N.3 lists average air-borne transmis-

sion losses of typical floor constructions (M-122).
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Table N.3. Average TL of typical floor con-

structions for air-borne noises. (Reprinted

from Noise Transmission in Buildings by T.D.

Northwood, Canadian Building Digest, Division

of Building Research, National Research

Council, Ottawa, Oct. 1960.)

Impact rating
dB

A. Air-borne transmission loss 50 dB or more.

1. 4" solid concrete or equivalent slab weigh-
ing at least 50 lb/ft2; ceiling side bare
or plastered directly on slab; floor side
wood sleepers, rough and finish floors. 30

2. As in (1) except floor side 1" foamed
plastic or paper-covered glass fibre quilt,
supporting 2" concrete. 30

3. As in (1) except floor side parquet or li-
noleum; ceiling side wood furring, 4" gyp-
sum lath, 4" sanded gypsum plaster. 5'

4. As in (3) but ceiling side 4" gypsum lath
suspended on resilient clips, 4" sanded
gypsum plaster. 20

5. As in (3) but ceiling mounted on separate
joists supported at walls. 25

6. Open steel joists or similar structure; on
floor side form-work, paper-covered glass
fibre quilt or foamed plastic, 2" concrete;
ceiling side I" gypsum lath on resilient
clips, 1" sanded gypsum plaster. 30

B. Air-borne transmission loss 45-49 dB.

1. 4" solid concrete or equivalent slab con-
struction weighing 50 lb/ft?,

2. As above but floor side finished in lino-
leum or wood parquet. 59

3. As in (1) but floor side finished with
carpet and underlay. 10.

Impact rating not adequate for separating
dwelling units.
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Additional published information on various floor and

ceiling constructions is available from many sources (N-1,

N-3, N-4, N-5, N-6, N-20, N-28, N-32, N-35, N-53, N-59, N-61,

N-66, N-70, N-77, N-85, N-120, N-128, N-130, N-137, N-138,

N-143, N-156, N-157, N-158, N-159, N-160, N-16), N-164, N-165,

N-166, N-168, N-169, N-172, N-173, N-174, N-7.76, N-180, N-182,

N-183, N-184, N-186, 1r -187, N-188, N-190, N -191, N-192, N-198,

N-199, N-200, N -201, N-204, N-206, S-35, ta-3, GB-6, GB-9,

GB-19, GB-20, GB-21, GB-25, GB-27, GB-28 GB-29, GB-52, GB-61,

GB-62).

N.3.3 Doors

Doors always constitute acoustically weak elements of walls.

This is due to the facts that (a) their surface weight is nor-

mally less than that of the wall into which they are built, and

(b) the gaps around their edges, unless sealed, offer an easy

passage for the transmission of noise (M-6, M-18, N-32).

Sound insulating doors should be of solid and heavy rather

than hollow and light construction, with their edges well sealed

all around. Rubber, foam-r:,. ber or foamed plastic strips, ad-

justable or self-aligning stops and gaskets can be used for

sealing the edges of doors; they should be installed so that

they are slightly compressed between door and stop when the

door is in closed position. Bottom edges can have a replaceable

strip of felt or foam-rubber stuck to them to minimize the gap

between door and floor. An improved alternative is to install

drop-bar type draught excluders or threshold closers (often

supplied with integral kick-plates).

If doors have to possess an unusually high degree of sound

insulation they are built so that a separation between oppo-

site faces of the door is carried through uninterruptedly from

edge to edge, in both directions (N-208, N-209, N-218).
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In the acoustical evaluation of a sound insulating door,

distinction should be made between the panel value and the op-

erating value of its TL rating. Panel values are obtained

when the door is tested with hermetically sealed edges; oper-

ating values (always lower than the panel values) obtained

from tests under conditions simulating field installation in

every respect, reflect a more realistic acoustical performance.

The flexible utilization of contemporary architectural

spaces often requires the use of movable partitions (or op-

erating partitions) which are, in fact, giant size folding,

sliding or side coiling doors with easily operated, structur-

ally integrated and carefully sealed - more or less - sound

proof panels (L 189, N -210, N211, N215).

N.3.4 Windows

Similar to doors, windows also constitute acoustically weak

components of their surrounding enclosures. This happens be-

cause (a) their surface weight is much below that of the sur-

roundinL; enclosure, and (b) their connection with the wall,

unless adequately sealed, constitutes direct paths for the

penetration of exterior noise, particularly where standard

windows are used (N-110, N-207, N-212, N-213, N-216, N-218,

N-219).

The TL of windows will depend on the number, thickness

and relative position of the panes, and on their edge con-

nection to the wall. Double glazing with well sealed edges

are basic features of sound insulating windows.

The sound insulating quality of open windows practically

equals zero.

If a high degree of sound insulation is expected from a

window, double- or triple-pane construction is preferable to

very thick but single pane. The distance between the panes has



a distinct effect on the TL of the window, particularly at

low frequencies; the TL improves with increasing distance

between the panes. This is illustrated in Figure 11.8,whiahabois

the TL of two 1/8" thick panes as a function of the separation

between the panes, at 250 and 100c, cps frequencies; it is as-

sumed that the edges of the panes are perfectly sealed (N-214).

Under these particular conditions the mass law is no longer

applicable.

In air-conditioned buildings the TL of fixed windows, with

thick and double panes well spaced and structurally isolated

from each other, may approximate that of the surrounding wall.

The addition of sound absorbing treatment to the window

reveal between the panes, the mounting of panes in an elastic

material (cork, felt, sponge, rubber, Neoprene, etc.), and eli-

mination of parallelism between panes,will result in a consi-

derable increase in the TI of windows (N-32, N-214). These me-

thods of increasing the sound insulating quality of windows

are utilized for control and observation windows used in Radio,

Television, Recording Studios, etc.

Various sound retarding windows, manufactured mainly for

thermal insulating purposes, are available on the market

(Twindow, Thermopane, etc.). Special sound insulating glasses

are manufactured lately of 2 to 4 thin layers of sheet or po-

lished plate glass laminated into a single panel with soft,

transparent plastic interlayers. These special panes success-

fully combine the two physical characteristics of an acous-

tically efficient sound insulating barrier: mass and limpness.

These panes are available in 9/32", 7/16" and 5/8" thicknesses,

called Acousta-Pane II, III, and IV, respectively, denoting

the number of glass sheets laminated into the single panel.

Their transmission losses are shown in Figure N.9.
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and IV, respectively. (Reprinted from a booklet pub-
lished by the Amerada Glass Corporation, Chicago, Ill.,
1963).
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N.3.5 Discontinuous construction

If a particularly high degree of insulation is required

for a room or for part of a building against air-borne noises,

structure-borne noises and vibrations, all the measures dis-

cussed so far in this Section have IA) be incorporated into a

single design, called discontinuous construction, or "box

within a shell". Basic elements of such an arrangement are

shown diagrammatically in Figure N.10 (N-128). The room illus-

trated in this Figure could be used for audiometric tests, as

a Radio or Recording Studio, or for any other purpose where

an extraordinary degree of acoustical privacy has to be a-

chieved (M -6, N-27, N-128, GB-52). The room illustrated is

accessible through a sound lock; it has a floating floor on

top of the stmltural slab, the walls are built on the float-

ing floor separated from the load-carrying exterior walls,

and the ceiling is resiliently suspended from the structural

floor above. The acoustical separation of the inner shell from

the building structure must not be short-circuited by rigid,

connecting links; such as,wall ties, ducts, pipes, unisolated

windows, etc.

A practical application of the discontinuous construction

is shown in Figure 11.110A outlines a typical section of a

discontinuous construction, with floating floor, isolated wall

and resiliently suspended ceiling. Various discontinuous con-

structions have been presented in numerous publiCations (J -1,

3-3, J-4, J-17, J-23, J-90, 5-87, 5-89, Sw102, 8-104, 8-105,

5-109, 5 -110, GB-52).
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Figure N.10, Diagrammatic illustration of a discontinuous
construction. (Reprinted from Acoustics, Noise
and Buildings by P.R. Parkin and H.R. Humphreys,
Frederick A. Praeger, New York, 1958).
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Figure N.11. Floating floor, isolated wall, and resiliently

suspended ceiling used in discontinuous con
struction. (Reprinted from Sound Controlmioati,,
Canadian Johns-Manville Co., Toronto).r
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Contemporary mechanical equipment and machinery render the

lives of the occupants of buildings more comfortable, more en-

joyable and more productive; however, this equipment and ma-

chinery are fundamental contributors to noisy buildings.

Iv the control of mechanical noise the complete elimination

of the noise is very seldom, if ever, the objective; technically

this would be extremely difficult, uneconomicaltand also un-

necessary (0-39). The general objective is rather to produce

a balanced noise environment which means the attenuation of

noise to a permissible level, depending on various conditions;

such as, anticipated activity in the room, the required degree

of privacy, etc. (0-86). Excessive noise reduction is often de-

trimental because this will reduce acoustical isolation of one

occupancy from another (paragraph M.6.10).

Mechanical noises can be created (a) by plumbing systems,

(b) by ventilating and air-conditioning systems, and (c) by

machinery.

0.1 Control of noise due to plumbing systems

Flow-control devices (valves) and toilets constitute seri-

ous sources of plumbing noise (0-17, 0-44, 0-73, 0-90). In ad-

dition, a great amount of noise in plumbing systems is due to

turbulent flow (0-66, 0-73). The noise created by turbulent

flow will be increased, in certain cases, due to a phenomenon

called cavitation (0-17, 0-44). The noise produced at these

sources will be transmitted along the pipe as well as through

the water in the pipe.

As in so many cases of noise controlpthe best procedure is

to suppress the noise at the source, e.g., by selecting and in-

stalling quietly operating fixtures. If this is not possible,

then as a next step an attempt must be made to prevent the pen-

etration of noise into the water pipe or to prevent its trans-

mission from the pipes to the building structure (0-17). Trans-
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mission along the pipe can be reduced considerably by in-

serting a flexible (rubber, rubber-and-fabric, plastic, etc.)

pipe between the source and the metal pipe.

If noise is transmitted through a pipe, then the amoun; of

noise that is radiated by the pipe itself is negligible (0-17,

0-44); the disturbing sound is radiated by the building struc-

ture ( rartitions, slabs, ceilings, etc.) to which the pipe is

fixed. To eliminate this noise radiation, pipes should be re-

siliently mounted, i.e., adequately insulated from their supports

by wrapping them in felt, asbestos or other suitable insulating

material (0-17, GB-21, GB-43). If the noise-reducing measures

recommended above cannot be exploited to the required extent,

the noise-conducting pipes should be screened from the affected

rooms by building them into suitable ducts or shafts. One must

ensure that these pipe ducts or shafts do not conduct other air-

borne noises from one part of the building to others (GB-43) .

Waste water flowing in pipes can also produce embarrassing,

although never too loud. noises. These noises can be reduced

to the required level by placing the sewage pipes in ducts

with proper isolation between pipes and duct enclosures (GB-43).

The principles for aoise reduction of water systems ail

also applicable to steam and gas lines (0-44).

Additional recommendations for the elimination of plumbing

noises have been discussed in paragraph M.6.6.

0.2 Control of noise in ventilating (and air-conditioning) systems

0.2.1 Acceptable noise levels

In rooms where listening to speech or music is important,

the noise level treated by a ventilating (or air-conditioning)

system must be about a few dB below the desired level of back-
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ground noise. This is necessary in order to avoid interference

of ventilation noise with the intelligibility of speech or

with the enjoyment of music (0-18, 0 -36, 0-45).

In certain rooms, on the other hand, such as Offices, Hos-

pital Rooms, Restaurants, etc., the aim in the control of ven-

tilation noise is not to eliminate all the noise caused by the

system,but to create a balanced sonic environment. The noise

should be reduced only to a degree necessary to allow the anti-

cipated activity in the room at a comfortable level (0-18,

0-86). The quieting of ventilation noise below this level would

be wasteful. In addition, as mentioned before, excessive noise

reduction would remove that artificial masking noise which can

beneficially "cover up" and render inaudible or unintelligible

intruding weaker sounds. Noise control with masking noise has

been outlined in paragraph M.6.10 (0-74).

The control of ventilation noise should start, therefore,

with the critical determination of criteria for the desired

background noise levels in each room, depending on tne activ-

ities to be carried on in each particular rooms (R-4, R-6,

R-11, R-13, R-15, R-22, S-15). Criteria for noise in various

spaces are discussed and listed in Section R.

Figure 0.1 illustrates a typical ventilating system re-

duced to its essential components (0-45).

0. 2. 2- Noise sources

Noises encountered in ventilating systems can be grouped

as follows (0-14, 0-18, 0-33, 0-34, 0-56, 0-62, 0-63, 0-74,

0-86, 0-95, 0-96, 0-100, 0-101):

(a) mechanical equipment noise caused by fans, motors, etc.,

and transmitted (1) through and along ducts or en-

closures (walls, ceilings, etc.) as air-borne noise,
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Figure 0.1. Typical ventilating system reduced to its essen-

tial components. (Reprinted from Heating and Ven-

tilating System Noise, contained in "Handbook of.

Noise Control", by R.W. Leonard, McGraw-Hill Book

Co., New York, 1957).
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or (2) through the building structure or duct walls

as structure-borne noise or vibration;

(b) "self-noise" from air motion and turbulence within the

distribution system created by grilles, diffusers,

dampers, pressure regulators, etc., and transmitted

through or along ducts;

(c) cross-talk from one space to another, e.g., speech

that enters a supply or return air grille in one room,

travels through the duct or plenum, and emerges in a

nearby room through another ventilating grille; and

(d) noise transmitted from sources external to the building.

Figure 0.2 illustrates the various noise sources, the sev-

eral paths, and receivers, all interconnected and' interrelated

in a ventilating system (0-86). Figure 0.3 shows how outdoor

noises can penetrate a ventilating system through an exposed

portion of the duct (0-62).

A detailed description and eva2-ation of the various noise

sources of ventilating systems has been presented in numerous

articles (0-10, 0-14, 0-16, 0-17, 0-18, 0-19, 0-20, 0-24, 0-25,

0-28, 0-30, 0-32, 0-33, 0-35, 0-36, 0-38, 0-40, 0-41, 0-43,

0-45, 0-48, 0-50, 0-51, 0-53, 0-54, 0-56, 0-57, 0-61, 0-62,

0-63, 0-67, 0-68, 0-70, 0-73, 0-74, 0-75, 0-76, 0-77, 0-79,

0-84, 0-86, 0-94, 0-95, 0-96, 0-97, 0-98).

0.2.3 Noise reducing components

In the control of ventilating noise the suitable selection

and the workmanlike installation of the system components are

prerequisites to the attenuation of noise; there are, however,

additional ways in which the noise will be reduced between the

source and the recipients, as follows (0-14, 0-18, 0-36, 0-56,

042, 0-63, 0-74, 0-86):
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A 8

4J

Figure 0.2. Various noise sources, paths, and receivers intercon-
nected in a ventilating system. Vibrations produced
in Fan Room "A" may enter room "B" through the struc-
tural floor. Noise created by the fan may enter room
"B" and all other rooms through the air diffusers or
by vibration of the duct walls. Speech originating in

room "C" may produce noise in room "B" (cross talk).

Noise from Shop "D" may travel through the ducts to

rooms "B", "C", and "E". (Reprinted from Noise Con-
trol in Ventilation Systems, contained in "Noise Re-
duction", by C.H. Allen, McGraw-Hill Book Co., New

York, 1960).

Noise -\61

Noise reduced by acoustic filter

Vent. plant

Noise entering through

thin duct walls

Auditorium

Figure 0.3. Outdoor noises can "short-circuit" sound insulation
measures through exposed, thin duct walls. (Reprint-
ed from Acoustics, Noise and Buildings by P.R. Parkin
and H.R. Humphreys, Frederick A. Praeger, New York,
1958).
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(a) dissipation of noise due to transmission through duct

walls into spaces outside the ducts;

(b) absorption of noise in duct wall linings;

(c) reduction of noise due to bends;

(d) division of noise into several branches;

(e) reflection of noise back towards the source;

(f) spreading of noise into the room at supply or return

air grilles;

(g) absorption of noise in the room itself where the duct

ended.

If thermal insulation is installed along the outside sur-

face of the duct walls, this will contribute,to a certain degree,

to the TL of the duct walls (0-36, 0-86).

Sound absorbing materials, such as glass-fiber or mineral-

fiber boards, installed along the inside of rectangular or round

ducts, will increase the attenuation of noise along the duct.

Sound absorbing materials used for duct lining should possess

the following properties: (a) high absorption coefficient, (b)

smooth surface for low air friction, (c) adequate strength to

resist disintegration due to air flow, and (d) adequate re-

sistance against fire, rot, vermin and odour (0-6, 0-15, 0-52).

A large expanded section of a duct (called plenum chamber)

lined with sound absorbing material will contribute to the re-

duc5ion of noise within the duct. Plenum chambers are used when

a large number of smaller ducts are fed by one main supply fan

(0-45, 0-86).

Ducts with small cross sections are more effective noise

attenuators than those with larger cross sections; therefore,

when a duct is too short to provide satisfactory reduction of

noise, added attenuation can be obtained, at the expense of

increased pressure drop, (a) by dividing the duct into a number

of smaller lined ducts (egg-crate type sound absorbing cells,
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splitters, etc.), or (b) by using prefabricated (package)

attenuator units, called silencers (0-14, 0-22, 0-45, 0-81,

0-86, 0-87, 0-88).

Methods for calculating the attenuation in lined ducts are

published in various articles and in manufacturers' catalogues

(0-2, 0-3, 0-5, 0-7, 0-8, 0-9, 0-11, 0i-14, 0-23, 0-27, 0-36,

0-45, 0-58, 0-59, 0-64, 0-81, 0-86, 0-87, 0-92, 0-99, GB-54).

When a duct divides into branches, the noise traveling

through the main duct will divide approximately in proportion

to the areas of the branches (0-86).

Reflection of noise happens when an abrupt change takes

place in the cross-sectional area of the duct.

The noise level close to the duct exit is greater than at

some distance from the grille, therefore, in rooms used for

listening,the duct opening should be as far as poseble from

the listeners (GB-43).

0.2.4 Determination of attenuation required

In the control of ventilation noise the fundamental problem

is to determine the attenuation that is necessary to secure the

desired amount of background noise in the spaces to be ventilated

(or air-conditioned). To achieve this, the following have to be

ascertained (0-14, 0-35, 0-36, 0-74, 0-86, 0-94):

(a) the Noise Criteria for each room to be ventilated (or

air-conditioned); this is discussed in subsections R,2

and R.3;

(b) the amount of noise produced by each noise source;

(c) the attenuation of noise provided by ducts, walls,

ceilings, etc., between each source and the room in

question;

(d) the noise levels at the recipients' positions in that

room;
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(e) the required additional attenuation given by item (d)

minus item (a).

Once the required attenuation has been determined, then a

decision has to be made as to whether

(a) the noise can be reduced at the sourc' (e.g., at the

fan), or

(b) noise reduction devices (lining, silencer, etc.) should

be used, usually close to the critical area.

It must be stressed again that a most effective and econom-

ical mean of the control of ventilation noise is achieved by

concentrating and locating the noise-producing equipment (a)

as far as possible from the rooms requiring a high degree of

quiet, and (b) in a part of the building where noise and vib-

ration can be relatively well tolerated (0-62).

In the selection of the most suitable procedure for the

control of ventilation noise, it is recommended that an ap-

proach be adopted that will allow the acoustical consultant

to cooperate most efficiently with the architect and mechanical

engineer during successive design stages (0-86).

0.3 Control of machinery noise

Heating chambers (boilers), Diesel generators, pumps, com-

pressors, cooling towers, motors, pneumatic devices, etc., are

notorious sources of machinery noise. Normally such machinery

is placed in the basement of buildings (0-37, 0-42, 0-46, 0-47,

0-62), although in high rise buildings it is sometimes imper-

ative that the mechanical-equipment floor be located on top

of the building or somewhere between the typical floors (S-15).

The required degree of noise control will depend on the

noise level produced by the machinery and that which can be

tolerated in the room under consideration.
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In order to provide adequate noise reduction between me-

chanical-equipment rooms and adjoining occupancies, the fol-

lowing noise paths will have to be checked (5 -15):

(a) air-borne noise paths between the noisy Equipment Room

and the adjoining or nearby occupancies through walls,

floors, ceilings, etc.;

(b) structure-borne noise paths between vibrating equip-

ment and adjoining areas; and

(c) duct-borne paths for the transmission of fan noise and

airflow noise into those adjacent rooms serviced by the

ventilating or air-conditioning equipment.

To secure the required background noise levels in the rooms

close to an Equipment Room, the following measures should be

considered (S-15):

(a) the installation of a floating floor for the entire

Equipment Room area;

(b) the installation of the individual articles of equip-

ment and machinery on the floating slab with vibration-

isolating mounts, such as, steel springs, rubber -in-

shear mounts, cork, felt, etc. (discussed in subsection

P.3);

(c) the provision for a resiliently suspended impervious

dense ceiling in the rooms below the machinery floor,

as shown in Figure 0.4 (3 -15); and

(d) control of duct-borne fan noise and air-flow noise.

This was discussed in subsection 0.2.
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Figure 0.4. Diagrammatic layout of a resiliently suspended
impervious dense ceiling beneath a noisy me-
chanical-equipment area. A: acoustic barrier
separated from finish ceiling. B: acoustic bar-
rier combined with finish ceiling. (Reprinted
from Case Histories of Noise Control in Office
Buildings and Homes, contained in "Noise Reduc-
tion'; by L.N. Miller, McGraw-Hill Book Co., New
York, 1960).
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Vibration means the movement of a structure (or any other

solid body) caused by some alternating force, e.g., an out-of-

balance rotating part of a machine. Vibration may be trans-

mitted readily to distant parts of the structure to which the

vibrating machine is fixed, and re-radiated from large sur-

faces (walls, ceilings, windows) as annoying noise; it may be

transmitted even to other nearby buildings (P-1, P -4, 2-14

P-8, P-9, P-12, P-16, P-20, P-28, GB-43).

P.1 Effects of vibration

Vibration may have the following effects (P-7, P-30, 2-36,

GB-43):

(a) it may cause damage to buildings;

(b) it may be annoying to the occupants;

(c) it may interfere with work and harm precision instru-

ments; and

(d) it may cause noise if the rate of vibration is within

the audio-frequency range.

The transmission of vibration from one structure to another

will be avoided by interposing a relatively flexible element

between the two structures; this flexible element or elastic

device is called a "vibration isolator" or "resilient mount"

(P-2, P-12). The use of vibration isolators is illustrated in

Figure P.1 (N-6).

P.2 Types of application

There are two types of application of vibration isolation

(P-3, P-12, P-36):

(a) Active isolation, in which the transmission of unbal-

anced forces from a machine to its foundation is pre-

vented, e.g., a ventilating fan mounted on vibration

isolators. This isolation permits the installation of
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Textile machinery
mounted on 1 -in, thick
felt, or cork and
ribbed rubber pods

Columns and *oils separated
from floor slob by asphalt-
impregnated gloss fiber
board extending 2 ft below
floor slob

-mwmm.1.

Figure P.1. Vibration break between the basement floor
slab and wall of a building to reduce the
transmission of noise and vibration to oth
er parts of the structure. (Reprinted from
Case Histories of Machine and Shop Quieting,
contained in "Noise Reduction", by Z.N. Mil-
ler, McGraw -Hill Book Co., New York, 1960).
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the isolated equipment in upper story locations or on

floor slabs without special foundations. In addition

to its basic function, this type of isolation reduces

impact and internal machinery shock, increasesthelifed

the equipment at higher operating speeds and at re-

duced maintenance cost.

(b) Passive isolation, in which harmful motion from a sub-

structure to a device mounted on it is reduced. This

is used for the installation of precision instruments,

allowing their placement wherever space is available

or where work flow requires.

In either case, the vibration isolation is designed accord-

ing to the same principles.

The source of vibration usually has a predominant frequency

at which it vibrates; this is called the "disturbing frequency"

or "driving frequency". The resilient mount with the weight of

the equipment or machine on it will have its own "resonant

frequency" or "natural frequency of oscillation" at which it

will oscillate if given a deflection and then allowed to move

on its own (P-2, P-8, P-9, P-13, P-14). The more deflection in

the system the lower is its natural frequency (P-21). The degree

of vibration isolation provided by the resilient mount will de-

pend on the ratio of these two frequencies: the driving fre-

quency and the natural frequency. The natural frequency of the

resilient mount has to be lower (at least two times) than the

driving frequency if any vibration isolation is to be obtained.

No vibration isolation will be achieved if the natural frequency

of the resilient mount is higher than the driving frequency. If

the two frequencies are equal, or nearly equal, the resilient

mount will make the situation worse, i.e., more vibration will

be transmitted as if no resilient mount were used at all (P-2,

P-21, P-37).
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The amount of deflection of the resilient mount resulting

from the dead weight of the supported load is called "static

deflection", or "static displacement" (P-2, P-8, P-12, P-21).

The relation between disturbing frequency, resonant frecuency,

static deflection and per cent reduction of vibration of a

mass on a resilient support is expressed graphically in Figure

P.2 (P-2).

It is quite ob7ious that a resilient mount must be selected

with utmost care, particularly when the frequency of vibration

is quite low. The mounting system should be neither overloaded

nor underloaded and it should provide a resonant frequency

several times lower than the lowest frequency of vibration to

be isolated (P-2).

P.3 Materials for vibration control

Various resilient materials are used in vibration isolation,

as follows (P-4, P-6, P-10, P-12, P-15, P-17, P-18, P-19, P-20,

P-21, P-22, P-24, P-31, P-33, P-36, P-37, GB-43):

(a) Metal springs. They can provide a large range of de-

flections depending on the dimensions and materials

used in their design. They are interchangeable, resist

corrosion by oil and water, are unaffected by extremes

of temperature. They have the disadvantage of trans-

mitting high frequencies readily; this can be mini-

mized, however, by eliminating direct contact between

the spring and the supporting structure.

(b) Rubber mountings. They are used mostly to isolate small

machinery and mechanical devices, such as engines,

motors, instruments, etc.,where the very long life and

higher efficiency provided by metal spring mountings

are not essential. They tend to lose their resiliency

as they age: their life is about 5 to 7 years.
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(c) Resilient pads,including various materials with in-

herent damping; such as, glass fibre, foamed plastic,

cork, felt, sponge rubber, lead-asbestos, etc.

Glass fibre is used in the form of blankets, boards,

or small blocks. They combine chemical inertness,

thermal efficiency, resistance to moisture, and fire

safety.

Omkisibiatmst material used for vibration isolation.

To obtain sufficiently large deflection, the machine

to be isolated is mounted usually on a large concrete

block, separated from the surrounding foundation by

layers of cork slabe. Cork should be subjected to a

pressure of between 7 and 20 psi.

The isolation efficiency of felt will be best ex-

ploited by using the smallest possible area of the

softest felt, in maximum thickness, under a static

load that the felt will resist without excessive

compression or loss of structural stability. Its

use is recommended in 4'" to 1" thickness with

an area of 5 % of the total area of the base. It is

particularly useful in the isolation of vibrations

in the audio-frequency range.

Besides the listed vibration isolators, other vibration-

control devices are specially manufactured using or combining

the isolating materials described before; hangers, clips,

chairs, special rubber mounts, metal springs with auxiliary

damping features, rail-type mounts, flexible hose connections,

etc., are typical examples of commercial vibration isolators

(M-16, P -6, P-13, P-15, P-24, P-36).

Figure P.3 illustrates the relation between the static
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deflection (displacement) and the natural frequency of com-

monly used vibration isolators (P-12).

Figure P.4 shows the practical application of certain

resilient mounts in conjunction with the vibration isolat-

ion of a reciprocating compressor (K -6).

Detailed information on the properties of various resil-

ient mounts recommended for use in vibration isolation is

available in commercial and technical literature (P-3, P-9,

P-12, P-13, P-15, P-19, P-21, P-24, P-26, P-36).

Additional recommendations for vibration control were

given throughout subsection M.6.
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The need for effective noise control in buildings derives

from the fact that noise affects people in the following ways

(M -26, R-1, R-2, R-3, R-4, R-13, R-15, R-20, R-21, R-22):

(a) it can be so loud as to cause temporary or permanent

damage to the ear;

(b) it can interfere with listening to speech or music;

(c) it may cause deterioration of work performance; and

(d) it can be annoying and distracting.

As to the annoying and distracting effect of noise, people

will vary considerably in their reaction, described in sub-

section M.1. If it is a question of damage to hearings or in-

terference with listening to speech or music, a person's re-

action is more limited.

The basic problem in designing for noise control is to pre-

dict how the expected noise is likely to interfere with the

occupancy in the room under consideration and then to set lim-

its to the path of intruding or spreading noise in order to

avoid any harmful interference. To do so, various criteria,

discussed briefly in this Section, will have to be considered,

depending on the type and delicacy of the noise control prob-

lem (R-22).

R.1 Damage to hearing

Noises so loud (about 150 dB)thattheycame immediate damage

to hearing do not occur normally in buildings; they may occur,

however, near Airports. In such special cases,precautions are

required to avoid the risk of people accidentally entering

the damage zone without ear muffs (R -1, R-5, R-22, S-166) .

Noise levels high enough to cause temporary or permanent

deafness occur in industry. Various criteria have been pro-

duced giving the maximum noise levels which must not be ex-

ceeded if temporary or permanent deafness (complete or partial)



is to be avoided (R-1, R-4, R-8, R-9, R-12, R-13, R-275. R-30) .

If existing noise levels measured in a very noisy room exceed

the dangerous levels established in the corresponding criteria,

some measure will have to be taken (described in subsection

M.6) in order to reduce the noise and to protect the workers

(R-12, 3-164, GB-41).

R.2 Maximum permissible noise levels

When the probable or existing noise level of an exterior

noise source has been determined (by measurement, estimation,

analogy, etc.), the acceptable noise level in the receiving

room has then to be established. The difference between pro-

bable or existing level at the source and acceptable noise

level at the recipient's position will suggest the degree of

noise reduction to be achieved (M-26). Criteria developed in

the last decade enable us to specify those permissible noise

levels which will provide a satisfactory environment for lis-

tening to speech and music.

The recommended maximum permissible or desirable noise le-

vels (in the representative octave bands) in various occupan-

cies can be specified in terms of Noise Criterion curves (or

NC curves), developed by L.L. Beranek and illustrated in Figure

R.1 (R-11). These NC curves are recommended for specification

of the desired amount of background noise levels for various

occupancies wherever a favorable relation between the low fre-

auency and the high frequency portion of the spectrum is de-

sired. Table R.1 shows how permissible noise levels in various

occupancies (with ventilating system, if any, operating, and

with normal outside traffic conditions) can be specified in

terms of NC curves (M-26, R-4, R-6, R-11, R-22, 8-30, 8-123,

GB-52), It is assumed that the infiltrating exterior noise is

meaningless, because if intruding noise constitutes meaningful
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communication (e.g., speech or music), other criteria apply;

their discussion falls beyond the scope of this study (R-15,

R-17, R -18, R-19) .

Table R.1. Recommended Noise Criteria for rooms

Type of space

Concert Halls

Broadcast Studios, Recording Studios

Opera Houses

Legitimate Theaters

more than 500 seats
up to 500 seats (no amplification)

Music Rooms

Classrooms

Conference Rooms for 50

Television Studios, Motion Picture
Studios

Assembly Halls

Apartments and Hotels

Homes (sleeping areas)

Notion Picture Theaters

Churches

Courtrooms

Conference Rooms for 20

Hospitals (Patient Rooms)

Libraries

Restaurants

Coliseums for sports only (with
amplification)

recommended
NC curve of
Figure R.1

NC 15-20

NC 15-20

NC 20

NC 20
NC 20-25

NC 25

NC 25

NC 25

NC 25

NC 25-30

NC 25-30

NC 25-35

NC 30

NC 30

NC 30

NC 30

NC 30

NC 30

NC 40-45

NC 50

If a noise has to be reduced to inaudibility, then the per-

missible noise levels are specified in Figure R.1 by the curve

representing the "approximate threshold of hearing for contin-

uous noise" (R-4, R-11).
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Figure R.2 represents an alternate family of Noise Crite-

rion curves (NCA curves) recommended for use where a maximum

compromise due to the economic factor is necessary (R-11).

R.3 Criteria for Office spaces

In speech communication it is mainly the frequencies between

600 and 4800 cps which affect intelligibility. Therefore, a cor-

responding criterion, called Speech Interference Level (SII),

has been established that is used in assessing the effects of

noise on speech. If the noise level is defined in terms of

Speech Interference Levels, this means the average, in decibels,

of the sound pressure levels of the noise in the three octave

bands 600 to 1200, 1200 to 2400 and 2400 to 4800 cps. Table

R.2 gives maximum permissible Speech Interference Levels, in

decibels above 0.0002 microbar, which barely permit satisfac-

tory perception of natural adult male speech at specified dis-

tances and voice levels (R-4, R-10, B.,16, R-22, R-30).

Table R.2. Maximum Speech Interference Levels

(i.e.,average of the three octaves between 600

and 4800 cps), in decibels above 0.0002 microbar.

Distance from
speaker, ft

normal
voice

.

raised
voice

.

very loud
voice

shouting

0.5 71 77 83 89

1 65 71 77 83

2 59 65 71 77

3 55 61 67 73

4 53 59 65 71

5 51 57 63 69

6 49 55 61 67

12 43 49 55 61

Values of Table R.2 apply when no reflecting surface is

nearby, and listener and talker are facing each other (R-4).
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Two criteria can be used jointly to evaluate noise con-

ditions in Offices: the SIL in decibelsland the loudness le-

vels in phons; their relationship is described in Figures

Rol and R.2. Figure R.3 illustrates the relation of subjective

noise ratings of Executive Office personnel to SIL and loud-

ness level; since speech is important in these Offices, an SIL

of about 30 dB will be regarded as "quiet", while an SIL of

about 55 dB will be considered as "noisy" in such an Office

by its occupants (R-4, R -6, R-10, R.11, R-13, R-16, S-123).

Figure R.4 illustrates the relation of subjective noise

ratings to SIL and loudness level for Secretarial and large

Engineering Drafting Rooms where noise and speech communication

are not so important. Upper parts of Figures R.3 and R.4 also

show the SIL ranges for telephone use, extending from satis-

factory to unsatisfactory (R-4, R-6, R-11, R-16, R-22).

These criteria apply to both intruding noises and to noises

originating within the Offices themselves. It must be noted,

however, that internal noises, being under the control of

Office personnel, are never as critical as those coming from

outside (R-4).

On the basis of extensive study of noise in Office spaces

and of observations in Industrial Buildings, L.Z. Beranek re-

commends that the NC curve for a particular Office space be

selected with the aid of Table R.3. If in certain cases extreme

economy is imperative, the corresponding NCA curve should be

substituted for the proposed NC cun.: (R-6, R-11).

In selecting an NC curve or an SIL for a particular speci-

fication, the architect or the acoustical consultant will have

to make a judicious judgement, partly becp,use of frequent de-

viation (often disagreement) in people's reaction towards noise

and in local customs, and partly because of the frequent lack

of funds for noise control work (R-6, S-123).
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Table R.3. Recommended Noise Criteria for Offices.

(Reprinted from Criteria for Noise and Vibration

in Buildings and Vehicles, contained in "Noise Re-

duction" by L.L. Beranek, McGraw-Hill Book Co.,

New York, 1960).

NC curve
of

Figure R.1
communication environment typical application

20-30 Very quiet Office; telephone
use satisfactory; suitable
for large conferences

Executive Offices and
Conference Rooms for
50 people

30-35 "Quiet" Office; satisfactory
for conferences at a 15 ft
table; normal voice 10 to
30 ft; telephone use satis-
factory

Private or semiprivate
Offices, Reception
Rooms and small Con-
ference Rooms for 20
people

35-40 Satisfactory for confer-
ences at a 6 to 8 ft table;
telepho use satisfactory;
normal :;,,,ice 6 to 12 ft

Medium-sized Offices
and industrial busi-
ness Offices

40-50 Satisfactory for conferences
at a 4 to 5 ft table; tele-
phone use occasionally
slightly difficult; normal
voice 3 to 6 ft; raised
voice 6 to 12 ft

Large Engineering and
Drafting Rooms, etc.

50-55 Unsatisfactory for conferen-
ces of more than two or
three people; telephone use
slightly difficult; normal
voice 1 to 2 ft; raised
voice 3 to 6 ft

Secretarial areas
(typing), accounting
areas (business ma-
chines), Blueprint
Rooms, etc.

Above 50 "Very noisy"; Office en-
vironment unsatisfactory;
telephone use difficult

Not recommended for
any type of Office

The noise control problem can be quite serious if the in-

trusion of intellegible speech has to be excluded. When the

occupant of a room is well protected against intelligible com-

munication originating from an adjacent space, in other words,
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he has an assurance of not being overheard, he is said to have

speech privacy. The provision for speech privacy is associated

with a rather complex acoustical design procedure; noteworthy

efforts have been made to simplify this procedure (R-17, R-18,

R-19).

R.4 Noise control requirements in building codes and bylaws

Requirements (standards) or recommendations for the sound

insulation between various occupancies, contained in build-

ing codes, standards, bylaws, etc., constitute important cri-

teria for the control of noise (R-23, R-25, R-26, R-27, R-28,

R-29, R-30, R-31, R-32, R-33, R-34, R-35).

Noise control requirements should be considered as a fun-

damental component in the environmental control of buildings.

The otherwise reasonable and justified trend of continuous

search for lighter, thinner, and more inexpensive building con-

struction could not proceed in an acceptable direction (and also

noise levels would further increase in buildings),(a) without

building codes, standards, bylaws, etc.,containing the neces-

sary criteria for noise control, and (b) without the architect's

familiarity with architectural acoustics.

The progressive national building codes throughout the world

contain noise control requirements. These requirements (a) usu-

ally list sound insulation values for walls and floors in various

(particularly residential) buildings, giving values for both air-

borne and impact sounds, and (b) sometimes also specify accept-

able locations of buildings in relationship to noise sources

(highways, airports, etc.).

Sound insulation requirements adopted in the bylaws of mu-

nicipalities have no value unless enforced; this can be carried

out, as with other technical requirements, by withholding the

building permit if inspection of the building plans or of the

construction should reveal disregard of the relevant acoustical

requirements (R-3).
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R.4.1 The National Building Code of Canada

Subsection 3.6.9 of Part 3 of the Code, entitled "Acous-

tical Insulation", lists TL requirements for a variety of build-

ings and rooms (R-3, R-34). These requirements are presented in

an original form, by postulating the maximum air-borne noise le-

vels likely to be produced by the occupancy, and then assigning

maximum tolerable air-borne levels of extraneous noise. The re-

quired TL for walls and floors separating major occupancies will

be the difference between the maximum level produced by one occu-

pancy and the maximum acceptable level of extraneous noise for

the adjacent occupancy. The Code recommends that this calculation

should be made both ways, the greater difference being used for

determining the required TL. Table R.4, part of the corres-

ponding Table in the Code, lists the necessary values to calcu-

late the TL of walls and floors (R-34).

Table R.4. Maximum air-borne noise levels likely to be

produced by various occupancies and the maximum toler-

able air-borne level of extraneous noise. (Reprinted

from the National Building Code of Canada 1960, issued

by the Associate Committee on the National Building

Code, National Research Council, Ottawa, 1960).

Types of use of
floor area or room

maximum air-
borne noise
produced by
occupancy

maximum air-
borne level
of extraneous
noise

units: decibels vs.
standard reference level

Assembly Rooms with fixed
seats such as Theaters, Audi-
toria or Concert Halls

Other Assembly Rooms where
non-fixed seats may be used
including Classrooms de-
signed or intended for as-
sembly purposes

85

85

30

30
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(Table R.4 cont'd.)

Types of use of
floor area or room

maximum air
borne noise
produced by
occupancy

maximum air
borne level
of extraneous
noise

units: decibels vs.
standard reference level

Concoure-s, Waiting Rooms in
Assembly Buildings, Rotundas,
Entrance Halls

Stadia and Grandstands

Bowling Alleys, Pool and Bil
liard Rooms and similar areas

Classrooms

Vocational Shops

Operating and Clinical Rooms in

Hospitals

Detention Quarters

Reading or Writing Rooms or
Lounges in other than dwelling
units

Dining Rooms in other than
dwelling units

Kitchens in other than awelling
units

Rooms used for sleeping

single rooms in other than
dwelling units

Dcrmi tory

Dwelling units, all rooms

Retail sales floors

Manufacturing or Process Rooms

Offices

Toilet and Locker Rooms

Cleaning and repair of goods

Exits; and Corridors serving as
access to exits from rooms or
suites

Storage

85

85

81i

80

80

80

75

80

90

80

80

80

80

90

80

80

90

80

90

30

Ole

40

40

40

50

30

60

60

30

40
30

60

50
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The "Housing Standards", a supplement to the National Blind-

ing Code of Canada,published to regulate the construction of

Residential Buildings under the National Housing Act, recommends

that a minimum average TI, of 45 dB should be provided between

dwelling units in the same building, and between dwelling unit

and any space common to two dwelling units (R-35) . Tables IV,

V, and VI of the same publication list various wall and floor

constructions giving 45 dB average TL.

It must be mentioned that the sound insulation requirements

of the National Building Code of Canada are not compulsory.

They are recommendations based upon extensive research work,

experience and comments by experts. It is left to the respon-

sible authorities of municipalities to make this building code

or parts of it compulsory, if they so wish. The National Build-

ing Code of Canada is, in fact, drafted in the form of a bylaw,

so that it may be adopted or enacted for legal use by any mu-

nicipality (R-34).

R.4.2 Foreign building codes

In the United Kingdom the Building Research Station of Eng-

land has recommended the following (R-4, R-30, R-31, S-35):

(a) for walls between houses an air-borne sound insulation

should be achieved as shown in Figure R.5.A. Any deviation

in the unfavorable direction should not exceed 1 dB when

averaged over the whole frequency range;

(b) for party walls and party floors between Apartments a
higher (grade I) or slower (grade II) degree of air-

borne sound insulation should be accomplished, according

to local needs and conditions; these two grades are

shown in Figure RO*41 linVettviation in the unfavorable

direction should not exceed 1 dB when averaged over

the whole frequency range;
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Figure R.5. Recommended criteria for the sound insulation of
Residential Buildings in the United Kingdom. A:

air-borne sound insulation between houses. B:air-
borne sound insulation between Apartments. C: im-

pact sound insulation between Apartments. (Reprint-
ed from Acousti -, Noise and Buildings by P.R. Par-

kin and H.R. Humphreys, Frederick A. Praeger, New

York, 1958).
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(c) for impact sound insulation of floors between Apartments

the sound pressure levels in the receiving room, when. a

standard tapping machine is operated in the source room

above, should not exceed the values represented by the

diagrams of Figure 11.5.C. Two grades are shown in the

Figure; grade I represents the highest insulation eco-

nomically practicable for floors in Apartment Buildings

against impact sound; grade II provides a reduced degree

of insulation.

To satisfy a particular grade, a floor construction between

dwelling units must meet the requirements of both air-borne and

impact sound insulation.

Table R.5 compares average TL values for walls and floors

between specified occupancies as recommended in the building

codes of various countries (R-3, R-4, R-23, R-28, R-29, R-30,

R-31, R-32, GB-29, GB-52) 9 before about 1950.

Table R.5, Average TL values for walls and floors

between specified occupancies as recommended in the

building codes of various countries, before 1950.

Average TL,
decibels

Germany

Apartments 51

Sweden

Apartments 48
Classrooms 42
Hospital Rooms 50
Offices 40

Norway

Apartments 50
Hospital Rooms 50
Hotel Rooms 50

Classrooms 44
Offices 40



482

(Table R.5 cont'd.)

Average TL,
decibels

Austria

within the same Apartment . 40
between Apartments 48
between houses 53

Holland

Apartments 48-52

Switzerland

Apartments 52-57
Classrooms 47 -52

Offices 47 -57

Hotel Rooms 52-62
Hospital Rooms 52-62

In most countries single figure requirements or recommen-

dations for thA insulation of both air-borne and impact sounds

in Residential Buildings have been replaced by grading curves

similar to those introduced in England (R-20).
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S.1 Auditoria

The effect of site planning and architectural design on

the noise control of Auditoria has been discussed in paragraph

M.6.3, the most important requirement being the reduction of

the Auditorium noise level, produced by all exterior and in-

terior noise sources, to the lowest possible value (3-1, GB-21,

GB-43).

The recommended Noise Criteria for various Auditoria, have

been listed in Table R.1. The achievement of these NC values

will necessitate the consideration of Section N, "Sound In-

sulating Building Constructions".

Table M.3 has listed recommended horizontal distances bet-

ween a road carrying heavy traffic and various Auditoria facing

this road (GB-43).

Any Auditorium to be constructed on an overly noisy down-

town site should be designed, if possible, with a protective

(buffer) zone of rooms between exterior noise sources and the

Auditorium proper; this will enable the use of less insulative

enclosures around the Auditorium. Rooms located in the buffer

zone (Vestibule, circulation spaces, Bars, Restaurants, Offices,

etc.) should have sound absorbent ceilings.

The increase in air traffic often necessitates the design

of particular sound insulating windows and roofs with proper-

ly suspended ceilings (paragraph N.3.2). The installation of

a suspended ceiling is indispensable in a contemporary Audito-

rium in order to accommodate ventilating, air-conditioning,

and electrical services above the room. The elimination of

windows is an effective contribution towards the noise control

of Auditoria; with ventilating and air-conditioning systems

available this should be regarded as a normal design procedure

where excessive outdoor noises have to be excluded (GB-21,

GB-43).



400

If an Auditorium is subject to vibrations originating from

surface or underground trains, near-by bus lines, etc., par-

ticular precautions will have to be taken to eliminate these

vibrations from the building structure (H-39, H-108, N-43,

N-53, GB-21, GB-43); this is discussed in Section P.

S.2 Studios

The difference between the noise control of Studios and

other Auditoria is one of degree only: all noises from outside

and inside the building likely to interfere with the Studio

activities must be reduced to a particularly low value. It is

not a question of what noise levels are comfortable or econom-

ical, but what levels must be secured if satisfactory broad-

casting, telecasting, or recording is to result, described

in Section J, "Acoustical Design of Studios" (J-1, J-4, J-23,

J-29, J-49, J-76, S-3, S-5, S-6, 3-7, S-8).

The recommended Noise Criteria for various Studios are

listed in Table R.1; the provision for these NC values will

require consideration of Section N, "Sound Insulating Building

Constructions" (S-9). In addition, attention should be given

to various general design recommendations outlined in sub-

section M.6.

In the architectural design of Studio Buildings the cre-

ation of buffer zones around the Studio proper is especially

advantageous. The juxtaposition of various occupancies in

Studio Buildings will also require utmost care to avoid un-

wanted noise transmission through floors (J -1, S-5, GB-43).

Table S411 lists the tolerances of various Studios to

noise in general, and also to interference from noise sources

having a meaningful, intelligible content (GB-43).
-4104-~



491

Table S.1. Tolerance of Studios to noise in

general and to interference from noise sources

having a meaningful content. (Reprinted from

Acoustics, Noise and Buildings by P.R. Parkin

and H.R. Humphreys, Frederick A. Praeger,

New York, 1958),

Room
rating as
noise source

1

tolerance of incoming
noise interference

Music Studio, Radio
or Recording

Talks and Drama
Studios, Radio or
Recording

Control and Listen-
ing Rooms, Radio, Re-
cording or Tele-
vision

Television Studios,
including Dubbing
Suites

Recording Rooms

high

medium

high

high

medium

very low

very low

low

low

low

very low

very low

very low

very low

low

The suppression of noise originating from ventilating and

air-conditioning systems, a particularly important aspect in

the noise control of Studios, has been dealt with in Section 0

(0-6, 0-14, 0-18, 0-45, 0-86).

S.3 Residential buildings

The most common noise sources which occur in Residential

Buildings have been described in subsection M.3 (S-15, S-30,

S-32, S-38, S-40, S-43).

The effects of town planning, site planning, and architeo-

tural design on the noise control of Residential Buildings

have been discussed in paragraphs M.6.2, M.6.3, and M.6.4.

Recommended Noise Criteria for Homes and kparttents are
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listed in Table R.1 (R-15, R-17, R-18, R-19, S-15). The noise

control requirements for the sound insulation between various

occupancies in Residential Buildings,recommended by the Nation-

al Building Code of Canada and other building codes have been

described in subsection R.4.

Tables N.2 and N.3 list average air-borne sound transmission

losses for typical wall and floor constructions suitable for

use in Residential Buildings. Figure N.5 illustrates a curve

of maximum acceptable impact sound pressure levels for floor

constructions in Apartment Houses, recommended by the Fed-

eral Housing Administration (Washington, D.C.). Additional in-

formation on the TL of various enclosures that can be used

in Residential Buildings is available from many sources (N-4,

N -95, 8-14, 8-21, 3-23, 8-35, GB-21, GB-29).

Residential Buildings constructed in quiet rural or sub-

urban districts will require a higher degree of, sound insu-

lation than those built in noisy areas, because noises from

the neighbors will be mare readily noticed in a quiet than

in a noisy surrounding. It is often noticeable that occupants

of Apartments who are almost conditioned to the noisy environ-

ment of densely populated areas are less concerned about the

sound insulation than those accustomed to a quiet environment

C%;-4).

Additional information on the soundproof furnishing of

Homes and Apartments is available from various articles (3-12,

8-16, S-20, 8-26, 8-27, 3-28, 8-29, 8-30).

3.4 Hotels, Motels

In the not control of Hotels and Motels three types of

rooms require attention: (a) public and social rooms; such as,

Dining Room, Reading Room, Ball Room, Recreation Room, Con-

vention Rooms, etc., (b) Guest Rooms, and (c) circulation areas,

such as Lobby, Corridors, etc. (547, S-48, 8-51, GB-52) 0
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The principal acoustical requirements in the public and

social rooms are: (a) adequate protection against noises ori-

ginating from exterior sources or from adjacent rooms, and

(b) control of noise and reverberation within the rooms them-

selves. Relevant subjects have been discussed in Sections M,

and 0, and subsection F.5 (8-48, S-50). If public rooms

have to be subdivided into two or more spaces by means of

folding partitions, then these folding partitions should

possess an average TL of 35 to 50 dB, depending on the de-

sired function of the individual spaces.

In the maing noise control problems of Guest Rooms are

identical with those encountered in Apartment Buildings,

since every room of a Hotel or Motel should be considered as

an isolated Apartment (S-47, 8-49). An average TL of 40 to 45

dB is recommended between adjacent rooms, and between rooms

and corridors for low-cost Hotels or Motels and 45 to 53 dB

for high-cost ones (S-51, GB-52). Direct connection between

adjacent Guest Rooms by doors should be avoided, unless acous-

tically efficient doors are installed.

Carpeting in all spaces is essential to eliminate impact

noises.

Exterior walls should provide an average TL of 40 to 50 dB,

according to local needs; operable windows limit these values.

Particular attention should be paid to the elimination of

mechanical noises (Section 0).

S.5 Schools

Becauseethe importance of favorable hearing conditions in

all educational establishments, acoustics is a fundamental

physical attribute that will contribute to the function of

a School.
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The sound control of a School requires consideration of.

the following:

(a) selection of the site (5-54, 3-57, 3-60);

(b) site planning, described in paragraph M.6.3 (3-53,

S-57, 8-75),

(c) room-acoustical design of Classrooms, Lecture Halls,

Auditorium, Theater, Gymnasium, Music Rooms, Audio-

Visual Rooms, etc.; this has been discussed in Sec-

tions G, and H (5-53, 5-59, 5-71);

(d) control of exterior and interior noise throughout the

entire building (5-55, S-56, S-62, 5-63, 5-69, 5-76).

General design considerations, also applicable to Schools,

have been reviewed in paragraph M.6.4. Recommended Noise Crite-

ria for various School Rooms are listed in Table R.1 (sub-

section R.2).

For purposes of sound insulation the British Standard Code

of Practice groups various rooms of Schools as following (R-30):

Class A: noise producing, such as Workshops, Kitchens, Dining

Rooms, Gymnasia, indoor Swimming Pools, and Boiler

Rooms;

Class B: noise producing, but needing quiet at times, such as

Assembly Halls, Lecture Halls, Music Rooms, Commerce

and Typing;

Class C: average, such as General Classrooms, Practical Rooms,

Laboratories, and Offices;

Class D: rooms needing quiet, such as Libraries, Study Rooms;

and

Class E: rooms needing privacy, such as Medical Rooms, and

Staff Rooms.



The minimum noise reductions recommended by the British

Standard between these rooms are the following:

between rooms of Class A 25 dB

between rooms of Class C or D 35 dB

between rooms of Class B or E 45 dB

When a room is likely to have a dual use, the higher noise

reduction value should be used. The recommended minimum noise

reduction between rooms of different classes is AV dB, subject

to various conditions.

Acoustical problems are increasing in the contemporary

School due to several changes: (a) changes from the old ways

of doing things academically, and (b) the concept of change-

ability is being incorporated in to-day's building, recognizing

change as an important element in educational progress (S-73).

Currently there is a remarkable movement in Classroom lay-

out that advo'ates absolute freedom of activity through the

elimination of doors and permanent partitions (3-62, 3-65, 542,

3-74, 3-76); this trend favors the use of movable partitions,

thereby providing a possibility of adjusting the size of the

Classroom to suit momentary space requirements. In some cases

partitions are completely eliminated from a larger space where

several teaching groups meet simultaneously (5-52, S-66, 3-67,

3-68, 3-73, 3-76). This flexible arrangement admittedly elimi-

nates the cost of partitions, even though more floor area has

to be provided per student than would be nocessary in a con-

ventional layout. The revolutionary layout of open Classrooms

challenges the long-established belief that 35 to 45 dB average

TL is mandatory between Classrooms (S-74). It appears that the

standard stereotype Classroom layout is losing in popularity

and several new arrangements are emerging (S-72). One is in-

clined to conclude that the overall environment of specific

Classrooms seems to be more important than the degree of a-

roustical separation between Classrooms (8-74).
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Subdivisible School Auditoria are often built, thus accom-

modating 4 to 5 additional Classrooms within the Auditorium

space, and separated by operating (moving) partitions. The

combination of a relatively high ambient noise level with

high-performance operating partitions make possible the si-

multaneous use of all spaces created by subdivision (S-70,

8-73, S-76) .

S.6 Hospitals

The Hospital is unquestionably a building whose occupants

are particularly affected by noise. The selection of a suitable

site, therefore, must be considered with special attention to

possible traffic noises of highways, railroads, airport and

also to noise originating from parking areas (paragraph. M.6.3).

Exterior noises are exceeded in number by the interior

noises mainly because inherent mechanical units of a Hospital

are fundamentally noisy. Interior noises are. caused by (S-85):

(a) mechanical equipment (machinery, boilers, pumps, fans,

ventilators, transformers, elevators, air-conditioning

equipment, etc.);

(b) operational facilities (plumbing units, refrigerators,

ice machines, dishwashers, sterilizers, autoclaves,

housekeeping facilities, etc.);

(o) patient service facilities (oxygen tanks, carrier

carts, instrument cases, etc.);

(d) personnel activities (staff talk and walking in

corridors); and

(e) patients and visitors.

In the acoustical design of Hospitals it is essential to

specify the Noise Criteria (shown in Figure R.1) of both im-

portant rooms and various pieces of equipment. Table 8.2

lists Noise Criteria for various rooms of Hospitals, re-

commended by L.S. Goodfriend and R.L. Cardinell (S-85).
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Table S.2. Recommended Noise Criteria for

various rooms in Hospitals.

Room
recommended
NC curve of
Figure R.1

Patient Room NC-30

Nurses' Station NC-35

Surgery and Delivery NC-40

Private Office NC-35

General Office NC-45

The average TL against air-borne noise between Patient

Rooms should be about 45 to 50 dB depending on the importance

given to acoustical considerations (R-30, 3-84). Special sound

insulation should be provided for Maternity and Nursery Rooms

and for spaces of acute sufferers who are likely to be noisy

(8-79); between such rooms with occupants particularly sus-

ceptible to noises, an average TL of about 50 to 55 (sometimes

60) dB is required (GB-52). For walls between Patient Rooms

and Corridor an average TL of about 45 dB seems to be satis-

factory; efficient sound insulating doors should be used in

these walls. The use of a floating floor is seldom required

in Hospitals (GB-52).

To achieve the design goals for noise control the aspects

outlined in subsection M.6, and in Sections 0 and P should be

observed. In addition, attention should be given to the follow-

ing recommendations (S-78, S-79, S-80, 3-81, 8-82, S-84, GB-43,

GB-52):

(a) in selecting a site and in site planning consideration

stu,Lld be given to the following items: distance from

exterior noise sources; effect of nearby high buildings



as noise reflectors; nearby traffic conditions (high

way grades, traffic volume, traffic lights, etc.);

use of certain buildings as sound barriers;

(b) loading platforms and parking areas (for visitors,

staff members, and personnel) should be carefully

located, particularly to avoid noise at undesirable

times;

(c) mechanical plant should be placed preferably in a

separate building;

(d) closed courts should be avoided, unless rooms facing

the court are airconditioned with hermerically sealed

fixed windows;

(e) corridors, as potential noise sources, should be

avoided or planned as short as possible;

(f) doors to opposite rooms should be staggered; all doors

should be fitted with silent closers;

(g) equipment, operational facilities and patient service

facilities should be selected, installed and operated

for minimum noise output; every item of equipment

should be considered to see if hard materials could

not be replaced by some resilient materials.

Rooms to be used for instruction purposes, conferences, or

meetings, should be treated so that they'll:Mile good acoustical

conditions for the intelligibility of speech.

Virtually all rooms of a Hospital should be treated to a

greater or lesser extent with sound absorptive material to

reduce the noise level; this acoustical treatment used for

noise reduction purposes is a supplement to, not a substitute

for, satisfactory insulation between adjacent rooms (S-79).

Acoustical materials (discussed in Section E) should be

carefully selected so that they do not interfere with sani

tary requirements of the Hospital. Plastic faced mineral fiber
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tiles, metal pan acoustical ceiling with mineral wool pad, or

mineral wool blankets covered with perforated boards will meet

these requirements. Floors should be covered with a resilient

covering (rubber tile, cork tile, vinyl tile, linoleum, etc.)

to reduce impact noises.

S.7 Audiometric Rooms, Sound Laboratories

Used for audiometry and for acoustical measurements and

research, these rooms are practical applications of disconti-

nuous construction, discussed briefly in paragraph N.3.5. Since

their design and construction constitutes specific problems of

architectural acoustics, their discussion falls beyond the

bounds of this study. Information on these types of rooms is

available from a number of articles (5-87, S-89, S-90, 3-91,

S-92, S-97, 3-100, S-102, S-104, S-105, 5-107, S-108, S-109) .

5.8 Museums, Libraries

In Museums and Libraries every reasonable effort should be

made to provide a quiet environment essential for study or

reading in the Library or for the contemplation of the works

of art on display in Museums (S-112). This will suggest the

use of a reasonable amount of sound absorbing materials along

the boundary surfaces in order (a) to reduce R.T. to a minimum,

and (b) to reduce any noise within the room created by the

dropping of a book, closing of a door, coughing, talking, or

other activities (8-111., S-113, S-115) .

Recommended Noise Criterion for Libraries has been listed

in Table R.1 (subsection R.2).
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S.9 Offices

Practical noise control of Offices involves (a) protection

against exterior noise from various sources, and (b) adequate

insulation (horizontally and vertically) between individual

spaces in order to secure speech privacy, i.e.opeech origi-

nating in one Office should not be intelligible in an adjacent

Office (M-122, S-116, S-117, S-118, 5-119, 8-120, S-122).

The following are the most common noise sources of Offices

( 5-119, S-120, GB-43):

(a) outdoor noises originating from traffic, or from play-

grounds, arenas, etc.;

(b) industrial noises associated with manufacturing pro-

cesses, factory machinery, construction projects, mar-

shalling yards, etc.;

(c) mechanical noises caused by heating, ventilating, and

air-conditioning systems, plumbing, elevators, esca-

lators, pneumatic tubes, etc.; and

(d) typical Office noises created by business machines,

teleprinters, typewriters, call systems, telephones,

speech, circulation on hard floor finishes, doors, etc.

The reouired Noise Criteria for Offices have been listed

and discussed in subsections R.2, R.3, and R.4; to achieve them,

the "Methods of noise control" outlined in subsection M.6 should

be observed in conjunction with Sections 0, "control of Mechan-

ical Noises", and Section P, "Vibration Control". Transmission

loss values for walls and floors between Offices, recommend-

ed in various building codes, are listed in Table R.5(5 -123).

The British Standard recommendslhefdlowingminimum average

transmission losses in Offices (R-30):
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(a) for walls between Offices requiring quiet,

on a quiet site where privacy is required

(b) for walls between Offices requiring quiet,

but on a noisy site where a lower degree

of privacy is tolerable

(c) for walls between Clerical Offices where

noise is not a major nuisance

(d) for floors (to be furnished with a re-

silient finish)

45dB

40 dB

20-30 dB

40 18

The division of rentable Office space by light-weight,

movable partitions, subsequent to the completion of the build-

ing, is becoming increasingly usual. The acoustical perform-

ance of most of these partitions, erected up to the underside

of a suspended ceiling, seldom exceeds a TL of 25 to 30 dB;

this is insufficient in most cases, unless the background or

traffic noise is so high that it masks (drowns out) the sounds

coming through the light-weight partition.

With light-weight, prefabricated, movable partitions,

built up to the suspended ceiling, particular attention should

be paid to make sure that (s -118, 5-121, S-122, 8-123):

(a) all apertures, gaps, and joints at side walls, floor,

and ceiling are properly sealed, and

(b) sound barriers are provided above the ceiling with a

noise reduction characteristic that will not be re-

duced by ducts, conduits and cables installed in the

ceiling space.

Additional information on suspended ceilings was given in

paragraph B.3.2(s-123).

The noise reducing effect of acoustical treatment in

rooms has been discussed in paragraph M.6.8.
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Various nomograms are published in articles as a guide

for the quick determination of the required insulation of

Office partitions, depending on the sound level of the noise

source, on the prevailing background noise conditions, and

on the permissible noise level in the Office under consid-

eration (S-119, GB-43).

S.10 Restaurants, Cafeterias

The acoustical problem in Restaurants and Cafeterias is

simply one of reducing reverberation and noise,.mostly cre-

ated within the room or in adjacent spaces, such as Kitchen,

Service Rooms, etc. ( 5 -124, S-126).

In middle and high class Restaurants, elements of the

room decoration (draperies, carpets, wall panelings, lighting

fixtures, flowers, etc.) will contribute beneficially to sound

absorption. In addition, the use of acoustical treatment along

available (mostly ceiling) surfaces should be considered. To

achieve the required degree of noise reduction in Cafeterias,

it is important to treat acoustically the ceiling of the dining,

serving and all other adjacent areas as well.

The use of a Sound Lock between dining space and Kitchen

is alwaysadyantageous to exclude Kitchen noise from the dining

area.

Those acoustical materials should be used in Restaurants

and Cafeterias which can withstand humidity, can be cleaned

easily, and painted repeatedly (S-124, S-126).

Table R.1 shows the recommended Noise Criteria for Restau-

rants.

S.11 Transportation Buildings

Even though every Transportation Building (Railway Sta-

tion, Subway Station, Bus Terminal, Harbor, etc.) has its
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own specific problem of eliminating the noise logically asso-

ciated with its function, this subsection will outline prima-

rily noise control problems of Airports (5 -129, S-130, S-133,

8-137).

Airports have always presented a most annoying sonic en-

vironment, seriously affecting passengers, employees,and

neighbors alike. In spite of the fantastic amount that is

being spent on noise suppression devices, it is anticipated

that Airport noise, resulting mainly from take-off operations,

is likely to increase in the future (S-127, S-128) .

The major function of a large city Airport is to provide

adequate facilities for the transport of poeple and freight;

however, it also provides a large number of additional ser-

vices to both the airlines and their customers (Executive,

Clerical and Engineering Operation Offices; TicketCounters,

Shops, Lunch Counters and luxury Restaurants; maintenance,

baggage, and cargo handling areas, etc.). Since functional

activities within most of these occupancies include either

direct speech or telephone conversation, the acoustical cri-

teria for the noise control of Airports should be established

with the intent of securing- adequate speech privacy for the

various spaces. For this reason, and also because the noise

of turboprops and turbojets is disturbing predominantly in

the high frequency range, it follows that the controlling

frequency range in the acoustical calculations should be

between 600 and 4800 cps, with the logical use of the Speech

Interference Levels (R-.4, R-11, S.130).

The TL of building materials, which might be considered

for wall and roof constructions of Airports, should be, there-

fore, particularly favorable in the SIL bands (S-130).

Detailed information on various aspects of the noise con-

trol of Airports is available from a number of sources (8-129,

8-130, 5-131, 6-133, 8-136, 5-137, 5-138) .
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8.12 Industrial Buildings

Noise levels of various industrial noise sources, as

listed in Table M.1, clearly indicate the necessity for an

effective noise control in several industries.

In the noise control of Industrial Buildings the require-

ments are the following (M-122, 5-150, S-167, GB-21, GB-52):

(a) to provide a reasonable acoustical environment for

the individual workmen (machine operators) who pro-

duce the noise;

(b) to facilitate speech communication among operators,

to the required degree;

(c) to protect other workers or employees, either close

to the noise source or at some other location within

the same building; and

(d) to prevent the transmission of noise into' adjacent

buildings or into the surrounding community.

Workmen can be protected either by introducing sound ab-

sorbent materials into the noisy space, outlined in para-

graph M.6.8, or by suppressing the noise at the source by the

use of a sound-reducing enclosure (screening) around the ma-

chine making the noise, this was described in paragraph M.6.1

(S-141, 5-149, S-153, 3-1551 S-163). If, after all these meas-

ures, the noise level is still above the tolerable degree, the

workers should protect their hearing by means of suitable ear

defenders (S-160, 5-164, 8-166, S-167). In conjunction with

the use of noise reducing enclosures around noisy machines,

it must be noted that the operator of the offending equipment

is seldom critical about the noise produced by the machine

under his control; he will, often check the efficiency and

performance of the machine by the noise it generates.
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Considerable noise reduction may be achieved in a noisy

industrial building by means of organization (discussed in

paragraph M.6.7).

The provision for adequate speech intelligibility, the

protection of employees working within the boundaries of the

noisy building, and also the confinement of the disturbing

noises within their legitimate premises can be accomplished

by the use of suitable sound insulating enclosures, de-

scribed in Section N (S-157, 5 -158). It is important to con-

sider the frequency distribution of the offending noise so

that suitable enclosures can be selected with effective TL

at these critical frequencies.

Figure M.7 lists recommended distances between various

noise producing industries and residential areas.

Various aspects of the control of industrial noise have

been presented in numerous articles (S-139, 5 -140, 5 -142,

S-143, S-144, S-145, S-146, S-147, S-148, S-151, S-152, 3-154,

S-156, S-159, S-161, 5-162, S-165, 5 -168, S-169, 8 -170, S-171,

5-172, 8-173, 3-174).
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