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PREFACE
lIZZ4

The Committee on the Undergraduate Program in Mathematics has
always had as one of its major concerns the development of under-
graduate mathematics courses properly reflecting the mathematical
needs of students in the rapidly developing engineering, physical,
and social sciences. The ad hoc Subcommittee on Applied Mathe-
matics of CUPM was appointed in 1964 by Professor William L.
Duren, jr. , then Chairman of CUPM. One of its charges was to
suggest appropriate undergraduate programs for students planning
careers in applied mathematics.

The Subcommittee finds that, in this country, there is an almost
total lack of formal undergraduate programs, comparable in stimu-
lation and content to those in pure mathematics, whose specific
intent is the preparation of mathematics students for graduate work
in applied mathematics. It is strongly convinced that a well-
formulated undergraduate program which would permit students to
develop and nurture interests in applied mathematics at an early
stage in their mathematical education would result in significant
increases in the number and quality of applied mathematicians.

In this report the Subcommittee describes an undergraduate pro-
gram in applied mathematics for mathematics majors. It is a pre-
graduate program in the sense that its goal is to prepare students for
graduate work in applied mathematics it is not be be construed as
a terminal undergraduate program. The philosophy, the content, and
the implementation (an extremely important aspect in the Subcommit-
tee's view) are set out in the following pages.



INTRODUCTION

The primary aim of applied mathematics is the understanding of
a wide spectrum of scientific* phenomena through the use of mathe-
matical ideas, abstractions, methods and techniques. The applied
mathematician is at once a mathematical specialist and a versatile
scientist, whose interests and motivations derive from a strong
desire to confront highly complex or descriptive situations with
mathematical analysis and ideas. In essence, then, in his research
and teaching activities the applied mathematician contributes to the
ddvelopment of both mathematics and science by bringing these dis-
ciplines into closer relationship with one another.

The success of an applied mathematician is highly dependent
upon his ability to formulate idealized but relevant mathematical
models of scientific situations, and to pose precise and cogent
mathematical questions of the models which, on the one hand, have
a likelihood of being answered and, on the other hand, may be perti-
nent to an understanding of the original situation. In this process
he frequently must exercise careful scientific Judgment and sophis-
ticated mathematical insight. Ultimately, the applied mathematician
seeks to abstract the essential mathematical features of a given
model in the hope of making it more generally applicable. Frequently
this leads him into purely mathematical research.

The education of an applied mathematician, therefore, should
contain the following three basic ingredients:

(1) A substantial knowledge of the concepts and methods of the
various branches of modern mathematics and a considerable expertise
in those mathematical areas most closely related to his particular
applied interests.

(2) An understanding in depth of the principles, methods, and
practice of some scientific areas.

(3) The development of the desire and the ability to confront
scientific situations with mathematical ideas and analysis.

* In this report the words science and scientific, are used in a
very broad sense. They refer not only to the classical physical and
engineering sciences but also to the social, computing, biological,
medical, and management sciences.
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The amount and diversity of knowledge that these criteria imply
make it clear that the formal education of an applied mathematician
must extend well beyond the undergraduate level. In point of fact,
almost all organized educational programs in applied mathematics in
this country are graduate school activities. Little effort has been
e ended at the under duate level to re are and mold the under-
graduate student in mathematics for graduate work in applied mathe-
matics. Mostly, such students have been left to their own devices
to pursue a course of study alternating between pure mathematics
and specific fields of science. Many students who may have been
motivated initially toward applied mathematics lose that motivation.,
because they are not exposed to the spirit and practice of applied
mathematics soon enough. Moreover, it is not unusual for students
to be unaware of the possibility of pursuing a career in applied
mathematics.
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STATEMENT OF THE PROGRAM

The undergraduate program in applied mathematics set out here
is a program for mathematics majors and is meant to be preparatory
for graduate work in applied mathematics and allied fields. The
essential feature of the program is the introduction of courses in
applied mathematics at an early stage in the undergraduate program.
These courses are designed to develop, stimulate, and nurture the
attitudes and practice of applied mathematics. Their main themes
are the construction, analysis, and interpretation of mathematical
models for significant and interesting phenomena and situations.

The program has three principal aspects:

(a) A pregraduate, undergraduate major in mathematics, slightly
modified and a bit more rigidly prescribed than the CUPM pregraduate
recommendations outlined in the report Preparation for Graduate Study
in Mathematics [C] .* It is important that the student in this program
obtain a broad knowledge and a firm mathematical grounding in pure
mathematics, especially in the basic concepts, logical structure and
techniques of analysis and algebra, so as to qualify him for the
study of advanced mathematics in graduate courses. An important
educational desideratum is that the student be made aware of the
important role of computers in the applications of mathematics.

(b) A study in some depth of one or two particular fields of
application. For this purpose, we recommend two to four semesters
of upper division or beginning graduate courses in such fields.
These courses should stress fundamental principles and analytical
methodology. Naturally, the student in his first two years will take
the basic elementary science courses prerequisite for such study.
Indeed, we view this collateral science study as an undergraduate
minor for the applied mathematics student. We have appended a
list by title only of such depth courses in the section on course
descriptions. Further remarks concerning such courses appear in
the section on implementation of the program.

(c) A positive and stimulating study of the practice of applied
mathematics. As stated earlier, we propose to accomplish this part
of the program through courses given in the mathematics department
on mathematical model building and analysis. They should illus
trate the vital interplay between mathematics and science. (The
CUPM report A General Curriculum in Mathematics for Colleges [A]

* See Bibliography, page 27.
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contains an excellent description of the mathematical model building
process, pp 66-67.) Such courses are crucial to the program: they
form the vehicle for developing the motivations and the abilities of
the student in applied mathematics. It is, therefore, essential that
these courses be given with the same high standards and intellectual
excitement as the pure mathematics courses. Or_gy an applied mathe-
matician, or a mathematician with sympathetic and knowledgeable
interests in applied mathematics, should offer such courses.

The recommendation of the Subcommittee is that the equivalent
of a year's course of the type mentioned above be required of the
applied mathematics undergraduate. While this course should appear
as early as possible in the undergraduate program, it is obviously
necessary that the student already possess a measure of mathemati-
cal sophistication and familiarity with some basic science. We feel
strongly that the Junior year is the most appropriate time for this
course.

The model building, analysis, and interpretation aspects of
these courses are very important, perhaps more so than the speci-
fication of the scientific or mathematical topics covered. Certainly
the exact scientific topics covered will be dictated, in large measure,
by the interests and experience of the instructor. However, the
aspect of model building should lead but not dominate the mathe-
matical analysis and interpretation aspects. In particular, such a
course should not consist merely of a large collection of unrelated
models requiring only very trivial or elementary mathematics for
their analysis. The selected topics and models should lead to the
development of a substantial body of related mathematics. The
mathematical aspects of such a course should be of the same high
standards as any other mathematics course; the introduction of new
concepts should, whenever feasible, be motivated by the applica-
tions under discussion. We emphasize as strongly as we can that
these courses are not to be pure methodology courses or, for that
matter, mathematical service courses for other disciplines. Indeed,
pure mathematics students should also be urged to take such courses
to give them a view of the manner in which mathematics interacts
with science.

In spite of the fact that the actual topics covered in such
model building are less important than the spirit, some coherency
is desirable. For this reason, we have outlined two such two-
semester courses: one oriented toward the physical and engineering
sciences, in which analysis and differential equations play a domi-
nant role; and the other oriented toward the social and management
sciences, in which linear algebra, probability and statistics are
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dominant. These outlines, with appropriate comments, are to be
found in the course description section. Certainly other themes
e.g., the computer sciences are feasible.
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IMPLEMENTATION OF THE PROGRAM

To implement the Subcommittee's undergraduate program in
applied mathematics at a given university or college it is necessary
that (1) the mathematics department be capable of offering a pregrad-
uate mathematics program as outlined in the CUPM recommendations
[A ] and [C]; (2) that there exist properly qualified instructors for the
crucial model building courses; (3) that there exists at the given in-
stitution educational activity of an advanced nature in at least one
area of application, e.g., the physical, engineering, biological,
computing, social or management sciences.

In connection with (1), we note that the Subcommittee's program
in applied mathematics is an option in mathematics and, therefore,
does not require two distinct tracks or types of mathematics courses:

. one for students of pure mathematics and a counterpart for students
of applied mathematics. We should like to call attention, indeed,
to one of the objectives of the pregraduate curriculum [C]; namely
that every student preparing for graduate work in mathematics should,
in his mathematics courses, "be (made) aware of the applicability of
mathematics and of the constructive interplay between mathematics
and other disciplines."

We emphasize as strongly as we can that the success of the
Subcommittee's program is very much dependent upon maintaining
the proper intellectual attitudes both in material and instruction for
the applied mathematics model building courses. The program should
only be attempted where there are willing and competent instructors
for such courses. At present, there exists little comprehensive text
material in the spirit in which we envisage these courses; this ma-
terial must, to a great extent, be created by the instructors.

Although the depth courses in fields of application will gen-
erally be offered by departments other than mathematics, the mathe-
matics department must be actively concerned about them. First of
all, at a particular school the only fields which should be consider-
ed as possible areas of interest for the applied mathematics student
are those which offer suitable advanced courses, of a fundamental
and analytical nature, without long strings of technical prerequi-
sites. Secondly, it is desirable that such fields be closely related
to some of the applied mathematical interests within the mathematics
department. It must be the responsibility of the mathematics de-
partment to determine which fields of application and which courses
are appropriate for the applied mathematics program, and it should
list such courses in the description of its applied mathematics pro-
gram so that the student may more effectively plan his educational
goals.
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Finally, we believe that the success of such an applied mathe-
matics program is very much dependent upon the intellectual atmos-
phere and guidance provided for the applied mathematics student by

the mathematics department. This atmosphere and guidance should
be comparable to that provided for the pure mathematics student.
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DESCRIPTION OF COURSES

(a) Pre d te mathematics courses. In these recommendations
for mathematics courses for the applied mathematics undergraduate,
we rely on the course descriptions in the CUPM reports A General
Curriculum in Mathematics for Colleges [A] and Preparation for
Graduate Study in Mathematics [C] . The course numbering used
here is that in [A]. All GCMC courses are semester courses.

In the first two years, the student should have a set of calculus
courses containing material equivalent to the four semesters of
GCMC 1, 2, 4. 5. This sequence should provide the student with a
good intuitive notion of the limit concept, an appreciation of mathe-
matical rigor and proof, a firm knowledge of the techniques of the
calculus, and the ability to use the methods and ideas of the calcu-
lus to formulate, solve, and interpret problems in areas of applica-
tion. Moreover, the sequence should provide an introduction to
differential equations and an introduction to vector and multivariate
calculus, including some applications to other fields of mathematics
and science.

No later than the first semester of his second year, the student
should have a course (such as GCMC 3) in linear algebra and its
applications. In addition, it would be desirable for the applied
mathematics student to have some exposure to elementary probability
and statistics during his first two years; GCMC 2P would serve this
purpose. In the event that GCMC 2P is not available, then an upper
division course including material from GCMC 2P and GCMC 7 should
be taken in the third or fourth year.

As early as possible the applied mathematics student should
have an introduction to computer science; either as a formal course
or in connection with his other early courses. An outline of a one-
semester introductory course in computer science is given in the
report on computing [E] prepared by CUPM's Panel on Physical
Sciences and Engineering.

The upper division mathematics courses might be as varied for
a particular applied mathematics student as for a pure mathematics
student. Nevertheless, all applied mathematics students should
continue their studies of analysis and algebra by taking a real
analysis course equivalent to GCMC 11, an algebraic structures
course such as GCMC 6, and the numerical analysis course GCMC 8.
Students whose interests point toward the physical or engineering
sciences should take the complex variable course GCMC 13 and
possibly an intermediate differential equations course which
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concentrates on boundary value and eigenvalue problems for linear
ordinary differential equations and on the corresponding application
of these ideas to partial differential equations. Students primarily
interested in applications to the management, social and computing
sciences should take a probability course which includes some ma-
terial on stochastic processes (GCMC 7 is such a course). In addi-
tion a semester course, in which some of the elementary notions of
nonmed linear spaces and of functional analysis are introduced, should
be included for these students. Any additional work that may be neces-
sary to complete a major in mathematics would be on an elective basis.

(3) Depth coursest We list below titles of possible depth
courses as illustrations. In each case, the mathematics department
should determine the suitability of such courses from the applied
mathematics point of view: Does it stress fundamental principles
and the analytical aspects of the field? In many cases at least
in the physical sciences area excellent courses with the titles
mentioned below are generally available to students who have good
backgrounds in freshman and sophomore physics. From two to four
semesters' work in one or two areas of concentration is suggested.

The following list gives a general idea of the kind of subject
matter recommended for depth courses in the physical sciences:
Celestial Mechanics; Analytical Mechanics; Fluid Mechanics
(hydrodynamics, aerodynamics); Elasticity and Plasticity; Quantum
Mechanics; Statistical Mechanics; Thermodynamics; Control Theory;
Information Theory. Courses in these subjects should be chosen
which have a high degree of mathematical content.

For the social and management sciences, courses such as the
following are recommended: Theory of Games; Theory of Linear In-
equalities; Linear Programming; Non-Linear Programming; Dynamic
Programming; Queueing Theory; Systems Analysis; Optimization in
General Systems; Production and Inventory Control; Automatic
Process Control.

(c) Model building or applied mathematics courses. Broad out-
lines for two possible year courses in applied mathematics are given
here. It is recommended that these courses be offered in the junior
year. The first is slanted toward the engineering and physical
sciences, while the second is concerned with applications to the
social and management sciences . In both cases more material is
mentioned than can be covered in a year, thus enabling an instructor
to make a suitable choice of topics depending upon his and the
students' interests. It is emphasized that the mere listing of mathe-
matical or applied topics and references is not sufficient to describe
such courses. The various topics become meaningful only when

10



they are interpreted in the following sense: The dep.th to which any
particular tonic is_penetrated is that which is necessary to demon-
strate the vital interaction between the model building and analysis
process and the mathematical concents and techniques involved.
The instructor must achieve a delicate balance between the desire to
Pursue new mathematical ideas that arise for their own_sa_ke and
contentina himself with illustratina the depth of such ideas by well-
chosen examples and molted problems,

The two outlines differ in their organization. The first, which
involves the physical sciences, lists a number of "classical"
topics which might be said to fall under the general categories of
differential equations on the mathematical side and particle and
continuum mechanics on the physical side. Material for such topics,
though not accessible in any one text at present, can be found in a
variety of well-knoWn books. However, what is conspicuously lack-
ing in the literature are good sourcestontaining the appropriate
intertwining of the mathematics and the applications. It is hoped
that suitably integrated material, written in the spirit we have in
mind, will appear in the textbook literature before too long.

The second course, aimed at the social and management sciences,
is organized somewhat differently. A variety of: topics is listed under
two general headings: Deterministic Models and Stochastic Models.
The material contained in this course is relativel" .ew and, there-
fore, source material is included along with relex,..int comments far
each topic. No single text (or pair of texts) is available for this
course, and the Subcommittee again expresser the hope that such
material will soon appear in suitable texts.

11



INTRODUCTION TO APPLIED MATHEMATICS
Physical Science Option

The purpose of this course is to demonstrate the strong interde-
pendence between mathematics and the physical sciences and engi-
neering. This is to be accomplished through the construction, analy-
sis and interpretation of mathematical moijels for several interesting
and, significant physical problems. This t ourse should be offered in
the Junior year. Mathematical prerequisites are the introductory
analysis and linear algebra courses: GCMC ) through l. In additior
the student should have studied physics in college and be familiar
with the basic laws of physics, especially mechanics.

The mathematical applications in this course are primarily in
particle and continuum mechanics. The course outline has been
divided into five parts according to the mathematical techniques
required for the construction of the mathematical models considered.
Although many other areas of mathematical analysis might have been
included here, they had to be omitted to keep the list within reason-
able bounds. The topics that are included center around the theory
of differential equations; hence they are closely related to the stu-
dent's elementary work in calculus and physics.

The spirit in which the course is presented is of utmost impor-
tance: It is essential to maintain a vital and significant interplay
between the applications and the mathematical developments.
Although the various topics should be presented with appropriate
mathematical soundness and should be properly integrated, care
should be taken to insure that much of the motivation for the mathe-
matics stems from the applications.

a. Ordinaw_differentW equations. Although most applications
in this section are to particle dynamics, it is important to consider
problems from diverse areas of science which lead to ordinary dif
ferential equations as mathematical models. Excellent examples
are: circuit theory, chemical reactors, biological systems, celes-
tial mechanics, and others, The mathematical theory of systems of
linear differential equations should be done in matrix form; general
representation formulas for the soluticin of the initial value problem
for such systems should be derived. The treatment,of nonlinear
problems should be primarily qualitative, involving systems with
one degree of freedom, and properly illustrated with well-chosen
examples. Throughout this section numerical methods should play
an important role and, if possible, a computer should be utilized.

12



Linear' systems with constant coefficients. Normal modes.

Resonance. General first order linear systems, representation for-

mula for solutions of the initial value problem. Conservative

systems of particles, small vibrations. Pendulum motion and parti-

cle motion in a nonlinear resistive medium. Statement and proof of

the basic theorems for initial value problems: local existence,

uniqueness, and differentiable dependence on parameters. Lineari-

zation, local stability, and simple phase-plane geometry of tra-

jectories. Self-sustained oscillations of a nonlinear (nonconserva-

tive) system. Forced oscillations of a nonlinear system (e.g.

5f+ k2(x-µx3) = A cos wt) and the corresponding resonance phenom-

enon. A simple singular perturbation problem illustrating boundary

layer phenomena. Numerical schemes for solution of initial value

problems, stability analysis of such schemes.

REFERENCES

Andronov, A. A. , and Chaikin, C. E, THEORY OF OSCILLATIONS.
Princeton: Princeton University Press, 1949.

Birkhoff, G., and Rota, G.-C. ORDINARY DIFFERENTIAL EQUA-
TIONS. New York: Blaisdell Publishing Co., 1962.

Collatz, L. THE NUMERICAL TREATMENT OF DIFFERENTIAL EQUA-
TIONS. Berlin: Springer Verlag, 1960.

Herrick, P. K. ELEMENTS OF NUMERICAL ANALYSIS. New York:
John Wiley & Sons, 1964.

von ICrm6n, T. , and Biot, M. A. MATHEMATICAL METHODS IN
ENGINEERING. New York: McGraw-Hill Book Co., 1940.
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Landau, L. D. , and Lifshitz, E. MECHANICS. Reading, Massa-
chusetts: Addison-Wesley Publishing Co., 1960.

Minorsky, N. NONLINEAR OSCILLATIONS. Princeton: D. Van
Nostra d Co. , 1962.

Popov, E. P. DYNAM.Jer9tolATIC CONTROL SYSTEMS.
Reading, Massachuseifat-dison-Wesley Publishing Co. , 1962.

Stoker, J. J. NONLINEAR VIBRATIONS IN MECHANICAL AND
ELECTRICAL SYSTEMS. New York: John Wileyo& Sons, 1950.

b. 1iffusion processes. The classical model for heat conduc-
tion is continuous. Here we generalize considerably to include
discrete models as well as the limiting cases of continuous models.
The amount of probability theory needed is minimal and can be cover-
ed easily. Within this framework one can consider a simple linear
ordinary differential equation system forced by a random input (one
dimensional Brownian motion is a good example).

One dimensional diffusion: u(x,t1) = u(x+§,tn) dF
n(g)

where Fn(g) are either pure jump or absolutely continuous probability

distributions. The notion of a generating function and the use of

asymptotic expansions. One dimensional Brownian motion. Heat

conduction and neutron diffusion as limits of discrete diffusion

processes. Initial value problem for the heat equation. The funda-

mental solution and its probabilistic interpretation. Heat conduction

in a finite rod and in a homogeneous sphere; boundary conditions.

Regular eigenvalue problems for second order linear ordinary dif-

ferential equations arising from separation of variables. Unique-

ness theorems. Numerical methods for the solution of problems

involving the heat equation; the von Neumann stability criterion.
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A simple two-phase problem for the heat equation in which the mov-

ing boundary between the phases is to be determined is an inter-

esting problem to consider numerically on a computer: e.g. , a

model for the freezing of a lake or for geological strata.

REFERENCES

Richtmyer, R. D. DIFFERENCE METHODS FOR INITIAL VALUE
PROBLEMS. New York: John Wiley & Sons, 1958.

Samarski, A. A., and Tychonov, A. N. PARTIAL DIFFERENTIAL
EQUATIONS IN MATHEMATICAL PHYSICS, Volume I. San
Francisco, California: Holden-Day, 1964.

Uhlenbeck, G., and Ford, G. W., with Montroll, E. W. LECTURES
IN STATISTICAL MECHANICS. (Lectures in Applied Mathematics,
Volume I) Providence, Rhode Island: American Mathematical
Society, 1963.

c. Partial differential eauations. This is not meant to be a
general treatment of partial differential equations. Rather, a few
simple equations, such as the Laplace and the wave equation,
should be studied as models for a wide range of applications in
continuum mechanics, fluid mechanics, theory of sound, electro-
statics, etc. Although, at this level, the principal technique for
solving such problems will be the method of separation of variables,
stress should be placed on general features such as the fundamental
notion of a Green's function and its use in understanding the behav-
ior of general solutions, and the notion of characteristics and their
important role in propagation phenomena. At least one simplified
nonlinear model should be considered.

Derivation of the equations of motion for a fluid and/or an elastic

body from general integral conservation principles. Special prob-

lems in plane elasticity, plane incompressible isentropic flow,

electrostatics, which lead to the Laplace equation. Separation of

variables. Poisson's formula for the disk and the half-plane.
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Newtonian potentials, simple pole and dipole distributions. Green's

function and Green's formula. Maximum principle for harmonic

functions . Some numerical methods for the solution of boundary

value problems for the Laplace equation. Wave propagation (sound,

light, etc.) along a line and in space. Characteristics. Plane

waves, dispersion, scattering. Vibration of strings, membranes,

rods. A qualitative study of a simplified nonlinear problem as a

model for shock waves in a tube, Water waves in a shallow sea,

or diffusion with a nonlinear transport term.

REFERENCES

Berg, P. W., and MacGregor, J. L. ELEMENTARY PARTIAL DIFFEREN-
TIAL EQUATIONS. San Francisco, California: Holden-Day, 1963.

Courant, R., and Hilbert, D. METHODS OF MATHEMATICAL
PHYSICS, Volume I. New York: John Wiley & Sons, 1953.

Forsythe, G. E. , and Wasow, W. FINITE DIFFERENCE METHODS
FOR PARTIAL DIFFERENTIAL EQUATIONS. New York: John Wiley &
Sons, 1960.

von arrnfin, T., and Blot, M. A. MATHEMATICAL METHODS IN
ENGINEERING. New York: McGraw-Hill Book Co., 1940.

Richtmyer, R. D. DIFFERENCE METHODS FOR INITIAL VALUE
PROBLEMS. New York: John Wiley & Sons, 1958.

Sagan, H. BOUNDARY AND EIGENVALUE PROBLEMS IN MATHEMATI-
CAL PHYSICS. New York: John Wiley & Sons, 1961.

Samarski, A. A. , and Tychonov, A. N. PARTIAL DIFFERENTIAL
EQUATIONS IN MATHEMATICAL PHYSICS, Volume I. San Francisco,
California: Holden-Day, 1964.

Sommerfeld, A. PARTIAL DIFFERENTIAL EQUATIONS IN PHYSICS,
New York: Academic Press, 1949.

Stoker, J. J. WATER WAVES. New York: John Wiley & Sons, 1957.
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d. Calculus of variations. The material of this section is a
rather brief excursion into the calculus of variations with a view
toward obtaining global mathematical models for a number of appli-
cations discussed in the previous sections. Indeed, this material
may well be incorporated in those sections. Courant-Hilbert,
Volume I, has an excellent introductory chapter on the calculus of
variations.

The brachistochrone. The Euler-Lagrange equations. Hamilton's

principle and the Hamilton-Jacobi equations; planetary motion, geo-

metrical optics. The use of variational problems to derive appropri-

ate boundary conditions. Energy principles for elastic bodies. Min-

max characterization of natural frequencies. Rayleigh-Ritz computa-

tions for simple torsion and buckling problems. A simple control

problem or "rocket programming" problem.

REFERENCES

Akheiser, N. I. CALCULUS OF VARIATIONS. New York: Blaisdell
Publishing Co. , 1962.

Courant, R., and Hilbert, D. METHODS OF MATHEMATICAL
PHYSICS, Volume I. New York: John Wiley & Sons, 1953.

Gelfand, I. M., and Fomin, S. V. CALCULUS OF VARIATIONS.
Englewood Cliffs, New Jersey: Prentice-Hall, 1963.

e. Fourier analysis. Although Fourier series have already been
used in previous' sections, the topic is of sufficient importance in
applied mathematics to warrant systematic treatment, and of all the
topics in this course it is perhaps the easiest to treat formally at
this level. In several fields of application, such as circuit theory
and information theory, spectral (frequency) models are intimately
connected with the basic physical concepts. The (L2) inversion
problem for Fourier series serves as an excellent illustration of the
necessity for using a more sophisticated notion of integration.
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A proof of the Weierstrass polynomial approximation theorem.

Fourier series of continuous functions, uniqueness, C-1 summabil-

ity. Statement and proof of convergence theorems for Fourier series

of piece-wise smooth functions. Gibb's phenomenon. Response of

a linear system to a periodic input. Mean-square approximation of

the partial sums of a Fourier series to the function; the Parseval

relations, convolutions. An introductory excursion into a simple

prediction or time series problem may prove interesting.

REFERENCES

Courant, R. , and Hilbert, D. METHODS OF MATHEMATICAL
PHYSICS, Volume I. New York: John Wiley & Sons, 1953.

Davis, H. F. FOURIER SERIES AND ORTHOGONAL FUNCTIONS.
Boston: Allyn and Bacon, 1963.

Lighthill, M. J. INTRODUCTION TO FOURIER ANALYSIS AND
GENERALISED FUNCTIONS. New York: Cambridge University
Press, 1958.

Sz-Nagy, B. INTRODUCTION TO REAL FUNCTIONS AND ORTHOG-
ONAL EXPANSIONS. New York: Oxford University Press, 1965.

Tolstov, G. P. FOURIER SERIES. Englewood Cliffs, New Jersey:
Prentice -Hail, 1962.
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INTRODUCTION TO APPLIED MATHEMATICS
Optimization Option

The purpose of the course is the presentation of important and
representative illustrations of the work of applied mathematicians .
This work has three major aspects: (a) the formulation of scientific
problems in mathematical terms, (b) the solution of the mathematical
problems that result, and (c) the interpretation and evaluation of the
solution. The primary emphasis of this course will be on the phases
of formulation and interpretation. This means that careful attention
must be given to the prior training of the students and that the level
of the mathematics used must be consistent with their preparation.
Mathematical methods, such as Lagrange multipliers or linear in-
equalities, which the student may not have encountered in his prev-
ious courses, are to be developed only to the degree needed for the
application. Although this may limit the discussion to special cases
of more general models, it seems clear that the central objective of
teaching the nature of formulation and interpretation is better served
by this restriction. The consideration of mathematical methods in
depth is left to a series of courses which can parallel and follow
this introduction. .7:t is intended that this course be given in the
junior year.

Deterministic Models.

a. Inventory problems, Sources: Churchman, Ackoff, and

Arnoff [ 6] give the most thorough treatment of elementary problems

(Chapters 8-10, pp. 199-274). The mathematics used can follow

any traditional calculus sequence; an extensive bibliography

follows Chapter 8, pp. 232-234. The basic reference on applica-

tions is Whitin 34] , which summarizes most of the developments

up to about 1952. An excellent expository account of mpre modern

techniques of inventory control has been given by Ladermann,

Littauer, and Weiss [20]. There are numerous sources of examples

and exercises such as Saaty [ 28] (see Example 2, p. 159 ff.).
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b. Growth and survival models. Sources: Kemeny and Snell [19]

give a very successful exposition of two dynamic models derived

from ecology in Chapter III, pp. 24-34, complete with 13 exercises.

The material is drawn largely from Lotka [21] (Chapter VIII).

Another source of applications which are based similarly on systems

of linear differential equations is given by Rappaport [26] , who

draws in turn on the original work on arms races by Richardson.

c. Scheduling problems. Sources: Churchman, Ackoff, and

Arnoff [ 6] give an introduction at the proper level (Chapter 16,

pp. 450-476) and include a bibliography of 19 items. A special

result of importance is contained in Johnson, "Optimal two and

three-stage production schedules with set-up times included, "

[17] and is treated quite well in Bellman and Dreyfus [4] , pp.

142-145, with further bibliography on pp. 150-151.

d. Dynamic programming. Sources: This subject could be

introduced via the Johnson scheduling result cited above or via the

extensive example developed by Kemeny and Snell [19], Chapter

IX. , pp. 109-119, which is accompanied by 15 exercises. After this

the problem is an excess of sources. The basic references are

Bellman [3] and Bellman and Dreyfus [4]. The latter is more in the

spirit of this course, as are Howard [15] and Hadley [13] .

e. Line_..m.LcAEAL=gn . Sources: The problem here is again one

of too many sources. A rather novel instance of a formulation is the
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problem of optimization of structural design treated by Prager [ 25] .

The basic reference is Dantzig [ 7] , which emphasizes formulation

in Chapter 3, pp. 32-68. Economic formulations and interpretations

are well treated in Baumol [2] . At a minimum, the theory and inter-

pretation of duality should be included in this unit. The mathematical

treatments of Dantzig [7] or of Gale [11] could be used here. As

sources of additional applications, exercises and interpretations,

Hadley [12] and Dorfman, Samuelson, and So low [ 8] can be

recommended.

f. The theory of games. Sources: If we remember that the ,

objective of this course is to introduce the student to the problems

of formulation and interpretation encountered in applied mathematics,

the selection of articles collected by Shubik [ 29] seems ideal.

This contains such classic papers as Milnor's work on "Games

against nature" and McDonald and Tukey on "Colonel Blotto game,"

as well as significant excerpts from Luce and Raiffa [ 22] and von

Neumann and Morgenstern [33].

g. Nonlinear programming. Sources: Examples abound to intro-

duce this subject. However, a particularly satisfactory example

may be found in "Optimal horse race bets" by Isaacs [16] . The

textbook situation has been much improved by the appearance of

Had, [ 13] . The minimum content of the theory to be introduced

in this unit is the use of Lagrange multiplier techniques for non-
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linear problems constrained by inequalities (e.g., Chapter 6, "Kuhn-

Tucker theory," in Hadley). A particularly fine exposition is pro-

vided by Tucker [ 31] . Economic applications are treated by Baumol

[ 2] and in an excellent exposition done by Enthoven as an appendix

to Hitch and McKean [141, pp. 361-405. Another source of example

and exercise material is Vajda [32] .

Stochastic Models.

a. Inventory problems , Sources: Dvoretzky, Kiefer, and

Wolfowitz [9] , [10] . See also the article by Ladermann, et al.

[ 20] . An excellent stochastic dynamic inventory model is developed

in Hadley [ 13] , pp. 402-409. Reference should also be made to
H. Scarf's elegant paper "The optimality of (S, s) policies in the
dynamic inventory problem" in Arrow, Karlin, and Suppes [1 ], pp.

196-202. There are many other sources for applications to simple

stochastic demand, both discrete and continuous.

b. Clueueina Problems, Sources: A satisfactory textbook treat-

ment appears in Churchman, Ackoff, and Arnoff [ 6], pp. 389-449.

An adequate bibliography is given there and the second half of this

selection is the "classical" study of traffic delays at toll booths

by L. C. Ellie. Chapter 11 of Saaty [ 28] , "Resume of Queueing

Theory" is more suited to the level of this course than his book on

the same subject and contains a useful listing of applications on
pp. 364-367.
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c. Markov chains. Sources: A typical example with which this

subject can be introduced is the model taken from sociology by

Kemeny and Snell [19] , Chapter V, pp. 54-65. A more complete

treatment of the theory is given by the same authors in [19]. Other

applications are discussed by Howard [15] and an important class

of problems are drawn from learning theory (see, for example, Bush

and Mosteller [ 5]).

d. Simulation. Sources: Most of the sources here are in the

nature of individual applications. However, reference may be made

to Rich [ 27] and Thomas and Deemer [ 30] . On the "Munte Carlo

method" (as opposed to simple simulation) see Metropolis and

Ulam [23] and Meyer [ 24] .

e. Utility theory. Sources: For a self-contained account of a

major portion of modern utility theory, it is hard to improve on

Chapter 2 of Luce and Raiffa [22]. This chapter will lead to much

of the relevant literature, both theoretical and experimental (see

pp. 34-37).
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