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CHAPTER 9

TRANSFORMATION OF THE PLANE

AND ORIENTATIONS IN THE PLANE

9.1 Knowing How and Doing

Have you ever read a book on how to roller skate

or ride a bicycle? Do you think you could have done
well on roller skates or on a bicycle the very first
time you tried merely because you have read the book?

Knowing how is not quite the same as being able. In
this chapter you will be given a chance to do many

things as well as to learn about them. In order to do

these things you will need some equipment in addition

to pencil and paper. At the beginningof each section

you will be told what equipment you will need. Obtain
this equipment before going farther so that you can
read and follow without interruptions.

9.2 Reflections in a Line (Part I)

Materials needed: Paper without lines, tracing
paper, ink, pen, two rectangular
mirrors, and a compass.

Activity 1: Fold one of your unlined sheets of paper
down the middle. Open up your folded sheet and put

one drop of ink in the crease you made, and one drop of

ink about an inch away from the crease.

Close the paper and spread the ink about, keeping the

ink within the folded paper. Nowopen up your paper.

Look at the ink spots on both paper halves. How do

the ink spots compare in size and shape? Now fold one

half back and replace it by one of your mirrors in an up-

right position so that the edge of the mirror fits into
the crease. How do the images you see in the mirror

compare with the ink spots you folded back?
Put 2 more ink drops on one half of your paper and

repeat the steps of the preceding paragraph. Compare
the distance between any 2 ink spots on one paper
half with the distance for the corresponding 2 ink spots

on the other. Are they the same? What generalization

seems to hold for the two paper halves? Let us call the

ink spot figure on one paper half the reflection in the
crease of the other ink spot figure.
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After the ink dries, use your tracing paper to trace
around one of your ink spot figures. What must you do

to your tracing paper to get a picture of the reflection
of the figure you traced?

In previous chapters we have learned that a map-

ping makes assignments. For example, the successor
mapping, S, assigns to each integer the next larger

integer.

S: n n 1

Reflection in a line is also a mapping since it assigns
points to points on a plane. Restricting ourselves to a
fixed plane, a reflection with respect to a fixed line
assigns to each point its mirror image or reflection in
the given line. In this section we shall study proper.

ties of reflection mappings.

Activity 2: Foldone of your unlined sheets of paper

down themiddle. Open up your folded sheet and place

a heavy dot off the crease line, label the dot "A".

A'

(m)

Try to guess where its reflection in the crease will be.
Fold along the crease with the dot inside. You should

be able to see the dot through the paper. Use a ball-

point or pencil to go heavily over the dot from the wrong

side. Open up your paper. You should now be able to

see a mark for the true image of the dot. How good was

your guess? Call the actual reflection of A in m, "A' ".
Place another dot, B, and guess where its reflection in

m ought to be. Now find the image of B under the reflec-

tion in m just as you found A'. Coll the image of B, B' .

Draw a line between A and B, A' and B'. Using an
opening of your compass, check to see whether the
length of segment ABis the same as the length of seg-

ment A' Bs.
Place another point on the some half, call it "C",

and try to guess where its reflection in m, C', is.
Check by folding on m. Compare the lengths of AC with

C' and of BC with WU . How do your measurements
support your generalization for Activity 1?

Join A to A' and mark the point where the line
drawn crosses m, "Ai" (Read: "A one"). How do the
lengths of AA1 and A' A1 compare? Join B to B'



C to C' crossing m in B1 and C1, respectively. How

do T3Ii and B' B1 compare in length? CC1 and C' C1?

What generalization might you make from these obser-

vations?
The mapping with respect to a fixed line, m, that

takes every point into its mirror image (such asA into
A' ), is called a reflection in m. You noticed above that

the length of AB was the same as the length of A' B' ,

the length of AC was the same as the length of A' C' ,

and the length of BC was the same as the length of

B' C' . The mapping which assigned.A to A', B to, B'
and C to C' was such that the distance betwoen any

two points of its domain was the same as the distance
between the images of these points in the range. A map-

ping like this, which preserves distances, is called an

isometry ("i so" means equal, "metry" means measure).
Do you think that every reflection is an isometry? Is

every isometry a reflection?
The entire picture on the full sheet is said to be

symmetric with respect to m, and m is called the line
of symmetry for this full picture. What is the line of

symmetry for this kite figure?

Howmany lines of symmetry does a rectangle have? a

square?
Returning to our sheet, join Al to B and B' . Com-

pare A1B with Al B' ? Join Al to C and C' . Compare

A1C and other point, P, on the crease
m to A and A' C and k." . What seems to be true about

the distances of any point on m to a point and its re-

flection?
Your observations should lead you to believe that

a line reflection is an isometry, and that a figure to-

gether with its reflection is symmetric with respect to

the line of reflection.

Activity 3: Fold one of your unlined sheets. Open up

and put a dot on one side of the crease, label it "A".

crease (e)

Simply by folding this paper, try to locate the reflec-

tion of A on C. Do not read further without first trying.

Some hints are:
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1. Fold back along the crease, and then fold back

at A as shown in this figure.

Can you finish now?

2. Fold back once again at A.

end open up
to show all
the creases.

Where is A' ? Find B' the same way.

Activity 4: We shall now see how to obtain the reflec-
tion of a point in a line without folding. First try to
figure out a way yourself. There are many ways of do-

ing it. You will probably need your compass.
One method of finding the reflection of a point A

in m is to think of the kite figure. Find 2 points in m,
call them P and Q, and think of PAQ as half a kite

figure.

Our previous observations lead us to believe that A' ,

the image of A, is just as far from P as A is from P,

and that A' is just as far from Q as A is from Q. If

we draw a circle with P as center and a radius of
length PA, then A' must be someplace on this circle.



A' is
someplace
on this
circle

A' must also be on a circle with center Q and radius

QA.

A' is someplace
on both of these
c hetes. What
point is A'?

Join A' to P and Q to complete the kite figure.

Using this method of obtaining reflections, find
the reflections of points A, B, C if A, B, C are on the

same line with B between A and C.
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Are the image points A', B', C' also on a line? is B'
between A' and C' ? What generalizations are suggest-

ed by your observations? Suppose B is taken as the
midpoint of AC, what is your guess about B' ? Check

your guess with a compass.
Your observations should have suggested to you

that a reflection maps collinear points into collinear
points preserving betweeness. That is, if P, Q, R are
points on the same line, p , then their images P' , Q' ,

R' are on the same line . If Q is between P and R,
then Q' is between P' and R'. In fact, the midpoint
of a segment is mapped into the midpoint of the image

of this segment.

9.3 Exercises
1. Which points in a plane are their own images

under a line reflection?

2. If you hold a pencil in your right hand, what

hand does it look like in the mirror?

3. If you spin a top clockwise, what does it seem

to be doing in the mirror?

4. If points A', B', C' are the images of points
A, B, C under a reflection in m, what are the

images of A', B', C' under this reflection?

C'

A

C

5. Dr'aw the reflection in m of line segment AB.

m

6. Draw the reflection in m of ray AB.

A

I



(a)

m

(b) (c)

7. Draw the reflection in m of line AB.

(a) (b)

III

8. Find all lines through A that are identical with
their reflections in m:

(a) A (b) A

m m

9. Do exercise 8 by creasing a paper on which m
and A are shown, if you did not use this method
in Exercise 8.

10. Fold a sheet of paper down the middle and
draw some picture as shown here. Cut along
the line you drew and open up. What do you
notice?

11. Which printed capital letters frequently have a
line of symmetry? Will the reflection of these
letters in any line be the same letters?

12. Try writing your name so that it reads right in
a mirror.
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13. Place a sheet of carbon paper under a sheet of
paper so that the carbon faces the back side of
your paper. Write your name. Look at the back
side of your paper in a mirror. What do you see?

14. For this exercise you will need a pad, 2 pins,
and a mirror about -I" wide ant: ct least 6" long.
If you cannot get a mirror of this size, try to
improvise.

Pad
I

, Mirror
(upright on PZIT-----41

f
Pin IP)

Secure the mirror in an upright position on the
pad. (Brace it with a book, or fasten it with
pins, scotch tape, or adhesive tape.) Stick a
pin upright into the pad about 2" in front of
the mirror. Place.your eye close to the pad so
that you can see the image of the lower part of
the pin, P, in the mirror. Try to place the other
pin, P', so that it will always line up with the
image of P you see in the mirror no matter how
you change your line of vision. Where is P' in
relation to P? Your pin, P', should be located
at the reflection of P in the mirror. P' is now
the image of P under a reflection in the mirror.
This close analogy between a reflection map-
ping and reflections in a real mirror is the rea-
son for using the words "reflection" and
"image".

15. By folding your paper, find the line m, for a re-
flection that will map

(a) P onto P' (b) AB onto itself

P

oP.

(c) SR onto ST (d) Line AB onto line
CD. (There are 2
lines m)
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(e) In each of the above exercises what can
you say about the crease?

9.4 Lines, Rays and Segments

Although we picture a line as a taut string, as
the edge of a molding, as a mark on the blackboard or
paper, we must recognize that these things are quite
inaccurate as representations of a line. For example,
a string mc-y sag or have a "belly". A string has thick-
ness. A string does not go on and on in both directions
endlessly. However, a line has no "belly", no thick-
ness, and does go on endlessly in both directions. But
how can we do any better? A line is an idea (like a
number) while a physical representation is a thing (like
a numeral) used to denote the idea. The marks we call
"lines", only represent lines yet we still continue to
refer to the marks as lines because we are not really
concerned about the marks but about the ideas the

marks represent.
If "A" and "B" name two points of a line then

"AB" names the line containing A and B. We assume
that there is only one line (our lines are always straight)
that contains two different points. AB and BA are the

same line.

A

We often place arrow heads at the ends of our marks to
remind us that the lines are endless in both directions.
Sometimes, we place a letter on the mark and refer to
the line by the letter.

Consider a line m and a point P in this line:

P
.111

The set of points in line m to the right of P, together
with P, is a ray. The set of points in m to the left of
P together with P is also c ray. Point P is called the
endpoint of both rays. Any point P in a line together
with all the points of the line that are on the same
side of P, constitute a ray.

We often name a ray by two capital letters. The

left letter names the endpoint of the ray and right let-
ter names any other point of the ray. An arrow point-
ing to the right is placed over both letters.

A

I

A

C S- -Ill--- KR

SC

T

V
TV

If P andQ are two points on line m, PQ and QP are
different rays. They overlap on a set of points contain-
ing P, Q and all the points between P and Q.
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Nrar.

overlap of PO and OP

The overlap of PQ and QP is the segment PQ (or QP).

9.5 Exercises
1. Let A, B, C, be any 3 points that are not on the

same line (non-collinear points).

A

C

Draw all the lines you can, each containing
two of these points.

(a) How many lines did you get?

(b) Name the lines.

(c) Name each of these lines another way using
the same letters.

2. Let A, B, C, D be any 4 points, no three of
which are collinear.

A
C

Draw all .the lines you can each containing two
points.

(a) How many did you get?

(b) Do the same thing for 5 points, no 3 of
which, are collinear. Fill in he table below
and try to discover a pattern that you feel

should continue.

(c)

Number of Points 2 3

Number of Lines

4 5 6

3.

(d) Try to give an argument to support your gen-
eralization.

A

(a) Name the line shown in as many ways as
you can using the names of the given points.
There are.12 possible ways.

(b) Name all the different rays you can find in
the figure. Note AB, AC, AD are all the
same ray.

es 1k 7;



(c) How many different rays did you find?

(d) Fill in the table:

Number of Points on a Line 1 2 3 4

Number of Rays

(e) Try to discover a pattern that you feel
ought to continue.

(f) Try to give an argument to support your
generalization.

(g) Name all the segments formed by points
A, B, C, D.

(h) How many different segments did you get?

(i ) Fill in the table:

Number of Points one Line 2 3 4 6

Number of Segments

(j) Try to discover a pattern that you feel
ought to continue.

(k) Try to give an argument to support your
generalization.

9.6 Perpendicular Lines

In one of the exercises you were asked to find a
line, n, through A that is its own reflection in m. Your
line should look like the one in the figure. Whenever

we have two lines such that either is its own reflec-

n A' A

m

tion in the oth*r, we say that these lines are perpen-
dicular to each other. We use the symbol "i"for
"perpendicular" or "is perpendicular to". For the fig-
ure above, we have min and nim.

If B and B' are two points, each the reflection
of the other in line m, then BB'im, and mIBB'.

m

We often indicate in a drawing that 2 lines are
perpendicular by a little square where the lines cross.
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Line segments which are in perpend"cular lines
are said to be perpendicular. Rays which are in per-
pendicular lines are said to be perpendicular. In fact,
any combination of line, ray and segment may be per-
pendicular if they are in perpendicular lines. We con-
tinue to use "i" for any such perpendicularity.

9.7 Rays Having The Same Endpoint

In this section we shall be dealing with rays that
have a common endpoint.

PA and PB are rays with the same endpoint, P.

A

If two rays with the same endpoint constitute a
line, they are called opposite rays. The rays Tit and
RD are opposite rays.

D R C

Some rays with the same endpoint have directions
that are not very different. These rays have a small
spread or a small opening. For instance, the rays in
this figure seem to be close together.

If we were given two such pairs of rays with
small spread or opening, how could we compare the
openings? How could we tell which pair of rays have

a greater spread? To see when such information would
be handy, consider the following situation.

Mom makes delicious pies of uniform thickness.
She is very skillful at cutting sections from the cen-
ter. When you get home one day you see these two
pieces in a pan.

Segments

RS, RT,
ririrs and

RI' are
all the
same

length.



Which one would you select if you want the larger
piece? You may want to use your compass to help you

decide. How mitt you use it? Think about this ques-

tion a moment before reading on.
If you thought of comparing the distance from S to

T with the distance from 5' to T', then you have an-
ticipated the text. These measurements were intended

to be identical, but your eyes probably made you feel

that the left piece is the larger.
Using this tasty example as a clue, how could

you decide which pair of rays have the greatest spread?

Do the rays at A, at B, or at C have the greatest
spread? Which rays have the least spread?

One way of telling is to draw an arc of a circle
across each ray, using in turn points A, B, and C as
centers. Each arc should have the same radius (or

opening of your compass). After the arcs are drawn,

compare the distance between intersection points just
as you did for the pie.

This method of comparing ray spreads may seem
crude, but it can be very precise, especially, for small-
er spreads. Later you will learn of another way to com-

pare spreads by using a special instrument designed
for this purpose.

Activity 4: On a sheet of unlined paper, draw line m
and a pair of rays PA and PB as shown:

I

0
.1.%

m

Find the reflections P' A' and P' B' of the rays PA
and PB in m. Guess how the spreads of the rays at P
and the rays at P' compare. Check by using your com-

passes. What generalization seems to hold? Repeat
the experiment with rays of a different spread.

Actiliv5: On a sheet of unlined paper join 3 non-
col linear points A, B, C.

The figure ABC is called "triangle ABC". Find the
reflection of triangle ABC, in m. Compare the spreads

of the rays at A, B, and C with those at A', 13' and C'.
How do the lengths of segments AB, BC, and AC com-

pare with the lengths of their reflections, A' B, ETC) ,

and A' C' . Cut out Triangles ABC and A' B' C' . See

if you can make them fit. Did you have to turn over
one of the cutouts before making your figures fit? Will
it always be necessary to turn overirlf not, when will
it be unnecessary?

Activity 6: Now we are going to make a reflection and

then a reflection of the image of this reflection, but
in a different line. Draw the following on your unlined

paper: Triangle ABC and lines m and n.

A"

Find the reflection of ABC in m. Call it A' B' C' .

Now find the reflection of A' B' C' in n. Call this
new figure A"B"C". Your figures should look some-
thing like the figure above. Try to make some general-

izations about the figures ABC, A' B' C' and A" B" C'
Cut out the 3 figures. Do they fit? Should they fit well?

Why do you think so?

9.8 Exercises
1. (a) Find the line containing point A that is per-

pendicular to line m. You may try folding
your paper.

A

(b) Suppose now that A is on m, find the line
containing point A that is perpendicular m.
You may want to try folding your paper.
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(c) Try to do (a) and (b) without folding.

2. (a) What can you say about a triangle that has
exactly one line of symmetry?

(b) Can you find a triangle that has just two
lines of symmetry?

(c) Can you find a triangle that has just three
lines of symmetry?

(d) Are there triangles that have more than
three lines of symmetry?

(a) Find the reflection of Triangle T in m, call
it "Tm" and the reflection of Tm in n, call
it "Tmn", and finally, the reflection of Tmn
in m, Tmnm". Compare T, Tm, Tmn,
Tmnm What generalization would you care
to make?

(b) Carry out the same steps with m and n per-
pendicular lines. What can you say now that
seems to be true?

4. What is wrong in each of these cases?

(a) The distance from A to B is less than the

distance from C to D. Hence, the spread of
the rays at P is less then the spread of the
rays at Q.

(b) If two triangle cutouts fit then the spreads
for three pairs of angles (one from each tri-
angle) must be the same. Hence, if the
spreads of pairs of angles for two triangles
are the same, their cutouts should fit.
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5. Why are comparisons difficult for the spreads
of rays that are close to being opposite rays?

6. (a) If the distance from A to B is twice the
distance from C to D, would you say that
the spread for the first rays is twice the
spread for the second?

(b) Compare spreads for two opposite rays and
a pair of perpendicular rays. Is your first
spread twice as large as the second?

9.9 Symmetry In a Point

Does the parallelogram below have a line of
symmetry?

/
In other words, is there a line for which the parallelo-
gram and its mirror image in this line are the same set
of points?

After some 'experimentation, including folding,
you will probably say that this parallelogram has no
line of symmetry; there is no lino reflection that leaves
the parallelogram unchanged. However, as we shall
soon see, the parallelogram does have a kind of sym-
metry; it is always symmetric in a point. Try to guess
what symmetric in a point means.

Activity 7: Materials needed: Pencil, unlined paper,
compass.

Let C be any point between points A and B. Let
P be any point, not necessarily on line AB (See dia-
gram below).

Draw a line through A and P, call it "w". Open your
compass from P to A. With P as center and PA for radi-
us, draw an arc crossing W in A', so that A,P,A' are
in the same line, with P just as far from A as it is



Cut out AABC and AA' B' C' . Try to notice ex-
actly what you have to do to make one triangle fit on
the other. Do you have to turn one over before they
will fit? Recall that for reflection in a line it was of-

ten necessary to turn over the figure or its image to
obtain a fit.

The lines of your lined paper are parallel lines.
In general, if two lines are in the same plane (flat sur-
face) and do not cross, the lines are parallel. What
happens to parallel lines under a reflection in a line
and symmetry in a point?

Activity 9: Materials needed: Pencil, lined paper, un-
lined paper, compass.

C

A
op

Draw a figure like the one shown here, with two
lines parallel. Find the image of AB under a sym-

metry in P; call it A' B' . Does it seem that AB and
A' B' are parallel? If they are parallel (let us abbrevi-

ate our writing by using the symbol II I It for "is

parallel to") we have AB I IA' . Find the image of

CD under a symmetry in P, calling the image C' D' . Is

CD I C' ? What conjectures would you be willing
to make now?

Find the reflections of the parallel lines CD and
AB in m. Are the reflections parallel? Is CD parallel
to its reflection in m? Have you made any of these

conjectures?

1. A line maps onto a parallel line under sym-
metry in a point.

2. Two parallel lines map onto two parallel lines
under symmetry in a point and reflection in a

line.

3. The image of a figure under a symmetry in a

point is a rotation of the figure through a "half
turn":
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P

A C'

9.10 Exercises

1. What point is its own image under a symmetry

in point P?

2. Is there a point P in which a symmetry will map
each of the following figums onto themselves?
(If there is, show its location)

(a) A line segment

(b) A ray

(c) A line

aver.Y....01a."00.11~0.4.14110...IWA4M.F.W.kia 77.1.4.1.11,,440ORNitAilltA.W..r.P.Worlat..9.A..SW44Wa .

from A'. P is the midpoint of AA', and P bisects AA'.
We shall say that A' is the image of A under the sym-

metry in P. In the same way, find the imageof B and C
under the symmetry in P, calling the images B' and C'

respectively.
Are the points A', B', C' also collinear? Is C'

between A' and B' ? How does the distance from A to B

compare with the distance from A' to B' ? Compare the
lengths AC with A' C', and BC with B'C' ? What con-

jectures would you make from this activity regarding:
coilinearity of points, betweeness, isometry? Try to
find a single line in which a reflection maps A into A'

and B into B'.
The above activity should have suggested to you

the following:

1. Just as a reflection in a line is a mapping of

all the points of the plane onto all the points
of the plane, symmetry in a point of a plane is
also a mapping of cl I the points of the plane
onto all the points of the plane.

2. Both mappings, reflection in a line and sym-

metry in a point,

(a) are one-to-one,

(b) are isometries,

(c) map collinear points onto collinear points,

(d) preserve betweeness.

What other properties would you conjecture? Per-

haps the next activity will suggest some others.

Activity 8: Find the image of triangle ABC (usually
written as "A ABC") under the symmetry in P. Call it
A A' B' Cs where A ---0 A' , B -4 B' , C 0 C' .

P

Compare the spread of the rays of A, B, C with the
corresponding spread of the rays at A', B', C' . How

do the lengths AB, BC, and AC compare with A' B ',BIC'
and A' C' ? What additional conjectures would you now

make that have not been mentioned regarding the im-

age of a line, ray, and segment under symmetry in a

point? What conjecture would you make regarding the
spread of two rays and the spread of their images un-

der symmetry in a point?
Have you thought of these:

3. Symmetry in a point, just as reflection in a

line:

(a) maps segments onto segments

(b) rays onto rays

(c) lines onto lines

(d) preserves the spread i two rays



41 '4AZ:co

(d) A pair of parallel lines

(e) A parallelogram

(f) The letter Z

3. If there is a point in which a symmetry will
map a figure onto itself we say the figure is
symmetric in a point. If there is a line in which
a reflection will map a figure onto itself we say
the figure is symmetric in a line. For each
printed capital letter in the English alphabet,
decide whether it is frequently symmetric in a
point or in a line or neither.

Letter

A

B

C

Symmetric Symmetric
in a Point in a Line Neither

No Yes OM.

4..ls there a line, m, in which a reflection will
map each of the following figures onto itself?
If there is, show it

(a) A line segment

(b) A ray

(c) A line

(d) A parallelogram

5. Using unlined paper and your compass obtain
a line parallel to m. Hint: Find the image of m
under the symmetry in P.

P

1,

6. Try to find a way of obtaining a line through P
parallel to m. (See Exercise 5)

(a) by folding your paper

(b) without folding but using your compass

7. What kind of symmetry does each of the follow-
ing have?
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(a)

(a) A picture of a face (1) front view (2) side
view

(b) A circle

(c) A square

(d) A rectangle

(e) A picture of a top

(f) A picture of a 5 corner star

(g) A picture of a 6 corner star

(h) A swastika

(i) A crescent

8. Denote by "pp" the symmetry mapping in point
P, and by "em" the reflection mapping in line
m. Find the image of AB under each of the fol-
lowing composition mappings:

(a) Qm with pp (c) e with fi
(b) pp with e m (d) pp with pp

.P

A

(e) p with Q (f) Q with f p

op
Q

(g) Which of the above mappings (a-f) gave an
image that was parallel to AB? (We say
that line segments are parallel if they are
in parallel lines.)

9. If AB and CD have the same length, find one
or more symmetries that win map AB onto 0.
(you may have to compose two symmetries)

(C)

A

A

(b)

D



10. Let rils. Find the image of AB under each of
the following composition mappings:

(a) Pro Ps (b) tGsotCr

r
A

$

(c) Are the images found in (a) and (b)

(1) the some?

(2) parallel?

(3) parallel to AB?

11. Consider the following design; call it T.

9.11 Translations

In chapter 4 we regarded 2 to be a mapping that
sends every point of a plane onto a point of the plane

2 units to the "right" (or the "east"). Assuming that
our unit is the inch, the mapping2 of a few isolated

points may be shown as follows:

De moo'

AB is mapped onto A' B., BC is mapped onto B' C',
D is mapped onto D'.

Activity:
Select points A, B, C on the parallel lines of

your lined paper with C between A and B. Find the

m image of A, B, C under the translation 2.

Describe how to obtain each of the following .

designs, using T or its images under mappings.

( a )

(b)

P

m

(d)( ( P(
(*)

X X X X X
12. (a) List at least 5 ways in which reflection in

a line and symmetry in a point are alike.

(b) List at least 2 ways in which they are not

alike. 162

Let the image of A, B, C be A', B', C' . Compare the
distances AB with A' B' , AC with A' C', BC with
B'C'. How does the direction of AB compare with

that of A' B' ? What can you say about AA' , BB', CC'?

If C were the midpoint of AB what would you conjec-

ture about C' ?
Let A, B, C be non-collinear points on different

lines of your paper. Find the image of A ABC under

the translationrCall it AA' B' C' .

Compare the spreads of the rays at A with those at A',
the rays at B with those at B' , the rays at C with those

at C' . What generalizations would you be willing to

make for translations regarding: isometry, collinearity,
betweeness, midpoints, parallelism, spreads? Carry

out some other activity if you feel that you have to
check some of your conjectures.

04.4. o.,...1.1a,oa.4.04W+4,470AR.*. .4ovoitla4



You may have thought of the following generaliza-
tions:

A translation

1. is an isometry

2. maps lines segments onto parallel line segments

3. preserves collinearity, betweeness and mid-
points

4. preserves parallelism and spread

A translation need not have a magnitude of lust two
units and a direction only to the right. A translation
may have a magnitude of any number of units and any
fixed direction. Although our directed numbers showed
4 directions, there are in general infinitely many direc-
tions possible for a translation. Because we have the
lines of our lined paper so handy, we shall be trans-
lating mainly to the right or left. However, one could
always turn the paper so that a translation is along
the parallel I ines of our paper.

9.12 Exercises

1. Which points, if any, are their own images un-
der a translation?

2. Which of the following sets remain the same un-
der some translation of magnitude greater than 0?
Describe the translation(s).

(a) segment

. (b) ray

(c) I ine

(d) plane

(e) half-plane

3. Many designs are made by a succession of
translations. You can make a face design by do-
ing the following:

(1) Draw a face on a blank sheet, about the
size shown here, near the left edge of
your paper.

. (2) Place a piece of carbon paper face down
on another blank sheet.

(3) Mark off 2" intervals along the upper and
lower edges of the paper under the carbon.

(4) Lineup the paper containing the face fig-
ure with the other paper.
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(5) Trace over the face figure with pencil.

(6) Move face sheet 2" to the right using
the marks you nude as a guide and
trace over face again.

(7) Move face sheet 2" again to the right
and trace face again.

(8) You should be able to get 4 or 5 faces
on your paper this way.

(9) Try to describe the 4 or 5 faces in terms
of translations.

4. Using the same face make 6 copies using the
translation 1 + 1 over and over.

5. Using a 2" square to start, make 6 copies us-
ing each of the following translations over and
over:

(a) 1 (b)1% 1 f

6. What happens when you use the same:

(a) line reflection over and over on a figure and
its image?

(b) point symmetry over and over on a figure and
its image?

9.13 Rotations

We have already observed that a point symmetry
applied to a figure corresponds to giving the figure a
half turn.

P

If we start with the figure to the left of P and apply
the point symmetry pp we obtain the figure to the right
of P. If we start with the figure to the right of P and

apply pp we obtain the figureon the left of P. The
entire figure above (the original F and its image under
pp ) is symmetric in 13, But how would you regard the
following figure?



Is it symmetric in a line? in a point? It seems to have

some kind of symmetry! If we rotate the figure 3 of a

complete rotation, we obtain the very same figure. Al-

so, starting with any single F we can obtain the other

two by rotating the figure through a turn twice. This

suggests mappings which are rotations about some
fixed point. A rotation in a point maps every point of

the plane onto a point of the plane. What is needed to

specify a rotation mapping?
We shall say that a figure has rotational symmetry

if there is a point and a rotation, which is loss than a
full rotation but not a zero rotation, that maps the fig-

ure onto itself. Both F figures above have rotation-

al symmetry.

9.14 Exercises

1. Which of the printed capital letters have rota
tional symmetry?

2. What .roperties are preserved under a general

rotation like a 4 turn? Which are not?

3. Let us denote by "Pi" a rotation that maps

every point of the plane by a turn counter-

clockwise about point P. Which of the follow-

ing figures are their own images under Pi?

(a)

(b)

square

(c)

>P<
rectangle

P is center of
a circle

()

P is center of a
triangle with sides
of some length

4. What kind of symmetry or symmetries does each

of the following sets of points have?

(a) Lattice Points of the First Quadrant

(b) Lattice Points of the First and Second.

Quadrant

(c) Lattice Points of the First and Third Quad-

rant

(d) All the Lattice Points in a Plane

5. Let the operation be composition. Let e be the

identity mappings: Fill in the following tables.

( (a), (b), and (c) refer to the square. (d) refers

to the triangle.)
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1,,,

Q,

p,

1,

r,

square--

PS

rye

pVi Pp2

r, s, t are fixed lines on theplane.
The lengths of AB, BC, and AC are

the same.

1P P2,3 Qr 1 Qs Qt

pv3

P2/3

fr
es

I,
.

6. In 5(a)(c), find the inverse for each of the

mappings:

(a) (b) pp (c) P1 (d) Pi (e) Pi

7. Which mappings preserve

(a) distances

(b) col linearity

(c) betweeness

(d) midpoints

(e) direction of a line

(f) parallelism

(g) clockwise orientation

8. Which mappings do not, in general, preserve

(a) di s tan ces

(b) col linearity

(c) betweeness

(d) midpoints

(e) direction of a line

(f) parallelism

(g) clockwise orientation

9. Let us try to extend some of our mappings into

3 dimensions. Describe and try to give examples

1.6.4.1.,,t4V-1411W0445e,,VIoNtAi4.4,414,716V.471,..eltdoeZ' sl '.:,,,e1r+)..."14.;.?C,.,..kti 4.4 ;Av.. "Ne44.4,4:04Cd^"
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of the corresponding symmetry for each of the

following:

(a) Reflection in a plane

(b) Symmetry in a line (in space)

(c) Rotation about a line

(d) Translation in space

10. What are needed to specify each of the follow-

ing types of mappings:

(a) A reflection in a line

(b) A symmetry in a point

(c) A translation

(d) A rotation

9.15 Summary of Chapter 9

1. A reflection in a line is a one-to-one mapping

of all the points of a plane onto all the points

of the plane preserving:

di stance midpoint

coil inearity

betweeness

spread

parallelism

A reflection preserves neither orientation nor
direction. If the reflection of A in m is A', then
AA' is bisected by m. If m is the line in which

a reflection is taken, then each point of m is

its own image.

2. A symmetry in a point is a one-to-one mapping

of all the points of a plane onto all the points

of the plane preserving:

distance spread

collinearity parallelism

betweeness orientation

midpoint

A symmetry in a point maps a line onto a paral-

lel line; it is the same as a half-turn. If the im-

age of A under a symmetry in P is A' , then P

is the midpoint of AA' .If P is the pointin which
a point symmetry is taken, then P is the only

point that is its own image.

3. A translation is a one-to-one mapping of all the

points of a plane onto all the points of the plane

preserving:

distance spread

collinearity parallelism

betweeness orientation

midpoint

No point is its own image under a translation

that has a magnitude greater than 0.

4. A rotation about a point is a one-to-one mapping

of all the points of a plane onto all the points

of the plane preserving:

distance spread

collinearity parallelism

betweeness orientation

midpoint

The point about which a rotation is taken is
the only point that is its own image, unless

the rotation is a multiple of a complete rotation.

9.16 REVIEW EXERCISES

1. Fill in the table with "YES", if the mapping
has the property, and "NO", if it does not.

Mappi
preserves 49

Reflection
in eel

Symmetry
in a line

Translation Rotation

gi s t all

Collineority

lotwoonoss

Midpoint

Spread

Parallelism

Orientation

2. What kind of mapping and symmetry are suggest-

ed by each of the following

(a)

(b)

(I) (f)

19) AVIA&
(h)

3. Which points are their own images under

(a) Reflection in a line

(b) symmetry in a point
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(c) translation

(d) rotation

4. Which of the following figures may be identical
with its image under one of the four mappings
mentioned in Exercise 3?

Explain:

(a) line

(b) ray

1111,10 gilMilrell/O1 I

(d) two rays which are not opposite yet share a
common end point.

(e) a square

(f) a rectangle

(g) a parallelogram

5. When are two lines perpendicular?

6. What holds for the two lines m and n if

gm Qin =CI °Qm?
7. Find all points P each of which has the same

image under both composite mappings.

km °CI and en Ofm

8. What is the fewest line reflections whose com-
positions suffice to
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(a) map any fixed point A onto a fixed point B?

(b) map any fixed ray onto any fixed ray?

(c) map any fixed line onto any fixed line?

(d) map any fixed line segment onto any fixed
line segment of the same length?

(e) map any AA BC onto AA' B' C' if AB =A' B',

AC = A' C' , BC = B' C' ?

9. Find the reflection in m of A.

In

10. Find the image of AABC under the symmetry in
point P

11. In Exercise 10 apply P1, P1, P3 to AABC.



CHAPTER 10

SEGMENTS, ANGLES, AND ISOMETRIES

10.1 Introduction

In previous chapters you have been introduced to
many geometrical ideas which hove been studied with
the help of coordinates and mappings, particularly iso-
metrics. In this chapter, we shall tie together many of
these results, make them more precise, and extend
them to the study of angles.

Since isometrics are distance preserving mappings,
we shall look more closely at segments and their
measure. Then we shall consider angles, how they are
measured, and their behavior under an isometry. An in-
teresting question will be whether or not the measure
of an angle is preserved by an isometry.

We begin by considering some basic properties of
lines and planes that are important for our study of
segments cnd angles.

10.2 Lines, Rays, and Segments

It may seem to you, on reading this section, that
we are making obvious statements and thus wasting
time. If so, you will be confusing the obvious with the
trivial. Obvious statements can have great significance.
For instance, the statement: "The United States has
only one president" is quite obvious, but its implica-
tions for the government and people of the United
States are extremely important.

Our first statement about lines is obvious. It is
called the Line Separation Principle and it expresses
in a precise way the following idea: If we imagine one
single point P removed from a line e, the rest of the

lEnaechsOc;ItIhseasepaprte'r'tiienntoe

itiewocedlilestdinecnt rertnionhesif(1 (subsets).

Along each halfline, one can move smoothly from point
to point without ever encountering point P. However,
if onemoves along line Q from a point in one halfline
to a point in the other halfline, then it is necessary to
cross through point P. See Figure 10.1.

A
Q

Figure 10.1

The mathematical way of stating this principle
more precisely is as follows:

Any point P, on a line k separates the rest of
into two disjoint sets having the following properties:

(1) If A and B are two distinct points in one of
these sets then all points between A and B

are in this set.
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(2) If A is in one set and C is in the other, then P

is between A and C.

Oneof these open halflines may be desianated PA:
the other P B. The little circle at the beginning of the
arrow indicates that P itself is not a point of the open
halfline. If P is added toPA then we obtain the half-

line °rm designatedPA (no circle at the beginning
of the arrow). You should be able to name two open
halflines of e with point A as the point of separation,
and name two distinct rays starting at A. The starting
point of a ray is called its vertex or end point. Note
that PA and PB contain the same points, thus PA sPB;
also PA=PB.

The set ofrInts common to PA and AP is the seg-
ment PA. Thus PA (1AP = AP. The set of points found
in either PA or PC or both is the line Q. Thus
PA U PC = e .

10.3 Exercise. In Exercise 1-3 refer to the line f below.

...1111....0110410...=.....4111/.
A E

1. Nome two distinct rays of Q having C as end-

point. Name the open halflines of e for point
of separation C.

2. Using two points name each of the following:

(a) AB U BC

(b) AB U BC

(c) AB U BC

(d) AB U BC

(e) AC n DB

(f) AC n DB

(g) AC n DB

(h) AC n bp

(i) ETA 11 BC

(j ) BA n BC

(k) BA n BC

(I )13Anil?

3. (a) Name a ray with endpoint B, containing E.

(b) Name an open halfline contained in BA.

Are there others?

(c) Describe the set of points determined by

CA n'At
(d) Name a ray containing BD. Are there others?

4. Let e be a line and P one of its points. Let hi
and h2 be the two open halflines of Q deter-
mined by P. Let A and B be distinct points in
h iand C a point in h2. Determine whether each
of the following statements is true or false;

h2

A

(a) All points of AB are in hi.

, -
Azz 4:4,.;
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(b) All points of are in hi.

(c) Either A' or la contains C.

(d) Both AB and BA contain C.

(e) PC contains A

(f) CP contains A

(g) All points of PB, other than P, are in hi.

A

-2 -1 0 1 2 a

Using the data shown in the above diagram tell
what values x may have if xis the number as-
signed to a point in each of the following sets:

(a) AB (c) (e) A r 3 WV (1PB
(b) AB (d) AB (f) AB n PB (h) AP U PA

10.4 Planes and Hal lanes

A second separation principle concerns planes
and is another exampleof an obvious statement. It
states an essential property of planes.

It will help you to think about a plane if you im-
agine a very large flat sheet of paper, so large that
its edges are inconceivably far and unreachable. In
fact, it would be even better if you could think of a
plane as having no edges, just as a line has no end-

points. In such a plane we could think of a line; other-
wise a line, reaching any edge the paper might have,
would have to stop and thus acquire an endpoint. But
then it would not be a line!

We cannot draw a line, since any drawing would
necessarily have to begin and end. In the same vein
we cannot draw a plane. But we suggested a line by
drawing a segment and arrows at each end. We suggest

a plane by drawing a piece of it, as shown in Figure
10.2. Unfortunately there is no easy way to suggest in

Figure 10.2

the drawing that the plane has no edges. However, to
remind you that we are talking about a plane, rather,

that opieceof it, we shall use script capital letters
to name the plane. For instance, P,R,h will be names
of planes.

Our second separation principle concerns planes.
This Plane Separation Principle, expresses in a pre-
cise manner, the followin idea:

Any line Q in a plan() P separates the rest of the
plane into two distinct portions (subsets). Each of

these portions is called an open holf:pk. Within each
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Figure 10.3

halfplane one can move smoothly from point to point
without ever encountering line . However, if one

moves within plane P from a point in one open half-
plane to a point in the other open halfplane, then it is
necessary to cross line e . The mathematical way of
stating this is as follows:

Any line Q in a plane P separates the rest of P in-
to two disjoint sets having the following properties:

(1) If A and B are two distinct points in one of
these sets then all points of AB are in this set.

(2) If A is in one set and C is in the other then AC
(the segment, not rel) intersects e in a point.

The line Q is called the boundary of each open
halfplane determined by Q , but actually it does not be-
lone to either open halfplane. The union of an open

halfplane with its boundary is called a halfplane.

Figure 10.4

In the plane named R in Figure 10.4 you see line

m separating R into the two halfplanes, named H1 and
H,. If A is in Hi w may also call H the A-side of m.
Then H2 is the opposite side to the A-side.

10.5 Exercises

Let P be a plane containing line p and let k con-

tain point A. Let the two halfplanes determined by

be Hi and H2. Determine whether each of the following
statements is true or false:

1. Any line containing A, other than g , contains

points of H1 and H2.
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2. Any ray with endpoint A, not lying in .Q , con-
tains points of H1 and H2.

3. Any segment containing A as an interior point,
not lying in Q , contains points of H1 and H2.

4. If B and C are any two distinct points in Hi,
not in Q , then BC intersects p .

5. If B and C are any two distinct points in Hi,
then BC does not intersect e.

6. If B and C are two distinct roints in H2, then
BC may not intersect Q .

7. If D is in H1 and E is in H2, then it is possible
that DE I I Q.

Quadrant II y axis Quadrant I

2

1

0 1
2

Quadrant III Quadrant IV

8. The coordinate system shown separates the
plane into four sets, each called a Quadrant.
The x-axis separates the plane into two open
halfplanes, one containing (0,2) the other con-
taining (0,-2). Let us name the first of these
open halfplanes H.Fx, the other H _x. Similarly,
the y-axis separates the plane into two open
halfplanes which we name Hilt and H_v, with
theobvious meaning attached to each. Now
Quadrant : = H.Fx fl Hi.y. In the same manner de-
fine Quadrants II, Ill, and IV.

10.6 Measurements of Segments

Let us examine what is involvA when we use a
ruler to find the length of a segment. We first place the
graduated edge of the ruler against a line segment, say
AB, matching the zero point of the ruler with one of the
points, say A.

Figure 10.5

We then assign to point B the number on the ruler which

matches it and say that the length of AB, denoted by AB,

is the number assigned to B. In our example the ruler

assigns 0 to A and 3 to B. So AB 3.

Now suppose we move the ruler to the left until
it arrives at the position shown below.

A

[0_

2

1 1 1

169

Figure 10.6

What is the number assigned by the ruler to A? to B?
Using these numbers how can you find AB? Probably
you subtracted 2 from 5 since this calculation gives
the number of unit spaces in AB. But suppose we
turned the ruler around to this position.

Figure 10.7

What are the assignments made by the ruler to A and B,
in this position? Would you subtract 5 from 2 to find
AB? This, of course, gives -3. in measuring the length
of a segment we want to know how many unit spaces it
contains. Therefore, we use only positive numbers for
lengths of segments. If we do subtract 5 from 2, we must
take the absolute value of the difference. In general,
then, if a ruler assigns the numbers x1 and x2 to the
end points of a segment AB, we can use the distance

formula

AB = ixi -x21

Let us now consider a ruler which has negative
numbers on it (like a thermometer) that is placed against
AB and looks like this,

A

-211111-1 0 1 2 3

1

4

I

or perhaps like this,

Figure 10.8

Figure 10.9

or even like this.

- , < T.. 1,4.7,4;

I I
-7 -6 -5

I I 1



A I

Figure 10.10

Does the distance formula give us the number of unit
spaces in each case? Let us see.

For the fourth position (Figure 10.8) the formula
yields: AB = I -1-21
For the fifth position (Figure 10.9) the formula yields :
AB = I -10-(-7) I
For the sixth position (Figure 10.10) the formula
yields: AB = 12-(-1) I

Is 3 the value of AB in each case?
You know that the distance from A to B should

be the same as the distance from B to A. In the
formula this reverses xi and x2. Is it true that

I xi -x21= 1X2 - X11I7.

Let us review the results of this section in terms

of mappings.

(a) A ruler assigns numbers x1 and x2 to the
endpoints of AB. Thus A-8-x1 and B x2.
Then we say AB = I x1 - x21

(b) Moving the ruler 2 spaces to the left (as we
did) is a translation with rule n--8-n+2.
Thus x1. x1 + 2 and x2-- X2 + 2. We ask

you to answer two questions:

(1) Does a translation preserve distance?

(2) Is ix 1 - X2 I preserved under this trans-
lation?

Suppose the ruler were moved to the right. Are

the last two answers changed?

(c) In the fourth and fifth positions (Figures

10.8 and 10.9) wemoved the ruler still
further to the left. Is the composition of
two translations still a translation? Do the

answers to our two questions change for the

third position?

(d) Le us compare the rulers in the first and

last positions.

,-L-

2

I
2

I

1

°I

I I
7

I I
-3 -4

I I

Figure 10.11

Do you see a mapping of Z into Z with the rule
n--4 - n? Then x1.4 - x1 and x2- 4 - x2.
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But I (4-x1) - (4-x2) I = 1 x2 - x11. And again we can

say yes to our two questions above. We conclude that

the distance formula gives the correct distance for all

positions of a ruler.

10.7 Exercises

1. In this exercise use the numbers assigned by
the ruler to points in the diagram below. First
express the length of the segments I isted below

in the form I x1 - x21. Than compute the length.

[

A B C 0

I
0 !

I
02 12

E F 0

I I 1 1 1 I I
3 3112 4 4% 5 591 6

(a) AC

(b) AE

(c) AG

(d) FA

(e) BC

(f) BD

(g) FB

(h) GB

(i)CD
(i ) FC

(k) EF

(I) GF

2. A ruler, graduated with negative and positive
numbers assigns 0 to point A. What number does

it assign to B if AB = 3? (Two answers)

3. A ruler assigns 8 to D. What number does it
assign to E if DE = 2. (Try to solve this problem
by solving the equation I x-81 =2.)

4. A ruler assigns 83 to F. What number can it
assign to G if FG = 64?

10.8 Midpoints and other Points of Division

A C I

8 X 15

Figure 10.12

Let a ruler assign 8 to A and 15 to B. We shall

try to find the number assigned to C, the midpoint of

AB. Let that number be represented by x (See Figure

10.12). You recall that a midpoint of a segment bisects

it. This means that the length of AC is the same as the

length of CB. This explains statement (1) below. Ex-

plain (2). Now x-8 must be positive. Why? Also 15-x

is positive. Why? So the equality in (2) implies (3). Ex-

plain (4) and (5). Check whether for x =114, AC = CB.

(1) AC = CB (4) 2x = 23

(2) 1x-8 I =115 -x I (5) x .= 114

(3) x-8 = 15 - x

Use this method of finding the number assigned to

a midpoint of DE if a ruler assigns -2 to D and 5 to E.

Let us generalize this method, that is, let us find

a formula for midpoints. Let a ruler assign xi to A and

x2 to B where x1 < x2 and let x represent the number

assigned to C, the midpoint of AB (See Figure 10.13).



A C I

Then,

x2

Figure 10.13

AC = CB

Ix-xi I= X2 - X I

X-X
1

= X 2-x (Why?)

2x = xi +x2

x = (xi + x2)

Do you recognize that x is themean of x1 and x2? This
is an easy way to remember this formula.

3 X 12

Figure 10.14

Suppose R is in PQ and it divides PQ in the ratio
1:2 from P to Q. (The phrase "from P to Q" tells that
PR corresponds to 1 and RQ to 2.) To find x for the
d&-.1 shown in Figure 10.14 we can proceed as follows:

(1)
Ix -3(=

1 or 2 lx-3 1 = 112 -xI
12 I 2

Both A-3 and 12-x are positive.

(2) 2 (x-3) =12 -x

(3) 2x-6 = 12-x 16-3

(4) 3x = 18

(5) x = 6

ft

Check [12-6
1

= 2

0
3 12

Figure 10.15

Suppose, instead, that R were not between P and Q.
Then 3-x is positive and 12-x is positive. Then step
(2) above becomes (2') 2.(3-x) = (12-x). Complete the
solution and check.

10.9 Exercises

In exercises 1.4 you are asked to derive results
which are going to be used in later developments. In

this respect they differ from other exercises whose re-
sults can be forgotten without harm to an understanding
of future developments. These exercises are starred (*).
In following sections such exercises will also be

starred.

*1. Let B be an interior point of AC and let a ruler
assign numbers 5 and 12 to A and C, as shown.

A

5

I C

12
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(a) What is one possible assignment to B that
guarantees that B is an interior point of AC.
Name three other possible assignments to B

that also guarantee that B is between A and
C. What are all the possible assignments to
B such that B is between A and C?

(b) Show that AB + BC = AC if B is assigned
the number 8 or the number 114.

(c) Show that AB BC = AC if B is assigned
the number x such that 5 < x < 12.

This last result may be stated in general as fol-
lows: If B is between A and C, then AB + BC = AC. It

is called the

*2. Additive Property of Betweeness for Points.

Suppose two circles in a plane have centers at
A tInd B, and respective radii r1 and r2. We are
going to compare AB with r1 + r2 for different
positions of the two circles.

Figure 10.16

(a) Suppose the circles do not intersect as
shown in Figure 10.16. Then AB = AD + DB
(Why?) and AD = AC + CD (Why?) So AB
AC + CD + DB. But AC = ri and DB =1'2.
Hence AB = r1 + CD + r2. Thus AB > r1 +
r2.

Figure 10.17

(b) Consider the position of the circles in Fig-

ure 10.17, in which the circles just touch at
C. Show that AB = ri + r2.

Figure 10.18



(c) Consider the position of the circles in Fig-

ure 10.18 in which they intersect. One of
the points of intersection is named E.

Now AB = AC + CB, Why? and CB < r2

so AB < ri + r2, Why?

EA and EB are also radii and therefore
EA = ri and EB ,- r2

Therefore A B < EA + EB

In words, this last result means, that the length

of any side of a triangle (AABE in this case), is less
than the sum of the lengths of the other two. We call

this conclusion the Triangle Inequdlity Property. You
should note that for any triangle, there are three in-
equalities. Thus, for A DEF (Figure 10.19)

Figure 10.19

(a) DE < EF + FD

(b) EF < FD + DE

(c) FD < DE + EF

3. For Figure 10.20, we see by the triangle In-
equality Property that in AABD, DA +AB > DB.

Use this fact to show that the perimeter of

A DAC is greater than the perimeter of A DBC.

D

Figure 10.20

4. Show in AABC that the difference between the
lengths of any two sides is less than the

length of the third side.

5. Which of the following triplets of numbers may
be the lengths of the sides of a triangle?

(a) 5, 6, 8 (d) 4.1, 8.2, 12.3

(b) 5, 6, 11 (e) 18, 22, 39

(c) 1, 2, 3 (f) 44 41

10.10 Using Coordinates to Extend lsometries.

Let us consider an isometry, f, of a pair of points
{A, B }. If f : A-0-A' and B-0-B', then AB = A' B' .

How can we extend this isometry to a third point of

VP This is easily done by working with the line co-

ordinate system on X that assigns 0 to A and 1 to B.
Since AB = A' B' = 1, there is a coordinate system on

VT3' that assigns 0 to A' and 1 to B' .

A
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c'

x

II' A'

x 1 o

Figure 10.21

Now suppose C is any point on AB and let its co-
ordinate be x. We can extend f to C by tnking for its
image the point C' on IT§' whose coordinate is also
x. To convince yourself that we have succeeded in ex-

tending f you should verify that AC = A' C' and
BC = B'C'. You can do this by using the distance

formula. How can you extend f to other points of

Let us go on to consider an isometry, j, of three
noncollinear points {A,B,C} and how to extend A to a

fourth point in the plane of A, B, C.
Draw a triangle with plane coordinates as shown

in Figure 10.22, On another paper trace AABC, calling

it AA' B' C', and giving A' , B' , C'', the same coordin-

ates respectively as A, B, C. Take any point D on the

first paper and read its coordinates. Locate the point

D' on the second paper with the same coordinates as

D. Now place on paper over the other so that A-0-A',
B--B', C--C'. Does D--.D' ? What conclusion

seems indicated from this experiment? How can you ex-

tend 2. to other points of the plane?

C (0,1)

A 11

(0,0) (1,0)

Figure 10.22

10.11 Coordinates and Translations

As you will see, coordinates are quite useful in

studying translationsof points of a plane onto points

of the same plane. Suppose point A has coordinates

(1, 3) in some plane coordinate system and is mapped

onto A', with coordinates (4, 5) by a translation. We

can regard this translation as the composition of two

motions. The first, moves a point 3 units in the direc-

tion of the positive x-axis and is followed by a second

motion of 2 units in the direction of the positive y-axis.

Any other point of the plane will also have an image

under this composite translation. The rule of this trans-

lation is easy to write.x . x+3

y --. y+2

or simply (x,y) .... (x+3, y+2)



10

0,101
I

Figure 10.23

Under this rule B with coordinates (3, 8) is mapped

onto B' with coordinates (6, 10).
Now consider ABB' A' in Figure 10.24. Under the

translation above AB- =o-A' B'. This leads to the con-

clusion that AB = A' B' and AB I I A' 131. Thus ABB' A'

is a parallelogram.

x

Figure 10.24

We can now check some old results about parallel-

ograms in terms of coordinates, in particular, whether
the diagonals bisect each other. But the coordinate
formula fo midpoints available to us is for line coordin-

ates. We must therefore develop a formula for plane co-

ordinates.
In Figure 10.25 we show only the diagonal AB'.

Let M be themidpoint of AB' and consider the parallel
projection in the direction of the y-axis onto the x-axis.
This projection maps A onto A', M onto M' and B onto

B'. Since a parallel projection preserves midpoints it

follows that M' is the midpoint of A' B'. But the line
coordinate of M' is (146) or ;. Since M obtains its
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1

A'

Figure 10.25

x-coordinate by parallel projection then the x-coordin-

ate of M is 2,. Using a diagram, show that the y-co-

ordinate of is 4 (3+10) or -3.13 .
In general, if P has coordinates (x1,y1) and Q has

coordinates (x2, Y2) then themidpoint of PQ has co-

ordinates.

(x1 + X2, yi + y2

2 2

Now verify that the coordinates of the midpoint of

BA' are also (7 ""r13 ) Does this verify that the diagon-
als of ABB' A' bisect each other?

There is a bonus in this consideration, which you

will be asked to prove in an exercise. It is this: In any
parallelogram the sum of the x-coordinates of either

pair of opposite vertices is the same. In fact we can

go on to say that ABCD is a parallelogram if the sum

of the x-coordinates of A and C is equal to the sum of
the x-coordinates of B and D, and the sum of the y-co-
ordinatesof A and C is equal to the sum of the y-co-

ordinates of B and D. We can prove this if we can show

that AEI I CD and AD I BC. Let us start with ABCD
and coordinates in some system as shown in Figure

10.26. Then we are told that

a+e = c+g and b+f = d+h

It follows that

4 (a+e) = (c+g) and 4 (b+f) = 4 (chh).

Dom

Figure 10.26

(a,b)

c( f)
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This means that AC and It bisect each other, say
in M. Thus M is the center of a point symmetry that

maps A onto C and B onto D.
Point symmetry preserves parallelism. Hence

AB 1 CD. M is also the centerof a pointammetly that
maps A onto C and D onto B thusAD I I C. We con-

clude that ABCD is a parallelogram.

10.12 Exercises

1. Let ABB' A' be a parallelogram. It can be re-

garded as having been formed by a translation

under which A-1"A' and B---13' . Suppose A

and B have coordinates (a, b) and (c, d) respec-

tively in some coordinate system. Let the trans-

lation have the rule:

x--e-x + p and y--1..y + q.

Then A' has coordinates (a+p, b+q) and B' has

coordinates (c+p, d+q).

(a) Using the midpoint formula show that AB'

and A' B bisect each other.

(b) Show that the sum of the x-coordinates of A

and B' is equal to the sum of the x-coordin-
ates of A' and B.

(c) Show that the sum of the y-coordinates of A

and B' is equal to the sum of the y-coordin-

ates of A' and B.

2. Suppose ABCD is a parallelogram and the co-

ordinates of three vertices ore given. Find the

coordinates of the missing vertex. Check your

answers with a drawing.

(a) A (0,0) B (3,0). D (0,2)

(b) A (0,0) B (3,2) D (2,3)

(c) A (2,1) B (5,6) C (0,0)

(d) A (3,2) C (-3,2) D (-2,5)

(e) B (-3,2) C (3,3) D (2,5)

(f) A (0,0) B (a,0) . D (0, b)

(g) A (a,b) B (c,d) .. C (e,f)

3. Suppose ABCD is a parallelogram, that E is the

midpoint of AB and F is the midpoint of CD.

Show that AECF is also a parallelogram. (You

can simplify the proof by using the coordinate

system in which A, B, D have coordinates (0,0),

(1,0) and (0.1) respectively).
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(a) Using the indicated coordinates, show that

PQRS is a parallelogram.

s(0,4) it(4,4)

(b) Suppose B is the midpoint of SQ, that A is
the midpoint of SB and C is the midpoint of
BQ. Show that PCRA is also a parallelogram.

5. For the parallelogram PQRS in Exercise 4 take

any suitable coordinates for the vertices and
show again that PCRA is a parallelogram. What

is the significance of taking any suitable co-
ordinates for P, Q, R, S?

6. Using coordinates, show that translations pre-

serve midpoints.

10.13 Perpendicular Lines

In a preceding chapter we studied reflections in a

line. In this section we use such reflections to review

and extend the idea of perpendicular lines.

Figure 10.27

In the diagram of Figure 10.27 you see that the re-

flection of line a in a line p is a'. Now a and ci" are

different lines, but they intersect each other at point

P. Why must P be a point of Q ? Imagine that a ro-
tates mound P as a pivot in the clockwise direction.

Let a' continue to be the reflection of ci. How does a'

rotate? In the course of these rotations, does a' ever

become the same as a?



Now rotate a in a counterclockwise direction. In

the course of this rotation does a' again become the
same as a ?

We see that a can be its own image, as it rotates
about P, in two ways. In oneof these a = p ; in the
other a Q . For the second case a is perpendicular
to Q . In general two lines are perpendicular if they
are different lines, and one of them is its own image
under a line reflection in the other.

Figure 10.28

We denote that a is perpendicular to Q by writing

a 1 Q . Note that V is also its own image under a re-
flection in a (Figure 10.28). So Q 1 a whenever

a 1 Q Also note that the plane is separated by each
of the two perpendicular lines into two halfplanes and

that any point in one of these halfplanes has its own

image in the other.

A

T

Figure 10.29

On a piece of paper draw line Q and mark a point

A, either on or off Q as in Figure 10.29. Fold the

paper along a line containing A such that one port of
Qfalls along the other. In how many ways can this

fold be made? You know that the lineof the crease is
perpendicular to Q . It would seem then that there is

exactly one line containing a given point that is per-
pendicular to a given line.

10.14 Exercises

1. For this exercise draw two parallel lines on

your paper, calling them a and b.

(a) Fold the paper so that one part of a falls
along the other part. Label the crease c. Is

c 1 a ? Why?

(b) For the fold you made in (a), does part of
b fall along another part of itself? What

bearing does your answer have on the per-
pendicularity relation of c and b?

(c) Tell how the results of this experiment sup-

/

port or do not support this statement: If two
lines are parallel, a line perpendicular to
one is perpendicular to the other.

2. Suppose, as shown in the diagram, that AC I BC.
Can AB also be perpendicular to BC. Be ready

to support your answer.

0, 02

VI. a

3. Suppose, as shown in the diagram, that Q i 1 a
and Q 2 I. a. Can Q I intersect Q Be ready

to support your answer. If they do not intersect,
how do you describe their relationship?

0

A A'

4. Let A' be the image of A under a reflection in
Q, as shown in the diagram, and let AA' in-

tersect Q in P. What is the image of P under
this reflection? You know that a reflection in a

line preserves distance. Compare AP with A' P.
We see that Q AA' and P is the midpoint of
AA' . We call Q the midperpendicular or per-
pendicular bisector of AA. Show that every
point in Q is as far from A as from A' . We can

state the result of this exercise as follows:
Every point in the midperpendicular of a line
segment is as far from one endpoint of the seg-

ment as the other.

5. Suppose k is the midperpendicular of AB. Sup-
pose E is in the B-side of 12 , as shown in the

diagram.

(a) We can show that EA > EB as follows. You
are to Om a reason for each statement.
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(1) A and B are on opposite sides of Q .

(2) E and A are on opposite sides of e .

(3) EA intersects Q in a point, say C, which
is between A and E.

(4) EA = EC + CA

(5) EC + CB > E B

(6) CB = CA

(7) EC + CA > EB

(8) EA > EB

(b) Suppose F is in theA-side of Show by
an argument like the one in (a) that FB >
FA.

(c) State in words the proposition that was
proved in (a) and (b).

10.15 Using Coordinates for Line Reflections and
Point Symmetries.

For our present purpose we use a special coordin-
ate system in which the axes are perpendicular lines.
Such special coordinate systems are called rectangular,
coordinate systems. We shall study reflections in their
axes. Let Q x be the line reflection in the x-axis and
let Q y be the line reflection in the y-axis. Let P have
coordinates (2,3).

Figure 10.30

If Q x: PQ, what are the coordinates of Q?

If Q y: R, what are the coordinates of R?

If Q y: QS, what are the coordinates of S?
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We can form the composite of Q y with Q x by tak-
ing the reflection in the x-axis, followed by the reflec-
tion in the y-axis. What is the image of P under this
composite reflection? Does the image of P change if
we reverse the order of the reflections?

Now let us consider the same questions for a
point A with coordinates (a, b).

If Q x: A-0-B, what are the coordinates of B?

If Q y; A--°-C what are the coordinates of C?

If e y with x: D, what are the coordinates
of D.

Do you agree that the rules for Q x and e y, when
given in forms of coordinates of points are as follows:

for Q x: -y or (x,y)-0-(x,-y)
for Q y:

for y with e x: x- -x, y -y or

You must surely have noted by this time that the
composite of Q y with Q x is a point symmetry in the
origin of the coordinate system. If we denote this sym-
metry in 0, the origin, as Po we can state the rule of
Po in terms of coordinates as follows:

Po: (x,y)

or (x,y)--x-(-x,y)

10.16 Exercises

1. For each of the points with coordinates in a rec-
tangular coordinate system given below find the
coordinates of its image

(1) under the line reflection in the x-axis,

(2) under the line reflection in the y-axis, and

(3) under the point symmetry in the origin.

(a) (3,5) (c) (5, -3) (e) (2,0) (g) (-3, -1)

(b) (-3,5) (d) (-3, -5) (f) (0,5) (h) (82, -643)

2. Let Q be the line that is perpendicular to the
x-axis containing thepoint with coordinates (3,4)
in some rectangular coordinate system. Let
points have the coordinates listed below. Find
the coordinates of the image of each point un-
der a line reflection in Q .

y

0

(a) (1,4) (c) (3,2) (e) (0,0) (g) (8,-3)

(b) (0,3) (d) (-3,-1) (f) (10,0) (h) (x,y)

3. Let m be the line that is perpendicular to the



y-axis of a rectangular coordinate system con-
taining the point with coordinates (3,4). Find
the coordinates of and the image of each point
in Exercise 2 under a line reflection in m.

4. Find the coordinates of the image of each point
in Exercise 2 under a point symmetry in the

origin 0.

5. Let A and B have rectangular coordinates (1,5)

and (3,1) respectively.

(a) Let x: A--*-A' and . Find the co-
ordinates of A' and B' .

(b) Find the coordinates of the midpoint M of
AB and let e x: Find the coordin-
ates of M' .

(c) Show that M' is the midpoint of WIY.

(d) State a proposition suggested by the results
of this exercise.

6. Show that the line reflection in the x-axis pre-
serves midpoints. You might wish to work with
points A and B having coordinates (2a, 2b) and

(2c,2d).

7. Show that the point symmetry in the origin 0
preserves midpoints.

8. (a) Determine whether the points with coordin-
ates (1,3), (4,1), (10, 3) are on the same

line.

(b) Find the coordinates of the images of the
three points in (a) under the line reflection
in the x-axis and determine whether or not
the images are on a line.

(c) State in words what the results of this ex-
ercise seem to indicate.

9, Using the three points in Exercise 8 show that
their images under a point symmetry in the
origin are on a line.

10.17 What is an Angle?

No doubt the word "angle" has some meaning for

you. However, you may find it quite difficult to de-
scribe it precisely. To see just how difficult, you
might try to explain what an angle is to a youngster in

the first or second grade. A particularly difficult task
would be to describe it without diagrams.

(To see how important angles are in everyday think-
ing, one can look up the word angle and related words

in the dictionary. You will be asked to do this in an

exercise.)
You probably would say that the diagram in Fig-

ure 10.31 represents an angle. But is the entire angle
shown in the diagram? Are he rays OA and OB part of
the angle? Is the fact that OA and OB have a common

endpoint significant? Are the points between A and B

part of the angle? These are some of the questions that
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must be answered in giving a precise mathematical
meaning to the word "angle".

A

Figure 10.31

After carefully reading the following you should
be able to answer all of them.

O.! ID .1

ow

1M

O

OOOOO- OOOOO

Figure 10.32

Let us start with two lines intersecting att00 as
shown in Figure 10.32. We name them OA and OB. With

these lines given we shall show in stages how the

angle emerges. First we take the halfplane of OA that
contains B. It is indicated by vertical shading lines.
Then we take the halfplane of OB that contains A. It
is indicated by horizontal shading lines. The region
that is cross-hatched is the angle. It is the intersec-

tion of the two halfplanes. It is named LAOS. Each

point used in the name signifies something. 0 is the
point of intersection of the two lines. It is called the
vertex of the angle. A and B tell us which halfplane
to take. OA and a are the endrays, or sides of the

angle. There are other rays in the angle. Any ray

starting at 0 and intersecting any interior point of AB

is called an interior ray, of the angle. All points of the

Figure 10.33

angle, not in endrays, are called interior points of the
angle and the set of interior points is called the in-

terior of the angle. IfOA :.-OT3 and 0 is between A

4,
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Figure 10.34

and B, then we cannot build up the angle as described
above. Nevertheless we call either hailplane of AB,
with 0 as vertex, a straight angle. If 0 is not between

A and B, then Mond ail name the some ray. Again

we continue to call this an angle, a zero angle.
Does our definition of an angle differ from what

you have previously learned about angles?
If so, we ask you to consider the fact that a defin-

ition is an agreement among ourselves as to what a

word shall mean. Once the agreement is made, however,

we must stick with it and with its consequences.

10.18 Exercises

1. Draw two intersecting lines on your paper and

label points as in the diagram. Using ordinary

A blue pencil co black pencil

black ink red pencil

black pencil shade the D-side of AB with rays
parallel to OD, using black ink shade the C-

side ofn with rays parallel toOC. Using red
pencil (or any available color) shade the B-side

of CD with rays parallel torfff. Using the blue
pencil (ory other available color) shade the

A-side of CD with rays parallel to Obi. You can

now describe LADD as the blue-black pencil
angle. In similar manner describe L BOD, LAOC,

LBOC.

2. Using the diagram shown, name:

(a) two straight angles.

(b) four zero angles.

(c) four other angles.

3. Using the diagram shown, describe as a single
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angle, if possible:

(a) LAOB U L BOC

(b) LAOC n LCOB

(c) Z AOC U L BOD

(d) LAOC fl Z COD

4. There are ten angles in the diagram of Exercise
3. Four of them are zero angles. Name the other

six.

5. You may have noticed that there are many re-
semblances between an angle and a segment.
For each sentence below about segments write
one that resembles it and is about angles.

(a) A segment has two endpoints.

(b) A segment is a set of points.

(c) The interior of a segment contains points of

a segment other than its endpoints.

(d) If C and D are interior points of AB, then
every point in CD is in AB.

6. Consult a dictionary to find five uses of angles.

10.19 Measuring an Angle

You have noted above in Exercise 5 a number of
resemblances between angles and segments. It should

not surprise you that the measurement of angles also

resembles the measurement of segments. To measure a

segment we use a scaled ruler. To measure an angle

we use a scaled protractor. The numbers on a ruler are

assigned to points. The numbers on a protractor are

assigned to rays (In Figure 10.35 only three rays are

shown). Numbers on ordinary rulers start at zero and

Figure 10.35



go on os far as permitted by the scale unit and the
length of the ruler. No matter how large the protractor
we are going to use, its numbers start with 0 and end

with 180.
As you see, a protractor has the shape of a semi-

circle. AB is the diameter of the protractor and 0 is
its center. In Figure 10.35 the numbers increase in
the counter-clockwise direction. However, if we reflect
the...protractor in the line that is the mldperpendicular
of AB, then each number, n, is mopped onto 180.n. In

a protractor showing the images of this line reflection,
the numbers increase in the clockwise direction (Fig-

ure 10.36).

from Oto180 we call the unit of measurement a degree.

When we say that the measurement is 73 degrees, or 73°,

we are also saying that we used a protractor graduated
from 0 to 180. (There are other types of protractols
graduated from 0 to other numbers). In measuring a line

segment we like to place the ruler so that it assigns 0
to one end, for this considerably simplifies the compu-
tation. In measuring an angle we also like to place the
protractor so that zero is assigned to an endray, for
the same reasons

The abbreviation for "degree measure of L ABC"
is mLABC.

10.20 Exercises

0

Figure 10.36

In either case the ray which lies in the midperpendic-
ular is assigned 90.

To'measure an angle with a protractor we must
begin by placing the center 0 on the vertex of the
angle, and each ray of the angle must intersect the
edge of the protractor. Perhaps the position of a pro-
tractor in measuring LABC could be like that shown

in Figure 10.37.

Figure 10.37

In this position the protractor assigns the number
30 to BC and 103 to BA. It cannot come to you as a I

surprise that the measure of LABC is 103-30 or 73.
Or if you computed 30-103, you would then take the ab-
solute value of the difference, just as we did in measur-
ing line segments. When the protractor is graduated
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1. Consult the diagram above to find the measure

of each angle listed below:

(a) L AOC

(b) BOC

(c) Z COB

(d) L AOF

(et) L BOE

FOB

(g) L GOC

(h) L EOE

(i ) Z GOA

AOG

(k) L AOD

(I) DOG

2. Using the diagram shown below, find the mea-

sure of each angle listed below:

- - Wye - ,,, le re



(a) L AOC (c) L DOC (e) L GOE

(b) L BOD (d) L FOG (f) L FOB

3. Consult the diagram of Exercise 2 to compute

each of the following:

(a) mLAOB + mL BOC

(b) mL GOA mLCOA

(c) 2mLAOB + 3mLOCD

4. If two angles in a plane have only one ray in

common, they are called a pair of adjacent

angles. In the diagram determine which pair of

angles listed below have only one ray in

common.

5.

0

(a) LABD and LCBD

( b) LABC and LCBD

(c) L DBA and LABC

Which is the pair of adjacent angles?

For the given diagram name as many pairs of
adjacent angles as you can.

6. Using an illustration show that the sum of the

measures of two adjacent angles is not neces-

sarily the measure of an angle.

7. Find the measure of each of the angles listed

for the diagram below:

(a) LAVB

(b) L DVC

(c) L AVC

(d) L EVC

(e) L AVF

(f) L FVD

(g) Z BVF

(h) LAVD

180

*8. Consider LAOB, as shown in the diagram and

the point symmotry of LAOB in vertex 0. Under

this symmetry the image of endraysal is OD,

the opposite ray. What is the image of OB?

What is the image of OX, an interior ray of LAOB?

What is the image of LAOS? The image of an angle

under a point symmetry in its vertex is itsagx:

tical angle.
.

9. (a) In the diagram of Exercise 8, what is the ver-

tical angle of L DOC?

(b) What is the vertical angle of LAOB?

10. Using a protractor show that the measure of an

angle is equal to the measure of its vertical

angle.

11. AB and AC are two sides of a triangle. They de-

termine two endrays AB and AC of an angle. In

this sense every triangle has three angles. We

can name them LA, LB and LC.

Measure each angle of the triangle and then

find the sum of their measures.



12.

(a) Explain why we cannot use the protractor in
the position shown above to measure Z AOB.

(b) Can the measure of an angle be greater than
180°? Explain your answer.

13. Look at L BVC. Now look at L AVD. Compare
their measures. (Try to answer without the use
of a protractor).

14. You know that two perpendicular lines determine
four angles. What is the measureof each angle?

15. (a) Measure Z AVB in the diagram. Using your
result, find the measure of L BVC.

(b) Suppose the measure of LABV is 70. What
is the measure of L BVC? Try to answer
without using a protractor.

10.21 Boxing The Compass

As you know the marks on a ruler are located by
repeated bisections, once we start with inch marks.
The first bisection produces a ruler like this:

2
11 I
2 3 2
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Figure 10.38

A second bisection produces a ruler like this.

1 1 1

3 1 3

4 7 7 1!1I 17 1 1 11 . 4
2 3 2 4

4
2

Figure 10.39

Repeated bisections produce eighths, sixteenths and
thirty seconds.

There is An analogous situation for protractors,
more accurwaly for two protractors, placed diameter to
diameter to form a circle. It is called boxing the com-
pass, and gives the type of compass used in certain
types of ..trine navigation.

A immeter of either protractor bisects the circle.
One end of this diameter is marked N (north) and the
other is marked S (south). (Figure 10.40)

First Sisection

Figure 10.40

Bisecting each semicircle locates E (east) and W
(west). (Figure 10.41)

S

Second Sisection

Figure 10.41

Bisecting each of the four arcs locates NE (north
east), SE (south east), SW (south west), and NW (north
west). Notice we do not say, "east north." The rule is
that "north" takes precedence over "south" because
it appeared earlier in the process. Likewise, we say
southeast because "south" appears before "east" in
the process.

"' ""
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Third Bisection

Figure 10.42

Bisecting each of the eight arcs locates NNE
(north northeast), ENE, ESE, SSE, etc. In the designa-
tion NNE, N appears before NE because it appeared

earlier in the process than NE, and is on the N side
of NE. Thus, ENE is on the E side of NE,

SSW

Fourth Bisection

Figure 10.43

The fifth bisection completes boxing of the com-
pass. The midpoint of the arc between N and NNE is
called N by E (north by east): the one between NNE

and NE is called NE by N. Not NNE by S. Why not?

N N by giN

by N
NE

NE by E

ENE

E byN

Fifth Bisection

Figure 10.44

Make a complete diagram showing the compass

"boxed".
The circle is now subdivided into 32 arcs having

the same length. The mariner calls each length a
"point". (This point does not mean the point we study
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in geometry). The terms "holfpoint" and "quarter
point" describe still smaller arc lengths. Since there

are 8 points to one quarter of a circle, one point cor-
responds to 11-14°. So a change of course of one-quarter
point r Irresponds to a change of approximately

Thus the kind of "protractor" used in some types
of navigation is quite different from the one we have
described, with angles measured in "points" from 0 to
16 points east or west of north.

10.22 More About Angles

Draw ray VA on your paper and place your pro-
tractor so that VA is assigned zero. In how many

V A

Figure 10.45

possible positions can you hold the protractor? (Were

you careful to place the center of the protractor on V?)

For each position, draw a ray, starting at V, to which

the protractor assigns the number 70. How many such

rays can you draw, for each position? HtSw many angles
then can you draw having measure 70°, if VA is one

of its sides?
Do you agree with this statement?
For each ray, for each halfplane determined by

this ray, and for each number x, such that 0< x < 180,
there is exactly one angle whose measure is x that has

given ray as one side.
This statement is going to be very useful to us in

our study of angles. For instance, we can now show
that any angle, such as LAVB, can be divided into
two angles that have equal measures. To do this, we

Figure 10.46

place a protractor a in the position shown, see that 110

is assigned to VB and reason that we are looking for

the ray that is assigned x 110 or 55. We look for 55

on the protractor and draw VC the ray that is assigned

55. What is mL BVC? mLCVA? Have we divided LAVB
into two angles as claimed? How can we use the state-

ment above to show that an angle has exactly one

midray?
In our example VC is called the midray,of LAVB

for obvious reasons; it bisects the angle, and is there-

fore also called the bisector of LAVB. Explain why
any angle, other than a straight angle, has only one

midray.



We pause here to introduce some terms describ-
ing angles. If the measure of an angle is 90, it is
called a right angle. If the measure of an angle is be-
tween 0 and 90, it is called an acute angle. If the
measure of an angle is between 90 and 180, it is
called an obtuse angle.

10.23 Exercises

1. For each number listed below draw an angle
whose measure is that number

(a) 35 (b) 135 (c) 18 (d) 90 (e) 180 (f) 0

2. Draw an angle which is:

(a) a right angle (c) an obtuse angle

(b) un acute angle

3. This exercise is a test of how well you can
estimate the measure of an angle from a dia-

gram. For each of the angles given, estimate
the measure, record your estimate, and then
use your protractor to check your estimate.

d

f

4. This is an exercise to test how well you can
draw an angle without protractor when you are
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told its measure. Draw the angle first, then
check with protractor, and record the error, for
each of the following measurements:

(a) 45°

(b) 30°

(c) 150°

(d) 90°

(e) 60°

(f) 120°

5. How close can you come to drawing the midray

of an angle without using a protractor? Try it
for these cases: an acute angle, a right angle,
an obtuse angle.

6. Try to draw a triangle that has two right angles.
If you are not able to do so, explain the failure.

*7. In this exercise, we consider what it means
when three rays have the same vertex to say
that one is between the other two.

(a) Look at rays VA, VB, and VC in the dia-
gram. Would you say that one of them is be-
tween the other two? If so, what would you
mean?

(b) Now look at OP, b-d, OR in the second dia-
gram. Would you say that one of these is
between the other two?

(c) In (a) is VA a ray of BVC? Is VB a ray of
LCVA? Is VC a ray of LAVB?

(d) In (b) is OQ a ray of L POR?

(e) Formulate a definition for betweeness for

rays.

8. Draw 4AVB and a ray of this angle that is be-
tween VA and VB. Name it VC. Using a pro-
tractor show that mLAVC +naCVB = inZAVB.
This result is important enough to have a name.
It is the Betweeness-Addition Property of
Angles. State it in words. There is also a Be-
tweeness-Addition Property of Segments. State
it.

,'.44.,74Ve0A41.!>



10.24 Angles and Line Reflections

Make a drawing like the one in Figure 10.47, with
VM the midray of LAVB. (We have an angle of 80°.
You can use any angle you like)

I
I
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Figure 10.47

If you fold your paper along VM, do VA and VB fall
on each other? Then we may say:

Each ray of an angle is the image of the other
under the line reflection in the midray of the
angi 4.

Suppose X is the point in VA such that VX = 2. Where
would you expect to find the image of X under this
line reflection? Let X -- Y. Then VX = VY. More-

over, the perpendicular to VM that contains X must al-

so contain Y. Why? We conclude that 771 VM, also if
Z is the point in which XY intersects Ca, then XZ =
YZ. Why? One more result. In folding your paper, did
LVXY fall on L VYX? Then mL VXY = mL VYX. Why?

Let us summarize these results. If VM is the mid-
ray of L XVY, VX = VY, and XY intersects VM, then

(1) Under the line reflection in VM, V' V,
X-- -Y, Z--0-Z, Since a line reflection
is an isometry, VX = VY, XZ = YZ. Al-
so XY ± VM.

(2) m Z VXZ = m L VYZ.

The second fact rates attention because it is a
special case of a more general statement which we

are now ready to understand. It applies to all iso-
metrics, of which line reflections are only one kind.

Under any isometry the measure of an angle
is the same as the measure of its image angle.

We shall pursue this further in the next section. Mean-
while, we apply our results to a special type of tri-
angle. If at least two sides of a triangle have the same

length it is called an isosceles triangle. These two
sides are called the legs of the isosceles triangles

Figure 10.48
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the third side is called its base, The angles of the tri-
angle having vertices at the ends of the base are
callod base angles, the third angle is called the vertex
angle. Let A ABC be an isosceles triangle, with
AB = AC, and let the midray of the vertex angle inter-
sect the base in point M (Figure 10.48). Then under
the line reflection in IR A A, M M, B C. By
our previous results we conclude:

(1) The base angles of an isosceles triangle
have the same measure.

(2) The midray of the vertex angle of an
isosceles triangle lies in the midperpen-
dicular of the base.

10.25 Exercises

1. Suppose in D, B, C, E are on a line as shown
and A is not. If AB = AC, show by an argument
that mLABD = mL ACE.

2. For the figure in Exercise 1 add the information
that BD = CE. Using the line reflection e in AM,
the midray of L BAC, explain why each of the

following is true or false:

(a)1TA is the midperpendicular of DE.

(b) i : ED and : D---E and DM = EM.

(c) 14 : ADAE and AD = AE.

(d) f : ADAi and AB---AC.
(e) mL DAB = mL EAC.

3. Suppose PQ = PR and QM = MR as shown. Let
be the midperpendicular of QR. Do you think

that k contains P? Support your answer with an

argument.

4. In the diagram AD =AB and DC = CB:

(a) What kind of triangle is ABD? CBD?



(b) How is the midray of 6A related to BD?
How is the midray of LC related to10?

(c) How many midperpendiculars of bT3 are

there?

(d) The figure ABCD has the shape of a kit*,
so we call it a kite. You see that it can be
mapped into itself by a line reflection in
List five pairs of angles in the kite for which
the angles in eachmir have the same mea-
sure. Assume that AC and BD, the diagonals,
may be inside of these angles.

5. In the diagram the four sides AB, BC, CD, and
DA have the same length. It is a kind of "double
kite". Show that its diagonals bisect each other
and lie in perpendicular lines.

10.26 Angles and Point Symmetries.

In an exercise (9.20, Exercise 8) we noted that .

the imageof an angle under a point symmetry in its
vertex is its vertical angle. It quickly follows that
the measure of an angle is equal to that of its vertical
angle. This is a valid conclusion. Nonetheless, let
us explore the situation a little more, partly to review
some basic notions and partly to illustrate a proof
which resembles many that will follow.

Suppose LABC isa_given angle (Figure 10.49).
If B is the midpoint of AA' and also CC', then LA' BC
is the image, of LABC under a point symmetry in B.
We can easily locate A' and C' by using a compass
as divider witf B as center. Now look at the quadri-
lateral ACA' C' . Its diagonals bisect each other. Then

what kind of quadrilateral is ACA' C' ? How does your

answer lead to the conclusion that CA = CA' ?
Let us review t ree facts: (1) AB = A' B,

(2) CB = C' B, (3) CA = C' A' . Do not these three

185

Figure 10.49

facts show that the mapping which maps A A',
B B, C C' is an isometry? We conclude that
mLABC = mLA' BC' . (Remember that an isometry pre-

serves anglemeasure.) In this example we reviewed
the basic notion of an isometry and we have seen how

to use some properties of parallelograms in a proof.
Suppose the center of a point symmetry is not the

vertex of an angle. In each of Figure 10.50 and 10.51,
the image of LABC is LA' B'C' under a point symmetry
in 0, a point which is not the vertex B. Verify in each
case that 0 is the midpoint of AA', BB', and CC'. This
should assure you that we do indeed have a point
symmetry in 0.

A

Pigure 10.50

Figure 10.51

In each case the mapping of (A, B, C) onto (A' B' C' )
can be shown to be an isometry, that is AB =A' B'
BC = B' C' and CA= C' A' . Find two parallelograms
in Figure 10.50 that help to show why AC = A' C' and

BC = B' C'. Try to figure out why AB = A' B'. In Fig-
ure 10.52, we can find three parallelograms that help
in proving that the mapping is an isometry. Name the

three parallelograms.

,
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10.27 Exercises

1. Allow yourself theuse of a protractor to mea-
sure only one of the four angles, LAVB, L BVC
L CVD, L DVA and then tell the measures of
the other three.

2. Draw a diagram showing the image of Z ABC
under a point symmetry in 0 for each of the fol-
lowing cases.

(a) 0 is a point in BA, not B.

(b) 0 is a point in BC, not B.

(c) 0 is an interior point of Z ABC.

(d) 0 is an exteriro point of ZABC.

3. Copy a figure like the one shown below. Be
sure to take 0 as the midpoint of VA. Draw the
image of ZAVB under a point symmetry in 0.
Under this reflection what is the image of V?
What is the vertex of the image angle? Show
that AB' I I BV. The statement of this result is
quite complex. We start it and you are to com-
plete it: If the center of a point symmetry of an
angle is an interior point of one side of the
angle, then the image of the second side

4. Draw an angle and its midray, and take any
point, not the vertex, of its midray. Draw the
image of the angle under a point symmetry in the
midray point. You should note that the angle
and its image determine a quadrilateral. List
some of the properties of this quadrilateral that
you can find,

5. Repeat the instructions in Exercise 4 with the
modification that the center of symmetry is an
interior point of the angle, not in the midray.

6. SuppOse ABCD is a parallelogram. Is there a
point symmetry under which D--4-B, A--"-C?
What is its center? How do your answers help
to show that each angle of a parallelogram has
the same measure as that of the opposite angle?
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10.28 Angles and Translations

Let ZAVB be mapped by a translation such that
the image of V is V' .

Figure 10.52

Let the images of A and B be A' and B' under this
translation. Since a translation is an isometry, and we
have agreed that isometries preserve angle measures,
it follows that mL A' V' B' = mLAVB. Additional re-
sults relating angles and translations are explored in
the following exercises.

10.29 Exercises

*1. Copy LAVB and then show a translation of
L AVB by a drawing that maps V onto A, Let
the translation map A onto A' and B onto
Under this translation what are the images of
VA, VB, LAVB?

We call the pair of angles AVB and A' AB "F
angles" because tioey form an F figure,

2. (a) Repeat the instructions in Exercise 1 for
the translation that maps A onto V.

(b) Repeat again for the translation that maps
V onto B.

3. Let Ti be the translation that maps A onto V
and T2 the translation that maps V onto B.
(a) Make a drawing for T2 o Ti.
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T1 with T2,

(c) Are the images of L AVB under both com-
posites the same? Are the drawings the
same?

4. In the diagram below RS I I PV and M is the
midpoint of ON.

(a) Describe a mapping under which the image
of z PVQ is Z ROT.

(b) Describe a mapping under which the image
of L PVQ is Z VQS.

(c) Describe a mapping under which the image
of L RQT is LSO. Is this mapping an
isometry?

(d) Describe a mapping under which the image
of Z RQT is LSQM.

(e) Under what composite mapping is LSQM
the image of Z PVQ, if a translation is first
in the composite?

(f) Compare the measures of L PVQ and L SQV.

We call angles pvA and SQV "Z angles"
because they form a Z figure.

10.30 Sum of Measures of the Angles of a Triangle.

No doubt you have measured the three angles of a
triangle and have found the sum of their measures to
be approximately 180. Let us see how isometries can
be used to prove this fact.

Figure 10.53 shows an image for each angle of
ABC under different mappings.

First consider the translation that maps A onto C.
This translation maps C onto R and B onto S. What
are the images of AB and under this translation?
Do you see that this translation maps Z CAB onto

RCS?
Examine the translation that maps B onto C. Un-

der this translation what is the image of BA? of LABC?

187

Figure 10.53

The third mapping is a point symmetry in C. Under
this mapping what is the image of ZACB?

As a result of these mappings, all isometries, we
see:

(1) mL CAB = inZ RCS,

(2) mL ABC = mL PCQ,

(3) mL BCA = mLQCR,

If the sum of themeasures of the image angles is 180,
then we can safely conclude that the sum of the mea-
sures of the angles of the triangle must also be 180.

Do you think the first sum is 180? Why? In answer-
ing this question remember that no statement was made
concerning whether CS and CP wereon one line. Are
they? Why?

One can prove the above result by using other i so-
metries, and you may find it interesting (in exercises)
to find your own.

There are many immediate results following from
the triangle anfjle measure sum. For instance we can
now show: If a triangle has a right angle then the sum
of the measures of the other two angles is 90. The
proof can be presented in a step by step argument as
follows:

1. Let LABC have a right angle at C.

2. mL A + B + mL C = 180

3. mL c = 90

4. mL. A + mL B = 90

We can give a valid reason for each of these statements.
The reasons, numbered to let you see which reason ap-
plies to each statement, are as follows:

1. This information is given in the statement we
are trying to prove.

2. We have proved this already. Let us call it the
Triangle Angle Sum Props.tx,

3. The measure of a right angle is 90.

4. The cancellation law for addition.

Here is another immediate result with its proof: The

sum of the measures of the angles of a quadrilateral
is 360.

Figure 10.54 will help you follow the argument.
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Figure 10.54

We ask you to assume that TO i s an interior ray of
L ABC and DB is an interior ray of LADC.

1. rnZA + mLABD + mL BDA = 180

2. niZ C + mL DBC + mL BDC = 180

3. fnZ ABD + mL DBC = mL ABC or mL B

4. niZ BDA + mL BDC = mL CDA or mL D

5. fnZA +mLB +mLC +mLD =360
The reasons for (1) and (2) are the Triangle Angle
Sum Proper : Statements (3) and (4) have the same
reason: if AP is an interior ray of L BAC, then
mL BAP + mL PAC = mL BAC.

The reason for statement (5) is: 180 + 180 = 360.
In exercises you will be asked to prove many

other statements which follow from the TriangleAngle
Sum Property.

10.31 Exercises

1. Find the measure of the third angle of a tri-
angle if you know themeasures of the first two
to be as follows:

(a) 80 and 30 (b) 62 and 49 (c) 40 and 129

2. The measures of two angles of a triangle are
the same. What is their measure if the measure
of the third angle is:

(a) 80? (b) 20? (c) 68? (d) 41?

3. What isthe measure of each angle of a triangle
whose angles all have the same measure?

4. The measures of two angles of a triangle have
the ratio 3:5. What are their measures if the
third angle has a measure of:

(a) 100? (b) 68? (c) 30?

5. What is the measure of an angle of a quadrilat-
eral if the measures of the other three angles

are:

(a) 120, 80, 62?

(b) 100, 62, 62?

(c) 168, 72, 48?

6. Show that if three angles of a quadriloteral
are right angles then the fourth angle must also
be a right angle.
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7. Let ABCD be a parallelogram. Show that

m; A + m/ B = 180 and mL C + m_.:D =180.

8. Give an argument for each of the following
statements. It need not be a step by step
argument.

(a) Two angles of a triangle cannot both be
obtuse.

(b) If a triangle is isosceles then its base
angles are acute angles.

9. Prove each of the following. If convenient, use
a step by step argument..

(a) If in AABC, AB = BC = CA, then mL A = 60.

(b) The figure below has 5 sides and is called
a Entsgon. Assume that AD/ AC are interior
rays of L EAB, and that DEC. is an interior
ray of L EDC and CA is an interior ray of
LDCB. Show that the sum of the measures
of the angles of ABCDE is 540.

(c) Assume in (b) that the measures of the
angles in ABCDE are the same. Show that
each measure is 108.

10. (a) Using the data indicated below find mL BCD

(b) Suppose mL A= 52, mL B = 65. Again find

mL BCD.

(c) Do the results in (a) and (b) suggest a rela-
tionship between mL BCD and mLA + mL B?

(d) Show for all measures LA and Z B that

mL BCD = mL A + mL B.

11. Find, for the diagram bekw

(a) mL ADC.

(b) The measures of the angles, in which arcs

are drawn.



(c) The sum of the measures in (b).

(d) Take another set of measures for the three
angles of quadrilateral ABCD and find the
sum of the "arc" angles for your new
measures.

(e) Do your results in (c) and (d) indicate a
pattern? Complete and prove the following
statement:

mL BAD + mL QCD + mL RCB + mL SBA.?
when /Om is n qundriletrml,

12. A figure such as ABCDEF has six sides and is
called a hexagon.

(a) Find the sum of the measures of its angles.

(b) Let X be a point in AB as shown. It is
called an exterior angle of the hexagon.
Find the sum of the measures of its exterior
angles, one taken at each vertex.

(c) If the angles of a hexagon have the same
measure, what is the measure of each angle,
and what is the measure of one exterior
angle?

13. Repeat Exercise 12 for a figure having 8 sides;
10 sides.

10.32 Summary.

This chapter discussed Segments, Angles, and
I sometries.

1. The major items relating to segments are the
following:
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(a) The Line Separation Principle leads to sub-
sets of lines, open halflines and rays, and
then to segments.

(b) The distance formula: If xi and x2 are line
coordinates of A and B, then
AB = !xi - x21 = 1x2 - xi 1.

(c) The midpoint formula: If xi and x2 are line
coordinates of A and B, then the coordinate
of the midpoint of AB is . (x, 4 x2).

(d) Tho Betweenes-Addition -n Property of Seg-
ments: If B is between A and C, then
AB + BC = AC.

(e) The Triangle Inequality Property: The sum
of the lengths of two sides of a triangle is
greater than the length of the third.

2. The major items relating to angles are the fol-
lowing:

(a) The Plane Separation Principle leads to
open halfplanes, halfplanes, and angles,
which are intersections of halfplanes.

(b) The angle measure formula: If r1 and r2 are
the numbers assigned by a protractor to two
sides of an angle, the measure of the angle
is Iri -r21= I r2 - r1 I.

(c) Boxing the compass is accomplished by the
repeated bisection of arcs or angles, com-
parable to the bisection method used in grad-
uating a ruler.

(d) Angles are classified as zero, acute, right,
obtuse and straight angles,

(e) The Betweeness-Addition Property of Angles:
I f VB is between VA and VC, then
reL AVB +mLBVC = AVC.

Isometries. The major item is: Isometric's preserve angle
!tonsures.

(a) Using line symmetries we can show:

(1) An angle is its own image under the line
reflection in its midray. This leads to
related isosceles triangle properties, and
kite properties.

(2) Every point in the midperpendicular of a
line segment is as far from one endpoint
of the segment as from the other.

(3) The rectangular coordinate formula for
the reflection in the x - axis is
(x,y)-0.(x,-y), for the reflection in the
y - axis, (x,y)

(b) Using point symmetries we can show:

(1) The measure of an angle is the same as
that of its vertical angle.

(2) The measures of opposite angles of a
parallelogram are the same.
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(3) The angles in a "Z figure" have the
same measure.

(4) The coordinate formula for the point
symmetry in the origin of a coordinate
system is x,y).-1.-(-x, -y).

(c) Under a translation we can show:

a. The angles in an "F figure have the
same measure

b. The coordinate formula for a transla-
tion is: (x,y)---(x + p, y + q), if the
origin is mapped onto (p,q).

3. Using point symmetries and translations we can
show why the sum of the measures of angles of
a triangle is 180. This leads to a long list of
immediate results.

10,33 Review Exercises

1. Let a mathematical ruler assign -2 to point A
and 4 to point B.

(a) What is AB?

(b) What number does the ruler assign to the

midpoint of AB?

(c) C is a point in AB. If AC + CB = AC what

are the possible assignments the ruler can

make to C?

(d) If D is between A and B and AD = 2DB
what is the number assigned to D?

(e) If D is in AB, not between A and B, and

AD = 2DB what is the number assigned to D?

(f) What numbers may be assigned to point E if
AE =6 and E is in Al37?

2. In Exercise 1 replace -2, the number assigned
to A, with -12 and replace 4, the number as-
signed to B, with -6. Answer the questions in

Exercise 1 for these replacements.

3. A protractor assigns 10 to VA and 110 to VB:

(a) What is mLAVB?

(b) What number does the protractor assign to

the midray of LAVB?

(c) The protractor assigns 120 to VD. Is VD
between VA and VB?

(d) What must be true of x if x is the number

assigned to a ray that is between VA and VB?

(e) Suppose VX is a ray of LAVB, what is
mL AVX + mL XVB?

(f) Suppose VY is a ray of L AVB such that

mLAVY = 2mLYVB. What number does the

protractor assign to VY?

4. In Exercise 3 replace 10, the number assigned
to VA, with 122, and replace 110, the number
assigned to VB, with 38. Then answer the
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questions in Exercise 3 for these replace-

ments.

5. Try to draw a triangle such that one of its angles
is a right angle and another is an obtuse angle.
Explain how you were able to or not able to

make the drawing.

6. In a certain rectangular coordinate system A, B,
and C have coordinates (-4, 2), (1, -3) and

(6, 2) respectively.

(a) What are the coordinates of A', Bs , C' , the

images of A, B, and C, under the line reflec-
tion in the x - axis?

(b) Are A, B, C collinear? Are A', B1, C' col-
linear?

(c) Compare AB with A' B' make the comparison
without finding the numbers AB and A' B'
and justify your answer.

(d) Compare mL ABC with mLA' B' C' after mea
suring each angle with a protractor. Can you

make the comparison without using a protro,:-
tor? Justify your answer.

7. Answer the questions in Exercise 6 if A', B',
and C' are the images of A, B, and C under the

line reflection in the y - axis.

8. Answer the questions in Exercise 6 if A', B',
and C' are the images of A, B, and C under the

point symmetry in the origin of the coordinate

system.

9. Answer the questions in Exercise 6 A' , B' , and

C' are the images of A, B, and C under the point

symmetry in P(1,2).

10. Answer the questions in Exercise 6 if A', B',
and C' are the images of A, B, and C under the

line reflection in the line perpendicular to the x

- axis and containing P(1, 2).

11. Consider the coordinate rule by which (x,y) is
mapped onto (y,x) in a rectangular coordinate

system.

(a) Under this mapping what are the. coordinates

of the images of (2,0), (0,4), (-1,2), (3,3),

(-5,-2), (0,0)?
(b) Make a graph of the points in (a) and their

images.

(c) Is this mapping a line translation, a point
symmetry, a translation, or none of these?

If it is, describe it, giving domain, range and

the rule for its inverse mapping.

(d) What is the composition of this mapping with

itself?

12. Consider the coordinate rule in a rectangular

coordinate system by which (x,y)--(-y,-x).
Answer the questions in Exercise 11 for this

mapping.



13. Is the mapping with coordinate rule (x,y)
(2x,2y) in a rectangular coordinate system an
isometry?

14. Let M be the midpoint of BC in AABC Using
a point symmetry in M and a translation show
how to prove that mLA + L B + mLC = 180.

C
U
a

15. Find the measure of an angle of an n-sided fig-
ure, where angles have the same measure, and
n has the value given below.

(a) n = 6

(b) n = 3

(c) n = 8

(d) n = 12

MN, 1/. - .,(1. 44S.1, .

(e) n = 20
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16. Find the measure of an exterior angle of each
n-sided figure in Exercise 15.

17. In the figure below AB = AC, and DB = DC.
Using a line reflection, prove mi. DAB = mt. DAC.
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CHAPTER 11

ELEMENTARY NUMBER THEORY

11.1 (N, +) and (N, )

Over the centuries many discoveries have been made
concerning properties that various sets of numbers
possess. In thi s chapter we shall concentrate on seek-

ing out properties of certain subsets of the whole num-
bers. In particular we shall examine the set of natural
numbers. (By the natural numbers, N, we mean the whole

numbers with zero deleted.) We shall begin by stating
certain basic assumptions concerning the natural num-
bers. Such assumptions, that is statements which we
agree to accept as true, are called axioms. We shall use
these axioms to prove other statements which we call
theorems. In fcict, number theory provides us with a
large source of simple and important theorems from
which we can begin to learn some of the basic ideas
dealing with "proof."

Before stating the first axiom let us recall a problem
considered in Chapter 2: [See Exercise 12 on page 351

"Is addition an operation on the set of odd whole num-

bers?" It i s easy to find an example which indicates
the answer to this question is "no". Both 3 and 5 are
odd whole numbers but their sum, 8, is not an odd

whole number. Because the set of odd whole numbers

is a subset of W we see that addition is not an opera-
tion on every subset of W. Thus any statement which

asserts that addition is an operation on a subset of W
is a non-trivial statement. Our first axiom (Al) states
that addition is an operation on N.

Al. (N, +) is an operational system.
Because 3EN and 5EN we can conclude, by Al, that
3 + 5 = 8EN. In general Al states that given any
ordered pair of natural numbers we can assign to this
pair a unique natural number called their sum.

An obvious question to consider next is the follow.
ing: "Is multiplication an operation on N?" Our sec-
ond axiom provides the answer to this question.

A2. (N. ) is an operational system.
Since 3EN and 5EN we can conclude by A2 that
3 5 = 15 EN. In general, A2 states that given any
ordered pair of natural numbers we can assign to this
pair a unique natural number called their product.
For example,

(3,5)---2--4 15
We frequently express the above by the mathematical

sentences
3 5 = 15 or 3 x 5 = 15

Let us review some of the language used in dis-
cussing the operational system (N, ). In the sentence
above 3 i s said to be a factor of 15. Also, 5 is said
to be a factor of 15.

Definition 1: We say that for a and b in N, a is
a factor of b if and only if there
is some natural number c such

that a c = b.
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Thus 3 is a factor of 15 because there is a natural
number, 5, such that 3 5 = 15. 4 is not a factor of

15 because there is no natural number c such that

4 c = 15. 5 is a factor of 15 because 5 3 = 15.

Recall that in Chapter 2 you were introduced to

the idea of multiple. For the mathematical sentence

3 5 = '15

we say that 15 is a multiple of 3 and also that 15 is
a multiple of 5.

Definition 2: For a and b in N, b is a multiple of
a if and only if a is a factor of b.

Thus for the mathematical sentence
4 x 9 = 36

we can make the following statements:

4 is a factor of 36

9 i s a factor of 36

36 is the product of the factors
4 and 9

36 is a multiple of 4

36 is a multiple of 9

In Chapter 8 we made frequent use of the binary re-
lation "divides" on various sets of numbers. In this

chapter we again make use of this relation. In partic-
ular, if 4 is a factor of 36 we say that 4 divides 36

and we write
4 36

Definition 3: We say +at for a and b in N, a
divides b if and only if a is a
factor of b. We denote "a divides
b" by "a I b".

For the sentence
3 x 4 . 12

we can make the following statements:

3 is a factor of 12

3 divides 12

3 12

4 is a factor of 12

4f 12
12 i s a multiple of 4, etc.

Since 5 is not a factor of 12 we can say that 5 does

not divide 12 (sometimes written 5,12).

Because 1 n= n where n is any natural number v

see that 1 is a factor of every natural number. Also,
every natural number is a multiple of 1.

Question: Can we say that 1 I n for all n in N?

Explain.

50.704.1.4VAJ'



You are familiar with the idea that every natural
tuber has many names. A number such as 12 can

renamed in many ways:

10 +2 3 4

1 12 6 2

e shall use the words product expression to talk
bout names such as "1 12" and "3 4" that
valve multiplication. We say that "1 12" and

3 4" are product expressions of 12. It is possible

o have product expressions for 12 with more than

wo factors such as:
1 2 6 2 2 3
1.3.4 1.2.2.3

e see that we can use any of several different product
expressions to represent the number 12.

Question: How many product expressions of 12 are
there which contain exactly two factors?

Question: I s 59.509 a product expression for 30031?
(the number 30031 will be mentioned later
in this chapter in connection with an im-

portant theorem).

In this section we have considered some of the basic
language used in number theory. Again, for a and b in N,

a is a factor of b if there is some natural number c such

that a c = b. Thus, 7 is a factor of 21 because

7 3 = 21. If a is a factor of b, we say that b is a
multiple of a. Thus 21 is a multiple of 3. If a is a factor
of b, we say that a divides b (written a ( b). Thus
7 I 21 and 3 I 21. We say that 21 is the product of the
factors 7 and 3. Also we say that "7 3" is a product
expression for 21. Note that the words product expres-
sion are used to talk about names such as "7 . 3" and

"1 21" and "1 3 7" that Involve finding a product.

11.2 Exercises

1. Explain why the following are, or are not, true:

(a) (2 + 3) E N

(b) (2 3) E N

(c) If a e W and b W, then (a + b) E N

(d) If x e N and y e N, then (x + y) E N

(e) If p e N and q W, then (p q) N

(f) The product of two natural numbers is a nat-

ural number.

Complete the following sentences:

(a) If a is a factor of b, then b is a ? of a.

(b) If x y = 2, then ? is a factor of ?

(c) If p q = r, then ? is a mu ',le of

(d) If 5 I 100, then 5 is a ? of 100.

(e) If 7 8 = 56, then 56 is called the ? of
? and ?
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(f) If 9 7 = 63, then "9 7" is called a of

63.

3. Determine if the following are or are not true .
Explain your answers.

(a)

(b)

(c)

(d)

(e)

(f)

(9)

(h)

(i)

(i)

(k)

(I)

3 is a factor of 18

7 is a factor of 17

3 is a factor of 10101

12 is a factor of 96

30 is a factor of 510

1 is a factor of 3

8 is a factor of 8

65 is a multiple of 13

91 is a multiple of 17

5402 is a multiple of 11

10 is a factor of 1000 because 10 - 100 = 1000

16 is a factor of 8 because 8 2 = 16

4. Determine if the following are or are not true.
Explain your answer.

(a) 3139

(b) 17 1 91

(c) 8 1 4

(d) 1 1 4

(e) 13 I 65

(f) 3 I 6, 3 112 and 3 I 18

(g) 2 I n where is any even natural number

(h) n 1 n where n is any natural number

(i) n 1 n2+ 3n for all n in N

5. For the following numbers determine all product ex-
pressions which contain exactly two factors.

(a) 6 (f) 2

(b) 7 (9) 3

(c) 1 . (h) 35

(d) 12 (i) 36

(e) 13 (i) 37

11.3. Divisibiati

In this section we shall consider how sentences clear-

ing with natural numbers can be established as theorems.

An example of such a sentence is the fallowing:
If a is an even natural number and b is an even

natural number then a + b is an ever, natural number.

This sentence was assumed to be true earlier in our

text (See, for example, Chapter 4, Exercise 2a, page 76),

Our goal now is to prove that a + b must be an even
natural number whenever a and b are even natural



numbers. in order to prove this some additional axioms

for (N, +, ) are needed. Rather that just stating those

axioms needed to prove the above sentence, we now

record c number of additional axioms for (N, t, )
which may be used to prove many other theorems. Note

that these axioms summarize properties of (N, +, ) you
have already been using.

A3.ForallaandbinN,a+b=b+aanda b=ba.

A4. For all a, b, and c in N,

a + (b + c) = (a + b) + c and a (b c) = (a b) C.

A5. For all a, b, and c in N,

a (b + c) = (a b) + (a c).

A6. For all a in N, a 1 = 1 - a = a.

Question: What familiar names do we give to the
axioms A3 A6?

In addition to these properties of natural numbers,

we will make frequent use of a general logical principle
that we first stated in Chapter 6. It is the Replacement

Assumption.

The mathematical meaning of an expression is not
changed if in this expression one name of an object

is replaced by another name for the same object.

As an illustration, consider the use of the cancellation
property in solving the equation 7. 2 + x = 46. Another

name for 46 is (7 , 2 + 38.8). Therefore, using the Re-

placement Assumption, we can write

7 . 2 + x = 7 2 + 38.8

and conclude that x = 38.8.

There are two specific ways in which the Replacement

Assumption will be used in establishing proofs of

sentences about the natural numbers. These are contained

in the following theorem.

Theorem A. If a, b, c, and d are natural numbers such

that a = b and c = d, then

1) a+b=c+d
2) a b = c d.

Proof:

1) Clearly, a + c = a + c. Since c = d means

that "c" and "d" are two names for the

same object, we can replace any "c" by
"d" without changing the mathematical

meaning of the expression involved.
Using thi s replacement we have a + c =

a + d. Similarly, since a = b means that
"a" and "b" are names for the same
object, we can replace any "a" by "b"
without changing the mathematical
meaning of the expression involved.
Therefore, a + c = b + d. Note that the

194

two replacements were made for the
and "c" to the right of the " = " in a
+ c = a + c.

2) To show that a c= b d we proceed in
a similar manner. Certainly a c = a c.
Replacing "c" with "d" and "a" with
"b" to the right of the " = " we obtain

a c = b d.

Let us now consider how we can prove the sen-

tence about even natural numbers with which we be-

gan this section. Before beginning the proof we note
that a natural number n is defined to be even if and
only if 2 I n. Our proof proceeds as follows.

Since a is an even natural number, we know that

2 1 a or that 2 is a factor of a. By Definition 1 this

means that there is a natural number x such that

a = 2 x. Similarly, since b is an even natural number,

2 1 b and there is a natural number y such that b = 2y.

Then, by the first part of the Theorem A just proven,

a + b = 2 x + 2 y. But 2 x + 2 y = 2 (x + y) by

the Distributive Property, A5. Hence, we may use the

Replacement Assumption to obtain a + b = 2 (x + y).
Since x E N and y E N then, by Al, (x + y) c N. We

see that according to Definition 1 this means that
2' (a + b). Hence a+ b is an even natural number and

the proof i s complete.

We can also express the above in the following

manner using "parallel columns." That is statements
used in the "proof" appear in the left column and
justifications of these statements appear in the right

column.

Theorem: If 2 1 a and 2{ b, then 2 1 a+ b where a
and b are natural numbers.

Proof:

1. 2 1 a and 2 1 b

2. a = 2x and b = 2y where
x,yEN

3. a+b=2x+2y
4. 2x + 2y =2 (x + y)

5. a+b =2 (x+y)

6. (x+y)EN

7. 21 (a+b)

1. Given

2. Definition 1.

3. Theorem A

4. AS (" " is
Distributive
over " + ")

5. Replacement
Assumption

6. Statement 2
and A

7. Definition 1
(definition of

P1)..

If we call the above "a proof" of the theorem
If 2 1 a and 2 1 b, then 2 (a + b)

we mean that we have shown that the conditional

sentence (1) (i.e., a sentence of the "if p, then
q" type) is true for all values of the variables

ariktV4,,,,,,,"WCAgl,..4,7,X)0044,a/Ci.0"AVAVVote-iin,k41.14RV4
, 044.4.10.,

(1)



and b. It is possible to generalize sentence (1)
obtain

If c I a and c b, then c I (a + b) where a, b,
N (2)

n order to give a proof of (2) one must show that
t is true for all natural numbers I, b, and c. (This
ill be asked for in an exercise.)

Question: Would sentence (2) be proven as a
theorem if we proved it true for
c = 3?

We have settled the question concerning the sum of
ny two even natural numbers. But what can be said

concerning the product of two such numbers? A little
experimentation (e.g., 2 4 = 8, 6 8 = 48, etc.)
;suggests we attempt to prove the following theorem:

If2laand21b,then2lab
ow proof might proceed as follows: (See if you can
'answer each of the "Why?" questions.) Since we are
given that 2 1 a and 2 1 b we can state that a = 2x and
b = 2y where x and y are natural numbers (Why?).
Further a b = (2x) (2y) (Why?). But (2x) (2y) =
2 [x (2y)] (Why?) Thus a b = 2 Ex (2y)] (Why?)
Since the number in the brackets is a natural num-
ber (Why?) we conclude that 2 1 a b. (Why?)

If you have been able to justify each of the state-
n-tnts in the above argument then you have a proof
of the conditional sentence

If 2 1 aand2 lb, then 2 I a b (3)

Sometimes we use a single letter symbol, such
as "p" or "q" to represent a whole phrase or sen-
tence. Thus we may write:

`Two divides a and two divides b"
in the shorter form

"21 aand2 I b"
or replace this expression by the symbol "p" where

"p" means "2 I a and 2 1 b".

Similarly we could use "q" to mean "2 I a b" or
"two divides the product of a by b." Thus we can re-
present (3) by

If p, then q

We refer to "p" as the "hypothesis" and

We refer to "q" as the "conclusion."

In order to prove (3) we assume that p was true. That is,
we assumed that the conjunction of "2 I a" and "2 I b"
was true. Then, using our axioms and definitions, we
proceeded to establish that the conclusion 2 1 (a b)
was true.

The direct method of proof is one of several accepted
methods of establishing mathematical sentences as
theorems.Often the direct method is not the simplest way
to proveo sentence true. Another method of proof, called
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the indirect method, is useful in many instances. To
illustrate the method we shall apply it to proving the
following:

If a b is an odd natural number, then a and b are both
odd natural numbers. (4)

Proof:

As before, we begin by assuming that a b is an
odd natural number. [Note: we say that a natural
number is odd if it is not event. But rather than
using this fact directly we now ask whether it is
possible for one of a and b to be even? To answer
this question we consider first the possibility
that a is even. If a is even, a= 2 x, x E N. Then,
a b = (2 x) b = 2 (x b) which mean s that
a b is even. But a b is odd. Hence, a cannot
be even, that is, a is odd. in a similar fashion
we see that b cannot be even. Therefore, both a and
and b must be odd if a b is odd and our proof is
complete.

In order to prove (4) we assumed that the hypothesis
was true, that a b was odd. Then we considered the
possibility that the conclusion might be false, that is,
that a was even or b was even. In either case this
could not be true because it meant that a b was even.
We thus reasoned that the conclusion must be true.

Question: Can you justify each of the statements
used in the proof of (4)?

The above proof concerning odd natural numbers made

use of the definition of odd naturals as naturals which
are not even. It is possible to give a more useful
definition of odd natural numbers. For this definition
we will need to review some ideas studied in your
earlier work with arithmetic. In particular recall that
when you were asked to divide a natural number by
another natural number you frequently expressed the
answer in terms of a quotient and a remainder. Consider
the following two displays of work done to divide 15 by 2:

6

2
12

3 1

In both displays we obtain a quotient and a remainder.
On the left we have a quotient 6 and a remainder 3
whereas on the right we have a quotient 7 ane a remain-
der 1. For the display on the left we have

15 = (6 2) + 3

For the display on the right we have

15 = (7 2) + 3

In a sense we have two "answers" for our division
problem involving a quotient and a remainder. We resolve
this situation of not having a unique solution by saying



that we will accept that result in which the remainder i s

a whole number less than the divisor. Then the display on

the left is unacceptable because the remainder 3 is not

less than the divisor 2. Further, the display on the right

is acceptable because the remainder 1 is a whole number

than the divisor 2. The question of whether we can always

find exactly one quotient and exactly ono remainder when

a whole number is divided by a natural number is an-
swered by the following axiom which is known as the

Division Algorithm.

A7. Let a be a whole number and b be a natural number.

Then there exist unique whole numbers q and r

such that

a = (q b) + r with 0 < r < b

Example 1: Let a = 39 and b = 9. Then the division
algorithm (A7) guarantees that whole
numbers q and r exist such thct

39 = (q 9) + r with 0 < r < 9

In fact if we let q = 4 and r = 3 we have

39 = (4 9) + 3 with OS3 <9

Moreover, the division algorithm guar-
antees that q = 4 and r = 3 are the
unique whole numbers which satisfy

39 = (q 9) + r with 0 < r < 9

Example 2: Consider a case where a is less than b.

If a = 8 and b = 17, then

8 = (0 17) + 8

where the quotient is 0 and the remain-

der is 8. Note that the remainder is a
whole number less than the divisor. That
is 0 < 8 < 17.

Example 3: If a whole number is divided by 2 the div-
ision algorithm guarantees that there
exist unique whole numbers q and r such

that

a = (q 2) + r where 0 < r < 2

It is clear that the only possible values of

r are 0 and 1. Thus we have

either a = (q 2) + 0

or a= (q 2) + 1

(1

(2)

We can use the above to give us the follow-

ing:

Definition 4: (a) n is tin evfm whole number if and only

if n can be expressed as n = (q 2) + 0

where q is some whole number.

(b) n is an odd whole number if and only
if n can be expressed as n = (q 2)

+ 1 where q is some whole number.
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It is easy to establish the following:

Let E = lx I x is an even natural numbed

and a = ly y is an odd natural number

Theorem (a) If a f E and b c cr, then (a + b) f a

(b) If a f a and b cr, then (a + b) f E

(c) If a f F. and b a, then (a b) E

(d) If a f cr and b cry then (a b) f Cr

The proof of the above will be called for in the exercises.

We conclude this discussion of odd and even natural
numbers with a theorem whose proof makes use of
Definition 4 and the above theorem. It also illustrates
a method of proof sometimes called proof by cases.

Theorem: If n and n + 1 are natural numbers, then

n(n + 1) is an even natural number.

Proof: n(n + 1) = n2 + n (by A5 and by definit-
ion of n2)

(1) If n is even, then n2 is even. If n
and n2 are even, then n2 + n, as the

sum of two even natural numbers, is

even.

(2) If n is odd, n2 is odd, and if n and
n2 are odd, then n2 + n, as the sum
of two odd natural numbers, is even.

Hence, in either case (1) or (2) n' + n
is even. Since n(n + 1) = n2 + n,

n(n + 1) is even.

Question: Why does the above proof consider
only two cases?

11.4 Exercises

1. Complete the following:

(a) a = (q b) + r, 0 < r < b, is called the ?

(b) (x + 1) y =x y +y follows from ?

(c) 7.1 = 7 follows from ?

(d)

(e)

(f)

(9)

If x=yandp=q,thenx+p=y+qfollows
from ?

7 is an odd natural number because

If a is an odd natural number, then a =

If q is false implies p is false, then

(h) If k e N and I c N, then (k j) c N follows
from ? .

2. Find all possible pairs of whole numbers q and r

such that 13 = (3 q) + r. Which of these pairs
are the quotient and remainder of the division
algorithm? For which case(s) does r satisfy
0 r < 3?
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(a) Prove if 3 1 a and 31 b, then 3 1 a + b where
a, b, E N

(b) Prove if c 1 a and c 1 b, then c 1 a+ b where
a, b, c ( N.

Prove if a 1 b and b 1 c, then a 1 c where a, b, c
N.

Prove if a1 b, then a1 bc where a, b, c, E N.

Let E and a represent respectively the set of even
natural numbers and the set of odd natural numbers.

Prove (a) If a E E and b E a, then (a + b) E a

(b) If a E a and b E a, then (a + b) E E

(c) If a EEandbEa,then(ab)EE

(d) If a c a and b a, then (a b) c a

If the natural number n is not a multiple of 3, then
+ n is a multiple of 3. Prove the above theorem

as follows: Assume n2 + n is not a multiple of 3
implies n is a multiple of 3.

Examine each of the statements (a), (b), and (c).
If the statement is false then exhibit a counter
example.
If the statement is true then list all the assumptions
that you need in order to complete a proof of the
statement.

(a) If a 1 b, then a 1b+c

(b) If a 1 b, then a 1 be

(c) Ifalb+candalb,thenalc.
In this problem we consider some tests that may be
applied to divisibility questions involving base ten.
These tests will generally fail when numbers are
represented with numerals in bases different from
ten.

Assume the following is true:

If a I b1, a 1 b2,... , a 1 bm_l and

if a 1 (b1 + b2 +... bm_i + bm), then a 1 bm

Also note that any natural number N can be written

in the form N = anion + an-1 10n-1

+ 02102 + al 10 + 00

Prove that a natural number is divisible by 2 if and
only if the last digit of its (base ten) numeral is
even.

b) Note 3 1 (10-1), 31 (102-1), 31 (103-1), etc..
Assume 3 1(10k-1) where k is any natural number.
Prove a natural number is divisible by 3 if and only
if the sum of the digits of its (base ten) numeral is
divisible by 3. [Hint: 10k = 10K 1 + 11

Discover a decimal numeral test which indicates
when a number is divisible by
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(1) 4 (4) 8

(2) 5 (5) 9

(3) 6 (6) 10

(d) Prove any of the results you have discovered in (c).

11.5 Primes and Composites

It i s obvious that the natural number 8 has more

factors than the natural number 7. The set of factors of
8 is 11,2,4,81 whereas the set of factors of 7 is 11,71.

It is not hard to find other natural numbers like 7 which
have exactly two distinct numbers in their factor set.
For example, 11 is such a number since the set of factors
of 11 is 11, 111. 2 is another natural number with precisely
two numbers in its set of factors. Such numbers as 2, 7,
and 11 are called prime numbers. In general, we have the

following:

Definition 4: A natural number is said to be a prime
number if the number has two and only
two distinct factors -- namely, 1 and the
number itself.

Example 1: 3 is a prime number since the only
factors of 3 are 1 and 3.

Example 2: 31 is a prime number since the only
factors of 31 arc 1 and 31.

91 is not a prime number because 91
= 7x13. That is, 91 has factors other than
1 and 91.

Example 4: 1 is not a prime number. What in the
definition of prime number determines that
1 is not a prime?

We see from Example 4 that the least natural prime
number is 2. What can we say about the primness or non-
primeness of multiples of 2 which are greater than 2? We
kncrii that 4 is a multiple of 2. But 4 cannot be a prime
number because it has a factor other than 1 and itself,
namely 2. Simi larly, 6, being a multiple of 2, has a factor
2 other :tan 1 and 6 and thus cannot be a prime number.
In general, no multiple of 2 except 2 can be a prime number.
Why?

What about multiples of the prime number 3? Can they
ever be prime numbers? If we examine any multiple of 3
greater than 3, say 9 or 21 or 3000, we see that every
such multiple has a factor other than 1 and itself, namely
3. In short, there are many natural numbers which are not
prime. We call numbers of this type composite numbers.
A composite number always has numbers in its factor set
besides 1 and the number itself. The factor set for the
composite number 9 is 11, 3, 91.

Definition 5: A natural number is a composite number,
if it is not equal to 1 and it is not a prime
number.

Example 1: The natural number 51 is a composite
number. Clearly 51 is not equal to 1.
Also, 51 is not a prime number because it

Example 3:
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has the factors 3 and 17. We note that
the factor set of 51,11, 3, 17, 511, has
more than two elements.

Example 2: All multiples of 5, except 5, are com-
posite. That i s 110, 15, 20, 25, 30...1
consists of composite numbers. Why?

Example 3: The natural numbers 90, 91, 92, 93, 94,
95, 96, 98, and 99 are all composite.
How would you check this? What can
we say about 97?

From the remarks and examples above it can be seen
that we now have a partition of the set of natural numbers
into three disjoint subsets. These subsets are the follow-
i ng:

(i) the set consisting of 1 alone; that is 111

(ii) the set of prime natural numbers.

(iii) the set of composite natural numbers.

11.6 Exercises

1. Complete the following sentences:

(a) If a natural number is a prime number, then its
factors are

(b) If a natural number is not a prime number, then it

is ? .

(c) If a natural number is a prime number, then it has
elements in its set of factors.

(d) If a natural number is not a prime number, then it

has ? elements in itsiactor set.

2. List the set of factors for the following natural num-

bers:

(a) 10 (e) 34

(b) 13 (0 35
(c) 12 (g) 36

(d) 24 (h) 37

3. Determine which of the numbers given in Exercise 2

are

(a) prime

(b) composite

(c) both prime and composite

4. What can be said about every multiple of a prime
number which is greater than that prime number?

5. (a) What is the greatest prime number less than 50?

(b) What is the least composite number?

6. What can be said about the product of two prime

numbers?

7. (a) List the set of all even prime numbers.

198

(b) Li st the set of all odd prime numbers less than
20.

8. Re-examine the definition of composite number. Can

you formulate a different definition which makes use
of the term "factor" or "factor set"?

11.7 Complete Factorization

As you continue your study of the set of natural num-
bers and their properties you will frequently have to
examine the factors that make up the product expressions
of a natural number. What can we say about the factors
that make up the product expressions of prime numbers?

We have seen that

2= 1 2

3= 1 3

5 = 1 5, etc.

By the definition of prime numbers the only factors a
prime p has are 1 and p. However, we find that every
composite number can be renamed as a product expres-
.,ion other than 1 times the number. For example, 20 can

be renamed using either of the following product expres-

sions:

2 10 (1)

4 5 (2)

These product expressions of 20 can be shoWn in an-

other way:

2 x 10 4 x 5

On the left we have a tree diagram to represent (1) and

on the right a tree diagram to represent (2). It is possible
to continue each of the above diagrams by completing
another row to indicate product expressions of 20 as

follows:

x2

2 X 2 x 5 2 x 2 x 5

We see that every number named in the last row of both
diagrams i s a prime number. (We shall refer to such tree
diagrams as factor trees.) Moreover, the last rows in



th factor trees contain exactly the same prime num-
ors. Thus, starting with either of the product expres-
Ions (1) and (2) of 20 we obtain exactly the same pro-
4ct expression of 20. In this case we see that 20 has
product expression such that each factor that makes
the product expression is a prime number. We shall

iP.scribe this situation by saying that 20 can be
)(pressed as a product of prime factors.

Our attention is directed to the following questions:

Can every composite number be expressed as a pro-
luct of prime factors? In other words, does there exist
product expression for each composite number in

rhich each factor is a prime number? Furthermore, is
here only one such product expression?

The following factor trees for 36 suggest that the
nswer to the above questions should be "Yes."

36 36 36

/ A / /N 2/ x\3 x( 3

3 x 3 x 2 x 2 2 x2x 3 x3

Ve note again that the last row in each of the above
actor trees is a product expression for 36 in which
tech factor is a prime number. Moreover, the same set
of factors appear in each product expression. Note
hat the order of the factors in each of the last rows
)f the factor trees is different. Is this change in the

he order of the factors a signifigant change? The
answer is "No." Because of the commutative property
of multiplication in (N, x), the fact that they are
arranged in different order is immaterial. Thus, using
exponents, we can express the last row in each of the

above tree diagrams as

22 .32

When a composite number is expressed as a product
:of prime factors, we refer to this as a complete factor-

ization of the given number.

The following are examples of complete factorizat-
ions:

72 = 2 36 182 = 2.91

= 2 2 18 = 2 7 13

=2 2 2 3'

150 = 2 75

= 2 3 25

= 2 3 5 - 5
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Notice that when each factor in the final product expres-
sion is a prime number then we say that the product
expression for complete factorization has been found.

One important question that can be asked is the fol-
lowing: If a composite number has a complete factor-
ization, could it have a second complete factorization
involving different prime numbers? All the examples
considered above seem to indicate that there is only
one complete factorization for a given composite num
ber. For example consider

1CA_°11 C

If you experiment with other possible prime factors, such

as 7, 11, 13, etc., you wi II find that the above is the only
complete factorization of 150.

The above examples illustrate one of the most impor-
tant and fundamental properties of the set of natural num-
bers. The property is called The Unique Factorization of

the Natural Numbers:

Every natural number greater than 1 is either a
prime or can be expressed as a product of primes
in one and only one way except for the order in
which the factors occur in the product.

We shall see how this property can be used to solve, in a
new way, a problem that you met earlier in this course.

There was an exercise in Chapter 2 [See Section 2.2,
Exercise 9, p. 321 in which you were to find the greatest
common divisor of 24 and 16. It turns out that finding
the greatest common divisor of two natural numbers is
equivalent to finding the greatest common factor of the
two numbers. We can redefine a greatest common divisor
of two nature: numbers using the terminology of this
chapter.

Definition 6: The greatest common divisor (abbrev-
iated g.c.d.) iated g.c.d.) of two natural numbers,

a and b, is the largest natural number
d such that d I a and d 1 b. d is writ-
ten as g.c.d. (a, b) or d = (a, b).

In Chapter 2 you found g.c.d. (24, 16) essentially as fol-
lows:

Consider the set made up of the factors of 24, which we
will call A: A =11, 2, 3, 4, 6, 8, 12, 241

The set of factors of 16 we will call B:

Then AflB=i 1, 2, 4, 81 is the set of
common factors (divisors) of 16 and 24. Clearly 8 is i:te
greatest common divisor of 24 and 16. That is g.c.d.
(24, 16) = 8. We see that 8 is the greatest natural number
such that 8 1 24 and 8 1 16.

Question: Why will 1 always be an element in the
intersection of the factor sets of two natural numbers?

A second solution to the above problem is as
follows: By the Unique Factorization Property we know
that both 24 and 16 can be expressed as a product of
primes where the factors of the product are unique. In
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fact we have 24 = 2 2 2 3 and 16 = 2 2 2 2 .

We see that the product expression 2 2 2 is common
to both factorizations and yields the greatest common
divisor 8. This technique is useful when the numbers
are small. For example to find g.c.d. 3, 108) we
determine that

45 = 32 5

and 108 = 22 33

We see that 3 is a common factor. However, 32 = 9 is
also a common factor and is the greatest common factor
of 45 and 108.

11.E Exercises
1. Factor the numbers listed in as many ways as pos-

sible using only two factors each time. We shall say
that 2.3 is not different from 3.2 because of the
commutative property of multiplication in (N,).

(a) 9

(b) 10

(c) 15

(d) 100

(e) 24

(f) 16

(g) 72

(h) 81

2. Write a complete factorization of:

(a) 9

(b) 10

(c) 15

(d) 100

(e) 24

(f) 16

(g) 81

(h) 210

(i) 200

(i) 500

3. What factors of 72 doe not appear in
factorization of 72?

4. What will be true about the complete
of every

(a) even natural number

(b) odd natural number

5. Construct at least two tree diagrams

fol lowing:

(a) 24 (c) 625

(b) 96 (d) 1000

6. Find the greatest common divisor of the following pairs
of numbers by making use of their complete factorizations.

a complete

factorization

for each of the

(a) 70 and 90

(b) 80 and 63

(c) 372 and 390

(d) 663 and 1105

7. Determine if g.c.d. is a binary operation on N. If it is,
explore its properties. If it fails to be a binary operation

on N, explain why it does fail.

8. Copy the following tables for natural numbers and com-

plete it through n = 30.
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n Factors of n Number of factors

1

2

3
4
5

6

7
8

1

1,2
1,3
1,2,4
1,5

1,2,3,6
1,7
1,2,4,8

1

2
2
3
2
4
2
4

Sum of factors

1

3

4
7

6
12

8

15

(a) Which numbers represented by n in the table
above have exactly two factors?

(b) Which numbers n have exactly three factors?

(c) If n = p2 (where p is a prime number), how
many factors does n have?

(d) If n = pq (where p and q are prime numbers and
not the same), how many factors does n have?
What is the sum of its factort?

(e) If n = 2 (where k is a natural number), how
many factors does n have?

(f) If n = 3 (where k is a natural number), how
many factors does n have?

(g) If n= p (where k is a natural number and p is
a prime), how many factors does n have?

(h) Which numbers have 2n for the sum of their
factors? (These numbers are called perfect
numbers.)

9. If we list the set of multiples of 30, we obtain
130, 60, 90, 120, 150, 180, ...1. Also, if we I ist
the set of multiples of 45, we obtain 145, 90, 135,
180, 225, 270, ...1. We see that a common multiple
of 30 and 45 is 180. However, there is a common
multiple which is the least common multiple of 30
and 45; namely 90. We write this as 1.c.m. (30,45)
= 90.

(a) Examine the complete factorizations of 30 and
45 and explain how one could use these to find
that the least common multiple of 30 and 45 is
90.

(b) Similarly, find the least common multiples of the
following numbers by making use of their com-
plete factorizations:

(1) 30 and 108 (4) 81 and 210

(2) 45 and 108 (5) 16 and 24

(3) 15 and 36 (6) 200 and 500

(c) Can you find any relationship between the great-
est common factor (g.c.f) of a and b and the least
common multiple (I.c.m.) of the same a and b?
Experiment and write a report on your findings.



10. Determine if I.c.m. is a binary operation on N. Write
a report of your findings.

11 :9. The Sieve of Eratosthenes
The fact that every composite number can be express-

ed as a product of primes in one and only one way, except
for order, indicates that the set of prime numbers are the
basic elements, the atoms so to speak, in the structuring
of the natural numbers by multiplication. If we wish to
have a basic understanding of multiplication of natural
numbers (and divion, which is defined in terms of multi-
plication), then it is to our advantage to be aware of some
properties of the set of prime numbers.

A list of all the primes up to a given natural number N
may be constructed as follows: Write down in order all the
natural numbers less than N. In Figure 11:1 wehave done
this for N = 52. Then strike out 1 because by definition it
is not a prime. Next, encircle 2 because it is a prime num-
ber. Then strike out all remaining multiples of 2 in the
list, that is, 4, 6, 8, 10, etc. such multiples of 2 are, as we
discussed earlier, composite numbers.

Next encircle 3, the next number we encounter in our
list. After 3 is encircled, we strike out 6, 9, 12, ..., that
is all multiples of 3 remaining in the list. (Note that 6
was struck out when we considered multiples of 2 and also
when we considered multiples of 3.) In a similar way we
continue this process by next encircling 5 and striking out
its remaining multiples. Lastly we encircle 7 and strike
out its remaining multiples.

X@CD0P01/0%
00114 1.0i@lise$
00CD$A$X$C>6
31004$$0000
0043,1104004,6

Figure 11.1

Note that if we encircle all the numbers remaining
in the list we obtain all the natural prime numbers less
than N = 52. In all there are 15 such prime numbers ob-
tained by this process, known as the Sieve of Eratos-
thenes. The sieve catches all the primes up to N in its
meshes.

Complete tables of all primes less than 10,000,000
have been computed by this method and refinements of
this method. Such tables are useful in supplying data
concerning the distribution and properties of the primes.

Even the small list constructed above gives some
indication that the primes are not distributed in any
sort of obvious way among the natural numbers. Also,
we see that it may happen that a number, p, is a prime
and p + 2 is also a prime. Such pairs of primes are
called twin primes. Examples of twin primes in the
I ist above include 11 and 13, 17 and 19, 29 and 31,
41 and 43.
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11.10 Exercises
1. (a) In the above list, what was the first number

struck out when we sieved for the following:

(1) multiples of 2 (3) multiples of 5

(2) multiples of 3 (4) multiples of 7

(b) Can you make a conjecture concerning the
first number struck out if we sieve for multi-
ples of a prime p?

(c) Explain why"we did not have to sieve for
multiples of the prime 11?

(d) What is true of all numbers that

(1) pass through the sieve?

(2) remain inthe sieve?

(e) Would any new numbers be crossed out if we
sieved for multiples of 4? Why or why not?

2. Make up a list of natural numbers less than 131.

(a) Carry out the Sieve of Eratosthenes process on
his set of numbers.

(b) How many primes are there less than 101?

(c) How many primes are there less than 131?

(d) What is the largest prime number in your list?

(e) What is the largest prime, p, for which you
had to determine multiples in the sieving
process? Explain.

3. (a) List the pairs of prime numbers less than 100
which have a difference of 2.

(b) What name is given to such pairs?

(c) Howmany such pairs are there less than 100?

4. Make up a list of numbers which goes from 280
through 290.

(a) Apply the Sieve of Eratosthenes process to this
list.

(b) List all the primes obtained from this sieving.

(c) For which primes did you have to seek multiples?

(d) Explain why you selected a certain prime as the
largest for which you sought multiples.

5. (a) List the triplets of prime numbers less than 131
which have a difference of 2. Such triplets are
called prime triplets.

(b) After you have found the smallest set of prime
triplets, explain why no other distinct set of
prime triplets could have 3 as a factor.

(c) Assume that there is a second set of prime
triplets. Call them p, p + 2, p + 4. From (b) we
know that p 3k where k is some natural num-
ber. Why?



(d) If p 3k, then what is the remainder obtained
when p is divided by 3?

(e) Can you examine p + 2 and p + 4 and prove that
p, p + 2, and p + 4 do not exist as primes?

(f) Wiwi conclusion can you draw from (a) (e)?

11.11 On the Number of Primes
Euclid (circa 300 B. C.) answered the following

question: Is there a finite or a non-finite number of
prime numbers? As you work with the sieve of
Eratosthenes you probably note that as you continue
sieving the primes become relatively scarce. How-
ever, Euclid proved that, as one continues to ex-
amine the set of natural numbers, primes will always
be encountered if we seek long enough. He proved
that there are a non-finite number of primes.

Euclid's argument proceeds as follows: Assume
there is a largest prime. Let us denote this largest
prime as "P". All the primes can then be written
in a finite sequence

2, 3, 5, 7, , P

Since P is the largest prime, all numbers greater
than P must be composite; that is, every number
greater than P must be divisible by at least one
of the primes in the above sequence (Why?). But
now consider the number

N = (2.3.5.7.... .P) + 1.

that is, the number obtained by adding 1 to the
product of all the primes. Since N is greater than
P, it must be a composite number, and therefore
divisible by at least one of the primes in the
above sequence. But by which? It can be argued
that N is not divisible by any of the primes
2, 3, 5, 7, ..., P (Why?). Hence N cannot have
any prime factors, which contradicts the fact
that N is composite. Therefore, the assumption
that the number of primes is finite leads to a
contradiction, and we must conclude that there
arc a non-finite number of primes.

It is interesting to note that the number of
prime twins is not known! Unlike the situation
for the primes, efforts to determine the number
of such prime twins have not proved successful.

Another famous unsolved problem also deals
with primes. It is called Goldbach's Conjecture.
Goldbach stated, in a letter to Euler in 1742, that
in every case that he tried he found that any even
number greater than 2 could be represented as the
sum of two primes. For example, 4 = 2 + 2,
6 = 3 + 3, 8 = 5 + 3, etc. No one has ever been able

to prove or disprove this conjecture of Goldbach. The
problem posed in the conjecture is interesting be-
cause (1) it is easily stated and (2) it involves addition
whereas primes are defined in terms of multiplication.
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In any case, it has resisted solution for over two hun-
dred and twenty years.

11.12 Exercises
1. Show that the following numbers ail satisfy

Goldbach's Conjecture.

(a) 10 (f) 20

(b) 12 (g)

(c) 14 (h) 48

(d) 16 (i) 100

(e) 18 (j) 240

2. In working with Euclid's proof that the set of primes
is non-finite we find that possible values of N in-

cide:2 +1,2.3 +1,2.3.5 +1,2.3.5.7 +1,
2.3.5.7.11 + 1, 2.3.5.7.11.13 + 1,
2.3.5.7.7.11.13.17 + 1, etc.

(a) Explain how each of the numbers in the above
list was formed. In each case what is P? What
is N?

(b) The first 5 numbers in the list are primes. Com-
pute them and verify that at least 4 of them are
in fact primes.

(c) Note that 2.3.5.7.11.13 + 1 = 30031 and this
number is composite because 30031 = (59)(509).
Verify this.

(d) Prove that 2.3.5.7.11.13.17 + 1 is a composite
number. (Hint: be efficient!)

(e) Discuss Euclid's argument with regard to the
number shown in (d).

(f) Answer the two questions. "Why?" given in
Euclid's proof of the infinitude of the primes.

(g) Explain why a computer could never settle the
question concerning the number of prime twins.

11.13 Euclid's Algorithm
We have seen that one way to find the g.c.d. of two

natural numbers is to begin by expressing each of the
numbers as a product of prime factors. However, this
is not practical when the numbers considered are quite
large. A method which is often used to find the g.c.d.
of large numbers is based on repeated use of the div-
ision algorithm.

We illustrate this by considering the problem of
finding the g.c.d. of 28 and 16. By applying the div-
ision algorithm we have

28 = (1.16) + 12 where Os 12 < 16

Note that if alb + c and alb, then alc. Thus any num-
ber that divides 28 and 16 must also divide 12. Thus
the g.c.d. (28,16) must divide 12. Let g.c.d. (28,16) = d.
Then d112 implies d is a common divisor of 16 and 12.

,44,,,,,
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d = g.c.d. (16,12)

cause if there was a larger divisor of 16 and 12 it
uld divide 28 and then d would not be the

c.d. (28,16). Hence, we have g.c.d. (28,16) =
c.d. (16,12). We continue the process by using the
vision algorithm again to obtain

16 = (1.12 + 4 where 0<4<12

7 the same argument GS Gbove we have g.c.d. (16,12) =
c.d. (12,4) Therefore, g.c.d. (28,16) = g.c.d. (12,4).
astly, we apply the division algorithm to obtain

12 = (3.4) + 0

d we see that the g.c.d. (12,4) = 4
us g.c.d. (28,16) = 4.
e following example illustrates the algorithm inli-
ted above:
Example: Find the g.c.d. of 7469 and 2387

9 = (2387)(3) + 308 g.c.d. (7469,2387) =
.c.d. (2387,308)

87 =(308)(7) + 231 g.c.d. (2387,308) =
.c.d. (308,231)

(231)(1) + 77 g.c.d. (308,231) = g.c.d. (231,77)

(77)(3) g.c.d. (231,77) = 771

hus g.c.d. (7469,2387) = 77.

Note that we first divide the larger number, 7469,
y the smaller number, 2387, and find the remained,
08 (which is less than the smaller number). Next we
ivide the smaller number by this remainder 308 and
nd anew remainder 231. Now we divide the first
mainder 308 by the new remainder 231 and find the
ird remainder, 77. We continue this division until

obtain a remainder O. The last non-zero remainder
us found is the g.c.d.
iiThe procedure used to obtain the set of equations

at is obtained by successive applications of the
ivision algorithm is known as Euclid's Algorithm.

It can happen that when we find the g.c.d. of two
umbers it turns out to be 1. For example, it is clear

t

g.c.d. (5,13) =1

d with a little work we can see that

g.c.d. (124,23) = 1

uch pairs of numbers whose g.c.d. is 1 play an
portant role in Number Thecry.

Definition 7: If the greatest common divisor of two
natural numbers a and b is 1, we say
that a and b are relatively prime.

hus 5 and 13 are relatively prime since g.c.d. (5, 13) = 1.
imilarly 124 and 23 are relatively prime. We shall use
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theidea of two numbers being relatively prime in our
next axiom.

A8. If d = g.c.d. (a,b), then there exist integers
x and y such that

d=xa+yb
In particular, if a and b are relatively prime,
there exist integers x and2 such that
xa+yb= 1.

Example 1: g.c.d. (72,86) = 2 and 2 = 6(72) +(-5) (86)

Here x = 6 and y = -5

Example 2: g.c.d. (5, 7) =1

and 1 = 3 (7) + (-4) (5)

Here x = 3 and y = -4.

Example 3: g.c.d. (147,30) =1

and 1 = 23 (147) + (-26) (130)

Here x = 23 and y = -26.

In order to prove an important theorem we need only the
underlined portion of A8 (which is illustrated in Ex-
amples 2 and 3 above). The following theorem will
allow us to prove a number of theorems that tie together
the ideas of "prime" and "divisibility."

Theorem: If a I bc and g.c.d. (a,b) = 1, then a I c.

Proof: Since g..c.d. (a,b) = 1, then, by A8

1 = ax + by

where x and y are integers. Then c = c we
have,by Theorem A, c I =c (ax + by). Apply-
ing A6 on the left and A5 on the right, we have

c = cax + cby

By hypothesis a I bc which by A3 implies

a I c b. But a I cb implies a I cby. (Why?)
Similarly a I cax. Thus, we conclude that
a I c. (Why?)

Example 1: 7 1 70. Consider 70 as 5 (14). Then we
have 7 15 (14) and g.c.d. (7,5) = 1. Hence
by the abc /Es theorem 7 1 14.

Example 2: W 1 840. Consider 840 as 21 (40). Then
we have 10 1 (21) (40) and g.c.d.
(10,21) = 1.Hence 10 140.

Among the theorems that are easily established using
the above theorem are:

(1) Let p be a prime such that p bc and p I b. Then pI c.
(2) If p is a prime and p I ab, then either p I a or p I b

(or both).

11.14 Exercises

1. Using the Euclidean Algorithm find the greatest
common divisor of each of the following pairs of
numbers.



(a) 1122 and 105 (c) 220 and 315

(b) 2244 and 418 (d) 912 and 19,656

2. Find the g.c.d. (144, 104) using two different methods.

3. (a) What is the g.c.d. of a and b if a and b are dis-

tinct primes?
(b) If a is a prime and b is a natural number such that

a I b what is the g.c.d. (a,b)?

4. Prove the following:

Let p be a prime such that p I be and pi b. Then plc.

5.. Prove: If p is a prime and p lob then either pi a or

plb (or both)

6. Prove: If a and b are relatively prime and alc and

blc, then abjc.

7. Prove: If d= g.c.d. (a,b) and a = rd and b = sd, then

r and s are relatively prime.

8. Construct a flow chart for finding the g.c.d. of a
and b by the Euclidean Algorithm..

9. Fermat's Little Theorem. In the year 1640 Fermat
stated the following: If p is a prime that is not a
divisor of the natural number a, then pi (a P-1 -1).

(a) Find two examples which illustrate this theorem.

(b) Note that there is the restriction that pica. What
would follow if p i a?

(c) What can we conclude if p is not a prime?

(d) Can you prove Fermat's Little Theorem?

11.15. Well-Ordering and Induction.

We have stated thus far eight axioms, Al-A8, which
are basic properties of (N, +, ). These have enabled
us to investigate many interesting problems in number

theory and to prove several theorems about the natural
numbers. Perhaps you have noticed that several of the
basic properties of the natural numbers are shared by
other operational systems. For instance, Al-A6 are
also properties of (Z5 +, -). But (N, +, ) is quite

different in other respects from (Z5, +, -). Let us look
at some further properties of (N, +, -) that distinguish
it from other operational systems.

The first of these properties is the Well-Ordering

Axiom. You will recall that if a and b are any two
natural numbers we say that a is smaller than b, or
that a<b, if and only if there is a natural number c

such that a + c = b. Thus, given any two different
natural numbers a smallest member of the pair may be
determined. It is easy to see that this is also true for

any set of three natural numbers. But is this 41le for

any non-empty set of natural numbers? That is, does

any non-empty set of natural numbers contain a smallest

member? Let us consider the following examples:
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Example 1.. The set of even natural numbers. The
smallest member of this set is 2.

Example 2. The set of odd natural numbers. The
smallest member of this set is 1.

Example 3..The set of natural numbers which divide

1 001.. The smallest member of this set
is 7. You should check this result for

yourself.

It seems reasonable that the answer to our question

in general should be "yes", and this is the content of

the Well-Ordering Axiom, A9.

A9. Every non-empty set of natural numbers contains

a smallest natural number.

To see that this is a distinctive property of the
natural numbers not enjoyed by other sets of numbers

we need only examine subsets of the integers Z. Not
every non-empty subset of Z contains a smallest in-
teger. For instance, the setof negative integers con-
tains no smallest integer, since -1 > -2 > -3 > -4 > -5 >.
Another example is the set of integers which have re-
mainder 3 when divided by 5. This set is {..., -17, -1:
-7, -2, 0, 3, 8, 13, 18, . We will see later that the
axiom also does not hold for the set of rational number

The second property of the natural numbers that we

consider is the Induction Axiom. If we begin with 1,
and continue adding 1, we obtain the sequence
2= 1 +1, 3 = 1 + 1 +1, 4 = 1 + 1 + 1 . In this
we con eventually attain any natural number n from

the natural number 1.
Looking at the situation another way, we let D be

subset of N and ask whether or not D is a proper subs

of N. If D is not a proper subset of N we know that

D = N. Now suppose 1 E D and, in general, whenever

natural number k c D, the natural number (k + 1) E D

also. Then, since 1 D, 1 + 1 = 2 c D, 2+ 1 =3 ED,
etc. It seems reasonable to assume that under these
conditions every natural number is in D.. That is, D =

This i s our next axiom, the Induction Axiom, A10.

A10. Given a set D of natural numbers such that

1) i FD

2) k D (k + 1) E D,
we mans conclude that D = N.

This axiom is the basis for a powerful method of pro,

ing sentences about natural numbers. Let us recall a

few ideas concerning open sentences and statements

An open sentence in one variable cannot be asserted

be either true or false. However, if we make some
assertion as to what the variable represents, they be

come statements that are either true or false. For ex
ample, "x + 4 = 2x + 2" is an open sentence and het
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neither true nor false. However, "for every natural
mber x, x + 4 = 2x + 2" is a false statement. (Try

1). Note that the statement "there exists at least
ie natural number such that x + 4 = 2x + 2" is a true
dement. Why? Other examples of statements on N are:

Example 1: For every natural number n greater than
2, 2 is a factor of re + n.

Example 2: For every natural number n, n2 -n + 41
is a prime number.

Example 3: For every natural number, the sum of the
first n odd positive integers is equal to

n2

Example 4: There is no natural number n such that
the sum of its fnctors is 2n + 1.

Example 5: There exists a natural number n such
that rl > 3 and n < 9.

'he solution set of the sentence in example 5 is clearly

14, 5, 6, 7, 81

Ve also call this set the truth set of the sentence in
Example 5. It is clear that the statement in Example

is true.

In general, the truth set of a sentence in one variable

s the set of all numbers and only those numbers, in the

lomain of the variable which make the sentence true.

Ne often use the notation "P(n)" (read "P of n") to
represent an open sentence. If P (n) denotes the open

tentence "n2-n + 41 is a prime number" in Example 2,

then we see that P(1) is true since "12-1 +41 is a
prime number." However P(41) is false. Show this!
tie conclude that the statement in Example 2 is false.

If one experiments with the problem posed in Example

4 he soon finds that it is quite a hard problem. In fact,
it is a good example of an easily stated but unsolved
problem in number theory. One attempt to settle the
problem would be to find a counter-example. We see

that n = 8 fails as a counter-example because the sum
of the factors of 8 is 15, whereas letting n = 8 we have

2(8) + 1 = 17.

It is possible to get quite close to our goal. For
example, let n = 28. The numbers which divide 28 are
1, 2, 4, 7, 14, and 28. The sum of these numbers is 56.
But 56 is not equal to 2n + 1 = 2(28) + 1 = 57.1n the
two cases attempted, we have failed to find a value of
n which contradicts the condition of the problem.

But everyone who has ever tried to solve tilt problem
has failed. Thus we do not know if the statement given
tin Example 4 is true or false.

Let us examine the open sentence in Example 3

more closely. We are to consider the sum of the first

n odd natural numbers. We have

P(1) = 1 = 1

P(2) = 1 + 3 =4
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P(3) = 1 + 3 + 5 =9

P(4) = 1 + 3 + 5 + 7 =16

P(5) = 1 + 3 + 5 + 7 + 9 =25

Notice that the sum of the first 5 odd natural nun,

is 52. 25. The above results certainly suggest that
the statement in Example 2 is well founded. It.appears
that if we let N be any natural number that

P(N) = 1 +3 +5 +7+ + (2N-1) = N2
To prove the statement of Example 2, as it is re-

phrased in the previous paragraph, is true for every
n EN, we must show that its truth set, T, is the set of
natural numbers N, or that T = N. It is in this siltation
that A10 is useful as a tool of proof. We shall make no
attempt to carry out such a proof but simply indicate
how A I 0 applies.

First, we must show that I ET, or that P(1) is true.
This has already been done in previous discussion.
Second, we must show that if k ET then k + I c T. That is,
if P(k) is true then P(k + 1) is true. Then the Induction
Axiom allows us to conclude that T = N or that P(n) is
true for all n

11.16 Exercises

1. What does the Well-Ordering axiom assert about each

of the following:

(a) 14, 5, 6, 7, 81

(b) the set of prime natt'ral numbers

(c) the empty set

2. Can you make a conjectur, concerning the sum of the

first n natural numbers?

Consider 1; 1 +2; 1 + 2 + 3;...; 1 + 2 +... + n.

3. (a) Can you make a conjecture concerning

(1) the sum of the first n even natural numbers

(2) the sum of the first n3 natural numbers

(that is 13 + 23 n3)

(3) the sum of the first n2 natural numbers

(b) Can you find a relationship between the sum of the
first n natural numbers and the sum of the first

n3 natural numbers?

4. Consider 1 2 + 2 3 + 3 4 + + n(n + 1)

Can you make a conjecture concerning this sum?

11.17 Summary

In this chapter we have explored topics in number theory.
You have had an opportunity to make conjectures and then
to prove your conjectures.

At this time you should be able to give a clear descript-
ion of what is meant by factor, multiple, prime number,
composite number, even and odd natural numbers, greatest
common divisor, and complete factorization. Can you state
the Unique Factorization Property of the natural numbers?



You saw that the Sieve of Eratosthenes provides one way
to determine primes up to some finite number. Do you

believe that this is an efficient tool for finding primes?
Can you describe several ways of finding the g.c.d. of
two natural numbers? What purpose did Euclid's Algorithm

serve 641 on what principle was it based? What is meant

by the ViellOrdering and Induction Axiom? Can you state

some properties of.prime numbers? Can you state some
problems that no one has ever been able to solve?

Overall, your awareness of the set of natural numbers

should be increased. Also you should be more aware of
what constitutes a proof in mathematics and the fact that

there are varying methods of proving theorems.

11.18 Review Questions

1. Explain why the following are true.

(a) 10 is a factor of 50

(b) 30 is a multiple of 6.

(c) 6 is a factor of 30

(d) 6 is a factor of 6

(e) 7 is not a factor of 30

(f) 7 is a prime number .

(g) 6 is a composite number

(h) 91 is a composite number

2. Define the following terms

(a) factor

(b) multiple

(c) prime

(d) composite
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3. Give a complete factorization of each of the following:

(a) 38

(b) 72

(c) 96

(d) 97

4. Using the data in 3 above, determine

(a) g.c.d. (38,72) (c) g.c.d. (72, 96)

(b) g.c.d. (38,96) (4) g.c.d. (72, 97)

5. Using the data obtained in 3, determine

(a) I.c.m. (38, 72) (10 I.c.m. (72, 96)

(b) I.c.m. (38,96) (d) I.c.m. (72, 97

6. Using the Sieve of Ercitosthenes process determine all

primes between 130 and 150.

(a) How many primes are in this set of numbers?

(b) How many twin primes are in this set?

(c) What is the largest prime p for which you have to
determine multiples to find all the primes in this

set of numbers?

7. Using the Euclidean Algorithm check one of your ans-

wers for 4 (c) above.

8. Prove: if a I b and b 1 c, then a I c where a, b, ceN.

9. If 9 I n and 10 1 n does it follow that 90 1 n? Explain.

10. Prove if a I b where a is a prime, then g.c.d. (a, b)

=1.

11. Discuss what insights into (N, + , ) are provided,

for you, by the Well Ordering Axiom and the

Induction Axiom.
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CHAPTER 12 THE RATIONAL NUMBERS

12.1 Operations on Z: Looking Ahead.

What is the solution of the equation

5 + x = -3?

As we leurned in Chapter 4, the solution is

-3 - 5,

or -8. The number -8 is called the difference between
-3 and 5, or the result of subtracting 5 from -3. Sup-

pose that two integers, a and b are selected, and the

following equation written:

b + x = a.

Do we know that this equation has a solution? From

our previous work, we know that the solution is

a - b,

regardless of what the integersaand tare. Thus, the

solution of "b + x = a" is the difference beiv.een a

and'', or the result of subtracting bfromaz Since this

is true for any pair of integers, we know that given

any two integers, there is another integer which is

their difference. The following table, which shows a

number of particular cases, should make this clear.

Equation Solution
Ordered

Pair
Subtraction
Assignment

5 + x = -3 - 8 (-3,5) (- 3,5)-0-- 8,
or -3 - 5 = - 8

3-1-x=7 4 (7,3)
or 7 - 3 = 4

8+ x =2 -6 (2,8) (2,8)-...- 6
or 2 - 8 = -6

-4+ x = 9 13 (9, -4) (9,- 4)---- 13,
or 9 - (-4) = 13

b+ x= a a- b (a,b) (a,b)--a - b

From the above discussion, do you see that sub-

traction is a binary operation on the set Z of inte-
gers? (If you have forgotten the definition of a
binary operation on a set, see Section 2.3.)

Now consider an equation of the type

b x = a,

where a and b are integers. Do we know that this
equation has a solution in Z, regardless of what

the integers_LandjLare? To answer this question,

study the following two examples.

Example 1. Let a = - 12, and b = 3. Then
the equation is 3 x = - 12.
Since we know that 3 (-4) = - 12,
we certainly have an integer, -4,
us a solution.

/.144,5Y4. ION*.
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And because this is true, we say
that -4 is the quotient of -12 and
3, Or the result of dividing -12 by 3.

Thus, -12 4- 3 = 4, or -12 = 4

Using Example 1 as a guide, if there is an integer

x such that

b x = a,

then we say that x is the quotient of a and b or the

result of dividing a by b. Furthermore, we write

either of the following:

x = a ÷ b: x
a=
b

Ob

Example 2. Let a = -10, and b = 3. Then the
equation is 3 x - 10.

Do you see that there is no integer
which is a solution of this equation?
That is, there is no integer which is
the quotient of - 10 and 3, and the

symbol " -10 ÷ 3" does not name an
integer. Also, division is not a binary
operation on Z. (Why not?)

We now know (from Example 2) that there are equa-

tions of type

b x = a

where a and b are integers, that do not have an integer

for a solution. We have been in this kind of predicament

earlier. For instance, the equation

3 + x = 2

has no whole number for a solution. But with the in-

troduction of some new numbers, the integers, there is

a solution, namely - 1. One of our purposes in this
chapter is to try to introduce still another set of num-

bers so that an equation such as "3 x = -10" will
have a solution.

12.2 Exercises.
1. For each of the following equations, give the

solution (in the set Z of integers), fill in the
difference of the two numbers, and then show

the assignment which subtraction makes to the

given ordered pair of integers. The first row

has been completed correctly.

Subtraction

Eguatim Solution Assignment

3+ x=-2 -5 -2 -3 = -5
or (- -5

. ',1"....1; To, + .4 Nr.' .4.,,Z/4 .0.0,



x + 4 = 6

x + 4 = 1

312 + x = 298

500 + x = -6

6 + x = 0

x + 2000 = 0

15 +x =25

15 + x = -25

330 + x = 45

330 + x = -45

-20+x= 10

-20 +x = -10

3. Give the integer for each of the quotients below.
If there is no integer, say so.

(a) -21 + -3

(b) 21 + -3
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(d) -50 -:- 5

(e) 45 + 5

(f)
102
5

(g) 0 + 4

(h) 0
-20 + x = - 100

0+x=15
1,215,687 + x

(i) 3

1

+ 3

(i) 84

= 1,200,347

2. For each of the following equations, give an
integer which is a solution. If there is no
such integer, say so.

(a) -3 x = - 21

(b) -3 x = 21

(c) -3 x = 20

(d) x 5 = -50

(e) x 5 = 45

(f) x 5 = 102

(g) 4 x = 0

(h) 0 x = -2

(i) 3 x = 3

(I) 84 x = 1

(k) 1 x = 84

(I)) 88 x = 8000

(m) 88. x = 8800

(n) x (-3500) = 0

(o) 467 x =-1401

(p) -467 x = 1401

(q) 467 x = -1410

(r) -12 x = 144

(s) 144 x = -12

(t) 0 x = 0
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(k)84

(I) 0 + (-35,000)

(m) 85 4 5

-42
(n)

14

(o) (-33) -:- ( -11)

(p)*
(q) (-2000) + (-1000)

, -1000
(r) 2000

4. Which of the following statements are true?
(Be prepared to defend your answers.)

(a) Addition is a binary operation on the set Z
of integers.

(b) Subtraction is a binary operation on the set
Z of integers.

(c) Multiplication is a binary operation on the
set Z of integers.

(d) Division is a binary operation on the set Z
of integers.

5. In the set Z of integers, how many solutions
are there to the equation

0 x = 0?

Iv!
Do you think that is the name of an

integer? Why or why not?
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440,,
Is

5
the name of an integer? Why or why not?

445,,
Is -ef the name of an integer? Why or why not?

12.3 Quotients and Ordered Pairs of Integers.
Since gae solution of "1. x = 2," we shall say

that 2 is the quotient of 2 and 1, and write

2
=2.

1

,2,In other words, we may use ' ' instead of "2" to re-

present the number 2. Instead of writing "1 2 = 2,"

we can write

21 = 2.
1

Now, 2 i s an ordered pair of integers.

(It is an ordered pair since it would be incorrect to

use "--2' instead of ,4" in the example above.) As
2 1

we have already noted ,
2 is a quotient, namely 2 ÷ 1,

2,
When written in the form

,' we shall in this chapter
1

call this quotient a fraction.
If x is an integer such that b x = a, then the

fractioni
Pr

re esents the quotient a ÷ b. The
b

number a is the numerator of the fraction (or
quotient), and the number b is the denominator

of the fraction (or quotient).
Are there other equations of the type "b x = a"

for which the number 2 is a solution? There are in fact

many of them. Study the examples below.
2

2 is the solution of "1 x = 2." So 2 =T

2 is the solution of "2 x = 4." So 2
4
2

2 is the solution of "3 x = 6." So 2 =6
3.

8
2 i s the solution of "4 2 = 8." So 2 =

4.

2k
2 is the solution of "k x = 2k." So 2 =

2.

, 2kTherefore, any traction--, where k is or integer not

zero, may be used to represent 2.
Questions Can you explain why we must state

that k L 0 in the above discussion?
k may be a negative number, since 2 is a solu-

tion, for instance, of "-3 x = -6."
That is, the quotient -6 4. -3 is 2. When this quotient

ti
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-6
'is written in the form we shall still call it a frac-

tion. (Notice that we allow the numerator or denominator

of a fraction to be negative.)
So we see that the number 2 may be represented by

a whole set of fractions, indicated as follows:
-4 -2 2 4 6 8 2k

( -2' -1' 1 2' 3' 4' le
Consider now another integer, say -1(1, With -10 also

we associate an infinite class of fractions (that is,
quotients). To see this, note,that -10 is the solution of
such equations as

1 x = -10, 2 x = -20, 3 x = -30.

So, -10 may be represented by such fractions as

). (k 0)

-10 -20 -30
1' 2' 3'

And in fact -10 may be represented by the infinite set
of fractions indicated below

1-10 -20 -30 -40 -10k
3' 4' ' )"

Of course, again we must say that k 0. k might be a

negative number, however, For instance,
30

'
which is

-3

the quotient of 30 and -3, may be used to represent -10.
That is, -10 is the solution of "-3 x = 30."

Question: Which of the following fractions re-
.

presents -10:

50 50 -100 100 -100 -5000
5' -5' 10' 10' 10' 500'

Let us select two fractions,
-20 -30

'and from the
2 3

set of fractions representing -10. Notice that (-20) 3 = 2
(-30), since each product is -60. We can say that "the
cross-products are equal," a phrase suggested by the

diagram below.

-20><30V
2 3

2 (-30) = -60

( -20) 3 = -60

-20 -30and furnish an example of what we call equiva-

lent

3

lent fractions. Thus, two fractionsa
b dand' for which

ad = bc, are equivalent fractions. Furthermore, two
equivalent fractions represent the same quotient.

Question: Can show that any two fractions re-
presenting -10 are equivalent frac-
tions?



E)....112...r)le Represent the number 5 by an infinite set

of fractions.

5 is the solution of "1 x = 5." Therefore,

the fraction5 (the quotient of 5 and 1) may be
1

be used to represent 5. Also, any fraction e

quivalent to 5 may be used to represent 5. The
1

se' is indicated below:

%.-j10
15 0 5k

f I 70
2
74, I k )*

I 4

Each of these fractiol::i indicates a quotient.

For example, to say that "5 =11 " is to say

that 5 is the quotient 15 ÷ 3; that is, 5 is the
solution of "3 x = 15."

12.4 Exercises.

1. (a) What integer is the solution of the equation

"3 x 12"?
(b) List four different fractions which represent

the solution of the equation in part (a).

(c) Indicate the entire set of fractions which re-
present the solution of the equation in part

(a).
2. (a) Indicate the set of fractions representing

the integer 8.
(b) Indicate the set of fractions representing

the integer 13.
(c) Indicate the set of fractions representing

the integer -2.

3. Complete each of the following so that a true

statement results.
15 35

(a) 5 .7= (b) 7 ---7--.

(d) 100 . 496 . (e) 9 - 4 =

(g) -5 3= (h) -5 -4 .
4. Which of the following pairs of fractions are

equivalent?
20 100

"' 2' 10

-8 10(c)77
18 24
3' 6

5. For each pair of fractions below, tell what in-

teger x must be so that the two fractions re-

present the same quotient.
x

tai
14

45 2(d)-43,7

, 33 X
Or 3.

12 8
(b)

(e)
3 9el-, )7

2k x(h).-reT (kit 0)

x
(c) ry.
IA 100 30
vi 7c
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6. (a) Consider the fraction--'
with numerator 3 and

1

denominator 1. If we multiply the numerator by

2 and also multiply the denominator by 2, we

6
1 2

6
get the fraction

2
Are the fractions3 and

equivalent? What integer do they represent?

(b) If both the numerator and denominator of the

fraction3 are multiplied by 3, what fraction
1

results? Is it equivalent to
3 ? Why or why not?
1

(c) If both numerator and denominator of the frac-

tion--3 are multiplied by -2, is the resulting
1

fraction equivalent to? Why or why not?
1

r
(d) If both numerator and denominator of

3 are
1

multiplied by k, where k is some integer not

zero, is the resulting fraction equivalent to

3 Whv or why not?
1

(e) If k = 0, are
3

and
3k equivalent? Why or

1

why not?
7. Consider the equation "5 x = 0."

(a) What integer is the solution of this equation?
(b) What integer is represented by the fraction

5
8. Consider the equation "-2 x = 0."

(a) What integer is the solution of this equation?

(b) What integer is represented by the fraction

09
-2

0
9. (a) Are the fractions 2 and

2
equivalent? Why or

5
why not?

(b) Indicate the entire set of fractions represent-

ing the integer 0
10. Consider the equation "O x = 5."

(a) What integer is the solution of this equation?

(b) Does the fraction.
5 represent an integer?
0

11. Consider the equation "0 x = 0."
(a) What is the solutior set of this equation?

(b) Is there one particular integer with which

the fraction -0
0-may be associated?

12. Explain why we cannot allow the quotient-co;

where_sis an integer.

12.5 Rational Numbers.

Does the equation

3 x = 2

1

-



**,

have a solution? Certainly there is no integer which is
a solution. (Can you give an argument to show that there
is no such integer?) However, you may recall the fol-

lowing way to illustrate a meaning of the fraction
2

.
3

OS

2
3 1 2

You may also remember that a diagram such as the one

below suggests that 3 -i-= 2.

0

2
3 2

2 2 2

And it is just as sensible to agree (as the diagrams

below suggest) that
6

3
4 =2 and 3.9 2
6

00--6

4
1 2-.' .".V'" .../

6
1 2

........41110.4010.411141*411011116011

Now if we are going to extend the integers so that the
equation "3 x = 2" has a solution, we would like
exactly one solution, not more than one. (Why do we

want this? Well, if there were two solutions, then we

would have 3 x = 3 y but x y. That is, we would

not have a cancellation law in this new system of num-
bers. But we do not want to destroy the properties of
the integers which we already have. And this is why

we demand that the equation have one and only one solu-

tion.) 4
'We shall agree therefore that the fractions2 ' 6

and
3

6 represent the same number, namely the solution of
9
"3 x = 2." In fact we shall agree that any fraction
equivalent to these fractions represents the same num-

ber. Just as in Section 13.3, we take two fractions

a and-C-d to be equivalent if ad=bc Hence, we

have the following set of fractions for the solution of
"3 x = 2":

*"1,i1a,11,,,,,,)ZAtt.:.:',4".4' A
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-4 -2 2 4 8

( ' -6' -3 6' 9' 12'
10
15' *).

Notice that we allow numerators and denominators to
2

be negative integers. Thus, the fraction is in the set
-3

2because it is equivalent to.
3

Question: Which of the following fractions are also
in the set of fractions representing the
solution of "3 x = 2"?

1.24. 2k it a 0)-9' 40' 2' 36; 31;

Thus, we have a new number which is really an en-
tire set of equivalent fraction: any fraction in the set
may be used to represent the number. Such a number is

a rational number.

A rational number is a set of equivalent fractions.

Also, the rational number
2 arose as the solution of
3

"3 x = 2." And in general we say that a rational num-
ber is a solution of an equation "b x = a," where a
and b are integers. However, we do not want to destroy

our previous results in arithmetic. And, as we saw in
Exercises 10 and 11 of Section 13.4, equations such as

"0. x = a," where a is an integer, cause trouble. There-

fore, we say

A rational number is a number which is the solution

of an equation

b x = a,

where_a_andlare integers, but b 0. This number

is represented by the fraction-1b' or by any fraction

equivalent to it. Thus, we have b b = a.

Do you see from this definition that the denominator of

a fraction is never zero? That is, a fraction with zero
denominator does not represent a rational number.

Example 1. Solve the equation "3 x = 4."
The solution of this equation is the
rational number represented by the fol-
lowing set of equivalent fractions:

-4 4 8 12 jA,
-3 1-3-1-61 9' 12' *)

Once again we see that a rational number is a set
of equivalent fractions. We do not, of course, write all
of these fractions when we want to refer to the number.
We simply choose one .of them and say, for instance,

"the rational number
4

'
" and this means the rational

3

number to which the fraction 4 belongs. Of course,
3



the rational number
8 " refers to exactly the same num-
6

r; and this is what we mean when we write

is a statement about rational numbers.

4 8

3 6

Example 2. What is the solution of "2 x = 5"?
5

The solution is the rational number.2'
5that is 2
2

= 5. it is also correct to
10

' 4
10

say that the solution is-- and 2 5.
4

In fact, any fraction in the following set
may be used to represent the solution:

-5 5 10 15 20 25

To represent the rational number of Example 2 frac-

.Aton5 is often used. This is because it has a positive
2

denominator,' and its numerator and denominator have

no common factor other than 1. Such a fraction is called

an irreducible fraction.

Questions: -5-; is an irreducible fraction. Why?
1

6 .u not an irreducible fraction. Why not?
21

There is still another way to describe a rational

number. In (Z, ) we use a multiplication fact such as

3 4 = 12

to define the division fact

12 4.3 = 4.

And we shall continue to define division in this way

kt. for rational numbers. Therefore, from the multiplication

fact

3 -2= 2
3 '

we get the division fact

a
P

2 4- 3 =3..
3

2
In this way, the rational number

3
is the quotient of two

integers. And, in general, we say

A rational number °bis the quotient a b of the

the integers a and b. (1:;E 0)

Thus, we are still able to say that a fraction °b is a

quotient, even when that quotient is not an integer.

12.6 Exercises.

1. Below ore a number of equations, each of which

has a solution which is a rational number. For
each equation, write the irreducible fraction
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which represents the solution. Then write four

other fractions for the number.

(a) 7 x = 5 (e) 5 x = 2

(b) 15 x = 10 (f) 10 x = 4

(c) 4 x = 1 (g) -3 . x = 2

(d) 10 x = 1 (h) 3 . x = -2

(i) bx =a (b 0)

2. Complete the following so as to make a true

statement:

(a) 5 3/5= (e) . -5 3A5 =

(b) 7 2/7 = (f) 7 -11/7 =

(c) 3 10/3 = (g) 17 29/17

(d) 412 27/412 (h) b a/b =

3. You are already familiar with coordinows of a
line, and even with rational numbers as coordi-
nates of a line. For example on the line below
the fraction 3/2 has been used to determine a

point of the line. Also, the fraction 6/4 has been

used to determine a point. And they determine
the same point. But this is as it should be, for

we have already agreed that the fractions 3/2
and 6/4 denote the same number.

1 2

O

Draw a line, select points for 0 and 1. Then label the
points corresponding to each of the following rational

numbers:

1 , 1 , 3, 7, 7 , 2 , 14 , 17 , -1
T 4 4 4 2 4 4 8 2

4. Complete the following so that a true statement
results; that is, so that the two fractions repre-
sent the same rational number. The example has

been done correctly.

3 x If 3 8 = 4 . x, then x = 6.4 8
3 _6_

30,71 = 8.



(d) A= -9--

25 x

(e)--;48
12

= 3

x
(f)

159
5. For each of the rational numbers below, write two

different equations of which the number is a
solution.

7(a)-3

(b)9

(e)
100

(f)
36
24

0
(9) 5

(h)
6
2

6. We have said that two fractions a/b and c/d are equi-
valent if ad = bd.
(a) Are the fractions 7/13 and 91/169 equivalent?
(b) What are the three properties which an equi-

valence relation must have? (See Section 8.11)

(e) Show that any fraction is equivalent to itself
(the reflexive property)

(d) Give an argument showing that if a/b is equi-
valent to c/d then c/d is equivalent to a/b
(symmetry).

(e) Give an argument showing that if a/b is equi-
valent to c/d, and c/d is equivalent to e/f,
then a/b is equivalent to e/f.

(f) Show that if we admitted a fraction such as
0/0, then it would be equivalent to every
fraction.

7. (a) In the set of integers, what is the solution of
1 x = 5?

(b) In the set of rational numbers, what is the
solution of 1 x = 5? (The answers to these

questions are not the same!)

12.7 Multiplication of Rational Numbers.

Given the equation

3 x = 6,

What is the solution?
There are really two ways to answer. In the system

(Z,), the solution is certainly the integer 2. In the new

set of rational numbers which we are developing the

solution is the rational number represented by any

fraction in the set

1. 2,4, 6 , 8 , 10 ,...}
TTTT 5

So, as we have already noticed in some of the exercises,

there is a very strong connection between the integer 2

and the rational number
2. We shall keep this connec-

tiontion in mind as we learn to multiply rational numbers.
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Consider now the two equations

3 x 6 and 2 y = 10.

Each of them has an integer as a solution; in order to
make the sentences true, x must be 2, and y must be 5.
Furthermore, we know that in (Z,) the product of 2 and
5 is 10. Now if we think instead of rational numbers, the
solutions of the above equations may be represented by
the fractions

6
and -13

3

We would like for the product of these rational numbers
10to be the rational number. Recalling the way you

learned to multiply fractions in elementary school, we
have

6 . 10 6.10
3 2 3.2

60

6

And the fraction69 does represent the rational number
6

10
(Why?)

It would seem a good idea then to adopt this
method as a way to multiply rational numbers. There is
one question, however, since every rational number has
an infinite number of fractions which represent it.
Which fraction do you choose when you are finding a
product? The following examples will suggest an ans-
wer to this question.

Example 1. What is the product of the rational

numbers 2 and
57

3 7

2 5 2.5
3 7 3.7

10
21

Now the rational number
2 may be represented by any
3

fraction in the set

{3' 6' 9' 12' }14 6 8

and the rational numoer
5 may be represented by any
7

fraction in the set

5 D 15 20.
7' 14' 21' 28'

How would the product be affected if, in finding the

2
product of the rational numbers

3
and we used'

fractions other than those used in Example 1?



xample 2. Find the product of the rational numbers

ana--7. (Note that this is the some as Example 1.)

2
he fraction6 3

represents the rational number --.
9

e fraction
10 5

represents the rational number .
14 7

6 10 6.10
9 14 9.14

60
=126'

re the results in Example 1 and 2 the same? They are,
10

1
ince the fractions and

26
represent the sane

2 1

ational number. (Why?)

As a matter of fact, although we do not prove it now,

it is true that you may use any fractions representing
two rational numbers when you ore finding their product.
That is for any ordered pair of rational numbers, the

operation of multiplication assigns one and only one

rational number, regardless of the fractions used to re-

present them.
We now make the following definition:

If IL d
and are fractions representing two

b

rational numbers, then the fraction 15-
bd

represents the product of these numbers.

[We have stated this definition in terms of fractions
in order to emphasize that you may use any fractions
representing the numbers. Often, however, the defini-

tion is given in the following way:
a c a c ac

If and are rational numbers' bb d d
...

112.8 Exercises.
1. Find the following products of rational numbers.

Use an irreducible fraction to denote each answer.

(a) 5
3

-§-
2

3
(b) 5

8 T
10 4
11 .5

4 10

T TT
13

3

(c)

(d)

(e)

7 3

3 7
(g) 3 .7

2(h) 74
7

(i) 2 4
7 I

(I) 3
0

8

5

(k)13. -5-2 4) 7

2 7
(/) 3 /4366)

0 /6 \
(m) TV.

32-)

(n) .
(212 §.)5 4

(o)G-. 2-5 21) 4
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2. Find each of the following products. Some of the
products are products of integers, while others
are products of rational numbers.

Si'I%LS

(9) 15 5

(i) -2 3

(1) 7

(k) ( -4) (-6)

1
(I)

*3. On the basis of the products in Exercise 2, can
you give an argument that the system (Z,.) is
isomorphic to the system composed of certain
rational numbers and multiplication.

4. Determine the following products of rational
numbers. Represent the product by an irreducible
fraction.

(a) .1
3 5

(b) 37
(c)

6
-I-

(c) .L
7 8

te% 1000 9

' 1000 5

(f) A .16 4

5. Determine the following products. Use an irre-
ducible fraction to represent each product.

(a)
2 3

3

(b)
5 7

57

9 4(c)
4
.

9

(d)
10

100. 7
7 100

22,s_
5 22

(h) 14 99
99 14

12.9 Properties of Multiplication.
We shall use Q to name the set of rational numbers.

And with the introduction of the binary operation multi -

pl ication, we have the operational system.
(Qe).

As with all operational systems, it is worthwhile to
investigate the properties of (Q,). As you probably rec-

ognized from Exercise 1 of Section 13.8, multiplication
of rational numbers is both commutative and associative.

Commutative Property of (Q,.)

If b
and are rational numbers, then

a.c_ ca
b d-d b



Associative Property of (Q, .)
a

' d
c

' fIf
b

and rational numbers, then

b di f b kd

If you refer to Exercise 4 of Section 13.8, you should
see that there is an identity element in (Q,). This
identity element is the rational number associated with
the following set of fractions:

{ 1 2 , 3 4

Example 1. 41

Example 2.

3

3 5 15

4 5 -20

_3

Examples 1 and 2 are really the same rational number
3

products. In both cases, the rational number 4 was

multiplied by the same rational number; the only
difference is that in the first example the fraction

2
2 was used to represent the number, while in the second

5
example the fraction

5
was used. But in both cases the

3 2 5
product was

4
since the fractions

2
1 is

represent
5

the identity element of (Q,). Since s the irreducible
1

fraction representing this number, we write
Identity Element.of (Q,.)

a
If -1

a
-.3 is a rational number, then 3

1 a

1 -b

2 37What is the product of 7 and ? It is easy to check

1

'that the product is the identity element of (Q,);
1

therefore, these rational numbers are inverses of each other

in this system. If you refer to Exercise 5 of Section 3.8,

you should notice a pattern-the inverse of
a is --. There

is one important exception to this rule however. The

-Q-

pro-

ductduct of and another rational number cannot be
1 1.

Question: If any rational number, what is the

product
a 0

? Do you see then why

has no inverse in (Q,)?
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We now state the following property:

Inverse Property of (Q,)

If is a rational number which is not
0 (that is, a4),
1

, , a
i

1tnenb is the inverse or -r , erg
a ab

=7-
a

Thus, the rational numbersa ard
a

are inverses in

(Q,.). Because the operation in this system is multiplication,
we may call them multiplicative inverses. It is al so common
in the system (Q,.) to call a multiplicative inverse a

reciprocal.

Example 3. The multiplicative inverse of the number

3
2 3is-- or the reciprocal of2

2.

12.10

21 3 2

12.10 Exercises.
1. For each of the following equations, find the

solution in (Q,).

2 2
(a)7. a =.5--

1
(b)

4 a =
3 1

10 9
(c)

(d) 3 x = 5

2. Determine

0 2
(a)

0

§ T
, , 23 0c)Ti -r

(e) 5m =15 1

10 1(f) a
7 1

x (g) x

(h) x x 1

each of the following products:

(9)

3. The rational number
0is represented by any one
1

of the fractions in the set:

2 0
s-2 '-' 1 ' 2 ' 3 '

On the basis of the products in problem 2, how
would you describe the behavior of this number in
multiplication?

4. (a) Express the identity element of (Q,) as a set
of equivalent fractions. 2

(b) Express the inverse of the rational number--
5

as a set of equivalent fractions.



(c) What is the product of2 Ai.?4 6
(d) What rational number is its own inverse in the

system (Q,)?
(e) What rational number has no inverse in the

system (Q,)?
5. (a) Write the properties which a system (S,*) must

have in order to be a group.
(b) Is (Z,.) a group? If so, is it commutative?

(c) Is (Q,.) a group? If so, is it commutative?

(d) Let X be the set of oll rational numbers except

. I s(X,.) a group? If so, is it commutative?

6. (a) Compute the following products in (Z,.)

-8 1 = 14 1 = -234 1 = 55.1 =

86 0 = -14 0=

(b) Compute the following products in (Q,.)

-8 1 14 1 -234 1 55 1--=
1 1 1 1

86 0 -14 0

1 1 1 1

7. Often a short cut can be used in finding the pro-
duct of two rational numbers. Perhaps you have
used this short cut before, but have never been

able to explain why it "works."
Study the following example:

2 5,_ 2 5 2 5 2-5 2 5

3 6- 3 6 (2.3)-2. (3.3) 2 3.3- 9

This is not a short cut! But notice that since2 is the
2

identity element of multiplication, we could have

determined the product this way:
17.5 _5

Do you see how the identity element of multiplication
has been used in the following example?

2 A' )?' 3 6

Oa ,145 25

Use this short cut in finding the following products:
24 7 ..
7 36

2) 15
*10/. 27

(a) 13-

27
(c)

10

(d)

, 18 15

MOW1.1...,

(h)
(LS 33 1

11 42/ 2

(i) 2 3 4 5 6

7Tri'T
(i)

abce
b.c.d.f

12.11 Division of Rational Numbers.

In (Z, ), the equation
12 + 3 =x

has the solution 4, because 4 3 = 12. That is, di-
vision is defined in terms of multiplication. We want
to define division this way also in (Q,). Suppose

then we have the equation

3 2 x
= IMMO

4 5 y

Is there a solution? If there is, we want the follow-
ing to be true:

x . 2 3

5 4.

Now the reciprocal ofi is2. And we know that

5 2 1

2 5- 1.
therefore,

4'(3'5) =7
And, using the associative property of multiplication,
we can write

3 5 2 3
2) '3=7.

Do you see that we have found the number
3

we were trying to find? It is the proauct-
4

is the rational number 15

8.

So, -
4
3 -

2
5 3

5
2 xis the solution of-4

y. In other words,

x- which
Y

5, which

3,2 3 5
75'7

From this one example, it would seem that the quo.
tient of two rational numbers can be found by finding
the product of two rational numbers.

See if you can follow the steps in the following
example:

Now,

4,3 x
1-

x 3 4

2 3 1

3 2 -1

So, 4
3 `3 2
4 2 3 4

=3 3 2 3.
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with is and that is the numberI which we were

by the reciprocal of2. And if you look at the first ex-

ample

we have found the rational number whose product

seeking. Therefore,

. 3 4

Thus, instead of dividing by -1, you may multiply

2 3'

72.3. 3 (which of course is -§.).

2'

y

. 8

ample again, you see the same pattern there: instead

2
'of dividing by 5 you may multiply by the reciprocal

of5.2

Finally,
b

let c-1
d

and be two rational numbers.

theny

But we know c) -cCi (Why? Can you
supply the miss-

So y b
= --. That is,

ing step?)
2 c

a c ad
b d-b c.

(c L o)

Can you complete the following sentence?

Dividing by the rational number,A is equivalent

to multiplying by

12.12 Exercises.

1. Find the following quotients of rational numbers.
Then use a product to show that your result is

correct.

2. Find the following quotients of rational numbers.

(a)
14 . 3

(b) 9 -8

(c) 8 8

)
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(e)

(f)

4,11
11 11

4 . 1

9'2

3. Find the following quotients. Some are quotients
of integers; others are quotients of rational num-
bers.

(a) 6 + 2 (f) 5 + 5

6 2
(b) (n) +

T 1 1

12_8(c) 2'4 (h) 4 + 8

. 8
(d) 20 + 5 (1)

20 . 5
(e) 71"

4. Determine the rational number solution of each of
the following equations.

(a)

(b)

(c)

(d)

(e)

2 x 3
7.37'7

7'y =3
x 2

'3=T
x 2 5
'7=7

5 2 x
7 3 y

5 x 4

6 y 5

5. (a) Is it possible to find the following quotient:

2 0+ 9 Explain why or why not..
3 1'
(b) What rational number has no reciprocal? (In-

dicate this rational number by a set of equiva-

lent fractions.)

(c) In the sentenceTa
c
a=3a

d

what number must.5...not be? Why?

(d) Is division an operation on the rational num-

bers? Why or why not?

(e) If the number0 is removed from the set Q of
1

rational numbers, is division an operation on the

the set of numbers that remain?
(f) Is division associative? (See Exercise 2)

12.13 Addition of Rational Numbers.
We have already seen the close connection between

integers such as 2 and 3 and rational numbers such as



I-d (Z,+), 2 + 33
. And since in (Z,

the sum would have been the number represented by the.
1

5, it would be 34 17fraction . But this is the same as the number . (Why?)

!ruble to have 24 12

2 3 5
+T=1-

any definition we agree to for addition of rational num-

s. Of course, it should not make any difference which

the many available fractions are used to represent the

2 3
ion& numbers an. . This suggests for example

1 1

fo I lowing:

4 6 10 6 9 15

+ ' +

d this in turn suggests that we define addition of ra-

onal numbers in the following way:

a c a + c
b + b b

In order to get a general definition from the method we

have been using, let °b
d

and -%e two rational numbers. Then

to find the sunraP
d

+.9- ' we need to select two fractions that
b

have the same denominator. Do you see that

a ad c bc

Thus, we have

a c ad bc

b + d bd + bd
ad + bc

bd
We now have an operational system (Q,+). In this

system there are the following properties:

hat is, in determining a sum, we select fractions which Commutative Property of Addition.

Rave the same denominator.

V- Example 1. What is the sum of the rational numbers
F Associative Property of Addition.

A and 2 ?
3 3 a c

If 17, 7, and t are rational numbers,

If -9-b and -Cdare rational numbers,- + - = +
a c ca

numbers, -°b

w

r.

5 2 5 +2 _7
+3= 3 -3.

Example 2. What is the sum of the rational numbers

3
2 and-

4
3

We may indicate the sum this way:
2 3

+74

(a sl e a (c
b+ or f =b+ d+ f).

Although ve do not prove these properties here, there

are examples of each of them in the exercises.

Now consider the rational number
0 associated with
1

2
2

0 0
'3 '4

However, in order to use the method above, What are the following sums:

we must find other fractions for these num-
bers, fractions with the same denominator. 2 0 5 0 -2 0. 3 0 oi...

+
..... ,

Now, the least common multiple of 3 and 4 -a' +-3- ; 6 + 6 ' 7 + 7 ; 4 1

is 12. So we say that 12 is the least com-

mon denominator of the denominators 3 and We
a 0 °+have in fact, for any rational number - - + - = =

4. We then represent each of the rational b
,

b b b

-.umbers by a fraction with denominator 12. a. We recognize here the familiar pattern for an identity
b

2 3 8 9 17

3 4 12 12 12.
element; and since the fraction -

0 represents the rational

0

Although we do not prove it here, it is true that there
number we have the following property:

1

s one and only one rational number which is the sum of

o given rational numbers. For instance, in Example 2, Identity Element for Addition.

16 18
a a a

44e could have used the fractions and . (Why?) Then For any rational number °b,
b

24 24
b -FT b

''.

>

A Ite'''AAtA '1AjL1119Aa'AL.A;5:111,,,' e A A
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In investigating operational systems in the past, the

notion of inverse has been tied closely to that of identity
element; for two elements are inverses of each other if
together they produce the identity element. In this con-
nection, study the following examples:

3
4

-3_3+(-3,)_0
4- 4 -4

-5
6

+55_-5_ 0
6 6 6.

These and similar examples should make the following
property dear:

Inverse Elements of Addition.

a a -a 0
If is a rational number, then b

+

(-a is the additive inverse of a in the set Z

of integers.)
That is, every rational number °b has an inverse,

-a

Example 3. What is the inverse oft in (Q,+)?

-6 6 +
-6

5
0

The inverse is 5 ; 5 1

Example 4. What is the inverse of ?

In Z, the additive inverse of -3 is 3;
that is, -(-3) = 3. So the additive inverse

-3 3 -3 3 0of-- in Q is +---
4 4 ' 4 4 1

12.14 Exercises.
1. Find the following sums of rational numbers.

1 1

(a) 2-3
2 3

(b) --a +-I-

5 -
6
2

(c)3 +

10 -3
(d) + --

7 2

14 5
(e) 9 + 3

5
(f)

20
§* +12'

-5
(9)

20
+

-7 13
(h) 175

3 50) 4 76

-5(Hint: g represents the

same rational number as
5)

-6
x

(i) y +w
z

2. What rational number is assigned to each of the

following, ordered pairs by the operation of addition?

(00 , T3O)
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(b)(1 2)10' 5

/7 -3\

-3 7(d)(g

3. What property of (Q,+) do the sums in Exercise 2
illustrate?

4. Compute the following:

(4+41
5 3 2

(b) 2 + +2-)
5 3 2

(c)(1-9+-1
4 6 8

(d) + 60 8-3 + 2)
5. What property of (Q,+) do the sums in Exercise 4

illustrate?

6. List ten different fractions which represent the
number which is the identity element in (Q,+).

7. Compute the following:

8
(a) -3- +

-8

8 -16
(b)

3
+
9 0

(a) Tl+T

(d) 4;

-3 3
(e)

14 14
+

(0 148 -148
3

148 148
(g) 3 +

81
+(h)

-
7 51

8. Compute the following sums. Some of them concern
integers; in this case, be sure you give the sum as

an integer. Others concern rational numbers; in this
case, be sure to give the sum as a rational number.

(a) 7 + 3

(d) 0 + 7

3
(b)

7
1 1

7
(e)

0 +T

2
(c)

14 +
2 3

(f) -15+7

(g) +;Z (h) -8 + (-4 ) (i) +

9. Can you describe an isomorphism which the sums in

Exercise 8 suggest?

10. (a) Is (Z,+) a group? If so, is it commutative?

(b) Is (Q,+) a group? If so, is it commutative?

11. Give the additive inverse of each of the follow-

ing rational numbers.

(a) '
23

rilASAYZZAI=5Wa=611.04.nraW,

(d)
15
7



12. If we use " - If" to denote the additive inverse

of the rational number -b9-'
complete each of the

following so as to have a true statement.

3(a) --4 =

(b) 1=

(c) .1=

13.

(d) -
-75

= (9),

(e) --a (h) -
5

2
(f) (-3) = (I)

Compute the following.

(a) 4 (-I +IC)

(b) ( 2.6.) + 4.-7e

(0.3.($ +i)

(d) (3 I) + (3 .4)

(e) (5 + I)/
(f) (78 + (1 .1")

(g) i (2 +3)

(h) (-35 -}) + (i 31

14. On the basis of the computations in Exercise 13,

how do you think the following should be com-

pleted:

What property is this a statement of?

a c e
15. If3 --d-, andiare three rational numbers, can you

give an argument showing that the distributive
property holds? (Do not use specific numbers.)

12.15 Subtraction of Rational Numbers

In (Z, +), we say, for example

5 - 3 = 2, because 2 + 3 = 5.

And, in general,

if c + b = a, then a - b = c.
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In other words, subtraction is defined in terms of
addition. We shall make the same sort of definition
in (Q, +). For instance,

2 1 3since -5 + 3 , 3-, we agree that

3 1 2
5 s -5'

And -2-
5

is the difference between-2 and -3-- or the result
5 5'

3
of subtractina-r.

1
-5-- from . We could have found this

difference in the oilowing way:

2 -1_11

5+ 5 5'
1

That is, instead of subtracting -5-, we might add the

additive inverse of .; this is of course the same

pattern we noticed earlier for the integers.

We consider below the general case for the rational

numbers.

Let -a
d
-x--

b y

Then by definition of subtraction,

x c

a _c

-A-'y di b

x c ,
+ (cj + cri b 'Y

x A L+ b+Y 1

-c
d

x a -c
y b + d

But in our original equation,

c. a c

Y b d'
Therefore,

a c _a -c
b-d-b+ d'

As a practical matter then we can always find a sum

instead of a difference, provided we remember to add

the inverse of the number being subtracted.

-3 -2 3
Example: - = +2

5 3 5 3
-1:0 10

-15 +15
-9+ 10

1

.........



12.16 Exercises.

1. Compute the following differences.

3 1

(a) -5
(b) 1.0_ 5

13 IT

(c) in
13

, 11

3 3

(e) 7-1
5 5

3 1
3-T

3
5` 5

(f)

(g)

(k)
6 8

(I ) 281

-21
6 8

2 3
(n)

2. (a) What is the difference-2-
3 5

(b) What is the sum 2 +
3 5

(c) What number does " I" name?
5

(d) What is the sumi + ( --3g ) ?

3. Compute the following:

(e)i + (

.5. 3(0 3 7

(g) 1 +(-i)

(h) -
12 12

4. Is subtraction a binary operation on the set Q of
rational numbers?

5. (a) Is subtraction of rational numbers associative?
(b) Is subtraction of rational numbers commutative?
(c) Is there an identity element in (Q,)?

6. Is (Q,) a group? Why or why not?

12.17 Ordering the Rational Numbers.

In the set Z of integers, we know that

2 < 3.

Therefore, in ordering the rational numbers, we would
like to be able to make statements such as the following:

2 <3
1 1
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2 <2<

6 <9
3 3

since we have already noticed that there is a close
relationship between such integers as 2 and 3, and

2
such rational numbers such as and

3. If this re-

lationship is to hold for ordering also, the examples
above suggest that we agree to the following:

a c
In Q ' b

<b if and only if a < c in Z

(We are assuming that b is a positive integer.)

3Exa ple 1 :71 < 77 in Q, since 3 < 7 in Z.

Notice that if we represent the rational
3 7numbers
4

and
4

on a number scale, the

point representing 3 is to the left of the
4

point representing
7
4

3 7
7 1 4 2

Example 2. Compare the rational numbers andl
13 9

Which is less? Our method for comparing
rational numbers is based on fractions
that have the same denominator. Therefore,
we shall use the fractions

11.9 Allaand

to compare the given rational numbers.
(Do you see why these fractions were
chosen?)

Now, since 7.13 < 11.9 in Z, we have

7 11.< in w

From Example 2, we notice that2 <II since 7.13 < 9.1
9 13

And this suggests a general way of comparing two rational
numbers without actually writing fractions with the same
denominator. Suppose .r; and fiare two rational numbers

(and b and d are both positive integers). Then the fractio

bd
ad

and -12calso represent these numbers. (Why?) And by
bd

our earlier agreement,

ad < hs if and only if ad < bc.
bd bd

Therefore, we make the following definition for ordering
rational numbers:
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Ifb° c are rational numbers,

and b and d ore positive integers

<-3- if and only if ad < bc.

Example 3. Compare the rational numbersi and f

Since 2.5 < 3.4' -3
5

__4

tr In the definition above and in all of our examples,
e have demanded that the denominators of the fractions

sed in comparing rational numbers be positive. Is this
sarmeceirv9

Consider the rational numbers 2andi
1 1

e have already agreed that+<+, since 2 < 3.

And yet if we were to use the fractions 72 and --1-3

o represent these numbers, it is not true that
2 < 3. This illustrates the importance of using

ractions with positive denominators when comparing

ational numbers:
Questions: Can every rational number be

represented by a fraction with a
positive denominator?

What fraction with positive denominator
represents the same rational number

as-3 7 OS 71 9
2 3

18 Exercises.

1. Represent the rational numbers in each pair below
by fractions have the same denominator. Then
decide which rational number is less.

(a)-} and

042 and
4 8

(c)i and

(d)tand-i.

2. Draw a number scale, and locate a point to
represent each of the rational numbers in Exercise 1.

3. Decide which of the following statements are
true, and which are false. (as with the integers,
the sign " > " means "is greater than.")

(a)i < 2 (d) <1.

(6)-1 >i (e)-(11>i

(9) 4> 4'

(h) 2
11. 4

B. (0 <ill /.1'1.85.e 2.L
lc' 15 10 ' 32 12

4. For each pair of rational numbers below, decide
which is less.

(a)-1' 12 8

(b) 2' 8

(c)II.
23'15

(d) 23' 15

'
(e)1. 14.3 5

"1 9
12'

(9) 151'751' 7

(h)-?;

(') 3. 23' 4
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5. If b >11 then b is a positive rational number.

If .-19; then is a negative rational number.

Decide whether each of the following rational
numbers is positive, negative, or zero.

IA% 5
%%Ai 2

6. Hi. is a rational number, and the product of the

integers a and b is a positive integer, is the

rational numbers-1 positive? Give an argument

for your answer.
7. Answer each of the following, and give an argument

for your answer.

(a) Does the ordering of the rational numbers possess
the reflexive property?

(b) Does the ordering of the rational numbers possess
the symmetric property?

(c) Does the ordering of the rational numbers possess
the transitive property?

8. Complete the following sentences:

(a) Ift 1-, then ad bc.

(b) If 11-.1-, then ad bc.

(c) Ift >csr, then ad bc.

9. (a) Is there an integer " between" 2 and 3? That is,
is there an integer x such that 2 < x and x < 3?
If so, name one.

(b) Is there a rational number between-2 and+
1

If so, name one.

(c) Name a rational number between-52 andi.
4

(Hint: You might find the "average" of the
numbers.)

(d) Name a rational number between-land-14 5

(e) Given any two rational numbers, do you think
it is possible to find another rational number
that is between them? Give on argument for
your answer.

10. If AL
d d b'and what conclusion can you make

b
about -1 and

b d



12.19 Integers and Rational Numbers: An Isomorphism.

Throughout this chapter, we have commented on the
close relationship between the integers and certain
rational numbers. To illustrate what we mean by this,
look at the statements below. The ones on the left are
about integers: the ones on the right are about rational
numbers.

In (Z, + ), 3 + 2 -= 5 In (Q,

In (Z, ), 3 2 = 6 In (Q,

3 2 5
+"1+1'T

A

LT 1=1-

In Z, 2 < 3 In Q,i<-3-

Now the similarities between these statements do not
occur because we used the particular integers 2 and 3.
We could in fact let a and b represent any two integers
at all. Corresponding to them are the rational numbers

and l.); and we have the following statements:
1 1

If a + b = c in (Z, + ), then-t+i=-I in (Q, + ).

If a b = d in (Z, ),

If a < b in Z,

thenf Tb=f in (Q, ).

a .b,then T <1 in Q.

Each of these statements can be proved by the way we
have defined addition, multiplication, and ordering of
rational numbers; but we shall not give the proof here.
By this time you may recognize a kind of pattern we saw
earlier with the whole numbers and certain integers. That
is, in the set Q there is a "copy" of the integers. There
is a set of rational numbers whose behavior copies so
closely the behavior of the integers that we can use
integer names for them without causing confusion.

For example, we may write "2 3 = 6" instead of

"2 3 6"
.-T.= .1- And we can write "5 10"

instead2

o 701=-3
In other words, to use language that we used earlier, we
can say that the integers are isomorphic to the set of

rational numbers that are of the formf.

12.20 Exercises.

In problems 1 - 20, make the indicated rational number
computations.

1.

2.

3.

3

74=

7 4.

11.

12.

13.

-2

(-2

21

(.3.8

1)

3

8)

8
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2

8

÷

-

2

2 =

14.

15.

16.

0so.

8

9) 4*

9. 2 4( 1-÷ 3)

9(-÷-1):- 310.

2 3

2-5 -3

17. ie. 3 1-I 10

,2 1io. t-3- -= 2-

19. (2 ÷.51- ) + ( +2)

20. (5
2

+ (
2

3

In each of the problems 21 - 26, decide which of th
rational numbers in the pair is less.

21. -3; 4

22. 14; -241-

21
23. 4

-2-1. 4
24. 5'

4725. 6;

999
26. 1; zoir

12.21 Decimal Fractions.
In the preceding sections, we have developed the

system (Q, + , ). Now we look at another way of
naming rational numbers, a way that is based on the
idea of place value. You are probably already familiar
with the idea of place value; for instance, when we
write "3507," we mean

(3 1000) + (6.100) + (0 10) + (7 1), or

(3 103) + (6 102) + (0 101) + (7 1).
This form is sometimes referred to as "expanded
notation!'

In fact, from your work in elementary school, you
have probably seen charts as the one below which
explain the place value scheme used in writing names
of rational numbers that are also whole numbers.

1 5 4 8 7 6 3

106 105 104 103 102 10 1

I nZ0
:i.

i

0 11)<ILI
LX v)
0 M

<§)
v)
M

II

4(11)<
v)n

la
IXW0 v)

F-

iZ

v)g



in "1,548,763," the "7" represents 7 hundreds

decimal .point. (In writing the name of a

1

ce. Thus, with the third place we associate the
lue 100; but with the second place, we associate

ve from left to right, the value associated with each
'portant pattern in this place value scheme. As you

ft of th

'int, but

the

is at the extreme right.) There is a very

ace is of the value associated with the preceding

at is, 700), since it is in the "third place" to the

ole number, it is not common to mark the decimal

10

e value
10

1- 100, or 10. In order to have names for all

tional numbers (not just whole numbers) we extend
is pattern to the right of the decimal point. That is,
e value of the first place to the right of the decimal

1 1

1 'int is
10

1, or the value of the second place

1
the right of the decimal point is

1

1U 1-01 or 10736

e may also indicate Tubl as 1-612 . The table below

hews the values associated with the first six places
the right of the decimal point. (You should be able
extend the table as far to the right as desired.)

3 4 0 7

1
10

1210 1154
e 1b6

toI
I-
Z
tu
I-

u)
I-0lu
Ce
CIZ
MZ

v)x
0Z<
u)
D0x
1-

v)=
0Z<
v)nZ 0

Iii =
1- I-

u)s
0

ILI <
Ce N
Ci DZ 0I=1

X
Z0
:j-_i
:7.

In the table you see the numeral ".3407," and the table
makes it easy to see that this means

(3 "ii) + (4 + (0 11530 + (7 1igtr00

But this is also

An Am 0 7 3407
10000 + 10000 + + 10-00 10000

(Do you see why?)

Therefore,

.3407 =1000010000 '
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and ".3407" is a decimal fraction name for a rational
number.

If you
notation, the
clear.

Example 1.

Question: Can you write an equation
of form "b x = a "
whose solution is the
rational number .3407?

are not already familiar with decimal fraction
following examples should help to make it

".25" is the name of a rational number.
Represent this rational number by an
irreducible fraction.

We know that .25 ,-- (2 1 1

rc)) + (5 .TO)

100 + 100
25

25Of course, -1--is not an irreducible fraction.

But we know that u-)-(25
-) =

17; Therefore,

.25
1

Example 2. Represent the rational number .250 by an
irreducible fraction.

250 = igg -

Do you see then that this example is
really the same as Example 1? Again,
the irreducible fraction called for is
1 That ise

.250 = .25 =I
4

On the basis of Example 2, you should begin to see
why it is true that some rational numbers have an
infinite number of decimal fraction representations. Thus,

4= .25 = .250 = .2500 = .25000, etc;.

Question: Do the decimal fractions
.4 and .400

represent the same number?
Why or why not?

Example 3. Represent the number 4.18 by a fraction-9-
b

where a and b are integers.

4.18 = 4 -4- 148-. But 4 =

I 1T1 IT/So, 4.18

418
100

2
Example 4. Represent the rational number-3-4 a decimal

fraction.

We knowi = if. (Why?) Therefore,4 = .4



Of course, we could also use ".40,"
".4000," etc .

Example 5. Represent 152 by a decimal fraction.
5

".400," (b) .7

(c) .08

(d) .07

(f) .333

(g) 2.7

(h) .375

(I) .6
(k) .123456

(I) .333333

(n) -.05

(0) -2.7

(p) -.375

An expression such as "15" is sometimes
5

called a mixed numeral, since it looks as
though it is composed of a symbol for a whole
number together with a fraction. The important
point to understand is that it means

. 2
IJ "r5

Therefore, from Example 4, we know

155= 15 + .4

= 15.4

Example 6. Representl by a decimal fraction.
8

We know that
8

is a quotient; namely, 3 + 8.

Therefore, in the space at the right, we
carry out this division. .375

Another way to 8 3.000
think about this 2 4
division is as follows: 60

56
40
40

1000 .-3-- 3000
88

=375.

nwr $ 375
Then, since 1000 3 = 375, 11- row .(Do you

remember how a rational number was defined as
the solution of an equation?)

12.22 Exercises

1. Express each of the following decimal fractions as an

irreducible fraction at.

(a) .3 (f) .03 (k) 3.05

(b) .32 (g) .003 (I) 25.1

(c) .320 (h) .000003 (m) .625

(d) .325 (i) .500 (n) 10.625

(e) 7.3 (j) .005 (o) .33

2. We know that every rational number is the solution of an
equation of the form "b x = a," where a and b are
integers, b = 0. For each of the following rational
numbers, write an equation of which the number is the
solution.

Example: .19 =th9
Therefore, .19 is the solution of

"100 x = 19."

(a) .5 (e) .33 ( i) .60 (m) -.5

225

3. Find a decimal fraction name for each of the follow-
ing rational numbers. (The rational numbers listed
in this exercise are so frequently used that it is
advisable to remember their decimal fraction re-
presentations.)

4. For each of the following decimal fractions, write
four other decimal fractions which represent the
same number.

(a) .5 (d) 25.6

(b) .3 (e) 4.0

(c) .05 (f) .025

5. Recall that a rational number is one which can be

represented as a quotient -a, where a and 6, the

numerator and denominator, are integers.

(a) In the decimal fraction ".5," what is the num-
erator? What is the denominator?

(b) What are the numerator and denominator of

".00007"?

(c) What are the numerator and denominator of
"8.2"?

(d) Does every decimal fraction represent a ra-
tional number? Explain. (How is the numerator
determined? How is the denominator deter-
mined?)

6. Find a decimal fraction which represents each of
the following rational numbers. (See Example 6 in
the text.)

(a) 273-3 (d)
21

25
(b) (e) irt

(c)



2.23 Infinite Repeating Decimals.

Can every rational number be represented by a

ecimal fraction? The exercises in the preceding sec-

ion may lead you to answer "yes", and although this
is correct, there is a major difficulty with many ra-
tional numbers. As an example, let us try to find a

1
d 3
"decimal fraction for As before, we know this is a

quotient, and the appropriate division is shown below:

.3333
11-173000

9
10

9
10
9
10

9
1

Do you see the difficulty? In this case, the divi-
sion process is something like a broken record. For,
as long as we care to continue writing, we will have

to place a '3' in each place to the right of the decimal
point. Thus, this decimal does not "end" or "termi-

nate" as it does, for example withi= .375. (See Ex-

ample 6 of Section 12.21)
1

How then can .ie represent
3

with a decimal frac-

tion? One answer lies in giving an approximate deci-

mal fraction. To see this, study the following steps.

0 < f< 1

1
We know that

3
is "between" 0 and 1, and we say

that is in the closed interval [04 In terms of a
3

. 1

3number scale, this means that the point representing

lies on that part of the !ine consisting of the points
represenbbg 0 and 1, together with all the points be-
tween those two:

0.
1

3 I

1
We can also place

3
in smaller and smaller intervals,

as follows:
1

.3 <1.< .4
3 .3

3
.4

.33 <-5-< .34

1.333 <
3

< .334

1

3
.33

1

.333

.34

.334

226

.3333 <1< .3334

1

3

.3333 .3334

Do you see that in a way we are "squeezing" the

1
number

3
-9 Each of the above intervals is "smaller"

than the one before it, and is contained in it. We call

such intervals nested intervals. Thus, we have a se-

quence of nested intervals containing the rational

1

number
3

Although we stopped with the interval

[.3333, .33341, the sequence goes on without end.

Question: Continuing in the pattern above, what

is the "next" interval in this sequence

of nested intervals?

If we form a sequence of the first numbers in these
nested intervals, we get: .3, .33, .333, .3333, .33333,

..., a sequence of rational numbers. None of the num-

bers in this sequence is equal to
3

For instance, con-

sider the first number, .3:
, 1 1

.3
3

,In fact, .3 <3 . We can find the

1
difference between

3
and .3 as follows:

1 1 3

3 3 10

10 9 1

30 30 30'

1
Therefore, although .3 it is "very close" to

3'

between the numbers is
31 '

because the difference

small."" We can say that
and write

1

3
=.3

1
.3 is an approximation to

3

This approximation is said to be correct to tenths

or "to one decimal place."

Next let us consider the second number in the se-

quence, .33. The difference between this number and

3
1

is computed below:

1 1 33
3 3 100

100 99=
300 300

1

-300'

Therefore, .33 is a "better approximation" to 1
3

than is .3. That is,

from it by only 300

1it is "closer" to--
3

since it differs
1

instead of (How do we know
30



1

300
1

that
30
- < -9). Thus we write

3 '33'

and say that this approximation is correct to hundredths

or "to two decimal places."
In fact, as you might have guessed, each number

1
in the sequence above is a closer approximation to 3

-
that the number preceding it.

1

Question: What is the difference between
3

and .333 ?

And though we shall not explore the matter here, it is

true that by "going far enough in the sequence" you

1
can get a number as close to-

3
as you like.

1

'Now, from the number-
3

we have learned a very

important fact. Not every rational number can be ex-
pressed by a terminating decimal fraction. Many ra-

tionaltional numbers, such as-
3

have decimal fraction re.

presentations that are infinite, repeating decimals.
They might be called "rubber stamp" decimals also;
for example, if you had a rubber stamp made with the
digit '3' on it, you could write the decimal fraction

1for
3
- by just stamping the "3" over and over again.

As another example, let us work with the rational
8

number
33

.2424...
33 8.0000

1 40

122-
80
66
140

132
8

.24 <
33

$311 1-< .25 .24 (correct to hundredths)

.2424<
33

8-< .2425 8 .2424 (to four
33 decimal places)

.242424 <-8

3
< .242425

33
.24242438

1

'As with
3

there is no termi
8
'sentation for - but there i

33
decimal associated with it;

33
to any desired number of

4.14.1ii.Vre4::1174A.
4

noting decimal repre-

s an infinite repeating

and we can approximate

decimal places.
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12.24 Exercises.

1
1. (a) What is the difference between-

3
and .333?

(b) What is the difference between and .3333?
3

(c) Which of the numbers, .333 and .3333, is a

better approximation tot?

2. (a) Write an equation of the form "b x = a"

which has
3
-as solution.

(b) Write an equation of the form "b x = a"
which has .3 as solution.

(c) Write an equation of the form "b x = a"
which has .33 as solution.

(d) Would the same equation work for all of the
parts (a), (b), and (c)? Why or why not?

3. In looking for a decimal fraction representation of

6, the division process below might be used:

.1666...
6 1.0000

6
40

40
36
40
36
4

Thus, we again get an infinite repeating decimal,
although the digits do not start repeating right away.

Now answer the following questions:

(a) What is the difference between and .16?
6

(b) What is the difference betweeni and .17?
6

1

'(c) Which is a better approximation to 6
.16 or .17?

1
(d) What i s the difference between-6

and .166?

(e) What is the difference between and .167?
6

1

'(f) Which is a better approximation to 6- .166 or .167?

(g) Which is a better approximation to6, .17 to .167?

1

'(h) What is the best approximation to 6
correct to

four decimal places?

4. For each of the following rational numbers, write

^ IC.04" ,'-'444r.A.17144.f.:(4.11.i.444714;b"a*::*,,W4410'.4,VOUOliftiiAbri;V:=4401.'.'4.:ZAVar4114114.1V1W



the best approximation decimal fraction approxima-
tion, correct to four decimal places.

(a)
6

(c) iT (e)

(3)
(d) ( 0 4-

Consider the sequence below:

.1, .11, .111, .1111, ...
1

What is the difference between-
9

and 1?

1

What is the difference between-
9

and .11?

1
What is the difference between-

9
and .111?

1
What is the difference between-

9
and 1111?

Suppose the sequence continues in the some
pattern suggested by the first four terms. How
far would you have to go in the sequence to

1 1
find a number that differs from- by 9

9 9,000,000'

6. (a) Give an approximate decimal fraction (correct
to three decimal places) for the rational num-

1 7
ber 23 =5.

(b)
of rt 1

Is the decimal fraction representation oT z-
3

an infinite repeating decimal?(Remember that
the decimal fraction need not start repeating
right away.)

1Consider the quotient-
7

.

(a) In dividing by 7, how many numbers are
possible as remainders? (Remember that a
remainder must be less than the divisor.)

(b) Carry out the division process for 1 7 to
twelve decimal places.

(c) At what stage in the division process did you
get a remainder that had occurred before?

(d) At what stage in the division process did the
decimal fraction start "repeating"? Can you
explain why it happened at that particular
time?

In carrying out the division 3 + 8, what remainder
occurs that causes the decimal fraction to termi-
nate?

Try to give a convindng argument for the following:

The decimal fraction representation for any

rational numberf is either a terminating deci-

mal or an infinite repeating decimal.
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10. Write a sequence of nested intervals all of which
1contain the number ir Begin with the interval

[0,1} and get a total of five intervals. Also show
the intervals on a number scale.

11. Explain why the following sequence of intervals
is not a nested sequence:

[0,1], [1,2] [1,5; 2.5], [.1, .2]

12.25 Decimal Fractions and Order of the Rational
Numbers.

We have already seen how to tell which of two

rational numbers±and 5-is less, when fractions are
b d

used to represent the numbers. Now let us see how
to make such a comparison when decimal fractions
are used.

Example 1. Which is less, .3 or .4?
3Since .3 . and .4 =

10' 104 '

it is easy to tell that .3 < .4.

Example 2. Which is less, .2567 or .2563?
Notice that the first three digits of
these decimal fractions agree, place
by place. The fourth decimal place
is the first one in which they differ.

256 7
.2567 =10001000 1 0000;

256 3

'2563 Tar 10000.

Therefore, .2563 < .2567.

Example 3. Which is less, .8299 or .8521?

.8199 =
8+ 299

10 10000

8 521
.8521 =+W 10000

Therefore, .8299 < .8521.
Notice again that these two decimal
fractions agree in the first decimal
place. The first place in which they
disacee is the second place; and
2 < 5.

These three examples show that it is very easy to
tell which of two rational numbers is less when the num-

bers are represented by decimal fractions. Suppose
we have two decimal fractions

.a
1a 2

a
3
a
4

and



..b
1

b
2

b
3

b
4

and al = b1, 02 = b2, but b3 < 03. Then do you see

that .b1b2b3b4 < .ala2a3a4? In other words, the way

to tell which of two decimal fractions represents the
smaller number is to look for the first place (reading
from left to right) in which they disagree; the one
which has the smaller digit in that place represents
the smaller number.

Example 4, Which is less, 23.524683 or 23.524597?
The first place in which these decimal
fractions "disagree" is the fourth
decimal place. And since 5 < 6, then
23.524597 < 23.524683.

12.26 Exercises.

1. In each of the following, write the two decimal
fractions. Then place either a "<" or a ">" or a
"=" between them so that a true statement results.

(a) 12.5 12.4 (f) 826.33 826.30

(b) 8.33 8.34 (g) 5.4793293 5.4789999

(c) .1257 .1250 (h) 548 551

(d) .1257 .125 (i) 1.9999 2

(e) .6666 .6667 (i) .9874 .9875

2. This exercise is similar to exercise 1, except that
negative rational numbers are used. Remember, that
although 1 < 2, for instance, -2 < -1. Thus, al-
though .5 < .6, we have -.6 < -.5.

(a) -3.567 -3.582 (e) -42.80 -42.85

(b) -.12345 -12453 (f) -42.8 -42.85

(c) -.99 -1 (g) -12.9999 12.9998

(d) -100.555 - 100.565 (h) -4.378 -4.3779

3. Is it possible to find a rational number x "between"
.354 and .357? That is, we want a number x such
that

.354 < x < .357.

Notice that these two decimal fractions agree in
the first two places, but disagree in the third
place. Thus, for x, we can use a decimal fraction
that agrees with the two given ones in the first
two places, but has in the third place a digit that
is between the two given third digits. For example,
x might be .355, since .354 < .355 < .357. (This
is not the only value of x that can be used. Can
you give others?)

Now for each pair of rational numbers below, name
a rational number that is between them.

(a) .6; .8 (e) 5.420 5.430

(b) 2.35; 2.39 (f) 5.42 5.43

(c) 45.987; 45.936

(d) 102; 108

(9) 3.8 3.9

(h) 2.99 3

Compare Exercise 3 with Exercise 9 in Section
12.18. Do you see that between the two rational num-
bers it is always possible to find another rational
number? For this reason, we say that (Q, <) is dense:
that is, the rational numbers form a dense set.

4. Given the rational numbers 1 and 2, find
a rational number x such that 1 < x < 2;

then find a rational number y such that 1 < y < x;
then find a rational number z such that 1 < z < )9;
then find a rational number w such that 1 < w < z;
Draw a number scale, and represent the numbers
1,2,x,y,z,w, by points on the scale.

5. Do the integers f;..rm a dense set? Why or why not?

12.27 Summary.

In this chapter we have developed the rational
number system. In order to see why this system is
such an important one, let us retrace some of the
steps in its development.

In the whole number system, there are two binary
operations, addition and multiplication. Subtraction
and division are not operations. Thus, for example,
the subtraction 2 - 5 and the division 2 ÷ 5 are not
possible in (W, +, We might say that subtraction
and division are "deficiencies" of the whole number
system. Part of our work this year has been concerned
with removing these deficiencies.

We first removed the subtraction deficiency by
developing (Z, +, ), the number system of integers.
Subtraction is a binary operation in this system;
2 - 5, for example, is - 3. And since (Z,+, -) con-
tains an isomorphic copy of (W, +, ), we have in the
integers all of the operations and properties of W,
together with the new operation of subtraction. Thus,
Z is an "extension" of W, a fact suggested by the
following diagram:

extension to
(W,+, -) - - - -

make subtraction
an operation

(Z, +, )

However, division is not an operation on Z, and
in this chapter we removed this deficiency by develop-
ing the system (Q, +, ) in which division (except by 0)
is always possible. for example, the quotient 2 + 5 is

the rational number we have called-2 And since
5
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+, .) contains an isomorphic copy of (Z, +, ), Q
an extension of Z. Therefore, we can complete the
ove diagram as follows:

extension toiimiPmmemiO000 MIN

make subtraction
an operation

extension:to make
division Ian operation

(Q, )1

Is this theonly path to follow in removing the sub-

raction and division deficiencies? The answer is "no,"
or we might have removed the division deficiency
first. Thus we could have extended W so that a divi-
ion such as 2 + 5 became possible. To do this, we
ould have worked with numbers arising from "posi-
ive" fractions, such as those you worked with in
lementary school. In this way, we could have obtained

number system in which addition, multiplication,
nd division (except by 0) were always possible, but
of subtraction. If we use (F, +, ) to denote such a

system, the extension con be shown as below:

01114-11

extension to make
division Ian operation

Next, we could remove the subtraction deficiency
by introducing negatives much as we did in develop-
ing the integers in Chapter 4. Then once again we
would have arrived at the system (Q, +, ), as the
completed diagram shows:

1(W +,)1

extension I to make
division an operation

extension to
%mi

fri
t+,

make subtraction
an operation

No matter which of the two "paths" is followed,
the result is the rational number system (Q, +, ) in
which there are four binary operations addition,
subtraction, multiplication, and division.

In (Q, +, -). the four operations are defined as follows:

a c ad + be
b d b d

a c a c,
bd=b+Idi

a c ac
bd=bd

a. c a d
d 2-1;* (0 0)
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(Q, +, ) has the following important properties.

If x, y, and z are rational numbers, then

(x + y) + z x + (y +z) (x y) z = x (y z)

x+0=x x1=x
x + (x) = 0 x 1= 1 (x 0)

x+y=y+x xy=yx
x (y + z) (x y) + (x z)

Any system with two operations which possesses
these preperties is called a field. Therefore, we may
speak of the rational number field, or the field of ra-

tional numbers.

The rational number field is ordered. If ti and 7

are rational numbers, with b and d both positive, then

b
< < > ad < bc.

The rational number field is dense. Between any

two different rational numbers, there is another ra-

tional number.

12.28 Review Exercises.

1. Solve: the following equations.

(a) 4 x = 3

(b) 3 x = 4

(c) 4 x = 3
(d) 4 x = 3
(e) 4 x = 3

(0 12 x 5
(9) 3 x = 20

(h) 3 x = 21

(i) 7.x =5

(k) 102 x = 511

(1) 55 x = 30

(m) 87 x = 87

(n) 87 x = 0

(i) 3 x = 8 (o) 4 x = a

2. Compute the following.

, 9
+-E-

57

(OH
(c) 8 -4

(0 8;4

(111) 4 -8

(n) 4+ 8

(0) 3 + 7

(p) 7 + 3

C



3. Compute the following.

4. Compute the following:

(a) 3 (c) 14
4 3

7
8

(b) 9
2

9

3 5 2
(0 (..6+-6)÷-5

2
(9)

3
+

5
+3)

(h) (8 +4)

. 4 3 3 5 9 16

(I) "5" 16 4

-2 7 -7 0 2 1

di -1+3+ -84-T+-3-+ 2

7
5

(d) 12
5

3
8

(e) a

d

5. Write each of the following in "expanded notation."

Example: .23 = (2. 1 job)
10)4- (3 1

(a) .6

(b) .63

(c) .063

(d) .00603

(e) 25.08

(f) 3.175

(g) 2.000005

(h) .3333

6. Write a "decimal fraction" representation of each

of the following. If the decimal does not terminate,
give an approximation to four decimal places (i.e.,
correct to ten thot. 'andths).

1 1
-5.(a) T (0

231

(b)
26

(c)
3

4

(d)

2(e) 3-5

7. In each of the following, place one of the three
symbols, "<," ">" or "=," se that n true state-
ment results.

(a)

(b)

(c) 5 7

(d) .3475 .3429 (g) .00001 .000009

(e) 1 .333333 (h) 22 25.
3 7 12

(f) .375
83 ( i) -T2

8. For each pair of rational numbers below, write the
name of o rational number that is between them.

(a) 2,

(b)j2' 4

(c)+

(d)+,

1

3

5
8

17
32

1

(e)
3 ' 9

4

(f) .345, .346

7
(9)-3,

13

(h) 0;
1

100

(i) 0, .000001

9. Solve the following equations.

(a) a-. x
3 5

(b)4+x=-33.

1

(c) x
4
3 2

-4
(d)

7
--2-+ x

- 4,,Zt.:44"
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CHAPTER 13: MASS POINTS

13.1 Deductions and Experiments
You have probably noticed that in coming to con-

clusions we have used two distinct methods. For in-
stance, to convince ourselves that the sum of the
measures of the angles of a triangle is 130 (or ap-
proximately 180) we can proceed in either of two ways.

(a) We can measure each angle with a protractor
and add the measures.

(b) We can show that the statement follows logic-
ally from properties of isometrics and the pa-
rallel property.

The first is an example of the method of reason-
ing by induction in science. It is also used by mathe-
maticians to suggest relations. The second is an ex-
ample of reasoning by deduction and is called deduct-
ive proof or mathematical proof. It shows how one

sfatement follows from others by logical deductions.

Many people who are not mathematicians fre-

quently rely on deductions. For instance, a doctor

deduces the nature of an illness from symptoms; a
surveyor deduces a distance to an inaccessible point
from known measurements and mathematical princi-
ples; an astronomer deduces the nature of matter in a
distant sun from an analysis of the light coming from

that sun.

You yourself have surely made deductions. All
people do. For instance, when a doorbell isunanswered
it i s natural to deduce that it is likely that nobody is

home.

This chapter differs from other chapters in the

sense that in it we allow ourselves proofs by deduc-
tion only. This wi II be a novel experience for you,
the first of many such experiences in your mathemat-

ical studies.

There are many possible systems you can study

that will help you to learn about deductive reasoning
and its usefulness. We have chosen first the study of
mass points because of its many applications and its
close relation to the geometric ideas you have pre-

viously studied.

Naturally, your first question is: What is a mass
point? Thi s brings to our attention an important as-

pect of deductive reasoning which you must try to ap-

preciate before going further. Actually, there are many
different objects which are specific interpretations of

the general notion of mass points? For instance: a
child poised at the end of a see-saw; the earth at a
particular position in its orbit; a carbon atom at a

particular position inside a complicated molecule.

To establish something of the essential nature
of each of these interpretations, we note that in each
case a number and a position can be associated. For
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the child it could be her weight and her position on
the see-saw. For the earth it could also be its weight
and its position in orbit. For the carbon it could be a
number, perhaps its electrical charge, and its location.
Each of these cases has the property that a number

and a point are associated. This is what we mean by

a mass point.

Definition. A mass point is a pair consisting of

a positive number and a point.

As you see, different interpretations have some

properties in common and some that differ. Faced with
such a situation a mathematician lists what he thinks
are basic properties common to all and proceeds to
make deductions from this list. Since the selected
basic properties furnish a beginning in a system they

are not deduced. There is nothing in the system from

which to deduce them. Such basic property statements
are distinguished from those that are deduced. The
basic property statements are called postulates or
axioms. Those that are deduced are called theorems.

13.2 Preparing the Way: Notations and Procedures

We need some preparations before stating postu-
lates and deducing theorems. First, it is convenient
to have a concise way of referring to a mass point.
The mass point with a number 4 at point A will be
written "4A". In general the mass point with number
a at point P will designated "GP". If in the course of
deduction we conclude that aP= bQ, this will mean two
two things: a and b name the same number, and P and
Q name the same point; that is, n = b and P = Q. If
then A and B name different points then 3A = 2B must
necessari'y be false; also 4A = 2A must also be false
since 4 2. We sometimes refer to the number of a

mass point at its weight.

Second, we illustrate what we mean by adding two
mass points. It should not be confused with adding two
numbers. Suppose 3A and 2B are two mass points, as
shown below at points A and B.

3A. 21

To add them and to represent 3A + 2B as a single
point, we must do two things.

(1) Add the weights 3 and 2; 3 + 2 or 5 is the
weight of 3A + 2B

(2) Find point C in AB such that AC:CB = 2:3
(Note the reversal of 3 and 2 in the ratio 2:3).
If on measuring AB we find its inch-measure

to be 5,' AC = 2t- 5 = 2 and CB .3-. =&3.
5 5

C is therefore two inches from A and 3 inches
from B. C i s the point in 3A +2B.



us 3A + 2B has weight 5 and is at C, or 3A + 2B=5C.
e sum is represented diagrammatically as follows.

3C

(The equally spaced marks should help you to

see that AC= 2 and CB = 3)

e call C the center of mass of the masses at A and B.

Let us consider a second illustration.

Qv
71

4Q+ 3P: 7R

ww.....=4114P

Suppose the measure of QP in yards is 4. As in
e first illustration we find the weight of 4Q + 3P to

7. If R is the center of mass then QR:RP = 3:4;

that is QR . a .4 or La and RP
7. 7

=21- 4 or -7-16. Thus
7

QR = 15 and we can approximate the location of R

with a ru7ler.
The definition for the sum of two mass points is .

isuggested by the see-saw interpretation. Suppose in
the diagram below that two weights are placed in the

position shown.

20. 3ft

They will be in balance if the weight of each object
multiplied by its distance to the balancing point is
the same. For data in our diagram the first product is
30'. 2. The second is 20 3. Are these products the
same? If so, the see-saw is in balance.

Compare this situation with the case of the sum
of two mass points 30A + 20B, for which AB = 5. The

point C, the center of mass, will be
50
2-P 5 feet from A

toward B. Is this not the point at which the teeter
oab rd balances for the weight 30 and 20 pounds?

Definition: In general, by aA + bB we shall mean
the mass point cC such that a +b=c
and C is the point in AB such that
AC : CB = b : a.

In passing we might emphasize that C is in AB.
Furthermore, we might guess that each interior point
of AB can be determined by a correct choice of a and b.

Thus, whenever we add two mass points, the center of
the sum will be found in the segment determined by the

mass point addendi.

In section 13.4 13.8 we will learn to add three
mass points, not in one line, such as aA, blitLcC
shown below. The sum aA + bB must be in AB, say at
D. The sum bB + cC must be in $C, say at E. Now we
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have two'mass points, at D and E and their sum will
be in DE, say at F. F is an interior point of A ABC.
So the sum of three mass points at non-collinear points
determines an interior point of a triangle.

In section 13.12 we add four mass points, not in a
plane, such as those shown below. Adding three of these
determines point in the interior of AABC, AABD, ABCD,

or ACAD. Suppose E is such a point inside AABD, and

F is inside ABCD. Then, the sum of the mass points at

E and F determines a point inside the space figure (a

pyramid).

dD

bt

13.3 Exercises

1. In each part below you are given the length of a
segment in inches for which you are to draw a dia-

gram. On this diagram represent the sum of the two

mass points at a single point.

(a) AB =
(b) AB = 6,
(c) CD = 3,
(d) CD = 3,
(e) EF = 5,
(f) GH = 3,
(g) GH = 3,
(h) KL =5,
(i) KL = 5,

(j) KL = 5,

2. (a) You are

5A + IB
lA + 5B
2C + D
1C +2D
1E +IF
2G +4H
3G + 2H
2K + 4L
1K + 2L

1K+1L
2

given mass points 3A and 4B. Is the



center of mass nearer to A or to B? Try to
answer without calculating the positiorlof the
center.

(b) Answer the same question for mass points 8A
and 5B.

(c) Is the center of masses nearer the point with
the greater or lesser weight?

3. For each of the following compute AG:GB.
(a) 3A + 2B = 5G
(b) lA + 6B = 7G
(c) 2A + 1B = 3G
(d) 5A + 5B = 10G

4. In this exercise you are given one of two mass
points and the sum. You are to find the other mass
point. To illustrate, suppose xX is the missing
mass point and 3A + xX = 5B. Thus 3 + x = 5,
from which we deduce x = 2. The waist of 3A and
xX are 3 and 2. So B is the point in AX such that

AB:BX = 2:3 and X is in AB with B in between A
and X as shown below.

A I X

Solve for x and X in each of the following equations.
(a) 3A + xX = 4B
(b) 4A + xX = 6B
(c) xX + 4A = 6B
(d) lA + xX = 3B
(e) 2A + xX = 3B
(f) xX + 9A =12B

5. Suppose 12A + bB = cC. What must be true about b
and c for each of the following cases?

(a) C is the midpoint of AB.
(b) °C is the trisection point of AB nearer A.
(c) C is the trisection point of AB nearer B.
(d) C is the point of division of AB such that

AC: BC = 3:4.

6. Draw a line segment AB 3 inches long and take

C in AB such that AC is I inches long.
2

A

(a) Represent lA + 2B at one point. Name it D.

(b) Represent 3D + 3C at one point. Name it E.
(c) Represent 2B + 3C at one point. Name it F.
(d) Represent lA + 5F at one point. Name it G.

(e) Are F and G the same point?
(f) If so, how does this exercise show

+ 2B) + 3C = lA + (2B + 3C)

7. Let 3 be assigned to A in AB.
(a) If C is the midpoint of AB, what weight

should one assign to B so that C is then the
center of mass?

(c) If C is the trisection point of AB nearer B,
what weight should one assign to B so that C
is the center of mass?
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13.4 Postulates for Mass Points

It is important to know whether addition of mass
points is an operation. Otherwise such a sum as 5A +

6B may be assigned ore than one mass point and any
computation with mci*s.points would become bewilder-
ingly complex. We ' that 5A + 6B must have theItr
weight 5 + 6 or 11. is there exactly one location
for the center of mail? It can be proved, with the aid
of more mathematics than we have available, that the
answer is yes and, moreover, it is between A and B.
We shall assume this answer. That is, we accept with-
out proof the statement that there is exactly one mass
point for the sum of two mass points. This..then be-
comes our first postulate, the Closure Postulate.

Pl. For any two mass points aA and bB
there is exactly one mass point cC
such that aA + bB = cC.

In effect we are saying that addition of mass points is

an operation.

Our construction of, aA + bB leads us to accept
that aA + bB = bB + aA. We will state this property as
a postulate, and call it the Commutation Postulate
or P2. ,

P2. For any two mass points aA and bB
aA + bB = bB + aA.

And now we come to a.third postulate which we
can call the Association Postulate or P3. It many not
be as obvious as the Closure and Commutation Postu-
lates, and for that reason we shall do an experiment to
test its plausibility. We want to see for instance
whether (3A + 2B) + 1C = 3A + (2B +1C), where A, B,
C are the points, not necessarily collinear, as shown

in this diagram.

IC

3A SD 21

To facilitate this experinmnt we have subdivided
AB into 5 segments of the same length (3 + 2 = 5) and
BC into 3 segments of the same length (2 + 1 = 3).



First we find 3A + 2B to be 5D, as shown in the

agram. Then, subdividing DC into 6 segments of the

ame length (5 + 1 =6) we see (again in the diagram)

at 5D + 1C is 6G.

On the other hand we first find 2B + 1C, and find

to be 3E (see the diagram). We have only to test
ether 3A + 3E = 6B. To convince ourselves that
is is true, or false, we place our ruler on AE and
c whether G is in AE such that AG:GE = 3:3 or 1:1.
test shows it to be true. Try it. We call G the center

f mass of three masses.
In an exercise you will be asked to further verify

experiment the truth of the Association Postulate.
P3. For all mass points aA, bB, and cC

(aA + bB) + cC = aA + (bB + cC).
his means that aA + bB + cC represents the same

ass point no matter how we associate. This mass
oint has weight a + b + c and its point is the center of

mass of the three masses at A, B and C.

We do not claim to have proved the Association
property, for we have not deduced it. We repeat, the
purpose of the experiment is not to prove the property.
It is to make it easier to accept as a postulate. (Mathe-
maticians may even accept as postulates statements
which cannot be tested as being either true or false.)

In adding mass points we are also adding positive
numbers. It should be understood that we are allowing
ourselves to use those properties of (Q, +) which we
need. We shall also allow ourselves to use the pro-

perties of parallelograms which have appeared earlier

in this book.

13.5 Exercises
1. Make an exact copy of the three mass points

3A, 2B and IC used in the experiment on the
preceding page. Show, by an experiment that

3A + 2B + 1C can also be found by any of the

following procedures.
(a) Find 2B + 1C first, then (2B + 1C) +3A.
(b) Find 3A + 1C first, then (3A + 1C) +2B.

2. Justify each of the following statements by

citing the appropriate postulate or postulates.

a. (2B + IC) + 3A =1(1C + 2B) + 3A
b. (28 + IC) + 3A is IC + (2B + 3A)
c. 2B + 3A + IC a 3A + 2B + IC

3. Represent aA + bB + cC in 6 different ways.

4. Make a diagram which shows 2A + IB + 2C at

a single point.
Take A, B, C as any three noncollinear
points.

13.6 A Theorem and a Deduction Exercise
As you recall, we called a statement that is de-

duced (or is deducible) from other statements a theo-

rem. This, our first theorem for mass points, is about
any triangle and may come to you as a surprise. Sup-

ene the triangle is ABC. Let D be the midpoint of

AB, E the midpoint of BC and F the midpoint of CA.
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Make such a diagram and draw CD, BF and AE. Do they

meet in one point? We shall prove that they do; that is,
we shall deduce this from our postulates. To make it
easier to talk about the segments CD, BF, and AE, we
shall call them medians.

Definition: A segment is a median of atriangle
if it connects one of its vertices to the mid-
point of the side opposite the vertex.

Theorem 1. The three medians of a triangle meet
in one point.

To prove this theorem let us start by assigning
weights to vertices, thus converting them tomass points.
Let us assign 1 to A, 1 to B and also 1 toC. (You will
see why, we choose 1 as the weight of each point as the
proof develops.) We remind you that D is the midpoint
of AB; E is the midpoint of BC and F is the midpoint

of CA.
By the Association Postulate + 1B) + 1C = lA

+ (1B + 1C). Let us first calculate (lA + 1B) + 1C.
First, lA + 1B = 2D. Then (1A + 1B) + IC + 2D + 1C.

There is a point in DC, call it G, such that DG : GC =
1:2. Thus 2D + IC = 3G.

Now we calculate lA + (1B + 1C). First lB + 1C =
2E..J.hen lA + (1B + 1C) =IA+ 2E. There is a point
inAE, call it H, such that AH : HC = 2:1. Then lA +

2E 3H. But by the Association Principle 3G a 3H.
Therefore G s H, that is, G is the point which divides

CD in the ratio 2:1 and also the point that divides

AE in the ratio 2:1.
Now we calculate (1A + 1C) + 1B.

(IA + IC) + IB =1A + (1C + 1B) P3

= IA + (IB + IC) P2

= (IA + IB) + IC P3

= 3G P1

This means that G is also in AE and divides it in the

ration 2:1.

We have not only proved that the three medians

meet in a point (the point G): ,but that this point divides
each median in the ratio 2:1 from vertex to midpoint of

opposite side.

We can also use postulates to solve problems. This

means we will discover theorems. But we won't find
it necessary to use these theorems in proving others.
Therefore we will not list them formally as theorems. We

consider them deduction exercises

Suppose inAABC, D divides BC in the ratio 1:2



from B to C, and E divides AC in the ratio 1:1. Let AD

intersect BE in G. What are the numerical values of

DG:GA and BG:GE? We can solve this problem as fol-

lows. In order that D may be the trisection point of BC

nearer B, we assign the weights 2 to B and 1 to C.

Then 2B + 1C = 3D. In order that E be the midpoint of

CA we assign the some weight to A as to C. Having as-

signed 1 to C we assign 1 to A also. Then 1C + lA =

2E. The point of (2B + 1C) + lA is the same as the

point of 2B + (1C + 1A). This point is on AD and BE;

that is, this point is the intersection of AD and BE,

and it is named G. Therefore (28 + 1C) + lA = 3D +1A

= 4G, and thus DG:GA = 1:3. Also 2B + (1C + 1A) =2B

+ 2E = 4G, and thus BG:GE = 1:1.

lA

We can extend our discoveries in this problem. Let

CG n AB = F. By P2 and P3, (2B + 1A) + 1C = 4G.

Therefore 2B + IA is a mass point whose center is in

BA and also on-er. It can be only F. Thus 2B + lA =

3F and BF:FA = 1:2. From 3F + 1C = 4G, it follows

that FG:GC
If we omit explanations, the solution of the above

problem can be written briefly as follows
1. 2B + 1C = 3D and 3D + lA = 4G. Therefore

DG:GA =1:3.
2. 1C + lA = 2E and 2B + 2E = 4G. Therefore

BG:GE = 1:1.
3. 2B 4- lA = 3F Therefore BF:FA = 1:2.
4. 3F + 1C = 4G Therefore FG:GC = 1:3.

13.7 Exercises

1. Review the proof of the theorem about the median of

a triangle, then tell whether you think the proof ap-
plies only to the triangle represented in the diagram

or to all triangles.
2. This is an experiment exercise. Draw any triangle,

locate the midpoint of each side and draw the
medians. In your diagram, do the medians meet at

one point? Suppose they did not, or they did not,
in a drawing made by a classmate. Try to find
why the drawing does not agree with the theorem.

3. The lengths of the medians of a triangle are 15, 12
and 18 inches long. i;./vi long are the segments

into which each rote;-y, is divided by the point in

which they meet?
4. Answer the question in Exercise 3 if the liens

are 12, 13, 14 inches long.

S. In A ABC, CD and OF are medians,
meeting at G. K is *midpoint
AM and L is the'inidpoint of
CG. Prove (by deduction, of
course) that DELK is a peralliitiogram.
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6. In APQR, QE and RD are medians,
meeting at G. D is the midpoint of

LG and E is the midpoint ofKG.
Prove: LKRQ is a parallelogram.

7. For the data in Exercise 6, prove: LK = QR and

LQ = KR.

B. loAABC, D is in AB and
AD:DB = 1:2. E is in Br,,and
BE: EC = 1:2. Let AEnCD = G.

Pme:AG:GE=3:4
CG:GD=6:1

(Hint: Assign weight 4 to A, 2 to B and 1 to C.)
ele 0111

9. Using the data in Exercise 8 let BGnCA = F and

find the numerical value of BG:GF and AF:FC.

10. Add to the data in Exercise 8 'that K is in CA and

CK:KA = 1:2. Let BKnAE = L and BKnCD = M.
Prove: BL = LM = 3MK (This is a difficult ex-
ercise).

118 Anotner Theorem

Our definition for addition over mass points ap-
plies to two mass points. In other words, addition is

a binary operation. To make it possible to add three

mass points we introduced the Association Postu-
late, which says that aA + bB + cC can be found by
either finding (aA + bB) first or (bB + cC) first.

IlNiais.11:Moi.IVAMINONM1/4100160160114.4411MP41,00.0411.41.04.700".,A.U.V4.011.



ither of these sums can be found and then a second
ddition completes the calculation by which aA + bB
cC is expressed as a mass point with one weight

nd one point. For our next theorem we need to know
ow to add four mass points. This can be done by a
opeated application of the Association Postulate, as
Dl lows:

aA + bB + cC + dD = (aA + bB) + (cC + dD). There
re also other ways to associate. For instance,
A + (bB + cC) + dD. This reduces the addition from
our to three mass points. And IJW a second theorem.

Theorem 2. The segments joining the midpoints
of opposite sides of a quadrilateral
bisect each other.

Proof: Let ABCD be the quadrilateral and let E
be tho midpoint of AB, F the midpoint

of CD and H the midpoint of DA.

We have to prove that EG bisects HF.

We assign the wieght 1 to each of A, B, C, D.
then we have the following equations:

(1) lA + 1B = 2E
(2) 1B + 1C = 2F
(3) + 1D = 2G
(4) 1D + lA = 2H.

By P3 and P2 we can show that

(1A + 1B) +(1C + 1D) = (1D + + (IB + 1C).
Thus 2E + 2G = 2H + 2F.

If K is the midpoint of EG then 2E + 2G = 4K.

If L is the midpoint of HF then 2H + 2F = 4L.

Thus 4 K 4 L.

Or K = L
Do you see that this completes the proof?

Incidentally, what kind of figure is EFGH? State
another theorem that follows immediately from the
one we just proved.

13.9 Exercises
1. The purpose of this exercise is to see if an experi-

ment agrees with Theorem2. In performing the ex-
periment you should be careful to draw straight
lines and to locate midpoints Accurately. Perform
the experiment on two different quadrilateral fig-
ures having shapes such as the ones suggested by
the following diagrams.

237.

-,(11Zst

2. Verify whether the theorem is true for such figures
as those below. They are named ABCD to tell you

that the sides AB, BC, CD, DA, in that order. Thi s

means that AB and CD are a pair of opposite sides

and BC and DA are another pair of opposite sides.



3. In the quadrilateral ABCD shown

AR:EB = 1:2, BF:FC = 2:1
CG:GD = 1:2 and DH:HA = 2:1.

Prove: EG and FH bisect each
other. (Hint: Assign weights
2 to A, 1 to B, 2 to C and 1 to D.)

4. In the quadrilateral PQRS shown

PA:AS = 1:3, SB:BR = 3:1,

RC:CQ = QD:DP = 3:1 as shown.

Prove: AC and BD bisect each other.

R

5. As shown for the quadrilateral ABCD,

AP:PB = 1:2, BQ:QC = 2:1,CR:RD = 1:1,

DS:SA = 1:1. Let SQ n PR = E. Find

.crf RE:EP and

S itSuitoriw ei !:,,.)

13.10 A Fourth Postulate
the feuith Postulate' le* us ex-

amine a problem which requires this postulate.
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In ABC, D is the midpoint

of AB, E is the midpoint of AC,

and F is the trisection point of BC

nearer B. Let DEnAF = G. We are
required to show that G is the mid-

point of AF and also the trisection
point of DE nearer D.

A

We begin by assigning a weight of 1 to C. In order

that F be the trisection point of BC nearer B we as-
sign 2 to B. Thus 2B + 1C = 3F.

Let us now consider what weight to assign to A.
First, in order that D be the midpoint of AB we should
assign to A the same weight that we assigned to B,

that is, 2. In order that E be the midpoint of AC we
should assign to A the same weight that we assigned
to C, that is 1. Thus we find ourselves assigning two
weights to A, or to put it another way, at A we are to
have two mass points at one point; one is 2A, the
other is 1A. If we could add these two mass points we
could then complete the solution. But our definition for
addition of two mass points applies to two mass points
at different locations. So we must agree on how to
add 2A and 1A. Before we make a formal stat ement on
how to add them, you might wish to suggest a method.
But whatever the method, it will be a postulate, and
we call it P4.

P4. For all positive numbers a and b and all
points P

aP + bP = (a + b) P.

-By this postulate 2A + 1A = 3A.

To continue with our solution, we note that
2B + i + 3A can be calculated either as (1) (2B + 1C)

+ 3A, Sr as (2) (2A + 2B) + (1A + 1C). Since 2B + 1C =

3F, (1) becomes 3F + 3A which is equal to 6 H where

H is in FA such that FH:HA = 1:1.

Since 2A + 2B = 4D and (1A + 1C) = 2E, (2) be-

comes 4D + 2E which is equal to 6K, where K is in

DE such that DK:KE = 1:2. But whether we calculate

2B + 1C + 3A eithetvay we get the same result. Thus

6H = 6K or H = IC Since H isonloth FA and DE,

H = FAnDE =

The actual calculations are few and can be-writ-

ten briefly as follows.



2B + + 3A is equal to

(2B + 1C) + 3A or

3F + 3A

6H

Therefore H = K = G.

us FG:GA = 1:1 DG:GE = 1:2

11 Exercisos

Suppose in AABC, D is the midpoint of AB and E

is the midpoint of AC, and

F is in BC such that BF:FC = 5:4

and DEnAF = G.

Prove: G is the midpoint of AF

DG:GE = 5:4
(Hint: Assign 4 to B and 5 to C)

(2A + 2B) + (1A + 1C)

= 4D + 2E

= 6K

State a theorem which seems to be suggested by

Exercise 1 and the problem of section 13.10.
Investigate the case in which we take trisection

points of AB and AC, both nearer A, instead of the

midpoints.

In AABC, D is in BC and
DC =-P

E is in CA and
CE 4 and F is
EA 1

in AB. AD, BE, and CF meet at point G.

(a) Find M.
FB
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AF BD cg.
(b) Prove: . = 1.FB DC EA
(Hint: Assign 1 to B. What should you assign then

to C? Then to A?)

5. Suppose in Exercise 4
BD . 3 and CE 5

DC 2 EA 3

*6. Exercises 4 and 5 are special cases of a theorem
called Ceva's theorem, named after an Italian who

is said to have discovered it. Ceva's theorem says:

In AABC, if D, E, F are interior points of AB, BC
and CA respectively and AD, BE, and CF meet ire

one point then

AF BD CE
FBA DC EA

Try ?o prove it. (Hint: Let BD = a, DC = b, CE c,

EA = d) (Difficult).

GD GE GF
*7. For the data in Ceva's Theorem prove +Au BE 4. Cr 1'

1110 mamma..

where G is the point in which AD, BE, and CF meet

(Difficult):

13.12 A Theorem in Space

At the beginning of this chapter we worked

with mass points at points on a line. Then we went

on to work with mass points in a plane. We end

this chapter with a theorem about points in space.

We begin with four points, A, B, C, and D not

in a plane (see the figurellet us look at AABC and

its medians AN,, BE, and CF. We know from Theorem 1

that these medians meet in a point, name it G. The

point in which the medians of a triangle meet is
called the centroid of the triangle. In what ratio does

the centroid G divide AH, from A to H? Now, A BCD,

AABD, and LADC also have centroids. Consider the

segments joining the centroid of one of these triangles

to the fourth point. One such segment is GD since it

joins the centroid of AABC to D. How many such seg-

ments are there? Do you think that these four segments

meet at a point? Indeed they do and that is what our

'space theorem says.

Theorem 3. If A, B, C, D are points in space,

fl



not in a plane, and Gi is the centroid of AABC,

G2 is the centroid of 6DAB, G, is the centroid

of ADBC and G. is the centroid of A DCA, then

DG1, CG2, AG3, and BG4 meet in a point which
divides each of these segments in the ratio 1:3

from centroid to the point.

To prove this theorem we assign weight 1 to each of

A, B, C, D. Then we consider lA + 1B + 1C + ID.

One way to calculate this is to "ww-inte (1A +

1B + 1C) which is 3Gi. Then 3G1 + D = 4H, where H

is a point in GiD such that Gi H: HD = 1:3. Thus

lA + 1B + 1C + 11) = 4H, and whether we calculate it

as (1A + 1B + 1D) + 1C, or (1B + 1C + ID) + 1A, or
(1A + 1C + 1C + 1D) + 1B, we continue to get 4H. Do

you see that this completes the proof?

13.13 Chapter Summary

In this chapter we studied some properties of mass

points deductively. We started by defining mass points
and addition of mass points. The first postulate (closure)
assured us that this addition is an operation. The sec-

ond and third provide the properties of commotion and
association. Later we added a fourth postulate that en-

ables us to add two weights when they are assigned

to the same paint. We deduced three ,statements which

you may find useful to remember. We labeled them

theorems. One claims that the medians of a triangle

meet in a point. Another claims that the segments
midpoints of opposite sides of a quadrilateral

bisect each other. The third is about four points in
space, not in a plane, and the centroids of the four

triangles determined by each triple of the four points.

It claims that the segments joining the centroid of each

triangle to the fourth point meet in a point that divides

each segment in the ratio 1:3 froM the centroid to the

point.
But we also solved many exercises by deductions

and thus proved many statements which we did not dignify

by calling them theorems, even though they are theorems,

because we probably won't find them useful in proving

other theorems.
The most important aspect of this chapter is the

prodcure of deducing. theorems from postulates.

13.14 Review Exercises

1. Draw AB making it 3 inches long. Let C be its mid-

point. Locate the center of masses for the following

mass points.

(a) 2A+ 113
(b) lA + 2B
(c) 2A + 1C

(d) lA + IB +
(e) A + 2C + 3B
(f) 2A + 4B + 3C.

2. Solve for x and locate x in a drawing of Zs where AB

is a one inch segment,

(a) 3A + xX = 4B (c) xX + 2A = 4B
(b) 2A + xX = 3B (d) xX + 3A = 5B.

3. Let A have weight 8 and let "be a given segment.
LerC be the center of mass for mosses of A and B.

What weig41 should you assign for each of the

following dAcriptions of C.

'(o) C is the midpoint of AB.

(b) C is the bisection point of AB nearer A.

(c) C is the trisectiir point of AB nearer B.

(d) C is the point of AB such that AC:CB = 2:3

4. Ind ABC, D is the midpoint of BC and E is the point

in CA such that CE:EA = 4:1.

(a) If 1 is assigned to B, what should you assign to

C and A so tha /D is the center of masses at B

and C, and Eirs the center of masses at C and A?

(b) If ADnBE F:G, compute the values of AG:GD and

BG:GE.

(c) .11-ConAB = F, compute AF:FB.
`P M11111.111..0

11
5. In AABC, D is in AB a d AD:DB =1:2 : E is BC and

BE:EC = 2:1. F is in CA and CF:FA = 1:2. Prove
that DF and AE bisect each other.

6. In quadrilateral ABCD, E, F, G, H, are respectively

in AB, BC, CD, DA. Each of AE:EB, BF:FC, and CG:
GD is equal to 2:1, DH:HA = 1:8, andEanFH = K.

Prove EK:KG = 4:1 and FK:KH = 3:2.
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CHAPTER 14

SOME APPLICATIONS OF THE RATIONAL NUMBERS

14.1 Rational Numbers and Dilations.
In Chapter 7, you learned that "Dab" means

"Dbo Da," the dilation Da followed by the dilation Db,
at that time, it was required that a and b be integers.
Let us now consider the composition Dbo Da, where a
and b are rational numbers. We shall restrict the dis-
cussion to dilations on a line. In the exercises, dila-
tions in the plane will be considered. In particular, let
us start with

D 1 o D3.

2

Since D3 acts first, we show below the images of cer-
tain points under this dilation.

Since we now have the rational numbers, any point
with a rational coordinate' -as an image under this dila-
tion. For instance, the point with coordinate 3 is

9 3 9
mapped into the point with coordinate7, since

4 717-
Question: Under the dilation D3, what are the

coordinates of the images of the
points having the following coordi-
nates?

1 2 1. 1 --- 10 - 100; 1; =-3, 3 3.

How shall we interpret D 1? In order to be consistent
2

with the way in which we interpreted D2, where a is an
integer, we shall say that under D 1 'a point P is mapped

2
1into a point P' whose distance from the origin us
2

times the distance of P from the origin. The images of
certain points under the dilation D1 lare shown below.

. 2

Question: Under the dilation D 1 , what are

2
the coordinates of the images of
the points having the following
coordinates

1

'
3

1; 2;
2

.
2

10: 100: 2.
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We are now ready to consider the composition

D1.0 D3. The diagram below shows the image (under
2

this composition) of the point with coordinate 2.

4
-3 -Z -1 0 1 2 3 4 5 6 7

Do you see that under the composition D 1 o D3, and
2

point P has an image P' whose distance from the
3

origin is3 times the distance of the point P from the

origin. In other words, we may write:

Di o D3 = D3.
2 2

Thus we see that the dilation D3 may be considered as

2
the composition of two dilations.

Question: Since under D3 the image of any
2

point is3 as far from the origin as
2

the point itself, what do you think
the inverse of D3 is?

2

Question: Can you express D3 as the com-

4
position of two dilations?

It is also instructive to look at what happens to a
segment under a dilation such as D3. In particular, let

2

us look at the segment whose endpoints are those havi
coordinates 0 and 1; such a segment is often calledra
unit segment, and we shall denote it by "U."

Now since D3 is the composition Di o D3, do you see
2 2

that segment U is first "stretched" to



3,14;ke 'criANA), 'Yes,

-3 -2 -1 0 1 2 3 4 5 6 7

a segment 3 times as long. Then, that segment is
"shrunk" to a segment half as long, as the

1 1, 2
2

agroms show. The final segment, which has been
holed V, is then the image of U under the dilation
3. We may simply write which may be red "V is

times Ur or "V is 3
- of U." This means that the

3
ngth of segment V is-2-times the length of segment

3 2 =3.)

Example 1. If a segment X has a length of 10
3inches, what is the length of
4

X?

We could think of this problem in
terms of the dilation D3 on a line.

4
If the segment X is first "stretched"
by 3, the resulting segment has a
length of 30 inches. If that segment

1is then "shrunk" by, the length of the
4
1 30resulting segment is
4

30, or inches.
4

In practice, of course, it is not necessary
to explain the solution in this way. We
may simply write

3 in 3 in0 g = 30 ,or 215, %

Example 2. If segment X has length 10 inches, what

is the length of 4
X?

3
V =-2 U'

-4.of 10
3

10
40

3

40
iHence, the length of -3

4
X i-. s -5- nches.

Notice that in Example 1 the final segment is shorter
an the segment X, while in Example 2 the final seg-
nt is longer than X. Is there any way to predict this
forehand from the dilations D3 and D4? ;Compare the

4 3
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stretcher" and "shrinker" in each case.)

Question: How must a and b be related so
that under the dilation Da,

b

1) the image of a segment is longer
than the segment itself?

2) the image of a segment is shorter
than the segment itself?

3) the image of a segment is the
segment itself?

14.2 Exercises.
1. Draw three separate number scte!es, and on each

mark points with the following coordinates:

0, 1,
2' 2'

35

'
and -1.

4

(a) On one of the drawings, show the image of
each of the points under the dilation D2.

(b) On another of the drawings, show the image
of each of the images from part (a) under
the dilation Di.

3

(c) On the third drawing, show the images of
each of the original points under the com-
position Di o D2.

3
(d) Express the composition of dilations in

part (c) as a single dilation.

(e) Express each of the following as single
dilations Dx, where x is a rational number:

Di 0 D4: Di o D7: Di o D10: D113 o Di.
5 3 2 2

2. Draw two number scales, and on each mark points
with filo following coordinates:

(b) On another drawing, show the image of each
of the original points under the dilation D2.

4

0, 1, 2, 3,
1 8

and -2.

(a) On one drawing, show the image of each of
these points under the dilation Di.

2

(c) Is it correct to write: Di = D2?

2 4
(d) When is Da = Da?

b d

3. On a number scale, let P be the point with co-
ordinate 2.

(a) Let P' be the image of P under D5. What is
3

the coordinate of P'?



(b) Let P" be the imageof P' under D2. What is
3

the coordinate of P"?

(c) What is the image of the original point P under

the composition D2 o D5?

3 3
(d) Can you write the composition in part (c) as a

single dilation?

4 (a) Write a single dilation DA fnr the composition

y
D7 D5.7 7

(b) According to the definition we made in Chapter

12, what is the product::
7

---51?
2

In this section, we have used dilations to give mean-

ing to a statement such as'.3 of X," where X is a seg-

ment.ment. And this kind of expression is common in every-

day uses of mathematics. For example, if X represents a
I I2 2

class of students, then 5-of X" (that is, 'yof the class")

can be interpreted in much the same way as with seg-

ments.ments. We really mean3
times the measure of X. And in

this case, the measure is a whole number (size of a
,2

set). Thus, if there are 30 people in.the class, 7 of

the class" is 20, sincei 30 = 20. Problems 5

through 12 are of this kind.

5. There are 100 senators in the United States
13

Senate. On a recent vote, .20- of the Senate voted

"yes" on a certain bill. How many Senators

voted "yes"?
6. A certain state has an area of 70,000 square

3miles. wo of the state is irrigated land. How

many square miles in the state are irrigated?

7. Jim has $2000 in the bank, and the bank is sup-

posed to pa. him
100

of that amount for interest.

How much should Jim receive?

8. In 1960, the population of a certain town was

18,000. Today the population is
5

of that num-

ber.ber. What is the population today?

23
9. A family spends uro of its income on food. bf the

income for one year is $8500, how much money

does this family spend for food in one year?

10. If one pound of ground meat costs $90 what will
1

be the cost of 2-2 pounds?
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11. (a) If Jim's height is4of Bill's height, who is

taller?

(b) If Mary's height is4of Sue's height, who is

taller?

(c) If Bob's height is
4 of John's height, who is
4

taller?
12. In a certain town, there are 5000 registered voters.

And, a recent ele -tion, 3500 penple voted. What

"fraction" of the town's registered voters actually
voted? (Express your answer by an irreducible

a
fraction

b
Check your result by showing that°b of

5000 is 3500.)

13. In this problem we consider dilations Dx, where x
is a rational number, in the plane. Just as Z x Z
is the lattice of all points with coordinates (a,b),

where a and b are integers, so Q x Q is the
lattice of all points with coordinates (x,y),
where x andi.are_ rational numbers.

(a) Draw a pair of axes, and plot all points whose

coordinates are (a,b), where a and b are in-
tegers between 4 and 4.

(b) Now plot a point with coordinates ( ) Note'
7

that this point does not belong to Z x Z, but it
does belong to Q x Q.

(c) Consider the dilation D2. Under this dilation,
3the image of (--) is defined to be2' 4

7

3 7
(2 -2-; 2

7 or (3, 1) . Plot this image point.

(Do you see a segment in the plane that has
been "stretched" to twice its original length?)

3 7 is(d) Under the dilation Di, the image of 1' 4'
2

1 3 1 1
2' 2 4

). Plot this image point. (Do you

see a segment in the plane that has been
1"shrunk" to
2

of its original length?)

14. From Exercise 13, wemake the following definition:
If (x,y) is an element of Q x Q, and Dc is a dila-
tion where c is a rational number, then the image of
(x,y) under Dc is (cx,cy).

(a) Plot the images of the following points under
D3: (2,8): (4,12): (9, -.4): (-8,6): (-2,-12):

4
(0,0): (1,1)

(b) Now for each image from part (a), plot the image
of that image under D4

3
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(c) How are the dilations D3 and D4 related?

4 3
15. (a) How would you describe the images of the

points in Q x Q under the dilation DO?

(b) How would you describe the images of the
points in Q x Q under the dilation Di?

(c) How would you describe the images of the

points in Q x Q under the dilation D.A?

4.3 Computations with Decimal Fractions.

In Sect ;on 14.1 we dealt with such problems as that

f finding . $3

4
of X." For example if X is a segment

having length 22 inches, then

3 3 1 3 5 7-of X 2-=--- -= 1-
4 4 2 2 8

At times, problems such as this are expressed in terms
of decimal fractions. For instance, we could just as
easily speak of finding .75 of a segment X whose

,length is 2.5 inches. Then we would have to compute

.75 x2.5.

The result should be the same as before How i s

the computation with decimal fractions carried out?

Study the computation below.

.75 x 2.5
POO x

(5).i-F-318705 - =1.875

Thus, .75 x 2.5 = 1.875.

This computation could be done as below

2.5
x .75

125

175

1.875

There is a relationship between the number of digits

to the right of the decimal place in the product 1.875,
and the number of digits to the right of the decimal

point in the two factors, 2.5 and .75. Do you see what
the relationship is? (it is a result of the fact that
100 x 10 = 1000.)

Question: To which of the following is the

product 1.5 x 1.5 equal?

.225: 2.25: 22.5: 225.

What is the sum of $2.45 and $3.87? The com-

putation is shown below.

$2.45
+ $3.87

Notice that we "add tenths to tenths, hundredths to

hundredths," etc.
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Then,

.1100101...

4 5
2.45 = 2 +

10
+ and

100'

187 3 4-rt

4 5 8 7
2.45+ 3.87=(2 +To+i-jo)+(3 +i-d+f0-0)

- .1.,11- rtorf
01.11111 111

10 10"100 100

= 5

= 6

+

+

12 12

10
(since fai

10

113 2
+ rob

3 2
1)+

10 100
(since =

= 6.32

In these steps, you should be able to point our where

we have used the associative and commutative properties
of addition of rational numbers.

Subtraction computations with decimal fractions are
done in a way similar to addition computations, as the
following example illustrates.

Example 1. Subtract 4.387 from 12.125.

12.125
-4.387

7.738

(We can "check" this result by noting
that 7.738 + 4.387 = 12.125.)

The quotient of two rational numbers may also be
computed when decimal fractions are used to represent
the numbers. First, consider the quotient .125 + .5. We

may express this quotient as

.125 ,
.5

and we know this is the same as

.125
.5 x 1

10

0"
(Why?)

.125 19 1.25
Furthermore, x- =

.5 10 5

Therefore, instead of working with the quotient 1255,

. 1.2 5
we may compute the equivalent quottent---5--. The

computation is shown below:

1.25
10

25
25

This process is justified by the following:

it



1.25 1..Tx 1.25 .-x (106 x125)
1 1 1 1

=100x (Tx 125)

1
= Too x 25 = .25.

In the preceding division problem we multiplied the
.125 , 10

given quotient --5-. by -fro that we obtained the equiva-1.25
'lent quotient in which the denominator (divisor) is

5

a whole number. If we try the same approach with the
quotient

.0221
.13'

100
we choose to multiply by - (Do you see why?) Thus,

100

.0221 .0221 100
.13 .13 x 100

2.21 .17
13 13 2.21

13
91

= .17 91

21
Therefore, 'p213 ..17.

Question: What is the product .17 x .13?

Often, quotients of rational numbers (expressed by
decimal fractions) need be carried out only to a specified
number of decimal places. Study the example below, in
which the quotient has been computed correct to two
decimal places (hundredths).

Example 2. What is the quotient when 253.42 is
divided by 8.7?

253.42 253.42 10 2534.2
8.7 8.7 x 10 87

29.128
AZ12534.200

174

794
783

112
87
2 50
1 74

760
696

64

Therefore, correct to two decimal
places, the quotient is 29.13. That is,

2538. .4

7
2

= 29'13
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Questions: What is the product 29.13 x
8.7? Why is this product
not equal to 253.42?

14.4 Exercises.
1. Compute the following:

(a) 2.56 + 8.94

(b) 10.487 + 35.733

(c) 42.56 - :37.29

(d) 4.5 x 2.5

(e) 2.25 x 2.25

(f) -3.5 x .4

(g) -4.85 + -6.15

(h) 21.5 - (-7.6)

(i) 55.0 - 39.8

(I) 39.8 - 55.0

(k) 4.5 x .45

(I) -8.65 - 7.15

2. Compute the following quotients.

I4.08
(b)

40.8 , .408 A 408
'ai 2.4 "" 24 'c'

%

.24 " 240

3. Explain why all the quotients in Exercise 2 are
the same.

4. Compute the following quotients, correct to two
decimal places. (See Example 2).

(a)
400.'6

(b) 312.48 + 48.4

5`' 80
3.2

(d)
3

.02 5

.005
(e) .32

(f) 875.42 = .17

5. During one month, Mr. Sales makes the following
deposits in his bank:

$42.50, $97.28, $10.12, $106,77

What is the total of these deposits?

6. At the beginning of the month, Miss Lane's bank
balance was $412.65. During the month she wrote
checks for the following amounts:

$5.79, $36.48, $10.20, $75.00, and $85.80.

Also, during the month, she made one deposit of
$85.80. What was her bank balance at the end of
the month?

3 5
7. (a) Find the quotient -r T3-

(b) Find the same quotient as in part (a) by ex-
pressing each number by a decimal fraction.

8. If the length of segment X is 3.75 inches, what
is the length of segment V = (1.8)X?

9. If a certain material sells for $.45 a yard, how
many yards can be bought for $5.40?

^". -. moa .



Ratio and Proportion.
t the right are two sets of elements, A and B. The

ber of elements in
A is 2, and the num-
of elements in set B
. We could say that
number of elements
B is 4 more than the
ber of elements in A.

d there is another com-
n way of comparing the
es of the two sets; this
by stating that the num-
of elements in B is 3

es the number of elements in A. That is, 2.3 =6; or,
at amounts to the same thing,

6
2 3.

e have used the quotient
6 to compare the sizes of
2

e two sets; when used in this way, a quotient is
lied a ratio. And the equation above may be read

5:

The ratio of 6 to 2 is 3.

6
urthermore, there is another way to writey= 3 when

ou mean a ratio. It is as follows:

6:2 = 3.

efore looking at another example, notice that we

ay say:

The ratio of B to A is 3. (even though the
ratio really in-
volves numbers)

nd this means that if the number of elements in A is
ultiplied by 3, you get the number of elements in B.

Pictured below are two more sets, C and D, which

ave 12 elements and 4 elements respectively. What
is the ratio of the number of elements in C to the num-

ber of elements in D?

The ratio is12 12
(or 12: 4): and since =3, there are 3

4 4
limes as many elements in C as in D. Or again, if the
number of elements in D is multiplied by 3, the result
is the number of elements in C.

Notice that in the two examples above, the ratios

(quotients) are equal. That is,
6 2= 3. This is true
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even though the sizes of the sets in the two examples
are not the same. A sentence such as

6_12
2 4'

which shows that two ratios are equal, is called a
proportion. The sentence is sometimes written as
"6:2 = 12:4." In this example, we see that

6.4 = 2.12. And, in general, two ratios1 andlare
b d

equal if ad = bc. Hence, the test for equal ratios is
the same as the test for equivalent fractions which
was given in Chapter 12.

In terms of the sets being compared, wh.'t does it

mean to say that two ratios are equal? In the xamples
above, it means of course that in each case of set is
3 times as large as the other.

The above diagram shows for each element in D, there are
3 elements in C. Thus, the sets C and D compare (by means
of a ratio) in the same way as a set having 3 elements and a
set having 1 element.

Question: Can you draw a diagram like the one
above which shows that for every
element in A there are 3 elements
in B?

Example 1. In Congress, 80 Senators voted on a
certain bill, and it passed by 3:1.
How many Senators voted for the bill?

This is a kind of language often used,
and what it means is that the ratio of
the number voting against the bill is
3:1. It does not mean that only 3
Senators voted for th °:;1I, and only 1
against. As a matte. ;-tct, in this
case 60 Senators vowd "yes" and 20
voted "no". Do iou see why?

Example 2. Two line segments have been drawn be-

low.low. Segment CD has a length of
2

inch,

1
and segment AB has a length of 2-

2
inches. How do the two segments com-
pare?



22'2 -2'2
5 2
2- .1

5.
Thus, AB:CD = 5. The length of AB is
5 times the length of CD.

Example 2 illustrates that the use of the word
"ratio" is not restricted to the comparison of two
whole numbers: we may also speak of the ratio of two
rational numbers. In general, we say:

The ratio of a number c to a numberd
c , ,

00, is the quotient which may alsod'
be written c:d.

Example 3. Let g be the number of girls in a
seventh grade class, and let 6 be the
number of boys. If g =12 and b = 16,
what is the ratio g:b?

. . 12 3" b 13= 17

The two sets compare in the same way
as two sets having 3 and 4 elements.
For every 3 girls, there are 4 boys.

3Notice also that
4

16 =12.

Example 4. Using the numbers from Example 3,
what is the ratio b:g?

b 16 4 4
g 12

Ne. 3 12 = 16.

From all of the examples thus far, the
following generalization should be
clear:

If c:d r, then r d = c.

Example 5. Segment AB has a length of 24 inches,
and segment CD has a length of 8 feet.
What is the ratio AB:CD?
Be careful! It is tempting to say that

the ratio is
24 4,--= But this is misleading,
8

for it suggests that the length of seg-
ment CD must be multiplied by 3 to get
the length of AD: but actuallLthe length
of CD is greater than that of AB, since
8 feet is certainly morethan 24 inches.

Since the length of CD is measured in

feet, we can also express the measure-

ment of AB in feet: the length of AB is
2 feet. Then the ratio AB: CD is

2 1

8 4

The length of AB isiof the length of

CD.
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14.6 Exercises.
1. In the drawing below, two segments; Viand -AZ

have been marked.

0

A

1 2 3 4

(a) What is the ratio of AB:AC?
(b) For what dilation Da would the image of

segment AC be segment AB?

(c) What is the ratio AC:AB?

(d) For what dilation Db would the image of
segment AB be segment AC?

(e) If r 1 is the ratio AB:AC, and r2 is the ratio
AC:AB, what is the product r1r2?

2. Find the ratio of the length of U to the length

of V if:
(a) the measurement of U is 10 inches: the

measurement of V is 5 inches.
(b) the measurement of U is 5 inches: the

measurement of V is 10 inches.
(c) the measurement of U is 3 yards: the

measurement of V is 18 inches.
(d) the measurement of U is 1 mile: the

measurement of V is 2000 feet.
1

(e) the measurement of U is 3-4
inches: the

3
measurement V is 1-4 inches.

3
(f) the measurement of U is 1-

4
inches: the

1
measurement of V is 3-

4
inches.

(g) the measurement of U is 2a inches: the
measurement of V is a inches. (aA0)

3. Let a be the number of questions on a test. Let
6 be the number of questions a student answered

correctly. Let c be the number of questions
answered incorrectly.
If a = 20, b = 17, and c = 3, find the following:

(a) the ratio of b to a

(b) the ratio of c to a

(c) the ratio of b+c to

(d) the ratio of b to c

(e) the ratio of c to b.

4. If x and_Lare two rational numbers such that

1 .
x:y guve five possible pairs of values for

x and y.

5. If c and d are two rational numbers, which num-

ber is greater if:

(a) c:d = -25 . (b) c:d = (c) c:d = 7 (d) c:d = 1?
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If a and b are two rational numbers such that
a 3

b

(a) by what number must you multiply b to get

(b) by what number must you multiply Lto get
-10

Sometimes ratios are formed in which the numera-
tor and denominator are numbers resulting from

measurements involving different units. For ex-
ample, on a map a ratio such as 1 inch: 3 miles
means that a segment of 1 inch on the map
actually represents a segment of 3 miles on the

countryside. Thus we havethe proportional se-
quences

1, 2, 3, 4, 5, . . .
3, 6, 9, 12, 15, . .

so that a segment on the map that measures 4
inches, for example, actually represents a seg-
ment with measurement 12 miles.

1

(a) On the map described above, a 6-2 inch seg-

ment represents a segment of what length?

(b) How long a segment must be drawn on the
map to represent a 17 mile segment?

8. Thus far we have used only positive numbers
in forming ratios. There are problems, however,
in which it is sensible to use negative num-
bers. For example, in
the drawing at the
right, a line has been
drawn in the plane,
and two points, A and
B, have been marked on
on the line. The coordi-
nates of B are (3,1).
Notice in "moving"
from A to B, the x-co-
ordinate increases by 2,
which we indicate by
+2, and the y-coordinate decreases by 4, which
we indicate by -4. Now if we form the ratio

change in y-coordinate
change in x-coordinate,

-4
we get or -2. Furthermore, we soy that the

slope of the line is -2.
Using this definition of slope, complete the

following activities.

(a) Mark the point (3,4), and through this point
2

draw a line whose slope i s = 2.

(b) Through the point (3,4), draw a line whose

slope is 1- = -2.
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(c) Mark the point (-2,5), and through this point

draw a line whose slope is 3.
(d) Through the point (-2,5), draw a line whose

2
slope is-s:

(e) Through the point (0,0) draw two lines, one
4with slopeiand the other with slope

-5

How do the two lines seem to related?

(f) Draw two lines, each with slope -s. Draw

one line through the point (0,6), and the
other through the point (0,2). How do the
two lines seem to be related?

14.7 Proportional Sequences.

Look at the following two sequences, Si and 52,
with the numbers matched as shown:

Si: 1, 2, 3, 4, 5, 6,

S2: 2, 4, 6, 8, 10, 12, 14, 2k, ...

Now let us form a sequence of ratios by using each
pair of matched numbers, the numerators taken from Si,
and the denominators from 52. Here are the ratios we
get:

1 2 3 4 5 6 7 k

2' 4' 6' 8' 10' 12' 14' 2k'

Notice that all of the ratios are equal. For this reason,
we say that the sequences Si and S2 are proportional

1
sequences, anal is called the proportionality .constant.

Question: The two sequences 1, 2, 3, 4, 5, ...

and

2, 4, 6, 8, 10,

are not proportional sequences. Why not?

.eturning to the sequences Si and S2, we see that
each of them continues without end. For instance, the
number 51 is in sequence Si: what number in S2 matches
with it?

Si: 1, 2, 3, 4, 5, 6, , 51,

52: 2, 4, 6, 8, 10, 12, , x,

Although it is easy in this case to tell what number x
is, we could set up the following proportion:

1 51
2 x

Since we want the ratios to be equal, we have: 1. x 2.51

x =102.
Therefore,

1 51

2- 102'



L

Question: Can you show that we would have ob-
tained the same result if we had used

4
2

instead
, 1

2
nstead ot-for the proportionality

constant?
Suppose we use the same two sequences, but

"reverse" the order in which we consider them, like
this:

Si: 2, 4, 6, 8, 10, 12, ..., 2k,

52: 1, 2, 3, 4, 5, 6, ..., lc,

Now, if we form ratios as we did before, selecting the
numerators from Si and the denominators from 52, we
get:

2
1'

4
2'

6
3'

8
4'

10 12 2k

5' 6' ' k'
Do you see that the sequences are still proportional?

2
Now, however, the proportionality constant is--V And

if we were to solve the problem we solved earlier,
the proportion would look like this:

2 x
1u 5V

Do you see that we would again find x to be 102?
Question: The two proportionality constants

we found by considering the sequences
1

in two different orders were-
2

and
1'

How are they related?
Consider next the two sequences below.

51: 3, 6, 9, 12, 15, 18, ...

S2: 4, 8, 12, 16, 20, 24, ...

Do you see that the sequences are proportional,' and
that, considering the sequences as we have them, the

.3.
proportionality constant is

4
Suppose we ask: What

number in 52 corresponds to the number 10 in Si?
The question may seem to be an odd one, since the
number 10 is not in the sequence Si. What we are

really asking is this: If 10 is "inserted" in S1, what

number must be "inserted" in S2 , so that the resulting
sequences are proportional, with proportionality constant

still 3 The new sequences will look like this:
4

3, 6, 9, 10, 12, 15, ...

4, 8, 12, x, 16, 20,

And we find x by solving the following proportion:
3 = 10
4 x

Then we have:
3 x =4 10
3 x = 40

40x
3
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Of course, --4°, 3

that x is 133'

Example 1.

39 1

3

1-
3 3

13 +-: So we can also say

A picture has measurements of 7 inches
("length") and 3 inches ("width"). If
the picture is to be enlarged so that the
new length is 10 inches, what must the
new width be?

3

7
io

The numbers 7 and 3 suggest the follow-
ing proportional sequences:

Si: 7, 14, 21, 28, 35, ...

S2: 3, 6, 9, 12, 15,

where the measures of length are taken
from Si and the measures of width from
52. We want the ratio of length to width
to be 7:3. From the sequences, we can
see that if the length is made to be 14
inches, then the width must be 6 inches:
if the length is made to be 21 inches,
then the width must be 9 inches: etc.
However, in our problem the length is
to be 10 inches. The number 10 is not
in Si as we have it. So we can form
the sequences

7, 10, 14, 21, 28, 35,

3, x, 6, 9, 12, 15,

and find what number x must be so that
the sequences are proportional with

7 , ,
proportionality constant-31 We solve

the problem as follows:

7 10

3 x

7 x = 3 10

7 x = 30
30

x

Therefore, the width of the enlarged
,

4
.

picture must be 4-7 inches.

Example 2. Solve the proportion

3 x

8 28'

We find the number x which will
make the following sequences pro-
portional:



5

Sy 3, 6, 9, x, 12,

52: 8, 16, 24, 28, 32,

...

...
We solve the proportion as follows:

3 28 8 x

8 x = 84
1

x = 10.-
2

3 10L
In other words,-8 = 2

8 Exercises.
1. Using whole numbers only,

(a) Write two proportional sequences with pro-

portionality constant-5.
6

(b) Write two proportional sequences with pro-

portionalityportionality constant

(c) Write two proportional sequences with pro-
portionality constant .5.

2. In each of the following, find what number x
must be so that the two sequences are pro-
portional.
(a) Si: 2, 4, 6, 8, 10, ...

S2:

(b) Si:

9,

7,

18,

14,

x,

21,

36,

x,

45,

35,

...

...
S2:

(c) Si:

3,

3,

6,

6,

9,

9,

12,

10,

15,

12,

S2: 5, 10, 15, x, 20,

3. Solve the following proportions.

5
(a) =

157

5 12
(b)1 = --x-

3 3
tcy .7

d 100
21 x

(e).2 =2.
x

1

(
9

f) =3

(g) -1

3- 12
(h) 5:3 = x:15

= 27; (a0)

4. The ratio of number of boys to number of girls is
the some in two different seventh grade classes.
In one class, there are 12 boys and 16 girls. In
the second class, there are 15 boys. What is the
total number of students in the second class?

5. On a certain map there are two segments drawn,
one 7 inches long and the second 10 inches long.
If the map is enlarged so that the first segment
measures 25 inches, how long will the second
segment be in the enlargment?

6. Two triangles are drawn below. The triangles
are similar, which means that the ratios of cor-
responding sides are all the same. All of the
sides in one triangle have their lengths indicated
in the figure. In the other triangle, the length of
only one side has been marked. Find the lengths,
x and y of the other sides.
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14.9 Meaning of Per Cent.
Consider the sequences below:

Si : 2, 4, 6, 8, 10, ..., 40, , 2k,

S2: 5, 10, 15, 20, 25, ..., 100, ..., 5k,

It is easy to see that the proportionality constant is the
40

'
ratio

2-
100

The ratio - which arises from these sequences,
5

is especially important in many applications of mathe-

matics because the denominator is 100. The ratio - may

be written as

40% (read "forty per cent").

We can also use a decimal number in referring to the ratio,
as follows:

40

100 '40 = 40%

Example 1. In the picture below, there are 15 square
regions, and 6 of them have been shaded.
What per cent of the squares are shaded?

\NMI
Oki"
1111k1110

The number of shaded squares is 6: the
total number of squares is 15. So the
ratio of thenumber of shaded squares to
the total number of squares is

6
15.

6 ,
And we can soy that - of tne squares are

15

shaded. However, from the discussion
above, we know that

= 40%. (Why?)

Therefore, 40% of the squares are shaded.

Example 2. Express
3

as a per cent.
8

We may express this problem in terms of the
following proportional sequences:

S1: 3, 6, 9, 12, 15, ..., x, 3k, ..
S2: 8, 16, 24, 32, 40, ..., 100, ..., 8k, ..



Alf I AA *MP* M. ko. 1.

Then we salve the proportion

3_ x
8 100.

8 x = 3 100

8 . x = 300

300 1
.x = 37 ,-,-

°
I i .,

Therefore4=f00 = 31%. And we say that

1 3
37-% is the per cent equivalent of 8.

8*

6
Example 3. Find the per cent equivalent of5.

We use the proportion-5-
6

= as (That is,

we want a ratio with denominator 100

that is equal to the ratio5.)

6 100 = 5 x

5 x =600

600

6
Therefore, 5 = 120%.

Questions: In a ratio°b, how must a and b be

related so that the per cent equiva-
lent of the ratio is greater than 100%?

less than 100%?
equal to 100%?

Example 4. What is the per cent equivalent of 3.5?

5 50 350
3 5 = 3 = 3 == 350%.

10 100 100

Example 5. Expressi% as the ratio of two whole

numbers.
1

1 2
2% = 100.

This is a ratio, but it is not
a ratio of whole numbers.
However, we ":now that
1 1.2
2 = 2 =1

100 100.2 200

(Why?)
1

Therefore, 2%=
1 1

Question: Which is greater,-2- or -i% ?

Having looked at a number of particular cases, we
might consider the general problem of finding the per

cent equivalent of a ratio. Lettbe any ratio (of

course, IWO). Then to say that
a= x% is to say

a

b 100
= Then we have:

eta_vrnarwi au

b x = 100 a

x= 100 a

j fat 100a,-
b b 1°.

14.10 Exercises.
1

1. (a) 50% i' the percent equivalent of Z. Write four

otivir ratios for which 50% is the percent
er.;ivalent.

(b) "rite five different ratios for which 25% is
e percent equivalent.

(c, Write fly., different ratios for which 150%
is the percent equivalent.

(r) Write five different ratios for which 100%
is the percent equivalent.

(e) Write five different ratios for which 200%
is the percent equivalent.

2. The questions in this exercise refer to the

figure below.

A C I
A C I

C C A

C A

,

(a) What percent of the squares have been
marked "A"?

(b) What percent of the squares have been
marked "B"?

(c) What percent of the squares have been
marked "C"?

(d) What percent of the squares have no
mark?

(e) What is the sum of the percents in
questions (a), (b), (c), and (d)?

3. Give the percent equivalent of each of the
following:

(a) .5 (b) .50 (c) .25 (d) 2.5 (e) 1.5

(f) 1.25 (g) .17 (h) 1.17

4. In the table below, each ratio is to be expressed

in the form
a
b '

as a decimal fraction, and as a per

cent. The first row has been filled in correctly.
Fill in all the blanks in the remainder of the tabl
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Ratio ti Decimal Fraction Per Cent

1/2 .50 50%

1/4
.75

20%

.60

.20

1/8
87 1/2%

4/5
.375

40%

1/10

90%

1/1

.70

.05

3/10
1%

5. As you recall from Section 12.23, some ratios
1such as
3

cannot be expressed as terminating

decimals, but can be approximated to any de-
sired number of decimal places. How can such a

1
ratio as

3
be expresses as a per cent? The ques-

tion is answered in the same way that all other
problems concerning percent equivalents have
been answered. Study the steps below:

1 x

3 100

3 x = 1 100

3 . x = 100

1x 100 =335

1Therefore, the ratio
3
may be expressed as 33 %.

Give the percent equivalent of the following ratios:

2 1 5 1
(a) -5 (b) (c)-6- (d)

14.11 Solving Problems with Per Cents

It is common to see advertisements with statements
such as

SALE: 15% OFF ON ALL ITEMS!

Suppose that an item that normally sells for $25.00 is
inc luded in the sale advertised above. What should the
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sale price be? We know that a certain amount should be
subtracted from the normal price of $25.00, but how much?
Acceding to the advertisement, 15% of 25.00 should be
subtracted. So the problem is that of finding 15% of 25.

15
'Since 15% means we may work with the following

100

proportional sequences:

Si: 3, x, 6, 9, 12, 15, ., 3k,

S2: 20, 25, 40, 60, 80, 100, ..., 20k, ...

3
Do you see that the proportionality constant is

20
or

15
? The question is: What value of x will make the

100
15

ratio 25 equal to the ratio ilia? We solve the follow.

ing proportion:

x 15

25 100

100 x = 25 . 15

100 x - 375

375x = = 3 75
100

Therefore, the amount to be subtracted is $3.75
(which is 15% of $25.00). And since $25.00
$3.75 = $21.25, the item should sell for $21.25
during the sale.

In the following examples, we solve some
other problems, all by use of percents.

Example 1. On a test having 20 questions, a student
answered 16 of them correctly. What per
cent of the questions did he answer
correctly? That is, whc4 should his per
cent score be?

The ratio of the number of questions
answered correctly to the total number

16
'of questions is . So, the student

2

16 ofanswered
20

OT tne questions correctly.

But we can also say that he answered
4

""" of the questions correctly. (Why?)
5
Finally, since we already know that
4

5
= 80%, we can say that he answered

80% of the questions correctly.

Example 2. On the same test of 20 questions, an-
other student missed 3. What is his
per cent score? Since the student
missed 3, he answered 17 correctly.
The ratio

number correct . 17

total number is 20'

[11



We wont an equal ratio in which the
denominator is 100.

17 xIf
20 100'

then 20.x = 1700 or

x- 1700_85
20

Hence, the student's per cent score is
85%.

Example 3. In a certain election, 70% of a town's
registered voters actually voted. If
3,780 people voted, how many regis-
tered voters are in the town?

70Certainly we know that 70% =
100'

And we know that this is the ratio

number who voted
number of registered voters'

Since we know the number who voted
3780, we have the following proportion:

70. 3780
100_ x

70 x = 3780 100

70 x = 378,000

x = 378000
= 5400.

70

Therefore, there are 5400 registered
voters in the town. This could be check-
ed by showing that 70% of 5400 is 3780.

Example 4. A major league ball player has been at
bat 82 times, and collected 26 hits.
Wl-xt is his "batting average"?

number of hits
isThe ratio

number of times at bat

26 13
or

We find the per cent equivalent from the
following proportion:

13 x
41 100

41 x = 13 100

41 x =1300
1300

x =
41

As usual, we interpret 1300 to mean
41
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1300 ÷ 41. The steps in carrying out this
division are shown
at the right. Notice
that the quotient is
approximately 31.7.
Therefore, we can
write

13 31.7
41 100

31.7
111_11Wir

123

70
41

29 0
280

10
So the batting average is approximately
31.7%. If you are a baseball fan, you
probably know that this average is more
I ikely to be listed as .317.

3
Example 5. What is

4
% of 280?

Important! The answer is not 210. (Don't
3 3

4
confuse% with -)

4
3

-% is equal to
4

3 3

444." 34
100 100.4 400

So we are really finding
4-60 of 280.

We

may find it from the proportion

3 x
400 100 '

or we may solve the problem as we did
in Section 118 :

3 3
of 280 =

40
280 1-14-9.

400 400. 0
2.10.

Therefore,

4
3
-% of 280 is 2.10.

All of the common types of per cent problems may
be solved by using proportions. But if you understand
the meaning of per cent, you can often solve problems
very quickly without use of a formal proportion. For

instance, look again at Example 5: What is % of 280?
4

3 3-% of a number is-
4

of 1%
4
280 is 2.80. So the result

of the number. And 1% of
3can be found by taking-
4

of

2.80, which is 2.10. Feel free to use such methods in
the following exercises; but if you are in doubt, you
can always use a proportion.

14.12 Exercises
1. Find the following:

1 1
(a) 1% of 500; 5% of 500; % of 500; 1-2 % of 500;

2

2
-1of 500.



(b) 1% of 150; 10% of 150; i% of 150; 13% of 150.

3 3
(c) 1% of 24; 28% of 24; -4% of 24; 1-4.% of 24;

4
3- of 24.

(d) 1% of 8000; .5% of 8000; 1.5% of 8000; 4.5% of

8000; .5 of 8000.

(e) 1% of 50; 100% of 50; 200% of 50; 240% of 50,

(f) 1% of 92; 100% of 92; 300% of 92; 350% of 92.

. In a high school with 2600 students, 35% of the

students are freshmen. How many students are

freshmen?

. In the same high school, there are 390 seniors.

What per cent of the school's students are
seniors?

Suppose the town of Elmwood has a population of

4000, and the town of Springfield has a population
of 6000. Complete the following statements.

(a) The ratio of Elmwood's population to Spring-

field's population is

(b) Elmwood's population is of Springfield's

population.

(c) The ratio of Springfield's population to Elm-

wood's population is .

(d) Springfield's population is_% of Elmwood's

population.

5. Complete the statements in the following two
columns in the same way the first statement in

each column has been completed.

20 =1:13 . 40

40 =_20
20 =_.25

25 =___20

500 `.400
400 = .500

8 =_80
80 =_8
16 = 80

80 = 16

4.2 = 42

42 = .4.2

1.8 = 180

180 = .1.8

6..
80

a basketball game,

20 is 50% of 40.

40 is % of 20.

20 is __% of 25.

25 is % of 20.

500 is % of 400.

400 is % of 500.

8 is % of 80.

80 is % of 8.

16 is % of 80.

80 is % of 16.

4.2 is % of 42.

42 is % of 4.2.

1.8 is % of 180.

180 is % of 1.8.

a high school team scored
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(a) If David scored 18 of these points, what per

cent of the team's points did he score?

(b) Bill made 27-1% of the team's points. How many
points did he score?

(c) The number of points David scored is what per

cent of the number of points Bill scored?

7. In another game, David made 40% of the team's
points. If he made 22 points, how many points did

the entire team make?

8. (a) 22 is 40% of what number?

(b) 80 is 50% of what number?

(c) 12 is 35% of what number?

(d) 60 is 150% of what number?

(e) 7 is 1% of what number?

1(f) 42 is-
2
% of what number?

9. In a certain state, there is a 4% sales tax. How
much sales tax must be paid on purchases of

the following amounts:

(a) $40.00 (d) $3.25 (g) $3500.00

(b) $15.00 (e) $1.00 (h) $3499.00

(c) $12.50 (0 $10.00 (1) $9.99

1

10. Suppose a bank pays 4 interestnterest per year on

savings deposits.

(a) How much interest should a deposit of $2000

earn in one year?

(b) How much interest should a deposit of $2000

earn in two years?

11. If the bank in problem 10 pays interest every six
months, it will pay only half as much, since 6

1

months is-
2

of a year. (It is the annual interest

1
rate which is 4-2 % )

(a) How much will $1000 earn for six months?

(b) How much will $2500 earn for six months?

(c) How much will $2000 earn for three months?

1

(Hint: 3 months is Ti of a year.)

From Exercises 10 and 11, we see that simple
interest can be computed from the formula

i prt ,
where i is the interests. is the amount of money

depositeda.is the rate of annual interest, and...I_

is the time in years.

12. Compute the interest for:

(a) $500 at 4% for 1 year



(b) $500 at 4% for 6 months

(c) $500 at 4% for 3 months

1
(d) $1200 at 47% for 1 year

(e) $1200 at 4T
1

% for 6 months

(f) $1200 at 4T% for 3 months

1

(g) $1500 at 54-% for 2 years

(h) $1500 at 5-,12-% for 11/2 years

(i) $750 at 4.2% for 1 year

(j) $750 at 4.2% for 6 months.

13. Mr. Smith has kept a deposit of $1500 in a bank
for one year, and the bank pays him $37.50 in-
terest. What annual rate of interest is the bank
paying?

14. Complete the following sentences:

1
(a) 33-% of 3900 is

3

(b) 20 is % of 30.

(c) 30 is ___._% of 20.

(d) 20 is 18% of

(e) 20 is 40% of

(f) 108 is 40% of .

3
(g) 2-% of 160 is

4

(h) 2.75% of 160 is

2(i) 18 is 66-% of
3

(j) 161% of 66 is

(k) 30 is % of 36.

14.13 Translations and Groups.
In preceding chapters we studied translations of a

set of points on a line onto itself; of a set of points on
one of two parallel lines onto a set of points on the
other; of a set of lattice poin s in a plane onto itself.
In this section we extend translations so that they may
have as a domain the set of poirits in a plane wliose
coordinates, in a coordinate system, are rational num-
bers.

Consider the trans-
lation, call its, that maps

1
0 (o,o) onto A (21, 11.

What is the image of B
1

15) under t? Name it

C. What kind of figure is
OACB? Why? The coordi-
nate rule ofl is (x,y)->

1 71 / iaj_,
Is _u u _-t-14 aniv-ma-

one onto mapping? Why?
Does t have an inverse?

Let us name 4171. The
-1 denotes an inverse

mapping, so t-1 is read
"the inverseoft2" or sim-

ply, "...t inverse." In t-1
what is the image of A? of C? of 0? The rule for t-1
is: (x,Y)--(x-21/2,4-11/4)

Do you think that every translation of the set of
points in a plane with rational coordinates has an
inverse? If a translation has rule (x,y)----->(x+a, y+b)
where x, y, a, b are rational numbers, what is the
rule for the inverse of this translation?

Now consider translation t' that maps (x,y) onto

(x+31,
3). Unded, what is the image of A

4' 4
1 1

(22'
4

1-)? Is there a single translation that maps 0

onto this image? What is its rule? Thus, there is a
translation which is the composite oft: with t', and,
as you recall, we denote it t' o t (1, first followed by

2).

3

2

AN-3,-1/

0
-4 -3-2 -1 0 1 2 3 4 5 6

In particular, what is the composite ofjwith its in-

verseL-1? Then it would seem that among the trans-
lations is the identity translation.

In summary, if t: (x,y)--)(x+a, y+b)

then t-1: y-b)

If t-1: (x,y)--->(x+c, y+d)
then t' o t (x+a+c, y+b+d)

You have probably suspected that the set of trans-
lation we have been discussing, together with composi-
tion, have the properties of a group. Indeed they do,
and you are asked to further investigate this question
in the following set of exercises.

14.14 Exercises.
Assume that all translations-in the exercises have

for their domain (and range), the set of all points in a
plane with rational coordinates in some coordinate sys-
tem, unless otherwise specified.
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1. Is the composition of two translations an operation?

Why?

2. Let T represent the set of all translations. List
the properties that should be proved for (T,°) that
will support the claim that (T,°) is a group.

3. Prove that every translation has an inverse in
(T,°).

4. Prove that (T,c) contains an identity translation.

5. Prove that (T,°) has the associative property.

6. Prove that (T,°) is a commutative group.

, 1
7. Let translation t map (x,y) onto tx+5,

Find the rule for each of the following:

(a) t °t (c) t°t°t°t
(b) tort (d) If t is denoted t1, t°t is de-

noted t2, t°ft is denoted t3,
and so on, does the set

itl, t2, t3, t4 with °form
a group? If it does not, ex-
plain in what respect it is
deficient.

8, Using the data in Exercise 7 find the rule for each

of the following:

(a) t-1

(b) t-1 Ot-1 (denoted t-2)

(c) t-1 01.-1 0 --r 1 (denoted t-3)

(d) Does the set It-1, r2, r3 with ° form a
group? If not, in what respect is it deficient?

9. Does the set 1... t-3, t-2, t-1, T, t2 t3,
with °form a group, where T is the identity trans-
formation? If not, in what respect is it deficient?

10. Show that all translations having rules of the form
(x,y)--->(x+pa, y+qb), where a and b are fixed
rational numbers, and p and q are integers, form a

group with °. (Difficult).

14.15 Applications of Translations.
As you might expect, translations have been studied

by mathematicians because they are quite useful in solv-
ing certain types of problems. In this section we ex-
amine two of these types, both found in science. One

type of problem introduces forces and the other velocities.
We shall first examine a problem involving forces.

Let P, in the diagram below, represent a billiard cue
ball which is about to be struck by two billiard cues at
the same time. We want to know how the combined ef-
fect may be achieved with a single billiard cue.
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7

In considering the effect of each cue we must know

both the magnitude and the direction of the force which
is applied to the ball by the cue. We represent the
forces (not the cues) in the diagram by the line seg-
ments a and b, together with an arrow at one end of

each segment. The length of each segment represents
the magnitude of the force (in our diagram one inch

represents a magnitude of 5 pounds). The line in
which the segment lies, together with its arrow, in-
dicates the direction of the force. Thus, one force
is represented by line segment a in the direction of

P. We denote this force by a. The other force is re-
presented by line segment b in the direction of P.

We denote this force by b. Since the length of of a

is one inch, a has a magnitude of 5 pounds. Line seg-

ment b is 2 inches long so that the magnitude of b is

10 pounds.
We see, then, that a force is determined by a mag-

nitude and a direction. A translation is determined in
the same way. For this reason we can expect to be

able to use translations to solve our problem. Our

expectations are enforced by the report of scientists
that "adding" forces can be done by composing
translations. -4 -4

Now let us "add" the two forces a and b des-
cribed above. To do this we think of P as a point

and aandbas translations. Then we see, in the

diagram at the right, .

that a:
-->

r--->Q.)
b:

Hence b °a:
-10 ".b °a is the translation that corresponds to the

"sum" of the forces. That is, the effect ofand b to-
gether will be to exert a force with a magnitude repre-

sented by PR in the line of PR and in the direction of

R. This force is called the resultant of forces a and b.

Going back to our original problem, we see that to
achieve the same effect with a single cue the cue boll

1
would have to be struck with a force of 11-4 pounds.

Also, the cue would be sighted along PR in the direc-

tion from P to R.



Question: Does a°b = b°a? Why or why not?

The second application of translations is to pro.
blems involving velocity. Our problem will then be to
"add" velocities in same sense that we "added" forces.

We can reinterpret our problem of "adding" forces":

andt by thinking of them as velocities. Then a can re-
present a speed of 5 miles per hour in the direction indi-

cated in the diagram and tcan represent a speed of 10

miles per hour in the direction indicated in the diagram.

Here again the lengths of a and b represent the magni-
tudes (speeds in miles per hour) of the velocity, and the
line of the segment, with its arrow, represents the direc-

tion.iHere we might be solving a problem suchas the

following:

A toy boat is propelled by its engine with

.velocityl A wind is blowing with velocity

t In what direction, and with what speed,
does the boat actually move? (That is, with
what velocity does the boot move?)

The answer is found in exactly the same manner as
"adding" forces. The answer for this problem then, it:

1
the boat moves at the rate of II-4

miles per hour in the

direction of PR as indicated by its arrow.

We end this section
with another example.
Suppose a boat moves

in the direction of ?
(shown at the right)
with a speed of 20
'miles per hour, but
its propeller and er -
gine operate to make
it move in the direc--
tion of b (shown at
the right) witha*
speed of 15 miles
per hour. The diff-
erence is due to
the wind. In what
direction is the
wind blowing and
with what speed?
Note thatl i s 2_4

. inches long and b
1is 1-
2

inches long.

What then is the
scale in Ithe draw-
ing?

To solve this
problr think of-4a
and b as the translations correspond-

TS7, 7.71",, kTICI?:,- '

ing to the given velocities anditas the translation
corresponding to the velocity of the wind.Since',
is the composite ofrwitlirwe have:i°x=r
We solve for x and find lt.i3:1 o a This guides us in
solving the problem. Study the diagram above and be able
to explain how it was made. In looking at the diagram,
start at P. How long is segment x? What is the speed of
the wind?

14.16 Exercises.
1. The propeller and engines of a ship are set to

propel! it on an easterly course, at the speed
of 20 miles per hour. The wind is moving to-
wards the north (coming from the south) at
the speed of 10 miles an hour. Make a diagram
of the actual course, i.e. the velocity of the
ship. Using ruler and protractor, find the
actual speed and find what angle the course
makes with the line pointing to the north.
(Use the scale: 1 inch = 10 miles ).

2. Answer the same questions asked in Exercise 1
for each of the following cases.
(a) intended course of ship is northeast, speed of

15 miles per hour, the wind comes from the

west at 30 miles per hour. (Use the scale:
1 inch = 10 miles)

(b) intended course is northwest, speed of 18
miles per hour; the wind comes from the
southwest, speed of 24 miles per hour.
(Use the scale: 1 inch = 6 miles).

(c) The ship's intended course is southeast,
speed of 15 miles per hour; the wind comes
from the northwest, speed of 5 miles per
hour. (Do you need a diagram for this
problem?)

In Exercise 3 use the segments shown below to re-
present forces. The scale we used to draw them is.
1 inch = 10 pounds.

a

to
3. Suppose forces a and b are applied to an ob-

ject. Use a diagram to find the resultant and
compute the magnitude (number of pounds) in

the resultant force.
4. Answer the questions in Exercise 3 for each of

the following cases.
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(a) forces Le,
care

applied together

(b) forces b and re applied together.
(c)-(313',and?are applied together.

5. Suppose forceeis applied andris the re-
sultant. Find the forcetthat was applied
together with7,and compute its magnitude.

6. Suppose forcereis applied and cis the re-
sultant. Find the force7rthat was applied to-
gether with b, and compute its magnitude.

7. Suppose'is applled mull is the resultant:
Find the force-t that was applied together
with eland compute its magnitude.

8. Suppose two forces are applied and the re-
sultant leaves the object in its original
position. What must have been true of the
two forces? (two possible answers)

14.17 Summary.
1. IThciiiiny rational number, then Dx is a dilation

which maps each point into a point x times as far
from the origin. If x is a negative number, the
point is reflected in the origin.

2. Decimal fractions may be used in finding sums,
differences, products, and quotients of rational
numbers.

3. Two sets may be compared by means of a ratio.
The ratio of a number x to a numberyis the

,
quotient--

x also written as x:y. (It is understood

that #0.)

If-x-= r, then x = r y, and y =-

4. If two sequences
S1: al, 02, o3, a4, ,
52: bi, b2, b3, b4, ...,

are related so that

ak,

bk,

al a2 ak= -= = -= r,
bi b2 bk

then the sequences are saidto be proportional
sequences, and r is called the proportionality
constant.

al a

b2

2
An equation such as bi- = - is called a proportion.

a

5. The ratio
100

is also written as "a%" and read

"a per cent."
a

Every ratio can be expressed in the form - where
b'

aand b are integers, or as a decimal fraction, or
as a per cent.
Many mathematics problems occurring in everyday
life are expressed in the language of per cents.

6. If T is the set of all translations of form t: (x,y)
(x+a,y+b), where a and b are rational numbers;
and if ° is composition of translations, then (T,°)
is a commutative group.

14.18 Review Exercises.
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1. (a) What is
2-of 18?
9

(b) What is 15% of 200?
(c) What is .35 of 650?

2. If 12% tax must be paid on $3500, how much tax

must be paid?
3. During a sale, a store reduces all prices by 20%.

What is the sale price of a television set which
normally sells for $220.00?

4. In a school, 35 of the 225 boys go out for basket-
ball, What per cent of the boys in the school go
out for basketball?

5. 4% of the girls in the school are cheerleaders,
and there are 8 girl cheerleaders. How many
girls are there in the school?

3
6. A bank pays interest at an annual rate of 4.-4 %

How much will $4000 earn during a 6-month
period?

7. Compute the following:

(a) 8.875 + 44.327

(b) 102.54 - 87.39

(c) 21.8 - 39.3

(d) (2.3) x (4.3 x 7.5)

8.75

(g) 6i111

8. In a certain city there are 4200 Democrats and
3600 Republicans. What is the ratio of Democrats
to Republicans? (Express the answer as on ir-
reducible fraction.)
Then fill in the following blanks so that a true
statement results:

For every_Republicans, ther are Democrats.

9. In a student council, there are 24 members. With
all members voting, Jim won the presidency by
a 3:1 vote. How many voted for Jim?

10. Solve the following proportions:

5 14 2 2, 2 x 9 x(a)-= (b)- = (c)- = - (d)- --
3 x 7 x 7 9 x

11. Write the coordinates of the image of each of the
following points under the dilation

D-
5

3 3
A: (3, B:

3 -3) C: (2,4) D: (0,9)

E: (9,0) F: (-1,1)

12. Let t be the translation in Q X Q which has the
following rule:

5
(x,y) (x+y,

(a) What is the rule for t°t?

(b) What is the rule for t3?

(c) What is the rule for t-1 (the inverse of t)?

(d) What is the rule for t-2?
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CHAPTER 15 INCIDENCE GEOMETRY

15.1 Preliminar,' Remarks.
In Chapter 13 we studied the properties of mass

points. However, unlike the procedure in preceding
chapters, we limited ourselves to properties which
could be established through reasoning by deduction
or deductive proof. It was found that if certain as-
sumptions were made about the objects called mass
points, many other properties were necessary con-
sequences.

In this chapter we shall develop a similar deduc-
tive system. We will begin with some familiar words
like plane, line, and point The axioms or assumptions
about these objects will state some significant prop-
erties already familiar from experience. Our task
will be to show that many other properties of points,
lines, and planes follow by deduction from the as-
sumptions.

Since the axioms will be based on our experience
with points, lines, and planes, whatever can be de-
duced from the axioms should also agree with experi-
ence. However, there may be properties of the plane
which cannot be deduced from the limited number of
axioms we will adopt. Although we will be dealing
with objects called points, lines, and planes, we will
not make use of any properties of these objects ex-
cept those stated precisely in the axioms.

15.2 Axioms
We shall limit our entire discussion to the points

and lines of a single plane which will be denoted by
the letter "P", If you insist upon thinking of this
plane as a flat surface like a floor, you may do so.
However, the only real requirement imposed upon this
plane is that it be a set of points.,We will focus atten-
tion on certain subsets of the plane which have
special properties.

Among these subsets are the lines (straight lines)
of the plane. Again, if you insist upon thinking of a
line as a taut wire, you may do so. We only insist
that the line possess the properties which will be
mentioned in the axioms.

The first axiom is given in two parts. In the first
place, it requires that the plane contain at least two
lines. A plane with only one line in it would hardly
be much of a plane. The axiom also requires that
each line contain at least two points. This certainly
seems like a reasonable requirement. In fact, you
probably feel that lines ought to have infinitely many
points; we will not demand quite this much at present.

Axiom 1: (a) P contains at least two lines.

(b) Each line in P contains at least
two points.
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The second axiom also expresses a property that is
reasonable to expect of lines and points. You will
see that it plays an important part in our reasoning.

If some one were to ask you, "How many straight
lines are there containing one particular point of a
plane?" you would probably say, "As many as you
want." But if you were asked, "How many straight
lines are there containing two different points?" you
would undoubtedly agree, "Just one." Certainly,
whenever you draw a straight line through two points,
A and B, you feel that there should be just one line,
even though your drawing might not be accurate. At
present we are not concerned about drawings but
rather about ideas. The second axiom expresses a
conviction about points and lines that you probably
already have.

Axiom 2: For every two points in P there is one
and only one line containing them.

When we say "two points" we shall always mean
two distinct points. If it should turn out that a single
point happens to have two names, the conditions of
Axiom 2 would not be satisfied, and we could not
conclude that there is one and only one line contain-
ing this point. To allow for the possibility that a
point or a line may have two names, we shall occa-
sionally speak of a pair of points A and B. In such a
case, A and B may (or may not) turn out to be the

same pointdepending upon other information we may
have about A and B. Similarly, when we speak of a
pair of lines c and d, these need not be distinct, but
if we refer to the lines c and d, then it will be pre-
sumed that c and d are distinct lines.

Our third axiom deals with parallel lines. After
we state it below, you will probably agree that it is
a very reasonable requirement indeed. In fact, for two
thousand years this axiom appeared so reasonable
that many of the finest mathematicians thought that
it was unnecessary to assume it. They felt that it
should be possible to prove this particular property
from the other axioms which had been adopted for
Geometry. In other words, they thought that it ought
to be a theorem rather than an additional axiom.

Before we state this axiom we should be clear
about what we mean by "parallel lines". When we
draw two lines, call them "r" and "s", on a sheet
of paper, they may appear to intersect like this

r



or they may appear to not intersect like this

r

Of course, in the second case it is possible that
r and s really do intersect. Perhaps if each line is
extended suff iciently far beyond the confines of our
sheet of paper, we would see that they actually meet.
On the other hand, it might be difficult or perhaps
impossible to decide this question in some cases. We
certainly can conceive that lines r and s might never
intersect; that is, r n s In such a case we call
lines r and s parallel. It is also convenient to con-
sider r and s parallel even when r = s; that is, when
r and s are the very same line. Accordingly, let us
state the following definition.

Definition: Lines r and s in P are said to be par-
allel if r = s or if r n s = 0. When
lines r and s are parallel, we express
this fact by writing "r s".

The third axiom can now be stated

Axiom 3: For every line m and point E in the
plane P, there is one and only one line
containing E and parallel to m.

E
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The need for such an axiom dealing with parallel
lines was first recognized by Euclid who lived during
the third century B. C. The axiom he adopted was the

fifth in his list of axioms for geometry, and it corre-
sponds closely to the one we have introduced here as

our third axiom. The choice of this assumption was
one of Euclid's great accomplishments'for as we have
noted, mathematicians for thousands of years after
Euclid tried in vain to prove this reasonable property
from the other axioms.

All these efforts were destined to failure because

in the nineteenth century a number of great mathe-

maticians (Gauss, Bolyai, Lobachevsky, and Riemann)
showed that Euclid's fifth axiom did not follow from
his other axioms. They proved this by creating per-
fectly good systems of geometry which did not have

the property demanded by that axiom. Such systems
are called non-Euclidean Geometries. If a system of
geometry includes Euclid's fifth axiom, or any axiom

equivalent to it, then that axiom is referred to as the

Euclidean Axiom in the system.
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15.3 pirection
What would you say if you were asked to describe

the relationships among the lines of the following fig-
ure?

One possible answer would be, "a is parallel to b, b
is parallel to c, a is parallel to c, d is parallel to e;
and, a intersects d, a intersects e, b intersects d, b
interesects e, c intersects d, and c intersects e."

Using the mathematical terminology of Chapter 8,
the figure is a set of lines, S - {a, b, c, d, e}; there
are two relations in S, "is parallel to" and "inter-
sects". The relations can be indicated symbolically

by "a b", "c b", "b I e", etc.
Another way of indicating the relations in S is to

list the ordered pairs of lines meeting each condition
(Remember that a relation is defined to be a subset
of S X S). What pairs are needed to complete the list-
ings begun here for "is parallel 'to" and "intersects"?

"is parallel to": (a,b), (b,c), (b,a), (a,a),
"intersects": (a,d), (c,e), (e,c),

You recall from Chapter 8 that certain relations
in a set have interesting and useful properties. A re-
lation in T is reflexive if and only if

tRt for each t in T;

it is symmetric if and only if for all t and s in T

tRs implies sRt;

ono it is transitive if and only if for all t, s, and q in T

tRs and sRq implies tRq.

A relation which is reflexive, symmetric, and transitive
is called an equivalence relation.

The first property to be deduced from our axioms
is an important result concerning the relation "is par-
allel to".

Theorem 1: The relation "is parallel to" is an
equivalence relation in the set of all
lines in P.

Proof: All we need to do is check to see that
the three conditions for an equival-
ence relation are satisfied by "H".
(1) Is it true that for every line m in



P, milm? If we look at the definition
of parallel lines, we see that we a-
greed to consider every line as being
parallel to itself. Therefore, the
first condition for an equivalence
relation is satisfied.
(2) If m and n are lines in P such
that ml In, does it follow that nilm?
Again we look at the definition of
parallel lines. If m and n are the
same line, there ienothing to prove.
If n and m are distinct lines, then m
and n have no points in common; if
m n = 0, then n n m = 0, so nl Im.
(3) If m, n, and s are lines in P such
that ml In and rills, does it follow that
mil s? Suppose it were not true that
mils. This would mean that m and s
are distinct lines which have a point,
A, in common. But then there would
be two lines, m and s, containing A
and parallel to n. This violates Axiom
3 which says that there can be only
one line through A parallel to n.
Therefore it follows that m and s
cannot have a point in common or mils.
The third condition for an equivalence
relation is satisfied.
Since "H" is reflexive, symmetric,
and transitive, it is an equivalence
relation.

The most significant property of an equivalence
relation in a set is that it always partitions the set
into disjoint subsets. The relation R puts elements a
and. b in the same subset or equivalence class if and
only if aRb. How does the equivalence relation "is
parallel to" partition the set of lines in P into dis-
joint subsets?

To get a picture of the way the equivalence classes
are determined by "II", consider the figure shown earlier.

If lines which are related by "u" are put into the same
class, the five lines pictured would be split into two
classes: = {a, b, c } and S2 = {d, e}s In a similar
manner "II" partitions the set of all lines in P into
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disjoint equivalence classes; each class consists of
all the lines in P that are parallel to a given line.

We could say that all the lines in the same equiva-
lence class run in the same direction or are in the
same direction. In fact, we can refer to the equiva-
lence classes as directions so that when lines are in
the same equivalence classthat is, when they are
parallelthey are in the same direction. Of course, if
two lines are in different equivalence classes, they
are not parallel and are not in the same direction.

It must be understood that when we use the word
"direction" here, it has the same meaning as in the
expression "the road runs in a north-south direction".
The word "direction" does not have the same meaning
as in the expression "the river flows in a southerly
direction".

15.4 Exercises.
1. Is the relation "intersects" an equivalence relation

in the set of all lines in P? Why or why not?

2. Which of the following determine equivalence re-
lations for the specified sets?
(a) "is the brother of" in the set of males.
(b) "is the same age as" in the set of living people.
(c) "is smaller than" in the set of students in your

class.
(d) "has the same number of pages as" in the set

of books.
(e) "is lighter than" in the set of students in your

school.
(f) "is the line reflection of (in a fixed line)" in

the set of points in a plane.
(g) "is perpendicular to" in the set of lines in a

plane.
(h) "has a point in common wiih" in the set of lines

in a plane.
(i) "is in the same grade as" in the set of students

in your school.
For each relation that actually is an equivalence
relation, determine what kind of equivalence
classes are formed.

3. Show that the relation "hcs the same author as"
is an equivalence relation in the set of books in a
bookstore. What kind of equivalence classes are
determined by the relation?

4. Prove: If m is a line in P, then there is a point in
P which is not in m. (Hint: Use both parts of Axiom
1 as well as Axiom 2.)

5. Prove: P has at least three lines. (Hint: Use pro-
blem 4 and Axiom 2.)

*6. Let fl be Ci'specified direction in P (equivalence
class of Parallel lines), and let R be the relation
in P defined as follows:

Points A and B are in the relation R if and only
if some line in direction D contains A and B.
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In the sketch, A R B but CR'E.

Prove: 1) R is an equivalence relation in P.
2) The equivalence classes are the lines in
the direction D.

7. Prove: There are at least three directions in P.
(Hint: Use problem 5)

15.5 Some Consequences of the Axioms.
In Exercise 4 of the previous section you were

asked to prove that there is a point not in a given line.
Since we will use this result, a proof will now be given.
You may want to check back and compare this proof
with your own.

Theorem: If m isa line in P then there is a point
in P which is not in m.

Proof: By Axiom la there is a line n distinct
from the given line m; that is, m
By Axiom lb there are distinct points
A and B in n; that is, A B. If both A
and B were in m, then by Axiom 2 we
would have n =m, which is not the case.
Hence at least one of the points A or B
is not in m.

Let us now consider line m, point E not in m, and
all the lines containing E which intersect m. For ex-

ample, EA and EB and perhaps another, EC.

4'

4'

\ c (?)

The next theorem simply says that there are "just as
many" points in m as there are lines containing E
which intersect m.

Theorem 3: In P, let m be any line and E any
point not in m. Then there is a one-
to-one correspondence between the
points in m and the lines containing
E which intersect m.

Proof: We must set up a correspondence be-
tween points and lines of P such that:
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A

(1) Each point in m corresponds to ex-
actly one line which intersects m and
contains E. (2) Each line which inter-
sects m and contains E corresponds
to exactly one point of m.

If A is any point in m, by Axiom
2 there is exactly one line which con-

tains A and E. This line, AE, inter-

sects m. Let point A of m correspond
to line AE.

AE

It remains to show that every line
which intersects m and contains E is
paired with exactly one point of m
under the above correspondence. As-
sume n is such a line which intersects
m in one point B. (Why can't m and n
have two points in common?) Then

.10
corresponds to BE under the above
correspondence. But by Axiom 2 there
is only one line containing B and E.

Therefore, BE = n and n corresponds
to B, a point of m.

15.6 Exercises.

1. Prove: There are at least four points in P. (Hint:
Use Theorem 2 and Axiom 3.)

2. Prove: There are at least four lines in P. (Hint:
Use Theorem 3 and Axiom 3.)

** 3. Show that there need not be more than three direc-
tions in P and that each line in P need not contain
more than 2 points. (Hint: To show this we need to
construct a model of a "geometry" which has three
directions and 2 points in each line. There will be
objects called points and lines which have the prop-
erties specified in Axioms 1 -3. However, these ob-
jects might be quite different from dots and straight
lines on a paper. For instance, the "points" may
be blobs of clay and the "lines" strips of wire.)

15.7 Parallel Projection.

Because we will need the result of Exercise 7 in
Section 15.4, it will now be proved. You may want to
compare your proof with the proof given below.

Theorem 4: There are at least three directions in
P.

Proof: In Theorem 2 we proved that in P
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there is a line m and a point E not
in this line.

IE

=4111.

From Axiom 1 we know that m has at

least tvco points, A and B.

5

A

Therefore, there are at least three dis-
tinct lines in P,
4-0
AB = m, AE, and BE. No two of these
three lines can be parallel since each

pair has a point in common: AB nAE =A,
4-0 +0 +0 4-0
AB n BE = B, AE n BE = E. Therefore,
the three lines determine three direc-
tions.

We shall now use the information that P has at
least three directions. Let m be any line and D any dir-
ection not containing m. Let E be any point in P. From

Axiom 3 we know that for every point E there is one
and only one line, call it n, containing E which is in
the direction D (i.e. n is parallel to a line in D).

Moreover, n cannot be parallel to m. If it was, then m
would be in the direction of n which is D. We assumed
that D was a direction not containing m. If n and m are

in different directions, n and m are distinct lines that
intersect in a point Em. So for every line m and direction
D not containing m we have a mapping that sends point E

in the plane onto point Em of line m. If we call this
mapping "Dm", we have

Om E Em

Definition: We call the mapping Dm, that maps

the pointssof P onto m, the parallel
protection of P onto m in the direc-

tion D.
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We now come to a very important theorem which

makes use of almost all the information wt, have ac-

cumulated. It says that for any two lines in P, say r
and n, there is a parallel projection that maps n one-

to-one onto m.

Theorem 5: In P, let m and n be any lines and

let C be any direction that contains
neither m nor n. Then Dm is a parallel
projection which maps n onto m. When

the domain of Dm is restricted to n,
Dm is one-to-one.

Proof: We must show two things.
1) Dm maps each point of n onto
some point of m.
2) Under the "restricted" mapping
Dm, each point of m is the image of
exactly one point in n.

Let us first show that Dm maps each
point of n onto some point of m. Let
E be any point of n. By Axiom 3 there
is exactly one line in D, call it r,
which contains E. We have selected
direction D so that m and n are not
in D. If follows then that r nm q5

and r m. Hence, rnm contains
exactly one point, Em. We have
shown that Dm maps each point
E of n onto some point, Em, of m.

To complete the proof we must show

that when the domain of Dm is re-
stricted to n, each point A of m is
the image of exactly cine point in n
under this restricted mapping. Let s
be a line in D which contains A.
From Axiom 3 there is one and only
one such line. As n is not in 0,
sn n 0 and s n If follows then

that snn consains exactly one point,
An. If there were another point in n
which mapped onto A under Dm we
would have two lines in D which con-
tain A and this is impossible because
the lines of D are parallel. We have
completed the proof.

The notion of parallel projection constitutes the

mathematical foundation on which one builds coordinate

4,4:1"......41WWW.***4.A.Y#A1.4.42..t.ONV,W.,,...... .1,474, 4.4.74*,



systeme kw locating points in a plane. One can choose

any two lines in and n in different directions and use
these lines as "coordinate axes".

-------------7/
Q

e

It can now be shown that for each point Q in the plane,
them is a unique ordered pair of points (X, Y) where X

is in m and Y i is in n. The points X and Y are deter-

mined by parallel projections onto m and n in the di-
rections of n and m respectively. The pair of points
(X,Y) then serve as coordinates of point Q.

15.8 Exercises.

1. What are the elements of:
(a) plane P
(b) a line
(c) a direction
(d) a relation

What do you mean by:
(a) a line
(b) the statement "lines r and s are parallel"
(c) a direction
(d) a relation
(e) an equivalence relation
(f) Dm
(g) one-to-one correspondence

What are their own images under the mapping Dm?

. What points have the same image, Em, under the

mapping Dm?

Is the composition Dn °Dm a mapping of the "same
kind" as Dm? (The domain of Dm is to be restricted
to n)

6. Answer Sometimes, Always, or Never, whichever

fits best.
(a) Two points determine a direction.
(b) Three points determine three lines.
(c) If line n is in direction D and line m is not in

D, then each point in n has the same image

under Dm.
(d) If two points A and B are such that their images

under Dm are the same point, Men AB is in di-
rection D.

7. Prove: If r and s are any two lines in P, they have
the same number of points. (Hint: Use the corre-
spondence set up in the proof of Theorem 5)
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15.9 Summary.

This chapter has dealt with a plane P which is
simply a set of points with certain interesting subsets
called lines. The lines were assumed to have the prop-
erties mentioned in the three axioms and from these
properties we were able to deduce a number of further
properties. It is important to note, however, that we
were not able to deduce all the properties that we gen-
erally associate with lines and planes. For instance,
Exercise 3, Section 15.6 showed that it is possible to
have a "geometry" satisfying the axioms we selected
in which each line has only two points.

The three axioms used are:
Axiom 1: (a) P contains at least two lines.

(b) Each line in P contains at least
two points.

Axiom 2: For every two points in P there is one
and only one line containing them.

Axiom 3: In P, for every line m and every point
E, there is one and only one line con-
taining E and parallel to rn.

Lines r and s are parallel if and only if r = s or
r ns = 0. Using this definition we were able to prove
that "is parallel to" is an equivalence relation in the
set of lines in P. This relation partitions the set of
lines in P into equivalence classes called directions,
two lines being in the same direction if and only if they
are parallel

The notion of a direction in P led to the following
important consequences of the axioms:

There are at least three directions in P.
For a fixed direction the following relation R
is an equivalence relation on P: For points A
and B, A R B if and only if there is a line in

which contains A and B.
(c) To every direction D and line m not in D there

is a parallel projection, Dm, which maps all the
points of P onto m.

(d) For every two lines m and n it P there is a par-
allel projection that maps n onto m and is one-
to-one.

(a)
(b)

15.10 Review Exercises.

1. If m is any line in P, prove that there are at least
twc points not in m.

2. If m is any line in p, prove that there are at least
two directions not containing m.

3. If lines m, n, and s are distinct lines in P such that

miln and nits, prove that mils.
4. If lines m, n, and s are distinct lines in P such that

mIIn, and s intersects m, then s intersects n.
* 5. Prove that if Di and D2 are two directions then there

is a one-to-one correspondence between all the lines
of Di and all the lines of D2.


