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CHAPTER 9

TRANSFORMATION OF THEPLANE
AND ORIENTATIONS IN THE PLANE

9.1 Knowing How and Doing

Have you ever read a book on how to roiier skate
or ride a bicycle? Do you think you could have done
well on roller skates or on a bicycle the very first
time you tried merely because you have read the book?
Knowing how is not quite the same as being able. In
this chapter you will be given a chance to do many
things as well as to learn about them. In order to do
these things you will need some equipment in addition
to pencil and paper. At the beginningof each section
you will be told what equipment you will need. Obtain
this equipment before going farther so that you con
read and follow without interruptions.

9.2 Reflectionsin a Line (Part 1)

Materials needed: Paper without lines, tracing
paper, ink, pen, two rectangular
mirrors, and a compass.

Activity 1: Fold one of your unlined sheets of paper
down the middle. Open up your folded sheet and put
one drop of ink in the crease you made, and one drop of
ink about an inch away from the crease.

>inlx drop

Close the paper and spread the ink about, keeping the
ink within the folded paper. Nowopen up your paper.
Look at the ink spots on both paper halves. How do
the ink spots compare in size and shape? Now fold one
half back and replace it by one of your mirrors in an up-
right position so that the edge of the mirror fits into
the crease. How do the images you see in the mirror
compare with the ink spots you folded back?

Put 2 more ink drops on onehalf of your paper and
repeat the steps of the preceding paragraph. Compare
the distance between any 2 ink spots on one paper
_ half with the distance for the corresponding 2 ink spots
on the other. Are they the same? What generalization
seems to hold for the two paper halves? Let us call the
ink spot figure on onepaper half the reflection in the
crease of the other ink spot figure.

-~ N f Lk s v heda cias

After the ink dries, use your tracing paper to trace
around ene of vour ink spot figures. What must you do
to your tracing paper to get a picture of the reflaction
of the figure you traced?

In previous chapters we have leamed that a map-
ping makes assignments. For example, the successor
mapping, S, assigns to each integer the next larger
integer,

S:ne———en + 1

Reflection in a lineis also a mapping since it assigns
points to points on a plane. Restricting ourselves to a
fixed plane, a reflection with respect to a fixed line
assigns to each point its mirror image or reflection in
the given line. In this section we shall study proper-
ties of reflection mappings.

Activity 2: Foldone of your unlined sheets of paper

down themiddle. Open up your folded sheet and place
a heavy dot off the crease line, label the dot “A’’,

| — =creale (m)

Try to guess where its reflection in the crease will be,
Fold along the crease with the dot inside. You should
be able to see the dot through the paper. Use a ball-
point or pencil fo go heavily over the dot from the wrong
side. Open up your paper. You should now be able to
see a mark for the true image of the dot. How good was
your guess? Call the actual reflection of A in m, A,
Place another dot, B, and guess where its reflection in
m ought to be. Now find the image of B under the reflec-
tion in m just as you found A’, Call the image of B, B'.

Draw a line between A and B, A’ and B'. Using on
opening of your compass, check to see whether the
length of segment ABis the same as the length of seg-
ment A’ B',

Place another point on the samehalf, call it *‘C"",
and try to guess where its reflection in m, C,is.
Check by folding on m. Compare the lengths of AC with
ATC’ and of BC with BC', How do your measurements
support your generalization for Activity 1?

Join A to A’ and mark the point where the line
drawn crosses m, "ﬁ_«l:_(Reod: “A one'"). How do the
lengths of AA; and A’ Aj compare? Join Bto B,

At




Cto C' crossing m in By and Cy, respecti vely. How
do E-E] and B' By compare in length? CCy and C'Cy?
What general ization might you make from these obser-
vations?

The mapping with respect to a fixed line, m, that
takes every point into its mirror image (such asA into
A'), is called a reflection in m. You noticed above that
the length of AB was the same as the length of A’ B,
the length of AC was the same as the length of A'C’,
and the length of BC was the same as the length of
B'C’ . The mapping which assigned A to A’, B to B,
and Cto C' was such that the distance between any
two points of its domain was the same as the distance
between the images of these points in the range, A map-
ping like this, which preserves distances, is called an
isometry (‘‘iso’’ means equal, ‘‘metry’’ means measure).
Do you think that every reflection is an isometry? |Is
every isometry a reflection?

The entire picture on the full sheet is said to be
symmetric with respect fo m, and m is called the line
of symmetry for this full picture. What s the line of
symmetry for this kite figure?

C

Howmany lines of symmetry does a rectangle have? a
square?

Returning to our sheet, join A} to B and B’, Com-
pare AyB with Ay B’ ? Join Aj to Cand C'. Compare
AjCand A1C' . Join any other point, P, on the crease
mtoA and A’, C and C'. What seems to be true about
the distances of any point on m to a point and its re-
flection?

Your observations should lead you to believe that
a line reflection is an isometry, and that a figure to-
gether with its reflection is symmetric with respect to
the line of reflection.

Activity 3: Fold one of your unlined sheets. Open up
and put a dot on one side of the crease, label it ‘A",

crease (c)- ——

Simply by folding this paper, try to locate the reflec-
tion of A on C. Do not read further without first trying,

Some hints are:

1. Fold back clong the crease, and then fold back
at A as shown in this figure.

i

A A
)

Can you finish now?
2. Fold back once again at A.

N

ond open up
to show all
the creases,

C

Where is A’ ? Find B' the same way.

Activity 4: We shall now see how to obtain the reflec-
tion of a point in a line without folding, First try to
figure out a way yourseif, There are many ways of do-
ing it. You will probably need your compass.

One method of finding the reflection of a point A
inm is to think of the kite figure. Find 2 points inm,
call them P and Q, and think of PAQ as half a kite

figure.

Our previous observations lead us to believe that A’,
the image of A, is just as far from P as A is from P,
and that A’ is just as far from Qas A is from Q. If
we draw a circle with P as center and a radius of
length PA, then A’ must be someplace on this circle,
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Atis ’
someplace
on this
circle
A
Q

A’ must also be on a circle with center Q and radius

QA,

P
—
A
A° is someplace
on both of these Q
circles, Whot
point is A’?

Join A’ to P and Q to complete the kite figure.

Using this method of obtaining reflections, find
the reflections of points A, B, C if A, B, Care on the
same line with B between A and C.

> ,l: MC ARSI, SR A, S 00 A Kb ST LTS T
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Are the image points A', B, C' also on a line? Is B’
between A’ and C’ ? What generalizations are suggest-
ed by your observations? Suppase B is taken as ihe
midpoint of AC, what is your guess about B’ ? Check
your guess with a compass.

Your observations should have suggested to you
that a reflection maps collinear points into collinecr
points preserving betweeness. That is, if P, Q, Rare
points on the same line, Q , then their images P', @',
R’ are on the same line Q' . 1§ Qis between P and R,
then Q' is between P’ and R'. In fact, the midpoint
of a segment is mapped into the midpoint of the image

of this segment,

9.3 Exercises
1. Which points in a plane are their own images
under a line reflection?

2, If you hold a pencil in your right hand, what
hand does it look like in the mirror?

3. If you spin a top clockwise, what does it seem
to be doing in the miror?

4. if points A’, B’, C’ are the images of points
A, B, C under a reflection in m, what are the
images of A’, B', C' under this reflection?

(@ (b) 0]

6. Draw the reflection in m of ray AB.
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@ (b) ©

7. Draw the reflection in m of line AB.

[
" /./
®) b
A /A/

8. Find all lines through A that are identical with
their reflections in m:

(0) oA (v) A

9. Do exercise 8 by creasing a paper on which m
and A are shown, if you did not use this method
in Exercise 8,

10. Fold a sheet of paper down the middle and
draw some picture as shovn hers, Cut along
the line you drew and open up. What do you
notice?

-d

11. Which printed capital letters frequently have a
line of symmetry? Will the reflection of these
letters in any line be the same letters?

12, Try writing your name so that it reads right in
a mirror,
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13. Place a sheet of carbon paper under a sheet of
paper so that the carbon faces the back side of
your paper. Write your name. Look at the back
side of your paper in a mirror. What do you see?

14, For this exercise you will need a pad, 2 pins,
and a mirror about 1’ wide and ct least 6 long.
If you cannot get a mirror of this size, try to
improvise,

Pad i

M
(uprig'hrf' on pad) . /

/

Pin (P)

Secure the mirror in an upright position on the
pad. (Brace it with a book, or fasten it with
pins, scotch tape, or adhesive tape.) Stick a
pin upright into the pad about 2'* in front of
the mirror. Place.your eye close to the pad so
that you can see the image of the lower part of
the pin, P, in the mirror. Try to place the other
pin, P’, so that it will always line up with the
image of P you see in the mirror no matter how
you change your line of vision. Whereis P’ in
relation to P? Your pin, P’, should be located
at the reflection of P in the mirror, P’ is now
the image of P under a reflection in the mirror.
This close anclogy between a reflection map-
ping and reflections in a real mirror is the rea-
son for using the words “‘reflection’’ and

image’’.

15. By folding your paper, find the line m, for are-
flection that will map

(a) P onto P’ (b) AB onto itself
.' .
, A /
(c) SR onto ST (d) Line AB onto line
CD. (There are 2
lines m)
)
\/ ><
¢ .
H

v ————————————r i . <O VR 5 wire % SN e e A e e ) e S e o




AT -

r."i“f?«\.‘r"%’ﬁa B i L s ol T B
v
3

{e) In each of the above exercises what can
you say about the crease?

9.4 Lines, Rays and Segments

Although we picture a line as a taut string, as
the edge of a molding, as a mark on the blackboard or
paper, we must recognize that these things are quite
inaccurate as representations of a line. For example,
a string mey sag or have a ‘‘belly’’. A string has thick-
ness. A string does not go on and on in both directions
endlessly, However, a line has no “‘belly’’, no thick-
ness, and does go on endlessly in both directions. But
how can we do any better? A line is an idea (like a
number) while a physical representation is a thing (like
a numeral) used to denote the idea. The marks we call
“lines’’, only represent lines yet we still continue to
refer to the marks as lines because we are not really
concerned about the marks but about the ideas the
marks represent,

I *A’* and ‘*B'’ name two points of a line then
““ AB'* names the line containing A and B, We assume
that there is only one line (our lines are always straight)
that contains two different points. AB and BA are the
same line.

o o=

We often place arrow heads at the ends of our marks to
remind us that the lines are endless in both directions.
Sometimes, weplace a letter on the mark and refer to
the line by the |etter,

Consider a line m and a point P in this line:

!

i

The set of points in line m to the right of P, together
with P, is a ray, The set of points in m to the left of
P together with P is also c ray. Point P is called the
endpoint of both rays, Any point P in a line together
with all the points of the line that are on the same
side of P, constitute a ray.

We often name a ray hy two capital letters, The
left letter names the endpoint of the ray and right let-
ter names any other point of the ray. An arrow point-
ing to the right is placed over both letters.

K [
._*» i
s KR
s ad
~3 c [ v
L o e ] e v

1f P and Q are two points on line m,-l?(s and al;ore
different rays. They overlap on a set of points contain-
ing P, Q and all the points between P and Q.
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overlop of PQ and QP

The overlap of PQ and QP is the segment PQ (or QP).

9.5 Exercises

1. Let A, B, C, be any 3 points that are not on the
same line (non-collinear points).

»e
Ne

Draw all the lines you can, each containing
two of these points.

(a) How many lines did you get?
(b) Name the lines.

(c) Name each of these lines ancther way using
the same letters.

2. LetA, B, C, D be any 4 points, no three of
which are collinear.

>
]
0ne

Draw all the lines you can each containing two

points.

(a) How many did you get?

(b) Do the same thing for 5 points, no 3 of
which, are collinear. Fill in ihe table below
and try to discover a pattern that you feel
should continue.

(c)

Nuniber of Points 2 3 4 5 é

Number of Lines

(d) Try to give an argument to support your gen-
eralization.

3.

A [ ] C D
— e -

e ———— —

(a) Name the line shown in as many ways as
you can using the names of the given points.
There are'12 possible ways.

(b) Name all the different rays you can find in

the figure. Note AB, AC, AD are all the
same ray.
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(c) How many different rays did you find?
(d) Fill in the table:

Numbser of Points on aline

Number of Rays

(e) Try to discover a pattem that you feel
ought to continue,

(f

'

) Try to give an argument to support vour
generalization,

{g) Name all the segments formed by points
A, B, C,D.

(h) How many different segments did you get?
(i) Fiil in the table:

Numberof Points onaline 2

Number of Segments

(j) Try to discover a pattem that you feel
ought to continue,

(k) Try to give an argument to support your
generalization.

9.6 Perpandicular Lines

In ore of the exercises you were asked to find a
line, n, through A that is its own reflection in m. Your
line should lock like the one in the figure. Whenever
we have two lines such that either is its own reflec-

tion in the othmr, we say that these lines are perpen-
dicular to each other, We use the symbol ‘| **for
“‘perpendicular’’ or “‘is perpendicular to’’. For the fig-
ure above, we have m|n and n|m.

If B and B’ are two points, each the reflection
of the other in line m, then BB' |m, and m|BB',

[ X )

'm
We often indicate in a drawing that 2 lines are
perpendicular by a little square where the lines cross.
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Line segments which are in perpend cular lines
are said io be perpendicular. Rays which ars in per-
pendicular lines are said to be perpendicular. In fact,
any combination of line, ray and segment may be per-
pendicular if they are in perpendicular lines. We con-
tinue to use “_I_" for any such perpendicularity.

9.7 Rays Having The Same Endpoint

In this section we shall be dealing with rays that
have a common endpoint.

Fl.\ and FE are rays with the same endpoint, P,

If two rays with the same endpoint constitute a
line, they are called opposite rays. The rays RC and
RD are opposite rays.

-

° ¢

Some rays with the same endpoint have directions
that are not very different. These rays have a small
spread or a small opening. For instance, the rays in
this figure seem to be close together.

,/

] ’

If we were given two such pairs of rays with
small spread or opening, how could we compare the
openings? How could we tell which pair of rays have
a greater spread? To see when such information would
be handy, consider the following situation,

Mom makes delicious pies of uniform thickness.
She is very skillful at cutting sections from the cen-
ter. When you get home one day you see these two
pieces in a pan,

!, Segments
RS, RT,
3-5:, and
R'T’ ore
all the
same
lengthe




Which one would you select if you want the larger
piece? You may want to use your compass to help you
decide. How might you use it? Think about this ques-
tion a moment before reading on.

If you thought of comparing the distance from S to
T with the distance from §' to T’, then you have an-
ticipated the text. These measurements were intended
to be identical, but your eyes probably made you feel
that the left piece is the larger.

Using this tasty example as a clue, how could

you decide which pair of ray s have the greciest spread?

Do the rays at A, at B, or at C have the greatest
spread? Which rays have the least spread?

One way of telling is to draw an arc of a circle
across each ray, using in tum points A, B, and Cas
centers. Each arc should have the same radius (or
opening of your compass), After the arcs are drawn,
compare the distance between intersection points just
as you did for the pie.

This method of comparing ray spreads may seem
crude, but it can be very precise, especially, for small-
er spreads. Later you wiil leam of another way to com-
pare spreads by using a special instrument designed
for this purpose.

. Activity 4: On a sheet of unlined paper, draw line m
and a pair of rays PA and PB as shown:

- 4
s." l A A
d \\s I' s
\.\ 7

Find the reflections P'A' and P B’ of the rays PA
and PB in m. Guess how the spreads of the rays at P
and the rays ot P' compare, Check by using your com-
passes. What generalization seems to hold? Repeat
the experiment with rays of a different spread.

Activity

5: On a sheet of unlined paper join 3 non-
col linear points A, B, C,

The figure ABC is called *‘triangle ABC"’. Find the
reflection of triangle ABC, in m. Compare the spreads
of the rays at A, B, and C with those at A’, B and C.
How do the lengths of segments AB, BC, and AC com-
pare with the lengths of their reflections, AR, B'C,

and A’ C' . Cut out Triangles ABC and A’B° T, See
if you can make them fit, Did you have to tum over
one of the cutouts before making your figures fit? Will
it always be necessary to tum over? If not, when will
it be unnecessary?

Activity 6: Now we are going to make a refl ection and

then a reflection of the image of this reflection, but

in a different line. Draw the following on your unlined
paper: Triangle ABC and lines m and n,

A A A’

Find the reflection of ABC in m, Call it A’ B'C’,

Now find the reflection of A’ B'C’ inn. Call this

new figure A"’ B"C", Your figures should look some-
thing like the figure above. Try to make some general -
izations about the figures ABC, A’ B'C' and A"B"C".,
Cut out the 3 figures. Do they fit? Should they fit well?
Why do you think so?

9.8 Exercises

1. (a) Find the line containing point A that is per-
pendicular to line m. You may try folding
your paper,

(b) Suppose now that A is on m, find the line
containing point A that is perpendicular m.
You may want to try folding your paper.
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(c) Try to do (a) and (b) without folding.

2, (a) What can you say about a triangle that has
exactly one line of symmetry?

(b) Can you find a triangle that has just two
lines of symmetry?

(c) Can you find a triangle that has just three
lines of symmetry?

(d) Are there triangles that have more than
three lines of symmetry?

T .

(a) Find the reflection of Triangle T in m, call
it “T’" and the reflection of T, inn, call

it “Tmn;.’, and finally, the reflection of T,
inm, * "', Compare T, T, T

mnm mn¢
Tonme What generalization would you care

to make?

(b) .Corry out the same steps with m and n per-
pendicular lines, What can you say now that
seems to be true?

4. Whatis wrong in each of these cases?
(a) The distance from A to B is less than the

C

distance from C to D, Hence, the spread of
the rays at P is less then the spread of the
rays at Q.

(b) If two triangle cutouts fit then the spreads
for three pairs of angles (one from each tri-
angle) must be the same, Hence, if the
spreads of pairs of angles for two triangles
are the same, their cutouts should fit,

159

5. Why are comparisons difficult for the spreads
of rays that are close to being opposite rays?

AN N

6. (a) If the distance from A to B is twice the
distance from C to D, would you say that
the spread for the first rays is twice the
spread for the second?

A
A A
. D
(b) Compare spreads for two opposite rays and

a pair of perpendicular rays, |s your first
spread twice as large as the second?

9.9 Symmetry In a Point

Does the parallelogram below have a line of

In other words, is there a line for which the parallelo-
gram and its mirror image in this line are the same set
of points? '

After some experimentation, including folding,
you will probably say that this paralielogram has no
line of symmetry; there is no linc reflection that leaves
the parallelogram unchanged. However, as we shall
soon see, the parallelogram does have a kind of sym-
metry; it is always symmetric in a point. Try to guess
what symmetric in a point means.

Activity 7: Materials needed: Pencil, unlined paper,
compass,

Let C be any point between points A and B, Let
P be any point, not necessarily on line AB (See dia-
gram below).

Draw a line through A andP, call it ‘‘w'’, Open your
compass from P to A, With P as center and PA for radi-
us, draw an arc crossing W in A’, so that A,P,A’ are
in the same line, with P just as far from A as it is




from A’. P is the midpoint of AA’, and P bisects AA'.
We shail say that A" is the image qf A under the sym-
metry in P. In the same way, find the imageof Band C
under the symmetry in P, calling the images B’ and C'
respectively.

Are the points A’, B', C' also collinear? Is c
between A’ and B’ ? How does the distance from A to 8
compare with the distance from A’ to B’ ? Compare the
lengths AC with A’C’, and BC with B’ C’ ? What con-
jectures would you make from this activity regarding:
coiiinearity of poinis, betweeness, isomeiry? Tiy to
find a single line in which a reflection maps A into A’
and B into B'.

The above activity should have suggested to you
the following:

1. Just as a reflection in a line is a mapping of
all the points of the plane onto all the points
of the plane, symmetry in a point of a plane is
also a mapping of cll the points of the plane
onto all the points of the plane.

2. Both mappings, reflection in a line and sym-
metry in a point,

(a) are one-to-one,

(b) are isometries,

(c) map collinear points onto collinear points,
(d) preserve betweeness.

What other properties would you conjecture? Per-
haps the next activity will suggest some others,

Activity 8: Find the image of triangle ABC (usvally
written as “AABC") under the symmetry in P. Call it
AN B'C' whereA - A',B—= B,C —=C,

C A

Compare the spread of the rays of A, B, C with the
corresponding spread of the rays at A’, B', C'. How
do thelengths AB, BC, and AC compare with A’ B',B'C’
and A’ C’ ? What additional conjectures would you now
make that have not been mentioned regarding the im-
age of a line, ray, and segment under symmetry in a
point? What conjecture would you make regarding the
spread of two rays and the spread of their images un-
der symmetry in a point?

Have you thought of these:

3. Symmetry in a point, just as reflection in a
line:

(a) maps segments onto segments
(b) rays onto rays
(c) lines onto lines

(d) preserves the spread ./ two rays
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Cut out AABC and AA’ B'C'. Try to notice ex-
actly what you have to do to make one triangle fit on
the other. Do you have to turn one over before they
will fit? Recall that for reflection in a line it was of-
ten necessary to turn over the figure or its image to
obtain a fit.

The lines of your lined paper are parallel lines.
In general, if two lines are in the same plane (flat sur-
face) and do not cross, the lines are parallel. What
happens to parallel lines under a reflection in a line
ond symmetry in a point?

Activity 9: Materials needed: Pencil, lined paper, un-
lined paper, compass.

—

-
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Draw a figure like the one shown here, with two
lines parallel. Find the image of AB under a sym-
metry in P; call it A’ B', Does it seem that AB and
A' B’ are parallel? |f they are parallel (let us abbrevi-
ate our writing by using the symbol ** | |”* for ““is
parallel to’’) we have AB | |A’ B'. Find the image of
CD under a symmetry in P, calling the image C'D’ . Is
CD | | C' D' ? What conjectures would you be willing
to make now?

Find the reflections of the parallel lines CD and
AB in m. Are the reflections parallel? Is CD parallel
to its reflection in m? Have you made any of these
conjectures?

1. A line maps onto a parallel line under sym-
metry in a point.

2. Two parallel lines map onto two parallel lines
under symmetry in a point and reflection in a
line.

3. The image of a figure under a symmetry in a
point is a rotation of the figure through a *‘half
turn’’:

9.10 Exercises

1. What point is its own image under a symmetry
in point P?

2. |s there a point P in which a symmetry will map
each of the following figues onto themselves?
(1f there is, show its location)

(a) A line segment
(b) A ray
(c) A line




(d) A pair of parallel lines

(e) A parallelogram

(f) The letter Z

3. If there is a point in which a symmetry will
map a figure onio itseif we say ihe figure is

(a) A picture of a face (1) front view (2) side
view

(b) A circle

(c) A square

(d) A rectangle

(e) A pictureof a top

(f) A picture of a 5 corner star
(g) A picture of a 6 corner star
(h) A swastika

symmetric in a point. |f there is a line in which 1
a reflection will map a figure onto itself we say
the figure is symmetric in a line, For each

(i) A crescent

8. Denote by *‘pp’’ the symmetry mapping in point

printed capital letter in the English alphabet,
decide whether it is frequently symmetric in a

P, and by **(),"* the reflection mapping in line
m. Find the image of AB under each of the fol-

point or in a line or neither. lowing composition mappings:
Symmetric Symmetric (a) Qm with pp (c) Qm with Qm
Letter in aPoint in a Line Neither (b) pp with Qm (d) pp with pp
A No Yes -
B s
C / or
. A
z (0 {p with q ) Qqwith {p
4. |s there a line, m, in which a reflection will
map each of the following figures onto itself? A
If there is, show it
(a) A line segment
(b) A ray o °9 :
: (c) A line i
(d) A parallelogram . . 3
i poltel v Hin Fnd o o af (6 Wich of th above moppinge () gove an i
under the symmetry in P. ;l':':tgleineosez;i::sr or: paorollei if theyOZre '
| —:2 porall_e.l_ lines.)
o? 9. If AB and CD have the same length, find one

or more symmetries that wili map AB onto CD.
(you may have to compose two symmetries)

VAN

6. Try to find a way of obtaining a line through P
parallel to m. (See Exercise 5) E

1 (a) by folding your paper A
3 (b) without folding but using your compass / \
© )

7. What kind of symmetry does each of the follow- g
.

pryLyrai
5 £ P

ing have?
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10. Let r| | s. Find the image of AB under each of
the following composition mappings:

(O)Q,.OQS (b) QSOQ,

L4 $

(c) Are the images found in (a) and (b)
(1) the same? '
(2) parallel?
(3) parallel to AB?
11. Consider the following design; call it T.

Y

Describe how to obtain each of the following .
designs, using T or its images under mappings.

. m

12. (o) List ot least 5 ways in which reflection in
a line and symmetry in a point are alike,

(b) List ot least 2 ways in which they are not
alike.
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9.11 Translations

In chapter 4 we regarded 2 to be a mapping that
sends every point of a plane onto a point of the plane
2 units to the “right’" (or the ‘‘east”). Assuming that
our urit is the inch, the mapping 2 of a few isolated
points may be shown as follows:

/

.x‘r—
C
De

AB is mapped onto A"B',BC is mapped onto BC,
D is mapped onto D'
Activity:

Select points A, B, C on the parallel lines of

your lined paper with C between A and B. Find the
image of A, B, C under the translation 2.

Let the image of A, B, C be A’, B, C', Compare the
distances AB with A’ B', AC with A'C’, BC with
B'C’. How does the direction of AB compare with
that of A’ B' ? What can you say about AA’, BB',CC'?
If C were the midpoint of AB what would you conjec-
ture about C' ?

Let A, B, C be non-collinear points on different
lines of your paper, Find the image of A ABC under
the translation2. Call it AA'B'C’,

A

C

Compare the spreads of the rays at A with those at A’,
the rays at B with those at B’, the rays at C with those
at C' . What generalizations would you be willing to
make for translations regarding: isometry, collinearity,
betweeness, midpoints, parallelism, spreads? Carry
out some other activity if you feel that you have to
check some of your conjectures. '
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You may have thought of the following generaliza-
tions:

A translation

S SR i e

1, is on isometry
2. maps lines segments onto parallel line segments

3. preserves collinearity, betweeness and mid-
points

4, preserves parallelism and spread
A iranslation nesd not have a magnituds of just two
units and a direction only to the right, A translation
may have a magnitude cf any number of units and any
fixed direction. Although our directed numbers showed
4 directions, there are in general infinitely many direc-
tions possible for a translation. Because we have the
lines of our lined paper so handy, we shall be trans-
lating mainly to the right or left. However, one could
always turn the paper so that a translation is along
the parallel lines of our paper.

9.12 Exercises

1. Which points, if any, are their own images un-
der a translation?

2. Which of the following sets remain the same un-

der some translation of magnitude greater than O?

Describe the translation(s).
(a) segment

(b) ray

(c) line

(d) plane

(e) half-plane

3. Many designs are made by a succession of
translations. You can make a face design by do-
ing the following:

(1) Draw a face on a blank sheet, about the
size shown here, near the left edge of

your paper.

(2) Place a piece of carbon paper face down
on another blank sheet,

(3) Mark off 2" intervals along the upper and

lower edges of the paper under the carbon.

(4) Line up the paper containing the face fig-
ure with the other paper.
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(5) Trace over the face figure with pencil.

(6) Move face sheet 2" to the right using
the marks you made as a guide and
trace over face again.

(7) Move face sheet 2'’ again to the right
and trace fcce again.

(8) You should bz able to get 4 or 5 faces
on your paper this way.

(9) Try to describe the 4 or 5 faces in terms
of transiations.

4, Using the same facemake 6 copies using the
translation 1 + 1 over and over.

5. Usinga 2" square to start, moke 6 copies us-
ing each of the following translations over and
over:

(@) 1 (51 + 14
6. What happens when you use the same:

(a) line reflection over andover on a figure and
its image?

(b) point symmetry over and over on a figure and
its image?

9.13 Rotations

We have already observed that a point symmetry
applied to a figure corresponds to giving the figure a
half tumn.

If we start with the figure to the left of P and apply
the point symmetry pp we obtain the figure to the right
of P. If we start with the figure to the right of P and
apply pp we obtain the figureon the left of P, The
entire figure above (the original F and its image under
pp ) is symmetric in P. But how would you regard the
following figure?




Is it symmetric in a line? in a point? It seems to hove
some kind of symmetry! If we rotate the figure 1 of a
complete rotation, we obtain the very same figure. Al-
so, starting with any single F we can obtain the other
two by rotating the figure through a 3 tum twice. This
suggests mappings which are rotations about some
fixed point. A rotation in apaint maps every point of
the plane onto a point of the plane, Whatis needed to
specify a rotation mapping?

We shall say thot a figure has rotational symmetry
if there is a point and a rofation, which is less than o
full rotation but not a zero rotation, that maps the fig-
ure onto itself. Both F - figures above have rotation-

al symmetry.

9.14 Exercises

1. Which of the printed capital letters have rota-
tional symmetry?

2. What properties are preserved under a general
rotation like a 4 tum? Which are not?

3. Let us denote by ‘‘P "’ a rotation that maps
a
every point of the plane by a 3 tum counter-
clockwise about point P. Which of the follow-
ing figures are their own images under P,?

4
(0) v ©) )
’ 4

rectangle

(b) @ ®

P is center of o
triangle with sides

i ter of
P e of some length

a circle

4. What kind of symmetry or symmetries does each
of the following sets of points have?

(a) Lattice Points of the First Quadrant

(b) Lattice Points of the First and Second
Quadrant

(c) Lattice Points of the First and Third Quad-

rant .

(d) All the Lattice Points in a Plane

5. Let theoperation be composition. Let e be the
identity mappings: Fill in the following tables,

( (a), (b), ond (c) refer to the square. (d) refers
to the triangle.)
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1qUare =

r, s, t are fixed lines on the plane.
The lengths of AB, BC, and AC are

the same.

N

6. In 5(a)—(c), find theinverse for each of the
mappings:

@ ., ®pp (@P, AP, (P,
3 9

3 2
7. Which mappings preserve

(d) midpoints

(e) direction of a line

(a) distances
(b) collinearity
(c) betweeness () parallelism

(g) clockwise orientation
8. Which mappings do not, in general, preserve
(d) midpoints
(e) direction of a line

(a) distances
(b) collinearity
(c) betweeness (f) parallelism
(g) clockwise orientation

9. Let us try to extend some of our mappings into
3 dimensions. Describe and try to give examples
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of the corresponding symmetry for each of the
following:

(a) Reflection in a plane

(b) Symmetry in a line (in space)

(c) Rotation about a line

(d) Translation in space

10. What are needed to specify each of the follow-
ing types of mappings:

(a) A reflection in a line

(b) A symmetry in a point

(c) A translation

(d) A rotation

9.15 Summary of Chapter 9

1. A reflection in a line is a one-to-one mapping
of all the points of a plane onto all the points
of the plane preserving:

distance midpoint
collinearity spread
betweeness parallelism

A reflection preserves neither orientation nor
direction. If the reflection of A in mis A’ , then
AN is bisected by m. If m is the line in which
a reflection is taken, then each point of m is
its own image,

A symmetry in a point is a one-to-one mapping
of all the points of a plane onto all the points
of the plane preserving:

distance spread
collinearity parallelism
betweeness orientation
midpoint

A symmetry in a point maps a@ line onto a paral-
lel line; it is the same as a half-tumn, If the im-
age of A under a symmetry in P is A’, then P

is the midpoint of AA’ If P is the pointin which
a point symmetry is taken, then P is the only
point that is its own image. '

. A translation is a one-to-one mapping of all the
points of a plane onto all the points of the plane
preserving:

distance spread
collinearity " parallelism
betweeness orientation
midpoint

No point is its own image under a translation
that has a magnitude greater than O.

. A rotation about a point is a one-to-one mapping
of all the points of a plane onto all the points

of the plane preserving:

distance spread
collinearity parallelism
betweeness orientation
midpoint

The point about which a rotation is taken is
the only point that is its own image, unless
the rotation is a multiple of a complete rotation.

9.16 REVIEW EXERCISES
1. Fill in the table with “YES"’, if the mapping
has the property, and “NO’’, if it does not.

"”:::'Ping lionfl:'c‘:‘i:n .':'y'vm::'v.y Translotion | Rotation
istances

isometry)

Collineority

Setweeness

Midpoint

Spread

Parallelism

Ovientotion

2. What kind of mapping and symmetry are suggest-
ed by each of the following

1
>

(b)
(o)

O NN
SO NN NN

3, Which points are their own images under

)

(h)

(a) Reflaction in a line
(b) symmetry in a point
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(c) translation
(d) rotation

4, Which of the following figures may be identical
with its image under one of the four mappings
mentioned in Exercise 3?

Explain:
(a) line
(b) ray

{c) line segment

(d) two rays which are not opposite yet share a
common end point.

(e) a square
(f) a rectangle

(9) a poralielogram

5. When are two lines perpendicular?

6. What holds for the two lines m and n if

Qm °Qn =an °Qm?
7. Find all points P each of which has the same
image under both composite mappin gs.

Qm °Qn mdQn °Qm

8. What is the fewest line reflections whose com-

positions suffice to

eh et pA . RS

(a) map any fixed point A onto a fixed point B?
(b) map ony fixed ray onto any fixed ray?
(c) map any fixed line onto any fixed line?

(d) map any fixed line segment onto any fixed
line segment of the same length?

(e) map any AABC onto AA’' B'C’ if AB=A'B’,
AC-A'C',BC=B'C'?
9. Find the reflection in m of AB.

.

10. Find the image of AABC under the symmetry in
point P

<

[ ] A of

11. In Exercise 10 apply Py P', P, to AABC. 3
C I :
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CHAPTER 10
SEGMENTS, ANGLES, AND ISOMETRIES

10.1 Introduction
In previous chapters you have been introduced to

many geomeiricaj ideas which have been studied with
the help of coordinates and mappings, particularly iso-
metries. In this chapter, we shall tie together many of
these results, make them more precise, and extend
them to the study of angles.

Since isometries are distance preserving mappings,
we shall look more closely at segments and their
measure. Then we shall consider angles, how they are
measured, and their behavior under an isometry. An in-
teresting question will be whether or not the measure
of an angle is preserved by an isometry.

We begin by considering some basic properties of
lines and planes that are important for our study of
segments cnd angles.

10.2 Lines, Rays, and Segments

It may seem to you, on reading this section, that
we are making obvious statements and thus wasting
time. If so, you will be confusing the obvious with the
trivial. Obvious statements can have great significance,
For instance, the statement: ‘‘The United States has
only one president'”’ is quite obvious, but its implica-
tions for the govemment and people of the United
States are extremely important.

Our first statement about lines is obvious. It is
called the Line Separation Principle andit expresses
in a precise way the following idea: |f we imagine one
single point P removed from a line {/, the rest of the
line “‘falls apart’’ into two distinct portions (subsets),
Each of these portionsis called an open halfline,
Along each halfline, one can move smoothly from point
to point without ever encountering point P, However,
if onemoves along line ! from a point in one halfline
to a point in the other halfline, then it is necessary to
cross through point P, See Figure 10.1.
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Figure 10.1

The mathematical way of stating this principle

more precisely is as follows:
Any point P, on a line Q separates the rest on
into two disjoint sets having the following properties:

(1) 1 A and B are two distinct points in one of
these sets then all points between A and B
are in this set,

Q
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(2) If A is in ore set and C is in the other, then P
is between A and C.

Oneof these opan halflines may be desigatedol?ﬁr_.
the other PB. The little circle at the beginning of the
arrow indi cates that P it.z_e_liis not a point of the open
halfline. If P is added to PA then we obtain the half-
line, or ray, designated PA (no circle at the beginning
of the arrow). You should be able to name two open
halflines of Q with point A as the point of separation,
and name two distinct rays starting at A, The starting
point of a ray is called its vertex or end point. Note

b T,

that PA and PB contain the same points, thus PA +PB;
also PA=PB, —

The set of points common to PA and AP is the seg-
ment PA. Thus PANAP = AP. The set of points found
in either PA or PC or both is the line {]. Thus
PAUPC ={.

10.3 Exercise. In Exercise 1-3 refer to the line Q below.

e - -0 e *- o~ -t (
A s C D 13

1. Name two distinct rays of Q having C as end-
point. Name the open halflines of Qfor point
of separation C,

2. Using two points name each of the following:

@ABUBC (J)ACNDB (i)BANBC
HABUBE (HACNDE ()BANBC
ABUBE (9ACNDB (WBANBC
dABUBC MACNBD (1)BANBCE
3. (a) Name a ray with endpoint B, containing E.

(b) Name an open halfline contained in BA.,
Are there others?

(c) Describe the set of points determined by
CANAC,

(d) Name a ray containingoﬁﬁ. Are there others?

4, Let Q be @ line and P one of its points. Leth,
and h,, be the two open halflines of { deter-
mined by P. Let A and B be distinct points in
h,ard C a point in h,_ Determine whether each
‘of the following statements is true or false;

hy M
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(a) All points of AB are in h "
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(b) All points of AB are in h,.

(c) Either AB or BA contains C.

(d) Both AB and BA contain C,

(e) PC contains A

(f) CP contains A _

(g) All points ofFE, other than P, are in h,,

A (4 ]
fp— R = ®> —— - - L
-2 . | 0 i z 3

Using the data shown in the above diagram tell
what values x may have if x is the number as-
signed to a point in each of the following sets:

(@ AB (c)BA (e)AB (9) AP NPB
() AB (d)AB (f)ABNPB (h) AP UPA

10.4 Planes and Halfplanes

A second separation principle concerns planes
and is another exampleof an obvious statement. It
statas an essential property of planes.

It will help you to think about a plane if you im-
agine a very large flat sheet of paper, so large that
its edges are inconceivably far and unreachable. In
fact, it would be even better if you could think of a
plane as having no edges, just as a line has no end-
points. In such a plane we could think of a line; other-
wise a line, reaching any edge the paper might have,
would have to stop and thus acquire an end point. But
then it would not be a line!

We cannot draw a line, since any drawing would
necessarily have to begin and end. In the same vein
we cannot draw a plane. But we suggested a line by
drawing a segment and arrows at each end. We suggest
a plane by drawing a piece of it, as shown in Figure
10.2. Unfortunately thereis no easy way to suggest in

[/

Figure 10.2

the drawing that the plane has no edges. However, to
remind you that we are talking about a plane, rather,
that apieceof it, we shall use script capital letters
to name the plane. For instance, P, R,d will be names
of planes.

Our second separation principle concerns planes.
This Plane Separation Principle expresses in a pre-
cise manner, the followiniy idea:

Any line Q in a plane P separates the rest of the
plane into two distinct portions (subsets), Each of

these portions is called an open holiplc-: +. Within each

Figure 10.3

halfplane one can move smoothly from point to point
without ever encountering line Q . However, if one
moves within plane P from a point in one open half-
plane to a point in the other open halfplane, then it is
necessary to cross line { . The mathematical way of
stating this is as follows:

Any line Q in a plane 1 separates the rest of P in-

to two disjoint sets having the following properties:

(1) 1§ A and B are two distinct points in one of
these sets then all pointsof AB are in this sef.
(2) If A is in one set and C is in the other then AC
(the segment, not AC) intersects Q in a point.
The line Q is called the boundary of each open
hal fplane determined by U, but actually it does not be-
lone to either open halfplane. The union of an open

halfplane with its bourdary is called a halfplane.

Figure 10.4

In the planie named R in Figure 10.4 you see line
m separating [ into the two halfplanes, named H, and
H,. IfA isin H, wmay also call H, the A-side of m.
Tﬁen H, is the opposite side to the A-side.
10.5 Exercises

L

Lei P be aplane containing line Q and let Q con-
tain point A, Let the two halfplanes determined by

be H, and H,. Determine whether each of the following

statements is true or false:

1. Any line containing A, other than Q , contfains
points of H, and H,.
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2. Any ray with endpoint A, not lying in Q. con- Now suppose we move the ruler to the left until
tains points of H, and H,. it arrives at the position shown below.

3. Any segment containing A as an interior point,

not lying in { , contains points of H, and H,. ? >
1 17 1 © |
4. If B and C are any two distinct points in H,, 0 } 2 3 4 s 6
not in Q then BC intersects Q | | | | | |
5. If B and C are any two distinct points in H ,
then BC does not intersect {) . Figure 10.6
6. 1f B and C are two distinct points in H,, then What is the number assigned by the ruler to A? to B?
BC may not intersect . . Using these numbers how can you find AB? Probably
7. 16 D is in H and E is in H., then it is possible  ¥°Y subtracted 2 from 5 since inis calculaiion gives :
that DE | Q 2 the number of unit spaces in AB. But suppose we 3

tumed the ruler around to this position.
Quadrant |1 r y oxis Quadrant |

A :

1 [
¢ 9 s 1 € 1 ;
’././:5 l I I | I :
/0 1 2 ;
Figure 10.7 :

o () ) W
ane—

What are the assignments made by the ruler to A and B, 3
in this position? Would you subtract 5 from 2 to find p
Quadrant Il 4 Quadrant IV AB? This, of course, gives -3, In measuring the length ]
of a segment we want to know howmany unit spaces it ‘
contains. Therefore, we use only positive numbers for
8. The coordinate system shown separates the lengths of segments. |f we do subtract 5 from 2, we must
plane into four sets, each called a Quadrant, take the absolute value of the difference. In general,
The x-axis separates the plane into two open then, if a ruler assigns the numbers x, and x, to the
halfplanes, one containing (0,2) the other con- end points of a segment AB, we can use the distance
taining (0, -2). Let us name the first of these formula
open halfplanes H,,, the other H_,. Similarly, AB = |x, -x
the y-axis separates the plane into two open 17 %z
halfplanes which we name H , and H _,,, with Let us now consider a ruler which has negative
the obvious meaning attached to each. Now numbers on it (like a thermometer) that is placed against
Quadrant ! = H_, N H,,. In the same manner de- AB and looks like this,
fine Quadrants 11, lll, and IV, A .
10.6 Measurements of Segments ! ! (l, ‘ 1 ! !
Let us examine what is involvad when we use a | | | | | |
ruler to find the length of a segment. We first place the
graduated edge of the ruler against a line segment, say )
AB, matching the zero point of the ruler with one of the Figure 10.8
points, say A, or perhaps like this,
A s A s
17 1T 1 1 | { § 117 17 T 1 |
0 1 2 3 4 s 6 -1 -0 -9 -8 -7 -6 -5
N I I N [ A T T
Figure 10.9

Figure 10.5

We then assign to point B the number on the ruler which
matches it and say that the length of AB, denoted by AB,
is the number assigned to B, In our example the ruler

assigns O to A and 3 to B. So AB =3.

or even like this.
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Figure 10.10

Does the distance formula give us the number of unit
spaces in each case? Let us see.

For the fourth position (Figure 10.8) the formuia
yields: AB = | -1 -2|

For the fifth position (Figure 10.9) the formula yields:
AB = | =10(-7)|

For the sixth position (Figure 10,10) the formula
yields: AB = |2-(-1)|
Is 3 the value of AB in each case?

You know that the distance from A to B should
be the same as the distance from B to A, In the
formula this reverses x, and x,. Is it true that
Ix1 - le = Ixz - x,l?

Let us review the results of this section in terms
of mappings.

(a) A ruler assigns numbers x, and x, to the

endpoints of AB. Thus A—=x, and B— x,.

Then we say AB = |x1 - le.

(b) Moving the ruler 2 spaces to the left (as we
did) is a translation with rule n—=n+2,
Thus x,—> x, + 2 and x,—>Xx, + 2. We ask
you to answer two questions:

(1) Does a translation preserve distance?

(2)1s | Xy ~ Xp | preserved under this trans-
lation?

Suppose the ruler were moved to the right. Are
the last two answers changed?

(c) In the fourth and fifth positions (Figures
10.8 and 10.9) wemoved the ruler still
turther to the left. Is the compositicn of
two translations still a translation? Do the
answers fo our two questions change for the
third position?

(d) Let us compare the rulers in the first and

last positions,
6 7 8 j
Z 2 -3 -4 }
L1 |
Figure 10.11

Do you see a mapping of Z into Z with the rule
n—4 - n? Then x,—=4 - x, and x,— 4 - x.

-+
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But |(4~x,) — (4-x,) | = |x2 - X, | And again we can
say yes to our two questions above. We conclude that
the distance formula gives the correct distance for all
positions of a rulor,

10.7 Exercises

1. In this exercise use the numbers assigned by
the ruler to points in the diagram below. First
express the iength of the segments listed below
in the form |X; - x2|. Then compute the length.

A [ ] C D E F G
I | 1 1l 1
o % v 1y 2 3 3% 4 4% 5 5™ 6
(a) AC (e) BC (i) CD
(b) AE (f) BD (j) FC
(c) AG (9) FB (k) EF
(d) FA (h) GB (1) GF

2. A ruler, graduated with negative and positive
numbers assigns O to point A, What number does
it assign to B if AB = 3? (Two answers)

3. A rler assigns 8 to D. What number does it
assign to E if DE = 2, (Try to solve this problem
by solving the equation |x—8| =2.)

4, A ruler assigns 83 to F. What number con it
assign to G if FG = 6%?

10.8 Midpoints and other Points of Division

A C ]
-l L . — > i
8 X 15

Figure 10,12

Let a ruler assign 8 to A and 15 to B. We shall

try to find the number assigned to C, the midpoint of
AB. Let that number be represented by x (See Figure
10.12). You recall thata midpoint of a segment bisects
it. This means that the length of AC is the same as the
length of CB. This explains statement (1) below. Ex-
plain (2). Now x-8 must be positive. Why? Also 15-x
is positive. Why? So the equality in (2) implies (3). Ex-
plain (4) and (5). Check whether for x = ll-i, AC = CB.

(1)AC =CB (4 2x=23
2) | x-8]=115-x| (5 x =11}
(3) x-8 =15 - x

Use this method of iinding the number assigned to
a midpoint of DE if a ruler assigns -2 to Dand 5 to E.

Let us generalize this method, that is, let us find
a formula for midpoints. Let a ruler assign x, to A and
x, to B where x, < x, and let x represent the number
assigned to C, the midpoint of AB (See Figure 10.13).
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Figure 10,13
Then, AC=CB
|x—x,|=|x2 -x|

X=X, = X,-X (Why?)
2x = x, + X,
x = (xy +x,)
Do you recognize that x is themean of x4 and x2 ? This
is an easy way to remember this formula.

L4

xXew

3 12

Figure 10.14

Suppose R is in PQ and it divides PQ in the ratio
1:2 from P to Q. (The phrase ‘‘from P to Q'* tells that
PR corresponds to 1 and RQ to 2.) To find x for the
dai+ shown in Figure 10.14 we can proceed as follows:

M 1x-3|_1 al - 119,
= 2or2|x3|-|l2x|

Both x-3 and 12-x are positive.
(2) 2 +(x-3) =12-x

(3) 2x-6 =12-x 6- ]
Ch '( =
(4)3x =18 eck 1126 = 2
(5) x=6
. R ! Q ——
X 3 12

Figure 10.15

Suppose, instead, that R were not between P and Q.
Then 3-x is positive and 12 -x is positive. Then step
(2) above becomes (2') 2¢(3-x) =(12-x). Complete the

solution and check.

10.9 Exercises

In exercises 1-4 you are asked to derive results
which are going to be used in later developments. In
this respect they differ from other exercises whose re-
sults can be forgotten without ham to an understanding
of future developments. These exercises are starred (*).
In following sections such exercises will also be

starred.

*]. Let B be an interior point of AC and let a ruler’
assign numbers 5 and 12 to A and C, as shown.

" g

. oBen
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This last result may be stated in general as fol-
lows: If B is between A and C, then AB + BC = AC., It
is called the

*2.

(a) What is one possible assignment to B that
guarantees that B is an interior point of AC,
Name three other possible assignments to B
that also guarantee that B is between A and

C. What are all the possible assignments to
B such that B is between 4 and C?

(b) Show that AB + BC = AC if B is assigned
the number 8 or the number 111,

(c) Show that AB 1+ BC = AC if B is assigned
the number x such that 5 < x < 12,

Additive Property of Betweeness for Points,

Suppose two circles in a plane have centers at
A and B, and respective radii ry and ro. We are
going to compare AB with ry +r2 for different
positions of the two circles.

Figure 10.16

(a) Suppose the circles do not intersect as
shown in Figure 10.16. Then AB = AD + DB
(Why?) and AD = AC + CD (Why?) So AB =
AC + CD + DB, But AC =ry and DB =r3,
Hence AB =ry + CD +rz. Thus AB > ry +

r2.

Figure 10.17

(b) Consider the position of the circles in Fig-
ure 10.17, in which the circles just touch at
C. Show that AB =r, +r,,

Figure 10.18




(c) Consider the position of the circles in Fig-
ure 10,18 in which they intersect. One of
the points of intersection is named E. .

Now AB = AC + CB, Why? and CB < r,
so AB < ry +r2, Why?

EA and EB are also radii and therefore

EA =r, and EB - ra.

Therefore AB < EA + EB

In words, this last result means, that the length
of any side of a triangle (AABE in this case), is less
than the sum of the lengths of the other two. We call
this conclusion the Triangle Inequdlity Property. You
should note that for any triangle, there are three in-
equalities. Thus, for ADEF (Figure 10.19)

AN

Figure 10.19
(a) DE < EF +FD
(b) EF < FD +DE
(c) FD < DE +EF

3, For Figure 10.20, we see by the triangle In-
equality Property that in AABD, DA +AB > DB.
Use this fact to show that the perimeter of
ADAC is greater than the perimeter of ADBC,

Figure 10.20

4, Show in AABC that the difference between the
lengths of any two sides is less than the
length of the third side.

5. Which of the following triplets of numbers may
be the lengths of the sides of a triangle?

(a) 5,6, 8 (d) 4.1, 8.2, 123
(b 5, 6, 11 (e) 18, 22, 39
(91,23 (F) 4}, 43, 45

10.10 Using Coordinates to Extend | sometries.

Let us consider an isometry, f, of a pair of points
(A, B}. If f: A=A’ and B—B', then AB = A"B'.
How can we extend this isometry to a third point of
AB? Thisis easily done by working with the line co-
ordinate system on that assigns 0 to A and 1 to B.

Since AB = A’ B’ =1, there is a coordinate system on
A B that assigns 0to A’ and 1 to B'.
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Figure 10.21

Now suppose C is any point on AB and let its co-
ordinate be x. We can extend £ to C by taking for its
image the point C' on A"B’ whose coordinate is also
x. To convince yourself that we have succeeded in ex-
tending f you should verify that AC = A'C’ and
BC = 8" C'. You can do this by using the distance
formula. How can you extend f to other points of AB?

Let us go on to consider an isometry, g, of three
noncollinear points {A,B,C} and how to extend g toa
fourth point in the plane of A, B, C.

Draw a triangle with plane coordinates as shown
in Figure 10.22. On another paper trace AABC, calling
it AA'B'C', and giving A’, B', C*, the same coordin-
ates respectively as A, B, .C. Take any point D on the
first paper and read its coordinates. Locate the point
D’ on the second paper with the same coordinates as
D. Now place one paper over the other so that A—=A’,
B—=B', C—=C', Does D—D’ ? What conclusion
seems indicated from this experiment? How can you ex-
tend g to other points of the plane?

c (o) -

.

(0,0) (1,0)

Figure 10.22

10.11 Coordinates and Translations

As you will see, coordinates are quite useful in
studying translations of points of a plane onto points
of the same plane. Suppose point A has coordinates
(1, 3) in some plane coordinate system and is mapped
onto A’, with coordinates (4, 5) by a translation, We
can regard this translation as the composition of two
motions. The first, moves a point 3 units in the direc-
tion of the positive x-axis and is followed by a second
motion of 2 units in the direction of the positive y-axis.
Any other point of the plane will also have an image
under this composite translation. The rule of this trans-
lation is easy to write,

X —— X+3

Yy — Y2
or simply (x,y) — (x+3, y+2)




G T EMG T T T e TR TR RN Bl A R Y Y AN T = 4
) Y g0 K

A(43)

Figure 10.23

Under this rule B with coordinates (3, 8) is mapped
onto B' with coordinates (6, 10).

Now consider ABB'A’_in Figure 10.24. Under the
translation above AB—=A’ B', This leads to the con-
clusion that AB =A' B’ and AB | | A’ B'. Thus ABB' A’

is a parallelogram.

Figure 10.24

We can now check some old results about parallel-
ograms in terms of coordinates, in particular, whether
the diagonals bisect each other. But the coordinate
formula fo- midpoints available to us is for line coordin-
ates. We must therefore develop a formula for plane co-
ordinates, _

In Figure 10.25 we show only the diagonal AB'.
Let M be themidpoint of AB' and consider the parallel
projection in the direction of the y-axis onto the x-axis.
This projection maps A onto A’, M onto M’ and B onto
B'. Since a parallel projection preserves nidpoints it
follows that M’ is the midpoint of A’ B'. But the line
coordinate of M' is J (1+6) or 3- Since M obtains its
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x-coordinate by parallel projection then the x-coordin-
ate of M is Z. Using a diagram, show that the y-co-
ordinate of ﬁ is 3 (3+10) or . '

In general, it P has coolzinotes (x4,y4) and @ has
coordinates (x2, y2) then themidpoint of PQ has co-
ordinates,

Xy +X2, Y1 tY2
2 2

___ Now verify that the coordinates of the midpoint of
BA' arealso (3, ). Does this verify that the diagon-
als of ABB’A’' bisect each other?

There is a bonus in this consideration, which you
will be asked to prove in an exercise, It is this: In any
parallelogram the sum of the x-coordinates of either
pair of opposite vertices is the same. In fact we can
go on to say that ABCD is a parallelogram if the sum
of the x-coordinates of A and C is equal to the sum of
the x-coordinates of B and D, and the sum of the y-co-
ordinatesof A and C is equal to the sum of the y-co-
ordinates of B and D. We can prove this if we can show
thot.A_ﬁl |‘€|5 ondT\_D.| IfB.E Let us start with ABCD
and coordinates in some system as shown in Figure
10.26. Then we are told that

ate =c+g ond
it follows that
3 (a+e) =4 (c+g) and

)

bif = d+h

% (b+f) = % (d+h).

c(ef)

Figure 10.26 "

Ab)




: This means that AC and BD bisect each other, say
Fin M, Thus M is the center of a point symmetry that

- maps A onto C and B onto D.

’ Point symmetry preserves parallelism, Hence

. AB| | CD. Mis also the centerof a point symmetiy that
maps A onto Cand D onto B thus AD | | ZC. We con-
clude that ABCD is a parallelogram,

10.12 Exercises

1. Let ABB' A’ be a parallelogram, It can be re-
garded as having been formed by a translation

TS 8cd)

under which A—=A’ and B—=B’, Suppose A
and B have coordinates (a, b) and (c, d) respec-
tively in some coordinate system. Let the trans-
lation have the rule:

x—ex +p and y—sy +q.

Then A’ has coordinates (a+p, b+q) and B’ has
coordinates (c+p, d+q).

(a) Using the midpoint formula show that AB'
and A’ B bisect each other.

(b) Show that the sum of the x-coordinates of A

and B’ is equal to the sum of the x-coordin-
ates of A’ and B,

(¢) Show that the sum of the y-coordinates of A
and B’ is equal to the sum of the y-coordin-
ates of A’ and B,

2. Suppose ABCD is a parallelogram and the co-
ordinates of three vertices are given. Find the
coordinates of the missing vertex, Check your
answers with a drawing.

(a) A (0,0) B (3,0). D (0,2)
(b) A(0,0) B (3,2 D (2,3)
(c) A(2,1) B (5,6) C (0,0)
(d) A (3,2) C(-3,2) D (-2,5)
(e) B(-3,2) C (3,3) D (2,5)
(f) A (0,0) B (a,0) . D (0,b)

- (a) A (a,b) B(c,d) . C (e,f

3. Suppose ABCD is a parallelogram, that E is the
midpoint of AB and F is the midpoint of CD.
Show that AECF is also a parallelogram. (You
can simplify the proof by using the coordinate
system in which A, B, D have coordinates (0,0),
(1,0) and (0.1) respectively).
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(a) Using the indicated coordinates, show that
PQRS is a parallelogram.

) Qu0)

(b) Suppose B is the midpoint of SQ, that A'is
the midpoint of SB and C is the midpoint of

BQ. Show that PCRA is also a parallelogram,

5. For the parallelogram PQRS in Exercise 4 take
any suitable coordinates for the vertices and
show again that PCRA is a parallelogram. What
is the significance of taking any suitable co-
ordinates for P, Q, R, S?

6. Using coordinates, show that translations pre-
serve midpoints.

10.13 Perpendicular Lines

In a preceding chapter we studied reflections in a
line. In this section we use such reflections to review
and extend the idea of perpendiculer lines.

S

Figure 10.27
In the diagram of Figure 10,27 you see that the re-

flection of line a in a line { is @' Nowa and a’ are
different lines, but they intersect each other at point
P. Why must P be a point of ? Imagine that @ ro-
tates around P as a pivot in the clockwise direction.
Let o continue to be the reflection of a.. How does o’
rotate? In the course of these rotations, does o’ ever
become the same as a?

. e Y > A ———— & S Sh) barar Wm0 e




Now rotate a in a counterclockwise direction, In
the course of this rotation does a’ again become the
same as a ?

We sea that a can be its own image, as it rotates
about P, in two ways. In oneof these a = { ; in the
other 9_%0 . For the second case a is perpendicular
to U . In general two lines are perpendicular if they
are different lines, and one of them is its own image
vnder a line reflection in the other.

Figure 10.28

We denote that a is perpendicular to Q by writing
a _l_ Q . Note that Q is also its own image under a re-
flection in o (Figure 10.28). So 0 | a whenever
al Q . Also note that the plane is separated by each
of the two perpendicular lines into two halfplanes and
that any point in one of these halfplanes has its own
image in the other.

PN By,

Figure 10.29

On a piece of paper draw line Q ond mark a point

A, either on or off { , as in Figure 10.29. Fold the
paper along a line containing A such that one part of

falls along the other. In how many ways can this
foid be made? You know that the lineof the crease is
perpendicular to {. 1t would seem then that there is
exactly one line containing a given point thot is per-
pendicular to a given line,

10.14 Exerci ses

1. For this exercise draw two parallel lineson
your paper, calling them a and b,

(a) Fold the paper so that one part of a falls
along the other part. Label the crease ¢. Is
c | a2 Why?

(b) For the fold you made in (a), does part of
b fall along another part of itself? What
bearing does your answer have on the per-
pendicularity relation of c and b?

port or do not support this statement: If two
lines are parallel, a line perpendicular to
one is perpendicular to the other.

W

A

—

"N

{

]

2, Suppose, as shown in the diagram, that AC | BC.
Can AB also be perpendicular to BC, Be ready
to support your answer,

2 (. ;

i | ‘;

| | |

3. Suppose, as shown in the diagrem, that 0,]a
and Qz | a. Can Q 4 intersect ( ,? Be ready
to support your answer. |f they do not intersect,
how do you describe their relationship?

4. Let A’ be the image of A under a reflection in
Q , as shown in the diagram, and let AA’ in-
tersect Q in P. What is the image of P under
this reflection? You know that a reflection in a
line preserves distance. Compare AP with A’P,
We see that 0 ['AA’ ond P is the midpoint of
AA’, We call () the midperpendicular or per-
pendicular bisector of AA', Show that every
point in {) is as far from A as from A’, We can
state the result of this exercise as follows:
Every point in the midperpendicular of a line
segment is as for from one endpoint of the seg-
ment as the other,

5. Suppose Qis the midperpendicular of AB, Sup-
pose E is in the B-side of Q , as shown in the
diagram.

(a) We can show that EA > EB as follows. You
are to give a reason for each statement,

(c) Tell how the results of this experiment sup-
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(1) A and B are on opposite sides of Q .
(2) E and A are on opposite sides of Q .

(3) EA intersects Q in a point, say C, which
is between A and E.

(4) EA =EC +CA
(5YEC+CB > EB
(6) CB =CA
(7YEC +CA > EB
(8) EA > EB

(b) Suppose F is in theA-side of 0. Show by
an argument like the one in (a) that FB >
FA.

(c) State in words the proposition that was
proved in (a) and (b).

10.15 UsingLCoordinotes for Line Reflections and
Point Symmetries,

For our present purpose we use a special coordin-
ate system in which the axes are perpendicular lines,
Such special coordinate systems are called rectangular
coordinate systems. We shall study reflections in their
axes. Let ) x be the line reflection in the x-axis and
let ) y be the line reflection in the y-axis. Let P have
coordinates (2,3).

Re o?(2,3)

Se oQ

Figure 10,30
If Q x. P—=Q, what are the coordinates of Q?
If Qy: P—=R, what are the coordinates of R?

If Q y: @—=S, what are the coordinates of $?
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We can form the composite of Q y with Q x by tak-
ing the reflection in the x-axis, followed by the reflec-
tion in the y-axis. What is the image of P under this
composite reflection? Does the image of P change if
we reverse the order of the reflections?

Now let us consider the same questions for a
point A with coordinates (a, b).

If 0 x: A—=B, what are the coordii-ates of B?
1£ 0 yi A==C, what are the coordinates of C?

If Q y with Q x: A= D, what are the coordinates
of D,

Do you agree that the rules for Q x and Q y, when
given in forms of coordinates of points are as follows:

for 0 ;' x—=x, y—=-y or (xy)—(x,-y)
or (x,y)—=(-xy) .
for Q y with Q X, X==t-—X, Y=+ -y OF
(%,y)=—>(-x,-y).
You must surely have noted by this time that the
composite of Q y with { x is a point symmetry in the
origin of the coordinate system, If we denote this sym-

metry in 0, the origin, as Pg we can state the rule of
Po in terms of coordinates as follows:

Po: (x,y) == (-x,-y)

for Q y: Xy, y—y

10.16 Exercises

1. For each of the points with coordinates in a rec-
tangular coordinate system given below find the
coordinafes of its image

(1) under the line reflection in the x-axis,
(2) under the line reflection in the y-axis, and
(3) under the point symmetry in the origin,
() 3,5) (c) (5,-3) (&) (2,0) (9 (-3,-1)
(b) (~3,5) (d) (-3,-5) (f) (0,5) (h) (82, -643)

. Let Q be the line that is perpendicular to the
x-axis containing the point with coordinates (3,4)
in some rectangular coordinate system, Let
points have the coordinates listed below. Find
the coordinates of the image of each point un.-
der a line reflection in Q

vl

oo swwmocdieamoome o
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() (1,4 ()32  (e) (000 (9 (8,-3)
(b) (0,3) (d) (-3,-1) () (10,0) (h) (x,y)
3. Let m be the line that is perpendicular to the
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y-axis of a rectangular coordinate system con-
taining the point with coordinates (3,4). Find
the coordinates of and the image of each point
in Exercise 2 under a line reflection in m.

4. Find the coordinates of the image of each point
in Exercise 2 under a point symmetry in the
origin 0.

5. Let A and B have rectangular coordinates (1,5)
and (3,1) respectively.
() Let { ;- A=A’ and B—=B'. Find the co-
ordinates of A’ and B’.

(b) Find the coordinates of the midpoint M of
AB and let {} x: M—=M'. Find the coordin-
ates of M'.

(c) Show that M’ is the midpoint of AR,

(d) State a proposition suggested by the results
of this exercise.

6. Show that the line reflection in the x-oxis pre-
serves midpoints. You might wish to work with
points A and B having coordinates (2a, 2b) and
(2¢,2d).

7. Show that the point symmetry in the origin 0
preserves midpoints.

8. (a) Determine whether the points with coordin-
ates (1,3), (4,1), (10, -3) are on the same

(b) Find the coordinates of the images of the
three points in (a) under the line reflection
in the x-axis and determine whether or not
the images are on a line.

(c) State in words what the results of this ex-
ercise seem to indicate.

9, Using the three points in Exercise 8 show that
their images under a point symmetry in the
origin are on a line.

10.17 What is an Angle?

No doubt the word ‘‘angle’’ has some meaning for’
you. However, you may find it quite difficult to de-
scribe it precisely. To see just how difficult, you
might try to explain what an angle is to a youngster in
the first or second grade. A pariicularly difficult task
would be to describe it without diagrams.

(To see howimportant angles are in everyday think-
ing, one can look up the word angle and related words
in the dictionary. You will be asked to do this in an
exercise.)

You probably would say that the diagram in Fig-
ure 10.31 represents an angle. But is the entire angle
shown in the diagram? Are _the rays OA and OB part of
the angle? Is the fact that OA and OB have a common
endpoint significant? Are the points between Aand B
part of the angle? These are some of the questions that
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must be answered in giving a precise mathematical
meaning to the word ‘‘angle’’.

Figure 10.31

After carefully reading the following you should
be able to answer all of them.

8 s |/

() A G A (¥ A
,L
Figure 10.32

Let us start with two lines intersecting at O, as
shown in Figure 10.32. We name them OA and OB. With
these lines given we shall show in stages how_the
angle emeiges. First we take the halfplane of OA that
contains B, It is indicated by vertical shading lines.
Then we iake the halfplane of OB that contains A, It
is indicated by horizontal shading lines. The region
that is cross-hatched is the angle. It is the intersec-
tion of the two halfplanes. It is named ZAOB. Each
point used in the name signifies something. O is the
point of intersection of the two lines. It is called the
vertex of the angle. A and B tell us which halfplane
to take. OA and OB are the endrays or sides of the
angle. There are other rays in the angle. Any ray
starting at O and intersecting any interior point of AB
is calied an interior ray of the angle. All points of the

Figure 10.33

angle, not in endrays, are called interior points of the

e ————

angle and the set of interior points is called the in-
terior of the angle. |{ OA = 0B and O is between A
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Figure 10.34

E and B, then we cannot build up the angle as described
. above. Nevertheiess we caii either haifpiane of AB,
with O as vertex, a straight angle. |f O is not between
A and B, then DA and 0§ name the same ray. Again
we continue to call this an angle, a zero angle.

Does our definition of an angle differ from what
you have previously learned about angles?

If so, we ask you to consider the fact that a defin-
ition is an_agreement among ourselves as to what a
word shall mean. Once the agreement is made, however,
we must stick with it and with its consequences.

10.18 Exercises

1. Draw two intersecting lines on your paper and
label points as in the diagram. Using ordinary

A blve pencil p black pencil

N

€ black ink .ud pencil

black pencil shade the D-side of AB with rays
parallel to OD, using black ink shade the C-
side of AB with rays parallel to OC. Using red
pencil (or any available color) shade the B-side
of CD with rays parallel to OB. Using the blue
pencil (or any other available color) shade the
A-side of CD with rays parallel to OAR. You can
now describe ZAOD as the blue-black pencil
angle. In similar manner describe ZBOD, ZAOC,
£ BOC.

2. Using the diagram shown, name:
(a) two straight angles.
(b) four zero angles.

(c) four other angles.

w

3. Using the diagram shown, describe as a single
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angle, if possible:
(a) ZAOB U £BOC
(by ZAOC N £COB
(c) ZAOC U £BOD
(d) ZAOC N £COD

o = O

4. There are ten angles in the diagram of Exercise
3. Four of them are zero angles. Name the other
six,

5. You may have noticed that there are many re-
semblances between an angle and a segment,
For each sentence below about segments write
one that resembles it and is about angles.

(a) A segment has two endpoints.
(b) A segment is a set of points.

(c) The interior of a segment contains points of
a segment other than its endpoints.

(d) 1f C and D are interior points of AB, then
every point in CD is in AB.

6. Consult a dictionary to find five uses of angles.

10.19 Measuring an Angle

You have noted above in Exercise 5 a number of
resemblances between angles and segments. It should
not surprise you that the measurement of angles also
resembles the measurement of segments. To measure a
segment we use a scaled ruler. To measure an angle
we use a scaled protractor. The numbers on a ruler are
assigned to points. The numbers on a protractor are
assigned to rays (In Figure 10.35 only three rays are
shown). Numbers on ordinary rulers start at zero and

Figure 10.35

L

=



go on as far as permitted by the scale unit and the
length of the ruler. No matter how large the protractor
we are going to use, its numbers start with 0 and end
with 180,

As you see, a protractor has the shape of a semi-
circle. AB is the diameter of the protractor and 0 is
its center. In Figure 10.35 the numbers increase in
the counter-clockwise direction, However, if we reflect
the protractor in the line that is the midperpendicular
of AB, then each number, n, is mappsd onto 180, In
a protractor showing the images of this line reflection,
the numbers increase in the clockwise direction (Fig-

ure 10.36)..

Y 8. o A
0
Figure 10.36
In either case the ray which lies in the midperpendic-

ular is assigned 90.

To 'measure an angle with a protractor we must
begin by placing the center 0 on the vertex of the
angle, and each ray of the angle must intersect the
edge of the protractor. Perhaps the position of a pro-
tractor in measuring ZABC could be like that shown
in Figure 10.37. ¢

Figure 10,37

In this position the protractor assigns the number
30 to BC and 103 to BA. It cannot come to you as a
surprise that the measure of ZABC is 103-30 or 73.
Or if you computed 30-103, you would then take the ab-
solute value of the difference, just as we did in measur-
ing line segments. When the protractor is graduated
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from 0to 180 we call the unit of measurement o degree.
When we say that the measurement is 73 degrees, or 73°,
we are also saying that we used a protractor gradvated
from 0 to 180. (There are other types of protractoi s
graduated from 0 to other numbers). In measuring a line
segment we like to place the ruler so that it assigns 0
to one end, for this considerably simplifies the compu-
tation. In measuring an angle we also like to place the
protractor so that zero is assigned to an endray, for
the sama reason.

The abbreviation for *‘degree measure of Z ABC"
is mZABC.

10.20 Exercises

G 0 A

LT e e e

1. Consult the diagram above to find the measure
of each angle listed below:

(a) £ AOC . (e) £ BOE (i) £ GOA
(b) £ BOC (f) ZFOB  (j) £ AOG
(c) £ COB (9 £GOC (k) Z AOD
(d) Z AOF (h) ZEOE (1) £ DOG

2. Using the diagram shown below, find the mea-
sure of each angle listed below:
{a

tre - s . WA
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(@) ZAOC () £DOC (e) £ GOE
(b) £ BOD (d) £ FOG (f) £ FOB

3. Consult the diagram of Exercise 2 to compute
each of the following:

(a) mZAOB + mZ BOC
(b) mZGOA — m£COA
(c) 2mZAOB +3m{OCD
4. 1§ two angles in a plane have only one ray in -

common, they are called a pair of adjacent

angles. In the diagram determine which pair of

angies iisied below hiave only cne ray in

common. * 8, Consider ZAOB, as shown in the diagram and
é R c the point symmetry of ZAOB in vertex 0. Under
this symmetry the image of endraym is OD,

\ )
(o) ZABD and £CBD
() ZABC and £CBD the opposite ray. What is the image of OB?
(c) ZDBA and ZABC What is the image of OX, an interior ray of ZAOB?

What is the image of ZAOB? The image of an angle
under a point symmetry in its vertex is its ver-
tical angle. .
9, (a) In the diagram of Exercise 8, what is the ver-
tical angle of £DOC? ‘

(b) What is the vertical angle of ZAOB?

10. Using a protractor show that the measure of on
angle is equal to.the moasure of its vertical
angle.

11. AB and AC are two si_c_i;es of a triangle. They de-
termine two endrays AB and AC of an angle. In

o ¢ this sense every triangle has three angles. We
can name them ZA, £B and ZC.

1 Which is the pair of adjacent angles?

For the given diagram name as many pairs of
adjacent angles as you can. A

6. Using an illustration show that the sum of the
measures of two adjacent angles is not neces-
sarily the measure of an angle.

7. Find the measure of each of the angles listed

for the diagram below:

: (a) LAVB (d) LEVC () £BVF . S c

5 "(b) £DVC (e) ZAVF ° (h) ZAVD " Measure each angle of the triangle and then
(e) LAVC (f) LFVD find the sum of their measures.
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(a) Explain why we cannot use the protractor in
the position shown above to measure ZAOB.

(b) Can the measure of an angle be greater than
180°? Explain your answer.

13. Look at £ BVC. Now look at ZAVD, Compare
their measures. (Try to answer without the use
of a protractor).

14, You know that two perpendicular lines determine
four angles. What is the measureof each angle?

’ 15. (a) Measure ZAVB in the diagram. Using your
result, find the measure of ZBVC,

(b) Suppose the measure of ZABV is 70. What
is the measure of ZBVC? Try to answer
without using a protractor.

10.21 Boxing The Compass

As you know the marks on a ruler are located by
repeated bisections, once we start with inch marks.
The first bisection produces a ruler like this:
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Figure 10,38

A second bisection produces a ruler like this.

LY PR

A o
TR e = - L 2 N

& [0 el
va—
> | s vt
- v—
> |63 o
m——
| = o
—
-

< mem—emnd
0 s wud
§oms ey
8 (03 e
- ———
B ] s g
23] es e
lu-—
o

l A
2

X

Figure 10.39

Repeated bisecti ns produce eighths, sixteenths and
thirty seconds.

There is .n analogous situation for protractors,
more accurc‘aly for two protractors, placed diameter to
diameter to form a circle. It is called boxing the com-
pass, and gives the type of compass used in certain
types of ..arine navigation.

A ¢ ameter of either protractor bisects the circle.
One erd of this diameter is marked N (north) and the
other is marked S (scuth). (Figure 10.40)

N

S
First Bisection

Figure 10.40

Bisecting each semicircle locates E (east) and W
(west). (Figure 10.41)

N
w< |
S
Second Bisection

Figure 10.41

Bisecting each of the four arcs locates NE (north
east), SE (south east), SW (south west), and NW (north
west), Notice we do not say, ‘‘east north,” The rule is
that ‘‘north’’ takes precedence over *‘south’’ because
it appeared earlier in the process. Likewise, we say
southeast because *‘south’’ appears before ‘‘east’’ in
the process.

HETSOINOR TR
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Third Sisection

Figure 10.42

Bisecting each of the eight arcs locates NNE
(north northeast), ENE, ESE, SSE, etc. In the designa-
tion NNE, N appears before NE because it appeared
earlier in the process than NE, and is on the N side
of NE. Thus, ENE is on the E side of NE.

Fourth Bisection

Figure 10.43

The fifth bisection completes boxing of the com-
pass. The midpoint of the arc between N and NNE is
called N by E (north by east): the one between NNE
ond NE is called NE by N. Not NNE by S, Why not?

NN
b’Fmﬁ
EbyN
NE
NEbyE
ENE
EbyN
w E

S
Fifth Bisection

Figure 10.44

Make a complete diagram showing the compass
1] bmd...

The circle is now subdivided into 32 arcs having
the same length. The mariner calls each lengtha
“coint’’, (This point does not mean the point we study
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in geometry). The terms ‘‘halfpoint’’ and *‘quarter
point” describe still smaller arc lengths. Since there
are 8 points to one quarter of a circle, one point cor-
responds to 11}°. So a change of course of one-quarter
point ¢ orresponds to a change of approximately 37

Thus the kind of *‘protractor’’ used in some types
of navigation is quite different from the one we have
described, with angles measured in “points’’ from 0 to
16 points east or west of north.

10.22 More About Angles

Draw rcyv__x.on your paper and place your pro-
tractor so that VA is assigned zero. In how many

- -
v A

Figure 10.45

possible positions can you hold the protractor? (Were
you careful to place the center of the protractor on V?)
For each position, draw a ray, starting at V, to which
the protractor assigns the number 70. How many such
rays can you draw, for each position? Héw_many an gles
then can you draw having measure 70°, if VA is one

of its sides?

Do you agree with this statement?

For each ray, for each halfplane determined by
this ray, and for each number x, such that 0< x < 180,
there is exactly one angle whose mecsure is x that has
given ray as one side.

This statement is going to be very useful to us in
our study of angles. For instance, we can now-show
that any angle, such as ZAVB, can be divided into
two angles that have equal measures, To do this, we

s Cc

\LLeJ
55
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v A

Figure 10.46

place a protractor, in the position shown, see that 110
is assigned to Vgcnd reason that we are looking for
the ray that is assigned 3 x 110 or 55. We look for 55
on the protractor and draw -\E, the ray that is assigned
55. What is mZ BVC? mZ CVA? Have we divided ZAVB
into two angles as claimed? How can we use the state-
ment above to show that an angle has exactly one
midray? —_—

In our example VC is called the midray of ZAVB
for obvious reasons; it bisects the angle, ond is there-
fore also called the bisector of ZAVB. Explain why
any angle, other than a straight angle, has only c¢e
midray.




We pause here to introduce some terms describ-
ing angles. |f the measue of an angle is 90, it is
called a right angle, |f the measure of an angle is be-
tween 0 and 90, it is called an acute angle. If the
measure of an angle is between 90 and 180, it is
called an obtuse angle.

10.23 Exercises

1. For each number listed below draw an angle
whose measure is that number

(@)35 (b)135 (c)18 (d)90 (e)180 (O
2, Draw on angle which is:
(c) an obtuse angle

(a) a right angle
(b) un acute angle

3. This exercise is a test of how well you can
estimate the measure of an angle from a dia-
gram, For each of the angles given, estimate
the measure, record your estimate, and then
use your protractor to check your estimate.

f

4, This is an exercise to test how well you can
draw an angle without protractor when you are

told its measure. Draw the angle first, then
check with protractor, and record the error, for
each of the following measurements:

(a) 45° (c) 150° (e) 60°

(b) 30° (d) 90° () 120°
5. How close can you come to drawing the midray

of an angle without using a protractor? Try it

for these cases: an acute argle, a right angle,
an obtuse angle.

T, - scmiay cm Awlmeee ol - mo som w3 0w
6. Try fo diaw G fiangle that has twe right ang

If you are not able to do so, explain the failure.

*7. In this exercise, we consider what it means
when three rays have the same vertex to say
that one is between the other two.

s A

C

(a) Look at rays VK, Vﬁ, and VC in the dia-
gram, Would you say that one of them is be-
tween the other two? If so, what would you
mean?

(b) Now iook at -65, -0-6, OR in the second dia-
gram. Would you say that one of these is
between the other two?

(¢) In(a)is VK__g.roy of ZBVC? Is VB a ray of
ZCVA? Is VC a ray of ZAVB?

(d) In (b) is OQ a ray of ZPOR?

(e) Formulate a definition for betweeness for

rays.
*8, Draw ZAVB and g ray of this angle that is be-

tween VA and VB, Name it VC, Using a pro-
i7actor show that mZAVC +mZCVB =mZAVB,
This result is important enough to have a name,
It is the Betweeness-Addition Property of
Angles, State it in words, There is also a Be-
tweeness-Addition Property of Segments. Siate
it.
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'10.24 Angles aond Line Reflections

. Make a drawing like the one in Figure 10.47, with
VM the midray of ZAVB. (We have an angle of 80°.
You con use any angle you like)

Figure 10.47

' 1 you fold your paper olong‘VTA., do VA and VB fall
on each other? Then we may say:

Each ray of an angleis theimage of the other
under the line reflection in the midray of the
angi .

- Suppose X is the point in VA such that VX = 2, Where
" would you expect to find the imageof X under this

. line reflection? Let X — Y. Then VX = VY, More-

. over, the perpendicular to VM that contains X must al-
. socontain Y. Why? We conclude that XY... VM, also if
. Zis the point in which XY intersects W, then XZ =

* YZ. Why? One more result. In folding your paper, did

- ZVXY fall on ZVYX? Then m£ VXY =m4 VYX. Why?

Let us summarize these results. If VM is the mid-

‘ ray of ZXVY, VX = VY, and XY intersects W, then

(1) Under the line reflection in V-M., v—Y,
X—=Y, Z—Z, Since a line reflection
is an isometry, VX = VY, XZ = YZ. Al.
so XY | VM,
(2) m LVXZ =m LVYZ.
The second fact rates attention because itis a
special case of a more general statement which we

are now ready to understand. It applies to all iso-
metries, of which line reflections are only one kind.

Under any isometry the measure of an angle
is the same a5 the measure of its image angle.

We shall pursue this further in the next section. Mean-
while, we apply our tesults to a special type of tri-
angle, If at least two sides of a triangle have the same
length it is called an isosceles triangle, These two
sides are called the legs of the isosceles triangles

A

-
Figure 10.48
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the third side is called its base, The angles of the tri-
angle having vertices at the ends of the base are
calicd base angles, the third angle is called the vertex
angle. Let AABC be an isosceles triangle, with

AB = AC, and let the midray of the vertex angle inter-
sect the basein point M (Figure 10.48). Then under
the line reflectionin AM,A A M M, B C, By
our previous results we conclude:

(1) The base angles of an isosceles triangle
have the same measure.

(2) The midray of the veriex angie of an
isosceles triangle lies in the midperpen-
dicular of the base.

10.25 Exercises

1. Suppose in D, B, C, E are on a line as shown
and A is not. If AB = AC, show by an argument
that m£ABD = mZACE.

-l = | o an @ a» oo o a» o @ - - -P

2, For the figure in Exercise 1 add the information
that BD = CE. Using the line reflection { in AN,
the midray of Z BAC, explain why each of the
following is true or false:

(a) AM is the midperpendicular of DE,

() 0 : E=Dand { : D—E and DM = EM.
(c) { : AD—AE and AD =AE,

(d) Q : -A-ﬁ—*ﬁ and AB—AC.

(e) m£DAB =m/EAC,

3. Suppose PQ = PR and QM = MR as shown. Let
{ be the midperpendicular of QR. Do you think
that | contains P? Support your answer with an
argument. :

P

AEERAN

0
4. In the diagrom AD = AB and DC = CB:
(a) What kind of trianglie is ABD? cBD?

O 4
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(b) How is the midray of £A related to BD?
How is the midray of ZC related to BD?

(¢) How many midperpendiculars of DB are
there?

(d) The figure ABCD has the shape of a kite,
so we call it a kite. You see that it con be
mapped into itself by a line reflection in AC.,
List five pairs of angles in the kite for which
the angles in each pair have the same mea-
sure. Assume that AC and BD, the diagonals,
may be inside of these angles.

5. In the diagram the four sides AB, BC, CD, and
DA have the same length. It is a kind of ''double
kite". Show that its diagonals bisect each other
ond lie in perpendicular lines,

A

c

10.26 Angles and Point Symmetries,

In an exercise (9.20, Exercise 8) we noted that ..
the imageof an angle under a point symmetry in its
vertex is its vertical angle. It quickly follows that
the measure of an angle is equal to that of its vertical
angle. This is a valid conclusion. Nonetheless, let
us explore the situation o little more, partly to review
some basic notions and partly to illustrate a proof
which resembles many that will follow.

Suppose ZABC is a given angle (Figure 10.49).
If B is the midpoint of AA’ and also CC', then ZA’BC’
is the image of ZABC under a point symmetry in B,
We can easily locate A’ and C' by using a compass
as divider with B as center. Now look at the quadri-
lateral ACA’ C’. lts diagonals bisect each other, Then
what kind of quadrilateral is ACA’ C' ? How does your
answer lead to the conclusion that CA =C'A’?

Let us review t ree facts: (1) AB =A’B,

(2) CB =C’B, (3) CA = C' A’. Do not these three
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Figure 10,49

facts show that the mapping which maps A —=A’,
B—= B, C—=C’ is an isometry? We conclude that
mZABC =mZA’BC' . (Remember that an isometry pre-
serves anglemeasure.) In this example we reviewed
the basic notion of an isometry and we have seen how
fo use some properties of parallelograms in a proof.
Suppose the center of a point symmetry is not the
vertex of an angle. In each of Figure 10.50 and 10.51,
the image of ZABC is ZA' B’C’ wnder a point symmetry
in 0, a point which is not the vertex B. Verify in each
case that 0 is the midpoint of AA’, BB’, oand CC’, This
should assure you that we do indeed have a point
symmetry in 0.

Figure 10,51

In each case the mappingof (A, B, C) onto (A’ B'C’)
can be shown to be an isometry, thatis AB =A’B’
BC = B'C’ and CA=C' A’ Find two parallelograms
in Figure 10.50 that help to show why AC=A’C’ and
8C=B'C'. Try to figureout why AB = A’ B’ In Fig-
ure 10,52, we can find three parallelograms that help
in proving that themapping is an isometry, Name the
three parallelograms.
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] 10.27 Exercises

1. Allow yourself theuse of a protractor to mea- N s
sure only one of the four angles, ZAVB, £ BVC
/CVD, ZDVA and then tell the measures of
the other three,

v 10.28 Angles and Translations
/ \ Let ZAVB be mapped by a translation such that
’ the image of Vis V'.

: 2. Draw a diagram showing the image of ZABC
under a point symmetry in 0 for each of the fol-
lowing cases, ‘

(@) 0 is a point in BA, not B.
(b) 0 is a point in _B-E, not B.
(c) 0 is an interior point of ZABC,
(d) 0 is an exteriro point of ZABC.
3. Copy a figure like the one shown below, Be

ey TR AL o gigrdda

GRS

Figure 10.52
sure to take 0 as the midpoint of VA, Draw the Let the images of A and B be A’ and B’ under this

3 image of ZAVB under a point symmetry in 0. translation. Since a translation is an isometry, and we
Under this reflection what is the image of V? have agreed that isometries preserve angle measures,
; What is the vertex of the image angle? Show it follows that mZA' V' B’ = mZAVB. Additional re-

) that AB' | |BV. The statement of this result is sults relating angles and translations are explored in
quite complex. We start it and you are to com- the following exercises,

] plete it: If the center of a point symmetry of an

angle is an interior point of one side of the 10.29 Exercises

3 angle, then the image of the second side.... . #1. Copy ZAVB and then show a franslation of

/ AVB by a drawing that maps V onto A, Let
the translation map A onto A’ and B onto B'.
-l_J_n.deLIhis translation what are the images of
VA, VB, ZAVB?

e
v ]

4, Draw an angle and its midray, and take any

point, not the vertex, of its midray. Draw the
3 image of the angle under a point symmetry in the -
" midray point. You should note that the angle
and its image determine a quadrilateral. List
some of the properties of this quadrilateral that
you can find, '

b 1

We call the pair of angles AVB and A’ AB ““F
angles’’ because taey form an F figure,

2. () Repeat the instructions in Exercise | for

5. Repeat the instructions in Exercise 4 with the the translation that maps A onto V.

: modification that the center of symmetry is an

interior point of the angle, not in the midray, (b) Repeat again for the translation that maps
6. Suppose ABCD is a parallelogram. Is there a V onto B.

point symmetry under which D—=B, A—C? 3. Let T, be the translation that maps A onto V

What is its center? How do your answers help and T, the translation that maps V onto B.

to show that each angle of a parallelogram has (a) Make a drawing for T, 0 Ty,

the same measure as that of the opposite angle?

186




(c) Are the images of Z AVB under both com-
posites the same? Are the drawings the

same?
4, In the diogrg_m_below‘ﬁgl | PV and M is the
midpoint of QV,

(a) Describe a mapping under which the image
of ZPVQis ZRQT.

(b) Describe a mapping under which the image
of ZPVQ is ZVQS.

(c) Describe a mapping under which the image

of ZRQT is ZSQT. Is this mapping an
isometry ?

(d) Describe a mapping under which theimage
of ZRQT is ZSQM.

(e) Under what composite mapping is ZSQM
the image of ZPVQ, if a translation is first
in the composite?

(f) Compare the measures of ZPVQ and Z SQV.

We call angles PVA and SQV ’'’Z angles"’
because they form a Z figure.

10.30 Sum of Measures of the Angles of a Triangle,

No doubt you have measured the three angles of a
triangle and have found the sum of their measures to
be approximately 180. Let us see how isometries can
be used to prove this fact,

Figure 10.53 shows an image for each angle of
A ABC under di fferent mappings.

First consider the translation that maps A onto C,
This translation maps C onto R and B onto 5. What
are the images of AB and AC under this translation?
Do you see that this translation maps ZCAB onto
£RCS?

Examine the transiation that maps B onto C. Un-
der this translation what is the image of BA? of ZABC?

Figure 10,53

The third mappingis a point symmetry in C. Under
this mapping what is the image of /ACB?
As a result of these mappings, all isometries, we

(1) mZ CAB =mZ RCS,

(2) mZABC =m/ZPCQ,

(3) mZ BCA =mZQCR,
If the sum of themeasures of the image angles is 180,
then we can safely conclude that the sum of the mea-
sures of the angles of the triangle must also be 180.

Do you think the first sum is 180? Why? In answer-
ing this question remember that no statement was made
concerning whether CS and 'CP wereon oneline. Are
they? Why?

One can prove the above result by using other iso-
metries, and you may find it interesting (in exercises)
to find your own,

There are many immediate results following from
the triangle an/le measure sum, For instance we can
now show: If a triangle has a right angle then the sum
of the measures of the other two angles is 90, The
proof can be presented in a step by step argument as

follows:
1. Let AABC have a right angle at C.
2. m/A+m. B +m/C =180
. mlc=90
4, m/A +m/ZB =90

We can give a valid reason for each of these statements,
The reasons, numbered to let you see which reason ap-
plies to each statement, are as follows:

* 1. This information is given in the statement we
are trying to prove,

2. We have proved this already, Let us call it the
Triangle Angle Sum Prope:ty,

3, The measure of a right angle is 90,

4, The cancellation law for addition,

Here is another immediate result with its proof: The
sum of the measures of the angles of a quadrilateral

is 360.
Figure 10.54 will help you follow the argument,
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Figure 10,54

We ask you to assume that BD is an interior ray of
/ ABC ond DB is an interior vay of ZADC,
1.m/A +m/ABD +m/BDA = 180

2.m/C +m/DBC +mZBDC = 180
3.m/ABD +mZDBC =mZABCorm/B

4, m/BDA +m/BDC = mZCDA or mZD

5. m/A +m/B +m/C +m/D =360

The reasons for (1) and (2) are the Triangle Angle
Sum Property. Statements (3) and (4) have the same
reason: if AP is an interior ray of Z BAC, then

m/ BAP +mZPAC =m/ZBAC

The reason for statement (5) is: 180 + 180 = 360.
In exercises you wil! be asked to prove many
other statements which follow from the Triangle Angle

Sum Property,

10.31 Exercises

1. Find the measure of the third angle of a tri-
angle if you know themeasures of the first two
to be as follows:

(a)80 and 30 (b) 62and 49 (c) 40 and 129

2. The measures of two angles of a triangle are
the same. What is their measure if the measure
of the third angle is:

(a)80? (b)20? (c)68? (d) 41?

3, What isthe measure of each angle of a triangle

whose angles all have the same measure?

4. Themeasures of two angles of a triangle have
the ratio 3:5. What are their measures if the
third angle has a measure of:

(a) 100? (b) 68? (<) 30?

5. What is the measure of an angle of a quadrilat-
eral if the measures of the other three angles

. are:

(a) 120, 80, 62?
(b) 100, 62, 62?
(c) 168, 72, 48?
6. Show that if three angles cfa quadrilateral

are right angles then the fourth angle must also
be a right angle,
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7. Let ABCD be a parallelogram, Show that
m-A+m B=180and mZC +m_D =180.

8. Give an argument for each of the following
statements, |t need not be a step by step
argument,

(a) Two angles of a triangle cannot both be
obtuse,

(b) If a triangle is isosceles then its base

angles are acute angles,

9. Prove each of the following, |f convenient, use

a step by step argument.

(a) If in AABC, AB = BC = CA, then m/ A = 60.

(b) The figure below has 5 sides and is called
a pentagon. Assume that AD, AC are interior
rays of / EAB, ani_t.hot_D-K is an interior
ray of ZEDC and CA is an interior ray of
/DCB. Show that the sum of the measures
of the anglss of ABCDE is 540.

(c) Assume in (b) that the measures of the
angles in ABCDE are the same. Show that
each measvre is 108.

10. (a) Using the data indicated below find m/ BCD

8
60

50
A C D

(b) Suppose m/ A= 52, mZ B =65. Again find
m/ BCD.

(c) Do the results in (a) and (b) suggest a rela-
tionship between mZBCD and m/A +m/ B?

(d) Show for all measures ZA and ZB that
m/BCD =m/A + mZB,

11. Find, for the diagram bciow
(a) mZADC.

(b) The measures of the angles, in which arcs
are drawn,




(c) The sum of the measures in (b),

(d) Take another set of measures for the three
angles of quadrilateral ABCD and find the
sum of the ‘‘arc’’ angles for your new
measures,

(¢) Do your results in (c) and (d) indicate a
pattern? Complete and prove the following
statement:

m/BAD + mZQCD + mZRCB + mZSBA=?

when ABCD ic a auadrilateral

- =,

12. A figure such as ABCDEF has six sides and is
called a hexagon,

(0) Find the sum of the measures of its angles,

(b) Let X be a point in AB as shown, It is
called an exterior angle of the hexagon.
Find the sum of themeasures of its exterior
angles, one taken at each vertex.

(c) If the angles of ahexagon have the same

measure, what is the measure of each angle,

and what is the measure of one exterior
angle?

13. Repeat Exercise 12 for a figure having 8 sides;
10 sides,

10.32 Summary

This chapter discussed Segments, Angles, and
Isometries,

1. The major items relating to segments are the
following:
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(a) The Line Separation Principle leads to sub-
sets of lines, open halflines and rays, and
then to segments,

(b) The distance formula: If x, and x, are line
coordinates of A and B, then
= x4 j-xz|= |xz-"1|»
(c) The midpoint formula: If x, and x, are line
coordinates of A and B, then the coordinate
of the midpoint of ABis ] (x, + x).
{d) The Betweeness-Addition Property of Seg-

ments: |f B is between A and C, then
AB + BC =AC,

(e) The Triangle Inequality Property: The sum
of the lengths of two sides of a triangle is
greater than the length of the third,

2. The major items relating to angles are the fol- ;
lowing: ;
(a) The Plane Separation Principle leads to 1

open halfplanes, halfplanes, and angles,
which are intersections of halfplanes,

(b) The angle measure formula: |f ry and ¢, are 3
the numbers assigned by a protractor to two
sides of an angle, the measure of the angle

is|ry-r|=rp-nl. i

(c) Boxing the compass is accomplished by the
repeated bisection of arcs or angles, com-
parable to the bisection method used in grad-
vating a ruler,

(d) Angles are classified as zero, acute, right,
obtuse and straight angles,

(¢) The Betweeness-Addition Property of Angles:
1 VB is between VA and VC, then
m/AVB +m/ZBVC =mZAVC.

Isometries. The major item is: |sometries preserve angle
maasures,

(0} Using line symmetries we can show:

(1) An angle is its own image under the line
reflection in its midray. This leads to
related isosceles triangle properties, and
kite properties,

(2) Every point in the midperpendicular of a
line segment is as far from one endpoint
of the segment as from the other,

(3) The rectangular coordinate formula for
the reflection in the x - axis is
(%,y) = (x,=y), for the reflection in the
Y - axis, (le)-"’("le)°

(b) Using point symmetries we can show:

(1) Themeasure of an angle is the same as
that of its vertical angle,

(2) The measures of opposite angles of a
parallelogram are the same,
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(3) The angles in a **Z figure’’ have the
same measure,

(4) The coordinate formula for the point
symmetry in the origin of a coordinate
system is /x,y)—=(-x,-y).

(c) Under a translation we can show:

a. The angles in an *‘F figure have the
same measure

b. The coordinate formula for a transla-
fion is: (X,y)—=(x +p, y +q), if the
origin is mapped onto (p,q).
3, Using point symmetries and translations we can
show why the sum of the measures of angles of

atriangle is 180. This leads to a long list of
immediate results,

10.33 Review Exercises

1. Let a mathematical ruler assign -2 to point A
and 4 to point B.
(o) What is AB?
(k) What number does the ruler assign to the
midpoint of AB?

() Cis apoint in AB. If AC + CB = AC what
are the possible assignments the ruler can
make to C?

(d) 1§D is between A and B and AD =2DB
what is the number assigned to D?

(¢) IfD isin ‘AE not between A and B, and
AD =2DB what is the number assigned to D?

(f) What numbers may be assigned to point E if
AE =6 ond E is in AB?

2. In Exercise 1 replace -2, the number assigned
to A, with —12 and replace 4, the number as-
signed to B, with —6. Answer the questions in
Exercise 1 for these replacements,

3. A protractor assigns 10 to VA and 110 to VB:
(a) What is mZ AVB?

(b) What number does the protractor assign to
the midray of ZAVB?

(c) The protractor assigns 120 to VD. Is VD
between VA and VB?

(d) What must be trueof x if x is the number __
assigned to a ray that is between VA and VB?
" (e) Suppose VXisa ray of ZAVB, what is
mZ AVX + mZ XVB?

(f) Suppose VY is aray of ZAVB such that
mZAVY = 2m/YVB, What number does the
protractor assign to VY?

4, In Exercise 3 replace 10, the number assigned
to VA, with 122, and replace 110, the number
assigned to VB, with 38. Then answer the
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questions in Exercise 3 for these replace-
ments,

5. Try to draw a triangle such that one of its angles
is a right angle and another is an obtuse angle,
Explain how you were able to or not able to
make the drawing,

6. In a certain rectangular coordinate system A, B,
and C have coordinates (-4, 2), (1, -3) ond
(6, 2) respectively.

(a) What are the coordinaies of A, B, T, the
images of A, B, and C, under the line reflec-
tion in the x - axis?

(b) Are A, B, C collinear? Are A’,B’, C' col-
linear?

(c) Compare AB with A’ B' make the comparison
without finding the numbers AB and A’ B’
and justify your answer,

(d) Compare mZ ABC with mZA’B' C' after mea-
suring each angle with a protractor, Can you
make the comparison without using a protre<-
tor? Justify your answer,

7. Answer the questionsin Exercise 6 if A’, B,
and C' are the images of A, B, and C under the
line reflection in they — axis,

8. Answer the questions in Exercise 6 ifA’, B,
and C' are the images of A, B, and C under the
point symmetry in the origin of the coordinate
system, :

9. Answer the questionsin Exercise 6 A’, B’, and’
C' are the images of A, B, and C under the point
symmetry in P(1,2).

10. Answer the questions in Exercise 6 ifA', B,
and C' are the images of A, B, and C under the
line reflection in the line perpendicular to the x
- axis and containing P(1, 2).

11. Consider the coordinate rule by which (x,y) is
mapped onto (y,x) in a rectangular coordinate
system,

(a) Under this mapping what are the coordinates
of the images of (2,0), (0,4), (-1,2), (3,3),
(-5,-2), (0,0)?

(b) Make a graph of the points in (a) and their

images.

(c) Is this mapping a line translation, a point
symmetry, a translation, or none of these?
If it is, describe it, giving domain, range and
the rule for its inverse mappi%g,
" (d) What is the composition of this mapping with
itself?
12. Consider the coordinate rule in a rectangular

coordinate system by which (%,y) == (-y,~x)e
Answer the questions in Exercise 11 for this

mapping,

-
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13. Is the mapping with coordinate rule (x,y) 16. Find the measure of an exterior angle of each

(2x,2y) in a rectangular coordinate system an n-sided figure in Exercise 15,
isometry? . 17. In the figuré below AB = AC, and DB = DC.
14, Let M be the midpoint of BC in AABC. Using Using a line reflection, prove m/ DAB = m. DAC.
a point symmetry in M and a translation show 1
how to prove that m/A + /B +mZC = 180. A E
)
D

A 3 ° d
15. Find the measure of an angle of an n-sided fig- 3
ure, where angles have the same measure, and :
n has the value given below, §
(@)n=6 (cyn=8 (e)n =20 .
(hn=3 (d)n =12 §
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CHAPTER 11
ELEMENTARY NUMBER THEORY

1.1 (N, +) and (N, -)

Over the centuries many discoveries have been made
concerning properties that various sets of numbers
possess. In this chapter we shall concentrate on seek-
ing out properties of certain subsets of the whole num-
bers. In particular we shall examine the set of natural
numbers. (By the natural numbers, N, we mean the whole
numbers with zero deieted.) We shaii begin by stating
certain basic assumptions concerning the natural num-
bers. Such assumptions, that is statements which we
agree to accept as true, are called axioms. We shall use
these axioms to prove other statements which we call
theorems. In fdct, number theory provides us with a
large source of simple and important theorems from
which we can begin to learn some of the basic ideas
dealing with ‘‘proof.”

Before stating the first axiom let us recall a problem
considered in Chapter 2: [See Exercise 12 on page 35]
*|s addition an operation on the set of odd whole num-
bers?'’ It is easy to find an example which indicates
the answer to this question is “no’’. Both 3 and 5 are
odd whole numbers but their sum, 8, is not an odd
whole number. Because the set of odd whole numbers
is a subset of W we see that addition is not an opera-
tion on every subset of W. Thus any statement which
asserts that addition is an operation on a subset of W
is a non-trivial statement. Qur first axiom (A1) states
that addition is an operation on N.

Al. (N, +) is an operational system.

Because 3¢N and 5¢N we can conclude, by Al, that
3 + 5=28eN. In general Al states that given any
ordered pair of natural numbers we can assign to this
pair a unique natural number called their sum.

An obvious question to consider next is the follow-
ing: **Is multiplication an operation on N?** Our sec-
ond axiom provides the answer to this questicn.

A2. (N. +) is an operational system.

Since 3¢N and 5¢N we can conclude by A2 that
3.5=15¢N. In general, A2 states that given any
ordered pair of natural numbers we can assign to this
pair a unique natural number called their product.
For example,

(3,5)——> 15

We frequently express the above by the mathematical
sentences
3.5=15 o 3x5=15
Let us review some of the language used in dis-
cussing the operational system (N, ). In the sentence
above 3 i< said to be a factor of 15. Also, 5 is said
to be a factor of 15.
Definition 1: We say that for aandb in N, a is
a factor of b if and only if there
is some natural number ¢ such
thata-c=b.

\) BB R T T R R I

Thus 3 is a factor of 15 because there is a natural
number, 5, such that3 -5=15. 4 isnot @ factor of
15 because there is no natural number ¢ such that
4.c=15 5is afactorof 15 because 5 - 3 = 15.
Recall that in Chapter 2 you were introduced to
the idea of multiple. For the mathematical sentence

3:5=15

we say that 15 is a multiple of 3 and also that 15 is
a multiple of 5.

Definition 2: For aandb in N, b is a multiple of
aif and only if a is a factor of b.

Thus for the mathematical sentence

4x9=236
we can make the following statements:
4 is a factor of 36

9 is a factor of 36

36 is the product of the factors
4 and 9

36 is amultiple of 4

36 is a multiple of 9

In Chapter 8 we made frequent use of the binary re.
lation “divides” on various sets of numbers. In this
chapter we again make use of this relation. In partic-
ular, if 4 is a factor of 36 we say that 4 divides 36

and we write
4136
Definition 3: We say thatforaandbinN, a
divides b if and only if a is a
factor of b. We denote ‘‘a divides
b” by “a Ib’.. »
For the sentence

3x4=12

we can make the following statements:
3 is a factor of 12
3 divides 12
3|12
4 is a factor of 12
4|12
12 is o multiple of 4, etc.

Since 5 is not a factor of 12 we can say that 5 does
not divide 12 (sometimes written 5 £12).

Bacause 1- n = n where n is any natural number v
see that 1is a factor of every natural number. Also,
every natural number is a multiple of 1.

Question: Can we say that 1| nfor all n in N?

E xplain.
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" You are familiar with the idea that every natural
mber has many names. A number such as 12 can
e renamed in many ways:

10 +2 3-4
1.12 6-2

e shall use the words product expression to talk
bout names such as *‘1. 12’ and ‘3 - 4’ that
volve multiplication. We say that *“1 . 12" and

'3 . 4" are product expressions of 12. It is possible
o have product expressions for 12 with more than
wo factors such as:

1.2-6 2.2-3
1.3.4 1.2.2-3

e see that we can use any of several different product
expressions to represent the number 12.

Question: How many product expressions of 12 are

i there which contain exactly two factors?

Questior: |s 59-509 a product expression for 30031?
(the number 30031 will be mentioned later
in this chapter in connection with an im-

portant theorem).

In this section we have considered some of the basic
' language used in number theory. Again, foraand b in N,
'a is a factor of b if there is some natural number ¢ such
‘that a + ¢ = b. Thus, 7 is a factor of 21 because

£7 . 3=21. lf a is a factor of b, we say that b is a
‘multiple of a. Thus 21 is a multiple of 3. if a is a factor
i.of b, we say that a divides b (written a | b). Thus

£7 | 21 and 3 | 21. We say that 21 is the product of the
 factors 7 and 3. Also we say that *“7 - 3" is a product

- expression for 21. Note that the words product expres-

. sion are used to talk about names such as *‘7 - 3" aond
647 . 21" and **1 - 3 - 7** that invo|ve finding a product.

11.2 Exercises

\ 1. Explain why the following are, or are not, true:
- () (2+3)eN

(b) (2-3)eN

(c) lfaeWandbeW, then(a+b) eN

(d) ¥xeNoandyeN, then(x +y) eN

() IipeNandqeW, then(p-q)eN

(f) The product of two natural numbers is a nat-
vral number.

o
v
.

! 2. Complete the following sentences:
(@) lfaisa factor of b, thenbis a ? ofa.

(b) Ifx -y=z, then ?

is a factor of ?

is amu nle of

(d) 1§51 100, then Sisa__2 _of 100.

————

(€) 1§7 -8 = 56, then 56 is called the ?  of
? and__? .

() Ifp-q=r, then_?
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() 1§9-7=63, then "9 - 7" is called a ? _of
63. :

3. Determine if the following are or are not true.

Explain your answers.

(@) 3 is a factor of 18

(b) 7 is a factor of 17

(¢) 3 is a factor of 10101

(d) 12is a factor of 9%

(e) 30is a factor of 510

( 1is afactor of 3

(g) 8 is afactor of 8

(h) 65 is a multiple of 13

(i) 91is a multiple of 17

(i) 5402 is a multiple of 11

(k) 10 is a factor of 1000 because 10 - 100 = 1000
() 16is a factor of 8 because 8- 2= 16

4. Determine if the following are or are not true.

Explain your answer.

() 3|39

b) 17| N

(c) 8|4

(d 1]4

(e) 13] 65

(H 316,3|12and3 |18

(g) 2| nwhere is any even natural number
(h) n | nwhere nisany natural number

(i) n|n*+3n forallnin N

5. For the following numbers determine all product ex-

pressions which contain exactly two factors.

(@) 6 ) 2

(b) 7 (@) 3

() 1 . (h) 35

(d) 12 (i) 36

(e) 13 iy ¥
11.3. Divisikility

In this section we shall consider how sentences deal-
ing with natural numbers can be establ ished as theorems.
An example of such a sentence is the folloving:

If a is an even natural number and b is an even
natural number then a + b is an ever natural number.
This sentence was assumed to be true earlier in our
text (See, for example, Chapter 4, Exercise 2a, page 76).
Our goal now is to prove that a + b must be an even
natural number whenever a and b are even natural
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numbers. In order to prove this some additional axioms
for (N, +, +) are needed. Rather that just stating those
axioms nceded to prove the above sentence, we now
record ¢ number of additional axioms for (N, + *)
which may be used to prove many other theorems. Note
that these axioms summarize properties of (N, +, +) you
have already been using.

A3. ForallaandbinN,a+b=b+aanda -b=b-a

A4. Forall a, b,and c in N,

a+(b+c)=(a+b)+ canda:(b-c)=(a-b)- ¢

AS. Forall a, b, and c in N,
a-(b+c) =(a-b)+(a-c)
A6. ForallainN,a-1=1-a=0.

Question: Whai familior names do we give to the

axioms A3 - A6?

In addition to these properties of natural numbers,
we will make frequent use of a general logical principle
that we first stated in Chapter 6. It is the Replacement
Assumption.

The mathematical meaning of an expression is not
changed if in this expression one name of an object
is replaced by another name for the same object.

As an illustration, consider the use of the cancellation
property in solving the equation 7., 2 + x= 46. Another
name for 46 is (7. 2 + 38.8). Therefore, using the Re-

placement Assumption, we can write

7.2+x=7.2+38.28
and conclude that x =38.8.

There are two specific ways in which the Replacement

Assumption will be used in establishing proofs of

sentences about the natural numbers. These are contained

in the following theorem.

that a = b and ¢ = d, then
) a+b=c+d
2 a-b=c-d

Proof:

1) Clearly, a +c =a+c.Since ¢c= d means
that *“c” and *‘d’’ are two names for the
same object, we can replace any “c' by
“*d" without changing the mathematical
meaning of the expression involved.
Using this replacement we have o+ ¢ =
a +d. Similarly, since a =b means that
9" and ‘b’ are names for the same
object, we can replace any *'a’* by “p*’
without changing the mathematical
meaning of the expression involved.
Therefore, a + ¢ =b +d. Note that the
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Horl e s ied 0 WA ENGORTER wen kG w8 v AT e (PPN R A - e B NN RIS R

Theorem A. Ifa, b, ¢, and d are natural numbers such

194

¢ o a0 RNt GRS T W

two replacement s were made for the "a®

and ‘“c” to the right of the ‘' = " ina
+c=a+¢

?) To show thata-c=b. dwe proceed in
a similar manner. Certainly a- c=0a-c.
Replacing *‘c” with “d”’ and ‘0" with
“b'* to the right of the *‘ = *' we obtain
arc=b-d.

Let usnow consider how we can prove the sen-
tence about even natural numbers with which we be-
gan this section. Before beginning the proof we nofe
that a natural number n is defined 1o be even if and
only if 2 | n. Our proof proceeds as follows.

Since a is an even natural number, we know that
2| aor that 2 is a factor of a. By Definition 1 this
means that there is a natural number x such that
a=2- x Similarly, since b is an even natural number,
2 | b and there is a natural numbery such that b = 2y.
Then, by the first part of the Theorem A just proven,
a+b=2-x+2-y. But2.x+2.y=2:(x+y) by
the Distributive Property, A5. Hence, we may use the
Replacement Assumption to obtaina + b=2-(x+y).
Since x ¢ N and y €N then, by A1, (x+ y) € N. Ve
see that according to Definition 1 this means that
2| (a +b). Hence a+ b is an even natural number and
the proof is complete.

We can also express the above in the following
manner using *‘parallel columns.” That is statements
used in the “*proof” appear in the left column and
justifications of these statements appear in the right
column.

Theorem: 1§2|aand2 | b, then 2 | a+b wherea

ond b are natural numbers.

Proof:
1. 2|aand2 | b 1. Given
2 a=2xandb=2ywhere 2. Definition 1.
x,y €N .

3. a+b=2x+2y 3. Theorem A

4, 2x+2y =2 (x +vy) 4. AS(" -"is ;
Distributive . 3
over ‘‘ + ")

5 a+b =2-(x+y) 5. Replacement
Assumption

6. (x+y) <N 6. Statement 2
oand A

7. 2| (a+b) 7. Definition 1

(definition of
(1] ‘ ’.).,

If we call the above “a proof”® of the theorem

f2) aand2 | b, then2 |(a + b) (1)

we mean that we have shown that the conditional
sentence (1) (i.e., a sentence of the *‘if p, then
q" type) is true for all values of the variables




 and b. It is possible to generalize sentence (1)
o obtain

If c|aandc | b, then c | (a + b) where q, b,
€N (2
n order to give G proof of (2) one must show that
t is true forall natural numbers 3, b, and c. (This
will be asked for in an exercise.)

Question: Would sentence (2) be proven as ¢
theorem if we proved it true for
c=3?

. We have settled the question concerning the sum of
ony two even naturai numbers. But what can be said

suggests we attempt to prove the following theorem:
lf2|aand2 |b, then2|a-b

Ou; proof might proceed as follows: (See if you can
janswer each of the ““Why?’’ questions.) Since we are
given that 2 | a and 2 | b we can state that a = 2x and
b =2y where x and y are natural numbers (Why?).
Further a + b = (2x) - (2y) (Why?). But (2x) - (2y) =

2 - [x - (2y)] (Why?) Thus a - b =2 [x - (2y)] (Why?)
Since the number in the brackets is a natursl num-
‘ber (Why?) we conclude that 2 | a - b. (Why?)

If you have been able to justify each of the state-
’n-2nts in the above argument then you have a proof
of the conditional sentefice

2| eand2 |b,then2|a-b 3)

Sometimes we use a single letter symbol, such
as “p” or **q" to represent a whole phrase or sen-

tence. Thus we may write:

“*Two divides g and two divides b’’
-in the shorter form

. “2|aand2 | b”

or replace this expression by the symbol *‘p’® where

“p" means ‘2| aand 2 | b".

'Siniilarly we could use “‘q’’ to mean 2| a- b"” or
Y

**two divides the product of a by b."”’ Thus we canre-
‘present (3) by

If p, then q
We refer to ““p’’ as the “*hypothesis’’ and

We refer to *“q"’ as the ‘‘conclusion.”

In order to prove (3) we assume that p was true. That is,
we assumed that the conjunction of ‘2 | " and *‘2 | b"
was true. Then, using our axioms and definitions, we
proceeded to establish that the conclusion 2 | (a - b)
was true.

: The direct method of proof is one of several accepted
methods of establishing mathematical sentences as
theorems.Often the direct method is not the simplest way
to prove'a sentence true. Another method of proof, called
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the indirect method, is useful in many instances. To
illustrate the method we shall apply it to proving the
following:

If a - b is an odd natural number, then a and b are both
odd natural numbers. (4)

Proof:

As before, we begin by assuming thot a - bis an
odd natural number. [Note: we say that o natural
number is odd if it is not evenl. But rather than
using this fact directly we now ask whether it is
possible for one of a and b to be even? To answer
this question we consider first the possibility
that a is even. Ifaiseven, a=2 - x, x¢ N. Then,
a:-b=(2:-x)+-b=2-{x-b) whichmeans that
a-bis even. Buta * b is odd. Hence, a cannot
be even, that is, a is odd. In a similar fashion

we see that b cannot be even. Therefore, both a and
and b must be odd if a - b is odd and our proof is
complete.

In order to prove (4) we assumed that the hypothesi's
was true, that a - b was odd. Then we considered the
possibility that the conclusion might be false, that is,
that a was even or b was even. |n either case this
could not be true because it meant that a - b was even.
We thus reasoned that the conclusion must be true.

Question: Can you justify each of the statements
used in the proof of (4)?

The above proof conceming odd natural numbers made
use of the definition of odd naturals as naturals which
are not even. It is possible to give a more useful
definition of odd natural numbers. For this definition
we will need to review some ideas studied in your
earlier work with arithmetic. In particular recall that
when you were asked to divide a natural number by
another natural number you frequently expressed the
answer in terms of a quotient and a remainder. Consider
the following two displays of work done to divide 15 by 2:

6 7
2 [ 15 2[ 15
12 "3
3 1

In both displays we obtain a quotient and a remainder.
On the left we hiave a quotient 6 and a remainder 3
whereas on the right we have a quotient 7 anc' a remain-
der 1. For the display on the left we have

15=(6-2)+3
For the display on the right we have
15=(7-2) +3

In a sense we have two ‘“‘answers’’ for our division
problem involving a quotient and a remainder. We resolve
this situation of not having a unique solution by saying




that we will accept that result in which the remainder is

o whole number less than the divisor. Then the display on
the left is unacceptable because the remainder 3 is not
less than the divisor 2. Further, the display on the right
is acceptable because the remainder 1 is a whole number
than the divisor 2. The question of whether we can always
find exactly onie quotient and exactly on¢ remainder when
a whole number is divided by a natural number is an-
swered by the following axiom which is known as the
Division Algorithm.

A7. Let a be a whole number and b be a natural number.

Then there exist unique whole numbers q andr
such that

a=(q-b)+r with0O<r<b

Example 1: Leta =239 and b = 9. Then the division
algorithm (A7) guarantees that whole
numbers g and r exist such that

39 =(q-9)+rwith0<r<9
In fact if we let q =4 and r=3 we have
39 =(4-9)+3with053<9

Moreover, the division algorithm guar-
antees that q = 4 and r = 3 are the
unique whole numbers which sati sfy

39=(q-9+rwith0<r<9
E xample 2: Consider a case where a is less than b.
If a=8and b =17, then
8=(0-17) +8

where the quotient is 0 and the remain-
der is 8. Note that the remainder is @
whole number less than the divisor. That
is0<8<17

If a whole number is divided by 2 the div-
ision algorithm guarantees that there
exist unique whele numbers q andr such
that

a=(q-2)+rwhere0<r<2

E xomple 3:

It is clear that the only possible values of
r are 0 and 1. Thus we have

a=(q-2)+0
a=(q-2) +1

1))
(2)

either

or

We can use the above to give us the follow-

ing:
(a) n is on even whole number if and only

if n can be expressedas n=(q - 2) +0
where g is some whole number.

Definition 4:

(b) n is an odd whole number if and only
if n can be expressedas n =(q -2)
+ 1 where q is some whole number.

b N R T A L A
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It is easy to establish the following:
Let E ={x | x is an even natural number}

and o ={y |y is an odd natural number |

Theorem (o) lfacE andb eo, then (o +b) €0
(b) facoondbeo, then(a+b) ¢ E
(¢) lfaeE andbeo, then(a-b) e E
(d) faecoandbeo, then(a-b)co

The proof of the above will be called for in the exercises.

We conclude this discussion of odd and even natural
numbers with a theorem whose proof makes use of
Definition 4 and the above theorem. It also illustrates
a method of proof sometimes called proof by ceses.

Theorem: If nand n + 1 are natural numbers, then
n(n + 1) is on even natural number.

n(n + 1) = n’ + n (by AS and by definit-
ion of n’)

Proof:

(1) If nis even, then n? is even. If n
and n? are even, then n? +n, as the
sum of two even natural numbers, is
even.

(2) If n is odd, n” is odd, and if n and
n2 are odd, then n* +n, as the sum
of two odd natural numbers, is even.

Hence, in either case (1) or (2) n* +n
is even. Sincen(n + 1) =n® +n,
n(n + 1) is even.

Question: Why does the above proof consider
only two cases?
11.4 Exercises
1. Complete the following:

(0) a=(q-b)+r, 0<r<b, is called the__? .

(b) (x +1) -y =x -y +y follows from ? ‘
(c) 7°1 =7 follows from ?
(d) f x=yandp =q, thenx +p=y + q follows
from .
(e) 7 is an odd natural number because ?
() If ais an odd notural number, then a = ?
?

(g) If qis false implies p is false, then

(h) 1fkeNandjeN, then(k-j)eN follows
from ? .

Find all possible pairs of whole numbers q and r
such that 13 = (3 - q) +r. Which of these pairs
are the quotient and remainde: of the division
algorithm? For which case(s) does r satisfy
0<r<3?
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 (a) Proveif3]|aand 3| b, then 3| a+b where

a, b, eN

(b) Proveifc |aand c|b, then ¢ | a + b where
a, b, ceN.

Prove ifa|band b | ¢, thena | c where g, b, ¢
eN.

Prove if a | b, then a | bc where g, b, ¢, ¢ N.

Let E and o represent respectively the set of even
natural numbers and the set of odd natural numbers.

Prove (a) Ifae¢E andbeo, then(a+b) co
(b) ifaecoand be o, then (a+b) ¢E
(c)ifacEoandbeo, then(a-b) ¢E
() faecoandbeo, then(a-b)eo

If the natural number n is not a multiple of 3, then
n* + n is a multiple of 3. Prove the above theorem
as follows: Assume n® + n is not a multiple of 3
implies n is a multiple of 3.

Examine each of the statements (a), (b), and (c).

If the statement is false then exhibit o counter
example.

If the statement is true then list all the ossumptions
that you need in order to complete a proof of the
statement.

(o) Ifa|b, thena |b +c
(b) Ifa|b, thena |be
(c) fa|b+canda]b, thena| <.

In this problem we consider some tests that may be

applied to divisibility questions involving base ten.
These tests will generally fail when numbers are
represented with numerals in bases different from
ten.

Assume the following is true:
Ifa|by, 0]by,...,a]by_yand
ifa|(by+bg+... by_1+by) thena|by

Also note that any natural number N can be written

in the form N =0,10" + a,_1 1071 4.,

+ a2]02 +a] 10 + agQ

Prove that a natural number is divisible by 2 if ard
only if the last digit of its (base ten) numeral is .
even.

Note 3| (10-1), 3 (102-1), 3| (103-1), etc..
Assume 3 |(10%~1) where k is any natural number.
Prove a natural number is divisible by 3 if and only

if the sum of the digits of its S?ase ten) numeral is
divisible by 3. [Hint: 10k = 10k -1 + 1]

Discover a decimal numeral test which indicates
when a number is divisible by
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(1) 4 (4) 8
(2) 5 (5) 9
(3 6 (6) 10

(d) Prove any of the results you have discovered in (c).

11.5 Primes ond Composites

It i s obvious that the natural number 8 has more
factors than the natural number 7. The set of factors of
8 is §1,2,4,8} whereas the set of factors of 7 is {1,71.
It is not hard to find other natural numbers like 7 which
have exactly two distinct numbers in their factor set.
For example, 11 is such a number since the set of factors
of 11 is {1, 11}. 2 is another natural number with precisely
two numbers in its set of factors. Such numbers as 2, 7,
and 11 are called prime numbers. In general, we have the
following:

Definition 4z A natural number is said to be a prime
number if the number has two and only

two distinct factors -- namely, 1 and the
number itself.

3 is a prime number since the only
factors of 3 are 1 and 3.

Example 1:

Example 2: 31 is aprime number since the only

factors of 31 are 1 and 31.

91 is not a prime number because 91
= 7x13. That is, 91 has factors other than
1 and 91.

1 is not a prime number. What in the
definition of prime number determines that
| is not a prime?

Exomple 3:

Exomple 4:

We see from Example 4 that the least natural prime
number is 2. What con we say about the primness or non-

primeness of multiples of 2 which are greater than 2? We
knu-w that 4 is amultiple of 2. But 4 cannot be a prime
number because it has a factor other than 1 and itself,
namely 2. Similarly, 6, being a multiple of 2, has a factor
2 other ian 1 and 6 and thus cannot be a prime number.

In general, no multiple of 2 except 2 can be a prime number.
Why ?

What cbout multiples of the prime number 3? Can they
ever be prime numbers? |f we examine any multiple of 3
greater than 3, say 9 or 21 or 3000, we see that every
such multiple has a factor other than 1 and itself, namely
3. In short, there are many natural numbers which are not
prime. We call numbers of this type composite numbers.
A composite number always has numbers in its factor set

besides 1 and the number itself. The factor set for the
compos ite number 9 is {1, 3, 91.

Definition 5: A natural number is a composite number,
if it is not equal to 1 and it is not a prime
number.

Example I:  The natural number 51 is a composite
number. Clearly 51 is not equal to 1.

Also, 51 is not a prime number because it




has the factors 3 and 17. We note that
the factor set of 51, {1, 3, 17, 514, has
more than two elements.

Example 2:  All multiples of 5, except 5, are com-
posite. That is {10, 15, 20, 25, 30.. .}

consists of composite numbers. Why?

Example 3:  The natural numbers 90, 91, 92, 93, 94,
95, 96, 98, and 99 are all composite.
How would you check this? What can
we say about 977

From the remarks and examples above it can be seen
that we now have a partition of the set of natural numbers
into three disjoint subsets. These subsets are the follow-

ing:
(i) the set consisting of 1 alone; that is {11.
(ii) the set of prime natural numbers.

(iii) the set of composite natural numbers.

11.6 Exercises
1. Complete the following sentences:

(a) 1fa natural number is a prime number, then its
factors are ?

(b) 1f a natural number is not a prime number, then it

is__?

(c) 1fa natural number is a prime number, then it has
? elements in its set of factors.

(d) 1f a natural number is not a prime number, then it
has ? elements in its factor set.

. List the set of factors for the following natural num-
bers:

(o) 10 (e) 34
(b) 13 (f 35
(c) 12 (9) 36
(d) 24 (h) 37
. Determine which of the numbers given in Exercise 2
are
(a) prime

(b) composite
(c) both prime and composite

. What can be said about every multiple of a prime
number which is greater than that prime number?

. (a) What is the greatest prime number less than 50?
(b) What is the least composite number?

. What can be said about the product of two prime
numbers?

. (a) List the set of all even prime numbers.

(b) List the set of all odd prime numbers less than

20.

8. Re-examine the definition of composite number. Can
you formulate a different definition which makes use
of the term “factor’ or ‘‘factor set’’?

11.7 Complete Factorization

As you continue your study of the set of natural num-
bers and their properties you will frequently have to
examine the factors that make up the product expressions
of a natural number. What can we say about the faciors
that moke up the product expressions of prime numbers? f
We have seen that ;

2= 1.2
3= 1.3
5= 1.5, etc.

By the definition of prime numbers the only factors a
prime p has are 1and p. However, we find that every
composite number can be renamed as a product expres-
sion other than 1 times the number. For example, 20 can
be renamed using either of the following product expres-
sions:

2.10(1)
4-5()

These product expressions of 20 can be shown in an-
other way:

VANVAN

On the left we have a tree diagram to represent (1) and
on the right a tree diagram to represent (2). It is possible
to continue each of the above diagrams by completing E
another row to indicate product expressions of 20 as

follows:

20 20

2/x\l 4/x\5
LN A

We see that every number named in the last row of both
diagrams i s a prime number. (We shall refer to such tree |
diagrams as factor trees.) Moreover, the last rows in i
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th factor trees contain exactly the same prime num-
ors. Thus, starting with either of the product expres-
ions (1) and (2) of 20 we obtain exactly the same pro-
Uct expression of 20. In this case we see tha: 20 has

éproduct expression such that each factor that makes
b the product expression is a prime number. We shall

escribe this situation by seying that 20 con be

xpressed as a product of prime factors.
:
. Our attention is directed to the following questions:

Can every composite number be expressed as a pro-
uct of prime factors? In other words, does there exi st
'product expression for each composite number in

shich each factor is a prime number? Furthermore, is
here only one such product expression?

-~ The following factor trees for 36 suggest that the
hswer to the above questions should be *‘Yes.”

AN AN

AN

x 9 2 x3 x2x3

/e note again that the last row in each of the above
actor trees is a product expression for 36 in which
ach factor is a prime number. Moreover, the same set
f factors appear in each product expression. Note
hat the order of the factors in each of the last rows
§ the factor trees is different. |s this change in the
he order of the factors o signifigant change? The
inswer is “No.** Because of the commutative property
yf multiplication in (N, x), the fact that they are
arranged in different order is immaterial. Thus, using
»xponents, we can express the last row in each of the
above tree diagrams as

22 .32

When a composite number is expressed as a product
of prime factors, we refer to this as a complete factor-
jzation of the given number,

The following are examples of complete factorizat-
ions:

72=2-36 182=2-91
=2-2-18 =2-7-13
=2.2.2-3-3
150=2-75
=2-3-25
=2:3-5-5
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Notice that when each factor in the final product expres-
sion is a prime number then we say that the product
expression for complete factorization has been found.
One important question that can be asked is the fol-
lowing: If a composite number has a complete factor-
ization, could it have ¢ second complete factorization
involving different prime numbers? All the examples
considered above seem to indicate that there is only

one complete factorization for a given composite num-
ber. For example consider

150-2.3.5:5

If you experiment with other possible prime factors, such
as 7, 11, 13, etc., you will find that the above is the only

complete factorization of 150.

The above examples illustrate one of the most impor-
tant and fundamental properties of the set of natural num-
bers. The property is called The Unigue Factorization of
the Natural Numbers:

Every natural number greater than 1 is eithera

prime or can be expressed as a product of primes
in one and only one way except tor the order in

which the factors occur in the product.

We shall see how this property con be used to solve, ina
new way, a problem that you met earlier in this course.

There was on exercise in Chapter 2 [See Section 2.2,
Exercise 9, p. 32] in which you were to find the greotest
common divisor of 24 and 16. It turns out that finding
the greatest common divisor of two natural numbers is
equivalent to finding the greatest common factor of the
two numbers. We con redefine o greatest common divisor
of two nature! numbers using the terminology of this
chapter.

Definition 6: The greatest common divisor (abbrev-
iated g.c.d.) iated g.c.d.) of two natural numbers,

o and b, is the largest natural number
d such that d | a and d| b. d is writ-
ten as g.c.d. (g, b) or d = (g, b).

=n Chapter 2 you found g.c.d. (24, 16) essentially as fol-
ows:

Consider the set made up of the factors of 24, which we
will call A: A=1{1,223 46,8, 12, 24

The set of factors of 16 we will call B:

Then AnB =112, 4, 8 isthe setof
common factors (divisors) of 16 and 24. Clearly 8 is iie

greatest common divisor of 24 and 16. That is g.c.d.
(24, 16) = 8. We see that 8 is the greatest natural number

such that 8 | 24 and 8 | 16.

Question: Why will 1 always be an element in the
intersection of the factor sets of two natural numbers?

A second solution to the above problem is as
follows: By the Unique Factorization Property we know
that both 24 and 16 can be expressed as a product of
primes where the factors of the product are unique. In
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foctwehave 24=2.2.2.-3 and16=2-2-2- 2.
We see that the product expression 2+ 2 + 2 is common
to both factorizations and yields the greatest common
divisor 8. This technique is useful when the numbers

are small. For example to find g.c.d. (. 3, 108) we
determine that

We see that 3 is a common facior. However, 3

45-32.5

and 108=22 . 33
2

VA .
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also a common factor and is the greatest common factor

of 45 and 108.

11.8 Exercises

1.

Factor the numbers listed in as many ways as pos-
sible using only two factors each time. We shall say
that 2+3 is not different from 3:2 because of the
commutative property of multiplication in (N,:).

(a) 9 (e) 24
(b) 10 (f) 16
() 15 (g) 72
(d) 100 (h) 81

. Write a complete factorization of:
(@) 9 () 16
(b) 10 (9) 81
() 15 (h) 210
(d) 100 (i) 200
(e) 24 (j) 500

. What factors of 72 doe not appear in a complete

factorization of 72?

. What will be true about the complete factorization

of every
(a) even natural number

(b) odd natural number

. Construct at least two tree diagrams for each of the

following:
(a) 24
(b) 96

(c) 625
(d) 1000

. Find the greatest common divisor of the following pairs
of numbers by making use of their complete factorizations.

(@) 70 and S0
(b) 80 and 63

(c) 372 and 390
(d) 663 and 1105

. Determine if g.c.d. is a binary operation on N. If it is,

explore its properties. |f it fails to be a binary operation
on N, explain why it does fail.

. Copy the following tables for natural numbers and com-

plete it through n = 30.
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. If we list the set of multiples of 30, we obtain

Factors of n | Number of factors | Sum of factors :
] 1 ]
1,2 2 3
1,3 2 4
1,2,4 3 7
1,5 2 6
1,2,3,6 4 12
1,7 2 8
1,2,4,8 4 15

(a) Which numbers represented by n in the table
cbove have exactly two factors?

(b) Which numbers n have exactly three factors?

(c) If n = p* (where p is a prime number), how
many factors does n have?

(d) !f n = pq (where p and q are prime numbers and
not the same), how many factors does n have?
What is the sum of its factors?

(¢) If n =2 (where k is a natural number), how :
many factors does n have?

(f) ¥ n=3 (where k is a natural number), how
many factors does n have?

(g) If n =p (where k is a natural number and p is
a prime), how many factors does n have?

(h) Which numbers have 2n for the sum of their
factors? (These numbers are calied perfect
numbers.)

{30, 60, 90, 120, 150, 180, ...}. Also, if we list
the set of multiples of 45, we obtain {45, 90, 135,
180, 225, 270, ...}. We see that a common multiple
of 30 and 45 is 180. However, there is a common
multiple which is the least common multiple of 30
and 45; namely 90. We write this as 1.c.m. (30,45)
=90.

(a) Examine the complete factorizations of 30 and
45 and explain how one could use these to find

that the least common multiple of 30 and 45 is
90.

(b) Similarly, find the least common multiples of the
following numbers by making use of their com-
plete factorizations:

(1) 30 ond 108 (4) 81 and 210

(2) 45 and 108 (5)16and 24
(3) 15and 36 (6) 200 and 500

(c) Can you find any relationship between the great- 3
est common factor {g.c.f) of a and b and the least 3
common multiple (l.c.m.) of the same a and b?
Experiment and write a report on your findings.




-10. Determine if i.c.m. is a binary operation on N. Write 1110 Exercises
. areport of your findings. 1. (a) In the above list, what was the first number
! struck out when we sieved for the following:
- 11,9 _The Sieve of Eratosthenes . .
. The fact that every composite number can be express- (1) moltiples of 2 (3) multiples of 5
'ed as a product of primes in one andonly one way, except (2) muitiples of 3 (4) multiples of 7
: for order, indicates that the set of prime numbers are the
<basicelements, the atoms so to speak, in the structuring
' of the natural numbers by multiplication. If we wish to
: have a basic understanding of multiplication of natural
 numbers (and div..ion, which is defined in terms of multi- (c) Explain why we did not have to sieve for
“ plication), then it is to our advantage to be aware of some multiples of the prime 11?
- propertiesof the set of prime numbers. (d) What is true of all numbers that

A list of all the primes up to a given natural number N
- may be construciscd as follows: Write down in order all the (1) pass through the sieve?
 notural numbers less than N. In Figure 11.1 wehave done
 this for N = 52, Then strike out 1 because by definition it
. isnot a prime. Next, encircle 2 because it is a prime num- (e) Would any new numbers be crossed out if we
. ber. Then strike out all remaining multiples of 2 in the sieved for multiples of 4? Why or why not?
- Bist, that is, 4, 6, 8, 10, etc. such multiplesof 2 are, as we
: discussed earlier, composite numbers.

(b) Can you make a conjecture concerning the
first number struck out if we sieve for multi-
ples of a prime p?

(2) remain in the sieve?

2. Make up a list of natural numbers less than 131.

. Next encircle 3, the next number we encounter in our (a) Carry out the Sieve of Eratosthenes process on
: Bist. After 3 is encircled, we strike out 6, 9, 12, ..., that this set of numbers.

j is, all multiples of 3 remaining in the list. (Note that 6 (b) How many primes are there less than 101?

. was struck out when we considered multiples of 2 and also (c) How many primes are there less than 131?

- when we considered multiples of 3.) In a similar way we

. continue this process by next encircling 5 and striking out
its remaining multiples. Lastly we encircle 7 and strike (e) What is the largest prime, p, for which you

- out its remaining multiples. had to determine multiples in the sieving

A @@ A @ [ 4 @ g5 }6 process? Explain.

@ 3. (a) List the pairs of prime numbers less than 100
@ which have a difference of 2.
43

(d) What is the largest prime number in your list?

(b) What name is given to such pairs?

(c) Howmany such pairs are there less than 100?

BB
BT RXE®
VR
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QIOANS)
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230
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4. Make up a list of numbers which goes from 280

EXSIORNE)

through 290.
Figure 11.1 (a) Apply the Sieve of Eratosthenes process to this
Note that if we encircle all the numbers remaining list.

in the list we obtain all the natural prime numbers less

(b) List all the primes obtained from this sieving.
thon N = 52. In all there are 15 such prime numbers ob-

T, T e TR R T A S TSGR TR T T A NE RN T AR T TR TR

tained by this process, known cs the Sieve of Eratos- (€) For which primes did you have to seek multiples?
thenes. The sieve catches all the primes upto N in its (d) Explain why you selected a certain prime as the
meshes. largest for which you sought multiples.
Complete tables of all primes less than 10,000,000 ) .
" have been computed by this method and refinements of 5. (a) Lis.t the triplets of prime numbers Ies.s than 131
- this method. Such tables are useful in supplying data which h‘“f‘ a d.i“"""“ of 2. Such triplets are
. concerning the distribution and properties of the primes. called prime sriplets.
Even the small iist constructed above gives some ‘ (b) After you have found the smallest set of prime
| indication that the primes are not distributed in any triplets, explain why no other distinct set of
. sort of obvicus way among the natural numbers. Also, prime triplets cou'd have 3 as a factor.
. we see that it may happen that a number, p, is a prime
- and p+ 2 is also a prime. Such pairs of primes are (c) Assume that there is a second set of prime
' called twin primes. Examples of twin primes in the triplets. Call them p, p + 2, p + 4. From (b) we
: list above include 11 and 13, 17 and 19, 29 and 31, kriow that p # 3k where k is some natural num-

ber. Why?
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(d) If p # 3k, then what is the remainder obtcined In any case, it has resisted solution for over two hun-
when p is divided by 3? dred and twenty years.

- (@) Can you examine p + 2 and p + 4 and prove that

P, p +2, and p + 4 do not exist as primes? 11.12 Exercises,

1. Show that the following numbers 2ii satisfy
(f) Whrt conclusion can you draw from (a) — (e)? Goldbach's Conjecture.

(a) 10 (f) 20

11.11 On the Number of Primes

Euclid (circa 300 B. C.) answered the following (b) 12 (g) 36
question: |s there a finite or a non-finite number of (c) 14 (h) 48
prime numbers? As you work with the sieve of . (
Eratosthenes you probably note that as you continue (d) 16 (i) 100 3
sieving the primes become relatively scarce. How- (e) 18 (i) 240
ever, Euclid proved that, as one con.tinues .t° ex- 2. In working with Euclid’s proof that the set of primes
amine the set of natural numbers, primes will always is non-finite we find that possible valuesof N in-
be encountered if we seek long enough. He proved clude:2+1,23+1,235+1, 2357 +1,
that there are a non-finite number of primes. 2:3:5:7:11 + 1, 2:3:5:7:11:13 + 1,

Euclid's argument proceeds as follows: Assume 2:3:5:7:7:11.13:17 + 1, ete.
there is a largest prime. Let us denote this largest () Explain how each of the numbers in the above a
prime as "‘P"’. All the primes can then be written list was formed. In each case what is P? What z
in a finite sequence l is N? i

2,3517..,P. (b) The first 5 numbers in the list are primes. Com-

Since P is the largest prime, all numbers greater pute them and verify that at least 4 of them are
than P must be composite; that is, every number in fact primes.
greater than P must be divisible by at least one ( .
. ) N c) Note that 2:3:5:7:11:13 + 1 = 30031 and this
of the primes in the above sequence (Why?). But number is composite because 30031 = (59)(509).

now consider the number

Verify this.
N =(2:3:57:... P)+ 1. {d) Prove that 2:3:5:7:11:13:17 + 1 is a composite
that is, the number obtained by adding 1 to the number. (Hint: be efficient!)

product of all the primes. Since N is greater than
P, it must be a composite number, and therefore
divisible by at least one of the primes in the
above sequence. But by which? It can be argued (f) Answer the two questions. ‘‘Why?’’ given in
that N is not divisible by any of the primes Euclid's proof of the infinitude of the primes.
2,3,5,7, .... P(Why?). Hence N cannot have
any prime factors, which contradicts the fact
that N is composite. Therefore, the assumption
that the number of primes is finite leads to a " N
contradiction, and we must conclude that there 11.13 Euclid’s Algorithm
are a non-finite number of primes.

It is interesting to note that the number of
prime twins is not known! Unlike the situation
for the primes, efforts to determine the number
of such prime twins have not proved successful.

Another famous unsoived problem also deals
with primes. It is called Goldbach’s Cenjecture.
Goldbach stated, in a letter to Euler in 1742, that
in every case that he tried he found that any even
number greater than 2 could be represented as the
sum of two primes. For example, 4 =2 + 2, 28 = (1.16) + 12 where 0< 12< 16
E 6=3+3, 8=54+3, etc. No one has ever been able

to prove or disprove this conjecture of Goldbach. The

problem posed in the conjecture is interésting be-
cause (1) it is easily stated and (2) it involves addition
whereas primes are defined in terms of multiplication.

(e) Discuss Euclid's argument with regard to the
number shown in (d).

(g) Explain why a computer could never settle the
question concerning the number of prime twins.

We have seen that one way to find the g.c.d. of two
natural numbers is to begin by expressing each of the
numbers as a product of prime factors. However, this
is not practical when the numbers considered are quite
large. A method which is often used to find the g.c.d.
of large numbers is based on repeated use of the div-
ision algorithm.

We illustrate this by considering the problem of
finding the g.c.d. of 28 and 16. By applying the div-
ision algorithm we have

Note that if alb + c end a|b, then alc. Thus any num-
ber that divides 28 and 16 must also divide 12, Thus
the g.c.d. (28,16) must divide 12. Let g.c.d.(28,16) = d.

Then d|12 implies d is a common divisor of 16 and 12,
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2 d =g.c.d.(16,12)

cause if there was a larger divisor of 16 and 12 it
uld divide 28 and then d would not be the

'c.d. (28,16). Hence, we have g.c.d. (28,16) =

.c.d. (16,12), We continue the process by using the
vision algorithm again to obtain

= 16 = (1012 + 4 where 0<4<12

y the same argument Gs Gbove we have g.c.d. (16,12) =

<c.d. (12,4) Therefore, g.c.d.(28,16) = g.c.d.{12,4).
astly, we apply the division algorithm to obtuin

12=(34) +0

nd we see that the g.c.d. (12,4) = 4

thus g.c.d. (28,16) = 4.

he following example illustrates the algorithm irdi-
ated above:

&3

. Example: Findthe g.c.d. of 7469 and 2387

469 = (2387)(3) + 308 g.c.d. (7469,2387) = .
.c.d. (2387,308)

1387 =(308)(7) + 231 g.c.d. (2387,308) =
.c.d. (308,231)

02 = (231)(1) + 77 g.c.d. (308,231) = g.c.d. (231,77)
31 = (77)(3) g.c.d. (231,77) =77
"hus g.c.d. (7469,2387) = 77.

i Note that we first divide the larger number, 7469,
y the smaller number, 2387, and find the remained,
08 (which is less than the smaller number). Next we
livide the smaller number by this remainder 308 and
jnd anew remainder 231. Now we divide the first
iemainder 308 by the new remainder 231 and find the
hird remainder, 77. We continue this division until
ve obtain a remainder 0. The last non-zero remainder
hus feund is the g.c.d.
: The procedure used to obtain the set of equaticns
E«:t is obtained by successive applications of the
ivision algorithm is known as Euclid’s Algorithm.
% It can happen that when we find the g.c.d. of two
jumbers it turns out to be 1. For example, it is ciear
t

 g.eud. (5,13) =1
’. d with a little work we can see that
g.c.d. (124,23) = 1

:uch pairs of numbers whose g.c.d. is 1 play an
mportant role in Number Thecry.

Definition 7: If the greatest common divisor of two
natural numbers a and b is 1, we say
that a and b are relatively prime.

Similarly 124 and 23 are relatively prime. We shall use

[hus 5 ond 13 are relatively prime since g.c.d. (5, 13) =1,

theidea of two numbers being relatively prime in our
next axiom.

A8. 1fd =g.c.d. (a,b), then there exist integers
x ond y such that
d=x+a+y-.b
Inparticular, if @ and b are relatively prime,
there exist integers x and y such that
x:a+y+:b=1

Exomple 1: g.c.d.' (72,86) = 2 and 2 = 6(72) +(-5) (86)
Here x=6ond y = -5
Exomple 2: g.c.d. (5,7) =1
and 1 =3 (7) + (-4) (5)
Here x=3and y = -4,
Exomple 3: g.c.d. (147,30) = 1
and 1 = 23 (147) + (-26) (130)
Here x = 23 and y = -26.

In order to prove an important theorem we need only the
underlined portion of A8 (which is illustrated in Ex-
amples 2 and 3 above). The following theorem will
allow us to prove a number of theorems that tie together
the ideas of ‘‘prime’’ and ‘‘divisibility."

Theorem: If a | bc and g.c.d. (a,b) = 1, then a | c.
Proof: Since g.c.d. (a,b) = 1, then, by A8
1 =ax + by

where x and y are integers. Then ¢ = ¢ we

have,by Theorem A, ¢ « | = ¢ (ax '+ by). Apply-

ing A6 on the left and A5 on the right, we have
¢ = cax + cby

By hypothesis a | bc which by A3 implies

a | ceb. But a|chimplies a|cby. (Why?)
Similarly a | cax. Thus, we conciude that

have 7 | 5 (14) and g.c.d. (7,5) = 1. Hence
by the abc.ve theorem 7 | 14.

Example 2: 10 | 840. Consider 840 as 21 (40). Then
we have 10 | (21) (40) and g.c.d.
(10,21) = 1.Hence 10 | 40.

Among the theorems tha! are easily established using
the cbove theorem are:

a] c. (Why?) ]
Exomple 1: 7 | 70. Consider 70 as 5 (14). Then we

(1) Let p be a prime such that p | bc and p | b. Then p| c.
(2) lf pis aprime and p | ab, then eitherp |aorp | b
(or both).

11.14 Exercises

1. Using the Euclidean Algorithm find the greatest
common divisor of each of the following pairs of
numbefs.
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(a) 1122 and 105 (c) 220 and 315
(b) 2244 ond 418 (d) 912 and 19,656
2. Find the g.c.d. (144, 104) using two different methods.

3. (a) What is the g.c.d. of aand b if a ond b are dis-
tinct primes?
(b) If a is a prime and b is a natural number such that
a | b what is the g.c.d. (a,b)?

4. Prove the following:
Let p be a prime such that p | bc and p | b. Then ple.

5.. Prove: If p is a prime and p lab then either p|a or
plb  (or both)

6. Prove: If a and b are relatively prime and ajc and
b|c, then abjc.

7. Prove: If d=g.c.d. (a,b) and a =rd and b = sd, then
r and s are relatively prime.

8. Construct a flow chart for finding the g.c.d. of a
and b by the Euclidean Algorithm..

9. Fermat's Little Theorem. In the year 1640 Fermat
stated the following: If p is a prime that is not a
divisor of the natural number a, then p| (a P-? -1).

(a) Find two exampies which illustrate this theorem.

(b) Note that there is the restriction that pl a. What
would follow if p | a?

() What can we conclude if p is not a prime?

(d) Can you prove Fermat's Little Theorem?

11.15. Well-Ordering and Induction.

We have stated thus far eight axioms, A1-A8, which
are basic properties of (N, +, ). These have enabled
us to investigate many interesting problems in number
theory and to prove several theorems about the natural
numbers. Perhaps you have noticed that several of the

basic properties of the natural numbers are shared by
other operational systems. For instance, Al-A6 are
also properties of (Zs, +, ). But (N, +, ¢) is quite

different in other respects from (Z5, +, +). Let us look
at some further propertiss of (N, +, <) that distinguish
it from other operational systems.

The first of these properties is the Well-Ordering
Axiom. You will recall that if a and b are any two
natural numbers we say that a is smaller than b, or
that a<b, if and only if there is a natural number <
such that a + ¢ = b. Thus, given any two different
natural numbers a smailest member of the pair may be
determined. It is easy to see that this is also true for
any set of three natural numbers. But is this % e for
any non-empty set of natural numbers? That is, does
any non-empty set of natural numbers contain a smallest
member? Let us consider the following examples:

Example 1. The set of even natural numbers. The
smallest member of this set is 2.

Example 2. The set of odd natural numbers. The
small est member of this set is 1.

Example 3. The set of natural numbers which divide
1001.. The smallest member of this set
is 7. You should check this result for
yourself.

It seems reasonable that the answer to our question
in general should be ‘‘yes’’, and this is the content of
the Well-Ordering Axiom, A9.

A9. Every non-empty set of natural numbers contains
a smallest natural number.

To see that this is a distinctive property of the
natural numbers not enjoyed by other sets of numbers
we need only examine subsets of the integers Z. Not
every non-empty subset of Z contains a smallest in-
teger. For instance, the setof negative integers con-
tains no smallest integer, since-1>-2>-3>-4>-5>.
Another example is the set of integers which have re-
mainder 3 when divided by 5. This set is { e, V7, -Y.
-7,-2,0,3, 8 13, 18, ...} . We will see later that the
axiom also does not hold for the set of rational number:

The second property of the natural numbers that we
consider is the Induction Axiom. If we begin with 1,

and continue adding 1, we obtain the sequence
2=1+1,3=1+14,4=1+1+1 ....Inthis

we con eventually attain any natural number n from
the natural number 1.

Looking at the situation ancther way, we let D be
subset of N and ask whether or not D is a proper subs
of N. 1fD is not a proper subset of N we know that
D =N. Now suppose 1 ¢ D and, in general, whenever
natural number k ¢ D, the natural number (k + 1) ¢D
also. Then, since 1eD, 1+ 1=2€¢D,2+1 =3 €D,
etc. It seems reasonable to assume that under these
conditions every natural number is in D. That is, D =
This is our next axiom, the Induction Axiom, A10.

A10. Given a set D of natural numbers such that
) ieD
2 keD-(k+1)eD,

we many conclude that D = N.

This axiom is the basis for a powerful method of pro:
ing sentences about natural numbers. Let us recall a
few ideas concerning open sentences and statements
An open sentence in one variable cannot be asserted
be either true or false. However, if we make some

assertion as to what the variable represents, they be
come statements that are either true or false. For ex
ample, ‘“x + -4 =2x + 2"’ is an open sentence and he:
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 neither frue nor false. However, ‘‘for every natural
mber x, x + 4= 2x + 2" is a false statement. (Try

= 1). Note that the statement ‘‘there exists at least
ne natural number such that x + 4 = 2x + 2" is a true

latement. Why? Other examples of statements on N are:

Example 1: For every natural number n greater than
2, 2is a factor of n* + n.

Example 2: For every natural number n, n2 -n + 41
is a prime number.

. Example 3: For every naiural number, the sum of the
first n odd positive integers is equal to
] n2

- Example 4: There is no natural number n such that
the sum of its factors is 2n + 1.
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- Example 5: There exists a natural number n such
f that n >3 andn < 9.

he solution set of the sentence in example 5 is clearly
4,5, 6,7, 8}

ie also call this set the truth set of the sentence in
Example 5. It is clear that the statement in Example

) is true.

- In general, the truth set of a sentence in one variable
s the set of all numbers and only those numbers, in the
omain of the varichle which make the sentence true.

Ve often use the notation *P(n)’’ (read “‘P of n”’) to
epresent an open sentence. If P (n) denctes the open
sentence “n2_n +41 is a prime number” in Example 2,
hen we see that P(1)is true since *‘l -1+4lisa
rime number.” However P(41) is false. Show this!

Ne conclude that the statement in Example 2 is false.

f one experiments with the problem posed in Example

4 he soon finds that it is quite a hard problem. In fact,
itis a good example of an easily stated but unsolved

problem in number theory. One attempt to settle the
problem would be to find a counter-example. We see
that n = 8 fails as a counter-example because the sum
of the factors of 8 is 15, whereas letting n = 8 we have

28) +1=17.

It is possible to get quite close to our goal. For
example, let n = 28. The numbers which divide 28 are
1,2, 4, 7, 14, and 28. The sum of these numbers is 56.
fBut 56 is not equal to 2n + 1 =2(28) + 1 = 57. In the
two cases attempted, we have failed to find a value of
n which contradicts the condition of the problem.

But everyone who has ever tried to solve the problem
has failed. Thus we do not know if the statement given
in Example 4 is true or false.

= Let us examine the open sentence in Example 3
more closely. We are to consider the sum of the first
n odd natural numbers. We have

g P() =1 -1
PQ) =1+3 -4
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PB)=1+3+5 =9
P@)=1+3+5+7 =16
P5)=1+3+5+7+9 =25

Notice that the sum of the first § odd natural nun..

is 52 = 25. The above results certainly suéEesY that
the statement in Example 2 is well founded. |t appears
that if we let N be any naturai number that

PIN)=1+3+5+7+ ... +(2N-1) =N
To prove the statement of Example 2, as it is re-

phrased in the previous paragraph, is true for every
neN, we must show that its truth set, T, is the set of

natural numbers N, or that T = N. It is in this sidbation
that AlO is useful as a tool of proof. We shall make no

attempt o carry out such a proof but simply indicate
how A10 applies.

First, we must show that ¢ T, or that P(1) is true.
This has already been done in previous discussion.
Second, we must show that if ke T then k + 1 ¢T. That is,
if P(k) is true then P(k + 1) is true. Then the Induction
Axiom allows us to conclude that T =N or that P(n) is
true for all neN.

11.16 Exercises

1. What does the Well-Ordering axiom assert about each
of the following:

(a) {4, 5,6, 7,8}
(b) the set of prime naivral numbers
(c) the empty set

2. Can you make a conjecturs concerning the sum of the
first n natural numbers?

Consider 1; 1+2; 1 +2+3;...;1+2 +... +n.
3. (a) Can you make a conjecture concerning
(1) the sum of the first n even natural numbers

(2) the sum of the first nS natural numbers
(that is 13+ 28 +... +nd)
(3) the sum of the first n2 natural numbers

(b) Can you find a relationship between the sum of the
first n natural numbers and the sum of the first

n3 natural numbers?
4. Consider1:2+2.3+3-4+...

Can you make a conjecture concerning this sum?

+n(n+1)

11.17 Summary

In this chapter we have explored topics in number theory.
You have had an opportunity to make conjectures and then
to prove your conjectures.

At this time you should be able to give a clear descript-
ion of what is meant by factor, multiple, prime number,
composite number, even and odd natural numbers, greatest
common divisor, and complete factorization. Can you state
the Unique Factorization Property of the natural numbers?
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. You saw that the Sieve of Eratosthenes provides one way 3. Give .o.‘c-:.onipl\ete factorization of each of the following:
" to determine primes up to some finite number. Do you : ' '

believe that this is an efficient tool for finding primes? (a) 38 (c) 96

Can you describe several ways of finding the g.c.d. of (b) 72 (d) 97

two natural numbers? What purpose did Euclid’s Algorithm . _ .

serve aad on what principle was it based? What is meant 4. Using the data in 3 above, determine

by the V/ell-Qrderi:g and lndul::tior; éxiom? Can you state (a) g.c.d. (38,72) (c) g.c.d. (72, 96)

some propérties of.prime numbers: Lan you state some :

problems that no ¢ne has ever been able to solve? (b) g.c.d. (38,96) (d) g.c.d. (72, 97)
Overall, your awareness of the set of natural numbers 5. Using the data obtained in 3, determine

<hould be increased. Also you should be more aware of (a) l.c.m. (38,72) i¢) l.e.m. (72, 96)

what constitutes a proof in mathematics and the fact that

there are varying methods of proving theorems. (b) f.c.m. (38,95) (d) l.cm. (72, 97

6. Using the Sieve of Eratosthenes process determine all

11.18 Review Questions primes between 130 and 150.

1. Explain why the following are true. (@) How many primes are in this set of numbers?
(@) 10 is a factor of 50 (b) How many twin primes are in this set?
. . (c) What is the largest prime p for which you have to
(b) 30 is a multiple of 6. determine multiples to find all the primes in this
(¢) 6is afactor of 20 set of numbers?
(d) 6is afactor of 6 7. Using the Euclidean Algorithm check one of your ans- §

(¢) 7is not afactor of 30 wers for 4 (c) above.

() 7is aprime number . 8. Prove: ifa|bandb|c,thena|c wherea, b, ceN.

(@) 6is a composite number 9. 1£9 | n and 10 | n does it follow that 90 | n? Explain.
() 91 is a composite number 10. Prove if a | b where a is a prime, then g.c.d. (a,b)
2. Define the following terms =1
. 11. Discuss what insights into (N, +, - ) ore rovided
fact 9 ) P '
(o) factor (<) prime for you, by the Well Ordering Axiom and the
(b) multiple (d) composite Induction Axiom.
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CHAPTER 12 THE RATIONAL NUMBERS

12.1 Operations on Z: Looking Ahead.
What is the solution of the equation

5+x=-37
As we learned in Chapter 4, the solution is
-3-5

or —8. The number -8 is called the difference between
-3 and 5, or the result of subtracting 5 from — 3. Sup-
pose that two integers, a and b, are selected, and the

following equation written:
b+x=a.

Do we know that this equation has a solution? From
our previous work, we know that the solution is

a-b,

regardless of what the integers o and b are. Thus, the
solution of ‘b + x = a’' is the difference beiv.een 0
and b, or the result of subtracting b from a. Since this
is true for any pair of integers, we know that given
any two integers, there is another integer which is
their difference. The following table, which shows a
number of particular cases, should make this clear.

Ordered  Subtraction
Equation Solution _ Pair Assignment

5+4x=-3 -8 (-3,5) (-3,5)—-8,

or-3-5=-8
3+x=7 4 (7.3 (7,3)——=4,
or7-3=4
8+x=2 -6 (2,8) (2,8)=—e-6
or2-8=-6
-4+x=9 13 (9,-4) (9,- 4)—=13,
or9-(-4)=13
b+x=a a-b (a,b) {(a,b)=——ea = b

From the above discussion, do you see that sub-
traction is a binary operation on the set Z of inte-
gers? (If you have forgotten the definition of a
binary operation on a set, see Section 2.3.)

Now censider an equation of the type

b.-x=aq,

where a and b are integers. Do we know that this
equation has a solution inZ, regardless of what
the integers_g and b are? To answer this question,
study the following two examples.

Example 1. Leta =—-12, and b =3. Then
the equation is 3 - x = - 12,

Since we know that 3 - (-4) = - 12,

we certainly have an integer, - 4,
as a solution.

AT BT S TRAR SRR R P RS I e Do e S AN S R Pt eomn i

_x_such that

And because this is true, we say
that — 4 is the quotient of —12 and
3. or the result of dividing ~ 12 by 3.

4 Thus, =12+ 3= -4, or-:-]3-2-= _4.

Using Example 1 as a guide, if there is an integer

b.x=aq,

then we say that_x is the quotient of o and b, or the
result of dividing a by b. Furthermore, we write
either of the following:

a
x=a<b: x =g

Example 2. Leta = =10, and b= 3. Then the
equation is 3 - x=-10.

Do you see that there is no integer

which is a solution of this equation?
That is, there is no integer which is
the quotient of — 10 and 3, and the

symbol ‘=10 + 3"’ does not name an
integer. Also, division is not a binary -
operation on Z. (Why not?)

We now know (from Example 2) that there are equa-
tions of type

b.x=a

where g and b are integers, that do not have an integer %
for a solution. We have been in this kind of predicament
earlier. For instance, the equation y

3+x=2

has no whole number for a solution. But with the in-
troduction of some new numbers, the integers, there is
a solution, namely — 1. One of our purposes in this
chapter is o try to introduce still another set of num-
bers so that an equation such as *‘3 - x = ~ 10" will
have a solution.

12.2 Exercises.

1. For each of the following equations, give the
solution (in the set Z of integers), fill in the
difference of the two numbers, and then show
the assignment which subtraction makes to the
given ordered pair of integers. The first row
has been completed correctly.

Subtraction
Assignment

-2-3=-5 ;
or (-—2,3)—0-5

Equation Solution
J+x==2 -5
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fx+4=6
:x+4ml

> 312 + x = 298
. 500 +x=-6
;6+x=0

. x+2000=0
15 +x=25
15 +x=-25
330+ x = 45
330 +x=-45
-20+x=10
-20+x=-10
-20+x=-100
0+x=15

1,215,687 + x
= 1,200,347

2. For each of the following equations, give an
integer which is a solution. If there is no
such integer, say so.

i(o) -3.x=-2]

\(b)-3-x=2l
(c) =3.x=20
 (d) x - 5=-50
f (e) x - 545
() x-5=-10
(@) 4-x=0
 (h) 0. x=-2
(i) 3.x=3
() 84.x=1
(k) 1-x = 84
 (1))88 . x = 8000
E (m) 88 . x = 3800

g(n) x + (=3500) = 0

(0) 467 « x =-1401

 (p) — 467 + x = 1401

L (q) 467 - x =-1410
() =12 x=144
 (s) 144 . x =12
F () 0.x=0

208

3. Give the integer for each of the quotients below.
If there is no integer, say so.

(@) =21 + =3
(b) 21 + -3

(c) %

(d) =50 =5
(e) 45 =5

® 52

(g) 0 +4
) 22
(i) 3+3
0 55
-2

(1) 0=+ (-35,000)
(m) 85 +5

0 2

(o) (-33) = (=11)

® 75

(a) (~2000) + (- 1000)

- 1000
(r) 5000

4. Which of the following statements are true?
(Be prepared to defend your answers.)

(o) Addition is a binary operation on the set Z
of integers.

(b) Subtraction is a binary operation on the set
Z of integers.

(c) Multiplication is a binary operation on the
set Z of integers.

(d) Division is a binary operation on the set Z
of integers.

5. In the set Z of integers, how many solutions
are there to the equation
0.x=0?

Do you think that %is the name of an
integer? Why or why not?
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Is 3 the name of an integer? Why or why not?

Is o the name of an integer? Why or why not?

12.3 Quotients and Ordered Pairs of Integers.
Since 2is the solution of ‘1 - x = 2,”* we shall say
that 2 is the quotient of 2 and 1, and write

2

1
2

In other words, we may use ‘-T" instead of *‘2'’ to re-

present the number 2, Instead of writing *‘1 - 2=2,"

we can write
2
] o ] = 2.

Now,% is an ordered pair of integers.
(It is an ordered pair since it would be incorrect to

use “%—” instead of “2-]-" in the example above.) As

we have already noted,—2—is a quotient, namely 2 = 1,

When written in the form w2y we shall in this chapter

1

call this quotient a fraction.
If x is an integer such that b « x = a, then the
fraction% represents the quotient a + b. The
number g is the numerator of the fraction (or
quotient), and the number b is the denominator
of the fraction (or quotient).

Are there other equations of the type *‘b - x = a”
for which the number 2 is a solution? There are in fact
many of them. Study the examples below.

2is the solution of 1 - x=2." S0 2=3,
2 is the solution of '2 « x = 4+ S0 2 =—‘;=
2 is the solution of “3 - x = 6." Se 2 =%’
2 is the solution of "4 - 2= 8.” S0 2=

2 is the solution of “k « x = 2k.”’ So 2 =-2%'.

Therefore, any fraction-g-l-':, where k is ar integer not

zero, may be used to represent 2. _
Questions Can you explain why we must state
that k # O in the above discussion?
_k may be a negative number, since 2 is a solu-
tion, for instance, of **-3 « x = -6,”
That is, the quotient -6 = -3 is 2. When this quotient
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is written in the form fg-, we shall still call it a frac-

tion. (Notice that we allow the numerator or denominator
of a fraction to be negative.)

So we see that the number 2 may be represented by
a whole set of fractions, indicated as follows:

4-224638 2k

(o« ST T3 ...T(.,...).(k;éO)

Consider now ansther integer, say -10. With -10 also
we associate an infinite class of fractions (that is,
quotients). To see this, note that -10 is the solution of
such equations as ‘

1.x=-10, 2-x=-20, 3-x=-30.
So, -10 may be represented by such fractions as
10 20 30,
1’ 2’ 3

And in fact -10 may be represented by the infinite set
of fractions indicated below

-10 -20 -30 -40

(— AV OV . ']0'(
1 2" 3" 4

D!
Of course, again e must say that k # O. k might be a

negative number, however, For ins?once,-3-%', which is

the quotient of 30 and -3, may be used to represent -10.
That is, -10 is the solution of **-3 - x = 30.”

Question: Which of the following fractions re-
' presents -10:

50 50 -100 100 -100 -5000
500

5'-5' 10° 10’ 10’
-30

Let us select two fractions, '—2—(2)- and 3 from the

set of fractions representing -10. Notice that (-20) - 3 = 2;
(-30), since each product is -60. We can say that “‘the
cross-products are equal,”’ a phrase suggested by the
diagram below.

2-(-30) = -60

AN

(-20) - 3 = -60

:lg-ond -:;-gfurnish an example of what we call equiva- °

lent fractions. Thus, two froctions-:- and-::T, for which

od = be, are equivalent fractions. Furthermore, two

equivalent fractions represent the same quotient.

Question: Can show that any two fractions re- |
presenting -10 are equivalent frac-
tions?

R AR e e ARSI




Example Represent the number 5 by an infinite set
r of fractions.

5 is the solution of ‘1 - x=15." Therefore,
the froction-?-(the quotient of 5 and 1) may be
be used to represent 5. Also, any fraction e-
quivalent to-?-moy be used to represent 5. The
se’ is indicated below:

5 10 15 20 Sk
F}'c _72'4 '—3'4—'4'1 ° 'ITI o)

Each of these fractions indicates a quotient.

For example, to say that *‘5 =-]-g " is to say

that 5 is the quotient 15 =+ 3; that is, 5is the
solution of 3 - x =15."

2.4 Exercises.

1. (a) What integer is the solution of the equation
“3.x=12"7
(b) List four different fractions which represent
the solution of the equation in part (a).
(c) Indicate the entire set of fractions which re-
present the solution of the equation in part
(a).
2. {(a) Indicate the set of fractions representing
the integer 8.
(b) Indicate the set of fractions representing
the integer 13.
(c) Indicate the set of fractions representing
the integer -2.
3. Complete each of the following so that a true
statement results.

15 35 6
(°)5°-’_5-= (b)7 "'"7'= (C) -3 :_-3—:
500 _ - .36 _
() 100 - 35 = ()9 - 4= H9-5=
(9)-5-3= h) -5 12=

-5
4. Which of the following pairs of fractions are
equivalent?

20 100 15 10 -8 10
00 6 -19 18 24
zg (€)% 79 5

5. For each pair of fractions below, teii what in-
teger x must be so that the two fractions re-
present the same quotient.
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6.

7.

8.

9.

10

1.

12,

(a) Consider the fraction-::—, with numerator 3 and

denominator 1. If we multiply the numerator by
2 and also multiply the denominator by 2, we

get the fraction -%- Are the froctions-g-oqd-é-

1 2
equivalent? What integer do they represent?
(b) If both the numerator and denominotor of the

{roction-?-ore multiplied by 3, what fraction

results? |s it equivalent to}-. Why or why not?

1

() If both numerator and denominator of the frac-
tion-?-ore multiplied by -2, is the resulting

fraction equivalent to -:]-;-? Why or why not?

(d) If both numerator and denominator of-:];-ore

multiplied by k, where k is some integer not
zero, is the resulting fraction equivalent to

-:i;.? Why or why not?

(e) If k=0, are %ond-g{-:- equivalent? Why or

why not?
Consider the equation *‘5. x= 0"’
(a) What integer is the solution of this equation?
(b) What integer is represented by the fraction
9,
5
Consider the equation **-2 » x=0.""’
(a) What integer is the solution of this equation?
(b) What integer is represented by the fraction

0

2°
(a) Are the froctions%ancl-g' equivalent? Why or
why not?

(b) Indicate the entire set of fractions represent-
ing the integer 0.

Consider the equation 0 » x=15.""

(a) What integer is the solution of this equation?

(b) Does the froctioné-represent an integer?

0

Consider the equation *‘0 - x=0."’

(a) What is the solutior set of this equation?

(b) 1s there one particular integer with which
the fraction -g-moy be associated?

. . .a
Explain why we cannot allow the quotient -5,

where g is an integer.

12.5 Rational Numbers.

Does the equation

3.x=2
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have a solution? Certainly there is no integer which is
a solution. (Can you give an argument to show that there
is no such integer?) However, you may recall the fol-

lowing way to illustrate a meaning of the froction%.

buln
P

1

L

You may aiso remember thai a diagram such as

below suggests that 3 --%= 2.

2

.
o>

bolo

0o

el -
2
3

2
3

G-)'N 1)

And it is just as sensible to agree (as the diagrams
below suggest) that

3.4_2 and 3 --g"= 2.

6
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Now if we are going to extend the integers so that the
equation *3 - x = 2'" has a solution, we would like
exactly one solution, not more than one. (Why do we
want this? Well, if there were two solutions, then we
would have 3+ x =3 - y but x #y. That is, we would

not have a cancellation law in this new system of num-
bers. But we do not want to destroy the properties of

the integers which we already have. And this is why

we demand that the equation have one and only one solu-

tion.) 2 4
We shall agree therefore that the froctions-é-, vy ond

-g-represent the same number, namely the solution of

13 . x =2." |n fact we shall agree that any fraction
equivalent to these fractions represents the same num-
ber. Just as in Section 13.3, we take two fractions

"'%andsd‘to be equivalent ifa - d=b . c - Hence, we

have the following set of fractions for the solution of

“3 X = 2":

Q
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4_:2 24_.i ..S_I_Q,,.)

Notice that we allow numerators and denominaters fo

be negative integers. Thus, the fraction S isin the set
because it is equivalent to%-.

Question: Which of the following fractions are also
in the set of fractions representing the
solution of ‘3 - x = 2'"?

~6.30 3 24 2
9202736 3k k#O)

Thus, we have a new number which is really an en-
tire set of equivalent fraction: any fraction in the set
may be used to represent the number. Such a number is
a rational number.

_A rational number is a set of equivalent fractions.

Also, the rational number-z-orose as the solution of

3
“3 . x = 2.” And in general we say that a rational num-
ber is a solution of an equation ““b - x = a,"’ where a_
and_b_are integers. However, we do not want to destroy
our previous results in arithmetic. And, as we saw in
Exercises 10 and 11 of Section 13.4, equations such as
“Q. x = q,’" where_a_is an integer, cause trouble. There-

fore, we say

A rational number is a number which is the solution
of an equation

b.x=a,
where_a and_b are integers, but b # O. This number

is represented by the fraction -E, or by any fraction

equivalent to it. Thus, we have b --E: a,

Do you see from this definition that the denominator of
a fraction is never zero? That is, a fraction with zerc
denominator does not represent a rational number.

Example 1. Solve the equation “3 - x =4."
The solution of this equation is the
rational number represented by the fol-
lowing set of equivalent fractions:
(.A481216
1_313161 91 "21 e

Once again we see that a rationul number is a set
of equivalent fractions. We do not, of course, write all
of these fractions when we want to refer to the number,
We simply choose one of them and say, for instance,

‘ H
*“‘the rational number -‘1," and this means the rational

A
3

number to which the fraction = belongs. Of course,

e e daest RO TR AN e A N A AT R L Kby Ko IR R SRR AN




the rational number—a-" refers to exactly the same num-

6
or; and this is what we mean when we write
4.3
5=

is a statement about rational numbers.

i
73
3
:

Example 2. What is the solution of ‘2« x = 5"'?
The solution is the rational number=;

. ..o~ 85 ...
that is 2 -== 5. it is aiso correci io

10

In fect, any fraction in the following set
may be used to represent the solution:

(...,551015202
1.20 2' 4I 6' 8' 'Ioi

To represent the rational number of Example 2 frac-

1tion-§is often used. This is because it has a positive

2

denominator, and its numerator and denominator have
“nocommon factor other than 1. Such a fraction is called
- an irreducible fraction.
f Questions: %is an irreducible fraction. Why?

—6‘is not an irreducible fraction. Why not?

2]

There is still another way to describe a rational
number. In (Z, <) we use a multiplication fact such as

2%
o
3
E

3
gi;.
§ 3.4=12
Eto define the division fact
E 12+3=4.
E’ And we shall continue to define division in this way
? for rational numbers. Therefore, from the multiplication
E fact
; 3.2,
3 ,
we get the division fact
+3-2
2+3= T

In this way, the rational number—z-is the quotient of two

3

integers. And, in general, we say
A rational number%is the quotient a + b of the

the integers a_and b, ( b# O)

! Thus, we are still able to say that a fraction%is a

SR S L RS R R TAGER N -8 T 3 A A
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= quotient, even when that quotient is not an integer.
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12.6 Exercises.

1. Below are a number of equations, each of which
has a solution which is a rational number. For
each equation, write the irreducible fraction

say that the solution is—]%, and 2 4= 5.

212

which represents the solution. Then write four
other fractions for the number.

(@) 7-x=3 (€) 5:x=2
(b) 15-x =10 ) 10-x=4
(c) 4-x=1 (@) -3+ x=2
()10 - x =1 (h)3+x=-2

(i) b.x =a(b#0)

2. Complete the following so as to make a true

stafement:

(@) 5-3/5= (€).-5-345=
(b) 7 -2/7= ) 7--11/7=
() 3-10/3= (@) 17-29/17 =
d) 412-27/412  (h) b-a/b=

3. Ycu are already familiar with coordinavas of a
line, and even with rational numbers as coordi-
nates of a line. For example on the line below
the fraction 3/2 has been used to determine a
point of the line. Also, the fraction 6/4 has been
used fo determine a point. And they determine
the same point. But this is as it should be, for
we have already agreed that the fractions 3/2
and 6/4 denote the same number.

-
PN

(|1 ———

b
d
rlo pwfw

Draw a line, select points for 0 and 1. Then label the
points corresponding to each of the following rational
numbers:

1,1.,3.,7,7,2, 4,12, :0
4 4 8 2

4. Complete the following so that a true statement
results; that is, so that the two fractions repre-
sent the same rational number. The example has

been done correctly.

§3.-8=4.x, thenx=6.




dy-9-90
25 «x
48_ 12
(e)—;— 3

5. For each of the rational numbers below, write two
different equations of which the number is a

solution.

(% 4 (©) %5 (95
2 15 36 6

(-2 @ Hs 5

6. We have said that two fractions a/b and c¢/d are equi-
valent if ad = bd.

(a) Are the fractions 7/13 and 91/169 equivalent?

(b) What are the three properties which an equi-
valence relation must have? (See Section 8.11)

(c) Show that eny fraction is equivalent to itself
(the reflexive property)

(d) Give an argument showing that if a/b is equi-
valent to ¢/d then c/d is equivalent to a/b
(symmetry).

(e) Give an argument showing that if a/b is equi-
valent to ¢/d, and ¢/d is equivalent to e/,
then a/b is equivalent to e/f.

(f) Show that if we admitted a fraction such as
0/0, then it would be equivalent to every
fraction.

7. (a) In the set of integers, what is the solution of
1.x=5?
(b) In the set of rational numbers, what is the
solution of 1. x=5? (The answers to these
questions are not the same!)

12.7 Multiplication of Rational Numbers.
“Given the equation

3:.x=6,

What is the solution?

There are really two ways to answer. In the system
(Z,-), the solution is certainly the integer 2. In the new
set of rational numbers which we are developing the

solution is the rational number represented by any
fraction in the set

So, as we have already noticed in some of the exercises,
there is G very strong connection between the integer 2

and the rational number -2- We shall keep this connec-

1

tion in mind as we learn to multiply rational numbers.
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Consider now the two equations

3:x=6and2-y=10.

Each of them has an integer as a solution; in order to
make the sentences true, x must be 2, and y must be 5. :
Furthermore, we know that in (Z,-) the product of 2 and
5is 10. Now if we think instead of rational numbers, the
solutions of the above equations may be represented by
the fractions :

s and -]—9-.

3 2 :
We would like for the product of these rationai numbers
to be the rational number-lg-. Recailing the way you

learned to multiply fractions in elementary school, we
have

6.0 _ 600
3 2 32
-8

6

And the fraction-é%does represent the rational number
2. why2)

It would seem a good idea then to adopt this
method as a way to multiply rational numbers. There is .
one question, howaver, since every rational number has 3
an infinite number of fractions which represent it.
Which fraction do you choose when you are finding a
product? The following examples will suggest an ans- |
wer to this question.

Example 1. What is the product of the rational

numbers 2 ond—s-?

37
2.5 23
377 37

-0

21

Now the rational number%may be represented by any
fraction in the set ~

246 8
3I 6I 9' ]2I LAY 44

and the rational number—g-may be represented by any
fraction in the set

S.10 15 20
7' 14’ 27 28 }
How would the product be affected if, in finding the

product of the rational numbers % and —g', we used

fractions other than those used in Example 1?

o R ———



;(cmple 2. Find the product of tix rational numbers

‘ cnd—;z . (Note that this is the same as Example 1.)

he froction-g— represents the rational number -%- .

he fraction -%g— represents the rational number-57- .

6,10 _610
9 14 914
_ 60

126 °

ince the fractions '%% and i%% represent the some

rational number. (Why?)

“That is, for any ordered pair of rational numbers, the

{present them.
We now moke the following definition:
c

If -E- and 3 ore fractions representing two

rational numbers, then the fraction %ﬁ-

3 represents the product of these numbers.

|n order to emphasize that you may use any fractions

tion is given in the following way:
3 c

a

a ¢
are rational numbers, = 1=

%12.8 Exercises.

-t A D mesam e e

'; re the results in Example 1 ond 2 the same? They are,

‘operation of multiplication assigns one ond only one
 rational number, regardless of the fractions used to re-

‘grepresenting the numbers. Often, however, the defini-

U'IO
. in

. 1. Find the following products of rational numbers.

s St 0t e ke s 8

2.

Find each of the following products. Some of the
products are products of integers, while others
are products of rational numbers.

(@) 5 ‘"2 e) 7-8 (i) -2-3

(b)—?-—f— o8 w33
() 3-6 (9) 15-5 (k) (-4)(-6)
3.8 I O

. On the basis of the products in Exercise 2, can

you giva an argument that the system (Z,:) is
isomorphic to the system composed of certain
rational numbers and multiplication.

4.Determine the following products of rational

As o matter of fact, although we do not prove it now,
it i's true that you may use any fractions rapresenting
two rational numbers when you are finding their product.

numbers. Represent the product by an irreducible
fraction.

3 2 10 8
(@) 37 () g

4 7 1000 9.
)37 (¢ 000"

S L 6 3
()57 -2

5. Determine the following products. Use an irre-

We have stated this definition in terms of fractions

1 Use an irreducible fraction to denote each answer.
3 2 7 3 2 4
@55 O3 ""(3'3‘) '
53 3 7 2 (4 7
i @37 "’3'(‘5 6)
10 4 4 2 0 (6 3
A A ‘5'(3' 2)
40 w24 352 ..4.)
5N 7°9 8'\2°9
10 3 20 5 5.2 -4
T W33 ‘°’(8‘ 2) 9
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ducible fraction to represent each product.

@37 © 7w
w33 0tk
e @ 2.3

12.9 Properties of Multiplication.

We shall use Q to name the set of rational numbers.

And with the introduction of the binary operation multi-
plication, we have the operational system.

(Qt' )'

As with all operational systems, it is worthwhile to
investigate the properties of (Q,:). As you probably rec-
ognized from Exercise 1 of Section 13.8, multiplication
of rational numbers is both commutative and associative.

Commutative Property of (Q,)

If '% cnd-;— are rational numbers, then

O'lﬂ

L
5=

alo

.3
b




Associative Property of (Q, -)
L.

g c
If b'd'andf

are ratonal numbers, then

If you refer to Exercise 4 of Section 13.8, you should
see that there is an identity element in (Q,-). This
identity element is the rational number associated with
the following set of fractions:

(+33.4)

Example 1. %%=-g—
3
=T

Example 2. -% --%= %
3
4

Examples 1 and 2 are really the same rational number
products. In both cases, the rational number % was

multiplied by the same rational ;umber; the only
difference is that in the first example the fraction

-g—wcs used to represent the number, while in the second

example the fraction % was used. But in both cases the
3 . o2 43
product was-y since the fractions 2 and 5 represent

the identity element of (Q,:). Since < is the irreducible

1
fracvion representing this number, we write
|dentity Element of (Q, )

If—:— is a raticiiai number, then 3,22

What is the product of —g— and —g- ? It is easy to check

that the product is -Ji- , the identity element of (Q,-);

therefore, these rational numbers are inverses of each other
in this system. If you refer to Exercise 5 of Section 3.8,
you should notice a pattern—the inverse of 'E' is -‘b,—. There
is one imuortant exception to this rule however. The pro-

duct of % and another rational number cannot be —:-

Question: If ’gl;is any rational number, what is the

product -% -—:- ? Do you see then why -%-

has no inverse in (Q,:)?

Q
WE MC AN WO i We b e A - s

IToxt Provided by ERI

At
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We now state the foliowing property:

Inverse Property of (Q,°)

If—:- is a rational number which is not %—(thot is, a£0),

then-g is the inverse of-% . i.e.,—E --:—:-:-%-

Thus, the rational rwmbers";:,l and-:':' are inverses in

(Q,:). Because the operation in this system is multipiication, 3
we may call them multiplicative inverses. It is al so common |
in the system (Q,-) to caii a muitipiicative inverse a '
reciprocal.
Example 3. The multiplicative inverse of the number
3 isi-, or the reciprocal of—2-isl.

3 2

12.10 Exercises.
1. For each of the following equations, find the
solution in (Q,).

(0)‘%- a ='§“ (°)'§" m =-}—
CETT 1.1
@ Fx @ BB
@5 x=2- () x-x=1-
2. Determine each of the following products:
(0) -% % d) .% ..g...
OER ()3 2
Ex 03
(g) -(]’-OT

3. The rational number g-is represented by any one

1

of the fractions in the set:

00000
{35885}

On the basis of the products in problem 2, how
would you describe the behavior of this number in
multiplication?

4. (a) Express the identity element of (Q,:) as a set
of equivalent fractions. 2

(b) Express the inverse of the rational number—
as a set of equivalent fractions. 5




(c) What is the product of% -—86-?

(d) What rational number is its own inverse in the
system (Q,:)?

(¢) What rational number has no inverse in the
system (Q,-)?

5. (a) Write the properties which a system (S,*) must

‘ have in order to be a group.

(b) Is (Z,") a group? If so, is it commutative?

(c) Is (Q,") a group? If so, is it commutative?

{d) Let X be the set of all rational numbers except
0

3 ] .

% 6. (o) Compute the following products in (Z,)

-8:1= 14.1= -234-1= 55-1=

86.0= -14.0=

Is(X,) a group? If so, is it commutative?

(b) Compute the following products in (Q,°)

41 141 -841 51
T A R D B R B
80 -4 0
1717 17 17

7. Often a short cut can be used in finding the pro-
duct of two rational numbers. Perhaps you have
used this short cut before, but have never been

able to explain why it ‘‘works.”

Study the following example:

25 2.5 2-5_25_2-5_5
3°6°3 6 3(23°233 2339

This is not a short cut! But notice that since%-is the

identity eiement of multiplication, we could have

determined the product this way:
125 5

Do you see how the i&entity element of multiplication
has been used in the following example?

24 53 6
«J8 W5 25
Use this short cut in finding the following products:

%)

s e S A bo——— ————rn %

12.11 Division of Rational Numbers.

In (Z, ), the equation
12+ 3=x

has the solution 4, because 4 - 3 = 12, That is, di-
vision is defined in terms of multiplication. We want
to define division this way also in (Q,). Suppose
then we have the equation

I's there a solution? If there is, we want the foilow-
ing to be true:

ajw

x.2_
y 5

win

Now the reciprocal of is-%-. And we know that

| en

win
Il

.—o].—o

therefore,
3.8.2.3
4 2 5 4

And, using the associative property of multiplication,
we can write

3.5.2.3
4 2 5 4.

Do you see that we have found the number = which

we were trying to find? It is the product-§ . -5-, which
15 4 2

is the rational number 3.

So,-‘:a3 . -g-is the solution of% %%:-z;-. In other words,
3.2.3 5
4°5 4°2

From this one example, it would seem that the quo-
tient of two rational numbers can be found by finding
the product of two rational numbers.

See if you can follow the steps in the following
example:

4.3_x
327y
x.3_4
y 2 3
2 3_1
Now, 327
S, 4,23 4
3"%'"2')‘3
4 2, 3 4
§332°3
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So we have found the rational number whose product (e) 1% + H‘ (k) % * (‘:1;' *%)
with% is-g-; and that is the number-:; which we were ¢ 4 1 | 7 1,.2
seeking. Therefore, ® 972 ) (5 T -3-) T
-%-%-g = g- -%(which of course is .8..) 3. Find the following quotients. Some are quotients
9 of integers; others are quotients of rational num-
Thus, instead of dividing by -g—, you may multiply bers.
by the reciprocal of-g-. And if you look at the first ex- (@) 6=2 (f) 5§+5
ample again, you see the same pattern there: instead (b) 6.2 @) 3.3
] : . 171 977
of dividing by 5/ You may mu kiply by the reciprocal .
2 12.8 : 3
Of—s. (C) 2 74 (h) 4 - 8 L
= -4- KX g— :.
Finally, Iet% ond-:-;- be two rational numbers. (d) 2035 (M) 11 :
)
(c #0) a.¢c x X ¢ (e) '2%"?_ ;
$2:E X then2 .22
b'd vy’ y d b
4 4. Determine the rational number solution of each of
But we know (-E- =) -3 =-E- (Why? Can you the following equations. -
supply the miss- 2 x 3 2 x 4
o 2.4 tharis, 9P @ 3y-1  O35°F
3 x 2 4 .x 2
a. c a d (b) c——= (@) 5+ ==%
-b--;--d-=-b---<-:-. 4 y 3 9y 3
Can you complete the following sentence? (c) -;- %=% (h) -3*%—: ]-%
Dividing by the rational number, -:;-is equivalent y 5 9 x x 14 0
to multiplying by () 7°37y (M) AR 7AN)
12.12 Exercises. 5.x_4 n3.x_1
Exercises. © 223 0 33=]

1. Find the following quotients of rational numbers.

Then use a pfoduct to show that your resuh is 5. (0) Is it pOSSible to find the fOHOWing quotient:

~°°"°°" %—%—?—? Explain why or why not..
3.1 d 2.5 (b) What rational number has no reciprocal? (In-
@ 3 @ 5+3 hat rational n .
8 2 dicate this rational number by a set of equiva-
lent fractions.)
1.3 7. 1
(b) 5+% () £: = a. c ad
2 8 * -t o - ¢ w—
10 ° 12 (c) In the sentence e e
(c) -2 %-% () ]-%_ .i% what number must‘f"not be? Why?
2. Find the followi tients of rational b (d) Is division an operation on the rational num-
. Find the following quotients of rational numbers. bers? Why or why not?
() J_‘;. '3'-;73- (9) -g- i (e) If the number% is removed from the set Q of

3
rational numbers, is division an operation on the
(h) %—%- the set of numbers that remain?
(f) Is division associative? (See Exercise 2)

—
o
~

M G2
12.13 Addition of Rational Numbers.

(i) 5. (_]_ .2 We have already seen the close connection between
V47273 integers such as 2 and 3 and rational numbers such as

—
o
S
wlo vl wolem
oo
v Olo ®|o

(d)
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“any definition we agree to for addition of raticnal num-
£ Of course, it shculd not make any difference which
“the many available fractions are used to represent the

ional numbers T aﬁd-% . This suggests for example
following:

4,610 6,915

272 2'3 3 3

nd this in turn suggests that we define addition of ro-
onal numbers in the following way:

3 a. ¢c_axc
E b b b

"hat is, in determining a sum, we select fractions which
yave the same denominatcr.

e

';\‘» 4

am

Example 1. What is the sum of the rational numbers

S md2o
3an3.
5,2 3:x2_1
3737 T3 T3

Example 2. What is the sum of the rational numbers

% and —i" ?

We may indicate the sum this way:
2

3%4"

However, in order to use the method above,
we must find other fractions for these num-
bers, fractions with the same denominator.
Now, the least common multiple of 3 and 4
is 12. So we say that 12 is the least com-
mon denominator of the denominators 3 and
4. We then represent each of the rational
~umbers by a fraction with denominator 12.

+

Sl
ol | b
oIS

alw
olo

L 0 g Alp A R A LU St R A AR N L RE LA A T AL g g BUR Er AT i B
Qe ALAE R 28 i O LA I S S L S A A R S S BLLAE U DR A A B b S TR S R i Tk L AN A
win
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Although we do not prove it here, it is true that there

s one and only one rational number which is the sum of
o given rational numbers. For instance, in Example 2,

Ei?ve could have used the fractions 16 18

24+ (Why?) Then

— and

24
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the sum would have been the number represented by the
34

24°

fraction But this is the same as the number % . (Why?)

In order to get a general definition from the method we

have been using, let D and-‘—j-be two rational numbers. Then

. a ¢
to find the sumC+ s, we need to select two fractions that

have the same denominator. Do you see that

We now have an operational system (Q,+). In this
system there are the following properties:

Commutative Property of Addition.

If %and %ore rational numbers,-% + -3- =%+ % .

Asscciative Property of Addition.

If %,’5‘, and f‘ are rational numbers,

G )

Although we do not prove these properties Fere, there
are examples of each of them in the exercises.

Now consider the rational number %, associated with

90
13 14 A

What are the following sums:

98
12

2.0 5.0, = .0 . 3.0,
3*'3¢' 76’ 777 41
We have in fact, for any rational number 2.9, 0 = a+0 =
' y el A T
-% . We recognize here the familiar pattern for an identity

element: and since the froction%represents the rational

number-(-l)- we have the following property:

Identity Element for Addition.
For any rational number %, -E-+

9
1

=3
-3




In investigating operational systems in the past, the
notion of inverse has been tied closely to that of identity

element; for two elements are inverses of each other if
together they produce the identity element. In this con-
nection, study the following examples:

3. -3 3+(8)_0 =5
4t 4" “4 6"

4

-5+5
6

o len

_ 9
-5

These and similar examples should make the following

property clear:
Inverse E lements of Addition.

+

—alc

If% is a rational number, then

u-l:!:

ole

(-a is the additive inverse of a in the set Z
of integers.) a
That is, every rational number = has an inverse,

b

-,

b L]
Exomple 3. What is the inverse of% in (Q,+)?
The inverse is %<, -%+

5 ’

Example 4. What is the inverse of 7% ?

In Z, the additive inverse of -3 is 3;

that is, —(-3) = 3. So the additive inverse

3. 3.3 0

- +—.._

of-%inQis-i; AR

12.14 Exercises.
1. Find the following sums of rational numbers.

1.1 20 5
(@) 5+3 0 5+%
2 3 20 -5
b 3+7 © S+ 7
5. 22 -7.13
€&+ ®) 73+ 1¢
10 -3 3.5
@5+ M%+%
(Hint: :g represents the
same rational number as’
2.
=
14 5 n X W
(&) 5+7 (i) Ry

2, What rational number is assigned to each of the
following ordered pairs by the operation of addition?

2 3 5 3
(o)(—s . T(')) (e)('g'. ﬁ)

e bt 8 e T St WA Bk meve nrbad PO a8 R B R R N LAy B A R R N S S AR O R B e RSN

3 2 of 3 5
(b 1_5'-5-) \f)(ﬁ.‘g')
7 - -
(% (7 )
3 1 1 -l
(")(20 g "‘)(17' 13)
3. What property of (Q,+) do the sums in Exercise 2
illustrate?

4. Compute the following:
2 1 3 -3 5\ 3
(e) s*?)*’z‘ (c) 7*‘5)*‘8'
2 (1 3
“”'s*(i*i‘)

5. What property of (Q,+) do the sums in Exercise 4
illustrate?

3, (5.1
(d) 4+(6+8

6. List ten different fractions which represent the
number which is the identity element in (Q,+).

7. Compute the following:

(c) -f-]+-% (9) %8-+ ]:‘;—8-

8. Compute the following sums. Some of them concern :
integers; in this case, be sure you give the sum as
an integer. Others concern rational numbers; in this
case, ke sure to give the sum as a rational number.

(a) 7+3 w13 @ 8.5
d: 0+7 @21 @ 1547
@ L w84 0 FTF

9. Can you describe an isomorphism which the sums in.
Exercise 8 suggest?

10. (a) Is (Z,+) a group? If so, is it commutative?
(b) Is (Q,+) a group? If so, is it commutative?

11. Give the additive inverse of each of the follow-
ing rational numbers. !

@ % @




& 3 @ L
(© ¥ 0 5

. 1f we use * --E-" to denote the additive inverse
of the rational number -E-, complete each of the

following so as to have a true statement.

75 -7

@3- @B -3
®) -3- (€)--2- () - (- ) =
© 9 @ @-ep-

. Compute the following.
(o) 3 (4 +5)

6 G-+ gD
©23+3)

@ &-H+3-P
© &+

7 3, 3 3
() (3 -7)+(-5'-';)

\ 14. On the basis of the computations in Exercise 13,
; how do you think the following should be com-
pleted:

a,c e
i
What property is this a statement of?

- *15. If%,%, and-{?-are three rational numbers, can you

give an argument showing that the di stributive
property holds? (Do not use specific numbers.)

t 12.15 Subtraction of Rational Numbers
in (Z, +), we say, for example

5-3=2, becavse 2+ 3= 5.

And, in general,

ifc+b=qa,thena-b=c.

In other words, subtraction is defined in terms of
addition. We shall make the same sort of definition
in (Q, +). For instance,

since—25-+-]5--: %-, we agree that

3 1.2
5 5 5
And%is the difference between—% andJS-, or the result

of subtracting-]:.;-from % We could have found this

difference in the following way:

2,41
5'5°5

That is, instead of subtracting %-, we might add the
additive inverse ot Jg; this is of course the same
pattern we noticed earlier for the integers.

We consider below the general case for the rational
numbers.

x c 9

y d° b
E Sy S
y*d T T T

Therefore,
e c_a
b~d b’ d

As a practical matter then we can always find a sum
instead of a difference, provided we remember to add
the inverse of the number being subtracted.

, =3 =2_-3 2
Example: 5= 3~ 5%3

2.1

15715

-9+ 10
15

]

1
15
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12.16 Exercises.

1. Compute the following differences.
3.1 I_3
@35-3 k) 5-%
05 N6 3
®) 13- 13 ) g-3%
5 10 5 2
© 35-13 (i)g--3
2_1 S_=21
3 -1 5 2
©) 5~ M F-73
31 5 _-21
| ) =5-3 () - 8
=3_-1 2_3
@ 5- 3 ™ 3- 15
% 2. (a) What is the difference-2--§-?
(b) What is the sum-2+ -;?_?

3 5

(c) What number does ** -%” name?

(d) What is the sum2 + (=) ?
5 5
3. Compute the following:

(0)%-% : (e)'g'+(-%)

3
b+ =3 "3 "7

(1 + (=) () 7§+ P

2 _1

@+ (-39 0 i -

rational numbers?

5. (a) Is subtraction of rational numbers associative?
(b) Is subtraction of rational numbers commutative?
(c) Is there an identity element in (Q,-)?

6. Is (Q,~) a group? Why or why not?

12.17 Ordering the Raticnal Numbers.
In the set Z of integers, we know that

2<3.

, Therefore, in ordering the rational numbers, we would
i like to be able to make statements such as the following:

I 4. |s subtraction a binary operation on the set Q of
:

2.3
1 <1

221

4 6
77
6 9
33

since we have already noticed that there is a close
relationship between such integers as 2 and 3, and

such rational numbers such as-%-ond %— If this re-

lationship is to hold for qrdering also, the examples
above suggest that we agree to the following:

C .

InQ,%<b|fandonlyifa<cinZ

(We are assuming that b is a positive integer.)

Example ]'%<% inQ, since 3< 7in Z.

Notice that if we represent the rational

numbers—i-md% on a number scale, the

point representing 3.is to the left of the

4

4.

point representing

1
%—5 und% .

Which is less? Our method for comparing
rational numbers is based on fractions

that have the same denominator. Therefore,
we shall use the fractions

Example 2. Compare the rational numbers

19,71
139 4973

to compare the given rational numbers.
(Do you see why these fractions were
chosen?)

Now, since 7:13 < 11:9 in Z, we have

% <%in Q.
From Example 2, we notice thut%<% since 7-13< 9-'!

And this suggests a general way of comparing two rationa
numbers without actually writing fractions with the same
denominator. Suppose% and ﬁ‘ore two rational numbers

(and b and d are both positive integers). Then the fractio ;

bd

our earlier agreement,

-:—dJ < %3— if and only if ad < bc.

Therefore, we make the following definition for ordering
rational numbers:

o and%ﬁ'ulso represent these numbers. (Why?) And by




If% and ﬁ- are rational numbers,
and b and_d are positive integers
8 <% if and only if ad < bec.

b d
-z'ondi

: Example 3. Compare the rational numbers 3 T

' Since 25<34, 3<%

. In the definition above and in all of our examples,

ve have demanded that the denominctors of the fractions
sed in comparing rational numbers be positive. s this

2. 43

Consider the rational numbers Tond-]—.

We have already agreed thot-%-<%-, since 2 < 3.

‘And yet if we were to use the fractions '_':2||-and _'_-'-%—
o represent these numbers, it is not true that

.2 < =3. This illustrates the importance of using
fractions with positive denominators when comparing
rational numbers:

Questions: Can every rational number be

\ represented by a fraction with a
positive denominator?

3 What fraction with positive denominator
represents the same rational number

: os_-g ? as :'% ?
2.18 Exercises.
v 1. Represent the rational numbers in each pair below

by fractions have the same denominator. Then
decide which rational number is less.

(o) and3 ()3 and &
; (b)% and -2- (d) -g'ond-%

2. Draw a number scale, and locate a point to

3. Decide which of the following statements are
true, and which are false. (as with the integers,

. the sign ** > "’ means “*is greater than."’)
, @<} w2<2 wF
©1>5 (@93 wZ>1

4. For each pair of rational numbers below, decide
* which is less.

1, =11, -7 100. 13
(0)'2'1% (d) 23’ 5 (9) 51/
=] = 8
Okt e SECE 3 0%
1 7 4 15 =7
(c)'z-ét‘s (f) 1%: '5' (')_-g: 4

represent each of the rational numbers in Exercise 1.

222

S. lf-%>-?—, then 2 is a positive rational number.

If -E < -?-, then

b
-E is a negative rational number.
Decide whether each of the following rational

numbers is positive, negative, or zero.

(@3 (0 1% Ot
(b) =% n =3 WS
@5 @ =t _7
=3 Ok -

6. !‘.‘-E-is a rational number, and the product of the
integers a and b is a positive integer, is the
rational number% positive? Give an argument

for your answer.

7. Answer each of the following, and give an argument
for your answer.

(a) Does the ordering of the rational numbers possess
the reflexive property?

(b) Does the ordering of the rational numbers possess
the symmetric property?

(c) Does the ordering of the rational numbers possess
the transitive property?
8. Complete the following sentences:

(a) If-% <-§-, then ad__bc.
(b) |fﬂ'=§', then ad___bc.

(c) lf% >-§“, then ad__bc.

9. () Is there an integer ** between'® 2 and 37 That is,
is there an integer x such that 2 < x and x <3?
|f so, name one.

(b) Is there a rational number between-% ond—%’?

If so, name one.

2

(c) Name a rational number between-g and%.

(Hint: You might find the ‘‘average’’ of the
numbers.)

(d) Name a rational number between-g- ond% .

(e) Given any two rational numbers, do you think
it is possible to find another rational number
that is between them? Give an argument for
your answer.

10. If-g'<-§ ond-ﬁ-<-% what conclusion can you make

about f‘ond ﬁ'?




12.19 Integers and Rational Numbers: An |somorphism.

Throughout this chapter, we have commented on the
close relationship between the integers and certain
rational numbers. To illustrate what we mean by this,
look at the statements below. The ones on the left are
about integers: the ones on the right are about rational
numbers.

In(z,+),3+2=5 In(Q +),3+3-3
In(Z,+), 3:2=6 In(Q )3 4-%
InZ, 2<3 n Q43

Now the similarities between these statements do not
occur because we used the particular integers 2 and 3.
We could in fact let a and_b represent any two integers
at all. Corresponding to them are the rational numbers

3 ondé.; and we have the following statements:

1 1
fa+b=cin(Z, +), then-%+-¥-=-? in(Q, +).

ifaeb=din(Z, ), thenT--l]l=-‘]iin(Q, o).

o~

ifa<binZ, then's]’-<‘inQ.

Each of these statements can be proved by the way we
have defined addition, multiplication, and ordering of
rational numbers; but we shall not give the proof here.
By this time you may recognize a kind of pattern we saw
earlier with the whole numbers and certain integers. That
is, in the set Q there is a *‘copy” of the integers. There
is a set of rational numbers whose behavior copies so
closely the behavior of the integers that we can use
integer names for them without causing confusion.

For example, we may write ‘‘2 « 3 = 6" instead of

2 3_6" 2_10"

i --:i;-= T And we can write ‘3 *3=3 instead
“5.2_10".
*T3°3

In other words, to use language that we used earlier, we
can say that the integers are isomorphic to the set of

rational numbers that are of the form%.

12.20 Exercises.

in problems 1 = 20, make the indicated rational number
computations.

1. 3+%-_. ‘

n -2 -2.8)
12. (2-3)-8

3
13. 21 -5

223

4.3-2- 14, 4-21

5. §-2- i5. %3

6. 3+2- 16.2. -3

7.2:7% 17.3-3. %10

8 §.9.% 8.2.0+3 21
9. 2+(%+3) 19, 2:9) +G:2)
10. 2:d+3 20, (5.%2 (2.

In each of the problems 21 ~ 26, decide which of th

rational numbers in the pair is less.

3

2 5% nZs 564
2. w4 g H4 % ey

12.21 Decimal Fractions.

In the preceding sections, we have developad the
system (Q, + , « ). Now we look at another way of
naming rational numbers, a way that is based on the
idea of place value. You are probably already familior
with the idea of place value; for instance, when we
write ‘‘3507,"" we mean

(3 « 1000) + (6.100) + (0 + 10) + (7 « 1), or
3103 +6:109+©0.10) 7. ).

This form is sometimes referred to as ‘‘expanded
notation?’

In fact, from your work in elementary school, you
have probably seen charts as the one below which
explain the place value scheme used in writing names 4
of rational numbers that are also whole numbers.

1 § 4 8 7 6 3

10%] 10% {104 [ 103 [102 | 10 | 1
w w v
(72}
w o2 2| 2|8
ZzZ Wg| < <« | W
O icwnn| w v | X
Se3l.3 2|1e|2(48
- |Zz0|z0l 0|2 | £ | Z
= DZWwE T |2 ¥ § g
s |E-l-i-| | T |




us, in *‘1,548,763,"" the ‘7"’ represents 7 hundreds
at is, 700), since it is in the *‘third place’’ to the

ft of the decimal point. (In writing the name of a

ole number, it is not common to mark the decimal
dint, but it is at the extreme right.) There is a very
portant pattern in this place value scheme. As you
ove from left to right, the value associated with each

Joce is ﬂ!)-of the value associated with the preceding

?uce. Thus, with the third place we associate the
lve 100; but with the second place, we associate

e valve T(‘)' « 100, or 10. In order to have names forall

ttional numbers (not just whole numbers) we extend
his pattern to the right of the decimal point. That is,

te value of the first place to the right of the decimal
e 1

vint is 10" 1, 0r l'&; the value of the second place
o the right of the decimal point is -ll(.) . ]-(])-, or 1616‘
‘je may also indicate -]—0-(])- as ]—102 . The table below

hows the values associated with the first six places
the right of the decimal point. (You should be able
extend the table as far to the right as desired.)

3 4 0 7

I . 1l 1
iv | 762 1681 164/ 165/ 766

v w|l

I
2IE| E| H 2
ol 2| 218z &
e | I Sed O
Elal 2_.2|82 a
z Z| 2|%2/38 2
- | Z|F|FFTH =

 In the table you see the numeral **.3407," and the table
£ makes it easy to see that this means

@3 xh+ gl + 07355 + 7+ Togo0-

E But this is also

3000 400 O 7 . 3407
10000 * 10000 * 10000 * 16000 10000

3 (Do you see why?)

E Therefore,

- 3407 .

and **.3407"* is a decimal fraction name for a rational
number.
Question: Can you write an equation

of form b +x =a”

whose solution is the

rational number .3407?

If you are not already familiar with decimal fraction

notation, the following examples should help to make it
clear.

Example 1. ‘*.25"’ is the name of a rational number.
Represent this rational number by an
irreducible fraction.

We know that .25 = (2 ) + (5 gt)
.20, 5
100 * 100
_ 25
—3 m.
Of course, T%%—is not an irreducible fraction.
But we know that ]-%-(5)- =-1-= Therefore, o |
25 = .

Example 2. Represent the rational number .250 by an
— irreducible fraction.

_ 250 25
250 = ]%8-0-_ i3

Do you see then that this example is
really the same as Example 1? Again,
the irreducible fraction called for is

—1 .~ 1hat is,
= =J—
.250 '25 4 [ ]

On the basis of Example 2, you should begin to see
why it is true that some rational numbers have an
infinite number of decimal fraction representations. Thus,

7}-= .25 = .250 = .2500 = .25000, etx..

Question: Do the decimal fractions

.4 and .400

represent the same number?
Why or why not?

Example 3. Represent the number 4.18 by a froction-% ,

where a and b are integers.

4.18=4+ J8. Bur4 -408.
So, 4.18 =408+ 1383-
41

418
~ 100 °

Example 4. Represent the rational number%‘bv a decimal

fraction.

We know% = ]-3- (Why?) Therefore,% =.4




3
\
:

Of course, we could also use **.40,"* **.400,"” |

*¢.4000,"’ etc.

Example 5. Represent 15-25- by a decimal fraction.

An expression such as “15%" is sometimes

called a mixed numeral, since it looks as
though it is composed of a symbol for a whole
number together with a fraction. The important
point to understand is that it means

15 + .

e bia

* Therefore, from Example 4, we know

152=15+.4
=15.4
Example 6. Represem% by a decimal fraction.

We %now thd% is a quotient; namely, 3 + 8.

Therefore, in the space at the right, we

carry out this division. 375
Another way to 8 | 3.000
think about this 24
division is as follows: 60
S6_
40
40

3 3000
]000 . 8 = 8

375.

Then, since 1000 °% =375, % = 1—8%% (Do you

remember how a rational number was defined as
the solution of an equation?) -

12.22 Exercises

1. Express each of the following decimal fractions as an

irreducible froction-g-.

' (a) .3 (f) .03 (k) 3.05
(b) .32 (g) .003 () 25.1
l (c) .320 (h) .000003  (m) .625
| (d) .325 (i) .500 (n) 10.625
l (e) 7.3 (i) .005 (o) .33
. 2. We know that every rational number is the solution of an
| equation of the form *‘b « x = a,’’ where a and b are
I integers, b = 0. For each of the following rational

numbers, write an equation of which the number is the
solution,

Example: .19 =-]-3%
Therefore, . 19 is the solution of

| "100 - x = 19.”
@5 (.33 ().  (m-5

Aot

. Find a decimal fraction name for each of the follow-

. For each of the following decimal fractions, write

. Recall that a rational number is one which can be

. Find a decimal fraction which represents each of

~ 3 ' 2
© 2 @ 25
7 25
® 2% © &
a &':,?j’i.‘ \
(€) 55 () 004

® 7 (Ha3B (D6 (m-.05
) 08 (g) 2.7 (k) 123456 (o) -2.7
d) 07 () 375 () 33033 (p) -.375

ing rational numbers. (The rational numbers listed
in this exercise are so frequently used that it is
advisable to remember thei: decimal fraction re-
presentations.)

@1 (@ k=
B4+ O3 03
©3 @i  0f
@5 O

four other decimal fractions which represent the
same number.

(@) .5 (d) 25.6 (9) .00C005

(b) 3 (e) 4.0 th) .25
() .05 (f) .025 (i) 5

represented as @ quotient-ﬁ-, where aand b, the

numerator and denominator, are integers.

(a) In the decimal fraction 5, what is the num-
erator? What is the denominator?

(b) What are the numerator and denomin~tor of

**,00007''?

(c) What are the numerator and denominator of

] 08.2"?

(d) Does every decimal fraction represent a ra-
tional number? Explain. (How is the numerator
determined? How is the denominator deter-
mined?)

the following rational numbers. (See Example 6 in
the text.)




12.23 Infinite Repeating Decimals.

Can every rational number be represented by a
decimal fraction? The exercises in the preceding sec-
ion may lead you to answer ‘‘yes’’, and although this
is correct, there is o major difficulty with many ra-
,?ional numbers. As an example, let us try to find a

decimal fraction for -;— As before, we know this is a
quotient, and the appropriate division is shown below:

. Do you see the difficulty? In this case, the divi-

€ sion process is something like a broken record. For,

: as long as we care to continue writing, we will have
1o place a ‘3’ in each place to the right of the decimal
! point. Thus, this decimal does not ‘“end’’ or ‘‘termi-

- nate”’ as it does, for example with%: .375. (See Ex-
ample 6 of Section 12.21)
0 How then can /e represent-;-wiﬂ\ a decimal frac-

Ef tion? One answer lies in giving an approximate deci-
E mal fraction. To see this, study the following steps.

L
0<3<l

We know thot'l"is “between’” 0 and 1, and we say

3

' thot-%-is in the closed interval [0, l]- In terms of a

i number scale, this means that the point representing T

 |ies o that part of the line consisting of the points
E representing 0 and 1, together with all the points be-

¥ tween those two:

IL..,...

00—

g 1. .
" We can also place = in smaller and smaller intervals,

as follows: 3 !
1 3
.3<3<A 3 : 2
1 3
33<7z<.34 B 34
3

L
333 <7< .334 23 334

1
1 3
3333 <3< 3334 2333 3334

Do you see that in a way we ore ‘‘squeezing” the

numberl? Each of the above intervals is ‘‘smaller”’

3

than the one before it, and is contained in it. We call
such intervals nested intervals. Thus, we have a se-
quence of nested intervals containing the rational

number % Although we stopped with the interval

[.3333, .33341, the sequence goes on without end.
Question: Continuing in the pattern above, what
is the ‘‘next’’ interval in this sequence

of nested intervals?

If we form a sequence of the first numbers in these
nested intervals, we get: .3, .33, .333, .3333, .33333,

..., a sequence of rational numbers. None of the num-

bers in this sequence is equal to-l-. For instonce, con-

3
sider the first number, .3:

3 #£ -]- In fact, .3 <-]-. We can find the

3 3
difference betWeen%- and .3 as follows:
1l .1 3
3-3=3 10
09 1
30 30 30

Therefore, althcugh .3 ;l'%'; it is ‘‘very close’’ to

-;—-, because the difference between the numbers is
small.”** We can say that .3 is an approximation to-%-

and write

1
3=3
This approximation is said to be correct to tenths

or ‘‘to one decimal place.’’

Next let us consider the second number in the se-
quence, .33, The difference between this number and

4 is computed below:

3
! 1 33
3~ 33=3- 100
10 99
=300 ~ 300
_
=300"

Therefore, .33 is a “better approximation”’ to-.;—
than is .3. That is, itis ‘‘closer” to-%-since it differs

from it by only 5-(])-0 instead of 5(1)- (How do we know

Ry =t VR )




that 3—160 < 3—(1')?). Thus we write

1.
3~.33'

and say that this approximation is correct to hundredths
or “‘to two decimal places.”’
In fact, as you might have guessed, each number

in the sequence above is a closer approximation to %
that the number preceding it.

Question: What is the difference between-%‘-
and .333°?

And though we shail not explore the matter here, it is
true that by ‘‘going far enough in the sequence’’ you

can get a number as close to—l- as you like.

3

Now, from the number —,}, we have leamed a very
important fact. Not every rational number can be ex-
pressed by a terminating decimal fraction. Many ra-

tional numhers, such os-;}, have decimal fraction re-
presentations that are infinite, repeating decimals.

They might be called ‘‘rubber stamp’’ decimals also;
for example, if you had a rubber stamp made with the

digit *3' on it, you could write the decimal fraction

for -lj by just stamping the *3’’ over and over again.

As another example, let us work with the rational

8
number 33

33 | 8.00

33 < §§-= .24 (correct to hundredths)

2424< 5% <.2425 342- ~ .2424 {to four

decimal places)

242424 <& < 2424952 < 242424

33 3"
As with-:l?, there is no terminating decimal repre-
sentation for 5%-, but there is an infinite repeating

decimal associated with it; and we can approximate

S any desired number of decimal places.

33

1224 Exercises.

1. (a) What is the difference between:}ond .333?

(b) What is the difference between :}md .3333?

(c) Which of the numbers, .333 and .3333, is a

better approximation to -5-’

2. (a) Write an equation of the form “b - x =a”’

which has lc:s solution.

3

(b) Write an equation of the form ‘b . x =a"’
which has .3 as solution.

(c) Write an equation of the form ‘> - x =a”’
which has .33 as solution.

(d) Would the same equation work for all of the
parts (a), (b), and (c)? Why or why not?

3. In looking for a decimal fraction representation of

%-, the division process below might be used:

1666 .
6_[1.0000
R
40
36
40
36
4

3

o0

Al

Thus, we again get an infinite repeating decimal,
although the digits do not start repeating right away.
Now answer the following questions:

(o) What is the difference between-lgond 16?

(b) What is the difference between-%ond a7?

(¢) Which is a better approximation to %—, 16or.17?
(d) What isthe difference between- and 1662

(¢) What is the difference between %—ond 1677

(f) Which is a better approximation to -l—, .166 or .167?
(g) Which is a better approximation to%, .17 10 .167?
(h) What is the best upproximation to -16-, correct to

four decimal places?

4. For each of the following rational numbers, write




. the best approximation decimal fraction approxima-
~ tion, correct to four decimal places.

5 | 1
(0)-6— (c) iT (e) 7
2 2 5
(b)'g' (d) i (f 7

. Consider the sequence below:
g, .0, a0y, ...

(o) What is the difference between%-cnci A?

(b) What is the difference between-;- and .11?

(c) What is the difference between% and .111?

(d) What is the difference between%'ond J111?

(e) Suppose the sequence continues in the same
pattern suggested by the first four terms. How
far would you have to go in the sequence to

find a number that differs from% by W?

2 6. (a) Give an approximate decimal fraction (correct
‘ to three decimal places) for the rational num-

ber 2-:]-3- =%.

(b) Is the decimal fraction representation of 2%—
an infinite repeating decimal ?(Remember that
the decimal fraction need not start repeating
right away.)

: 7. Consider the quotient -;-

(0) In dividing by 7, how many numbers are
possible as remainders? (Remember that a
remainder must be less than the divisor.)

(b) Carry out the division process for 1 + 7 to
twelve decimal places.

(c) At what stage in the division process did you
get a remainder that had occurred before?

(d) At what stage in the division process did the
decimal fraction start “‘repeating’’? Can you
explain why it hoppened at that particular
time?

£ 8. In carrying out the division 3 + 8, what remainder
occurs that causes the decimal fraction to termi-
nate?

f 9. Try to give a convincing argument for the following:

The decimal fraction representation for any

. Q. . N .
rational number-s-ls either a terminating deci-

mal or an infinite repeating decimal.

228

10. Write a sequence of nested intervals all of which

contain the number T}' Begin with the interval

[0,1] and get a total of five intervals. Also show
the intervals on a number scale.

11. Explain why the following sequence of intervals
is not a nested sequence:

lo,1], [1,2] [1,5;2.5], [.1,.2]
12.25 Decimal Fractions and Order of the Rational

Numbers.
We have dlready seen how to tell which of two

rational numbers—::-und %—is less, when fractions are

used to represent the numbers. Now let us see how
to make such a comparison when decimal fractions
are used.

Example 1. Which is less, .3 or .4?

; -3 24
Since .3 = 10" ond 4 = o

it is easy to tell that .3< .4.

Example 2. Which is less, .2567 or .2563?
Notice that the first three digits of
these decimal fractions agree, place
by place. The fourth decimal place
is the first one in which they differ.

2% 7
+2567 = 1600 * 10000 .
256, 3
-2563 = 7660 * 10000.

Therefore, .2563 < .2567.

Example 3. Whichis less, .8299 or .8521?

8 299
70" 10000

8, s
-8521 =35+ 15000

Therefore, .8299 < .8521.

Notice again that these two decimal
fractions agree in the first decimal
place. The first place in which they
disacree is the second place; and

2< 5.

8299 =

These three examples show that it is very easy to
tell which of two rational numbers is less when the num-

bers are represented by decimal fractions. Suppose
we have two decimal fractions

.0]020304

and




. .b]b2b3b 4

and 9 = b] 189 = bza but 53 < Gy- Then doyou see
that .b]b2b3b 4 < “9199949 4? In other words, the way

to tell which of two decimal fractions represents the
smaller number is to look for the first place (reading
from left to right) in which they disagree; the one
which has the smaller digit in that piace represents
the smaller number.
Cxample 4. Which is less, 23.52d683 or 23.5245977
T The first place in which these decimal
fractions "*disagree” is the fourth

decimal place. And since 5 < 6, then
23.524597 < 23.524683.

12.26 Exercises.

1. In each of the following, write the two decimal
fractions. Then place eithera ‘’<'’ or a‘‘>"" ora
“_" between them so that a true statement results.

(@) 125 124 (F) 826.33 826.30
(b) 833 8.34 (8) 5.4793293 5.4789999
(c) .1257 .1250 (h) 548 55]

(d) .1257 125 (i) 1.9999 2

(¢) .6666 .6667 (i) 9874  .9875

2. This exercise is similar to exercise 1, except that
negative rational numbers are used. Remember, that
- although 1< 2, for instance, =2 < —1. Thus, al-
though .5< .6, we have —.6 < —.5.

() -3.567 -3.582 (e) —42.80 —42.85
(b) —12345 —i2453 () —42.8  —42.85
() =99 - (a) —12.9999 12.9998
(d) —100.555 —100.565 (h) —4.378 -4.3779

3. Is it possible to find a rational number_x *‘between’’
.354 and .357? That is, we want a number_x such
that

.354 < x < .357.

Notice that these two decimal fractions agree in
the first two places, but disagree in the third
place. Thus, for x, we can use a decimal fraction
that agrees with the two given ones in the first
two places, but has in the third place a digit that
is between the two given third digits. For example,
x might be .355, since .354 < 355 <.357. (This

is not the only value of x that can be used. Can
you give others?)

Now for each pair of rational numbers below, name
a rational number that is between them.

(@) .6; .8

(b) 2.35; 2.39

(c) 45.987; 45.936
(d) 102 108

(e) 5.420 5.430
(f) 5.42 5.43
(@) 3.8 39
(h) 299 3

Compare Exercise 3 with Exercise 9 in Section
12.18. Do you see that between the two rational num-
bers it is always possible to find another rational

number? For this reason, we say that (Q, <) is dense:
that is, the rational numbers form a dense set.

4. Given the rational numbers 1 and 2, find
a rational number x such that 1 < x< 2;
then find a rational number y such that 1<y<x;
then find a rational number z such that 1< z<y; ;
then find a rational numberw such that 1< w< z;
Draw a number scale, and represent the numbers p
1,2,%,y,2,w, by points on the scale.

5. Do the integers form a dense set? Why or why not?

12.77 Summary.

In this chapter we have developed the rational
number system. In order to see why this sy stem is
such an important one, let us retrace some of the
steps in its development.

In the whole number system, there are two binary
operations, addition and multiplication. Subtraction
and division are not operations. Thus, for example,
the subtraction 2 — 5 and the division 2 + 5 are not
possible in (W, +, .). We might say that subtraction
and division are *‘deficiencies’’ of the whole number
system. Part of our work this year has been concerned
with removing these deficiencies.

We first removed the subtraction deficiency by
developing (Z, +, -), the number system of integers.
Subtraction is a binary operation in this system;

2 - 5, for example, is — 3. And since (Z,+, ) con-
tains an isomorphic copy of (W, +, ), we have in the
integers all of the operations and properties of W,
together with the new operation of subtraction. Thus,
Z is an "‘extension’’ of W, a fact suggested by the
following diagram:

extension to

(wl+l ') ------------ (ZI +, )
make subtraction
an operation

However, division is not an operation on Z, and
in this chapter we removed this deficiency by develop-
ing the system (Q, +, -) in which division (except by 0) °
is always possible. for example, the quotient2 = 5 is

the rational number we have called -g— And since
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, +, +) contains an isomorphic copy of (Z, +, ) Q
 an extension of Z. Therefore, we can complete the
ove diagram as follows:

W, + -) |__extension to_ ..--.4 2, + °)
make subtraction ' '

an operation :

]
extension : to make

(Ql +, ‘)
Is this theonly path to follow in removing the sub-

or we might have removed the division deficiency

irst. Thus we could have extended W so that a divi-
sion such as 2 = 5 became possible. To do this, we
ould have worked with numbers arising from ‘‘posi-
tive”’ fractions, such as those you worked with in
elementary -school. In this way, we could have obtained
s number sy stem in which addition, multiplication,

and division (except by 0) were always possible, but
not subtraction. If we use (F, +, ) to denote such a
system, the extension can be shown as below:

(wl +, ‘)
T

- extension : to moke

¢ division }an operation

(Fl +, ‘)

{
. Next, we could remove the subtraction deficiency

by introducing negatives much as we did in develop-
ing the integers in Chapter 4. Then once again we
would have arrived at the system (Q, +, +), as the

. completed diagram shows:

(wl + ')

1
i

extension : to make
division : an operation

division !an operation

raction and division deficiencies? The answer is ‘‘no,"’

[F =+ )----- extensionte__J'@, +, 1)

make subtraction
an operation

No matter which of the two *‘paths’’ is followed,
the result is the rational number system (Q, +, *) in
“which there are four binary operations — additicn,

: subtraction, multiplication, and division.

: In (Q, +, -). the four operations are defined as follows:

(Q, +, +) has the following important properties.
If x, y, and z are rational numbers, then

(x+y)+z=x+(y+2) (x-y)ez=x-(y-z)

x+0=x xel=x
x+(-x)=0 x--];=l (x # 0)
X+y=y+X Xey=YyeX

xe(y+2z)=(x-y)+x-z2)

Any system with two operations which possesses
these preperties is called a field. Therefore, we may
speak of the rational number field, or the field of ra-
tional numbers.

The rational number field is ordered. If%ond'ﬁ-‘

are rational numbers, with b and d both positive, then
-g <§- <> ad<be.

The rational number field is dense. Between any
two different rational numbers, there is another ra-
tional number.

12.28 Review Exercises.

1. Solve the following equations.
(@) 4. x=3 (H12.-x=5 (k)102- x= 511
b) 3-x=4 (@) 3-x=20 (l) =55.-x=30
() =4-x=3 (h) 3:x=21 (m) 87 . x=87
d) 4.x==3 (i) 7-x=5 (n) 87:-x=0
(€) =4.x=-3 (j) -3-x=8 (o) 4.-x=a

2. Compute the following.

033 03
0 322 32

S 4 S
)5 ~-7 (k) 8%
(d) —'g" (N 8+%

—
(L]
S’

———
-
g

(0) 3+7

——
(7o ]
S’

ofe

N|— oo[

>
S’
ojw M= wlo w»je s
———
2
|
!
c

P 7+3




3. Compute the following. (b) _;_g_ (@) 'i%
1 3 7 3 5 .2
(a) 5+%) +3 ) g+3)+ S
274 %8 (N &+ 3 (€)= W
2,1 3 3 5.2 .
by % G+5) (9) g+ G+3 (d)-—g- (u)—58—
0 9 3 I
€) 4+ 5+ o ®) @3 -5 ©) 3% (i +
3.1 4 3 359 16
(d) ('4- 5) (i) T°16°4°9°5 3 7. In each of the following, place one of the three
5 symhols, *'<,? > or =" 20 that a true state-
; (e) (]9_.3. +g (i)-'%‘+%+ ‘%+%+%+_;. mentresults.
; (a) 2 -3- (d) .3475 .3429 (g) .00001 .000009
. 4. Compute the following:
s 4 5 1 20 25
(@ 3 (c) 14 (e) ’E‘ B 55 (3 333B (S5 5
‘ 4 3 -
7 7 N OBZ maasd 012
8 5 d 8. For each pair of rational numbers below, write the
b) 9 ) 12 name of a rational number that is between them.
= i< 1 1 4
2 5 (@ 5 1 )3, 5~
2 3
f 9 8 B 5 = (f) 345 346
; i ing in **expanded notation.”’ . 1S 3
5. Virite each of the following in *‘exp (c) = B (9) =, 2
: _]. 1
y Example: .23=(2 - )+ 3- 00) 17 o
‘ @7 3 ®) 0 150
(a) -6 (e) 25.08
; ®) .63 (f) 3.175 (i) 0, .000001
g (c) .063 (q) 2.0Q0005 9. Solv; the folz;owmg equations.
(d) .00603 (h) 3333 @ 3-x=F
E 6. Write a “decimal fraction’’ representation of each (b)%+ =§5.
E of the following. If the decimal does not terminate,
! give an approximation to four decimal places (i.e., ) x- 4.1
| correct to ten tho.. sandths). ¢ 3 2
? -
ij @+ (5 @G o=
;
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CHAPTER 13: MASS POINTS

13.1 Deductions and Experiments

You have probably noticed that in coming to con-
clusions we have used two distinct methods. For in-
stance, to convince ourselves that the sum of the
mea sures of the angles of a triangle is 130 (or ap-
proximately 180) we can proceed in either of two ways.

(a) We can measure each angle with a protractor
sﬁd J'—l N PN nq-llenv.t

.
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(b) We can show that the statement follows logic-
ally from properties of isometries and the pa-
rallel property.

The first is an example of the method of reason-
ing by induction in science. It is also used by mathe-
maticians to suggest relations. The second is an ex-
ample of reasoning by deduction and is called deduct-
ive proof or mathematical proof. 1t shows how one
sfatement follows from others by logical deductions.

Many people who are not mathematicians fre-
quently rely on deductions. For instance, a doctor
deduces the nature of an illness from symptoms; a
surveyor deduces a distance to an inaccessible point
from known measurements and mathematical princi-
ples; an astronomer deduces the nature of matter in a
distant sun from ananalysis of the light coming from
that sun. ’

You yourself have surely made deductions. All
people do. For instance, when a doorbell isunanswered
it i s natural to deduce that it is likely that nobody is
home.

This chapter differs from other chapters in the
sense that in it we allow ourselves proofs by deduc-
tion only. This will be a novel experience for you,
the first of many such experiences in your mathemat-
ical studies.

There are many possible systems you can study
that will help you to learn about deductive reasoning
ond its usefulness. We have chosen first the study of
mass points because of its many applications and its
close relation to the geometric ideas you have pre-
viously studied.

Naturally, your first question is: What is a mass
point? This brings tc our attention an important as-
pect of deductive reasoning which you must try to ap-
preciate before going further. Actually, there are many
di fferent objects which are specific interpretations of
the general notion of mass points? For instance: a
child poised at the end of a see-saw; the earth at-a
particular position in its orbit; a carbon atom at a
particular position inside a complicated molecule.

To establish something of the essential nature
of each of these interpretations, we note that in each
case a number and a position can be associated. For
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the child it could be her weight and her position on
the see-saw. For the earth it could also be its weight
and its position in orbit. For the carbon it could be a
number, perhaps its electrical charge, and its location.
Each of these cases has the property that a number
and a point are associated. This is what we mean by

a mass point.

Definition. A mass point is a pair consisting of
a positive number and a point.

As you see, different interpretations have some
properties in common and some that differ. Faced with
such a situation a mathematician lists what he thinks
are basic properties common to all and proceeds to
make deductions from this list. Since the selected
basic properties furnish a beginning in a system they
are not deduced. There is rothing in the system from
which to deduce them. Such basic property statements
are distinguished from those that are deduced. The
basic property statements are called postulates or
axioms. Those that are deduced are called theorems.

13.2 Preparing the Way: Notations and Procedures

We need some preparations before stating postu-
lates and deducing theorems. First, it is convenient
to have a concise way of referring to a mass point.
The mass point with a number 4 at point A will be
written “4A”. In general the mass point with number
a at point P will designated ‘*aP’’. If in the course of
deduction we conclude that aP = bQ, this will mean two
two things: a and b name the same number, and P and
Q name the same point; thatis, a =band P = Q. |f
then A and B name different points then 3A = 2B must
necessarily be false; also 4A = 2A must also be false
since 4 £ 2. We sometimes refer to the number of a
mass point ot its weight.

Second, we illustrate what we mean by adding two
mass points. It should not be confused with adding two
numbers. Suppose 3A and 2B are two mass points, as
shown below at points A and B.

— —d 20

3Ae-~ - —— —p

To add them and to re'pr,esent 3A + 2B as a single
point, we must do two things.

(1) Add the weights 3and 2; 3+ 2o0r S is the
weight of 3A + 2B
(2) Find point C in AB such that AC:CB = 2:3

(Note the reversal of 3 and 2 in the ratio 2:3). :‘;
If on measuring AB we find its inch-measure |

to be 5,'AC=§ .5=2and CB 35-=-.5=3.

C is therefore two inches from A and 3 inches
from B. C is the point in 3A +2B. 3

Y
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“us 3A + 2B has weight 5 and is at C, or 3A + 2B=5C.
e sum is represented diagrammatically as follows.

5C

. — 28

[ ) e — . am— >

(The equally spaced marks should help you to
see that AC=2and CB = 3)

o call C the center of mass of the masses at A and B.

Let us consider a second illustration.

3 n
[ @
Ea 4Q4 3= 7R

Suppose the measure of QP in yards is 4. As in
he first illustration we find the weight of 4Q + 3P to
e 7. 1§ R is the center of mass then QR:RP = 3:4;

QR340 12 and RP =44 o 16
?hotusQR—; 4 or > and RP 7.4°r-7-rThus

— 3P

and we can approximate the location of R

The definition for the sum of two mass points is .
‘suggested by the see-saw interpretation. Suppose in
the diagram below that two weights are placed in the
position shown.

3 20

| 30

1 Yo, (bs.
2. e e <l 3t ..

:
¢

3

I

 They will be in baldnce if the weight of each object
 multiplied by its distance to the balancing point is

- the same. For data in our diagram the first product is
30+ 2. The second is 20 - 3. Are these products the
g\same? If so, the see-saw is in balance.

i Compare this situation with the case of the sum

. of two mass points 30A + 20B, for which AB = 5. The
5 point C, the center of mass, will be 52-3 5 feet from A
k toward B. s this not the point at which the teeter
board balances for the weight 30 and 20 pounds?

; Defini tion: In general, by aA + bB we shall mean
‘ the mass point cC such that a+b=c
and C is the point in AB such that
AC:CB=b:a.

~ In passing we might emphasize that C is in AB.

- Furthermore, we might guess that each interior point

. of AB can be determined by a correct choice of a and b.
' Thus, whenever we add two mass points, the center of

" the sum will be found in the segment determined by the
. mass point addends.

In section 13.4 —13.8 we will learn to add three
mass points, not in one line, such as aA, bB, cC
shown below. The sum aA + bB must be in AB, say at
" D. The sum bB + ¢C must be in BC, say at E. Now we

B R FETRATER
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have two 'mass points, at D ond E and their sum will
be in DE, say at F. F is an interior point of A ABC.
So the sum of three mass points at nori-collinear points
determines an interior point of a triangle.

<C

oA D "] ]

In section 13.12 we add four mass points, not in a
plane, such as those shown below. Adding three of these
determines point in the interior of AABC, AABD, ABCD,
or ACAD. Suppose E is such a point inside AABD, and
F is inside ABCD. Then, the sum of the mass points at
E and F determines a point inside the space figure (a
pyramid).

dd

13.3 Exercises

1. In each part below you are given the length of o
segment in inches for which you are to draw a dia-
gram. On this diagram represent the sum of the two
mass points at a single point.

(a) AB=6,5A+1B
(b) AB =6, 1A +5B
() CD=3,2C+D
(d COD=3,1C+2D
(e) EF =5, 1E+1F
() GH=3,2G +4H
(9) GH =3, 3G +2H
(h) KL =5, 2K +4L
(i) KL =35, 1K +2L

(i) KL= S,I%KHL

2. (a) You are given mass points 3A and 4B. |s the




3.

4.

5.

6.
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center of mass nearer to A or to B? Try to
answer without calculating the positiodof the

center. -
(b) Answer the same question for mass points 8A

and 5B.
(c) Is the center of masses nearer the point with
the greater or lesser weight?

For each of the following compute AG:GB.
(a) 3A +2B =56 \

(b) 1A +6B=76G

() 2A+1B =36

(d) 5A + 5B = 10G

In this exercise you are given one of two mass
points and the sum. You are to find the other mass
point. To illustrate, suppose xX is the missing
mass point and 3A + xX = 5B. Thus 3 +x = §,
from which we deduce x = 2. The weight of 3A and
xX are 3 and 2. So B is the point in AX such thot

AB:BX = 2:3 and X is in AB with B in between A
and X as shown bzlow.

A ’

X
O =

Solve for x and X in each of the following equations.

(a) 3A +xX =4B
(b) 4A +xX =6B
(c) xX +4A =6B
(d) 1A +xX =3B
(e) 2A +xX =3B
() xX+9A =12B

Suppose 12A + bB = cC. What must be true about b
and ¢ for each of the following cases?

(a) C is the midpoint of AB.

(b) 'C is the trisection point of AB nearer A.

(c) C is the trisection point of AB nearer B. .

(d) C is the point of division of AB such that
AC:BC = 3:4.

Draw a line segment AB 3 inches long and take
C in AB such that AC is % inches long.

*>

C ]
— >- * —t— — -o

(o) Represent 1A + 2B at one point. Name it D.
(b) Represent 3D + 3C at one point. Name it E.
(c) Represent 2B + 3C at one point. Nome it F.
(d) Represent 1A + 5F at one point. Name it G.
(e) Are F and G the same point?

(F) 1f so, how does this exercise show

(1A +2B) +3C = 1A +(2B + 3C)

Let 3 be assigned to A in AB.

(a) If C is the midpoint of AB, what weight
should one assign to B so that C is then the
center of mass? -

(c) 1§ C is the trisection point of AB nearer B,
what weight should one assign to B so that C
is the center of mass?

13.4 Postulates for Mass Points

It is important to know whether addition of mass
points is an operation. Otherwise such a sum as 5A +
6B may be assigned:more than one mass point and any
computation with mags points would become bewilder-
ingly complex. We kiiw that 5A + 6B must have the
weight 5+ 6 or 11. @it is there exactly one location
for the center of mass? It can be proved, with the aid
of more mathematics than we have available, that the
answer is yes and, moreover, it is between A and B.
We shall assume this answer. That i s, we accept with-
out proof the statement that there is exactiy one mass
point for the sum of two mass points. This.then be-
comes our first postulate, the Closure Postulate.

Pl. For any two mass points aA and bB
there is exactly one mass point cC
such that A + bB = cC. .
In effect we are saying that addition of mass points is
an operation.

Our construction of, aA + bB leads us to accept
that aA + bB = bB + aA. We will state this property as
a postulate, and call it the Commutation Postulate
or P2. ,
P2. For any two mass points aA and bB

oA +bB =bB + cA.

And now we come to a_third postulate which we
can call the Association Postulate or P3. It many not
be as obvious as the Closure and Commutation Postu-
lates, and for that reason we shall do an experiment to
test its plausibility. We want to see for instance
whether (3A +2B) + 1C = 3A + (2B +1C), where A, B,
C are the points, not necessarily collinear, as shown
in this diagram.

1C

6G

_— )

A 3D 8

___ To facilitate this experimest we have subdivided
AB into 5 segments of the same length (3 +2 = 5) and 3
BC into 3 segments of the same lerigth (2 + 1 = 3).




First we find 3A + 2B to be 5D, as shown in the
agram. Then, subdividing DC into 6 segments of the
ame length (5 + 1 = 6) we see (again in the diagram)

at 5D + 1C= 6G.

On the other hand we first find 2B + 1C, and find
to be 3E (see the diagram). We have only to test
hether 3A + 3E = 6B. To convince ourselves that
his is true, or false, we place our ruler on AE and
jeo whether G is in AE such that AG:GE = 3:3or 1:1.

test shows it to be true. Try it. We call G the center

f mass of three masses.
" In an exercise you will be asked to further verify

experiment the truth of the Association Postulate.
. P3. For all mass points aA, bB, and cC

(aA +bB) + cC =aA + (bB + cC).

This means that aA + bB + cC represents the same
mass point no matter how we associate. This mass
oint has weight a + b + ¢ and its poin? is the center of
mass of the three masses at A, B and C.

We do not claim to have proved the Association
property, for we have not deduced it. We repeat, the
purpose of the experiment is not to prove the property.
It is to make it easier to accept as a postulate. (Mathe-
‘maticians may even accept as postulates statements
which cannot be tested as being either true or false.)

In adding mass points we are also adding positive
' numbers. 1# should be understood that we are allowing
“ourselves to use those properties of (Q, +) which we
 need. We shall also allow ourselves to use the pro-
“perties of parallelograms which have appeared earlier
in this book.

-13.5 Exercises
1. Make an exact copy of the three mass points
3A, 2B and 1C used in the experiment on the
preceding page. Show, by an experiment that
3A + 2B + 1C can also be found by any of the
following procedures.
(0) Find 2B + 1C first, then (2B + 1C) +3A.
4 (b) Find 3A +1C first, then (3A + 1C) +2B.
E 2. Justify each of the following statements by
; citing the appropriate postulate or postulates.
? a. (28 +1C) + 3A = (1C + 2B) + 3A
b. (28 +1C) +3A=1C+ (2B + 3A)
¢, B+3A+1C=3A+2B+1C
3. Represent aA + bB + cC in 6 different ways.

4. Make a diagram which shows 2A + 1B + 2C at
a single point.
Take A, B, C as any three noncollinear
points.

" 13.6 A Theorem and a Deduction Exercise
As you recall, we cailed a statement that is de-
duced (or is deducible) from other statements a theo- -
. rem. This, our first theorem for mass points, is about
any triangle and may come to you as a surprise. Sup-
! pose the triangle is ABC. Let D be the midpoint of
= AB, E the midpoint of BC and F the midpoint of CA.
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Make such a diagram and draw CD, BF and AE. Do they
meet in one point? We shall prove that they do; that is,
we shall deduce this from our postulates. To make it
easier to talk about the segments CD, BF, and AE, we
shall call them medians.

C

¢ ;
k‘ ‘lx
N & .
D
Definition: A segment is a median of a triangle

if it connects one of its vertices to the mid-
point of the side opposite the vertex.

Theorem_1. The three medians of a triangle meet

in one point.

To prove this theorem let us start by assigning
weights to vertices, thus converting them tomass points.
Let us assign 1to A, 1to B and also 1 toC. (You will
see why we choose 1 as the weight of each point as the
proof develops.) We remind you that D is the midpoint
of AB; E is the midpoint of BC and F is the midpoint

of CA.

By the Association Postulate (1A + 1B) + 1C = 1A
+ (1B + 1C). Let us first calculate (1A + 1B) + 1C.
First, 1A + 1B =2D. Then (1A + 1B) + 1C + 2D + 1C.
There is a point in DC, call it G, such that DG : GC =
1:2. Thus 2D + 1C = 3G. '

Now we calculate 1A + (1B + 1C). First 1B + 1C =
2E. Then 1A + (1B + 1C) =1A + 2E. There is a point
in- AE, call it H, such that AH : HC = 2:1. Then 1A +
2E = 3H. But by the Association Principle 3G = 3H.
_'Ilgrefore G =H, that is, G is the point which divides
CD in the ratio 2:1 and also the point that divides
AE in the ratio 2:1.

Now we calculate (1A + 1C) + 1B.

(1A +1C)+ 1IB=1A+(1C+1B) P3
=1A+(1B+1C) P2
=(1A+1B)+1C P3
=3G__ Pl

This means that G is also in AE and divides it in the
ration 2:1.

We have not only proved that the three medians
meet in a point (the point G). ,but that this point divides
each median in the ratio 2:1 from vertex to midpoint of
opposite side.

We can also use postulates to solve problems. This
means we will discover theorems. But we won't find
it necessary fo use these theorems in proving others.
Therefore we will not list them formally as theorems. We
consider them deduction exercises

Suppose in AABC, D divides BC in the ratio 1:2

PR




from B to C, and E divides AC in tho ratio 1:1. Let AD

intersect BE in G. What Gre the numerical valves of

DG:GA and BG:GE? We can solve this problem as fgl-_7

lows. In osder that D may be the trisection point of BC

nearer B, we assign the weights 2 to B and 1 to C.

Then 2B + 1C = 3D. In order that E be the midpeint of -

CA we assign the same weight to A as to C. Having as- o

signed 110 C we assign 110 A also. Then 1C + 1A=

9E. The point of (2B + 1C) + 1A is the same as the

point of 2B + (1C + 1A). This point is on_AD and BE;

that is, this point is the intersection of AD and BE, ) e

and it is named G. Therefore (2B + 1C) + 1A =3D +1A " 6. InAPQR, QE and RD are medians,
' meeting at G. D is the midpoint of

| _ 4G, and thus DG:GA = 1:3. Also 2B + (1C + 1A) =2B
+ 2E = 4G, and thus BG:GE = 1:1. . LG and E is the midpoint of KG.
* Prove: LKRQ is a parallelogram.
A
’

——
D ) o

Q

We can extend our discoveries in this problem. Let ~ i
7. For the data in Exercise 6, prove: LK = QR and

I EENAB = F. By P2 and P3, (2B + 1A) + 1C = 4G. :
: Therefore 2B + 1A is a mass point whose center is in LQ=KR. —
“ "BA and also on CC. It can be only F. Thus 2B + 1A = 8. k‘ésgi'll?z'.sEmisAi?‘—%"ié—m d
3F and BF:FA = 1:2. From 3F + 1C =46, it follows BE.EC = ]2 Lef'X—E-OCD = G.
that FG:GC =1:3. , . .
If we omit explanations, the solution of the above c
E problem can be written briefly as follows
1. 2B + 1C =3D and 3D + 1A =4G. Therefore
; DG:GA =1:3.
. 2. 1C + 1A = 2E and 2B + 2E = 4G. Therefore
Z BG:GE =1:1.
: 3. 2B + 1A = 3F Therefore BF:FA =1:2. e
4. 3F +1C = 4G Therefore FG:GC = 1:3.
{— 13.7 Exercises
- 1. Review the proof of the theorem about the median of A ) ’
;' a triangle, then tell whether you think the proof ap-
% plies only to the triangle represented in the diagram ' Prove : AG:GE = 3:4
? or to all triangles. v CG:GD = X
2. This is an experiment exercise. Draw any triangle, . e :
locate the midpoint of each side and firow'the (Hint: Assign weight 4to A, 2 to_B_cnd 10 C.)
| s ey idas o b i 5. Ysing the dete o B B o ATFC.
\ in a drawing made by a classmate. Try to find ' . NAAT M
: why the drawing does not agree with the theorem. 10. Add to the data in Exercise 8 that K is in CA and
3. The lengths of the medians of a triangle are 15, 12 . CKGKA = 1:2. Lot BRAAE = L ond BKACD = M. |
“ and 18 inches long. i..w long are the segments Prove: BL = LM = 3MK (This is a difficult ex- *
; into which each rmdwy, is divided by the point in orci “') ~
? which they meet? N "
4. Ansver the question in Exercise 3 if the !n#iuns 13.8 Anotner Theorem
n are 12, 13, 14 inches long. v, Our definition for addition over mass points ap- ;
7 plies to two mass points. In other words, addition is:

3 . A ' d—’ d‘ ’
5 5. InAABC, CD and EF are medians a binary operation. To make it possible to add three ;

ting at G. K i midpoint
"“.&é‘.‘gn‘:’ l(_;'ft;':":r dp oi_:to :} mass points we' introduced the Association Postu-

CG. Prove (by deduction, of .
t SE K is a.pgralléiogram.
L3

late, which says that oA + bB + ¢C can be fouad by

L either finding (aA + bB) first or (bB + cC) firet,

course) tha




ither of these sums can be found and then o second
ddition completes the calculation by which oA + bB
cC is expressed as a mass point with one weight
nd one point. For our next theorem we need to know
ow to add four mass points. This can be done by a
] leoted application of the Association Postulate, as
ilows:

oA +bB + cC + dD = (0A + bB) + (cC + dD). There
re also other ways to associate. For instance,
A + (bB + cC) + dD. This reduces the addition from

our to three mass points. And 1..w a second theorem. [7
Theorem 2. The segmenis joining the midpoinis S
of opposite sides of a quadrilateral \/
bisect each other.
Proof: Let ABCD be the quadrilateral and let E
be the midpoint of AB, F the midpoint
of CD and H the midpoint of DA.
We have to prove that EG bisects HF.

C

2. Verify whether the theorem is true for such figures

H as those below. They are named ABCD to tell you
\ that the sides AB, BC, CD, DA, in that order. This

means that AB and CD are a pair of opposite sides

A € : and BC and DA are another pair of opposite sides.

We assign the wieght 1to eachof A, B, C, D.
then we have the following equations:

(1) 1A+1B=2E
(2) 1 B+1C=2F
(3) 1c+1D =26
(4) 1D + 1A =2H.

By P3 and P2 we can show that

(1A + 1B) +(1C+ 1D) = (1D + 1A) + (1B + 1C).
Thus 2E + 26 = M + 2F.
If K is the midpoint of EG then 2E + 2G = 4K.
If L is the midpoint of HF then 2H + 2F = 4L.

Thus 4K = 4L.
or K= L

)
’
D
Do you see that this completes the proof?
c
: \ .

Incidentally, what kind of figure is EFGH? State
another theorem that follows immediately from the
one we just proved.

13.9 Exercises

1. The purpose of this exercise is to see if an experi-
ment agrees with Theorem2. In performing the ex-
eriment you should be careful to draw straight
ines and to locate midpoints gccurately. Perform
the experiment on two different quadrilateral fig-
ures having shapes such as the ones suggested by
the following diagrams.
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3. In the quadrilateral ABCD shown In AABC, D is the midpoint
AR:EB = 1:2, BF:FC = 2:1 of AB, E is the midpoint of AC,
CG:GD = 1:2 and DH:HA = 2:1. and F is the trisection point of BC
Prove: EG and FH bisect each nearer B. Let DENAF = G. We are
other. (Hint: Assign weights required to show that G is the mid-
2t0 A, 1108, 210 Cand 110 D.) point of AF and also the trisection

c ' point of DE nearer D.

)
.
H
€
A [ ] ) ¢ C

4. In the quadrilateral PQRS shown f

PA:AS = 1:3, SB:BR = 3:1, , We begin by assigning a weight of 1to C. In order

RC:CQ = 1:3, QD:DP = 3:1 howri. that F be the trisection point of BC nearer B we as-

Prove: AC and BD bi e sign 2 to B. Thus 2B + 1C = 3F.

: n isect each other. Let us now consider what weight to_assign to A.

’ D Q First, in order that D be the midpoint of AB we should

assign to A the same weight that we assigned to B,

that is, 2. In order that E be the midpoint of AC we
should assign to A the same weight that we assigned
to C, that is 1. Thus we find ourselves assigning two
weights to A, or to put it another way, ot A we are to
have two mass points at one point; one is 2A, the
other is 1A. If we could add these two mass points we
could then complete the solution. But our definition for
addition of two mass points applies to two mass points
at different locations. So we must agree on how to

add 2A and 1A. Before we make a formal stat ement on
how to add them, you might wish to suggest a method.
But whatever the method, it will be a postulate, and
we call it P4. '

P4. For all positive numbers a and b and all

points P
aP +bP = (a+b) P.

"By this postulate 2A + 1A = 3A.

\

To continue with our solution, we note that

2B + I€ + 3A can be calculated either as (1) (2B + 1C)
+ 3A, B as (2) (2A + 2B) + (1A + 1C). Since 2B + 1C =
3F, (1) becomes 3F + 3A which is equal to 6 H where

o H isin FA such that FH:HA = 1:1.

5. As shown for the quadrilateral ABCD, ' , Since 2A + 2B = 4D and (1A + 1C) = 2E, (2) be-
AP:PB = 1:2, BQ:QC = 2:},CR:RD = 13, ~ comes 4D + 2E which is equal to 6K, where K is in
DS:SA=1:1. LetS@ nPR=E.Find ., . . DE such that DK:KE = 1:2. But whether we calculate
k8 nimericoluatiss of RESEP and - - e e 2B + 1C + 3A either'way we get the same resuit. Thus
SR HET e 6H = 6K or H = Ki Since H ison’both FA and DE,

- —'n_=_:u, o
13.10 A Fourth Postulate H= FATDE=G.
Befdté dntrodicing the fourth postulate let us ex- The actual calculations are few and cin be -writ-
amine a problem which requires this postulate. ’ ten briefly as follows.
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2B + 1C + 3A is equal to
(2B + 1C) + 3A or (2A + 2B) + (1A + 1C)

3F + 3A = 4D+ 2E
6H = 6K
Therefore H= K= G.
hus FG:GA = 1:1 DG:GE = 1:2

h | e s
31 Exercises
31 LASIvISvYS

?Suppose in AABC, D is the midpoint of ABand E
r‘i s the midpoint of .K(-:: and

F is in BC such that BF:FC= 5:4

-and DENAF = G.

 Prove: G is the midpoint of AF

3 DG:GE = 5:4
(Hint: Assign 4 to B and 510 C)

. State a theorem which seems to be suggested by
Exercise | and the problem of section 3.10.
. Investigate the case in which we take trisection

points of AB and AC, both nearer A, instead of the
midpoints.

v BD 3
. ln AABC, D 1siIn BC aﬂd DC_ ] ]

Eisin CA end.c_E=_4., and F is
EA 1

in AB. AD, BE, and a? meet at point G.
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AF BD CE_,

FB'DC " EA
(Hint: Assign 1 to B. What should you assign then
to C? Then to A?)

. . BD 3 CE §
5. Suppose in Exercise 4-D—c- —-i-and EA-T

*6. Exercises 4 and 5 are special cases of a theorem
called Ceva's theorem, named after an |talian who
is said to have disccvered it. Ceva’s theorem says:
-In AABC, if D, E, F are interior points of AB, BC
and CA respectiveiy and AD, BE, and CF mesi in
one point then

(b) Prove:

AF_BD  CE _
FB® DC ~ EA ~

Try 0 prove it. (Hint: Let BD=q,DC=b, CE =g,
EA = d) (Difficult).

*7. For the data in Ceva’s Theorem prove 23 + gg + gi_

where G is the point in which AD, BE, and CF meet
(Difficult).

13.12 A Theorem in Space

At the beginning of this chapter we worked
with mass points at points on a line. Then we went
on to work with mass points in a plane. We end
this chapter with a theorem about points in space.

We begin with four points, A, B, C, and D not
in a plane (see the figure), Let us look at AABC and
its medians AH, BE, and CF. We know from Theorem 1
that these medians meet in a point, name it G. The
point in which the medians of a triangle meet is
called the centroid of the triangle. In what ratio does
the centroid G divide AH, from Ato H? Now, ABCD,
AABD, and AADC also have centroids. Consider the
segments joining the centroid of one of these triangles
to the fourth point. One such segment is GD since it
ioins the centroid of AABC to D. How many such seg-
ments are there? Do you think that these four segments
meet at a point? Indeed they do and that is what our
‘'space theorem says.

Theorem 3. If A, B, C, D are points in space,

1,
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not in a plane, and G is the centroid of AABC,
Gg is the centroid of ADAB, G, is the centroid
of ADBC and G, is the centroid of ADCA, then
DG}, CG2, AG3, and BG4 meet in a point which
divides each of these segments in the ratio 1:3
from centroid to the point.

To prove this theorem we assign weight 1 fo each of
A, B, C, D. Then we consider 1A + 1B + 1C + 1D.

One way to calculate this is to assacicte (1A +
1B + 1C) which_is 3G1. Then 3G] + D = 4H, where H
is a point in G]D such that G1H: HD = 1:3. Thus
1A + 1B + 1C + 1D = 4H, and whether we calculate it
as (1A +1B +1D) + 1C,or (1B + 1C + 1D) + 1A, or
(1A +1C+ 1C+ 1D) + 1B, we continue to get 4H. Do
you see that this completes the proof?

13.13 Chapter Summary

In this chapter we studied some properties of mass
points deductively. We started by defining mass points
and addition of mass points. The first postulate (closure)
assured us that this addition is an operation. The sec-
ond and third provide the properties of commctation and
association. Later we added a fourth postulate that en-
ables us to add two weights when they are assigned
to the same point. We deduced three statements which
you may find useful to remember. We labeled them
theorems. One claims that the medians of a triangle
meet in a point. Another claims that the segments
jo* ving midpoints of opposite sides of a quadrilateral
bisect each other. The third is about four points in
space, not in a plane, and the centroids of the four
triangles determined by each triple of the four points.

It claims that the segments joining the centroid of each
triangle to the fourth point meet in a point thot divides
each segment in the ratio 1:3 from the centroid to the
point.

But we also solved many exercises by deductions
and thus proved many statements which we did not dignify
by calling them theorems, even though they are theorems,
because we probably won’t find them useful in proving
other theorems.

The most important aspect of this chapter is the
prodcure of deducing: theorems from postulates.

R SN o A Al s THL T AT KRt T8 s Al era B N AT S v OSBRI

13.14 Review Exercises

1. Draw AB making it 3 inches long. Let C be its mid-
point. Locate the center of masses for the following

mass points.
(a) 2A + 1B (d) 1A+1B+1C
(b) 1A+ 2B (e) A+2C+3B
(c) 2A+1C (f) 2A + 4B + 3C.

2. Solve for x and locate x in a drawing of AB where AB
is a one inch segment.

(a) 3A +xX=4B
(b) 2A + xX =3B

(c) xX +2A=4B
(d) xX +3A = 5B.

Let A have weight 8 and let AB be a given segment.
LetC be the center of mass for masses at A ard B.
What weighishould you assign B for each of the
following d sc{,i‘ptions of C.

(a) Cis the midpoint of AB.

(b) Cis the biseéfi,cn point of AB nearer A.

(c) Cis the trisecti'q'n point of AB nearer B.
(d) Cis the point of “AB such that AC:CB = 2:3

4. In AABC, D is the midpoint of BC and E is the point
in CA such that CE:EA = 4.

(a) 1f 1 is assigned to B, what should you assign to
C and A so that!D is the center of masses at B
and C, and E /s the center of masses at C and A? ;

(b) Ifﬁnﬁ.,:"s, compute the values of AG:GD and !
BG:GE. ;

(c) 'ILGGGKE= F, compute AF:FB.
5. In AABC, D is in AB ond AD:DB = 1:2: E is BC and

BE:EC = 2:1. F is in CA and CF:FA = 1:2. Prove
that DF and ‘AE bisect each other.

6. In quadrilateral ABCD, E, F, G, H, are respectively :

in AB, BC, CD, DA. Each of AE:EB, BF:FC, ond CG:!
GD is equal to 2:1, DH:HA = 1:8, and EGNFH = K.
Prove EK:KG = 4:1 and FK:KH = 3:2.
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CHAPTER 14

SOME APPLICATIONS OF THE RATIONAL NUMBERS

14.1 Rational Numbers and Dilations.

In Chapter 7, you learned that “‘Dqp’’ means
“Dpo Dg,’’ the dilation Dq followed by the dilation D,
ot that time, it was required that_a and_b_ be integers.
Let us now consider the composition Dpo Dqg, where a_
and b are rational numbers. We shall restrict the dis-
cussion to dilations on a line. In the exercises, dila-
tions in the plane will be considered. In particular, let
us start with

D10 D3.
2

Since D3 acts first, we show below the images of cer-
tain points under this dilation,

Since we now have the rational numbers, any point
with a rational coorditate :as an image under this dila-
tion. For instance, the point with coordinate 3is

3 9

mapped into the point with coordinote-?‘-, since 3 1T

Question: Under the dilation D3, what are the
coordinates of the images of the
points having the following coordi-
nates?

1 2 1
3 1; 3 10; 100; -1; =
How shall we interpret D 1? In order to be consistent .
2
with the way in which we interpreted D2, where g,is an
integer, we shall say that under D 1ia point P is mapped
2
into a point P’ whose distance from the origin isd

2

times the distance of P from the origin. The images of
certain points under the dilation D_‘!_{ore shown below.

0
0

3 -2 - 1382 3 4 5 ¢ 7

Question: Under the dilation D |, what are
2
the coordinates of the images of
the points having the following
coordinates

1.3, 10. 100:
1; 2;;5: 10: 100: -2,
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We are now ready to consider the composition

D10 D3. The diagram below shows the image (under
2

this composition) of the point with coordinate 2.

Do you see that under the composition D1 o D3, and

2

point P has an image P’ whose distance from the
origin is-g- times the distance of the point P from the
origin. In other words, we may write:

D1 o D3-D3.
2 2

Thus we see that the dilation D3 may be considered as

2

the composition of two dilations.

Question: Since under D3 the image of any

2

point is-g-as far from the origin as

_ the point itself, what do you think
the inverse of l?_g_is?

2

Question: Can you express D3 as the com-

4

position of two dilations?

It is also instructive to look at what happens to a

segment under a dilation such as D3. In particular, let ;

2

us look at the segment whose endpoints are those havin
coordinates 0 and 1; such a segment is often called’a

unit segment, and we shall denote it by *‘U."”

PR AT TR

‘Now since |_)_3_is the composition l_)_]_g D3, do you see

2 2
that segment U is first ‘‘stretched’’ to
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‘‘stretcher’’ and ‘‘shrinker’’ in each case.)

-3 -2 o o 2 3 4 5 6 Question: How must_a and b be related so
that under the dilation Dq,

. a segment 3 times as long. Then, that segment is b

i “shrunk’’ to a segment half as long, as the 1) the image of a segment is longer

than the segment itself?

2) the image of a segment is shorter
than the segment itself?

\
w
U
L]
]
-
o
-t
Nka
2] 4
w
o
»
o
-~

3) the image of a segment is the

Jograms show. The final segment, which has been segment itself?

Bbeled V, is then the imoge of U under the dilation 14.2 Exercises.

1. Draw three separate number scules, and on each
mark points with the following cocrdinates:

3

v-3u, 01, 2,—2—,-% and —1.
*times U," or "'V is-g-of U.”’ This means that the (a) On one of the drawings, show the image of

each of the points uzder the dilation D2.

4 . 3.,
ngth of segment V isy times the length of segment (b) On another of the drawings, show the image

, (l .2-3) of each of the images from part (a) under
72 the dilation D1._
Exomple 1. If a segment X has a length o; 10 3
inches, what is the length °f"4‘X? (c) On the third drawing, show the images of
We could think of this problem in each of the original points under the com-
terms of the dilation D3 on a line. position .D_.]_.° D2.
Y 3
If the segment X is fir:t “tretched”’ (d) Express the composition of dilations in
by 3, the resulting segment has a part (c) as a single dilation.
length of 30 inches. If that segment (¢) Express each of the following as single
‘ . dilations Dy, where x is a rational number:
is then *‘shrunk’’ by-zo the length of the D1 0 D4: D1 0 D7: D1 0 D10: D10 0 D1..
. 1 30 . 5 3 2 2
resulting segment is 4’ 30, or ) inches. 2. Draw two number scales, and on each mark points
In practice, of course, it is not necessary with the following coordinates:
- ::Q;x:il'::; th:ﬁs;:luhon in this way. We (b) On another drawing, show the image of each
3 Y of the original points under the dilation D2.
- 3 610231030, 15 T
: Fof10 2. 10-20r 1), e alh o
i Example 2. If segment X has length 10 inches, what S

(a) On one drawing, show the image of each of

, 4
is the length of2-X? these points under the dilation D1.

3

: 2
4 4 40
'—3'of 10 3" 10 =3 (c) Is it correct to write: D] = D2?
2 4
4, . 40. :
Hence, the length of 3-X is =3 inches. (d) When is Dg = D¢?
b d

L Notice that in Example 1 the final segment is shorter 3 0':’,0 number scale, let P be the point with co-
von the segment X, while in Example 2 the final seg- ordinate 2.

jent is longer than X. |s there any way to predict this (a) Let P’ be the image of P under Dg_What is
bforehand from the dilations D3 and D4? {Compare the 3

4 3 the coordinate of P'?
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(b) Let P’* be the imageof P’ under D2. What is
3
the coordinate of P"'?

(c) What is the image of the original point P under
the composition D2 o D5?
=3 7
(d) Can you write the composition in part () asa
single dilation?

4. (g) Write ¢ sing! Dy for the composition
y
D7 o Ds.
3 2

(b) According to the defmmon we made in Chapter
12, what is the product 3 g
In this section, we have used dilations to give mean-
ing to a statement such as gof X,”’ where X is a seg-

ment. And this kind of expression is common in every-
day uses of mathematics. For example, if X represents a

class of students, then '§ of X'’ (thatis, gof the class’’)

can be interpreted in much the same way as with seg-
ments. We really mean% times the measureof X. And in

this case, the measure is a whole number (size ofa

set). Thus, if the;-e are 30 people in the class, “—:2;- of

the class’

"is 20, since%- 30 =20. Problems 5
through 12 are of this kind.
5. There are 100 senators in the United States
Senate. On a recent vote, ;% of the Senate voted

‘‘yes’’ on a cerfain bill. How many Senators
voted ‘‘yes’’?
6..A certain state has an areaof 70,000 square

miles. 1%'0 of the state is irrigated land. How
many square miles in the state are irrigated?
7. Jim has $2000 in the bank, and the bank is sup-
posed to pa him 'i%f) of that amount for interest.

How much should Jim receive?
8. In 1960, the population of a certain town was

18,000. Today the population is—%of that num-
ber. What is the population today?
9. A family spends % of its income on food. \f the

income for one year is $8500, how much money
does this family spend for food in one year?

10. If one pound of ground meat costs $.90 what will

be the cost of 2-]2- pounds?

FulToxt Provided by ERIC
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1.

12,

13.

() 1f Jim's height is-g-of Bill’s height, who is

taller?

(b) if Mary’s height is%of Sue’s height, who is
taller?

(c) If Bob’s height is-::- of John's height, who is

taller?

In a certain town, there are 5000 registered voters.
..... ¢ election, 3500 neople voted. What

A..d
Hll\l, G TeCen

“fraction’’ of the town’s reglstered voters actually 4
voted? (Express your answer by an irreducible :

Teww v

fraction -E-.- Check your result by showing that% of
5000 is 3500.)

In this problem we consider dilations Dy, where x
is a rational number, in the plane. Justas Z x Z
is the lattice of all points with coordinates (a,b),
where_a and b_are integers, so Q x Q is the
lattice of all points with coordinates (x,y), ;
where_x and y are_rational numbers.
(a) Draw a pair of axes, and plot all points whose
coordinates are (a,b), where a and b are in-
tegers between -4 and 4. ;

(b) Now plot a point with coordinates (-g-, %). Note

that this point does not belong to Z xZ, but it §
does belong to Q x Q. ;

(c) Consider the dilation D2. Under this dilation,

the image of (3--‘7;) is defined to be

3
(2 21

(Do you see a segment in the plane that has
been ‘‘stretched’’ to twice its original length?)

4), or (3, ‘7‘) Plot this image point.

(d) Under the dilation Ql,_the image of (-g-,%-) is
2

(-2' 2, 2 "Z) Plot this image point. (Do you
see a segment in the plane that has been

‘*shrunk’’ m%of its original length?)

14. From Exercise 13, wemake the following definition:
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If (x,y) is an element of Q x Q, and D¢ is a dila-
tion where c_is a rational number, then the image of

" (x,y) under D¢ is (cx,cy).

(a) Plot the images of the following points under
D3: (2,8): (4,12): (9, -4): (-8,6): (-2,-12):
4
(0,0): (1,1).

(b) Now for each image from part (a), plot the image‘
of thatimoge under D4. 1

3
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(c) How arethe dilations |?_3_ond l?_4_:elated?
4 3

15, (a) How would you describe the images of the

: points in Q x Q under the dilation Dg?

(b) How would you describe the images of the
points in Q x Q under the dilation D7?

(c) How would you describe the images of the
pointsin Q x Q under the dilation D1?

4.3 Computations with Decimal Fractions.
InSeaion 14.1 we dealt with such problems as that

f finding ‘-‘lof X.” For example if X is a segment

4
having length 2%'incl1es, then

‘At times, problems such as this are expressed in terms
of decimal fractions. For instance, we could just as
sasily speak of finding .75 of a segment X whose
glength is 2.5 inches. Then we would have to compute

75 x 2.5.

The result should be the same as before, 'I%: How is

i) a b

' the computation with decimal fractions carried out?
- Study the computation below.

J5x%x 2.5 =700 % 70 1000
Thus, .75 x 2.5 = 1.875.

. This computation could be done as below

2.5
X 15
4 125
y 175
1.875
. There is arelationship between the number of digits
- to the right of the decimal place in the product 1.875,
. and the number of digits to the right of the decimal
. point in the two factors, 2.5 and .75. Do you see what
. the relationship is? (it is a result of the fact that
: 100 =< 10 =1000.)

Question: To which of the following is the
product 1.5 x 1.5 equal?

225; 2.25: 22.5: 225.
What is the sum of $2.45 and $3.87? The com-

putation is shown below.

$2.45
+ $3.87
$6.32

Notice that we ‘‘add tenths to tenths, hundredths to
; hundredths,’’ etc.
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245=2+ m +'l'g-6 and
3.87=3+ 75+ 1.
Then,
2.45+ 387 2+ 15+ 12 ) + B + 15+ 1ho)
-3+ (e D+ 505+ 7

12 12
=5+ﬁ+m EL
=5 +-]§+ 2 (since 10 _1 ;
10 " 100 100 10 [
]
= +%+T(2TO (smce-]g='l) %
=6.32

In these steps, you should be able to point our where
we haveused the associativeand commutative properties
of addition of rational numbers.

Subtraction computations with decimal fractions are
done in a way similar to addition computations, as the
following example illustrates.

Example 1. Subtract 4.387 from 12.125.

12.125
—4.387
7.738

(We can ‘‘check’’ this result by noting

that 7.738 + 4,387 = 12.125.)

The quotient of two rational numbers may also be
computed when decimal fractions are used to represent
the numbers. First, consider the quotient .125 +.5. We
may express this quotient as

125 ,
5
and we know this is the same as
125 10
“2x0 )
J25 19 1.25

Furthermore, 5X0°" 5

Therefore, instead of working with the quotient 255,

we may compute the equivalent quotient-%i. The

computation is shown below:

Jﬁﬁ'

10
25
25
This process is justified by the following:




1 1 1
—5—-=5xl sx(]00 125)—]00x( x 125)
- 735 % 25 = 25.
In the preceding division problem we multiplied the

10

given quotient ig—sby 10 ° that we obtained the equiva-

lent quotient _]_%_5_' in which the denominator (divisor) is

a whole number. If we try the saome approach with the
. quotient

0221
A3

we choose to multiply by %g- (Do you see why?) Thus,

=0221 .0221 100
13T 1% 100
a2 17
- 13]2.21
13
91
=17 91

0221
Therefore, —= 13- A7,

Question: What is the product .17 x.13?

Often, quotients of rational numbers (expressed by
decimal fractions) need be carried out only to a specified
number of decimal places. Study the example below, in
which the quotient has been computed correct to two
decimal places (hundredths).

Example 2. What is the quotient when 253.42 is
divided by 8.7?

253.42 253.42 10 2534.2
87 ~ 87

0" 87

29.128
872534.200
174
794
783
112
87
250
174
~ 760
696

64

Therefore, correct to two decimal
places, the quotient is 29.13. That is,

253.42

== 29.13
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Questions: What is the product 29.13 x
8.77 Why is this product
not equal to 253.42?

14.4 Exercises.

1. Compute the foliowing:

(a) 2.56 + 8.94 (g) -4.85 + -6.15

(b) 10.487 +35.733  (h) 21.5 - (~7.6)

(c) 42.56 — 237.29 (i) 55.0 ~ 39.8

(d) 4.5x2.5 (i) 39.8 - 55.0

(¢) 2.25 x 2.25 (K) 4.5 x .45 ?

() -3.5x .4 (1) -8.65 - 7.15 '
2. Compute the following quotients. :

@42 G 9B e
3. Exploin why all the quotients in Exercise 2 are J

the same. 3
4. Compute the following quotients, correct to two

. During one month, Mr. Sales makes the following

. At the beginning of the month, Miss Lane's bank

. .. 3.5
. (@) Find the quotient-7 8

. If the length of segment X is 3.75 inches, what

. If a certain material sells for $.45 a yard, how

decimal places. (See Example 2). i
40.8 .05 :
(a) 2.6 (d) 2

005

(b) 312.48 + 48.4 (e)

580

(C) (f) 875.42 + .17

deposits in his bank:

$42.50, $97.28, $10.12, $106,77
What is the total of these deposits?

balance was $412.65. During the month she wrote i
checks for the following amounts: ;

$5.79, $36.48, $10.20, $75.00, and $85.80.

Also, during the month, she made one deposit of

$85.80. What was her bank balance at the end of
the month?

(b) Find the same quotient as in part (a) by ex-
pressing each number by a decimal fraction.

is the length of segment V = (1.8)X?

many yards can be bought for $5.40?
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Ratio and Proportion.
f the right are two setsof elements, A and B. The
iber of elements in
A is 2, and the num-
of elements in set B
. We could say that
number of elements
B is 4 more than the
nber of elements in A. A
d thereis another com-
jn way of comparing the
es of the two sets; this
by stating that the num-
of elements in B is 3
nes the number of elements in A. That is, 2:3 = §6; or,
\at amounts to the same thing,

6
-i'=3.

e have used the quotient'g-to compare the sizes of

ie two sets; when used in this way, a quotient is
alled a ratio. And the equation above may be read

e

19 oJe

The ratio of 6 0 2

urthermore, there is another way to write-g-= 3 when

‘jou mean a ratio. It is as follows:
. 6:2=3,

efore looking at another example, notice that we
lay say:
The ratio of B to A is 3. (even though the
ratio really in-
; volves numbers)
nd this means that if the number of elements in A is
ultiplied by 3, you get the number of elementsin B.
Pictured below are two more sets, C and D, which
have 12 elements and 4 elements respectively. Whot
is the ratio of the number of elementsin C to the num-
ber of elements in D?

3

; .. 12 .12
. The ratio is—g (or 12: 4): and since 1- 3, there are 3

times as many elements in C as in D. Or again, if the
number of elements in D is multiplied by 3, the result
is the number of elements in C.

. Notice that in the two examples above, the ratios

i(quotients) are equal. That is,-%: -122-= 3. This is true
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even though the sizes of the sets in the two examples
are not the same. A sentence such as

s 12
2°7

which shows that two ratios are equal, is called a
proportion. The sentence is sometimes written as
“6:2 = 12:4.” In this example, we see that

6-4 = 2-12. And, in general, two rotios-os ond%ore

equal if ad = be. Hence, the test for equal ratios is
the same as the test for equivalent fractions which
was given in Chapter 12.

In terms of the sets being compared, whit does it
mean to say that two ratios are equal? In the - xamples
above, it means of course that in each case cae set is
3 times as large as the other.

The above diagram shows for each element in D, there are

3 elements in C. Thus, the sets C and D compare (by means
of a ratio) in the same way as a set having 3 elements and a
set having 1 element.

Question: Can you draw a diagram like the one
above which shows that for every
element in A there are 3 elements
in B?

In Congress, 80 Senators voted on a
certain bill, and it passed by 3:1.
How many Senators voted for the bill?

Example 1.

This is a kind of language often used,
and what it means is that the ratio of
the number voting agains: the bill is
3:1. It does not mean that only 3
Senators voted for iy - %3, and only 1
against. As a matte ..~ ‘3ct, in this
case 60 Senators voied ‘‘yes’ and 20
voted ‘‘no’’. De vou see why?

Example 2. Two line segments have been drawn be-

low. Segment CD has a length of%—inch,

1

2
inches. How do the two segments com-
pare?

and segment AB has a length of 2

]y
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Thus, AB:CD = 5. The length of AB is
5 times the length of CD.

Example 2 illustrates that the use of the word
“ratio’’ is not restricted to the comparison of two
whoie numbers: we may aiso speak of the rafio of iwo
rational numbers. In general, we say:

The ratio of a number ¢ to a number d,

d40, is the quoﬂent & which may also

be written c:d.
Example 3. Let g be the number of girls ina
seventh grade class, and let bbe the
number of boys. If g =12 and b = 16,

what is the ratio g°b7

The two sets compare in the same way
as two sets having 3 and 4 elements.
For every 3 girls, there are 4 boys.

Notice also that%- 16 =12.

Example 4. Using the numbers from Example 3,
what is the ratio b:g?

L4 Ay
123" 3 12 =16.

From all of the examples thus far, the
following generalization should be

clear:
lfc:d=r, thenr-d=c.

Example 5. Segment AB has a length of 24 inches,
and segment CD has a length of 8 feet.
What is the ratio AB:CD?
Be careful! It is tempting to say that

the ratio iszg-= 3. But this is misleading,

for it suggests that the length of seg-
ment CD must be multiplied by 3 to get
the length of AD: but actually the length
of CD is greater than that of AB, since
8 feet is certainly morethan 24 inches.

Since the length of CD is measured in
feet, we_can also express the measure-
ment of AB in feet: the length of AB is
2 feet. Then the ratio AB: CD is

2_1
8 4
The length of AB is-}of the length of

CD.
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14.6 Exercises.

_——

1. In the drawing below, two segments; AB and AC,

have been marked.

P
%
3

1

p &2

4

(a1 X7

>»e 0

2. Find the ratio of the length of U to the length

2
3

(a) What is the ratio of AB:AC?

(b) For what dilation Dq would the image of
segment AC be segment AB?

(¢) What is the ratio AC:AB?

(d) For what dilation Dp, would the image of
segment "AB be segment AC?

(e) If rqis the ratio AB:AC, and rp is the ratio
AC:AB, what is the product ryrp?

of V if:

(a) the measurement of U is 10 inches: the
measurement of V is 5 inches.

(b) the measurement of U is 5 inches: the
measurement of V is 10 inches.

(c) the measurement of U is 3 yards: the
measurement of V is 18 inches.

(d) the measurement of U is 1 mile: the
measurement of V is 2000 feet.

(e) the measurement of U is 3% inches: the

measurement V is F}inches.

(f) the measurement of U is l% inches: the

measurement of V is 3:]‘- inches.

(g) the measurement of U is 2a inches: the
measurement of V is a inches. (a#£0)

3. Let a be the number of questions on a test. Let
_b_be the number of questions a student answered
correctly Let_c be the number of questions
answered incorrectly.

Ifa =20, b =17, and c =3, find the following:
] (a) the ratio of bto a_

(b) the ratio of c to a_
(c) the ratio of b+c to a_
(d) the ratio of b to ¢
(e) the ratio of c to_b.

4. |f x and y are two rational numbers such that
1 . . . .
xiy =7 give five possible pairs of values for
xondy.

5. If c and_d are two rational numbers, which num-
ber is greater if:

(a) c:d ="2'

Z (b)c:d=%- (c) c:d =7 (d)c:d=l?::




[wm:mm
3
9

1f aand b_are two rational numbers such that

y what number must you multiply b to get

- (b) by what number must you multiply g to get
-

’ , Sometimes ratios are formed in which the numera-
 tor and denominator are numbers resulting from
' measurements involving different units. For ex-

' ample, on a map a ratio such as 1 inch: 3 miles

" means that a segment of 1 inch on the map

~actually represents a segment of 3 miles on the

" countryside. Thus we havethe proportional se-

- quences

1, 2, 3, 4 5,...
3, 6 91215,...

so that a segment on the map that measures 4
inches, for example, actually represents a seg-
ment with measurement 12 miles.

(a) On the map described above, a 6;— inch seg-

ment represents a segment of what length?

(b) How long a segment must be drawn on the
map to represent a 17 mile segment?

8. Thus far wehave used only pesitive numbers
in forming ratios. There are problems, however,
in which it is sensible to use negative num-
bers. For example, in
the drawing at the
right, a line has been
drawn in the plane,
and two points, A and
B, have been marked on
on the line. The coordi-
nates of B are (3,1).
Notice in ‘‘moving”’
from A to B, the x-co-
ordinate increases by 2,
which we indicate by
42, and the y-coordinate decreases by 4, which
we indicate by —4. Now if we form the ratio

change in y-coordinate
‘change in x-coordinate,

we get — 2, or —2. Furthermore, we say that the

slope of the line is 2.
Using this definition of slope, complete the
following activities.

(o) Mark the point (3,4), and through this point
draw a line whose slope is%—= 2.
(b) Through the point (3,4), draw a line whose

slopeis :T =2

248

(¢) Mark the point (-2,5), and through this point
draw a line whose slope is ’-'%'

(d) Through the point (~2,5), draw a line whose
slope isg:

(¢) Through the point (0,0) draw two lines, one
with slope%ond the other with slope -—‘51-
How do the two lines seem to related?

(f) Draw two lines, each with slope -::;- Draw

one line through the point (0,6), and the
other through the point (0,2). How do the
two lines seem to be related?

14.7 Proportional Sequences.

Look at the following two sequences, 1 and S2,

with the numbers matched as shown:

Si: 1, 2, 3 4 5 6, 7 ...k ..
S2: 2, 4, 6 8, 10, 12, 14, ..., 2%, ...

Now let us form a sequence of ratios by using each
pair of matched numbers, the numerators taken from S1,
and the denominators from S9. Here are the ratios we
get:

12345 6 71 k
24 6 8 100 12 14 """ 2k ™
Notice that all of the ratios are equal. For this reason,

we say that the sequences S| and S2 are proportional

sequences, ond—;' is called the proportionality constant.

Question: The two sequences 1,2, 3, 4, 5, ...
and
2,4,6,8,10,...
are not proportional sequences. Why not?

.{eturning to the sequences S and S), we see that
each of them continues without end. For instance, the
number 51 is in sequence S1: what number in S2 matches
with it?

S1: 1,2 3,45, 6, .. 5,..
S2: 2, 4, 6, 810,12, ..., x, ...

Although it is easy in this case to tell what number x
is, we could set up the following proportion:

1_51
2 x'
Since we want the ratios to be equal, we have: 1-x=2.51
x =102,
Therefore,
1_51
2 102




Question: Can you show that we would have ob-
tained the same result if we had used

—% instead of%’for the proportionality

constant?
Suppose weuse the same two sequences, but

“veverse’’ the order in which we consider them, like
this:

S1: 2, 4, 6, 8 10, 12, ..., 2, ...
Sp: 1,2, 3,4 5 6 . k.

Now, if we form ratios as we did before, selecting the
numerators from S1 and the denominators from S$2, we
get:

2 4681012 2%
‘Il 21 31 4; 5, 6, eee, k, Y

Do you see that the sequences are still proportional?
Now, however, the proportionality constant is-?—. And

if we were to solve the problem we solved earlier,
the proporticn would look like this:

2 x

T757
Do you see that we would again find x to be 102?
Question: The two proportionality constants

we found by considering the sequences
in two different orders were-% and—?:

How are they related?
Consider next the two sequences below.

S]: 3, 6, 9, ]2, ]5, ]8, (12}
Sp: 4, 8 12, 16 20, 24, ..

Do you see that the sequences are proportional, ‘and -
that, considering the sequences as we have them, the

proportionality constant is%. Suppose we ask: What

number in $2 corresponds to the number 10 in $1?
The question may seem to be an odd one, since the
number 10 is not in the sequence S|. What we are

really asking is this: If 10 is ‘‘inserted’’ in Sy, what

number must be ‘‘inserted’’ in S9, so that the resulting
sequences are proportional, with proportionality constont

still 3? The new sequences will look like this:
3, 6, 9, 10, 12, 15, ...
4, 8, 12 x, 16, 20, ..
And we find x by solving the following proportion:

Then we have:

249

Of c:ourse,-“—:;-2 %2 &% 13 +%—. So we can also say
that x is 1 ;

Example 1. A picture has measurements of 7 inches
(“‘length’’) and 3 inches (“width’’)." If
the picture is to be enlarged so that the
new length is 10 inches, what must the
new width be?

7

[ ] *

The numbers 7 and 3 suggest the follow-
ing proportional sequences:

Si: 7, 14, 21, 28, 35,..
S: 3, 6 9 12, 15,..

where the mecsures of length are taken
from S] and the measures of width from
$2. We want the ratio of length to width
to be 7:3. From the sequences, we can
see that if the length is made to be 14
inches, then the width must be 6 inches:
if the length is made to be 21 inches,
then the width must be 9 inches: etc.
However, in our problem the length is
to be 10 inches. The number 10 is not
in $1 as we have it. So we can form
the sequences

7, 10, 14, 21, 28 35, ..
3, X, 6, 9 12, 15 ..

and find what number x must be so that
the sequences are proportional with

proportionality constant‘%‘. We solve

the problem as follows:

2_10
3 x
7.-x=3-10
7-x=30
x =30

7

Therefore, the width of the enlarged
picture must be 4% inches.

Example 2. Solve the proportion

28

We find the number x which will
make the following sequences pro-
portional:

X
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$1: 3, 6 9 x 12, ..
52: 8, 16, 24, 28, 32,

We solve the proportion as follows:

3.28-8:x

'8 Exercises,
‘1. Using whole numbers only,
(a) Write two proportional sequences with pro-

portionality constant é

6

(b) Write two proportional sequences with pro-

portionality constant l

4

(c) Write two proportional sequences with pro-
portionality constant .5.
= 2. In each of the following, find what number x_
. must be so that the two sequences are pro-
portional.

() $1: 2, 4, 6 8 10,
$2: 9, 18, x, 36, 45,
k) $: 7, 14, 21, x, 35,
S 3, 6, 9, 12, 15

(€ $: 3, 6 9, 10, 12 ..
S: 5, 10, 15 x, 20,

. 3. Solve the following proportions.

@3-5 g0z ‘g’él-&-
; 12
‘ (b)-g = lxz (e)= =% (h) 5.3 = x:15
E
' (c)_g.=% ( .%:-?. (i) == ]0 = =~(a#0)

. 4. The ratio of number of boys to number of girls is
the snme in two different seventh grade classes.
In one class, there are 12 boys and 16 girls. In
the second class, there are 15 boys. What is the
total number of students-in the second class?

: 5. On a certain map there are two segments drawn,
one 7 inches long and the second 10 inches long.
If the map is enlarged so that the first segment
measures 25 inches, how long will the second
segment be in the enlargment?

: 6. Two triangles are drawn below. The triangles
ore similar, which means that the ratios of cor-
responding sides are all the same. All of the
sides in one triangle have their lengths indicated
in the figure. In the other triangle, the length of
only one side has been marked. Find the lengths,
xand y of the other sides.

Q
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14.9 Meadning of Per Ceni.

Consider the sequences below:

$1: 2, 4, 6, 8,10, ..., 40, ..., 2k, ..
$2: 5, 10, 15, 20, 25, ..., 100, ..., 5k, ..

It is easy to see that the proportionality constant is the

ratio—=r g The ratio ]':)%, which arises from these sequences,

is especially important in many applicstions of mathe-

matics because the denominator is 100. The ratio %may

be written as

40% (read ‘‘forty per cent’’).

We can also use a decimal number in referring to the ratio,

as follows:

Example 1.

Example 2.

40
100

In the picture below, there are 15 square
regions, and 6 of them have been shaded.
What per cent of the squares are shaded?

NN
NI\
N \

- .40 = 40%

The number of shaded squaresis 6: the
total number of squares is 15. So the
ratio of thenumber of shaded squares to
the total number of squaresis

6

1.

And we can say that ]65 of the squares are

shaded. However, from the discussion
above, we know that

6
']—5—40%

Therefore, 40% of the squares are shaded.

(Why?)

Express%as a per cent.

We may express this problem in terms of the
following proportional sequences:

S1:3, 6 9,12, 15,..., x ...
Sp: 8, 16, 24, 32, 40, ..., 100, ...

, 3k, ..
, 8k, ...



Then we sclve the proportion

S_x
8 ~ 100.
8-x=3 100
8. x=2300
300 1
X = 8 ‘=372.

a al 3
Therefore,-%=%%% = 37%-%. And we say that

37%% i's the per cent equivalent of%-:

Example 3. Find the per cent equivalent of'g:'

We use the proporﬁon%= ]%-0. (That is,
we want a ratio with denominator 100

that is equal to the rotio%.)

AR AT S T TR, AT R

. 5.x =600
X =-‘%’i=120

Thmfm,-%= 120%.

Questions: In a rotio'%; how must_a and_b be

s related so that the per cent equiva-

lent of the ratio is greater than 100%?
less than 100%?
equal to 100%?

Example 4. What is the per cent equivalent of 3.5?

S _330_350_
3.5 = 335= 3,56 = Joo = 350%.

Example 5. Express';’% as the ratio of two whole

numbers.

1

1

2% = i%'o This is a ratio, but it is not
* a ratio of whole numbers.
However, we ":now that

1 1.2
22 -1
100 100-2 200
(Why?)

el AR R S T N
VS $ NNy B $ WMy e T et

1 1
Therefore, 2%= 200,
Question: Which is greoter,-:lf or—;% ?

Having looked at a number of particular cases, we
might consider the general problem of finding the per

T A S R T A B

e i ot S R S S e T A R B e O B R R

cent equivalent of a ratio. Let%be any ratio (of

course, bZ40). Then to say thot-E-= x% is to say

'96=:'|""6'0' Then we have:
b-x=100-a
b

14.10 Exercises.
1. (a) 50% i’ the percent equivalent of%‘. Write four

otiv.r ratios for which 50% is the percent
ec sivalent.

(b) ' ‘rite five different ratios for which 25% is
ti @ percent equivalent.

(¢, Write fiv> different ratios for which 150%
is the percent equivalent.

() Write five different ratios for which 100%
is the percent equivalent.

(e) Write five different ratios for which 200%
is the percent equivalent.

2. The questions in this exercise refer to the
figure below.

A c s
AJC s
cCjciaA
C A

(a) What percent of the squares have been
marked ‘‘A’’?

(b) What percent of the squares have been
marked ‘‘B"’?

(c) Whot percent of the squares have been
marked ‘‘C’"?

(d) What percent of the'(squores have no
mark?

(e) What is the sum of the percentsin
questions (a), (b), (), and (d)?

3. Give the percent equivalent of each of the
following:

(@).5 (b) .50 (c).25 (d)2.5
() 1.25 (g) .17 (h) 117

(e) 1.5

4. In the table below, each ratio is to be expressed i
in the form-E; as a decimal fraction, and as a pers

cent. The first row has been filled in correctly. ;
Fill in all the blanks in the remainder of the tabl
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sale price be? We know that a certain amount should be

RGﬁO% Decimal Fraction Per Cent subtracted from the normal price of $25.00, but how much?
Accc-ding to the advertisement, 15% of 25.00 should be
1/2 .50 50% subtracted. So the problem is that of finding 15% of 25.
/4 5 Since 15% means ]-1656, we may work with the following
. 20% proportional sequences:
.60 S;: 3, x, 6 9, 12, 15.. 3k ..
20 Sp: 20, 25, 40, 60, 80, 100, ..., 20k, ...
/8 i .3
87 1/2% Do you see that the proportionality constant isog0r
4/5 'l’i? The question is: What value of x will make the T
375 100 :
40% ratio %equal to the ratio i'la%? We solve the follow- f
1/1¢ ing proportion: {7
90% x 15 ~
1/1 251 :
70 100 -x=25.15
05 100 - x = 375
3/10 375
1% x =700 " 3.75

Therefore, the amount to be subtracted is $3.75
1 (which is 15% of $25.00). And since $25.00 -
such as 5 cannot be expressed as terminating $3.75 = $21.25, the item should sell for $21.25
during the sale.

In the following examples, we solve some
other problems, all by use of percents.

5. As you recall from Section12.23, some ratios

decimals, but can be approximated to any de-
sired number of decimal places. How can such a
1
io as = ? .
ratio as3 be expresses as a per cent? The ques Example 1. On a test having 20 questions, a student
answered 16 of them correctly. What per

tion is answered in the same way that all other

problems concerning percent equivalents have cent of the questions did he answer
been answered. Study the steps below: J correctly? That is, whet should his per
1 x cent score be?
37100 The ratio of the number of questions
answered correctly to the total number
3.x=1-100 16
3. x =100 of questions is-2-b-. So, the student
100 3 3] onswered-;—g of the questions correctly.
X == =33%
3 3 But we can also say that he answered
4 .
Therefore, the ratio-%—may be expressed as 33% be — of the questions correctly. (Why?)
Finally, since we already know that
Give the percent equivalent of the following ratios: 4
— = 80%, we can say that he answered
@2 ®BF ©F @3 :
: 93 6 ‘“% (d) 12 80% of the questions correctly.
5 14.11 Solving Problems with Per Cents Example 2. On the same test of 20 questions, an-
: other student missed 3. What is his

It is common to see advertisements with statements per cent score? Since the student

such as missed 3, he answered 17 correctly.

‘ SALE: 15% OFF ON ALL ITEMS! The ratio
‘ Suppose that an item that normally sells for $25.00 is number correct islz-.
5 included in the sale advertised above. What should the total number 20
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We want an equal ratio in which the 1300 = 41. The steps in carrying out this
: denominator is 100, division are shown
{ 17 x at the right. Notice 31.7
If 52 = s=x, then 20-x = 1700 or that the quotient is 4111300.0
3 20 100
3 1700 approximately 31.7. 123
3 X ==2— = 85, Therefore, we can 70
20 .
: write _ﬁl_
5: ?;;ce, the student’s per cent scoreis 13 317 290
: 2. = 280
3 41 100 o
[ So the batting averuge is approximately
Example 3. In a certain election, 70% of a town’s 31.7%. If you are a baseball fan, you
registered voters actually voted. If probably know that this average is more
3,730 people voted, how many regis- likely to be listed as .317.
tered voters are in the town? 3
Certainly we know that 70% = %% Example 5. What “7% of 280?

! i ’
And we know that this is the ratio Imporiant! The answer is not 210. (Don't

3, ..3, 3_.
number who voted confuse 4% with ‘j") ‘z% is equal to

number of registered voters’

As usual, we interpret 1300 to mean

% -;-of 500.
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[ 33
— Since we know the number who voted 4 =_4_.4 - 3 .
3780, we have the following proportion: 100  100-4 ~ 400
l _70 3780 So we are really finding zga of 280. We
| 100 x may find it from the proportion
l 70 - x = 3780 - 100 3 x|
70 - x = 378,000 400 ~ 100°
or we may solve the problem as we did
I =§7—§g-@ = 5400, in Section 12.8 :
3 3 840
—n of 280 = ==_. 280 ==— = 2.10,
Therefore, there are 5400 registered 400 ° 400 400
l voters in the town. This could be check-
ed by showing that 70% of 5400 is 3780. Therefore,
l 2% of 280 is 2.10.
Example 4. A major league ball player has been at
bat 82 times, and collected 26 hits. All of the common types of per cent problems may
Whot is his ‘‘batting average’'? be solved by using proportions. But if you understand
l Th ) number of hits ] " the meaning of per cent, you can often solve problems
e ratio number of times of bat '~ very quickly without use of a formal proportion. For
26 13 instance, look again at Example 5: What is 3% of 280?
| B 4T 4
3 .3
We find the per cent equivalent from the 4% of a number is 4 of 1% of the number. And 1% ;f
I following proportion: 280 is 2.80. So the result can be found by taking TOf
1B x 2.80, which is 2.10. Feel free to use such methods in
41 ~ 100 the following exercises; but if you are in doubt, you
I Al -x<13- 100 can always use a proportion.
41 - x =1300 14.12 Exercises
X = 1300 1. Find the following:
I 4 (@) 1% of 500; 5% of 500; 5% of 500; 13% of 500;

Q
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' (b) 19 of 150; 10% of 150; %% of 150; 1%% of 150.

() 19% of 24; 28% of 24;3% of 24; 137% of 24;

3 of 24.
- (d) 1% of 8000; . 5% of 8000; 1.5% of 8000; 4.5% of
-~ 8000; .5 of 8000, .

" (e) 1% of 50; 100% of 50; 200% of 50; 240% of 50,

b (f) 1% of 92; 100% of 92; 300% of 92; 350% of 92.
. In a high school with 2600 students, 35% of the

. students are freshmen. How many students are

¢ freshmen?

3. Inthe same high school, there are 390 seniors.

. What per cent of the school’s students are

. seniors?

4, Suppose the town of Elmwood has a population of
.~ 4000, and the town of Springfield has a population
of 6000. Complete the following statements.

(a) The ratio of Elmwood’s population to Spring-
field’s population is

population.

(c) The ratio of Springfield’s population to Elm-
wood's population is

{d) Springfield's population is___% of Elmwood’s
populetion.

f 5, Complete the statements in the following two
. columns in the same way the first statement in

each column has been completed.

20-2 . 40 20 is 50% of 40.
=__.20 40 is__ % of 20.
20 =__-25 20 is__% of 25.
25=__2 25 is__% of 20.
500 =__-400 500 is___% of 400.
400 =__.500 400 is__ % of S00.
8§=__-80 8 is__% of 80.
180 =__-8 80 is__ % of 8.
16 =__-80 16 is__% of 80.
=__+16 80 is__% of 16.
42 =__ 42 4.2 is__% of 42.
42 =__42 42 is__% of 4.2.
1.8=_.180 1.8 is__ % of 180.
180 =__-1.8 180 is___ % of 1.8.
* 6. In a basketball game, a high school team scored
80 points.

(b) Elmwood's population is % of Springfield’s
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(a) If David scored 18 of these points, what per
cent of the team’s points did he score?

(b) Bill made 27-]'% of the team’s points. How many
points did he score?

(c) The number of points David scored is what per
cent of the number of points Bill scored?

7. In another game, David made 40% of the team’s
points. |f he made 22 points, howmany points did
the entire team make?

8. (a) 22 is 40% of what number?
(b) 80 is 50% of what number?

(c) 12 is 35% of what number?
(d) 60 is 150% of what number?
(e) 7 is 1% of what number?

(f) 42 is-%% of what number?

9. In a certain state, there is a 4% sales tax. How
much sales tax must be paid on purchases of
the following amounts:

(@) $40.00 () $3.25  (g) $3500.00
(b) $15.00 (e $1.00 () $3499.00
© $12.50 (B $10.00 (i) $9.99

10. Suppose a bank pays 4%% interest per year on

savings deposits.

(a) How much interest should a deposit of $2000
earn in one year?

(b) How much interest should o deposit of $2000
earn in two years?

11. If the bank in problem 10 paysinterest every six
months, it will pay only half as much, since 6

months is-]- of a year. (It is the annual interest

2

rate which is 4-;-%.)
(a) How much will $1000 earn for six months?

(b) How much will $2500 earn for six months?

(c) How much will $2000 earn for three months?

1
(Hint: 3months is7 of a year.)
From Exercises 10 and 11, we see that simple
inferest can be computed from the formula
i =prt,
where i is the interest, p is the amount of money

deposited, r is the rate of annual interest, and_t.
is the time in years.

12. Compute the interest for:
(a) $500 at 4% for 1 year




(b) $500 at 4% for 6 months
(c) $500 ot 4% for 3 months

(d) $1200 ot 4‘%‘% for 1 year

(e) $1200 at 4%'% for 6 months

(f) $1200 ot 4%—% for 3 months

(g) $1500 at 5';-% for 2 years
(h) $1500 ot 5-;-'% for 1% years

(i) $750 ot 4.2% for 1 year
(i) $750 at 4.2% for 6 months.

13. Mr. Smith has kept a deposit of $1500 in a bank
for one year, and the bank pays him $37.50 in-
terest. What annual rate of interest is the bank

paying?

14. Complete the following sentences:
() 333% of 3900 is___.

(b) 20 is % of 30.
(c) 30 is % of 20.
(d) 20 is 18% of .

(e) 20 is 40% of .
(f) 108 is 40% of ____.

(9) 2—3'% of 160 is___.
(h) 2.75% of 160 is___.

() 18is 66§%of .

(i) lé%% of 66is .
(k) 30is % of 36.

14.13 Translations and Groups.

In preceding chapters we studied translations of a
set of points on a line onto itself; of a set of points on
one of two parallel lines onto a set of points on the
other; of a set of lattice poin 5 in a plane onto itself.
In this section we extend translations so that they may
have as a domain the set of points in a plane whose
coordinates, in a coordinate system, are rational num-
bers.
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Consider the trans-
lation, call it t, that maps

0 (0,0) onto A (2';', l'}).
What is the image of B
(, l';') under +? Name it

C. What kind of figure is
OACB? Why? The coordi-
nate rule of 1 is (x,y)—>
(x+2%, y+‘.%). is £ G one-io-
one onto mapping? Why?
Does t have an inverse?

Let us name it_f_‘l. The
-1 denotes an inverse

-1

mapping, so t~' is read
“‘the inverseof 1"’ or sim-

ply, 't inverse.” In_j_‘l
what is the image of A? of C? of 0? The rule for,L,‘l
ist (x,y)—>(x-2)5,4-1%)

Do you think that every translation of the set of
points in a plane with rational coordinateshas an
inverse? If a translation has rule (x,y)—>(x+a, y+b)

where x, y, a, b are rational numbers, what is the
rule for the inverse of this translation?

Now consider translation t' that maps (x,y) onto

(x+3}, y-%). Under_t’, what is the image of A

‘ (2%', l'})? I's there a single translation that maps 0

onto this image? What is its rule? Thus, there is a
translation which is the composite of t' with_t’, and.
as you recall, we denote it t' o t (¢ first followed by
L)

In particular, what is the composite of_t with its in-

verse 112 Then it would seem that among the trans-
lations is the identity translation.
In summary, if t: (x,y)—>(x+a, y+b)

thent~1: (x,y)—>(x—a, y-b)
I 171 (x,y)—3x+c, y+d)

thent' ot  (x+a+c, y+b+d)

You have probably suspected that the set of trans-
lation we have been discussing, together with composi-
tion, havethe properties of a group. Indeed they do,
and you are asked to further investigate this question

_ in the following set of exercises.

14,14 Exercises.

Assume that all translations-in the exercises have
for their domain (and range), the set of all points in a
plane with rational coordinates in some coordinate sys-
tem, unless otherwise specified.
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. 1. |'s the composition of two translations an operation?
' Why?

. 2, Let T represent the set of all translations. List
the properties that should be proved for (T,°) that
will support the claim that (T,) is a group.

. 3. Prove that every translation has an inverse in

(T.,°).
4. Prove that (T,9 contains an identity translation.
5. Prove that (T,%) has the associative property.

6. Prove that (T,°) is a commutative group.
7. Let translation_t map (x,y) onto (x+l, y-21-).

Find the rqle for each of the following:

(o)t °t (c) t°1°1°t
(b) tot°t (d) If t is denoted tl, 1°t is de-

noted t2, 1°1°t is denoted f3,
and so on, does the set
{1],12,_'.3; !_4...} with ° form
a group? |f it does not, ex-

plain in what respect it is
deficient.

8, Using the data in Exercise 7 find the rule for each
of the following:

(a).t~!
(b)_t"'l °_f_"l (3eno;ed _,.-2)
(¢ _1" ° _f"l ° _t.‘"l (denoted _f_"'3)

(d) Does the set {_f_"'l, _1'2, 1_’3 ...} with °form a
group? If not, in what respect is it deficient?

£ 9, Does the set {..._f_"3, _!_'2,1‘], T, _f,_rz E, .
with °form a group, where T is the identity trans-
formation? If not, in what respect is it deficient?

: 10, Show that all translations having rules of the form
(x,y)—>(x+pa, y+qb), where a and b are fixed

J rational numbers, and p and q are integers, form a
3 group with °. (Difficult).

- 14.15 Applications of Translations.

As you might expect, translations have been studied
by mathematicians because they are quite useful in solv-

 ing certain types of problems. In this section we ex-

. amine two of these types, both found in science. One

 type of problem introduces forces and the other velocities.

. We shall first examine a problem involving forces.

. Let P, in the diagram below, represent a billiard cue

" ball which is about to be struck by two billiard cues at

. the same time. We want to know how the combined ef-

. fect may be achieved with a single billiard cue.
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In considering the effect of each cue we must know
both the magnitude and the direction of the force which
is applied to theball by the cue. We represent the
forces (not the cues) in the diagram by the line seg- -
ments a and b, together with an arrow at one end of
each segment. The length of each segment represents
the magnitude of the force (in our diagram one inch
represents a magnitude of 5 pounds). The line in
which the segment lies, together with its arrow, in- -
dicates the direction of the force. Thus, one force
is represented by line segment a in the direction of

P v

v
yoaa v

P. We denote this force by a. The other force is re-
presented by line segment b in the direction of P.

We denote this force by b. Since the length of of
is one inch, a has a magnitude of 5 pounds. Line seg-

ment b is 2 inches long so that the magnitude of b is
10 pounds.

We see, then, that a force is determined by a mag-
nitude and a direction. A translation is determined in
the same way. For this reason we can expect to be
able to use translations to solve our problem. Qur
expectations are enforced by the report of scientists
that “adding’’ forces can be done by composing
translations.

-
Now let us ““add’’ the two forces a and b des-
cribed above. To do this we think of P as a point

and ;)ond.: as translations. Then we see, in the

diagram at the right, : Q

thot—g: P—>Q 'y -
B Q—>R

Hence_? oG P—>R ' ﬁf'?‘

—_——y
b °G is the translation that corresponds to the

“‘sum’’ of the forces. That is, the effect of?and-l; to-
gether will be to exert a force with a magnitude repre-

sented by PR in the line of PR and in the direction of

- —
R. This force is called the resultant of forces a and b.
Going back to our original problem, we see that to
achieve the same effect with a single cue the cue ball

1

would have to be struck with a force of 11 4 pounds.

Also, the cue would be sighted alongT;ﬁ in the direc-
tion from P to R.




Question: Does a®b = b’a? Why or why not?

The second application of translations is to pro-
blems involving velocity. Our problem wili then be to
1“add’’ velocities in same sense that we ‘‘added’’ forces.

We can reinterpret our problem of ‘‘adding” forces

ondt by thinking of them as velocities. Then‘:con re.
present a speed of 5 milesper hour in the direction indi-

cated in the diagram and B can represent a speed of 10

miles per hour in the direction indicated in the diagram.
Here again the lengths of a and b represent the magni-
tudes (speeds in miles per hour) of the velocity, and the
line of the segment, with its arrow, represents the direc-
tion.'Here we might be solving a problem suchas the
following:

" Atoy boat is propelled by its engine with
"velocity b. A wind is blowing with velocity

2 In what direction, and with what speed,
does the boat actually move? (That is, with
what velocity does the boat move?)

The answer is found in exactly the same manner as
“‘adding” forces. The answer for this problem then, it:

the boat moves at the rate of ll% miles per hour in the

direction of PR as indicated by its arrow.

We end this section
with another example.
Suppose a boat moves

in the direction of r's
(shown at the right)
with a speed of 20
‘miles per hour, but
its propeller and er-
gine operate to make
it move in the direc-

o}

o}

tion of-l: (shown at
the right) with o
speed of 15 miles
per hour. The diff-
erence is due to
the wind. In what
direction is the
wind blowing and
with what speed?
Notethat S is 2 -

.inches longand b

is l% inches long.

What then is the
.scale in the draw- X
ing?
To solve this
ardﬂ_gm think of o
and b as the translations correspond-

R A e WY e o
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ing to the given velocities and*Pas the translation
corresponding tothe velocity of the wind. Since'a@
is the composite of b with x we have: Box=a,

We solve for x and find X =b-1 o, This guides us in
solving the problem. Study the diagram above and be able ;
to explain how it was made. In looking at the diagram,
start at P. How long is segment x? What is the speed of

the wind?
" 14.16 Exercises.

1. The prapeller and engines of a ship are set to
propell it on an easterly course, at the speed
of 20 miles per hour. The wind is moving to-
wards the north (coming from the south) at
the speed of 10 miles an hour. Make a diagram
of the actual course, i.e. the velocity of the
ship. Using ruler and protractor, find the
actual speed and find what angle the course
makes with the line pointing to the north.
(Use the scale: 1 inch = 10 miles).

2. Answer the same questions asked in Exercise 1
for each of the following cases.

(a) intended course of ship is northeast, speed of
15 miles per hour, the wind comes from the
west at 30 miles per hour. (Use the scale:

1 inch = 10 miles)

(b) intended course is northwest, speed of 18
miles per hour; the wind comes from the
southwest, speed of 24 miles per hour.
(Use the scale: 1 inch = 6 miles).

(c) The ship’s intended course is southeast,
speed of 15 miles per hour; the wind comes
from the northwest, speed of 5 miles per
hour. (Do you need a diagram for this
problem?)

In Exercise 3 use the segments shown below to re-
prescnt forces. The scale we used to draw them is.
1 inch = 10 pounds. '

o}

3. Suppose foxce.:o' ond?ore applied to an ob-
ject. Use a diagram to find the resultant and
compute the magnitude (number of pounds) in

the resultant force.
4. Answer the questionsin Exercise 3 for each of

the following cases.

’>
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(a) forces Pand Care applied together
(b) forces b and c are applied together.
(o b and Lare applied together.

5. Suppose force @is applied and is the re-
sultant. Find the force ¥ that was applied
together withaand compute its magnitude.

6. Suppose force bis applied andcis the re-
sultant. Find the force % that was applied to-
gether with b, and compute its magnitude.

. Suppcse?is anplied and Qi< the resultant,
Find the force—gt'thot was applied together
with'®and compute its magnitude.

8. Suppose two forces are applied and the re-
sultant leaves the object in its original
position. What must have been true of the
two forces? (two possible answers)

14.17 Summary.

1. T x_is any rational number, then Dy is a dilation
which maps each point into a point x times as far
from the origin. |f x is o negative number, the
point is reflected in the origin.

2. Decimal fractions may be used in finding sums,
differences, products, and quotients of rational

numbers.
3. Two sets may be compared by means of a ratio.

The ratio of a number x to a number y is the

3

quotient—:—, also written as x:y. (It is understood
that y#40.)
'f-’y&”' thenx =r -y, andy ="""

4. |f two sequences

SI: aj, a2, a3, a4, .., ak,
S»: by, b2, b3 bg, .., bk

are related so that
°_'_|__°2 ak

‘, b]—b—2-=...=bk—r,
' then the sequences are saidto be proportional
L sequences, and r is called the proportionality
3 constant.
. aj a2, .
An equation such as Ei- = 5-2- is called a proportion.
a
5. The ratio 100 is also written as ‘‘a%’’ and read

‘‘a per cent.”
Every ratio can be expressed in the form %; where

.a and_b_are integers, or as a decimal fraction, or
as a per cent.

Many mathematics problems occurring in everyday
life are expressed in the language of per cents.

6. If T is the set of all translations of form t: (x,y)
(x+a,y+b), where a and b are rational numbers;
and if ®is composition of translations, then (T,°)

! is a commutative group.

. 14.18 Review Exercises.
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10.

1.

12,

. (a) What is%-of 18?

. In a certain city there are 4200 Democrats and

. In a student council, there are 24 members. With

.....

(b) What is 15% of 200?
(c) What is .35 of 650?

. I 12% tax must be paid on $3500, how much tax

must be paid?

. During a sale, a store reduces all prices by 20%.

What is the sale price of a television set which

normally sells for $220.00?

. In a school, 35 of the 225 boys go out for basket-

boll, What ner cent of the boys in the school go
out for basketball?

. 4% of the girls in the school are cheerleaders,

and there are 8 girl cheerleaders. How many
girls are there in the school?

. A bank pays interest ot an annual rate of 4%70.

How much will $4000 earn during a 6-month

period?
. Compute the following:
(a) 8.875 + 44.327 (e) 5.6 x 8.75
(b) 102.54 - 87.39 (f) 6.138 -
4.65
(c) 21.8 - 39.3 13 ﬂ
() (2.3) x (4.3 x 7.5) (9) 45138

3600 Republicans. What is the ratio of Democrats
to Republicans? (Express the answer as an ir-
reducible fraction.)
Then fill in the following blanks so that a true
statement results:

For every____Republicans, ther are___Democrats.

all members voting, Jim won the presidency by
a 3:1 vote. How many voted for Jim?

Solve the following proportions:
3_35 2.9 42_.x gl_x,
@3- w3-2 ©@i-5 @i-7

Write the coordinates of the image of each of the
following points under the dilation

°-5

3
A: (%,%) (2 -d cee n09

E: 9,00 F:(-1,1)

Let t be the translation in Q X Q which has the
following rule:

(x,y) (x+§7 y-%)-

(a) What is the rule for t°t?

(bj What is the rule for 132

(c) What is the rule for t-1 (the inverse of t)?
(d) What is the rule for 1=2?
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CHAPTER 15 INCIDENCE GEOMETRY

15.1 Preliminar, Remarks.

In Chapter 13 we studied the properties of mass
points. However, unlike the procedure in preceding
chapters, we limited ourselves to properties which
could be established through reasoning by deduction
or deductive proof. It was found that if certain as-
sumptions were made about the objects called mass
points, many other properties were necessary con-
sequences.

In this chapter we shall develop a similar deduc-
tive system. We will begin with some familiar words
like plane, line, and point The axioms or assumptions
about these objects will state some significant prop-
erties — already familiar from experience. Our task
will be to show that many other properties of points,
lines, and planes follow by deduction from the as-
sumptions.

Since the axioms will be based on our experience
with points, lines, and planes, whatever can be de-
duced from the axioms should also agree with experi-
ence. However, there may be properties of the plane
which cannot be deduced from the iimited number of
axioms we will adopt. Although we will be dealing
with objects called points, lines, and planes, we will
not make use of any properties of these objects ex-
cept those stated precisely in the axioms.

15.2_Axioms_

We shall limit our entire discussion to the points
and lines of a single plane which will be denoted by
the letter **P* If you insist upon thinking of this
plane as a flat surface like a floor, you may do so.
However, the only real requirement imposed upon this
plone is that it be a set of points..We will focus atten-
tion on certain subsets of the plane which have
special properties.

Among these subsets are the lines (straight lines)
of the plane. Again, if you insist upon thinking of a
line as a taut wire, you may do so. We only insist
that the line possess the properties which will be
mentioned in the axioms.

- The first axiom is given in two parts. In the first
place, it requires that the plane contain at least two
lines. A plane with only one line in it would hardly
be much of a plane. The axiom also requires that
each line contain at least two points. This certainly
seems like a reasonable requirement. In fact, you
probably feel that lines ought to have infinitely many
points; we will not demand quite this much at present.

Axiom 1: (a) P contains at least two lines.

(b) Each line in P contains at least
two points.

The second axiom also expresses a property that is
reasonable to expect of lines and points. You will
see that it plays an important part in our reasoning.

If some one were to ask you, ‘‘How many straight
lines are there containing one particular point of a
plane?’’ you would probably say, ‘‘As many as you
want.’’ But if you were asked, ‘‘How many straight
lines are there containing two different points?’ you
would undoubtedly agree, ‘‘Just one."’’ Certainly,
whenever you draw a straight line through two points,
A and B, you feel that there should be just one line,
even though your drawing might not be accurate. At
present we are not concerned about drawings but
rather about ideas. The second axiom expresses a
conviction about points and lines that you probably
already have.

Axiom 2: For every two points in P ther2 is one
and only one line containing them.

When we say ‘‘two points’’ we shall always mean
two distinct points. If it should turn out that a single
point happens to have two names, the conditions of
Axiom 2 would not be satisfied, and we could not
conclude that there is one and only one line contain-
ing this point. To allow for the possibility that a
point or a line may have two names, we shall occa-
sionally speak of a pair of points A and B. In sucha
case, A and B may (or may not) turn out to be the
same point—depending upon other information we may
have about A and B. Similarly, when we speak of a
pair of lines ¢ and d, these need not be distinct, but
if we refer to the lines c and d, then it will be pre-
sumed that ¢ and d are distinct lines.

Our third axiom deals with parallel lines. After
we state it below, you will probably agree that it is
a very reasonable requirement indeed. In fact, for two
thousand years this axiom appeared so reasonable
that many of the finest mathematicians thought that
it was unnecessary to assume it. They felt that it
should be possible to prove this particular property
from the other axioms which had been adopted for
Geometry. In other words, they thought that it ought
to be a theorem rather than an additional axiom.

Before we state this axiom we should be clear
about what we mean by ‘‘parallel lines’. When we
draw two lines, call them *‘r’’ and ‘‘s’'’, on a sheet
of paper, they may appear to intersect like this




or they may appear to not interseci like this

Of course, in the second case it is possible that

' r and s really do intersect. Perhaps if each line is

' extended sufficiently far beyond the confines of our

' sheet of paper, we would see that they actually meet.

. On the other hand, it might be difficult or perhaps

. impossible to decide this questicn in some cases. We

. certainly can conceive that lines r and s might never

. intersect; that is, r N's =¢. In such a case we call

¢ lines r and s parallel. It is also convenient to con-

. sider rand s parallel even when r = s; that is, when
r and s are the very same line. Accordingly, let us

¢ state the following definition.

Definition: Lines rand s in P are said to be par-
allel ifr =s orifr Nn's = . When
lines r and s are parallel, we express
this fact by writing ‘‘r || s"'.

The third axiom can now be stated

Axiom 3: For every line m and point E in the
plane P, there is one and only one line
containing E and parallel to m.

The need for such an axiom dealing with parallel
lines was first recognized by Euclid who lived during
the third century B. C. The axiom he adopted was the
§ifth in his list of axioms for geometry, and it corre-
sponds closely to the one we have introduced here as
our third axiom. The choice of this assumption was
one of Euclid’s great accomplishments for as we have
noted, mathematicians for thousands of years after
Euclid tried in vain to prove this reasonable property
from the other axioms.

All these efforts were destined to failure because
in the nineteenth century a number of great mathe-
maticians (Gauss, Bolyai, Lobachevsky, and Riemann)
showed that Euclid’s fifth axiom did not follow from
his other axioms. They proved this by creating per-
fectly good systems of geometry which did not have
the property demaonded by that axiom. Such systems
are called non-Euclidean Geometries. If a system of
geometry includes Euclid’s fifth axiom, or any axiom
equivalent to it, then that axiom is referred to as the
Euclidean Axiom in the system.
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15.3 Direction

What would you say if you were asked to describe
the relationships among the lines of the following fig-
ure?

One possible answer would be, “‘a is parallel to b, b
is parallel to ¢, a is parallel to ¢, d is parallel to e;
and, a intersects d, a intersects e, b intersects d, b
interesects e, c intersects d, and c intersects e.”’

Using the mathematical terminology of Chapter 8,
the figure is a set of lines, S = {q, b, c, d, e}; there
are two relations in S, ‘‘is parallel to’’ and *‘inter-
sects’’. The relations can be indicated symbolically
by “q “ b", ‘e “ b”, “bIe”, ete.

Another way of indicating the relations in § is to
list the ordered pairs of lines meeting each condition
(Remember that a relation is defined to be a subset
of $ X S). What pairs are needed to complete the list-
ings begun here for *‘is parallel to’’ and ‘‘intersects’’?

“‘is parallel to’’: (a,b), (b,c), (b,a), (a,a), ...
“‘intersects’’: (a,d), (c,e), (e,c), ...

You recall from Chapter 8 that certain relations
in a set have interesting and useful properties. A re-
lation in T is reflexive if and only if

tRt for each t in T;

it is symmetric if and only if foralltand s in T

tRs implies sRt;
ona it is transitive if and only if forallt, s, andq in T
tRs and sRq implies tRq.

A relation which is reflexive, symmetric, and transitive
is called an equivalence relation.

The first property to be deduced frov.i our axioms
is an important result concerning the relation *‘is par-
allel to'’.

Theorem |;: The relation *‘is parallel to’’ is an
equivalence relation in the set of all
lines in P.

All we need to do is check to see that
the three conditions for an equival-
ence relation are satisfied by “‘||"".
(1) Is it true that for every line m in

Proof:
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P, m||m? If we look at the definition
of parallel lines, we see that we a-
greed to consider every line as being
parallel to itself. Therefore, the

first condition for an equivalence
relation is satisfied.

(2) If m and n are lines in P such
that m||n, does it follow that n||m?
Again we look at the definition of
parcllel lines. |f m and n are the
same line, there is"nothing to prove.
If n and m are distinct lines, then m
and n have no points in commen; if
mNn=g¢, thennNm=¢, son||m
(3) 1f m, n, and s are lines in P such
that m||n and n||s, does it follow that
m|| s? Suppose it were not true that
m||s. This would mean that m and s
are distinct lines which have a point,
A, in common. But then there would
be two lines, m and s, containing A
and parallel to n. This violates Axiom
3 which says that there can be only
one line through A parallel to n.
Therefore it follows thatmand s

cannot have a point in common or m||s.

The third condition for an equivalence
relation is satisfied.

Since ‘‘||" is reflexive, symmetric,
and transitive, it is an equivalence
relation.

The most significant property of an equivalence
relation in a set is that it always partitions the set
into disjoint subsets. The relation R puts elements a
and.b in the same subset or equivalence class if and .
only if aRb. How does the equivalence relation ‘‘is
parallel to’’ partition the set of lines in P into dis-
joint subsets?

To get a picture of the way the equivalence classes
are determined by *||”

If lines which are related by ‘‘||”’ are put into the same
class, the five lines pictured would be split into two
classes: S; = {q, b, c} and 52 = {d, e} In a similar
manner *‘||’’ partitions the set of all lines in P into

, consider the figure shown earlier.
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disjoint equivalence classes; each class consists of
all the lines in P that are parallel to a given line.

We could say thatall the lines in the same equiva-
lence class run in the same direction or are in the
same direction. In fact, we can refer to the equiva-
lence classes as directions so that when lines are in
the same equivalence class—that is, when they are
parallel-they are in the same direction. Of course, if
two lines are in different equivalence classes, they
are not parallel and are not in the same direction.

It mustbe understood that when we use the word
“direction’’ here, it has the same meaning as in the
expression ‘‘the road runs in a north-south direction’’.
The word ‘‘direction’’ does not have the same meaning
as in the expression ‘‘the river flows in a southerly
direction'’.

15.4 Exercises.
1. |s the relation ‘‘intersects’’ an equivalence relation
in the set of all lines in P? Why or why not?

2. Which of the following determine equivalence re-

lations for the specified sets?

(a) "is the brother of’’ in the set of males.

(b) ‘““is the same age as’’ in the set of living people.

(c) “is smaller than'’ in the set of students in your
class.

(d) “has the same number of pages as’’ in the set
of books.

(¢) “is lighter than'’ in the set of students in your
school. .

(f) “is the line reflection of (in a fixed line)’’ in
the set of points in a plane.

(g) “is perpendicular to’’ in the set of lines ina
plane.

(h) “has a point in common with'’ in the set of lines
in a plane.

(i) “is in the same grade as'’ in the set of students
in your school.

For each relation that actually is an equivalence

relation, determine what kind of equivalence .

classes are formed.

3. Show that the relation “hcs the same cuthor as’’
is an equivalence relation in the set of books in a
bookstore. What kind of equivalence classes are
determined by the relation?

4, Prove: If mis a line in P, then there is a point in
P which is not in m. (Hint: Use both parts of Axiom 3
1 as well as Axiom 2.) 9

5. Prove: P has at least three lines. (Hint: Use pro-

blem 4 and Axiom 2,)

*6. Let D be a’specified direction in P (equivalence

class of narallel lines), and let R be the relation
in P defined as follows:
Points A and B are in the relation R if and only
if some line in direction D contains A and B.
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. *7. Prove:

Vi

In the sketch, A R B but CRE.

: 1) R is an equivalence relation in P.
2) The equivalence classes are the lines in
the direction D.

There are at least three directions in P.
(Hint: Use problem 5)

1 15.5 Some Consequences of the Axioms.

In Exercise 4 of the previous section you were

. asked to prove that there is a point not in a given line.

: Since we will use this result, a proof will now be given.
' You may want to check back and compare this proof

* with your own.

Theorem: If mis a line in P then there is a point
in P which is not in m.

By Axiom la there is a line n distinct
from the given line m; that is, m # n.

By Axiom 1b there are distinct points

A and B in n; that is, A #B. If both A
and B were in m, then by Axiom 2 we
would have n =m, which is not the case.
Hence at least one of the points A or B
is not in m.

Proof:

Let us now consider line m, point E not in m, and

. all the lines containing E which intersect m. For ex-
. ample, EA and EB and perhaps another, EC.

.
\
\
\l S { €))

. The next theorem simply says that there are ‘just as

many’’ points in m as there are lines containing E
which intersect m.

In P, let m be any line ond E any
point not in m. Then there is a one-
to-one correspondence between the
points in m and the lines containing

E which intersect m.

We must set up a correspondence be-
tween points and lines of P such that:

Theorem 3:

v v o v ——— -

(1) Each point in m corresponds to ex-
actly one line which intersects m and
contains E. (2) Each line which inter-
sects m and contains E corresponds
to exactly one point of m.

If A is any pointin m, by Axiom
2 there is exactly one line which con-

tains A ond E. This line, TA-E., inter-

sects m, Let point A of m correspond
., ﬂ
to line AL.

It remains to show that every line
which intersects m and contains E is
paired with exactly one point of m
under the above correspondence. As-
sume n is such a line which intersects
m in one point B. (Why can't m and n
have two points in common?) Then B

G
corresponds to BE under the above
correspondence. But by Axiom 2 there
is only one line containing B and E.

P
Therefore, BE =n and n corresponds
to B, a point of m.

15.6 Exercises.

1. Prove: There are at least four points in P. (Hint:
Use Theorem 2 and Axiom 3.)

2. Prove: There are at least four lines in P. (Hint:
Use Theorem 3 and Axiom 3.)

** 3 Show that there need not be more than three direc-
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tions in P and that each line in P need not contain
more than 2 points. (Hint: To show this we need to
construct a model of a ‘‘geometry’’ which has three
directions and 2 points in each line. There will be
objects called points and lines which have the prop-
erties specified in Axioms 1-3, However, these ob-
jects might be quite different from dots and straight
lines on a paper. For instance, the ‘‘points’’ may
be blobs of clay and the ‘‘lines’’ strips of wire.) -

15.7 Paralle] Projection.

Because we will need the result of Exercise 7 in
Section 15.4, it will now be proved. You may want to
compare your proof with the proof given below.

Theorem 4: There are at least three directions in

P.

Proof: In Theorem 2 we proved that in P
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there is a line m and a point E not
in this line,

From Axiom ] we know that m has at
least tv.o points, A and B.

Therefore, there are at least three dis-
tinct lines in P,

-—» - «—»
AB =m, XE, and BE. No two of these
three lines can be parallel since each

> ¢
pair has a point in common: AB NAE=A,

<+ ~» <>

AB N BE =B, AE nBE = E. Therefore,
the three lines determine three direc-
tions.

We shall now use the information that P has at
least three directions. Let m be any line and D any dir-
ection not containing m. Let E be any point in P. From
Axiom 3 we know that for every point E there is one
and only one line, call it n, containing E which is in
the direction D (i.e. n is parallel to a line in D).

U4
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Moreover, n cannot be parallel to m. If it was, then m
would be in the direction of n which is D. We assumed
that D was a direction not containing m. |f n and m are

in different directions, n and m are distinct lines that
intersect in a point Ep. So for every line m and direction
D not containing m we have a mapping that sends point E
in the plane onto point Ep, of line m. If we call this
mapping *‘Dp,’’, we have

OmE i Epy

Definition: We call the mapping Dm, that maps
the pointe of P onto m, the parallel
projection of P onto m in the direc-
tion D.

We now come to a very important theorem which

maokes use of almost all the information we have ac-
cumulated. It says that for any two lines in P, say m
and n, there is a parallel projection that maps n one-
to-one onto m.

Theorem 5: In P, let m and n be any lines and
let [ be any direction that contains :
neither m nor n. Then D, is a parallel
projection which maps n onto m. When
the domain of Dy is restricted to n,
Dm is one-to-one. :
Proct: We muct show two things.
1) Dy, maps each point of n onto
some point of m.
2) Under the ‘‘restricted’ mapping
Dm, each point of m is the image of 3
exactly one point in n. ' :

-— \ imﬂ.

Let us first show that D, maps each
point of n onto some point of m. Let
E be any point of n. By Axiom 3 there
is exactly one line in D, call itr,
which contains E. We have selected
direction D so that m and n are not

in D. If follows then thatr nm # ¢
and r # m. Hence, rNm contains 3
exactly one point, Ep. We have
shown that Dy, maps each point

E of n onto some point, E, of m.

To complete the proof we must show .

that when the domain of Dy is re- 7
stricted to n, each point A of m is -

the image of exactly Gne point in n K
under this restricted mapping. Let s
be a line in D which contains A.
From Axiom 3 there is one and only
one such line. As n is not in D,
snn £ ¢and s #n. If follows then
that s"n coniains exactly one point,
Ap. If there were another point in n
which mapped oato A under D, we i
would have two lines in D which con- 3¢
toin A and this is impossible because

the lines of D are parallel. We have
completed the proof. >

The notion of parallel projection constitutes the

mathematical foundation on which one builds coordinate !
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It can now be shown that for each point Q in the plane,
 thers is a unique ordered pair of points (X, Y) where X
;:is inmand Y is in n. The points X and Y are deter-

. mined by parallel projections onto m and n in the di-

‘ rections of n and m respectively. The pair of points

¢ (X,Y) then serve as coordinates of point Q.

j: 15.8 Exercises.

- 1. What are the elements of:
' (a) plane P

(b) a line

(c) a direction

(d) a relation

3‘ 2. What do you mean by:
: (a) a line
(b) the statement “‘lines r and s are parallel’’
(¢) a direction
(d) a relation
(¢) an equivalence relation
- (/) Dm

(9) one-to-one correspondence
- 3. What are their own images under the mapping Dm?

: 4. What points have the same image, Ey, under the
mapping Dm?

. 5. |Is the composition D, ©Dm a mapping of the ‘‘same
] kind” as Dy? (The domain of Dy, is to be restricted
to n)

| : 6, Answer Sometimes, Always, or Never, whichever

fits best,

(@) Two points determine a direction.

(b) Three points determine three lines.

(c) If line nis in direction D and line m is not in
D, then each point in n has the same image
under Dm.

(d) If two points A and B are such that their images

under Dy are the same point, Then rB.is in di-
rection D.

7. Prove: If rand s are any two lines in P, they have
' the saine number of points. (Hint: Use the corre-
spondence set up in the proof of Theorem §)

15.9 Summary.

This chapter has dealt with a plane P which is
simply a set of points with certain interesting subsets
called lines. The lines were assumed to have the prop-
erties mentioned in the three axioms and from these
properties we were able to deduce a number of further
properties. It is important to note, however, that we
were not able to deduce all the properties that we gen-
erally associate with lines and planes. For instance,
Exercise 3, Section 15,6 showed that it is possible to
have a “‘geomeiry’’ satisfying the axioms we selected
in which each line has only two points.

The three axioms used are:

Axiom }: (a) P contains at least two lines.
(b) Each line in P contains at least

two points.

Axiom 2: For every two points in P there is one
and only one line containing them.

Axiom 3: In P, for every line m and every point
E, there is one and only one line con-
taining E and parallel tom.

Lines r and s are parallel if and only if r = s or
rNs = ¢. Using this definition we were able to prove
that “'is parallel to” is an equivalence relation in the
set of lines in P. This relation partitions the set of
lines in P into equivalence classes called directions,
two lines being in the same direction if and only if they
are parallel
The notion of a direction in P led to the following
important consequences of the axioms:
(6; There are at least three directions in P,
(b) For a fixed direction the following relaticn R
is an equivalence relation on P: For points A
and B, A R B if and only if thete is a line in
D which contains A and B.

() To every direction D and line m not in D there
is a parallel projection, D, which maps all the
points of P onto m.

(d) For every two lines m and n ir P there is a par-
alle! projection that maps n onto m and is one-
to-one.

1510 Review Exercises.

1. ¥ m is any line in P, prove that there are at least

twe points not in m.

2. Ifm is any line in P, prove that there are ot least
two directions no! containing m.

3. Iflines m, n, and s aze distinct lines in P such that
m||n and n||s, prove that m||s.

4. Iflines m, n, and s are distinct lines in P such that
m||n, and s intersects m, then s intersects n.

* 5, Prove that if D] and D2 are two directions then there

is a one-to-one correspondence between all the lines

of D} and all the lines of D2.




