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What is Physical Science?

77C-..**-77n7a=

Physical science is the study of matter and its behavior.Since the behavior of matter often involves forces, energy, temper-ature, speed, and many other things, all these belong also tothe study of physical science. There are, of course, many differentkinds or_' matter -- like iron, glass, water, air, sand, and gasoline.Physical science is concerned with kinds of matter, too. Sometimesone kLnd of matter may be changed into another kind. For example,wood may be changed into ashes by burning it, or a raw egg may bechttged into something quite different by cooking it. Changesthe.t matter undergoes are also part of the study of physical science.
If we push a brick off the top of a tall building, it falls4o the ground. This is something that happens to a piece of matter,and the study of falling bodies is therefore of course part ofphysical science. Eut notice that just as a brick will fall fromthe top of the building, so will a horseshoe, a cuckoo clock, aparAsol, or a wad ef newspaper. In other words, the business offalling under gravity is common to all kinds of matter. Similarly,if you put a brass door-knob, a stick of wood, a diamond ring, ora golf-ball in a lighted oven, they all get hot. The business ofgetting hot in a warm oven is also common to all kihds of matter.

On the other hand, if you try to burn a sheet of paper and asheet of iron, you find that only the paper will burn. If you dropa sheet of iron and a sheet of gold in a glass of acid, the ironwill dissolve but not the gold. A pill of aspirin will relieveyour headache but a pill if sugar will not. Vinegar will curdlemilk but water will not. A raw egg will change greatly when droppedin boiling water but a golf ball will not. In other words werecognize that some sorts of physical happenings depend on thekind of matter you are talking about. Try to list a few physicalhappenings that apply to any kind of matter and a few others thatapply only to certain kinds of matter.

It is customary to divide physical science into two maindivisions. Those physical happenings where the kind of matterinvolved is not important to the discussion axe usually said tobelong to the study called physics. Those physical happeningswhere the kind of matter is important, or where the kind of matteryou start with changes to another kind, belong to the study calledchemistry. But the distinction between physics and chemistry isa very fuzzy one and not at all important. No scientist couldpossibly tell you the exact difference between physics and chemistrybecause there simply is no fence between the two.

Some people have the mistaken idea that physical science isbasically a hard subject. This is totally untrue. The basic ideasof physical science are very simple. You will have no trouble withthem at all. The only difficulty that people ever have with physicalscience is really a difficulty with English. If you say "I onlyhave two pencils" when you mean "I have only two pencils", youmay have trouble. In the same way, you should clearly understandhow each of the following pairs of sentences, sometimes used asthough they mean the same thing, really differ in meaning:



I don't like spinach.
I gave the wrong answer to every

question on the test.
Every shark is not a man-eater.
Every gink is a foople.
Did anyone forget to bring their

lunch today?
I painted all of the boats.
The recipe calls for five

teaspoons full of sugar.
I was sky hungry for cake that I

ate the wncle recipe.
My family like to go on picnics.
Your sister is a beautiful dancer.
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dislike spinach.
I didn't give the right answer

to any question on the test
Not every shark is a man-eater.
Every foople is a gink.
Did anyone forget to bring his

lunch today?
I painted all the boats.
The recipe calls for five

teaspoonfuls of sugar.
I was so hungry for cake that I

ate the whole cake.
My family likes to go on picnics.
Your sister dances beautifully.

I don't have no money in my pocket.' don't have any money in my pocket
Write nothing on the blackboard. Write "nothing" on the blackboard.
I like the boys playing in the ! like the boys' playing in the

yard. yard.

Notice that none of these sentences is incorrect. IL is
simply that the two sentences in each pair have different meanings.
Try to explain how the meanings differ.

If you can see clearly 'the differences between the meanings
of the sentences above and can learn to use English correctly, then
you will have nu trouble with physical science. The one absolute
necessity in learning of physical science is the correct use of
English -- in reading, in writing, and in speaking. All the rest
is easy.

But you ought to be warned at the beginning of one important
thing. You cannot expect to read and understand a science book
as fast as you can a story book or a comic book. Read only as
fast as you understand_what you are reading. Don't be ashamed to
go back and read a difficult sentence as many.times as you have
to to understand it. If you skip or fail to understand a sentence --
or even a whole paragraph! -- in a story, you usually can pick up
the story without loss. But you cannot often do that in this book!
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Unit I.

Making Measurements

1. am,arisons

Everyc.,.: has heard of comparisons and everyone makes comparisons
every day. When you say "John is taller than Mike" - you are making a
comparison between John's height and Mike's height and stating that John'sheight is the greater. Here are somecomparisons the like of which you
have probably yourself made at one time or another:

I have more marbles than Sam.

Mr. Smith's car is faster than Mr. Brown's.

Charlie is heavier than Sue.

Molly lives farther from school than. Chuck

A milk bottle holds more than a salt-shaker.

Your living-room floor has more area than a sheet of notebook paper.

A tractor can pull harder than a rabbit.

It was warmer yesterday than it is today.

A right angle is larger than the angle at the point of a sharpened pencil.

Try your hand at writing out some comparisons like these. Try to make them
comparisons of different kinds of things.

reminds you that.the two people or things possess this quality to different degrees.finally it.tells you which of them possesses it to the greater degree.

oIn each of the above examples, notice that the sentence first calls your attenti
to some kind of quality that is possessed by two people or things. The sentence then

For instance, the first example comparing the number of Sam's marbles
with mine says something like this: "Everybody has some number of marbles
(Remember that zero is a number!). It is possible to find out this number
both for me and for Sam. If you find out both. Sam's and my number, you willsee that mine is the larger. " In this case, the "quality" we are talking about
and comparing is "number of marbles. " For the examples above, these are
the qualities being compared:
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Number (of marbles)

Speed (of cars)

Weight (of persons)

Distance (of a point from other points)

Volume (of containers)

Area (of surfaces)

Force (of things used to pull things)

Temperature (of the air on different days)

Angle (between pairs of lines)

Be sure you understand that the sentence-comparisons above speak of just the
qualities in this list, and then list the qualities dealt with in the comparisons
that you wrote yourself.

Now examine these comparison-sentences:

I have more influenCe than Sam.. .

Mr. Smith's car is nicer-looking than Mr. Brown's.
Charlier is healthier than Sue.

Molly's house is more pleasant than Chuck's.

A milk bottle is better than a salt shaker.

We had more fun yesterday than today.

At first sight, these comparisons look much like the first group, but there
is a very important difference. You can best see this difference by looking at the
list of qualities in the sentences -

Ln:Eluence (of persons)

Niceness of appearance (of cars)

Health (of persons)

Pleasantness (of houses)

Goodness (of containers)

Fun (of a person on different clays)

Do you see what the qualities in the first list have that the qualities in the second do
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If you do not clearly see the difference, think of it this
way. Think about the sentence about marbles above as an example.
In order to find out whether it is true that I have more marbles
than Sam, all I have to do is to compare the number of marbles I
have with the number of marbles Sam has. O.K., how many marbles
do I have? By actual count, I have 87. Sam has 74. You know
that 87 is greater than 74 and the sentence comparison is therefore
correct.

Or, when we talk about the speeds of cars, we can by actual
trial find out how fast Mr. Smith's and Mr. Brown's cars can go.
If Mr. Smith's car can go 85 miles Viler hour (not on a public
highway, of course) and Mr. Brown's only 78, the case is proved.
Also, you can find out how many pounds Charlie and Sue each weighs,
how many miles Molly and Chuck live from school, and how many
teasnoonfuls of water the mill:bottle and the salt-shaker each not
How many square feet to your living-room floor? How many pounds
can the tractor pull? What was the temperature yesterday? How
many degrcc5 in the angle of a pencil point?

Notice that all these questions can be answered. But can
you really give an answer to such questions as "How much influ-
ence does Sam have?", "How nice does Mr. Brown's car look?",
"How good is a milkbottle?", and "How much fun did we have
yesterday?"? There questions have some meaning, of course, but
neither the questions nor the possitle answers to them have the
precision of which the others are capable.

You recognize then that some qualities are very special in
that they can be measured or counted. Length, number, volume,
weight, etc. -- all those in the first list above, atid many more
besides -- are such qualities. Tell how you might go about
measuring or counting each quality in the list. On the other
hand, there are other qualities -- like influence, niceness of
appearance, pleasantness, and many more -- that cannot be
measured or counted.

When a quality is measurable or countable, its measure (or
count) is called a quantity. For instance, a count of 87 (marbles)
is a quantity. A speed of 56 miles per hour is a quantity. So
are a weight of 105 pounds, a distance of 1 1/2 miles, a volume
of 1 quart, an area of 272 square feet, a force of 31,2 pounds,
a temperature of 72°F, and an angle of 15°. Each of the quantities
we have met so far consists either of a number or a number plus
a unit. The quantity of 87 marbles is expressed by the number
87 alone. The quantity expressing Charlie's weight, however, must
be expressed by the number 105, plus the unit, pounds. Notice
that to say "Charlie weighs 105" is not enough, for you do not know
whether this means 105 pounds, 105 tons, 105 ounces, or 105 what.
There are, of course, circumstances where everybody knows what
units you :mean and it is unnecessary to name them. If Charlie
steps on a penny weighing machine in the United States or Canada
and gets a card reading "105", he knows that by custom it means
"105 pounds". The same Charlie would get a card reading "7 and 7"
in England, however, and one reading "47.6" in France. Do you
know why?

TA1,7,-V A
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Here is a repetition to help you remember: Nearly every
quantity is a number or a number plus a unit. Most quantities
are of the second kind, requiring a number and a unit. In fact,
the only quantities that lre numbers are numbers themselves! --
like six, two-and-a-half, or 3.7. In any other quantity the
unit must be expressed. If you say "The line is 6 long", will
anyone know what you mean? Is it six inches, six feet, six
centimeters, or six miles? Length is a quantity that must have
units attached or it is without meaning. On the other hand, "I
drew six lines" is perfectly correct, for the quantity of number
(or count) needs no units.

There are some quantities that cannot be exnressed by even
a number and a unit. These are more complicated and need to be
expressed by a number, a unit, and something else. You will
get to such quantities later. Don't worry about them.now.

Physical science is inseparably concerned with quantities
and relationships among them.

2. Units of Measurement

We have been talking about measurements and comparisons,
but has it occured to you that a measurement is a comparison?
When you say "My desk is six feet long", you really mean this:
"My desk is longer than a one-foot ruler. If I take a footrule
and lay off one foot at a time along the edge of my desk, I
find that I can lay it off exactly six times:" In other words,
saying "My desk is six feet long" means exactly the same as "My
desk is six times as long as a one-foot unit."

Also, to say "Charlie weighs 105 pounds"means "Charlie
weighs 105 times as much as a one-pound weight unit. When you
say "My time for the hundred-yard dash is 12.3 seconds," you
mean that it takes you 12.3 times as long as a one-second unit
to dash a hundred yards. When you speak of a 5-quart jug, you
mean the jug holds 5 times as much as a one-quart unit.

Make up some other quantities and then make up similar state-
ments about what they mean. In doing so, there are two things
you will have to be careful about.

First, notice that certain units -- like foot, pound, and
second -- are "primary" units. They are not derived from any-
thing else. The first person to decide how long "one foot"
should be had cemnlete freedom to make it anything he pleased.
He could just make two marks on a sheet of paper and say "This
is a foot, and everyone will have to agree with me". No one
could say he was wrong, because he invented it. The definition
of one foot for legal purposes in those countries that use the
foot is made in just this way. It is not defined by pencil
marks on a sheet of paper, of course, but by scratches-on a
bar of metal. Do you see why scratches on a bar of metal would
be better than pencil on paper? The scratches are so fine that



IOU need a microscope to see them. Do you see why fine scratchesbetter than coarse ones that can be seen without help?
The bar is kept in a safe place so that no one can tamper with
it. Everyone then agrees tc abide by the law and so "one foot"
means the same thing to everybody. Do you see why it is importantthat everyone agrees on exactly how long a foot should be?

There are certain qualities like volume and area, however,
where the story is a little different. You can do two things.
You can say that area is really closely related to length; this
is what you do when you say that your desk top has an area of
six square feet because it measures 2 feet by 3 feet. In the
same way volume is also closely related to length. You recognize
this when you say that a box measuring 2 by 3 by 4 feet has
a volume of 2 x 3 x 4 or 24 cubic feet. When you do this you
simply say that the unit you will use to express quantities of
area is the area contained in the square that measures one foot
each way. The unit of volume is the volume contained in a cube
that measures one foot each way. This is the sensible wa/ to
do it.

You can also do a much less sensible thing. You can say'
"I have a perfect right to make up my own volume unit. I will
call it a 'gallon' and it will be so big". This sounds like a
silly thing to do when you have a ready-made unit in the cubic
Foot; but that's what the English system of units does, and, of
course, we have become used to it. To use the gallon as the
'snit of volume and the foot as the unit of length means that we
T' ;st define two units. To use the cubic foot as the unit of
flume and the foot as the unit of length means that you need
.fine only one unit.

So you see, when you say that a certain tank holds five
gallons, you mean that it holds five times as much as a one-.
gallon unit. When you say that a certain tank holds five
cubic feet you mean that it holds five times as much as a cube
lAeasuring one foot each way. Units like the square foot and
the cubic foot, which are really derived from other, already-
defined units, are called derived units. To keep things as
simple as possible, it is always better to use derived units
(like the cubic foot) than to use a primary unit (like the
gallon). Scientists usually use derived units when they can
because it is simpler to do so.

A little more complicated derived unit is the unit of speed,
ay the mile per hour. You could say that a speed of 30 miles-

per-hour means a speed thirty times as great as a unit speed
of one mile-per-hour, and to do so would be correct. But what
is the unit, mile-per-hour? Is it a unit like the gallon that
someone just invented; or is it really a derived unit? A
little thought will show you that ft is a derived unit, meaning
a speed equal to the speed you woujI have to make to go one
mile-unit in a time of one hour-unic. Therefore it is more
simple to think of a speed of 30 miles per hour as a speed such
that you could cover 30 mile-units in one hour unit.

, ,
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A better thing to io with speeds, however, is to use the foot
that has already been defined, instead of bringing in the new
and unnecessary unit of the mile. They are both distances, andonly one of them is needed. A speed of thirty miles per houris the sampe as a speed of 44 feet per second. Can you show
that they are equal? Using the foot-per-second as a derived unit
of speed is more simple than using he mile-per-hour, of
course. Once the foot and second nee defined, why bother to
define two new units, the mile and the hour?

The other thing you will have to be careful about is in
dealing with what are called "irrational" units. The only one
you are likely to meet is the degree of temperature. The scale
of temperature (both Fahrenheit and Centigrade) are irrational
simply because "zero" on the scale does not reall,' Aean zero.
when you say that the thickness of a shadow is zero inches you
mean it has no thickness at all. When you say that an empty
candy-box contains zero pounds of candy, you mean it contains
no candy at all. But when you say that the outdoor temperature
is zero degrees, you don't mean that the outdoors has no
temperature at all. For you know that you can have a temperature
of 5 below zero, which would then mean "less than no temperature
at all". The question then comes up, what temperature means no
temperature at all? This temperature, which is what really
ought to be called "zero", leads to another means of measuring
temperature which is not irrational. You may meet "absolute
temperature" later in your study of science. Meantime, notice
that saying "This water has a temperature of 50 degrees" does
not mean that it is SO tiAes as.hot as something with a temper-
nturA of one degrAP. This strange part of temperature measure-
ment will not concern us in the present study.

3. Making Measurements

You have seen that making a measurement is really nothing
more than comparing an unknown with a unit. The main idea in
making a measurement is then to have at hand an example of the
unit to be used and an instrument for comparing it to your unknown.
Often the instrument and the unit are combined into a single
gadget, as with the foot rule. Sometimes they are not combined,
as in the scales on which you have to put separate weights. We
will at the present time talk only about making measurements of
distance using the ruler.

If we are going to make scientific measurements, however,
we might as well use the same units as scientists use. Although
in this country we commonly use the foot and the inch as units
of distance, civilized people in most of the world and scientists
all over the world use the centimeter.

Get a centimeter ruler and examine it. It will look much
like the sketch below. Notice on the sketch, which is drawn
life-size, which are the numbered centimeter marks -- the longest
lines. Each centimeter spacing is divided in half by a shorter
line. Each half-centimeter is divided by four short lines into
five parts. Each of these tiniest parts, having a length about
the thickness of a dime, is a tenth of a centimeter. Do you see why?
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The quantity expressing th') distance between two successive longest
lines is 1 cm; the half of this distance is the quantity 0.5 cm;
and the smallest interval is 0.1 cm. The smallest distances
are also called millimeters, though we will have no use for
that name.

Now take a pencil or other object and measure its length.
To do this, pp lace one end of the pencil exactly opposite the
zero-end of the scale and let the pencil lie along the scale
with its other end falling wherever it will. Suppose that the
other end falls between the 18 and the 19 cm. marks. You then
know that the pencil is more than 18 but less than 19 cm long.
The smallest marks will help you tell just where between 18
and 19 the length lies. If the end of the pencil lies right
on the middle-sized mark lying halfway between 18 and 19, you
would record the length as 18.5 cm. If it lies on the second
short line between 18 and 18.5, you would record it as 18.2.
If on the third line past the middle, as 18.8. Etc. If the
end of the pencil does not fall exactly on any of the lines, you
take the nearest one. It will almost always be true that the
end of the pencil will not fall exactly on any line. You will
therefore almost always have to judge which line to choose as
the nearest one.

If the nearest line happens to be one of the main centimeter
marks, like 18 or 19, you should record the length as 18.0 or
19.0. Be sure you always write the "point-zero" when the'letith
is an exact whole number of centimeters. You will later see
the reason for insisting on being fussy about this.

It is a curious thing that nearly every physical measurement
you make is in the end made by reading a position on a scale.
When you read a thermometer, you really read the temperature
the same way you read a ruler. 'Men you read the speedometer
on your family's car or the time on a clock, you are really
reading a position on a scale, aren't you? This is why it is
so important to learn how to read a ruler properly.

4. Significant Figures

When you measured the length of your pencil, you probably
found that the end of the pencil fell between two of the finest
marks on the ruler, say between 18.6 and 18.7. Suppose that it
lay closer to 18.7, though, so that you recorded the length as
18.7 cm. When you did this, you might have said co yourself
"I can see that the length of the pencil is really somewhere
between 18.6 cm and 18.7 cm. Maybe it is really 18.68 cm but
my eyes are not good enough and the ruler is not divided finely
enough for me to tell. Anyway, I don't need to know the pencil
length that accurately, so I will just call it 18.7 cm, which
is the line on the ruler nearest to the end of the pencil."



You have therefore read thp length of the pencil to the
nearest tenth of a centimeter. Maybe the length of the pencil
is a little more than 18.7 cm or a little less. But 18.7 is the
nearest tenth of a centimeter. You record the length as 18.7 cm.
If your fiiend asks you "How long is your pencil?", you will
tell him "My pencil is 18.7 cm long."

Now suppose your friend tells you that his pencil is 18.7 cm
long. What will go through your mind when he tells you so?
You might think like this: "He said his pencil is 18.7 cm long.
He must have used a ruler to measure it because he gave me the
length accurately instead of saying that it was about 18 or
19 cm long. On the other hand, he must not have measured it
with a very finely divided ruler and a magnifier, because he
didn't say his pencil was 18.72 or 18.727 cm long. He measured
it only to the nearest tenth of a centimeter and gave me the
result of that measurement."

In other words, when you say your pencil is 18.7 cm long,
the number 18.7 really tells two things:

(1) It tells how long the pencil.is.
(2) it tells the person who is listening how accurately

you measured it.

If you had measured less accurately than to the nearest tenth
of a centimeter, you would perhaps say that your pencil is
19 cm long. If you had measured it more accurately, you would
have said 18.72, or 18.723, or even 18.7231 cm. (To measure
something so accurately that ye could say it is 18.7231 cm long,
you would have to measure it to the nearest 0.0001 cm. To do
this you would need a very special ruler and a microscope to
use it.)

Remember then that the quantity that results from a

measurement always tells the person who sees it or hears it
how accurately the measurement was made. It always means that
the last figure is only the nearest figure, and not that it is
exactly that figure. Now you can see why we are fussy and insist
that you write 18.0 instead of just 18 if your pencil happened
to have a length that fell nearest to the 18 cm mark on the
ruler. If you say that the pencil is 18 cm long, it would
mean that you measured it only to the nearest centimeter. If
you took more care and measured it the nearest tenth of a
centimeter, then you should be proud of your extra effort and
say so by reporting the length as 18.0 cm. In fact, if you
took very great care using a special ruler and microsope, you
might report the length of your pencil as 18.0000 cm. This means
that, even measuring to the nearest 0.0001 cm, the nearest
mark was the main centimeter mark at 18.
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Here is a list of quantities that might have been measuredby some instrument or another. Tell how accurately the measurer
must have been working in each case:

A metal rod is 37.17 cm long
A ball bearing weighs 3.267 grams
A bobsled completes its run in 57.07 seconds
A bottle holds 14.0724 cc of water

Now let's think about measuring the length of that pencil once
again. Say that you found the end of the pencil to lie between
18.6 and 18.7 cm. You judged it to lie closer to 18.6, so you
reported its length as 18.6 cm. In this case you realize right
away that your report is only approximate. It isn't exactly
18.6 cm, but only nearer to 18.6 than to any other tenth of a
centimeter.

But suppose that the end of the pencil appeared to lie exactly
on the 18.6 line. If someone now came along with a magnifying
glass and looked at your pencil and ruler, he might say "Oh, no.
Lock. The end of the pencil lies just a little bit past 18.6. Let's
get a ruler where the division of tenths of a centimeter (the
finest ones on your ruler) are themselves divided into tenths, and
measure the pencil again". That would be the distance between the
finest divisions on this super-ruler? Look at your ruler divided
into tenths of a centimeter and try to imagine how close together
the divisions would be if you had a super-ruler divided into
hundredths of a centimeter.

Suppose with this super-ruler you found the length to be
18.62 cm. Would this be exactly correct? Probably not, because
someone might come along with a microscope and a super-super-ruler
and show that the length is really 18.623 cm. But you couldn't
be sure that this reading is exactly correct either, could
you? Can you explain why not?

It is important that you realize that any quantity that is
measured is never known to be exactly correct. The best you can
do is to say that the real value lies closer to some certain mark
on a scale than to the next markings before or after it. You
never know whether someone else might come along and use a better
measuring instrument than you did to get a more accurate value than
yours. So you always report any measured quantity like this:
Use as many figures as will make the last figure the one
selected as "nearest" to some mark.

This rule works both ways. You must be careful never to
use either too many figures tr too few. Suppose you measure
your pencil to the nearest tenth of a centimeter and find it to
be nearest to 18.2 cm. You would be unfair to yourself to report
it as 18 cm because you really did better than that. But you will
be bragging unfairly, if you renort the length as
18.20 cm when you didn't measure it to the nearest hundredth
of a centimeter but only to the nearest tenth.



'Then a measured quantity is properly exnrpcqnd cc-) that the
last digit is the "nearest" one, then the figures used are called
significant. For instance the quantity 18 cm has two significant
figures; the quantity 4.79 grams has three significant figures;
and the quantity 18.0000 cm has six significant figures. Tell how
many significant figures there are in each of the following
quantities.

A length of 17.22 centimeters
A weight of 19.1765 grams
A volume of 180.60 cubic feet
A sneed of 17.3 miles per hour
A time of 4500 seconds
A thickness of 0.0012 inch

The last two of these are difficult and you may need your teacher
to explain them to you.

Now you are ready to do Experiment 1 in your laboratory manual.

After you have finished the experiment, here are some questions
to discuss in.class.

Points to Discuss in Class

How many places to the right of the decimal point are signi-
ficant in these measurements? How many in the averages?

Did everyone obtain the same quantity when one and the same
stick was measured by several people? if not whose measurement
was the correct one? Why did different people get different
results?

If you had used a ruler divided more finely and a magnifying
glass to read it, would everyone have got the same result?

Does it make sense to sneak of "the exact length" of a stick?
Does it make sense to speak of the measured length as a

quantity that everyone agrees on? Suppose that you own a company
that makes and sells gold wire. I mail you an order for 37.5 cm
of gold wire of a certain size and you mail the wire back to me.
We have never at any time met face-to-face to measure the wire
tcgether. When the wire arrives, I measure it to see whether I've
been cheated. Is there any reason to suppose that my idea of what
37.5 cm should be will agree with what you think 37.5 cm should
be? Why? How closely will be agree?

The whole of physical science rests on a faith in this belief:
That when two people make separate measurements of the same quantity
if neither of them makes a mistake, the measurements will agree.
How closely will they agree?
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Doing Arithmetic with Measured luantities

Suppose you have measured two peneila separately and you
wanted to know how long the combination would be if you placed
them in line end to end. You would compute the total length by
adding the two measured lengths together, wouldn't you? If one
pencil was 16.7 cm long and the other 17.2 cm long, the total
length would be what?

But now suppose that you measured one nencil with an ordinary
ruler in the ordinary way and found its length to be 16.7 cm.
Then you measured the other pencil with a microscope- and -rule'
arrangement and reported its length as 17.232 cm. What would you
report as the total length? From what you nave learned in arith-
metic, you might be tempted to set down the two quantities and
add them like this:

16.7 cm
17.232 cm
33.932 cm

which means the same as
16.700
17.232
33.932

You might report the sum as 33.932 cm, but this would be improper.
Let's examine what we have done to see what is wrong about it and
what we should have done.

You remember that a quantity reported as 16.7 cm means that
the last figure, the 7, was intended to mean that the end of the
pencil did not fall exactly on the 7 but closer to 7 than to my
other mark. The true length might have been 16.694, for instance,
or 16.721. Because we didn't measure it that accurately, we simply
do not know what we would have got if we had made the measurement
to 5 significant figures. Since we don't know what the next two
figures past 16.7 would be, we might write 16.7XX cm as the
length. We are pretending that the length is written with 5
significant figures, but we are admitting that we don't really know
what the last two are by putting X's for them. We certainly do
not, at any rate, know that the next two figures are zeros, as the
above addition seems to suppose.

Now, if we try to add the two quantities, we might set the
addition down like this:

16.7XX cm
17.232 cm
33.9XX cm

and think as follows. In the units column all the way to the right,
"X plus 2" is how much? You don't know, so you write down X.
"X plus 3" is how much? Again you don't know: write another X in
the sum. "7 plus 2" you do know, so you write a 9 in the sum and
then complete the addition in the usual way. The result is 33.9XX.
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This means 33.9 with some more figures that we don't know. But
this means the same as 33.9. Therefore the sum of the two quan-
tities 16.7 and 17.232 is 33.9. You are not entitled to any
more than three significant figures and have no right to report
more in the sum.

When you learned how to add decimal number; in arithmetic,
you were probably told that 16.7 plus 17.232 is 33.932, as we
got first above. Are you now being told that what you learned in
arithmetic is wrong? "lo, you are not, though it might look that
way at first. The difference is that in arithmetic you are
asked to add two numbers, one of which is exactly 16.7 and the
other exactly 17.232. But exactly 16.7 means 16.7000 with as
many zeros as you wish, and similarly with 17.232. The sum of
these, of course, is exactly 33.932 with as many zeros added on
as you dish. But the measured quantity 16.7 cm does not
mean exactly 16.7 cm, but only means "some number of centimeters
closer to 16.7 than to 16.6 or 16.8". This uncertainty in the
number beginning with the second decimal place creates an
uncertainty (remember the "X 3" in the addition above!) in the
sum in the second decimal nlace. You therefore have no right to
report 33.932 as the sum when all the figures after the 9 are
uncertain. This uncertainty does not occur if 16.7 means exactly
16.7, as it might well mean if it is not a measured quantity.

The general rule in adding measured quantities is now very
simple. If you want to find the sum of 84.62 grams, 171.4 grams,
and 42.119 grams, you set them down in the usual way with the
decimal points lined up.

84.6r gm
171.4 gm
42.119 am

Now draw or imagine a vertical line to the right of the number
known with the: fewest deCimal places. In this exami)le,.the
poorest" number is 171.4, because it is known only to a tenth

of a gram; all the others are known to better than a tenth.
Hence we draw the line to the right of this 4 as in the example
above. Then add only the,part to the left of the line. Finish
the example yourself, and don't forget to add the word "grams"
when you read the sum!

Now you are ready for Experiment 2.

When you have completed this experiment, you should discuss
the following matters in class.

Points to Discuss in Class

Is it true that you can obtain the combined length of the
thrJe sticks by adding the numbers renresenting the individual
lengths? Answer this question by comparing the combined length
you obtained by measuring, with the combined length obtained by
adding. Remember that two measured quantities can be said to
"agree" if they differ by only one or two it the last significant
figure.
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Does it seem "only common sense" to you that the total length
of two or more sticks can be obtained by adding the numbers repre-
senting the individual lengths? If it does seem obvious, here
are some things to think about that may make you less certain:

(1) What is the combined length of three sticks, one of which
measures 2 feet, one 7 inches, and one 4 centimeters? Here is
a case where you cannot add the numbers to get the total length.
What must be true of the units in each quantity before you may
add them?

(2) You may be thinking this way: If I put together a pile
of 17 toothpicks and a pile of 12 toothpicks, the two piles
together will total 29 toothpicks. If John weighs 80 pounds and
Sam weighs 90 pounds, the two together will weigh 170 pounds.
If I walk 40 steps, stop, and then walk 50 steps more i1 the
same direction, the two walks together will place me 90 steps
from where I started. If Mr. Brown's farm is 5 acres and Mr. Smith's
farm next to it is 6 acres, the two farms together will cover
11 acres. If I pour 2 gallons of cider into an empty barrel and
then pour in another 4 gallons, the two portions together will put
6 gallons in the barrel. In fact, it often happens that putting
two quantities together gives a result that agrees with adding
the numbers. We may get into the habit of thinking that "together"
means "add". But think of these questions:

If one ocean liner can cross the Atlantic in four days and
another can do it in five days, will it take them nine days to
do it tngpthpr?

If I can paint a fence in 15 hours and you can paint it in
10, will it take us 25 hours to do it together?

If I have a glass of water at 75° temperature (about ordinary
room temperature) and another glass of water at 100° (about body
temperature) will pouring them together give me water at 175° (almost
boiling)?

If I walk 40 steps, stop, then walk 50 steps more, must I
end up 90 steps from where I.started?

You realize, of course, that the answer to every one of these
questions is "No". Yet each question asks for the result when
two quantities are put together. Do you agree that sometimes the
word "together" does not tell.you to add? th6n, 01.4tright do you have to say that putting two sticks together permits
you to add the numbers representing their lengths to get the
total length? In other words, how can you tell when "together"
means "add" and when it does not?

The answer to this question is deeper than you might think.
But in the end it amounts to this: The only right you have to do
so is that experience (that is, experiments such as you just
performed) show that you always get the same result whether you
measure the total length or add the individual lengths. Your
experiment showed that you may do this under two conditions: first,
the units must be the same; and second, the two lengths must be
along the same straight line.



6. Commutativity under Addition
orreerrawitrowirW1

Did you pet the same total lenpth of the three sticks regard-
less of the order in which you lined them up? Does this surpriseyou? Do you have a right automatically to suppose that adding
three lengths will always give you the same result for the combined
lergth no matter in what order you add them? You already know
that you may add numbers in any order you wish and always get
the same result. This property of numbers is called "commutativity
under addition." You have shown by experiment that lengths are
also commutative under addition. Not all quantities are commuta-
tive under addition. For some quantities, you get a different
result when you add I\ + B from what you get when you add B + A.

Would you like to sec an example of a quantity which does not
commute under addition? Get an ordinary matchbox and six common
straight pins. Stick one of the pins in the center of the top
of the box and another in the center of the bottom. You now have
an axis around which you can spin the box. You can turn the
box around this axis through any angle you wish. Hold the axis
vertical in front of you with the label on top facing you 50 you
can read it. Now turn the box around the vertical axis clockwise
(in the direction in which the hands of a clock turn) through
1 right angle. The top of the box is still on top, but now a
person would have to stand on your left to read the label. Now
turn the box further through 2 right angles. The label is still
on top, but now a person would have to stand on you right to read
it. That is, if you add right angle turn + 2 'right angle turns)
you put the box in a position with the label on top facing so
that a person would have to. stand on your right to read it. Now
return the matchbox to its original position with the label on
top facing you so you can read it. Then rotate the box again
clodwise around the vertical axis; but this time,turn it first
through 2 right angles (the box now has its label still on top
but t person must stand in front of you to read it) and then
furtl'er through 1 right angle. The box now has its label on top,
but to read the label a person must stand on your right. That is,
if you add (2 right angle turns + 1 right angle turn) you put
the tox in a position with the label on top facing so that a person
would have to stand on your right to read it. This is the same
as before. You see then that when you add rotations, they do
commute if the two rotations are around the same axis.

But if the rotations are not around the same axis, they do
not commute. To see this, stick a pin in the center of each end
of the box and also in the center of each side. You now have six
pins forming three axes. Hold the matchbox in front of you, top
up, and turned so that you can read the label. Hold it by the pins
in t.cp and bottom and rotate it around the up-down axis 1 right
angle clockwise as before. The label is still on top. Now hold
the box by the pins stuck in the sides of the box. These pins make
an axis pointing right and left. Rotate the box around the left-
right axis through 1 right angle toward you. The label now faces
you. Therefore, starting with the label on top and faced so you
can read it, 1 right angle turn clockwise around an up-down axis

I right angl.; turn away from you around a left-right axis
leaves the box with the label facing you.



Now perform the two rotations in the other order. Start with
the box label up and so you can read it. The pins stuck in the
ends of the box form a left-right axis. Hold it by these pins and
rotate the box through I right angle toward you. The label is
now facing you Then hold the pins stuck in the sides of the
box -- the up-down axis -- and rotate the box 1 right angle clock-
wise. The label now faces to your left. Therefore, starting
with the label on top and faced so you can read it, 1 right angle
turn toward you around a left-right axis plus 1 right angle turn
clockwise around an up-down axis leaves the box with the label
facing to your left. Here are the two trials in a diagram form:

Start with
label on top

Rotate 1 right angle
clockwise, up-down axis +

Rotate 1 right angle
toward you, left-
right axis

Rotate 1 right
angle toward
you, left-right
axis

End
with
label
toward
you

End
with

Rotate 1 right
angle clockwisq

111

up-down akis label.
to left

So you see, adding these two rotations in one order gives you
result different from what you get if you add them in the other

order. Rotations around different axes do not always commute.

7. Significant Figures in Multiplying

You now know how to add measured quantities and how to deal
properly with their significant figures. Much the same thing
happens when you multiply measured quantities. Suppose you have
a r,ctangular card whose width is 23.6 cm and whose length is
37.4 cm. What is the area of the card?

You will remember that you find the area of a rectangle by
multiplying the length times the width. You wcld ordinarily do
it this way:

37.4 cm
23.6 cm
2244

1122
748

882.64 cm

You would report the area as 882.64 square centimeters. But by
--vt11:;.s time you are probably suspicious enough to guess that we are

going to find fault with this one, too! We are; let's see why.
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You know that "37.4 cm" means a quantity that was measured
only to the nearest tenth of a centimeter: closer to 37.4 than
to 37.3 or 37.5. We might write this as 37.4X, pretending that
we know it to four figures but at the same time admitting that
we don't really know the fourth one. In the same way, we will
write 23.6X for the other number. Now let's multiply them:

37.4X
23.6X

---X7CTCX

2244X
1122X
748X
883. XXXX

Here is the way you perform this strange-looking multiplication:
First, you multiply X times 37.4X. How much is it? You haven't
the slightest idea, so you might as well admit it and write a
string of X's in the first row. Next you multiply 6 times 37.4X.
You say, "6 times X I don't know", and you write X all the way to
the right in the second row. Then, "6 times 4 is 24", write the
4, carry 2, and complete the second line in the usual way.
Following the same method, show how the third and fourth lines
were obtained.

Now to complete the multiplication, you start as usual all
the way to the right. You bring down the unknown X to the bottom
line. In the second column from the right, you say, "X plus X
is unknown", and write X at the bottom. In the next colum, you
say, "X plus 4 plus X is unknown", and write X in the bottom line
again. In the next column, you say, "X plus 4 plus 2 plus X,
I don't know", so you write another X at the bottom. This time,
though, you say to yourself, "I don't know exactly how much is "X
plus 4 plus 2 plus X", but it almost certainly is at least 10,
because 4 plus 2 is already 6, and two more digits added to it
will probably reach ten or more." So you write the X at the
bottom, because you don't know what the sum is exactly, but you
carry a "one" into the next column because you're pretty sure
it's at least 10. In the next column, the carried-over 1 plus 2
plus 2 plus 8 is 13. Write the 3 carry the 1, and complete the
addition in the usual way. There are two "decimal places" in the
first number and two in the second. You therefore point off four
decimal places from the right in the result and get 883.XXXX.
This means that you do not know any significant figures west 8b3.
and therefore you should not report the product any more accurately
than 883 square centimeters.

The rule is easy: When you multiply two quantities, the
product should contain no more significant figures than are
contained in the multiplier with the fewer significant figures.
Sometimes it is permissible to take one more figure than the
rule allows.



It is not recommended that you multiply by the X-method above.Multiply in the usual way as in the first multiplication above,but when you are finished, "round off" the answer to as manyfigures as the rule says you are entitled to. Notice that rounding1E_ u off the first result of 882.64 to three figures gives 883, the sameas the X-method shows you are entitled to say.

Now you are ready to begin Experiment 3, When you are finished,you should discuss in class the questions below.

Points to Discuss in Class

What is meant by a scale drawing? Mention some examples ofscale draiOngs that you have seen used in business or school orelsewhere. Does a scale drawing have to be smaller than theobject it represents?

You hold a circular card behind your back and ask me tomake a scale drawing of your circle without seeing it. Since Ihave never seen your circle, the best I can do is draw a circleof any size I please on my paper. Will my circle be a scaledrawing of yours?

You hold a rectangular card behind your back and ask me tomake a scale drawing of your rectangle without seeing it. I drawany old rectangle on my paper. Will my rectangle be a scaledrawing of yours?

Any circle is a scale drawing of any other. But any rec-tangle is not a scale drawing of any other. The reason for thisis that it takes only one quantity to describe a circle completely-- its radius. But it takes two quantities to describe a rectanglecompletely. How many quantities are needed to describe completelythe special kind of rectangle called a square? Is any square
a scale drawing of any other? It takes three quantities to
describe a triangle completely and this is part of the reason whyit is a little harder to make a scale drawing of an irregulartriangle. Can you name some other shapes for which only one
quantity need be given to describe it? Can you name some 'orwhich more than one quantity must be given?

You can make a scale drawing only for a flat shape. Flatshapes are called "two dimensional". A body that has thicknessor that sticks out above or below the flat is called "three-
dimensional". A spoon, a sphere, a rectangular box, and acylinder are three-dimensional. What corresponds in three
dimensions to a scale drawing in two dimensions is called ascale model. Name some three. dimensional objects which require
only one quantity to be given to enable a person to make a scale
model. Name some that need more than one.

How many areas does a given rectangle have? Only one, ofcourse. Suppose two people compute the area of a r-)ct111,1
and get two different answers. Can they both be right? Then ifthere are two different metho.ds for computing the area of a rectangle,they can both be correct only if they give the same result. O.K.?Now, the formula says that you compute the area of a rectangle by
multiplying the length by the width. But is it definite which sideof a rectangle is its length and which the width? Suppose you satdown at one desk and I at another, both to compute the area of
a rectangle that we are told measures :12.3 cm by 14.6 cm.



You choose to call the 14.6 cm side the length and 12.3 cm thewidth. You therefore multiply 14.6 x 12.3 to get the area incm2. At my desk, meantime, I choose to call the 12.3 cm sidethe length and 14.6 the width. I therefore multiply 12.3 x 14.6to get the area. If we both do it correctly we must both getthe same result, because the rectangle has only one area. Whatguarantee have we that we will get the same result?

Does multiplication of a length by a leng-h to get an areacommute? Does multiplication of a number by a number to get anumber commute? Suppose that the first of these commuted butthe second did not. Could we then compute the area of a rectangleby the rule "multiply one side by the other"?

To get the area of a circle you multiply the square of theradius by the number 7r. What units does T+ have? The value ofh-is 3.14159265358979 to 15 significant figures. Of course, noone ever computes the area of a circle by using this many signif-icant figures for ii . You always round it off to as many significantfigures as you need. How can you tell how many places to roundit to for a particular problem given to you?

A given triangle also has only one area, doesn't it? Theformula tells you that the area of a triangle can be computed ifyou multiply 1/2 times the base times the altitude. But youmay choose any side you wish as the base; three are therefore reallythree different ways to compute the area of L. triangle depending
on which side you happen to choose as the base. With your triangledid you get the same result no matter which side you selected asthe base? What guarantee have you that you always get the
same result regardle-s of the selection?

Notice that the answer to this question is not the same aswith the similar question we a?ked above regarding the area of arectangle. With a rectangle you are multiplying the same two
numbers (length and width) in two different orders; you get the
same result because multiplication of two numbers commutes. Butin the triangle case there is no question of commutation; youmultiply different numbers together (depending on the choice of
base) yet you still get the same result. Why? We cannot answer
this question here beyond pointing out that experimentally youdid get the same result for the triangles you measured. Thatit is true for all triangles is proved by logic in the study of
geometry.

In computing the area of a triangle after having selected a
particular side to use as base, does it make any difference whether
you multiply half the base times the altitude; or half the altitude
times the base; or the altitude times half the base; or multiply
the base times the altitude and then take half the product; etc.?(There are six possibilities; what are they all?) Does the multi-
plying of three numbers together commute?



8. Decimal Estimation

Now let us return once again to that pencil we've beenmeasuring -- the one that we found measured between 18.6 and18.7 cm. Heretofore, we have recorded the length as, say,18.6 cm if the end fell closer to 18.6 than to 18.7. But alittle
thought,Aillehowyjeourth-atyybuYrealjycc'aniito'bettertthantthis.If the end fell about halfway between, you might say that thelength is 18.65 cm. If you judge it to be a little less than half-way, you might record the length as 18.64 or 18.63. If a littlemore than halfway, you might judge the length to be perhaps18.66 or 18.67. If the length was only a.little past 18.6, youmight judge it as 18.61 or 18.62; and if almost 18.7, you mightestimate it at 18.68 or 13.69. A great deal of experience hasshown that the human eye and brain acting together can readilyestimate with surprising accuracy, tenths of a division on anundivided scale. It takes only a. little practice for most peopleto be able to do this quite reliably.

The practice of reading any scale as though its finestdivisions were actually still further divided into tenths iscalled "decimal estimation". It is customary in all scientificwork to read a scale by decimal estimation. This amounts tosqueezing out of the scale the very last bit of accuracy it iscapable of. Experience has shown that a scale whose finestdivisions are in the neighborhood of 1/20 of a centimeter ormore apart can be read just as reliably by decimal estimation asby having the finer divisions actually ruled on the scale --and far more easily because the closely ruled lines make forconfusibn,

In decimal estimation, the last figure (the one that isobtained by estimating tenths between the finest divisions actuallyruled on the scale) is regarded as a significant figure. Eventhough you "guess at it", remember that experience shows thatthe guess is just as reliable as if the scale were actually
divided into tenths of its smallest divisions.

You are now ready to do Experiment 4. After you are finished,we will have some more questions to discuss.

Points to Discuss in Class

Did everyone get the same result on measuring, say, rod #1?Can you expect that everyone will always get the same result when
different people make a certain measurement? Now if the only wayyou can learn the length of a rod is to measure it, and if differentpeople get somewhat different results when they measure it, how
can you ever tell what the "true" length of a certain rod is? Theanswer, of course, is that you can't. It is worth repeating: nophysical measurement is ev'r known to be exactly correct. No onecan ever say "The true lehgth of this stick is so-many centimeters."The length can be known with considerable accuracy if highly refinedmethods are used to measure it, buy it can never be known exactly.There is one exception: a certain rod is known to be exactly onemeter long. Do you know what this rod is and why it is an exception?
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Notice that even a ruler, no matter how "good" it is, is notan exception? Since someone had to make the ruler, he had tomeasure where to put the marks. Hence the positions of themarks are not known to be correct, and one cannot say "This ruleris exactly 25 cm long."

Even though we agree that we cannot ever tell anyone the"true" length of a rod, yet we still feel that it ought to bepossible to tell him the "best" value we know. If severalpeople measure a rod -- or even if one person measures the samerod several times -- the several measurements will not beall the same. Then which measurement do we select as best?There is no truly logical answer to this question, but thereis a general agreement by scientists the world over that thereis a reasonable answer to the question as follows: If there isa series of measurements of a single quantity and there is no reasonto believe that any of them is more reliable than any other, thenthe "best" value of the thing measured is the average of the severalmeasurements.

The reason behind this agreement is simple. The idea is thatevery measurement will probably be a little "wrong." But therewill probably be just as ma../ "too-big" measurements (with plusdeviations) as there are "too-little" ones (with minus deviations).Usually these deviations will largely cancel each other out, andthe average will be pretty close to the "true" value. Let's talkagain about significant figures.

9. Averages and Deviations

Suppose that two different people each make the same measure-.ment several times. Say that they are both measuring the lengthof a rod, and one person's results are these:

18.74 18.72 18.74 18.75 18.74 18.73 cm
As you now know, even the best measurer has to expect that he willnot get exactly the same value every time he measures a givenrod, even if he is equally careful in every try. He takes theaverage of leis results and reports the "best" length as 18.74 cm.

The other person measures the same rod, also six times, andhis results are:

18.74 18.70 18.77 18.73 18.68 18.71 cm
He reports, as the best value, the average of the six values, 18.72 cm.

Now, one person reports 18.72 and the other 18.74 cm as thelength of the rod. Which shall we take as the best of all? Oneway to settle the problem is to take the average of the two repertsand call the length 18.73 cm. If we do this, however, we are reallysaying, "There is nothing to choose between the two reports.They ass equally reliable and we will therefore take the averageof the two reports as the best value." But wait a minute; are theyequally reliable?
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You will notice that the first measurer's results run from
a low of 18.72 to a high of 18.75 -- a range of 0.03 cm. The
second measurer's results range from 18.68 to 18.77 -- a range of
0.09 cm. Now, if you had no other information, which measurer
would you regard as the more reliable -- the one whose readings
fell in the narrow range of 0.03 or the one whose results
scattered out over 0.09 cm?

There is no strictly logical answer to this question either.
Let us suppose, however, that the true value lies somewhere between
the extreme values obtained by both measurers -- that is, between
18.68 and 18.77. It is obvious then that the first measurer
was making smaller errors than the second. If we suppose, for
instance, that the true value is 18.73, then the deviations madeby the two measurers are:

First: +0.01 -0.01 +0.01 +0.02 +0.01 0.00

Second: +0.01 -0.04 +0.04 0.00 -0.0S -0.02

You can see that the second measurer was making larger errors thanthe first.

We instinctively regard as more reliable the measurer who
makes smaller errors. We cannot be sure that the second measurer's
average is not better than the first. Maybe it is. Maybe the
second measurer does make bigger ertflii.g;'but:.11dylle'ilgoWe'iswrong on the too-big side as much as he is wrong on the too-little
side so that the average is quite good. Maybe the first measurer
holds his head a little to one side of where he should, and there-
fore nearly always gets results that are too small. Or maybe his
ruler isn't as good as the second measurer's ruler. But if we have
no reason to be suspicious of the accuracy of either measurer,
most physical scientists feel that the measurer whose results
are less scattered is more reliable.

Now if you look at the deviations listed above for the two
measurers, you will probably agree that the second measurer's
deviations are more scattered. Notice that we are now getting
back to the material discussed in Section 1. We have the
comparison--sentence:

Number 2's measurements are more scattered than Number l's.

We are comparing the quality, "scattering of measurements," and
saying that 2's is greater than l's. Is the quality called
"scattering" a quality that can be measured? Or is it a quality
like happiness, fun, or niceness of appearance, where we only feel
that one may be greater than another?
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How do we tell that 2's scattering is greater than l's? We
look at the deviations. We see that some of 2's deviations are
less than l's and some are greater. But on the average 2's are
greater. That is, we can average the deviations of 1 and the
deviations of 2 and sea which has the greater average deviation.
Take the deviations shown above and average them for each observer.
In doing so, pay no attention to whether the deviations are plus
or minus -- just average the numbers. Show that the average devi-
ation of Number is only 0.01 cm while the average deviation of
Number 2 is about 0.03 cm. It seems reasonable to regard Number
l's measurements as more reliable because they are more consistent
and less scattered than Number 2's. When we say "Number 2's
measurements are more scattered than Number l's," we mean that
Number 2's measurements have a greater average deviation than
Number l's. In other words, the average deviation of a set of
measurement.; is a kind of sign showing how reliably the measurements
were made. The smaller is the average deviation, the greater is
the reliability.

In fact, careful scientific measurements are often reported
with the average deviation attached to the report. For instance,
measurer Number 1 above might report the length of his rod as 18.72 cm
with an average deviation of 0.01." This expression is often written
in abbreviated form like this: "18.72 0.01 cm." You read the
abbreviated form: "18.72 plus or minus 0.01 cm." It means: "The
average of several measurements was 18.72 cm. Some of the measure-
ments were greater than the average (plus) and some were less
(minus). The average deviation was 0.01 cm."

Let's try an experiment involving deviations. After you
have finished, the class will discuss the following questions.

Points to Discuss in Class

Who was the best guesser of the correct number of balls to
place in a dish? If you look at the last two lines of Table I,
perhaps you can answer the question. Suppose, for instance, that
Sam was one of the guessers and that his average guess over all
ten dishes was 22.1 balls; suppose also that Mary Ann's average
was 21.6. You might say then that Mary Ann is a better guesser
than Sam because her average guess was closer to 20 than was Sam's
average. But this may not be true.

It may be, for instance, that Mary Ann's guesses ranged all
the way from a low of 5 to a high of 52 and that none of her guesses
was any where near 20. Yet her average was quite close. You
wouldn't want anyone as likely as this to be wrong to do your
guessing for you, would you? On the other hand, it may be true
that Sam's guesses averaged a little further from the mark than
Mary Ann's; but all his guesses lay between 19 and 23. You may
prefer Sam's consistency which averages a little off the mark to
Mary Ann's wide scattering which averages closer to the mark
than Sam's but is never anywhere near.

'
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Comment on the statement: "If Mark stands with one leg in
the freezer at -10°F and atieleginthe.6Ven 156°F,lifs:'direragetemperature is a comfortable 70°."

Comment on this one too: "Peggy is an excellent marksman
with bow and arrow. She made one shot that fell fifty feet to
the left of the bullseye and another that fell fifty feet to
the right. The average for her two shots was right on the
button."

The point is that the reliability of a measurement is really
composed of two parts: (1) How close is the measurement to the
true value? and (2) How consistently can we reproduce nearly the
same value over and over again? The first of these is called
"accuracy" and the second is called "p?:ecision." Accuracy
refers to how close a measurement is to the "true" value.
Precision refers to the consistency among many measurements of the
same quantity. It is perfectly possible for a measurement to have
high accuracy and low precision: consider the case of Peggy the
marksman above. It is also possible to have high precision and
low accuracy. For example, suppose you measured the length of
a rod using a ruler graduated in tenths of a centimeter. You
measured the length as 18.68 cm with an average deviation of 0.01 cm.
Sounds pretty reliable doesn't it, with a very high precision?
But someone later notices that the ruler you used was sawed off
at one end and starts at 1 cm rather than zero. Then your
measurements are all one centimeter off. Though the precision
is high, the accuracy is very lom.

In making measurements, one strives for high precision and
high accuracy. The precision of a measurement is always known,
because you can always calculate your average deviation. Usually,
however, you can only guess at the accuracy, because usually
you don't know the "true" value of a measured quantity.

Suppose you have two round buttons. One is a polished metal
button and the other is covered with cloth. You want to measure
the diameter of each with as high precision as you can. Using
a magnifying glass and a special ruler, you measure the diameter
of the metal one as 2.173 cm with an average deviation of 0.002 cm.
You try the same method on the cloth-covered button. But when
you look at it under the microscope you find the surface very
rough with ups-and-downs and particles of lint sticking out
as much as 0.02 cm. Does it make sense even to try to measure
this button with a precision of 0.002 cm? Think up some other
examples of measurements where a precision can be so ridiculously
great for the measurement as to be without real meaning. Does
the hair on a person's head interfere with measuring his height
to the nearest millimeter? Does the fact that a person eats,
drinks, sweats, and breathes make it sensible to say that a
prize-fighter goes into the ring weighing 184 3/8 pounds? (A\
very small drink of water weighs an eighth of a pound, and a person
looses about one ounce of water by the moisture in his breath every
two hours, not counting water that he loses by sweating.)



10. Once Again, Lightly

Physical science is the study of matter and its behavior.
Scientists have studied physical science long enough to havelearned by experience that the behavior of matter is not haphazardbut predictable and logical. Logical reasoning involves closeattention to the meanings of words and sentences and often involves
mathematics too.

One way in which mathematics arises in physical science isthrough measurements. A quality that can be measured or countedis called a quantity. A quantity may be a number alone, but it
may also be a number with a unit attached. When a person speaksof a quantity other than a number, the unit that goes with it mustalways be stated (or implied) so the person to whom he speaks
will understand.

A measured quantity always, therefore, involves a number.This number shows both the value of the quantity and also howprecisely it was measured. The statement. "This rod is 6.75 cmlong," not Only tells the length of the rod but also tells that
the rod was measured to the nearest 0.01 cm and was judged to be
closer, probably, to 6.75 cm than to 6.74 or 6.76. If the last
digit used in writing a quantity is obtained by estimation (judgingthat digit to be closer to "right" than the next higher or next
lower one), then all the digits used in writing the quantity arecalled significant.

Attention must be paid to the number of significant figuresin measured quantities when arithmetical operations are
carried out on them. In adding measured quantites, the decimal
points are lined up in the usual way. The numbers to be added
are then examined to, find which hastthe.'fewest.tgnificantfiguresafter the decimal point. All the numbers are then rounded off to
this many decimal places and the addition then carried out inthe usual way. (If preferred, the addition may be carried out
without first rounding off, then rounding off the sum to as
many decimal places as in the number with fewest significant
figures after the decimal point.) The sum of a set of measured
quantities has as many significant figures after the decimal point
as has that member of the set with the fewest significant figuresafter the decimal point. The same scheme, of course, applies to
subtraction.

When multiplying the numbers in measured quantities, the
number of significant figures in the product is equal to the
lesser of the number of significant figures in the ivantities
multiplied. The same rule applies to dividing. The idea behind
the rules concerning significant figures is simply that a sum orproduct or quotient cannot be "better known" than any of the
numbers used to calculate the sum or product or quotient.
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Just because a quantity involves a number, it does not, there-fore, follow that a quantity expressed by a number and a unit isa number. We often find that two quantities can be multiplied
together by multiplying their numbers together, but this is notalways true. When two or more quantities are added, their unitsmust be the same, and the units of the sum will be the same as theunits of the individual quantities. When two quantities are
multiplied together, their units need not be the same. The unitsof the product must then be given a special name, for the product
will not have the same units as either of.theitwo:quantities
multiplied.

From the preceding paragraph, you will recognize that the
adding of quantities is a far less complicated matter than multiplyingthem. You may be wondering "How will I ever be able to tell whetherthe multiplying of two new quantities that I never met before canbe handled by multiplying their numbers; does the order of multi-
plying matter; and what are the units of the product?" Such
questions you need not worry about; they will be answered for
each case specifically when they arise.

Every measured quantity has an uncertainty about it, because
no measuring method is perfect. There is therefore no answer tothe question "What is the exact value of such-and-such a quantity?"if the quantity is a measured one. It is often important to know.how much uncertainty is involved in a quantity. The uncertainty
is revealed in two ways: One is always used, the other sometimes.The first is the simple matter of significant figures. If aquantity is quoted as 18.72 cm, it immediately notifies you that
the measurement is uncertain within in the"secona'decitiallplacP---within 0.01 cm. Less often, the average deviation is used, too.If a quantity is reported as "18.72 ± 0.03 cm," it means that the
measurer tried to estimate to the nearest 0.01 cm -- this much istold you in the "18.72" alone. But it also tells you that the
quantity was measured many times and the average is quoted, but
the results deviated from the average such that the averageof the deviations was 0.03 cm.

The number of significant figures quoted and the average
deviation both reveal the precision of the measurement. The more
significant figures used, the higher the precision. Of the two
measurements, 18.72 cm and 18.723 cm, the latter is more precise
because 0.001 cm is a "finer" reading than 0.01 cm. Of the
two measurements, 18.72 -4. 0.02 cm and 18.72 ± 0.03 cm, the former
is more precise because the range of numbers leading to the averageis smaller. Precision refers to fineness and consistency of
measurement.

Accuracy refers to the closeness of a measured value to the"true value." Since the "true value" may not be known, one cannotalways tell how accurate a measurement is. It is entirely possible
to have, very low accuracy and very high precision. The reverse
is also possible but not likely.



Further Classroom Discussion

A bird watching club takes part in the annual Christmas bird
census conducted by the Audubon Society. The watchers count 3
vireps, 2 waxwings, a flock of terns estimated as 40, 2 robins,
2 orioles, 6 blackbirds, 3 warblers, 5 doves, and a flock of
starlings. There is some argument as to how many starlings there
are in the flock. The low estimate was 1000 and the high estimate
was 3000. They decide to 'report it as 2000. -They alto-repoit thetotaL birds observed as the sum of the individual species,
namely 2063. Does this report of total birds seen make sense?

The manufacturer of a cleansing tissue cuts the flimsy
paper into sheets of 9 1/2 inches by 8 7/8 inches. He marks on
the box that the individual sheets measure 9.500 inches by 8.875
inches. Is this sensible?

A French scientist estimates that a meteor would begin to
glow when comes to within 100 kilometers of the earth's
surface. An American newspaper prints the story, but to make
things easier for its American readers, converts kilometers
to miles. The rewrite man finds in the dictionary that one
kilegeter is 0.62137 miles. The story then appears saying that
the French scientist estimated that the glow would begin at a height
of 62.137 miles. What would you have said if you had been the
rewrite man?

The average speed winning the "Indianapolis 500" automobile
race in 1962 was officially reported as miles per hour. This
speed was obtained by dividing the distance traveled (500 miles)
by the time required for the winner to go from start to finish,
measured as hours. Do you think the time was measurable
this accurately? To be entitled to six significant figures in
the speed, Loth the distance and the time must be known to six
sigrificant figures.. Assume that the time really was known this
accurately, What about the distance? To know SOO miles to six
significant: figures means that the distance is known to 0.001 mile.
This is about five feet.

A calorie chart for foods says that a medium-sized potato is
equivalent to 265 calories. Comment on this rating.

An American scientist builds a sun furnace and estimates that
he can obtain a temperature of 4000°C. Our rewrite man above
handles this story, too, finding that a temperature of 4000°C
is the same as a temperature of 7232°F. He prints that the
scientist estimates that he can obtain a temperature of 7232°F.
What would you have reported?
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Unit II.

Constants, Variables, and Equations

Constants and Variables

You now know that a quantity is the numerical measure of any physical
'quality that can be measured or counted. Remember that most quantities must
have units attached before they become meaningful.

Let us now look at two lists of quantities:

First List

The number of sides in a triangle
:How tall the flagpole at your school is
How far you live from your school
The diameter of Jack's bicycle wheel
The weight of a certain croquet ball
The area of your teacher's desk
The freezing temperature..of water

Second List

The length of any triangle's side
The length of any piece of pipe
How far from one house to another
The diameter of any circle
The weight of any ball
The area of any rectangle
The temperature outdoors

Do you see anything special about the first list that does not apply to thesecond? The important difference between the two lists is this: Every quantityin the first list remains always the same; each quantity in the second list
may change from one value to another. For instance, there are always threesides to a triangle, but the length of a side may be any length at all; your
school's flagpole is some particular length, but a pipe may be any length at
all; your house is always the same distance from school, but you can findtwo houses that are almost any distance apart that you please; a particular
croquet ball always has the same weight, but you can find some ball that hasalmost any weight you please.

So you recognize that some quantities have the special property of
remaining unchanged in value while other quantities may have any value
at all (within limits, perhaps). A quantity is called a constant if its value
remains fixed during the time you are interested in it. If a quantity may havedifferent values during the time you are concerned with it, the quantity iscalled a variable. Try to list a few constart quantities and a few variable
ones that you are familiar with.

You might notice that some particular quantity may under some circum-
stances be considered a constant and under other circumstances a variable.For instance, suppose you were playing with onmeone on a seesaw. You have
carefully positioned yourselves so that the board is exactly balanced and thenyou begin to teeter. As you know, you can now teeter up and down as long asyou feel like it. But if your weight suddenly increased and decreased crazilyand unpredictably, you wouldn't be able to have much fun on the seesaw, would
you? During the short time you play on a seesaw, your weight and your friend'sweight remain constant. But you know very well that, over a period of years
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as you grow up, your weight steadily increases. For the purpose of seesawing
one afternoon, you may properly cnnsicier your weight a constant. But over
a longer period of time, you would have to consider your weight as a variable
quantity.

You will have to prepare yourself to accept a peculiar thing about con-
stants: some of them have always the same value, others have a fixed value
only during some particular investigation, but may have another value that
stays unchanged during another investigation. Constants that always liave the
same value are often called absolute constants; the: number 6, 1/2, 0.022,
and 7. 96 are examples of absolute constants. Constants whose values stay
fixed during any one investigation (like your weight, for instance), but may
change from one investigation to another may be called temporary constants.
We will have more to say about temporary constants later on.

Right now we will try to measure a certain absolute constant. You are
ready to do Experiment 6. After completing it, we will have some questions
to discuss.

Points to Discuss in Class

Did you find that the ratio, diagonal/edge, of a square is always the
same, regardless of the size of the square? Does it seem reasonable to you
that this ratio would not depend on what color the square is, what it is made
of, how thick it is, how heavy it is, who measured it, where or when it was
measured, or on anything other than that it is a square? If you answered
"yes" to both these questions, you have said that it is a property of being
square -- a "pure" property that depends only on being square -- that the
ratio of diagonal to edge is always the same. In geometry, it is proved that
this is true; you have shown experimentally that it is true, at least for those
squares that you measured. If you have not already done so, compute the
average of your values and write the average at the bottom of the table.

What units does this ratio have? Suppose that you had measured both
edge and diagonal in inches instead of centimeters; would the ratio be different?
Try it, by having your teacher draw two or three large squares on the black-
board and making the measurements in inches with a yardstick. If you do this,
you will probably find out quickly why the metric system is so much easier
to use than the English system.

The ratio is a number, without units. It is a peculiar number in that it
is not an integer (that is, a whole number), it cannot be written as a fraction
no matter what integers you use in the numerator and denominator, and it
cannot be written as a decimal no matter how many places you carry it out.
It is very nearly equal to 10/7; a closer value is 17/12; and a still closer
value is 99/70. But no fraction involving integers only is exactly right. In
decimals, the value is about 1. 4142, but no matter how far you carry it out,
it is never exactly correct. Well then, if you can't hope to represent it by an
ordinary fraction or a decimal, how will you name it? The number is usually
named "VI, " which you read "square root of 2. "
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This number has very many interesting properties, one of which is theorigin of its name, "square root of 2. " It is the number which, when multi-plied by itself, gives 2. See how close you came to the "correct" value (that
is, how nearly exactly square were the "squares" you used and how accurately
you measured them) by multiplying your average ratio by itself. Why did yourrric:asured value not come out exactly correct?

Since, when you multiply this number by itself, you get 2, it follows that2 is the square of this number, or this number is the square root of 2. Calcu-late the square root of 2 to four decimal places and compare it with your
average value. Your teacher will show you how if you don't already know.

If you like to play with numbers, here is another interesting propertyof 2. You will notice that '12 is not quite / z , but it is more than a .It is the fraction, "1 and one somethingth, " where the denominator in "onesomethingth" is bigger than 2 but less than 3. How about J 1 ? Well,
/ z

is too big. The denominator of thehappens to be too small but
2 4;

fraction should be "2 and one somethingth, " the "one somethingth" being
/between 1

3
and -1-- . How -bout z i ? This turns out to be a little too2 r

2 z

large while
/2 ri3

is too small. The correct last denominator should be

more than 2 but less than 3 - say z The fraction then would be

Now it turns out that this is a little too small, but

closer value is

is too big. A

, which neirertheless is now a little too large. If

you keep on writing this already very meisy fraction, always changing the verylast 2 to 2 1/2, you keep getting closer and closer to 2: Try working it outusing, say, six 2's and then seven 2's. The correct value will be between yourtwo results. Your teacher will help you if you get mixed up. You will find
a guide for doing the work systematically on page 20 ci your workbook.

11You must not get the idea that 5could be calculated by using 3's inplaced of the 2's in the continued fraction for 2. You can't. Perhaps when
you study more mathematics you will learn why ri can be calculated this wayl
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2. Arithmetic with Quantities

In Experiment 6 you calculated the ratio of length of diagonal to length of
edge for a square. That is, you divided the length of the diagonal by the length
of the edge. But how could you do this? When you learned how to divide, you
were taught only how to dividenmenumber by another number. Lengths are not
numbers -- they are quantities, consisting cf a number plus a unit. How can
you divide things other than numbers? Can you divide an umbrella by a box-
car or a picnic by a jar of olives? Clearly you cannot divide any old thing
by any old other thing. When then does dividing one quantity by another mean
sorn;:thing?

Notice that it could hardly be an accident that dividing the number of the
quantity expressing the diagonal length of a square by the number of the quan-
tity expressing the edge-length of that square should always give the same
result. In other words, in this experiment the dividing of one length by another
at least appeared to mean something. We can give no strictly logical answer
to the question of when you may multiply or divide quantities that are not
numbers. But we learn, sometimes by experiment and sometimes otherwise,
that certain quantities can be multiplied or divided to give meaningful results.

For instance, you already know that you can multiply the length of a
rectangle by its width (both quantities but not numbers), and get the area of
the rectangle as a result. You know that you can multiply your wages per
hour by the length of time you work (again quantities that are not numbers) to
get your total pay. These are cases where you can perform arithmetical
operations on the numbers appearing in quantities and get meaningful results.
But suppose you divide the speed of a motorcycle by the number of buttons
on the jacket of its driver; or multiply the weight of a bird by the number of
leaves on the tree-branch it's sitting on. You can perform these arithmetical
operations, too. But do the results mean. anything? One cannot say logically
that either of the two.. last operations is really nonsensical. One cannot.
that is formulate a logical rule that will tell you when a certain mathematical
operation upon physical quantities is useful and when it is not. One of the
important goals of physical science is to seek out those cases where mathe-
matical operations on physical quantities are useful and meaningful.

The case for addition and subt:s.c.'don is one you are already familiar
with. Try to recall Experiment 2, where you added the lengths of some sticks
and found the resulting quantity equal to the length of the train of sticks laid
down end-to .er.:1, You are also aware that adding the weight of one rock to
the weight of another will give you the weight of the pile made of the two rocks
together. Now it is cleat that the train of sticks has some length, and the
pile of rocks has some weight, and that this length and this weight have
meaning even if the individual sticks and rocks are not measured. That
is, you don't have to know the individual weights or lengths in order for the
total length and total weight to have meaning. You don't even have to have a
defined length-unit or weight-unit in order to tell someone the length or
weight. (You can tell someone how long the train of sticks is by holding your
hands tlae right distance apart and saying "This long. ") All this discussion
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says that the length .oi the train and weight of the rile are quantities all by
themselves. They are meaningful quantities whether they are thought of
as sums of components or not They are meaningful quantities whether a
unit of measurement happens to be handy or not.

A given train of sticks, moreover, has always the same length. Its
actual length does not depend on what units you choose to measure it in.
You may say the train is 24 inches long, or 2 feet long, or 61 cm long. Those
are all the same length, for giving the length different names does not give
it different values. In the same way, you realize without any need to explain
that "my father, " "Dad, " and "Mr. Frowns' all may rp-Friv to the came pt:'"Sone

Now 1c1; us consider a specific case of adding two stick lengths. A stick
25. 4 cm long and another 38. 1 cm long will, laid exid-to-end, produce. a t ::ain
63:'5. cm T.: you were asked whether these two sticks laid end-to-end
would span a distance of 61 cm, you would say "Yes. " Now this property of
the two sticks of being able to over span a distance of 61 cm has nothing
whatever to do with the fact that you made the measurements in cm. If
someone else came along and met the same problem, he might ask "Will these
two sticks together Epa.n this distance of 24 inches?" (24 inches lip wens to
equal 61 cm, writhing the:, .2ec:ision of two significant figures. ) To find out,
he might measure the two sticks, find that they have lengths of 10 inches and
15 inches, notice that the sum of 25 inches is greater than the given 24
inches, and thit answer "Yes, they will span the given distance. " An uncivil-
ized man who never heard of a ruler and has no concept of arithmetic might
arrive at the same conclusion without making any measurements..at.. all. A
highly civilized man from :cuter space may make the necessary rneasurcmcm.ts
in units you never heard of and ccme to the same .conclusion. The point is
that the sticks either do or do not span the space. The sticks do not know
means you are going to use to find the answer, and do not change them9c1vcc..,
so that they give one answer for one method and another answer for another
method. The behavior of the sticks is a property of the phi,- sic'al world, no::
of the methods that man uses to study the world. Remember this, for it inns-
...ates the most important precept; of all of physical science: The behavior of

the Universe .is independent of the meaus used to study it. If you have a
problem solve an'3 answer you get depends upon the net hod you used to
solve it, then -rou cannot be sure that that answer is right.

But sill:pose that two different people measured the two sticks, one
using inches and the other using centimeters. One stick is 10 inches long
and the other is 38. 1 cm Vail the two sticks span a distance of 61 cm?
Notice that the prcl_leln has not changed; we are still talking about the same
two sticks and the same distance to span. By this time, also, we are con-
vinced that one can obtain the total length of two sticks laid end-to-end by
adding the quantities representing their individual lengths. Therefore the
sum of the quantities "10.:7.-ao?::es" and 38. 1 cm" must be the quantity repre-
sentii,g the total length.
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Now if we add 10 + 38. 1 we would get 48.1, would see that 48. 1 is less.than 61, and would conclude that the two sticks would not span the distance.On the other hand, we concluded from earlier discussion that the two sticksdo span the distance. Here we have two different answers to the samelern, depending upon how we worked it. That's not allowed! What is thetrouble?

If we stick exclusively to cm we find that 25. 4 cm plus 38. 1 cm is63. 5 cm which exceeds 61 cm, and the sticks do span the distance of 61 cm.If we stick exclusively to inches, we find that 10 inches plus 15 inches is25 inches which exceeds 24 inches and the sticks do span the given 24 inches.If we stuck ex.clusively to :Iles, or feet, or versts (used in Russia), orgrixes (used on the planet Nonesta) we would never have trouble: we canfind the sum of two quantities, under these conditions, by adding the numbersrepresenting the quantities. When the two quantities use different units, how.ever, you cannot get their sum by adding the numbers representing the quan-tities.

You must understand that there is nothing whatever wrong with "adding2 inches and 3 centimeters. " This is a quite reasonable and meariingfilloperation; they do have a sum. The wrong part enters only when you try toadd the numbers 2 and 3 and expect the number-sum to represent the length-sum. In other words you can add two lengths together to get a total lengthwhether or not the two lengths are expressed in the same units; for this isa physical operation in which the sticks have no way of knowing what somehuman being chooses to call their lengths. But as soon as that human beingwants to compute their combined length by adding numbers, the quantities
must be expressed in the same units. If you wanted to add 10 inches to38. 1 cm to get a single quantity representing the sum, you can do it onlyif you change 10 inches to centimeters or change 38.1 cm to inches andthen added the numbers. You can make this change if you know that one inchis 2. 54 cm. Adding weights some of which are in the metric and some in theEnglish system is also possible when you know that one pound is 453. 6 grams.

Finally, suppose that you wanted to add 3 gallons and 4 hours, whatwould you get ? Realizing that numerical addition is forbidden unless thequantities are in the same units, you seek first either to change 4 hours togallons or to change 3 gallons to hours. But this cannot be done, for thegallon is a unit of volume and the hour a unit of time. There can be no wayof converting the one to the other because they measure different things.Their sum could not then possibly be a quantity, because a quantity is themeasure of a quality, not the measure of two or more qualities. There is nomeaning to the sum of two quantities that are measures of different qualities.
All this discussion can be summarized in the following

Rule: Two quantities can be added (or subtracted) numerically if theyare measures of the same quality and are expressed in the same units. Thesum (or difference) is another measure of the same quality and has the sameunits.
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It is important that you understand where this rule comes from. The rule is
not a law that was passed by Congress, or that your teacher or the President
of the United States or the Pope decreed you must follow, or that the Bible
or some textbook said everyone must obey. The rule: comes from a logical
examination of the Meanings of words and of fundamental principles. It is
a rifle forced on us by the nature of the world, not forced on you by someone's
say-so.

Here is a word of caution. Do not underline the Rule above or box it
carefully in red ink as something important to remember. It is important
to remember, of rnurcP. But if yoii did not understand the discussion that
led up to the rule, you miss the whole point by merely memorizing the rule.
If you did understand the discussion, then you know the rule without mr ,aorizing
it. Memorizing is very unimportant in physical science.

You must work a few examples to make sure you understand the ideas of
adding physical quantities.

1. How far would three steel rods stretch if laid end-to-end. One .iod. is
14 cm long, one is 2. 62 cm long, and one is 10. 941 cm long?

2. A stack is made of four thin aluminum plates laid flat one on top
of another. One plate is 0. 0346 inches thick, one is 0. 123 cm thick, one is
0.00248 cm thick, and the fourth is 0. 001756 inches thick. How thick is
the stack?

3. A flask contains 22. 71 cc of water. An irregular lump of glass is
placed in the flask and the water level rises to 57. 22 cc. What is the volume
of the lump of glass?

4. A flask contains 34.65 cc of water. An irregular lump of marble
weighing 17. 212 grams is dropped into the water, so that the total volume is
now the sum of the volumes of water and marble. What is the total volume?

5. Three pieces of brass are placed in a box weighing 586 grams. Cne
nicbr0 weighs 1. 748 pound.s and the second weighs 13.42 ounces. The 'pax with
all three pieces weighs 2271 grams. What is the weight of the third piece of
brass?

3. Multiplying and Dividing Quantities

The logic involved in deciding when you may multiply or divide physical
quantities is somewhat simpler than for adding and subtracting. The corres-
ponding rules are therefore a little less restrictive. You will remember the
basic restriction. It was that adding two quantities together always means
lumping one portion of a certain quality (like length, volume, weight, etc. )
together with another portion of the same quality. The nature of addition is
such that we can attach meaning to a sum only when we add measures -of the
same quality. This is not the case with multiplying.
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For instance, remember again that you can multiply the length (say in
feet) by the width (also in feet) of a rectangle to get its area in square feet.
'Till 4 c i a a a a c% h=or tz. y nil y ,LA4.6.r""14"."-°r4-fr'." two- measures 0.1. 6I1C same quality.
But you can calculate the distance a car travels by multiplying its speed by
the time it takes to make the trip.. Three different qualities (distance, time,
and speed) are involved here, all with different units. You can multiply the
area of a box-top (square inches) by the height of the box (inches) to get its
volume (cubic inches); again three different qualities and three different units
being involved.

The questions now are: What quantities may you multiply together
numerically? What units may the quantities have? And what units does the
product have? The first of these questions must be answered for each partic-
ular case and will be touched ".on more thoroughly in Section 5 below. In
general there are no restrictions at all on what quantities may be multiplied
together. (That makes things easy, doesn't it?) The two questions about
units are settled by the following

. Rule: You may numerically multiply two quantities whether or not they
have units or whether or not the units are the same. You attach to the product
a new unit whose name is formed by joining the names of the two individual
units together with a hyphen, either one first.

There are a few conventions used generally in connection with this rule.
For one thing, only the second member of the compound name is made plural.
When both quantities have the same unit, the compound unit is usually named
by using the word "square" in front of the common unit. Thus the area of a
rug measuring three feet by two feet is usually given as "6 square feet," though
there is nothing logically or grammatically wrong with calling it "6 foot-feet. "
If only one of the two quantities has units, the units of the product are the
same as the units of this quantity.

You might now protest that we went to a lot of trouble to explain and
justify the rule for adding quantities and even scolded the person who wanted
to memorize the rule as a substitute for understanding it. Why now do we
give this new rule for multiplying without any justification, so that the only
way anyone can learn it is to memorize it? You have a right to be given an
answer to this question'..

You will remember that adding two quantities is very much a common-
sense process. You can add two herds of sheep together and obtain the num-
ber in the combined herds by adding the numbers for the individual herds.
You can do the same with baskets of apples or gallons of cider. Under the
proper conditions, you can do the same with lengths of sticks, intervals of
time, weights of rocks, etc. Combining two portions of the same quality,
as we said before, is almost an intuitive process that yields a larger portion
of the same quality; that is,. the numerical sum. We saw, however, that condi-
tions have to be proper. If the sticks are not laid end-to-end, if the time
intervals are not consecutive, if we add the weight of a half a pile of rocks to
the weight of the whole pile -- the numerical sums may not have as much
meaning as we might at first think. The truth is that one has to be a little
careful even in this intuitively "simple" process.
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Multiplication, however, is not so intuitive. There are times whenmultiplication is merely a compact way of stating w long addition. But thereare times (in fact most times) when multiplication is not a kind of addition.In these cases, we have no immediate meaning to attach to the idea of theproduct of two quantities, and we are free to attach to it whatever meaningwe wish that is consistent with experience. Each case of multiplying twophysical quantities together has to be examined separately, as we shall seelater, in the light of such experience. Since there is no automatic, common-sense, intuitive meaning to the product, there is no automatic name for theunits in which the product is measured. We can call it what we want. Mostpeople feel that it is more reasonable to name the unit of the product after
the names of the things multiplied together. But there is absolutely no logicalreason why this should be done (and in fact it is not always done),. it is. onlyconvenient to do so. Thus the rule for addition is a logical one and wascarefully explained. The rule for multiplication cannot have a logical basisand is only a cnnvenience that has to be learned. The situation here is some-what similar to, say, your eating habits. You have two rules for eating: youwash you hands before eating and you wash the dishes after eating. Why notthe other way around? There is a very good logical reason for washing yourhands before the meal, but a much less sound one for washing the dishesafter . The one "rule" is logical but the other is largely convenience.

The situation is :'similar with the process of dividing quantities. Here isthe

Rule: You may numerically divide two quantities whether or not they haveunits or whether or not the units are the same. You attach to the quotient a newunit whose name is formed by writing first the unit of the dividend (numerator),then the word "per", then the unit of the divisor (denominator).

Again, there are conventions to be observed. Frequently it writing,the word "per" is replaced by the diagonal slash "1", just like a fraction Lar,which in fact refers to dividing the upper or first unit by the lower or secondone. In speech, the slash is read as "per". Only the first unit named (numer-ator) is made plural. When both quantities have the same unit, the quotientis a quantity without units -- that is, a pure number. (Very often, however,one sees units; like "feet per foot" or "gallon per gallon", used to emphasizethe units from which the quotient was derived, though this is not necessary. )When only the numerator has units, the quotient has the same units. Whenonly the denominator has units, the quotient has the same units with the word"per" in front. In this case, the name is always singular.

Notice that the person who says "You cannot multiply or divide one quan-tity by another unless they are both numbers" is no more (or less) right thanthe person who says "Oh yes you can. " There is obviously nothing to stop youfrom multiplying the number of one by the number of the other. The importantquestion is: is it worth doing? We answer this question this way: if the producthas meaning, it is worth having done it. Physical science is much concernedwith discovering when such arithmetical operations on quantities have meaning.
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You have discovered that dividing the length of the diagonal of a square bythe length of its edge has meaning, and is therefore permissible.

These rules are far less formidable than they may look. You onlyneed a little practice to get the idea. Here are some questions to practiceon:

If an automobile can travel 180 miles on 10 gallons of gasoline, what do
you get when you divide 180 miles by 10 gallons?

If you can travel 24 miles on your bike in 3 hours, what do you get when
you divide 24 miles by 3 hours?

If 55 gallons of paint weighs 495 pounds, what do you get when you divide
495 pounds by 55 gallons?

If 15 1/2 pounds of hamburger costs 620 cents, what do you get when youdivide 620 cents by 15 1/2 pounds?

If an airplane needs 1350 gallons of gasoline to travel 135 miles, whatis the meaning of the quantity 1350 gallons divided by 135 miles? What is themeaning of 135 miles divided by 1350 gallons?

The glass for a large telescope mirror has to be cooled very slowly. Inone case the glass was cooled from 800 degrees to 500 degrees in 30 days.
What is the meaning of dividing 300 degrees by 30 days?

A man strings 15 tennis rackets in 5 days. What is the meaning of
15 divided by 5 days?

A garden is 30 feet by 40 feet. What is the quantity 30 feet time 40feet and what does it mean?

Thirty marbles cost 15 cents. What is the meaning of 30 divided by15 cents and what is the meaning of 15 cents divided by 30?

An iron pipe 7 feet long weighs 28 pounds. What is the meaning of 7 feetdivided by 28 pounds? What is the meaning of 28 pounds divided by 7 feet?

A baseball player makes 72 hits out of 240 times at bit. What are the
meaning and the value of the quotient 72 divided by 240? The newspaperreports this batter as having a batting average of "300. " Where does this
number come from?

If you have not already done Experiment 8, now would be a good time todo it. Then come back and we will have some. more.

Points to Discuss in Class

How many significant figures are you entitled to in calculating the ratiosof circumference to diameter?

pa- Menvttarg.
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What are the units of the ratio, according to the rule?

Did you find that you got the same ratio (allowing, of course, for a little
experimental error) for every circle? Does it seem reasonable to you that
this ratio should be independent of what the circle is made of, who made it,
how thick it is, where it was made and measured, or anything else other
than that it is circular? Table I shows you that it is purely a property of
being circular that the ratio of circumference to diameteris always the same
-- at least for the circles you measured, and when the measurements are
madc in centimeters.

Did you find that the ratio changed when you switched to inches for the
measurements? When you switched to widgets? Does it matter what unite
you use to make the measurements?

According to the rule for units of a quotient, when the numerator and
denominator both have the same units, the quotient has none; that is, the
quotient is a pure number. The quotient, in other words, does not tell you
the units of the two numbers divided. Might this be because it isn't necessary
to tell, because you get the same result no matter what units are used? At
least you have shown experimentally that it doesn't matter for the units you
used -- centimeters, inches, and widgets. Did anyone inyour class find that
he got a different result for his invented unit? What does this show? Notice
that the fact that everyone in your class got the same ratio even when very
many different invented units were used does not prove that no one will ever
invent a unit for which the ratio will be different. This sounds like a hard
thing to prove, doesn't it -- that noone will ever find such a unit? Neverthe-
less we will prove exactly that at the end of this Unit!

The number Tr is a tremendously important number in mathematics
and physical science and elsewhere, too. The fact that it is the ratio of
circumference to diatalmok of a circle is only one of very many places where
it pops up. You will see a few more places as we go along. And, it is to
be hoped, you will see many more in your future study.

The value of77was given in the discussion following Experiment 3 to
fifteen significant figures. Of course, no one ever determined Ti this accur=
ately by experimental measurement. Even if you used a microscope and
super-ruler that could measure to 0.0001 cm, you would have to measure
a circle about six times the diameter of the earth to get this accuracy! How
then can 11 be determined so accurately? Simple -- you use some of its
other properties.

{If you like to play with numbers, here is another property of iT by which
you could compute its value to very great accuracy if you had the patience.
Multiply 4 x (1/2), and you will get 2. 00, which you know is much less than

. In other words, to get Tr, we would have to multiply 4 by something
much larger than 1/2. Very well, we will add something to the 1/2 and
try again. The thing we will add is 1/3: try 4 x D/2+ 1/3] . If you work
this out, you will find it comes to about 3.33, which of course is too large.
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We overshot the mark, so we will noW subtract a little off: try 4 x D1 /2 +1/3- 1/153. This comes to 2.93, which now is too stnall: We over shot the markagain, but were coming closer! So we add a little back on, this time adding1/35. We find that 4 x [ /2 + 1/3 - 1/15 + 1/35j is too big, but not verymuch and we are now closer to-1T than before. We can get still closer bysubtracting a little away again, this time subtracting 1/63. This time we findthat 4 x C1/2 + 1/3 - 1/15 + 1/35 - 1/63] is too small, but closer than ever.We must add a little back on. Continuing in this way we keep getting closerand closer toTr, one time too large and the next time too small, but alwayscloser than the time before.

The trick, of course, is to know exactly what next to add or subtractinside the parentheses. Obviously you cannot add or subtract any old thingyou please, and expect to get closer toTrevery time regardless of what youadd. (Of course, if we knew the value of-IT-ahead of time, we could always
tell what has to be added or subtracted. But remember that we do not knowits value beforehand. ) There is a special scheme to the series of fractions inthe parentheses.

E.To learn this scheme, notice first that every fraction has 1 for itsnumerator. The denominators of the fractions (after the first fractions 1/2)are 3, 15, 35, 63, etc. Do you notice any pattern in these numbers?Compare
this series to the series you would get if you increased each number by one.The new series would be 4, 16, 36, 64, etc. Do you see a pattern now? Thenew series is simply the squares of the even numbers" in their natural order.The next fraction to be added to the 1/63 last used above is 1/99 (99 is oneless than 10 x 10) and the next one after that to be subtracted is 1/143
(12 x 12 = 144). And so on.

LYou might want actually to work out way. You would get Tr correctto two decimal places by taking six fractions, and correct to three decimalplaces by taking sixteen. The worksheet for . Experiment 9 will help you tosystematize the work. Perhaps if there is a company that uses an electronic
computer near your school, your teacher might arrange to have you visit thereand have it compute 7- for you from this series using perhaps 150 fractions inthe parentheses. This would give ji correct to about 5 decimal places. Themachine could do this for you very quickly, whereas it would take you with apencil and paper many days. Actually this series is a very slow way ofcomputing 7, though a very simple one. There are very much faster andbetter ways to do it, though much more complicated. It is hard to see how thesquares of the even numbers could be related in such an elegant way to theratio of circumference to diameter of a circle. It is one of the beauties ofmathematics that such relationships exist and can be proved to be true.]
4. Symbols

The number 12 is a constant, isn't it? But 3 x 4 is also 12, and so is6 x 2, and so is 24/2, and so is 7 + 5, and so is 17 - 5, and so is OW. Since12 is equal to all these ( and many more, of course), is 12 therefore a temporaryconstant -- or even a variable? The answer is no. You must be careful to

't;e2:04424-4.1.:90gtik
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distinguish between the v,Aue of a number and the name of the number. For
instance, "twelve" and "12" are different names for the same thing; in French
they call it "douze, " in German "zwOlf, " and in English we also sometimes
say "dozen"; -- but they all mean exactly the same thing. In the same way
"3 x 4" is still another name for "twelve," and so is "7 + 5, " and so is V 144.
They are all merely different ways of writing exactly the same number.

Similarly, consider a certain rock weighing 12 ounces. The weight of
this rock is also 3/4 of a pound, or 0. 75 pound, or 341 grams. Does the fact
that the weight of the rock has all these values mean that the weight is variable?
No. Again "12 ounces, " "(L115 pound, " and "341 gkeienb" axe simply edfferent
ways of saying exactly the same thing -- different languages, if you please.
Be very careful to distinguisi between a quantity itself and its name. The
quantity, if it is fixed, has o y one value, but it may have many different
names. One kind of name e pecially convenient to use for a quantity is the
sort of name called a "symb 1. "

When one thing is used
called a symbol. You have
you may not realize it. Tak
four-legged animal that bark
refer to this animal orally b
have any trouble confusing th
you pronounce the word "dog.

to represent another thing, the first thing is
een using symbols almost all of your life, but
for instance a dog. A dog is a certain kind of

wags its tail, and likes to be petted. You
pronouncing the word "dog, " but you do not
animal itself with the sounds you make when

" The sounds are a symbol representing the
animal. In the same way, certain marks on a piece of paper -- the marks
look like this: d o g -- are symbol for the animal, but are not the animal
itself.

You can see how useful symbols are. Wouldn't it be troublesome if
everytime you talked about your dog you could do so only by lifting him up,
pointing to him, and saying "ugh"? Imagine how it would be if :you had to do
that with every thing you talk about. All of your speech is really the use of
symbols, and of course it takes a baby a long time to get used to using the
same symbols that other people use so they can understand him. In the same
way, when you learned to read you had to learn a whole new set of written
symbols before you could understand what you were reading.

Physical scientists find it very useful to use symbols in addition to the
ordinary ones used in speaking and writing. Most of them are just new and
easier names for the quantities they deal with. For instance, you have
already seen that when you divide the length of the diagonal of a square by
the length of its ;dge, you always get the same number. We could write the
sentence

(Length of diagonal) (divided by) (Length of edge) (always gives) (same
constant).

where each separate idea in the sentence is put in its own parentheses.
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Now let us rewrite the sentence using symbols. Nouns first: Instead of
writing "Length of Diagonal" (which is already a symbol anyway!), we will
write simply "Dli: Instead of writing "Length of Edge 'e we write "El'. We
have already used as the symbol for this particular "Same constant, " and
we might as well continue doing so. The sentence now looks like this:

D divided by E always gives a.

Next, we will agree that "always gives" will be symbolized by "=" and "dividedby" by "/". The sentence then reads

D/E = Ji

You should not let this strange-looking sentence trouble you. It may look
formidable or foreign, true; but perhaps you can remember the day that the
sentence you are now reading looked strange and undecipherable. The sentence"D/E = J" is merely written in a foreign language, but it is a language that is
very easy to learn.

You have used symbolic statements like this before, of course, but it is
important that you understand the exact meaning of such a sentence. (Peoplealso call them "equations" or "formulas" but they are really only sentences. )
Perhaps the most difficult thing about such a sentence is the meaning of "=!'
To say that one thing equals another is not always exactly clear in meaning
Fortunately, however, when dealing with quantities, the meaning is quite
exact. Two quantities can be equal only if they are quantities having the same
magnitude and the same units -- only, in other words, if they are no more
than different names for the same quantity. This statement is worth repeating:

In an equation involving physical quantities, the two sides of the equation
are merely different names for the same quantity. This means that the whole
left-hand side of the equation (no matter how complicated it may look) and the
whole right-hand side are different names for the same quantity. Do you see
how fundamentally simple an equation is? An equation is nothing more than a
sentence that says that one quantity is merely a different name for another
quantity; that is, that the "two" quantities are really only one under different
names.

In the equation D/E = fi for instance, Si is the name of a certain number
which you learned how to work out. Experiment 6 showed you that DIE is
another name for this number. For what does "DIE" mean? It means the
quantity you get when you divide the variable D by the variable E. But D and
E are both lengths. For example, D might be 14. 14 cm and E might be 10. 00
cm. Then according to rule for dividing quantities, EVE is a quantity whose
number is 14. 14/10. 00 or 1. 414. The units of thisnumber may be found by
the rule: since D and E both have cm as their units, DIE has no units, or is
a pure number. Thus D/E is simply 1. 414 -- as is also 12-to the accuracy
of our measurement. That is, "D/E" and gaze merely different names for
the same quantity.
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Write an equation like the one above for the relationship between the
circumference of a circle and its diameter, Use "CI! and un" .a .. .s symbols
for circumference and diameter. Is "C/D" an .other name for Tr? Does
your experiment tell you so? Does dividing C by D give a number without
units?

Just to show yourself how easy it is, try your hand at translating the
following sentences into symbolic equations. Use whatever you like as
symbols for the quantities involved.

1. If you lay two sticks down endecto-end in a straight line, the total
length can be found by adding the lengths of the right-hared and left-hand sticks.

2. The average speed of a car during a trip may be found by dividing the
distance traveled by the time for the trip.

3. The cost of a pile of golf balls is the price of one ball multiplied by
the number of balls in the pile.

4. The radius of a circle is half its diameter.

Also, make up formulas to show the relationship between

5. The perimeter of a rectangle and, its length and width.

4 The perimeter of a square and the length of its edge.

7. The weight of a pile of golf balls, the weight of one golf ball, and
thenurnber of balls in the pile.

8. The cost of a pile of porkchops, the weight of the pile and the cost
per pound.

5. Multiplying and Dividing

Of course you know how to fikatiply two numbers together and how to
divide one number by another. In fact you are probably quite skillful at it.
Don't let the title appearing at thehead of this paragraph make you think you
are going to have to go through all that again. Instead, the present section
will try to tell you something about what multiplying and dividing mean. First
-- multiplying.

It is easy enough to see what is meant by multiplying two integers together.
Integers, you remember, are the numbers you use in counting -- like 2!;ero,
one, two, seven, forty-three, and one-hundred-twenty-one. But there are
also numbers that are not integers but lie between two consecutive integers
like 6 1/2, 14. 712, and What consecutive integers does each
each of these lie between?



If you multiply two integers together -- say 6 and 7 -- the product is
defined as that number which you would get if you add 7 and 7 and 7, etc. ,
six times. And it happens, as you know, that adding 6 and 6 and 6, etc. ,
seven times gives you the same result; that is, multiplying of integers is
commutative. Since you obviously can do this with any two integers (although
with big numbers it may take a lorg time to do it), there is no trouble with
the meaning of multiplying integers. You know, too, that whenever you multi-
ply one integer by another, the result has to be an integer.

Also when you multiply a non-integer by an integer -'- say 6 x 7 1/2
you say that the product must be 7 1/2 + 7 1/2 + 7 1/2, etc. , six times. This,
too, you can do for all cases.

The trouble starts when you try to multiply numbers that are not
integers; for instance, 7. 5 x 6. 3. The question here is not "How much is
7. 5 x 6. 3 ?" Before we can say how much it is, we must first decide "What
does 7. 5 x 6. 3 mean?" We have agreed on what is meant by multiplying two
numbers of which at least one is an integer. We have not yet said what
multiplying means when neither is an integer. But therq,is really an even
more basic question than that. One way to phrase the more basic question
comes from realizing that "7. f.: x 6. 3" cannot mean 7. 5 + 7. 5 + 7. 5, etc. ,
6. 3 times. Thus the truth is that "7. 5 x 6. 3" doesn't mean anything until we
say what it means. Since "multiplying" has so far been defined only when at
least one o.. .ie factors is an integer, we are quite free to make multiplying
numbers other than integers mean anything we want. The most basic question
then is "What do we want multiplication of two non-integers to mean?"

When we look at the matter this way, we can see that two requirements
would be desirable if we could meet them. First, we would like the product
of two non-integers to mean something useful -- else why bother to define it
in the first place? Second, since we know how much are (7. 5 x 6) and (7. 5 x 7),
we would like (7. 5 x 6. 3) to lie between (7. 5 x 6) and (7. 5 x 7) -- simply because
6. 3 lies between 6 and 7. And we would like (7. 5 x 6. 3) and (7. 5 x 6. 2) and
(7. 5 x 6. 4) to be defired in such a way that (7. 5 x 6. 3) lies between the other
two. Iniact, (we're going to use symbols now) if G is ani number greater
than 6. 3 and L is p./5 number less than 6. 3, we want l!limes" to be defined
in such a way that (7. 5 x 6. 3) is more than (7. 5 x L) but less than (7. 5 x G).
And of course tic same kind of wants apply to multiplying any non-integers
at all.

As you already know, the way you learned long ago to multiply 7. 5 x 6. 3
does satisfy the desire that (7. 5 x 6. 3) lie between (7. 5 x G) and (7. 5 x L).
The kind of multiplication ycu know therefore does satisfy the second desire.
Does it satisfy the first desire -- that it be useful?

This question can only be answered by experience, and experience shows
that the kind of multiplying you know is very useful, indeed. In Experiment 3,
for instance, we used the rule that the a ea of a rectangle can be computed by
multiplying its. length times its width. For that purpose, then, the kind of
multiplying that you already know is useful. The fact is that that kind of multi-
plying is found to be useful in numberless other cases, too. This usefulness
tells us that the kind of multiplying that you know is an operation worth giving a
name; we call it "multiplying. " We represent the operations you have to go
through to multiply one number by another by the "times sign", x.
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But notice that in physical situations, it often happens that two quantities
pop up. Does it follow that multiplying them together will giv.. as a useful
product? Only experiment can answer that question. Physical science is
founded on experiments that show us when it is meaningful to multiply two
quantities together and when to do many other things with quantities.

Once we have set led on what multiplying means, dividing follows auto-
matically. For instance, you know that (6. 3 x 7. 5) is 47. 25. But suppose
you didn't know that. Suppose you wanted to know what number you have to
multiply by 6. 3 to get 47. 25. You say to yourself, "Surely there must be
some number which, when I multiply it by () 3, gives me 47. 25. What is that
number?" We will lay aside the question -- -egretfully, because it's an
intriguing question -- "Why must there be such a number? Maybe I only wish
there were one and there really is no reason to believe that it must exist. "
We will lay aside this question and assume that it does exist.

Now we will use symbols again. We say "There is a number that gives
47. 25 when you multiply it by 6. 3. We don't know what the number is, so we
will call it Q. Then, whatever Q is, it has to be true that

6. 3 x Q = 47. 25. "

Furthermore, whatever Q is, it has to be found by doing something or other
with the two numbers, 47. 25 and 6. 3. This "something or other" is called
"division. " Just as we represent the operation of multiplying by the "Times
sign, " we iepresent division by the "fraction bar", /. For instance,
"6. 3 x 5" means "the result when you multiply 6. 3 by 7. 5. " So also,
"47. 25/6. 3" means "the result when you divide 47. 25 by 6. 3. " But notice
one very important thing: division is not commutative. Although "6. 3 x 7. 5"
means the same as "7. 5 x 6. 3, " in division. "47. 25/6. 3" does not mean 1:1.13
same as "6. 3/47. 25. " Sometimes the fraction bar is written horizontally:

47.47. 25/6. 3 and --E7.
25

both mean "47. 25 divided by 6. 3. "

Of course you already know how to carry out the operation of dividing one
number by another, but it is very important from now on that you now what
it means. It is especially important that you know the relationship between
multiplying and dividing. The relationship is very simple, but you must know
it.

First, notice that 47. 25/6. 3 means the rest when you divide 47. 25 x 6. 3.
That is, 47. 25/6. 3 is one number, though it may look like two. Divide 47. 25
by 6.3 to see what you get; you ought to get 7. 5. In other words, "47. 25/6. 3"
and "7. 5" are merely different names for the same number. may write

47. 25
= 7. 5,

6. 3

Wk.
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where the equals sign, as before, means !'is merely another name for. " Now
let us take this number and multiply it by 6. 3. This we can do, because we
know how to multiply two numbers. Since "47. 25/6. 3" and "7. 5" are merely
different ways of writing the same number, we of course have to get the same
result whether we multiply 47. 25/6. 3 by 6. 3 or multiply 7. 5 by 6. 3, that is,

47* 25 x 6. 3 = 7. 5 x 6. 3
6.3

Now keep in mind that 47* 25 x 6. 3 is one number and 7. 5 x 6. 3 is also one
number. Moreover, thhly. Ire the same number. Multiply 7. 5 x 6. 3 and you
will get 47. 25. In other words, 47. 25 is still another name for the number
that may also be written "7. 5 x 6. 3" or 25467* x 6. 3. " That is,

. 3

47. 25
6. 3 x 6. 3 = 47. 25

Look at this last expression. The thing on the left hand side of the
equals sign means "The number you get when you divide 47. 25 by 6. 3 and
then multiply the result by 6. 3. " But this result, says the thing on the right
hand side of the equals sign, is 47. 25. In other words, if you divide 47. 25 by
6. 3 and then multiply the result by 6. 3, you get back unchanged the 47. 25 you
started with.

The result is true for any numbers at all. Let's use symbols. Suppose
that A and B are any numbers at all. You know how to divide one number by
another, and so you could calculate A/B if you knew what numbers A and B
were. Since you don't know, we will say that you would get Q if you carried
out the division. That is,

A

and A/B and Q are merely different names for the same number. But remember
also that "dividing A by B" means "finding that number which when multiplied
by B gives A. " In other words, Q is the number which when multiplied by B
gives A; or Q x B = A. Now we multiply both sides of the equations above
by B. The products have to be equal, because we are really multiplying the
same number by B. It then looks like this:

A"gxB=QxB

Remember that c:-.1 are entitled to say these two things are equal because _A
and Q are the sane number; and if we multiply that number by B, we get B
only one result, whether we call the result "A x B" or "Q x B. " But Q x B = A,
you remember; be absolutely sure you know B why!
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That is, A is still another name for "1-.- x B" and "Q x B. " Therefore
B

A
x B = A .

In words: If you divide any quantity whatever by a second quantity, and then
multiply the result by the same second quantity, you get the first quantity
back again unchanged.

This is a very important conclusion. Notice that we proved it from the
definition that A/B means a number (call it Q) such that B times Q is A. We
will have much occasion to use this property that "dividing is an operation
that undoes what multiplication does. " Be sure you understand that this last
sentence (the one in quotation marks) is True not merely because somebody
says so. Notice that we proved it must be true for any numbers, because
we never committed ourselves as to what numbers A and B are. Then
starting with the definition of what dividin6 means (what does it mean?), we
showed that the quoted sentence has to be true.

Let one number (say A) be divided by another (say B), to produce the
quotient A/B. Then let A/B be multiplied by a third number, say C. We would
write the final result.

A
x C.

Now, let A be multiplied by C to give the number A x C. Then let ti,his rep,114-,
be divided by B. We would write the final result,

A x C
B

You probably already know that you get the same result this time as the fi:.:s'.`;
time. That is, it doesn't matter whether you first multiply and then divide,
or first divide and then multiply. In other words,

A A Cx
B

C
B C.

"A "A x C "Since x C and are different names for the same thing, it doesn't
matter which one you write. We usually write it the second waykexctuse it
seems to look nicer. But remember when you have to work out it
doesn't matter whether you first divide A by B and then multiply by C; or
first multiply A by C and then divide by B; or first divide C by B and then
multiply by A. The same idea holds even when you have a more complicated
fraction like A x B x C

Fi. To work out this fraction you may do any of the
multiplications or alvisons in any order you please. But the order is impor-
tant if orne of the operations are addition or subtraction.
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Why don't you take some complicated fraction like 3 x 11 x 14
multiply and divide in different orders to satisfryourselakatYroii ao always
get the same result? Carry the division to three decimal places for each
trial.

6. Solving Equations

"We studied all about squares and their diagonals today, " Torn told his
brother Jerry when he got home from school. "We found that, for any square
at all, the ratio of the diagonal's length to the edge length is always the same
number. "

"Oh. Well how long is the diagonal of a square?" asked Jerry.

"It depends on the size of the square, " Tom replied.

"But you said the length of the diagonal was always the same for any
square all, " Jerry said.

"No, i diatit. I said the ratio of the diagonal to thelength is always the
same. The ratio is the square root of two. If you have a big square, " Tom
went on to explain, "tne edge and diagonal are both big. If you have a little
square, the edge and diagonal are both.ilitt-le. But whether you have a big
square or a little one, the ratio of diagonal to edge is always the same. "

"Oh, I see, " said Jerry, beginning to get the idea. "If you have a
bunch of different squares, you also have a bunch of different edge-lengths
and diagonals. But if I take any one square and divide its diagonal by its
edge, I always get the same number, no matter which square I choose. "

"Right, " Tom, assured him.

"Then if I have two squares with different edges, " Jerry said, ".the
diagonals have different lengths. I can see that. "

"Right again. If the squares have different edges, the bigger one has to
have the bigger diagonal. You see, if they had the same diagonal, then
when you divided the diagonal by the bigger edge you would get a smaller
ratio than when you divided the same diagonal by the smaller edge. And
that's not allowed -- you must always get the same ratio. The only way you
can get the same ratio is if the square with the bigger edge also has the bigger
diagonal. "

"Okay, " said Jerry. "Then if a square has a certain edge, there is
only one diagonal it can possibly have in order to make the ratio exactly
If the diagonal is bigger than that one thing, then the ratio would be bigger
than f and if the diagonal were smaller than that one thing, the ratio would
be less than Am I right so far?"
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"Yes, " Torn answered, not sure what was coming next.

"A square with a certain edge can have only one certain value for its
diagonal, " Jerry repeated. "Then if I tell you the edge of a certain square,
you should be able to tell me its diagonal, shouldn't you?" he asked.

Torn hesitated, then admitted, "I guess I ought to be able to, now that
you remind me that a given square can have only some certain length for its
diagonal. But I don't think I see how to do it. "

Tom and Jerry were right, of course. If you fix the edge length of a
square at some definite value, the diagonal length is also automatically fixed,
whether you want it to be or not. You can think of all the possible squares in
the world. Then when you ask "What is the edge length of a square?", immedi-
ately you realize that it can be any length at all, depending upon which square
you are talking about. The edge length of a square (any square, not some
particular one), in other words, is a variable. The diagonal length of a square
is also variable, because you can find a square having any length you please
for its diagonal. You are free to choose, out of all possible squares, any
edge length 07 any diagonal length you please, But you cannot do both. Once
the edge length is chosen -- once you select some particular value for the
edge length -- the diagonal length is fixed whether you like it or not.

Now let's see whether we can help Torn, who had a feeling he ought to
be able to solve the problem his brother posed, but wasn't sure how to do it.
Suppose we have a square whose edge length is 8. 73 cm. How long is its
diagonal? First, we admit from the beginning that we don't know (yet) how
long the diagonal is; but since we want to talk about it, we'll give it a. tempor-
ary name -- say D. Now when you divide D by the edge-length, 8.73 cm, you
must get 1. 414. (We have three significant figures in 8. 73 and therefore cn.rry,Sito four significant figures to have one extra significant figure for safety. )
We thlrefore know that

D = 1. 414
8. 73 cm

w here "D/8. 73 cm" and "1. 414" are merely different names for the same
number. Next, we multiply both sides of this equation by "8. 73 cm." ,S4-Ice
the two sides are the same number and we are multiplying both by the same
quantity, the results must be equal. Hence

D
8. 73 cm x 8. 73 cm = 1. 414 x 8. 73 cm

Look at the left-hand side of the equation -- do you see what we have done?
The left-hand side says "Take D and divide it ..by 8. 73 cm and then multiply
it by 8.73 cm. " By this time you know that multiplying and, dividing some-
thing by the same quantity leaves that something

x 8. 73 cm' is just another name for D.
8-13_ cmmay repiace the'left hand side by its other name

D = 1. 414 x 8. 73 cm.

unchanged. Hence
So in the equation above,' v.

D, and we then 'have



But this equation tells you that the thing we didn't know, D, is equal to
1. 414 x 8. 73 cm, or, if you multiply it out, 12. 34 cm. Now Tom knows how
to calculate the diagonal of a square if he knows the edge. Do youe'

If we wanted to, we could carry out the whole chain of reasoning in the
preceding paragraph using symbols only. Like this: It is always true that

where D and E are respectively the diagonal and edge lengths of a square.
Since .52- has no units, you know from the rule for dividing quantities that
D and E must be expressed in the same units -- cm, feet, miles, it doesn't
matter as long as they both have the same units. We can multiply both sides
of this equation by E, getting

x E = j2 x E.

The left-hand side, of course, is just D, so finally

D = Ji x E.

So, for any square, you can calculate the diagonal by multiplying the edge
by . D will then be in the same units as E.

When we have an equation like D/ E = J2, and manipulate it in such a
way that we end up with an equation that has D all by itself on one side, we
say that we have "solved the equation for L. " Much of physical science deals
with the solving of equations for things, like D in Tom's problem, that one
feels ought to be determinable, but are buried in an unsolved equation. You
will see many examples of this as we go along. Here are a couple more.

Suppose you know the diagonal of a square; can you then calculate what
the edge must be? For any square, D/E = ft. This is an equation, and we
would like to solve it for E; for if we had the equation in the form "E=something
or other, " then we could calculate the "something or other" and we would
have E. Can this be done? Well, let's see.

Start with DI E =

Multiply both sides by E

Drop the E's on the left side
because x E is merely D

Divide both sides by if



-50-

Drop the S-2's on the right
side because x 4 is
merely E

Write the equation in reverse,
since if X = Y, then surely
Y = X.

E =

And there you have it! To get the length of the edge of a square, you need only
divide the diagonal by

Do you see the idea behind this method of solving an equation? Let's try
it once more, this time using symbols entirely. Suppose that A, B, and C are
three quantities, and it is known that A/B = C. Solve the equation for A. You
think like this:

1. I have A
B C

I want the A all by itself, so I have to get rid of the B that appears on
the left. I may not just throw the B away, because I could not then
be sure that the equation left would still be true. But I know that the
equation would still be true if I do the same thins to both sides. Is
there anything I can do to both sides that will get rid of the B on the
left? Sure there is:

2. Multiply both sides by B A xB=CxB
and now I can

3. Cross out both B's on the left A = C x B
The A is now by itself and the equation is solved.

You notice we have now many times made use of the fact that an expression
like x Q or (Where P and Q are numerical quantities) may be
simplified by noticing that any time a quantitiy, P, is both multiplied and
divided by the same quantity, Q, the first quantity, P, is left unchanged. This
fact is often expressed by saying:. when any quantity appears, alone or as a
multiplier, in both the numerator and denominator of a ".raction, you may can-
cel out that quart4ty without changing the value of the fraction.

Take the equation C/D = 0, and see whether you can (a) show how to
compute C if D is known, and (b) compute D if C is known.

In general, you can solve an equation only if there is only one thing in it
that is not known. You could not, for example, find the diagonal of a square
from the equation DIE = .12 if you didn't know the edge.

Now you need some practice in solving equations. Here are some for
you to work on. In all of them, remember the units.



The area of a rectangle of length L and width W is A = L x W. Solve thisequation for L and also solve it for W. Then find how long a strip of paper
has to be if it is 2. 54 cm wide and has an area of 86. 2 square cm.

The area of a triangle is A = 1/2 x B x H, where B is the length of itsbase and H is its altitude. Solve this equation for 'B and also solve it for H.
Also show that for any triangle, B x H/A is always the number 2. What mustbe the altitude of a triangle enclosing 32. 7 square cm if its base is 4. 96 cmlong?

The area of a square is given by A = E2, where E is the length of its
edge. Solve this equation for E. (Here is a hint: What is the square rootof E2? That is, what must you multiply by itself in order to get E2?) If a
square has an area of 2. 56 cm, what is its edge?

The volume of a rectangular parallelopiped (this is the official name fora thing shaped like a square-cornered box (like a cereal box, say); is given bythe equation V= LxWx T, where L is the length, W the width, and T the
thickness. Solve this equation for T. How thick must a slab of wood be if it
is 9. 24 cm long and 4. 14 cm wide and has a volume of 46. 3 cubic cm?

If a car travels at a uniform speed, S, then the distance it can travelin time, T, is D = T x S. Solve this equation for T and then compute how
long it will take a body moving at a speed of 6. 71 cm per second to travel
88. 4 cm.

The area of a circle, A =7R2, where R is the radius. Solve this equa-
tion for R and compute the radius of a circle whose area is 628 sq. cm. Use

= 3. 14, which is correct to three figures.

The price of a pile of hamburger is given by P = C x W, where C is the
cost per pound (in cents) and W is the weight in pounds. What are the units of
P? How many pounds of Hamburger could you buy for 248 cents if the cost is
62 cents- per pound?

7. Once Again, Lightly:

When one is investigating physical quantities, he soon learns that some
quantities may change in value while others keep always the same value. An
electric train running around a track, for instance, may speed up or slow down,
so that its speed is a quantity wiiose value changes. Such a quantity is called
a variable. The weight of the train, on the other hand, remains the same whileit runs over the track, and its weight is therefore a quantity whose value does
not change. Such a quantity is called a constant.

One also finds that some constants, though their values remain the sameduring any one investigation, may change in value from one investigation to
another. The weight of the elt.,-(:tric train, for instance, may remain unchanged
in the incident mentioned above, but you know very well that the weight of atrain can be changed. Such constants are often called temporary constants.
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They are really variables whose values are only temporarily unchanging. On
the other hand, some constants are quantities whose value never change. Such
a quantity is the ratio of circumference to diameter of a circle, whose value
for any circle whatever, is alway3 Tr.

Just as one may do arithmetic with numbers, it is permissible to do
arithmetic with quantities that are not numbers, One may add and subtract
quantities only when they are measures of the same quality -- length and length,
for instance, or weight and weight. But one cannot add length and weight, or
temperature and time. Adding such quantities is forbidden, not by law, but
by the simple fact that the sum of two unlike qualities seems to have no meaning.
The sum of two quantities is another quantity of the same quality as the things
added -- length plus length gives a length, for instance. The numerical part
of the sum of two quantities can be obtained only if the two quantities added
have the same units; the numericalpart of the sum is th:n identical with the
number-sum of the numerical parts of the two things added.

Quantities may be multiplied or divided, however, regardless of the units
they have. The product (or quotient) of two quantities is a new quantity that
measures a quality which is in general different from the qualities measured
by the two things multiplied or divided. The units of the product (or quotient)
are therefore different front.these.of the thing'; multiplied or divided. Being
"new" quantities, logic says you may give their units any name you please;
but convenience (so that people can talk to and understand each other, for
instance) says that it is better to have rules that tell how to form the names
in a uniform way.

It is important to distinguish the name of a quantity from the quantity
itself. Thus a certain given stick has a certain length which is the same
quantity to everybody. But one person may give this quantity the name of
"36 inches", another may name it "3 feet", still another may name it
"91. 5 cm. " These are all different names for the same quantity. When the
numerical measure of a quantity is unknown or variable so that its numerical
value cannot be stated, it is often convenient to give it a name not involving
numbers. Such a name is called a symbol -- as the quantity representing tie
length of the stick above, either because it is unknown or changing, might
be named "L".

When a quantity has two differen.. names, a statement giving these two
names is called an equation. The two names are called "sides" of the
equation and may involve symbols and combinations of symbols as well as
nuiabers. Using rules derived 'by logic from definitions, it is possible to
transform an equation into her equations all of which are, by logic, known
to be true. When such a t' ;formation is carried out in such a way that a
symbol which originally wa., ..lied in a combination now stands by itself as
one side of the equation, the equation is then said to be solved for that symbol.

The body of 'rules that tell how equations may logically be manipulated
belongs to mathematics. Physical science consists of firug..n equations to be
manipulated and discovering the meanings of the new equations so obtained.
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Further Classroom Discussion

Barbara measures a certain stick and later David measures it too. Pete looks
at the stick and sees that it has a certain length. He asks Barbara how long it
is, and she tells him 25. 5 inches. Then he asks David who tells him 67. 3 cm.
Pete can see that the stick has only one length, yet Barbara and David gave him
different answers. What is the trouble?

According to the rule given in Section 3 of this unit (which you also
learned long ago anyway! ), when you add two quantities they must be in the
same units. What can it mean, then, when you are told that a certain base-
ball player is "six feet and two inches" tall? Doesn't this mean you are adding
six feet to two inches? What about the label on the can of sauerkraut that says
it contains "two pounds and three ounces"?

The most natui 1 units of area are those formed by multiplying a length-
unit by itself, like "foot-feet" or "centimeter- centimeters. " (These, of course,
are usually called "square feet" and "square centimeters. ") The least natural
are those made up out of thin air, like acre. What would the area unit, the
inch-foot, be?

Similarly with volume. The cubic foot (or "foot-foot-foot") and the cubic
centimeter (or "centimeter-centimeter-centimeter") are the most natural and
the gallon and bushel the least. Conservationists often use the "acre-faot" to
tell the volume of water in a reservoir or lake. What is an acre-foot?

Here is an English lesson for you. The unit of any quantity is a noun, and
the number of the quantity is an adjective. When the number is greater than
nne, the unit is put in the plural. Just as you say "three men" rather than
"three man", you should say "five feet" and "sixteen toxic. " It is improper to
say "That man is six foot tall" or "I need three ton of coal. " When the whole
quantity (number and unit) is used as an adjective, however, the unit is put
in the singular. Just as you say "There are two men on that bicycle, " but
"That is a two-man bicycle, " so also is it proper to say "I know a five-foot
quarter back" and "ten-ton truck. " When the unit is a compound, you pluralize
only the last member: "The reservoir holds 22 acre-feet of water. "

It is also improper to use the name of the unit for the name of the quality.
You do not say "What is your year?" when you mean "What is your age? ";
nor do you say "This stick has a bigger foot than that one", when you mean
"This stick has a bigger length than that one. " What did the automobile
engineer mean when he said "I bored out the cylinder in order to increase
its cubic inch"?

You can determineillie speed of a rifle bullet by measuring the length of
time the bullet takes to travel a certain distance and dividing the distance by
the time. If the distance is measured in feet and the time in seconds, what
units will the speed have? Ballisticians often express the speed of a rifle
bullet in "foot-seconds. " How should they express it?
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The speed of a ship is often expressed in knots. What is a knot?

Try this experiment. Get three bowls of water, one containing water as
hot as you can comfortably stand it, one containing water as cold as you can
stand it, and one at room temperature. Place one hand Li the hot water and
one hand in the cold water and leave them thE.:re for about 30 seconds. Then
quickly remove both hands and plunge them into the water at room temperature.
Make two judgements of the temperature of the water in the third bowl, one
by feeling it with your right hand and one by feeling it with the left. Do they"feel" the same temperature? Is the temperature of the third bowl then avariable?

A company was founded 35 years ago, and this year three of its employes
retired. Two had been with the company since it was founded and the °other
for 30 years. At their retirement banquet, the president of the company
commented that together they represented a century of service to the company,
Does it make sense tospeak of a century of service to a company that is only
35 years old?

You will remember in Experiment 8 how you showed that the ratio of
circumference to diameter of a circle was always the same, whether you
measured it in centimeters or inches or widgets. It looked as though the
ratio would be the same no matter what units you used. Of course you could
not prove this to be true even by carryin gut the experiment a milEon times
using different units each time and alw finding that the units made no
difference in the ratio. You could nev( be sure that the very next unit tried
wouldn't give a different ratio. (Notice, though, that you would have very
;wt-,11- sounded reason to believe it, even though you hadn't proved it. )

Suppose that the circumference and diameter were measured in centi-
meters, and found respectively to be C aid D. Then

Ratio for cm measurements = C
D

Now take some other unit of length, any at all. If this unit is a fixed amount
(what good would a unit of measurement be if it were not fixed in size?) then
certainly some number of them would be contained in one cm. This number
might be more or less than one, but it has to be some fixed constant. Call
this number N, just to give it a name, so that there are N of these units in
one cm. How many of these units will there be in C cm? How many in D cm?
-- if there N in one cm. The answers are respectively N x C and N x D, of
course. In other words, if the circumference had been .leasured in the newunits, since it measured C cm it would have measured N x C new units.
Similarly, the diameter would have measured N x D units. The ratio, circum-
ference/diameter, in the new units would then be

Ratio for new units = C x N
D x N
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Now notice that the rig',t-hand side of this equation is a name for the quantity
D C
C multiplied by N and then divided by N. By this time you know that the result
is simply unchanged. Then .2 is another name for -9---x N and we can writeD D D x N

Ratio in new units = C
D

where remember that C and D are the numerical measures in centimeters. We
have then shown that the ratio in centimeters is the same as the ratio in anyother units. Now you don't have to carry out that experiment a rri:Lllion times
and even then not eliminate the fear that the million-and-first one may go
wrong. You have proved that the ratio must be the same no matter what units
you use, as long as both circumference and diameter are me asured in the sameunits.
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Unit

Functions and Proportionality

1. What is a Functi ?n?

The idea of a function is one of the most basic ideas in all of physical
science, though you must not suppose that functions are confined to physical
science alone. While the notion of function is not at all a difficult one, it
might be best to grow into it gradually. Basically, functions deal with rela-
tionships between two (or more) variables.

First, you should remind yourself that you often run across cases where
two variables are related to each other. You are aware of such a relationship
when you say that one thing depends on another. We are particularly concerned
with relationships between quantities, however; that is, on one quantity's
depe.i.iing on another. Suppose, for instance, someone asked you how long
it takes for your electric train to run around a certain track you've laid out.
You would probably say "That depends ---", wouldn't you? Depends on what?
Well, the time it takes the train for one circuit of the fixed track depends on how
fast the train goes, doesn't it?

How long is the diagonal of a square? It depends on how long the side
is. You tan have any length at all for the diagonal, and any length at all for
the edge; they are both variables, if you consider all possible squares. Yet
once you have chosen a certain edge-length, then the diagonal length is fixed;
and this is what we mean by saying that the diagonal-length depends on the
edge-length. (Of course, the other way around, too. ) Or, if you have a
variable-speed train, you can have any length of time you want for circuiting
the track (at least between certain limits; there is a fastest speed you train
can travel and there may be a slowest speed too), or any speed you want. But
once you have chosen the speed, the time for one circuit is fixed; you no longer
have an choice. This is what you mean when you say the time depends on the
speed.

Or, suppose you were walking up a ramp. How far above ground are
you as you walk up the ramp? Well, it depends upon how far along the ramp
you've walked. Within certain limits, you can walk any distance along the
ramp you please, or you can be as high off the ground as you please. But once
you have chosen a certain distance to walk along the ramp, you will be as
high off the ground as that point brings you, and you have no further choice in
the matter.

How fax will this spring stretch if I hang a fish on it? It depends on the
weight of the fish. I can have any weight fish that I please, or can stretch the
spring any length that I please (within limits, of course). But if I choose a
certain weight for the fish, then I no longer have any choice about the spring
extension. Each weight has its own extensioi, whether I like it or not. Also
the other way around. If I choose to extend the spring by a certain amount,
then there is only one weight that will extend the spring exactly that much.
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Now the idea of a function is very simple. When one variable dependson another, the first one is said to be a function of the other. More exactly:when two quantities are so related that, as soon as one of them is fixed invalue, the other one is too, then the second one is called a function of the first.The function is the one that is automatically fixed by making a choice for theother. In the examples above:

The time it takes for an electric train to make one circuit of a giventrack is a func.'-ion of the train's speed.

The length of a square's diagonal is a function of its edge-length.

The distance you are above ground-level as you walk up a ramp is afunction of how far along the ramp you walk.

The amount by which a spring stretches is a function of how much weightis attached to it.

It is often (but not always) true that when one quantity is a function ofanother, the second is also a function of the first. This is the case witheach of the four discussed above.

Try to cite some other pairs of variables which are functions one of theother.

You might now go back to Section 6 of Unit II and read again the saga ofTom and Jerry. You will remember that Tom and Jerry had noticed that youcan have any length at all for the edge of a square, or you can have any lengthat all for the diagonal of a square. But you cannot have both at the same time.
Once you choose a certain value for the edge, the diagonal length is no longersubject to choice; it is fixed at some certain value whether you like it or not.The two boys then carried their thinking one step further. They said: if thediagonal of a square is fixed when I am told what its edge-length is, then Iought to be able to figure out the diagonal-length when I am given the edg-length.

What Tom and Jerry were saying is this: "The diagonal-length is a func-tion of the edge-length. If I actually draw a square with an edge - length yougive me, then the square will automatically adopt exactly the right diagonal-
length. If a square is clever enough to do this without thinking, then surelyI ought to be clever enough to figure it out without drawing it. Drawing itwould be "cheating" because that's really the same as having the square figureit out for me. "

We learned that, for all squares, the quotient, diagonal-length lividedby edge-length, is c.lways SZ. This we learned by experiment. Then bylogic we deduced that D = E x Si: Thus by a combination of experiment andlogical thought, we found a way of calculating the unknown diagonal-length hornthe given edge-length.
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There you have in a nutshell the whole goal of physical science. If youknow (or suspect) that some quantity is a function some other, try to find
some way to calculate the first quantity when the second one is given to you.For instance:

You drop a stone from the top of a tall building and notice that the longer
you wait, the farther the stone falls (until it hits the ground). You conclude that
the distance traveled by a falling stone is a function of the time of falling. Canyou find out how to calculate distance fallen when tim( )f fall is given?

You notice that Cie weight of a piece of copper depends upon the size of
the piece; that the weight of a piece of copper is a function of its volume.
Can you discover how to calculate the unknown weight of a piece having a
given volume?

You observe that the distance that a spring extends is a function of the
weight attached to it. How can you calculate the unknown extension of a
spring to which a given weight is attached?

You can see that the distance above ground attained by a p,..rson walking
up a ramp is a function of how far along the ramp he has walked. How can you
calculate the height when the distance along the ramp is given?

Now would be a good time to do Experiment 10. Afterward we will
have the usual

Points to Discuss in Class

How does the very nature of the experiment indicate that the height is a
function of distance along the ramp? Notice that once you chose a distance
there was only one height to measure corresponding to that distance.

What curious circumstance did you find about the ratios of height
divided by distance for the straight ramp (last column in Table I)? Within
the error of measurement, would it be fair to say that the ratio of height/dis-
tance is a constant for any one straight ramp?

What would you suggest doing on the first line where you had to divide
zero by zero? What d-os it mean to divide something by zero? To try to
see what it means, recall the definition of "dividing. " The quantity, A/B,
means that number (say Q) which when multiplied by B gives A. That is

A_ CI means that A= BxQ
B

whatever numbers A and B might be. Now suppose that B is zero. This
would mean that A/0 is the number which, when multiplied by 0 gives A.
That is

A = Q means that A = 0 x Q.
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Suppose first that A is not zero, Zero times any number is zero, isn'tit? Therefore, 0 x Q is zero regardless of what number Q may be. Hence
A, which is equal to 0 x Qy must be zero. But we supposed that A is not
zero. Now clearly A cannot be both zero and not zero, and something there-
fore must be wrong with our argument. What is wrong?

We started by supposing that A/0 is some number Q and A is not zer o;
and ended by finding that A is zero. Since this is not possible it must be that
our supposition is wrong. Now we supposed two things:

A is not zero

A/0 is a number (which we called Q)

Certainly there is nothing wrong 1.-.7ith making A anything we please, including
2, 17, 45. 9 or any other number not zero. There is nothing wrong with thefirst assumption. Therefore the second assumption must be wrong: A/0
cannot be a number if A is not zero. This is worth repeating:

When A is not zero, A is not a number.
0

This is a statement sometimes loosely quoted as "You can't divide by zero. "

Now suppose that A is zero. It still must be true (using the same old
definition of dividing that

A = Q means that A = B x Q.
B

If A and B are both zero, this last sentence becomes

0= Q means that 0= 0 x Q.
0

Now notice that the last equation is true for any Q at alt. Hence 0/0 may be
any number at all: it is not defined or determinable. This too is worth
repeating:

is not defined.
0

Since 0/0 is not defined by the process of dividing, you are of course free
to make it mean whatever you would like it to mean under the particular
circumstances where you find it occuri-ing.

What would you like "0/0" to mean on the first line of your Table I, inorder to make all the lines consistent? Now you can make the statement for
all distances, including zero: "The ratio of 'height above ground' divided by
'distance along the ramp' is a constant. " (When the ramp is straight!)
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This question arises: Can. you predict (that is, calculate without
measuring) the height above ground for a given distance along ramp? You
have .a suspicion that it Might be possible, because you ran into a similar
Situation before: You foUnd that the diagonal-length of a square is a function
of its edge length, and then found a way to calculate the diagonal-length when
you knew the edge-length. Can you calculate height when a distance is given?
Of course you can! Let H represent "height above ground" and let D represent
"distance along ramp. " Then from your experiment, you seem entitled to say

H
D some constant

For your ramp what is this constant? Take its value as the average of the
ratios in the last column of Table I. Place your value in place of "some con-
stant" in the last equation above and then solve Lie equation for H. Now you
can predict the height above ground that would be attained by walking along the
ramp any distance you please. Calculate the height above ground for a distance
along ramp of 15. 00 cm. Record this vale 3 on data sheet #2 of Experiment 10,
in the "Jox "Calculated value of H for D = 15.00 cm. "

Did you find the ratio for the crooked ramp ita Table II also constant? May
you for the crooked ramp write an expression like "H/D = some ccastant?
Notice that for the straight ramp you may write the expression

H =kxD

where k is some measurable constant; but for the crooked ramp you cannot.
You can easily calculate H when given D for the straight ramp, but you have no
way of doing that f-r the crooked ramp.

Now for both ramps, 'eight is a function of distance, isn't it? Why?
Because for any given distance along either ramp, there was always one and
only one height to measure. In the case of the straight ramp, however, we
found an easy way to calculate the function (height) from the variable (distance).
For the crooked ramp we have found no way to do this. For a straight ramp,
height is a known function of distance; for a crooked ramp, the height is an
unknown function.

Of course, to say that the function is unknown does not mean that it is
unknowable. It would be possible to write an equation, far more complicated
than H = k x D, for the crooked ramp, though it hardly seems worth doing.
Straight lines occur very frequently in the world, but a curve shaped exactly
like your crooked ramp does not occur often enough to make it worth studying.
The broad goal of physical science is to find useful relationships of this kind.
That is, the goal of physical science is:

(1) To recognize what physical qualities can be measured as quantities;

(2) To seek out those cases where two (or more) variables are so
related that one is a function of the other(s); and

(3) To express this function in the form of an equation.
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2. Functional Relationships

When one variable is known at least to some extent as a function ofanother, that information may be useful. How can it be communicated? Let'svisit Tom and Jerry again.

Tom said to Jerry "You know that ramp in our backyard? Well I made
some measurements on it yesterday and I found that as you walk up the ramp,
the height you are above the ground is a function of how far up the ramp youwalk. "

Jerry wasn't quite sure he knew what the word "function" meant, so he .asked, "Does that rnz...an that if I walk up the ramp a certain distance, then theheight I am above ground at that point is fixed by how far up the ramp I walked?"

"Yea, that's it exactly. "

"Well, I use that ramp every now and then myself, and it would be useful
to me to know how far above the ground I happen to be for any distance alongthe ramp. " Jerry got out his notebook and pencil, then said to his brother,
"I want to write this down. Tell me how i can know how far above ground I amfor different points on the ramp. "

Tom was prepared for this, because he made a table just like your Table I
in Experiment 10. He showed it to his brother, who looke at it carefully andthen protested:

"But wait a minute. This table is good for only 10 different points onthe ramp. Suppose I want to know how far above ground I am when I'm
standing at some distance not in your table?"

Tom was a little crestfallen. He had gone to some trouble to make
the table, was proud of it, and was happy that his brother might make useof his work. Now Jerry had picked on a serious defect in it. "I could goback, " he offered, "and measure another 10 points. Then you would be
sure to be near one of the entries in the table no matter where you stand. "

"I'm afraid that won't do, " Jerry replied. "No matter how many points
you measure, you can never be sure that exactly the point I need will be amongthem. Isn't there some way you can tell me the height for every point no matterwhere it is?"

Tom didn't see how he could do this right away, so let's see whether wecan help him.

You already know that one variable is a function of another when they areso related that the first is automatically determined when the second is fixed.
Thus if you are told that X and Y are variables and Y is a function of X, then
you immediately know that Y has some fixed definite value when you assign
at your pleasure some definite value to X. The variable (X in this case) to



-62-

t

which you assign any value at pleasure is often called the independent variable"independent" because you may assign its value independently of anythingelse. The function (Y in this case) is often called the dependent variable --"dependent" because its value depends on the already-assigned value of theother and cannot be assigned at pleasure. Of course, z we noted before,
when Y is a function of X, i t is often true that X is a function of Y. In sucha case, it may be convenient to call Y the independent variable and X the
dependent one. The two terms, independent and dependent variable, are usedonly as a matter of convenience. In much the same way, you can imagine aconversation like this:

"Did you know that Smith has a brother?"

"Yes. Smith is a good friend of mine but I hardly know his brother. "

The participants in this conversation have quite clearly in mind which personis Smith and which is his brother; yet the truth is that both these persons areSmith and both are Smith's brother.

Then if Y is a function of X, we can assign at pleasure a value to the
independent variable X; and know that the dependent variable Y automatically
has its value fixed. But to know that Y has some definite value when X is
fixed at, say, 10. 07 cm, is a far cry from knowing what that value is. Inother words there is a difference between knowing merely that Y is a function of
X, and knowing exactly what function of X the dependint variable Y is. Any
means of telling what function of X some other variable Y is, is called a
functional relationship.

One way of communicating a functional relationship between two variablesis by a table. Such a table would give a selected list of values for the variable
X; and opposite these selected values of X would be listed the corresponding
values of the function Y. Such a tabular representation of a function, however,
has the very serious defect that Jerry had put his finger on in the exciting
drama above. Even if the table stretched in fine print from here to the moon,
it could not give the value of Y for every possible X. By its very nature, a
tabular representation of a functional relationship can give only a limited number
of values of the two variables. This is quite satisfactory in some cases,
especially in cases where the independent variable is, by its very nature, onethat can have only a certth. n number of values. An example might be

Independent variable: A year of the twentieth century

Dependent variable: The total rainfall that year in Dallas.

Here a table would be complete, because there is no year 1958. 5. Such avariable is called discrete: no two possible values of the variable can be anycloser than a certain amount (in this case one year) apart. Our concern hereis with continuous variables, those in which you can have two values of the
variable as close together as you please. The points on a line, for instance,
may be 1 cm apart, or 0. 001 cm, or 0. 0000000001 cm, er even closer than thatif you wish.
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3. Graphs,

One can get around 'he discrete nature of a tabular representation byusing a graph. As you already know, you make a graph by plotting a series
off' points with respect to two axes. You choose a certain length on the hori-
zontal axis to represent one unit of the independent variable and a certain
length along the vertical axis to represent one unit of the dependent variable.
Yell then take one pair of values of the two variables and locate the point on the
graph in much the same way as you locate a city address as the intersection oftwo streets. When all the points have been plotted, you connect them by a
suitable curve.

Now is the time to finish Lxperiment 10.

Points to Discuss in Class

When one constructs a graph from a set of points plotted from experimental
data, the problem always arises: How shall I draw a line through these points to
complete the graph? You have this problem right now in the graphs from Experi-
ment 10. (In fact, you were told to draw the lines lightly in pencil because they
are only temporary: we want to discuss what you should do before doing it
permanently. ) The "line" drawn through experimental points of a graph is
called a curve, and this is true even when the "curvellis a straight line!

Before you can sensibly decide how to draw the curve, you must first
understand why you draw the curve at all. Why do you? Keep in mind that acurve is a functional representation: it is supposed to tell you the value of the
function, H, for chosen values of the independent variable, D. But the plotted
points alone give no information not already in the table; they only present
that information in a different way. Why draw the graph?

One reason for drawing a graph is that you can view the whole set of
points at once and comprehend their relationship more easily in a picture than
you can in a table. [In the same vein, you realize that a map of yourstate that i.
has all the cities and towns "plotted" on it is easier tos comprehend than a
table that lists the latitude and longitude of every city and town -- yet both map ...and table give exactly the same information]

Another reason for drawing a graph is to satisfy Tom and Jerry's problem:
How can I find out the value of H (the dependent variable) for values of D (the
independent variable) that I didn't measure? In other words, our measurements
of H and D must necessarily be limited in number. We therefore make D a
discrete variable -- by spotting in only a few chosen values -- when it really
is a continuous variable which may have any value at all. It may have all
possible values between any two of the values you happened to choose to measure.
One of the purposes of making a graph, then, is to supply the in-between
values which you could never fill in completely if you and all your classmates
worked from now until Doomsday without taking out time to eat, sleep, or playpinochle.
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Now, how can you supply the in-between values if you don't measure
them? The strictly logical answer to this question, of course, is "You can't"!
But that answer is so disappointing that we look elsewhere fir help. Think again
about that ramp either the crooked one or the straight one. Imagine yourself
a little man walking along the ramp. You find that 5 cm from the bottom
places you 1. 5 cm from the ground and 6 cm from the bottom places you 1. 8 cm
from the ground. You now have a feeling that if you stood 5. 5 cm from the end
you ougt,t to find yourself somewhere between 1. 5 and 1. 8 cm from the ground.
Of course, it is entirely possible that the ramp could make a sudden dip between
5 and 6 cm from the bottom so that at 5, 5 cm you would perhaps even be flat
on the ground. But even in this case you have a feeling that if you took measurer
ments sufficiently close together -- yet not infinitely many -- such irregularities
would eventually reveal themselves, and you could obtain the true tendency by
assuming that the true value of the function at an intermediate point lies between
its value at two nearby surrounding points. Faith in this principle stands very
importantly as a foundation of physical science. It even has a name; the prin-
ciple is often called the "principle of continuity. " One way of stating it is to
say "In the absence of reason to believe otherwise, a small change in an indepen-
dent plai6ical variable will produce only a small change in a variable dependent
upon it. " The principle seems so reasonable that all physical scientists place
almost unquesiloning faith in it. LIt is only fair to say, however, that
occasionally important physical happenings are over looked because an experi-
menter places too much faith in the principle of continuity. 3 Without using the
principle, we could never predict anything. Noone would ever attempt to
build a bridge, for instance, because the ertgineer would always say: ''No, I
won't be responsible for building this bridge. Noone ever built it before.
Therefore I don't know that it will be safe, and it would cost too much to build
it only to find out whether it is salt. "

When you draw a graph, then, you suppose that intermed' ate points will
lie between their nearby points on each side. The word "between" is not
exactly defined (indeed the whole principle of continuity is n.% ; exact), but has
the general meaning indicated in the discussion above.

Ona way to satisfy the principle might then be to connect successive
plotted points by straight lines. Do you see anything wrong with doing so?
Suppose you did so and then decided to measure another experimental point
between two already taken. _If this point did not fall exactly on the straight
line you drew, then you would have to draw two new straight lines in place
of the one you had. In other words the character of the curve would change
if you took one additional mbasurement.. Does it make sense that thd charac%
ter of a functional relationship of Nature would depend upon whether you made
10. or 11 measurements? Isn't it more sensible to look at the points and decide
that the shape of the curve you should draw is already partly outlined by the
way the points seem to form their owl. curve? Of course the "curve" they seem
to form may be a straight line. The first rule then is draw in the graph in such
a way as to follow the curve that the points themselves seem to outline.
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The points you plot are laid down from experimentally measured quan-
tities. Is an experimental quantity ever known exactly? Is there a possibility
then that the "true" curve would not go exactly through some of your points?
Why not? The second rule in drawing a graph then is to be guided by the plottedpoints, but if one or more of them appear to be "off" from the curve that
the rest seem to outline,, do not be afraid to draw the curve so that it misses
the off-points.

Do you :notice anything special about the plotted points for the straight
ramp in your graph for Experiment 10? You know that the curve must go
through the origin (where H and D are both zero) because if one-does not go upthe ramp at all (D = 0), he experiences no rise off the ground (H = 0). The
rest of the points should fall on a straight line passing through the origin. Erase
your lightly penciled line for the straight ramp and use a ruler to draw one
straight line that connects all the points as best you can. Remember that you
must expect some (or even most) of the points to be not quite on the line. Tryto draw the line so it goes "down the middle, " leaving about as many plotted
points on one side as on the other.

Do the points for the crooked ramp seem, even allowing for a reasonable
amount of experimental error, to form a straight line? They shouldn't. Erasethe lightly penciled curve for the crooked ramp: and using the suggestions abovefor drawing curves for graphs, sketch freehand a curve through these points.
It might be a good idea to use a different color pencil for the second curve.

Finally, read from your graph for the straight ramp what H should be
when D = 15. 00 cm. Record this value in the bex marked "Graphical value
of H for D= 15.00 cm" and compare it with the calculated value in the box
above it.

4. Monotonic Functions

You often state a dependence between two variables in sentences like the
following:

The farther I walk along the ramp, the higher I get above the ground.

The larger the volume of a piece of copper, the greater is its weight.

The heavier the fish that I hang on this spring, the more the spring extends.

The longer the piece of wire I cut from this spool, the more it weighs.

The longer the edge of a square, the longer is its diagonal.

The greater the diameter of a steel ball-bearing, the greater is its weight.

The longer the time a rock has been falling, the farther it has fallen.

Do you see how all these statements are similar?
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Each of the statements cites two variables, first an independent variable
and then a dependent variable which is a function of the first. To make sure
you see this point, it would be a good idea for you to restate each of these
statements in the form: Dependent variable is a function of independent variable.
For example, the first sentence would read "My height above the ground is a
function of how far I walk up the ramp. " Now you restate the others.

But each of these statements says more than simply that one of the vari-
ables is a function of the other. It tells partly the nature of the function. The
first one says not only that height is a function cf distance, but also that as the
distance along the ramp increases, so does the height above the ground. Each
of the statements says that the two variables are so related that increasing the
value of the independent variable causes the dependent variable to increase,
too. Stated in this form, the third sent:ace above says "Increasing the weight
of the fish hanging on this spring causes the extension of the spring to increase.
Try your hand at recasting the other sentences in this form.

There would be no point in calling all this to your attention if it were true
that all functions behave like this; that is, if all functions were such that
increasing the independent variable causes the dependent variable to increase,
too. But all functions do not behave like this. For instance:

The farther I walk down this ramp, the less is my height off the ground.

The harder I. squeeze on this spring, the shorter it gets.

The greater the speed of my e:ectric tralii, the less time it takes to
circuit the track.

The greater the diameter of a round cake pan, the less the height to
which a pint of batter will rise when poured into it.

The greater the diameter of a wheel, the fewer revolutions it will
make when it rolls a hundred feet.

See how well you can recast these sentences in the form "The height I am
above the ground is a function of how far I've walked down the ramp. "

Notice again; however, that each of these new sentences says more than
merely that one variable is a function of another. Each also tells something
of the nature of the function. For instance, the secondone says "As the
squeezing force exerted on this spring increases, the length of the spring
decreases. " You should now recast each of the other sentences in this form,
just to be sure that you are getting the point.

1!

So you see that the word function is not a very explicit word. To say that
Y is a function of X is to say only that Y has a definite fixed value when the value
of X is fixed. The implication in general is that when X changes, Y is forced
also to change. But to say merely that Y is a function of X does not say any-
thing about how Y changes when X changes. In some functions, when the
independent variable increases, so does the function (or dependent variable).
In other functions, when the independent variable increases, the function decrease

1
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A function of the former kind (one that increases as the independentvariable increases) is called an increasing function of its independent variable.The first example on page 65 , for instance, says "My distance above theground is an increasing function of the distance I walk along the ramp. " Nowyou recast each of the other examples in the first group_ in this form.
In contrast, a function of the kind in the second group of examples(page 66) -- one that decreases as the independent variable increases -- iscalled a decreasing function. The second example in this group, for instance,says "The length of this spring is a decreasing function of the squeezing forceapplied to it. " You should now rephrase the other sentences in this group insuch a way as to use thephra.se, "decreasing function. "

A function that is either an increasing furk.ction or a decreasing functionis called a monotonic function. Can you see where the word "monotonic" comesfrom? When two variables are so related that, as the independent variableincreases, the function always increases or always decreases, then the latteris called a monotonic function of the independent variable. The idea of a mono-tonic function is very simple: it is one that always changes in the same direc-tion as you increase the independent variable. The function may either increasesteadily or decrease steadily, but it never changes its direction.

Now,you might be sajring to youself "Why all the fuss about calling afunction monotonic? I can see that when you increase the independent variable,the dependent variable either increases or it decreases. Why bother to dragin the adjective 'monotonic'? A function has to be either increasing or decreasing,doesn't it? Then any function must be monotonic, so why use this unnecessaryword?" There is a reasnn; do you see it?

The truth is that there are many functions flat are not monotonic. Ofcourse, no variable can both increase and decrease at the same time; but itis entirely possible that a function may at first increase as the independentvariable increases, and thLa later decrease. Or vice versa. For instance:
Think of an arched ramp, and how your height above the ground changesas you walk continuously in one direction along the ramp.

A baseball thrown directly upward will at first increase its height astime goes on, then it will reach its highest point, then decrease height as itfalls back to earth.

Think of the tip of the minute-hand on a clock at exactly one o'clock. Astime goes on the tip of the minute-hand descends until it reaches its lowestpoint at one-thirty but then it begins to ascend again.

Think of an empty drinking glass, open end at the top, and push it slowlydownward in a pail of water. What happens to the water level in the pail as youpush the drinking glass slowly downward?
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These are functions that are not monotonic; can you think of still others? (Ofcourse, any function has to be monotonic in a little limited portion of the
range of the independent variable. )

Now go back to Experiment 10 and look first at the two data tables. Eachof these tables, you will recall, gives H (height above the ground) as a functionof D (distance from the bottom of the ramp). Do your two tables show that Hwas an increasing function of D? Now look at the graphs you made of these twofunctions. What do you see as a characteristic of a graph of an increasing .function? How would the grqDh have looked if the ramp had sloped downwardrather than upward? How would the graph have looked if you had used anarched ramp? The graph of an increasing function always slopes . up to theright. The graph of a decreasing function always slopes down to the right.The graph of a monotonic function always slopes in one direction -- eithergenerally up or generally down to the right. The graph of a fun.2tion that isnot monotonic has what immediately seen characteristic? This is one of the mainuses of a graph: it allows you to see clearly and immediately the generalbehavior of the function, which may be quite a chore to dig out from the tabu-lar representation.

5. Proportionality

The two graphs from Experiment 10 bothrepresent increasing functions110 - they both slope upward everywhere to the right. But you notice that theydiffer in one important respect: the curve for the crooked ramp is somewhat
curvy whereas the curve for the straight ramp is straight. The curve for thecrooked ramp has a changing slope; sometimes it slopes only very gentlyupward -- almost flat -- and at other times it beccrre s more steep. The slopeis always upward to the right, to be sure, but is sometimes more and some-times less steep. The curve for the straight ramp, in contrast, never changes itsits slope; it never becomes more nor less steep, but keeps on going with thesame steepness everywhere. You recognize then that we can think of twoclasses of increasing functions: that simple kind in which the increase is steadywith a never-changing slope; and a more complicate kind in which the slopeis always increasing but yet changes so as to become sometimes more andsometimes less steep. Do you see how the graphical representation of thesetwo functions reveals this character so much more easily than the tabular
representation?

p

But now go back to the two data t...bles in Experiment 10 and look at theratios of HID calculated there. Recall that for the straight ramp we foundthat H/D is a constant whereas for the crooked ramp H/D was not constant.
Again we can think of two classes of increasing functions: a simple class inwhich the ratio of "dependent variable divided by independent variable" isconstant, and a class in which this ratio is not constant. Both are increasingfunctionp, you understand. But in the simple class the two variables, depen-dent and independent, are so locked together that, no matter how they change,they always do so in such a way that their ratio remains unchanged. In theother class, the two variables are also locked together so that a certain assignedvalue of the independent variable fixes unarguably the dependent variable, buttheir ratio does not remain constant.
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Observe that vve have classified increasing functions by two different
schemes. In one scheme, we lumped into one class those that had straight
graphs and into the other those whose graphs are not straight. In the other
scheme, we placed into one class those functions in which the ratio of "func-
tion/independent variable" is constant, and into the other class those for which
this ratio is not constant:

One class

Other class

Scheme #1

Graph is a straight line

Ratio of dependent /indepen-
dent is 'constant

Scheme #2

Graph not a straight line

Ratio of dependent/indepen-
dent not a constant

Notice too that for both ramps you found Height to be a function of Distance.
But for the straight ramp you found this function to belong to the first class
according to both schemes of classification and the crooked ramp to belong to
:he second class in both schemes. The intriguing question comes up: is this
always true? That is, is a function whose graph is a straight line always a
function whose ratio of dependent/independent is a constant; and is a function
whose graph is not a straight line alway- one for which this ratio is not con-
F.tant?

Now here is a very important hit of logic_ Simply because we have set up
two different schemes of splitting a set into two halves, it does not follow that
the two splits are identical. There are lots of ways of cutting an orange in
half.

For instance, you might split your class into two group boys arid
girls. Someone else may split them into two groups in a different way: say
those who have had measles and those who haven't. You might then find a
certain boy who did have measles and a certain girl who did not, and leap to
the conclusion that the two splits are identical: the boys are the ones who
had measles and the girls the ones who did not. Of course, you know that you
cannot ;ump to that false conclusion.

Similarly here. The fact that we have two schemes for classifying
functions, and have found two .cases where the splitting is identical does
not mean that it is always so. But it is still an intriguing question and we
ought to look into it further. That's one purpose of Experiment 11, which
you ought now to do.

Points to Discuss in Class

Suppose you wanted to measure the position on a vertical yardstick of a
pencil that you are holding two inches in front of the yardstick. If you held your
eye at exactly the same horizontal height as the pencil, you would get one
reading. If you held youreye above the level of the pencil you would get another
reading; and if you held your eye below the level of the pencil, still another.
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Which is correct? Why was it important in the experiment to sight horizon-
tally across the hook to the ruler? The error made in a measurement because
the eye is not in the correct position'is called an error of parallax. You can
see how important it would be in careful measurements to avoid this error. Itmust always be considered when, as in this experiment, the ruler and thething to be mez sured cannot be brought together.

What did your calculations show about the ratio, extension divided byload, for the springs you used? Did everyone in your class find this ratio
constant? What are the units of this ratio? Would it be correct to summarizethe results of this experiment as found by your whole class in this statement:
The ratio of the excension of a spring to the weight producing that extensionis a constant"? In fact, this statement has been found by numerous experiments

to be true for all elastic bodies. This finding is often called Hooke's law,
after Robert Hooke who first stated it as a general rule of Nature in about 1660.

If we represent the extension by E and the attached weight by W, Hooke'slaw can be written more succinctly as

_- K 2
W

where k is some constant. Show that a completely equivalent way of sayingthe same thing is to write

E = k

This last equation is worth special attention. Notice that it is solved for thedependent variable. This equation then gives two different names for the
dependent variable: one, of course, is E itself; the other is kx W.Thus the
Axpression'E=kxW" is still another functional representation of E, telling
exactly what function of the independent variable W, the dependent variable Eis. You now know of three types of functional representations: tabular, graph-ical, and this last one in the form of an equation. When a function is representedby an equation solved for the dependent variable, it is called an analytical
representation. Try to discuss various advantages and disadvantages of
graphical, tabular, and analytical representations of functions.

You found experimentally that E/W for spring is a constant. WhenW = 0, E of course is also zero, because if there is no load there is no";
extension. What will you do about the ratio 0/0 for the first line of each tablein Thepfri,ne.nt 11?

What kind of constant is the k in the expression E = k x W? Is k-.a constantfor any one spring? Do all springs have the same constant, k? Remember thatk is simply another name for the ratio, E/W. Suppose that I attach a certainload, say 10 grams, to two different springs, one a weak one and the other astiff one. Which spring will give the greater extension? Which spring will havethe larger value of k? Suppose I have two springs, a stiff one and a weak one,and find they are both extended the same amount, say 10 cm...; Which is supportingthe greater weight?
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Look at the expression, "E/W = k". Suppose I have two springs, one
weak and one stiff. On each I hang the same weight, W. Will the extensions
be the same for the two springs? Call one extension Ew (meaning extension
of the weak spring) and the other Es (meaning extension of the stiff spring).
For each spring, E/W must be some fixed value, k, which is not the same for
different springs. Call them kw for the weak spring and ks for the stiff.ope.
We now have

Es/W = ks and Ew/W = kw

for stiff spring for weak spring

If W is the same for each spring and Es is less than Ew (because a stiff spring
extends less than a weak one under the same load), then how will ks and kw
compare? Make a general statement: "Of two springs, the stiffer one will
have the value of its spring-constant, k. "

Or, suppose you have two springs, one stiff and one weak, and extend
them both the same amount, by hanging different weights on them. Which
will need the greater weight? Let us call Ws and Ww the two weights that
will extend the springs the same amount, E. Then

E/ We = k5 and E/Ww = kw

If E is the same for each spring and Ws is greater than Ww (because a stiff
spring needs more weight to extend it the same amount as a weak spring),
then which will be larger, ks or kw? How does this compare with the general
statement you made at the end of the last paragraph above?

Now look at the graphs you made for the two springs in Experiment 11.
Did you get essentially straight lines in bbth cases? Here then is another case
where a function whose ratio to its independent variable is constant gives a
straight-line graph. You now have a little more reason than before to believe
that a function will have a straight-line graph if the ratio of function to depen-
dent variable is a constant. Of course we still haven't proved it (why not? ),
so let's look into the matter a little more carefully.

Suppose you have a triangle with one right angle and arranged like this:

This may be any triangle at all that has one right angle. Let us call the
horizontal leg of the triangle h and the vertical leg, v. If we measure h and
v in cm, we will of caurse get some one certain number for the ratio, v/h.
Suppose we now magnify this triangle exactly 3.694 times. The triangle will
of course still be the same shape, but 3.694 times as big.

+033rnr"
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The horizontal leg will now measure (3. 694 x h) cm and the vertical leg will
measure (3. 694 x v) cm. The ratio (3. 694 x v)/(3. 694 x h) is still the same
because the 3. 694 will cancel out of numerator and denominator. Now you can
see that the same would be true if we had used 2. 241, or 89. 643, or ir or j2,
or any other number for the scale of magnification; for whatever the scale is,the number will always appear in both numerator and denominator and there-fore cancel out. In other words, magnifying a triangle will net change its
shape, and will keep the r of vertical leg to horizontal leg unchanged. Nowif the triangle does not change in shape when it is magnified, then we can fit the
unmagnified and magnified triangles together like this,

and find that the long sloping line is one straight line, AB. This will be true
whatever the shape of the initial triangle and whatever the scale of magnifica-
tion. You then see that if AB is a straight line, the ratio v/h equals the ratioV/H and this will be true for any straight line AB whatever and no matter what
the positions of the two lines v and V might be. The converse is also true: ifthe ratio v/h equals the ratio V/H, then AB is a straight line. Do you seethat, if the last two statements are true, then we can say: ?

A 14- _ _ Alulietzon. whose graph is a straight line through the origin
is a function whose ratio to its independent variable is constant; and

A function whose ratio to its independent variable is constant
always has a graph that is a straight line through the origin.

(We have discussed in the long paragraph above the matter of equivalence
between a straight-line graph (through the origin) and the constancy of ratio
between a function and its independent variable. This discussion is not a proof,though it is nearly one. Perhaps you can see some of the faults that keep it
from being a proof. The main one is our supposition that "magnifying" a tri-
angle by making two of its legs a certain number of times bigger would leave
the "shape" unchanged. When you study geometry you will learn how to prove
this without faults. Our discussion only tries to make it seem reasonable.
Also, though we "nearly proved" the statement "If AB is a straight line, then
a certain ratio is constant. " We didn't even attempt to prove "If the ratio is
constant, then AB is a straight line. " Proving one does not prove the other.
(Does "Every ginkle is a Loop. " mean "Every Loop is a girttcle"?) It happens,
however, that both the indented statements just preceding the present para-graph are true. You will actually prove them when you study geometry. )

When two variables are so related that their ratio is a constant, the
variables are said to be proportional to each other. If Y is a function of X suchthat YIX is any constant, then Y is said to be proportional to X, or X to Y.
Notice that there is nothing to prove here. The following two statements saythe same thing because of the phrase "is proportional to" is defined that way:
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"A is proportional to B" means "A/B is a constant. "

Using the expression "is proportional to, " restate Hooke's law for a spring.Also, make similar statements for the diagonal and edge of a square, and thecircumference and diameter of a circle.

You should try to get a comfortable and clear feeling for the meaning ofproportionality. Suppose that A and B are two variables such that A is a whenthe value of B is b. Then a/b is some constant, say k. Now suppose we doublethe value of B so that its value is now 2b. The value of A must now be such thatwhen it is divided by 2b we still get the same constant k. What must be thevalue of A so that ? / 2b = k? We know that a/b = k, so that we can write

a
2b

where' "?" stands for the value that A has when B has the value 2b. Now 2..1t11remember that ? /2b is just a number and a/b is just a number, and the equa-tion says they are the same number. Multiply this number by 2b; we must getthe same result when we multiply ? /2b by 2b as we get when we multiply a/bby 2b, simply because ? / 2b and a/b are really the same number. Then

2b x ? 2b x a
2b

Now you know that you may cancel out of numerator and denominator anythingthat appears in both. Then cancel 2b from numerator and denominator on theleft and b from numerator and denominator on the right. You have

? = 2a

In other words, the value that A must have when B has the value of 2b is 2a.That is, doubling B requires that A be doubled. You can see that the samething will happen if you triple B, halve it, or multiply it by 4, 0. 52, or anyother number.

Thus an easy way of looking at a proportionality is this: Two variablesA and B are proportional when their behavior is such that multiplying one ofthem by some number automatically causes the other to be multiplied by thesame number.

6. The Proportionality Constant

When one variable is proportional to another, their ratio is constant.This constant is of course dependent upon what two variables you are considering;to say that the ratio of two proportional variables is constant does not meanthat this ratio is the same regardless of what variables you are talking about.The constant that is the ratio of diagonal-length to edge-length for a square isnot the same constant as the ratio of circumference to diameter for a circle.Even when you deal with Hooke's law, the constant is not the same for onespring as for another. But as long as you are talking about one particular
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shape, the squre, the ratio of diagonal to edge is always the sarie; as long
as you are talking about one particular shape, the circle, the ratio of circum-
ference to diameter is always the same; as long as you are talking about oneparticular spring, the ratio of extension to weight is always the aame.

We have seen that the statement "Y is proportional to X" means that,
no matter how Y and X may change, both the following statements must betrue:

Y/X = k and Y= kxX
where k is some constant whose value depends on what the variables Y and X
happen to be. Notice carefully that the two equations above are completely
equivalent. Neither equation carries any information not contained in the
other. This must be true because either may be derived from the other (Can
you still carry out this derivation?) purely by logic without bringing in any
new information. If no new information is brought in when deriving the secondequation from the first, then clearly the second equation cannot contain any
information not contained in the first.

You see then that saying "Y is proportional to X" .:got only says that their
ratio is constant; it also says that I can obtain Y when you tell me X merely
by multiplying the X you give me the constant. And I ca:A do this for any X
you give me using always t1B same constant. This constant is called the constantof proportionality (or proportionality constant). In other word, when onequantity is proportional to another, their ratio is called the constant of propor-tionality.

Now suppose I tell you: "Y and X are two variables that are proportional
to each other. " You immediately infer that their ratio is a constant, don't you?
But then you think a little and realize that the quantities, Y and X, have two
ratios. One of them is X/Y and the other is Y/X. Which of these two ratiosis constant? When one says that Y and X are proportional, which of the twopossible ratios is the one that is constant? The comfortable answer is "Both
are constant. " In other words, when someone tells you that X and Y are pro-portional, you don't have to worry whether he means that Y/X is constant or
that X/Y is constant. If one is constant, the other must be.

Do you see wiy? The reason is quite simple. Suppose that

X
Y

k

where X and Y are any two numbers whose ratio is k. If this equation is true,you have already shown that

X = kx Y

where "X" and "k x Y" are merely diffrient names for the same quantity.

7"7.2x: ;
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Let us divide this quantity by k; we get the same result whether we divide Xby k or (k x Y) by k, because X and k x Y are really the same quantity. There-fore :the results must be the same quantity under different names, or

X _ kxY

But here's the old story again: we can cancel out the two k's on the right handside and write

X
Y,k

where Xlk and Y are different names for the same quantity. Divide both sidesof this equation by X. Then you have

X
kxX X .

Now we could cancel out the X's on the left, but a new trouble arises. Doingso will leave us with a fraction: on the left that has no numerator, and thereforehas no meaning. There is an easy way around this trouble; we just have tobe sure that something will be left in the numerator after the X's are canceledout. We can be sure of this by putting something in the numerator. But clearlywe cannot put any old thing in there. We must insert something that will leaveits value unchanged, so that even after it is inserted, it will still be equal to theright hand side. Do you see that we can put a 1 there? For doing so merelymeans multiplying by 1, and any number may be multiplied by 1 without changingits value. Then we have

X x 1
kxX

or canceling out the X's, we have

1 _ Y
k X

Thus we have shown that if X/Y = k, a certain fixed number, then Y/X = 1/k.But if k is a fixed number, then there ins only one result you could get bydividi k into 1. Hence 1/k is a constant if k is. Therefore if x/y is a con-stant, so is Y/X, and it doesn!t matter which ratio you take as constant whensomeone tells you that X and Y are proportional.
But you have to be careful. Suppose someone tells you "X and Y areproportional to each other and their proportionality constant is 7. 17. " Doeshe mean that X/Y is always 7. 17 or that Y/X is always 7. 17? You cannot tell.Both ratios are constant, fo course, but you don't know which one is 7. 17. Thuswhen you tell someone the proportionality constant between two proportionalvariables, you must always tell him which way the division is to be carried out.Thus if I say "The circumference and diameter of a circle are proportional
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to each other and their proportionality constant is 3. 14", you might wonder
what I mean. In this case a little thought would tell you that I must mean
"circumference divided by diameter" because you know that the circumference
is always larger than the diameter and dividing diameter by circumference
would give something less than 1 and could not therefore give 3. 14. On the
other hand, I could say to you "The extension of this spring and the weight I:.

you hang on it are proportional to each other and the proportionality constant is
7. 17 cm/g. Because the units are given, there is no question but that I
mean the ratio "extension divided by weight," because the only way you can get
units of "cm/g" is to divide centimeters by grams. But the direction of dividing
must be given, either explicitly or by implication.

The proportionality constant in the functional relationship between two
proportional variables is often itself of interesting physical significance. Let
us look at a few cases in order to acquire a feeling for the meaning of propor-
tionality constants. iii each of the three illustrations following, you should
first read the introductory quotation and make sure you see clearly what it
means. Restate it in other words; tell yourself definitely what the two variables
are; tell yourself which is the dependent and which the independent variable;
try to see clearly the sense and significance of a statement like "If I double
the independent variable, the depende,-It variable will automatically double";
and try to see whether this latter: A.atement is in accord with your common sense
and experience. Repeat: do.:,;1.i:S for the introductory quotation in each of the
following examples,

1. "The of a pile of hamburger is proportional to the weight of
the pile. " If: P be the price (in cents) and W be the weight in pounds,
then d a constant. What is the meaning of this constant? Suppose that
you -p:-fri'120 cents for a pi] a weighing 2. 5 pounds. Then

120 cents
= 48 cents /poundW 2. 5 pounds

In other words, the proportionality constant in this case is simply the price
per pound, which is the same for any amount you buy (not considering quantity
discounts).

2. "The distance traveled by a uniformly moving car is proportional
to the time it travels. " Let us call the distance traveled, D, and the time
of the trip, T. Then D/ T is a constant. If, for instance, the car travels
105 miles in 3. 5 hours, we have

D 105 miles
T 3. 5 hours 30 miles/hour.

Here the proportionality constant is simply the speed of the car.

In each of these two cases, the proportionality constant has a lamiHar
meaning. In the ratio P/ W, you have simply the unit cost; in your ordinary
everyday thinking, the higher the constant P/ W, the more "expensive" is the



-77-

material concerned. In the ratio D/ T9 you recognize the proportionality con
stant as the speed. In your ordinary the greater is the constant D
the faster the car has been moving. In the next case, the ratio may be le
familiar but the thinking is exactly the same.

/T,

3. "The extension of a spring is proportional to the weight attached to
it. " If a spring stretches E cm when a weight of W gram. is attached to it,
then E/W is a constant. If in a particular case the spring stretches 8. 76 cm
when a weight of 5. 34 g is attached, then

E = 8.76 cm
W 5. 34 g

= 1. 64 cm/g.

Here the proportionality constant may be a little less familiar but try to sets
its resemblance to speed and unit cost. Here the units of the proportionality
constant are "centimeters per gram. " Just as unit cost means the price you
must pay per pound of hamburger; just as speed means the distance you travel
per hour of driving; so does the proportionality constant here means the dis-
tance the spring stretches per gram of weight hung upon it. The large. the
value of this constant, the more the spring stretches per gram attached, or the
mar e stretchable it is. Here the proportionality constant conveys an idea of
the stretchability of the spring, in much the same way as unit-cost and speed
are measures of costliness and speediness.

Notice a very important point: the idea of "stretchability" may have been
a vague notion in your mind, hardly at any rate ai:numeric..1 one. If someone
asks you "How long is this stick?" or "How heavy is this rock?", you immedi-
ately bring to mind numerical answers and might reply "Six feet" or "Five
pounds. " But if someone had said "How stretchable is this spring?", you
probably would have had no thought of numerical measure and might have
answered "Oh, rather limber" or "Pretty stiff. " But if you are building a
machine that requires a spring of just the right stiffness, you don't send an
order to a spring-manufacturer for "One spring of just the right stiffness" and
expect to get what you need. You must somehow designate numerically how
stretchable the spring is to be. The proportionality constant in Hooke's law
is a nemerical measure of stretchability. Now if someone asks you "How
stretchable is this spring?", you need not be vague; you can give him a numer-
ical answer "17. 2 centimeters per gram. "

Now one final point in conne
again that "A is proportional to

A

ction with proportionality constants. Recall
B" means

= k x 13

where k is some constant regardless of what A and B might be. If someone
should ask you, "All right, A is proportional to B, and the proportionality
constant A/ B is k. I want to know what value A would have when B has the
value b. What is it?" Since A is a function of B, the question must have an
answer because giving a value to the independent variable must give a definite
value to the dependent variable. (Why is this true? ) The answer of course
is given by the last equation above. To find what value A has when B is b, you

Ar....;c;eU
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just multiply k x b. Suppose the question is asked the other way around: "What
value must B have in order to give A the value a?" This question is also easy
to answer. You should now be able to solve the above equation for B and show
that

B = A/k.

Be sure that you show this.

For instance, suppose you have a spring whose constant is 1. 64 cm/g.
Suppose the extension of the spring is 5. 86 cm; what weight must be hanging
on the spring to produce this extension? From the given spring constant, you
know that E/W = 1.64, when E is in centimeters and W in grams. Then

W = E/1.64

and all you need do to find the weight is to eivide the extension by 1. 64. In
this way the spring becomes a weighing machine.

Now you are ready to do Experiment 12.

Points to Discuss in Class
11111111,111111111.MIMIN116

Within the error to be expected in your measurements, did you find the
ratio, weight/length, constant for one size of rod? Did both sizes of rod give ,
the same proportionality constant? May you reasonably conclude that, for an
aluminum rod of given cross-section, the weight of the rod is proportional to
its length?

What is the meaning of the proportionality constant, weight/length? Think
back to the measurements you made (Experiments 6 and 8) on squares and
circles. You found that the ratio of diagonal/ edge for a square is the same for
all squares regardless of size. The value of this ratio is' purely a property
of being square, aild does not depend on how big the square is. You found that
the ratio of circumference/diameter for a circle is the same for all circles.
The value of the ratio is purely a..property of being a circle, and does not
depend on how big the circle is. Experiment 12 showed you that the ratio
of weight/length for an aluminum rod of fixed cross-sectior.. does not depend
on how long the rod is. The ratio does depend on the diameter of the rod (How
do you know this ? ), and you would probably guess that it depends also on the
material of which the rod is made. For a rod of 0.635 cm diameter, you
found a ratio of about 0.86 g/ cm its value depends somewhat on which j)artic-
ular alloy vou used). We can scarcely esca a the conclusion that n. 86 g/cm
is purely a property of aluminum rod 0.635 cm in diameter. You can have an
aluminum rod of this diameter any length you please, just as you can have a
square of any edge - length or a circle of any diameter you please. The weight
of such a rod, like the diagonal of a square and*the circumference of a circle,
may be any thing you please. Neither the length nor the weight of this size
aluminum rod is a property of this size rod, for they may have any values
at all. Butlhe ratio of weight /length cannot have any value at all. Once
you fix on aluminum rod, and once you fix its diameter as 0. 635 cm, then you no



longer have any choice in the matter: the ratio of weight/length is 0. 86 g/cm
whether you like it or not. The quantity 0. 86 g/cm is therefore a property of
this size aluminum rod, and not of what piece of the rod you happen to be
talking about.

This property is often called "linear density:'; the ratio of weight/lenth
for any material of fixed cross-section, whether it is platinum wire miner
than a human hair or a giant steel girder weighing hundred of pounds per foot.
Try to see the similarity among speed (say miles per hour), linear density
(say grams per centimeter), and unit cost (say cents per pound). You can
think of speed as the rate at which you accumulate miles behind you as you travel
along; the speed is the number of miles accumulated in one hour. Unit cost
is the' rate at which your grocery bill piles up behind you as you throw pound
after pound of pork chops on your grocery cart; the unit cost is the number of
cents indebtedness accumulated per pound of pork chops bought. Linear density
is tb_c rate at which you use up grams of pencil as you feed the pencil into the
pencil sharpener; the linear density is the grams of pencil ground up per
centimeter of pencil fed in. Think of other "something per something" quantities
and see how they all have a similar interpretation. You will have made a long
step toward really understanding physical science if you can get a feeling for the
real meaning of "X per Y. "

If you have not already done so, make graphs for the data in both tables
in Experiment 12. Plot weight vertically and length horizontally, placing both
plots on the same graph. Label the two curves appropriately. Does the
linearity of the curves confirm that weight is proport. Jnal to length?

Which curve is steeper, the one for the larger or the smaller rod? Can
you relate the steepness of the curve to the magnitude of the proportionality
constant? Which size of rod accumulates weight faster behind you as you run
along its length? Which curve rises faster as you move to the right? Are the
last two questions related? If you are shown a graph with two straight liie s
through the origin plotted on it, can you tell at sight which has the 1a ger
proportionality constant?

If a steel girder weighs 175 pounds per foot,how much will 12 feet weigh?
If a glass tube weighs 0.65 g/cm, how much will a piece 82 cm long weigh? If
a copper wire 16 cm long weighs 0. 00144 gram, how much will 97 cm weigh?
(Hint: first find out how much 1 cm weighs. )

7. Once Again, Lightly,

When two variables, say X and Y, are so related that assigning a value
to X automatically fixes the value of Y, then Y is said to be a function of X.
The variable whose value you assign (X in this example) is often called the
independent variable and the function (Y in this example) is often called the
dependent variable.
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To say that Y is a function of X implies that, given X, you can find Y.
Any rule that tells you how to find Y when X is given is a representation of
the function. Functions may be represented tabularly, graphically, or ana-
lytically. Each of these three has its own advantages and disadvantages.

It is often found that steadily increasing the value of the independent
variable causes the dependent variable either to steadily increase or to
steadily decrease; that is, causes the dependent variable to change always
in the same direction. Such a function is called monotonic, and a monotonic
function clearly may be either an increasing function of a decreasing function
but cannot be both.

A special and very important kind of monotonic function occurs when Y
and X are so related that Y/X always has the same value no: matter how X
( and Y ) may change. In this case, Y is said to be proportional to X. Any
of the following six statements is exactly equivalent to any other of them:

Y is proportional to X

Y/X = k (where k is some constant)

Y = kxX

X/Y = 1/k

X = 11/k) 3e*Y

The graph of Y vs. X is a straight line that passes through the origin.

The constant, k, in the above table is called the proportionality constant.
The proportionality constant often has a simple physical interpretation, its
meaning being, of course, dependent upon the meanings of the two variables,
X and Y.

Further Classroom Discussion

To say that Y is a function of X does not tell you very much.
only that (in general) the value of Y changes with the value of X but
it changes. To say that Y is a monotonic function of X says a little
Notice how each of the following statements says a little more than
until finally the last statement says it all:

Y is a function of X.
Y is a monotonic function of X.
Y is an increasing function of X.
Y is proportional to X.
Y = 7. 12 times X.

It says
not how
more.
the last,
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If two variables, U and V, are connected so that U is proportional to V,does it follow that U is a monotonic function of V? If W is a monotonic functionof Z, it is necessarily true that W is proportional to Z? Draw graphs toillustrate your opinion.

Consider the units of a proportionality constant. In the statement, "Thediagonal of a square is proportional to the edge, " we found that the proportionalconstant (which one?) is JE We also found that this proportionality constantremains equal to Jwhether the measurements are made in inches, centi-meters, or widgets. Suppose that the Hooke's law constant for a certainspring is measured to be 3. 42 centimeters/gram. Would the units be thesame if the measurements of extension and weight had been measured ininches and pounds respectively? Can you formulate a general rule tellingwhen the numerical value of a proportionality constant does depend on theunits used for the two variables and when it does not?

You might have noticed that most of the written matter in this book is
explanation, questioning, discussion, or illustration of certain central points.There are a few sentences here and there, however, which are not of thisnature, but are statements of the central points themselves. The wholebook could be enormously reduced in size if all the discussion, explanation,and illustration were removed and only those statements retained which carrythe meet of the points to be made. This attitude is very different from , say,a history textbook, where practically every sentence carries meat not containedin any other sentence. Most people would find it very difficult to understand atextbook on the basic principles of science if there were no explanations andillustrations and just-plain-talldng-about the central points. You shouldlearn to tell the difference between the meat and the dressing, however, a-idunderstand that many pages may be spent trying to make clear the meaningof a relatively few scattered central points. It is only these points that youare expected to learn, however; the rest is only to help you learn. For examplethe first section of this snit, beginning on page 56 and going all the way don to"Points to Discuss in Class" on page 58, contains only one sentence ( or possiblytwo ) that is really essential, All the rest is to help and prepare you to under-stand the meaning of that one sentence. Can you find this one central point?

Each of these central points is usually one of three possible kinds:

Definitions
Experimental Findings
Derived Conclusions

For instance,,: consider the sentence "When two variables are so relatedthat their ratio is a constant, the variables are said to be proportional. " Thisis a definition of the word "proportional. " This is not something you arecommanded to believe, for it contains nothing to believe. It is merely a signalto you that from now on we are going to use the word "proportional" in a cer-tain way, and if you want to understand what we are talking about you had betterlearn the way we are going to use it.
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consider Hooke is law, which says "The extension of a spring is
proportional to the weight attached. " This, of course, is not a definition;
it makes a direct statement, presumably of fact. But is this sentence some-
thing you are commanded to believe? No, because you carried out an experi-
ment (you and thousands of other people) in which you gathered data that led
you to the apparent truth of the statement. This then is anlexperimental
finding, whose truth is discovered by experiment.

Finally, consider the statement "The extension of a spring is equal to
the attached weight multiplied by a constant. " This is not a definition either;
nor is it directly an experimental finding, for what you found experimentally
was that the ratio of extension to weight is a constant. But once you found that
"E/W = k" (this was an experimental finding), then purely by logic you manip-
ulated this equation to show that "IF it is true that E/W = k, THEN it is also
true that E = W x k. " Thus you are not commanded to believe this, but are
led to see that "If the experimental finding is correct, then this derived con-
clusion is also correct. " A derived conclusion is a statement whose truth follows
logically from another statement. If you believe the first, then logically you
must also believe the second, but you are not commanded to believe it without
being shown why it is believable.

Physical science is like this throughout. You are never commanded to
believe anything. If ever a forthright statement is made and you do not fully
understand why you are expected to believe it, question it. Do not accept it
unthinkingly, like an obedient puppy dog.



Unit IV

Weight, Volume, and Density

1. Measurements of "Amount"

Jerry was stringing a length of wire from one post to another in his back
yard in order to make a rack to dry his raccoon skins. The posts were ten
feet apart and he had only 9 1/ 2 feet of very thin: wire. Seeing that he needed
a larger piece of wire, he called to his brother.

"Tom," he asked. "I need a little more wire than this piece you gave me.
Find me another bigger piece, will you please?"

"Coming up, " Tom called, and a minute later he brought his brother a
six-foot length of very heavy wire. Jerry looked at the piece in disgust.

"Can't you see that that piece is even shorter than the one I have he
said. "I distinctly asked you to bring me a bigger piece of wire, and look what
you brought me. "

Now it was Tom's turn to be annoyed. "But this piece I just brought you
is bigger than the one you have. It may be shorter, but it's a lot bigger. And
you'd say so, too, i. you weren't so mad. "

"You.-!r e right, " Jerry apologized. "Ycu didn't know what I wanted it
for, and since you didn't, I saould have said I wanted a longer piece, not merely
a 'bigger piece. "

Tom and Jerry's little disagreement didn't turn into a fight, but serious
arguments often result from the fact that two people are using the same word
in different senses. The violent drama above resulted from Jerry's use of the
word "big" to mean "long," while Tom's understanding of the word was quite
different. What did Tom mean? There is no point in arguing that you should
never say "big" when you mean "long", because the truth is that you won't often
be misunderstood. But in scientific speech, one must always be careful to say
exactly what he means, even to the extent of avoiding the use of words that are
imprecise in meaning. Here is another example:

Suppose I have a block of wood and a block of iron. The wooden block
is the size of a brick and weighs 1. 5 pounds. The block of iron is the size of
a half-brick and weighs 9 pounds. I set them before you and ask, "Is there
a larger amount of wood in the wooden block than there is iron in the iron
blcck?" Don't worry about tryilig to answer this question, because it cannot be
=-1-loweir,:.el. The reason it can't be answered is simply that it isn't a question,
even though it looks like one! And the reason it is not a question is just that
the word "amount" is not defined. If both blocks were iron, however, the
question, "Is there a larger amount of iron in this brick-sized block than there
is in this half-brick-sized block?" can be answered. In this case, we can
regard the word "amount" as defined with suffieient precision, because all
reasonable interpretations of the word would lead you to agree that the larger
block contains the greater amount of iron.
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Since, then, the word "amount" does not have sufficient precision for all
our purposes, we must agree that we will not use it when there is any chance
for confusion. If we had asked whether the iron or wood block had the greater .
volume, there would have been no difficulty; and if we had asked which has the
greater weight, there would have been no difficulty. This is because volume
is defined as a certain measurable geometric property of the block, and weight
is defined as a certain measurable physical property of the blo ck. "Amount"is a more general term of much less precision. (dl this does not mean,
however, that you should never use the word "amount. It is just that you
must learn to avoid using it when it is not sufficiently precise for the purpose
at hand. )

The present unit deals with two quantities that can be used to express
amounts of matter. One is volume, the other is weight, and the sense in
which we shall use the terms are indicated in the preceding paragraph, though
they are not defined there. Definitions of weight and volume are extremely
difficult to formulate, and we shall rely simply on your already having a good
Enough idea of what they mean.

If you have two different pieces of the same material then, you would
expect that "the larger piece would have the greater weight. " We have already
seen, however, that this quoted statement is not very useful as a functional
relation. A functional relation must involve two measurable quantities. It is
true that weight is a perfectly definite measurable quantity, but what is meant
by "largeness, " or "size"?

Suppose you have a set of round sticks all the same diameter and all
of the same material, but of different lengths. Would you say that "size" might
be taken to mean "length", so that one could say "the weight of one of these
sticks is an increasing function of its length"? You have already investigated
this question in Experiment 12, and found that the weight of a stick of fixed
material and fixed cross section is not only an increasing function of its length,
but is in fact proportional to its length. In this case, "size" and "length" could
be used interchangeably. Suppose you have a set of circular cylinders all the
same length, but of different diameters. Would it be correct to say:

The weight of a cylinder is an increasing function of the size?

The weight of a cylinder is in increasing function of the diameter?

The weight of a cylinder is proportional to the size?

The weight of a cylinder is proportional to the diameter?

Let's try Experiment 13 and see.
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Points to Discuss in class

What do you notice this time about the ratios, weight/diameter? Allowing
for experimental error, would it be fair to conclude that the weight of an
aluminum cylinder of fixed length is proportional to its diameter?

What about the graph you made of weight vs. diameter ? You have seen
that, when two variables are proportional, their graph is a straight line
through the origin. May you conclude from the graph that the weight and dia-
meter are proportional? How does your answer to this question agree with
your conclusion from the preceding paragraph?

Suppose that; the spring you had used in Experiment 11 had been lost or
damaged so that you had to begin Experiment 13 with a new spring whose
spring constant you didn't know. Would it be neccessary to do Experiment
11 completely over again to determine its spring constant? If the ratio for a
given spring extension/weight, is the same for all weights (this is what you
found in Experiment 11, did you not? ), then how many measurements of
"extension versus weight" do you need to determine the ratio?

If you have to make only one measurement of extension and weight to get
the spring sonstant, then the function, extension versus weight, must be
knowable from just one measurement. But this implies that the graph also is
knowable from only one measurement, for the graph is only another way of
representing the same function. Is one measurement, (that is, one point on
the graph) enough to tell 70'111

%Am the whole graph? Remember that, if two variables
are proportional, their graph is a straight line through the origin and through
the one point you can plot from the one measurement you made. How many
straight lines can you draw passing through the origin and the one plotted
point? A spring whose spring constant is known is said to be calibrated.

In the present experiment with aluminum cylinders of fixed length but
different diameters, you found that weight is not proportional to diameter. Is
the weight a. monotonic function of the diameter? Notice again the important
logical point that a monotonic function is not necessarily a proportional
function, although a proportional function is necessarily monotonic.

Now that we have found that weight is not proportional to diameter in this
case, we feel a little let down. It is one thing to find that weight is not pro-
porti oval to diameter. It is quite another thing to answer the question: What
function is it? In this case it is not difficult to find the answer. Go back to
your data sheet for Experiment 13 and compute the square of the diameter
for each line of the table. How many significant figures are you entitled to in
these squares? What will be the units of these quantities? Enter their values
in the second-last column of the table. Put a suitable heading in the blank
space over the column, including the units. Now try working out the ratio,
"weight divided by square of the diameter". What are the units of this ratio?
Enter these new latics for each line of the table, putting a suitable heading .

over the column, including units.
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)(nil s1no ld nnw be able to formulate statement: "For aluminum
cylinC,:ers of fixed length, the weight of the cylinder is proportional to

We can write an analytical expression for this last statement in the form

W = k x D2

where W means the weight of the cylinder and D is its diameter. Now once
you knLDw k (which is constant as long as you are talking about cylinders of
some :fixed material and fixed length), you can always calculate W when you
are given D. The value of k you found in Experiment 13 was about 5. 39 g/cm2;
that is,, W/D2 = 5.39 when the weight is expressed in grams and the diameter
in cm., Would the value of the constant still be 5. 39 if the weight and diameter
were expzessed in ounces and inches instead?

Now if W = 5. 39 D2, you can easily calculate W whenever D is given.
How mould W changr if you double D? That is, you know that doubling D will
cause W to increas: ; can you make a general statement about how much W will
increase on doubling D? Suppose D has the value of d before doubling, and,
of cou:Tse, 2d after doubling. The weight, Wi, before doubling will then be
W1 =5. 39 x d 2. The weight, W2, after doubling will be W2 = 5. 39 x (2d) 2.

The ratio, W2/W1, then, is

5. 39 x (2d)2 .(2d2
5. 39 x d2 d6

the las.: fraction coming from the permissible cancellation of 5. 39 from top
and bottom. Now (2d)2 means "(2d) x (2d)", doesn't it? And that means
"2 x d :4; 2 x d. " Thus we can write

W? 2xdx 2xd
W1 d x

4

Be surf!: you see where the 4 comes from. Then if W2/W1 = 4, it follows that
W2 = 4 :c W1. That is, W2 is four times as great as W1. Therefore doubling
the diameter will multiply the weight by four. This is true, course, no
matter what the diameter before doubling might be; because all we said was
that d i.s the diameter before doubling, and we never committed ourselves to
any particular value for d.

Does it surprise you that doubling the diameter does not merely double
the weight, but quadruples it? If you think of the circular cross-section of the
cylinder, this would mean that doubling the diameter of the circle quadruple ;;..
the area of the circle, wouldn't it? Draw two 1-inch circles side-by-side and
just touching each other on a piece of paper. Then draw a 2-inch circle whose
center :li.es at the point of contact of the two small circles. Is the 2-inch circle
more than twice as "big" as. a 1-inch circle? Actually, its area is four times
as great.
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Do you see now that saying that "weight is proportional to size" for acertain kind of material (like aluminum) may or may not be true? If you havea bunch of sticks all of the same cross-section but of different lengths, it iscertainly quite reasonable to refer to the length of the stick as its size; andin this usage of the word "size", the weight is in fact proportional to size. Ifyou have a bunch of sticks all the same length but of different diameters, it isagain certainly reasonable to refer to the diameter of the stick as its size; butin this usage of the word "size", the weight is not proportional to size.

If it sounds confusing to you that weight snmetirnes is proportional to sizeand sometimes is not, don't worry ahcut it. It would be confusing to anyone.But you should see that the whole reason for the confusion lies in using the word"size" in two different meanings. If you avoid this ambiguous use of the word
and replace it by "length" in the first case and "diameter" in the second, everybit of the confusion disappears. Yoa then have that weight is proportional tolength but weight is not proportional to diameter. Things are made very simpleby the correct choice of words, aren't they?

Let's look into one more case. Do Experiment 14 now.

Points to Discuss in Class

What does the inconstant ratio, weight/diameter, tell you about the pro-
portionality between weight and diameter? Does the curve of your graph agree withwith this conclusion? Does the curve appear to be similar to the one you
obtained in Experiment 13? The similarity between the two graphs suggests
that perhaps the ratio, "weight/square of the diameter" might be constanthere, too, as it was in Experiment 13. Try it, using the sixth column to

2record the quantity, (diameter)2, and the seventh for the ratio, weight/(diameter
How many significant figures are you entitled to in the ratio? Do you get a con-stant ratio this time?

Would it be correct to say tha.t the weight is an increasing function of the
diameter? Would it be correct to say that weight is an increasing function of
the square of the diameter? Would it be correct to say that the weight is pro-
portional to the square of the diameter?

If the weight is proportional neither to the diameter of the sphere nor tothe square of the diameter, can you suggest something to try next? When yourclass agrees on what to try, do it, using the last two columns of Table I. Whatunits do these quantities have?

2. Density

The last three experiments have shown you that when you are talking
about pieces of aluminum, the weight of the piece is proportional to

the length, when the pieces are rods of the same crczs-section
the square of the diameter when the pieces are rods of the same length

but different diameters.
the cube of the diameter when the pieces are spheres.
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Or, if we say the same things symbolically, we could write

W1 = ki x 1

W2 = k2 x d2

W3 = k3 x d3

In these equations: W1, Wz, and W3 represent the weights of, respectively,
rods of the same cross-section, cylinders of the same length, and spheres;
and k1, k2, and k3 are the corresponding proportionality constants. Nothings
either in these equations or in the corresponding word-statements above, tells
you what the numerical values of the k's are; but you measured them in your
experiments.

Now this is the kind of finding that causes a physical scientist to scratch
his head and pace the floor, or at least to squirm in his chair. Here we have
some pieces of the same material, all aluminum, and the weight of the piece
varies in a crazy way with the size, being sometimes proportional to some
dimension, sometimes proportional to the square of some dimension, and
sometimes proportional to the cube of some dimension. Isn't there some way
we can unify all these findings into a single larger idea, so that we don't have
so many diverse individual ideas separately to remember? One of the main
goals of physical science is to find such unifying ideas. Let's try it in this case.

The thing that strikes us as ussibitunifiable here is this: All the metal
pieces were of aluminum, and there should therefore be an underlying same-
ness about the three functional relations. Still, there are three different k's,
each of which had to be separately measured. Might there not be a way to
relate one k to another, so that you would have to make only one measurement
for aluminum, and then all the k's would follow from that one measurement?
This might be possible, so let's think some more about it.

Suppose I have a piece of aluminum of a certain weight. Then in my
imagination I add another piece of aluminum to it; the weight of the piece will
of course increase. But let me add this second piece in a special way. I will
add it to a "rod of fixed cross-section" in such a way that the augmented rod
is still of the same cross-section but a little longer. Or, I will add the same
piece to a "cylinder of fixed length" in such a way that the augmented cylinder
is still the same length but a little larger in diameter. (I can do this by "coating"
the added piece like a sheet of wrapping paper around the curved surface of
the cylinder, but not on the flat ends. ) Or, I will add the same piece to a "sphere'
by buttering it uniformly over the entire surface of the sple re so that the
augmented piece is still a sphere only a little larger.

Now siace the piece I added was each time the same piece, whether it was
added to rod, cylinder, or sphere, it is clear that the weight of the piece. must
increase the same amount each time, no matter what the shape we started with.
This suggests that what really counts in determining the weight of a piece of
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aluminum is the volume of aluminum contained in the piece. Surely, you say,
you would find that the weight of a piece of ?luminum is an increasing function
of its volume. Perhaps we could investigate this guess, and find out whether
it's true; and if we're lucky, perhaps we could even find out exactly what
increasing function it is.

Mow do Experiment 15, after which we will have more

Points to Discuss in Class

Did you find that the weight of a chunk of aluminum is an increasing
function of its volume? Did the constancy of the ratios and the linearity of
the graph show that weight is proportional to volume? Suppose that, after you
had finished with the eight blocks you used in this experiment, you had been
given an invisibly small piece of aluminum as your ninth block. The weidat
and volume would both be zero of course. You therefore could not compute
the ratio, weight/volume. On the other hand, you have learned that you may
call the ratio, 0/0, anything you please. What would you like to call it in this
case?

In analytical form, we find by experiment that

W
V k,

where W is the weight of the piece, V is its volume, and k is some ,onstant.
What are the units of this constant when W is in grams and V in cc:? lirw_ 1,1 the

VY a.Lk.t
numerical value of k be different if we measured the weight in pounds and.
volume in gallons? The value for k is about 2. 7 g/ cc, depending somewhat on
what particular aluminum alloy you us,.1.

Do you understand the meaning of the statement, "W/V is a constant for
all pieces of aluminum"? The weight and the volume of aluminum chunks are
variable's, . You may have a chunk of aluminum of any weight you choose; you
may have a chunk of aluminum of any volume you choose. But you cannot choose
both. Once fou have fixed on some certain volume for a chunk of aluminum,
the weight is fixed whether you like it or not. You have all the freedom you
wish to choose either the volume or the weight, but you cannot choose the
ratio of weight/volume.

The thing to notice in the last sentence above is that you cannot choose
the ratio. There always is a ratio, of course, but its value is "chosen for you".
The aluminum itself, so to speak , does the choosing of the ratio, and your
experiment shows that it always chooses the same ratio. Another way to put
the point is to remind you of what you found in Experiments 6 and 8. You found
that the ratio of JTfor diagonal/edge for a square is purely a property of being
cquare and not on what square you are talking about. You found that the ratio
of 71 for circumference/diameter for a circle is purely a property of being
circular and not on what particular circle you happen to be talking about. Now
in this experiment you found that the ratio of 2. 7 g/ cc is purely a property of
being aluminum, and not on what piece of aluminum you're talking about. The
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weight of a certain piece of aluminum is not a property of aluminum, for the
weight depends on what chunk you are dealing with. The same is true of vol-
ume. But the ratio of weight/volume is the same for all pieces of aluminum,
does not depend on what piece of aluminum you measure, and is purely a prop-
erty of being aluminum.

The ratio of weight /volume for any kind of material is called the density
of the material. From now on we shall use d instead of k to symbolize the
ratio, and we can write

W d
V

This equation may be taken as the definition of density. From it you should be
able to derive mathematically that

W=dxV and V= W/d
'tr..- sh -1A - -4. 1- -4.1- ..- tip lastALLU. 111)1, LJ1,11J. try Lu memorize these last two equations. You must,
of course, memorize the defining equation (if you expect to remember it), but
it is foolish to memorize the other two because they are so easily derived from
the defining equation.

You should try to get a feeling for the meaning of the quantity called
density. Try to see the close analogy in mee.J.ing among density and, say, speed
and unit cost. Speed is the rate of piling up distance as time goes on -- say
miles covered per hour traveled. Unit cost is the rate of piling up your grocery
bill as you but more hamburger -- say dollars of grocery bill per pound of
hamburger. Density is the rate of piling up weight as mo re and more volume
is added say grams of weight accumulated per cc of volume added.

What is the weight in grams of one cc of a material whose density is d?
Let WI be the weigb.t of one cc of the material, Its volume, of course, is 1 cc.
xlet.e.ruing to the definition, then, density = weight/volume Wi = W. That
is, W1 = d. L-z words, the weight of one cc of the material is numerically
equal to the density. Othr,rwise stated the density (in g/cc) of a material is
simply the weight (lin grar is) of one cc of the material. Do you see that this
statement is merely another way of wording the last part of the last sentence
of the preceding paragraph?

You should be able to compute the volume of a piece of aluminum if you
know its weight and you should also be able to compute the weight if you know
its volume. Let us take a look at two such problems.

First, what is the weight of 17.6 cc of aluminum, given that the density is
2. 71 gicc? There are many equivalent way_, to work this problem, differing
mostly in the thought processes used to arrive at the required arithmetic. The
worst way is to substitute in the formula, saying somrthing like this: we are
given that V = 17.6 cc and that d = Z. 71 g/cc. From one of the above formulas,
we know that W = d x V. Then W = 2. 71 x 17. 6 = 47. 7 grams, which is the
correct answer.

1,4-.01404
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Now you should ask: If this method gives the correct answer, why wouldanyone call it the "worst" way? If the method works, what is wrong with it?
The main answer is that blind unthinking substitution in a formula deprives
you of a chance to think. If you baby yourself by working problems always bya recipe, then you deprive yourself of the chance to acquire a real and comfort-
able understanding of the ideas. Refuse to baby yourself; force yourself to think.Then one day when you have to think, it won't be a stranger to rm. Noone
hires a scientist because he knows a lot of formulas or because he can substitutenumbers in formulas. That's wl,a.;; encyclopedias and computing machines arefor! Whether you are going to be a scientists, a housewife, a baseball player,farmer, or salesman, you will have to learn to -think. Now is the time to start.

Let's do the same problem by thinking; it's extremely easy! You say toyourself: I am asked to find the weight of 17. 6 cc of aluminum. (I'm not goingto find the answer just by sitting in my chair and waiting for someone to tellme the asnwer. I probably won't be able to find the answer by looking it up ina book, because the chances are slim that anyone has gtIf
a°.

? %ell" A
V 16.0 J. 1,6.4 tai. %J 3i. Gale 1. laythis problem before. I don't want to ask sorr, one else the answer, because I

want to bc) the kind of person tat other people ask, not the kind that has to askother people. I have no recourse but to work it myself. ) I could work out theweight of 17.6 cc if I knew the weight of one cc, because the weight of 17. 6 ccis evidently just 17. 6 times the weight of one cc. (How do you know this?)
Now I'm given the density as 2. 71 g/ cc; what does that mean? Why that means
that aluminum weighs 2. 71 grams per cc; that is, each cc weighs 2. 71 grams.Well if one cc weighs 2.71 grams, how much does 17.6 cc weigh? That's allthere is to it!

Another way to approach this problem is useful to know about becausethe same idea can be used to work much more complicated problems where
even the best "thinkers" might get lost. In this procedure, one thinks only ofthe units. involved. We are given 17. 6 CC and asked to find the number ofGRAMS. We are asked to go

From

cc

To

grams.

You now ask yourself: according to the rules for working with units, how canI "change" cc into grams? The first thing you must do is put in "grams" where
you don't have grams. You can do this by multiplying by grams:

cc x grams gives cc-grams

according to the rule on page 35. Thus multiplying cc by grams would give uscc-grams, which still isn't what we want but at least it has "grams" in it! Westill have to get rid of the unwanted cc that occurs in cc-grams. Suppose wedivide what we now have by cc. We would then have
cc x grams

cc
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But you recognize now that we are multiplying and dividing by "cc", and we maytherefore cancel them out:

cc ,x Ems gives gramscc

We can rearrange the thing on the left as follows

ramsgcc x gives gramscc
and then we have what we want: In order to convert "cc" to "grams", we haveto multiply by a quantity whose units are grams/cc. But those are the unitsof density. Hence to "convert" a volume (in cc) to a weight (in grams), youmust multiply by density (g/cc). The arithmetic now follows immediately: youmust multiply 17. 6 x 2. 71 to get the answer in grams. Easy, isn't it?

Now let's work another problem: What volume would 43.9 grams of alum-inum occupy, if the density is 2. 71 g/cc? Given the weight, find the volume.Of course, one way to v-ork the problem is to substitute the given numbers inthe formula (page 90). But this is the baby way and you prefer to use thethinker's way! Let's see whether we can think it out.

One way is to lean on what you know of arithmetic. You say to yourself:I have a block of aluminum that weighs 43. 9 grams. The density of aluminumis 2. 71 grams/cc, which means that each cc weighs 2. 71 grams. In my blockof 43. 9 grams, then, every cc of it weighs 2. 71 grams. The number of cc'sin the block then is the number of (2. 71 grams )'s in it. That is, how many
times is 2. 71 --:;-,-Atained in 43. 9? Thus the volume is 43. 9/2. 71 or 16. 2 cc.

Another way is to pretend that you already know the answer and use sym-bols. Suppose we call the unknown volume, V. Now if I have a block of aluminum
whose volume is Vcc, and each cc weighs 2.71 grams, then the weight of the
whole block is 2. 71 x I grams. But the weight of the whole block is also givenas 43. 9 grams. Hence

2. 71 x V = 43. 9.

From this you should easily be able to show that V = 43. 9/2. 71 cc.

Still another way is to think only of the units. We are given grams andwe wish to find cc: How can we go

From To

grams CC
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Using the same reasoning we used before, you can see that we could convert
grams into cc by multiplying grams by cc/gram, for then we would have

ccgram x gives ccgrant

because you may cancel out the "gram" upstairs and downstairs. Now you know
from your study of the arithmetic of fractions that multiplying by a fraction is
the same thing as dividing by that fraction turned upside down. (If you don't
know this, please pretend that you believe it for a moment and we'll prove it
in the next paragraph. ) Therefore, multiplying by cc/gram is the same as
dividing by gram /cc. That is

ram
gram/cc gives cc.

This last statement says that dividing the weight (grams) by the density (cc) gives
the volume. That is, the volume is 43.9/2. 71, same as before.

Now, if you did not see why it's true that multiplying by a fraction is the
same as dividing by the fraction turned upside down, think of it this way.
Suppose that we wanted to multiply any number, A, by and fraction, B/ C. Say
the answer is P. Then

A x ---c- P.

Now multiply both sides of this equation by C/B. Then

B CAx-dx:17=PxB.
Now the left-hand side of this equation is merely A because we can cancel out
the B's and C's that appear upstairs and down. Then we have

A = P X C.
B

Now divide both side by C/B. Then

IA P x Ci B
C/B C/B

But on the right-hand side, we are both multiplying and dividing by C/B; hence
they can be canceled:

A
C/B = p

But now if you go back, you will see that P was originally defined as A x B/ C.
Therefore you have shown that

C/ B
is the same thing as A x B/ C, QED

4 4u, AoLi, 4.4.FI,A;- ^4:
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[When you turn a fraction upside down, the new fraction is called the
reciprocal of the other. Like brothers, if M is the reciprocal of N, then N
is the z...ciprocal of M. (Do you see why? ) We have shown tia t multiplying by
a number is the same as dividing by its reciprocal. You should be able by
yourself to show that dividing by a number is the same as multiplying by its
reciprocal.]

Before leaving the numerical problems we just worked out, there is some-
thing that ought to be called to your attention. Notice that we did not work
these problems by some set routine method that somebody told us to use. By
using logic, we worked out our own methods. We therefore know they have to
give the correct answer without our needing someone to tell us so. IT IS FAR,
FAR MORE IMPORTANT THAT YOU SEE HOW TO WORK THESE PROBLEMS
THAN THAT YOU MERELY GET THE RIGHT ANSWER. IT IS FAR MORE
IMPORTANT THAT YOU UNDERSTAND HOW WE REASONED OUT THE
METHODS THAN THAT YOU MEMORIZE THE METHODS AS RECIPES. Keep
in mind that you can work out your own method to solve the pr oblem and do not
need formulas or someone else to tell you how. Of course you: .might need
help in the beginning; the point is that a proper way to solve a problem is
decided by logic, not by someone's authority.

3. A Unification

Do you remember that we left our friend, the physical scientist,
scratching his head and pacing the floor, way back on page 88? Well, now
we are in a position to help the poor fellow. You remember we had exhibited
some experimental findings in this way: If we let

Wi mean the weight of an aluminum rod 0.635 cm in diameter but of
variable length, L;

W2 mean the weight of an aluminum cylinder 2. 54 cm long but of
variable diameter, D; and

W3 mean the weight of an aluminum sphere of variable diameter, D;

then the results of Experiments 12, 13, and 14 could be summarized in the
functional relationships:

W1 = kl x

W2 = k2 x D2

v,r3 = k3 x D3

where k1 = 0.855

where k2 = 5..39

v.there k3 7= 1. 414

(The proportionality constants as you found them in your experiments are
already entered here. These numbers may not be exactly the same as yours-
they depend somewhat on the particular alloy you used-but yours should have
been close to these. ) Our head-scratching, floor-pacing physichl scientist,
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now was wondering to himself like this: Here I determined three different
proportionality constants. All are concerned with weights of aluminum blocks
of certain specified shapes. Surely, since all the blocks are of the same
material, these three different proportionhlity constants are somehow related.
What is the relationship among them? And then our physical scientist starts
thinking.

Suppose I forget for the moment that I have already measured the propor-
tionality constant, kb between weight and length of aluminum rods 0. 635 cm
diameter. Instead, let me work out the weight of such a rod from the known
density of aluminum, To do so, I would have to find the volume of aluminum
in the rod and multiply it by the density:

Wi=dxV (1)

The density, d, I know; what about the volume, V? Well, these rods are
cylinders, and I can always find the volume of a cylinder from the geometric
formula

X D2 x

where D is the diameter of the rod and L is its length. Now this last equation
says that -4 x D2 x L is another name for V. Therefore I may replace
the V in equation (1) above by its other name and obtain

W1 = d x
4

x D2 x L (2)

Now look at this last equation carefully. We are talking exclusively
about aluminum rods of just the one diameter, 0. 635 cm. In this equation,
then, d is a temporary constant, being the density of aluminum; D2 is a tempor-
ary constant, being the square of 0.635; and of course 774 is an absolute
constant whose value you can work out. Since d, D2, and I i /4 are all constants,
if you multiply them together, there is only one product you can get; that is,
their product is a constant. That is,

W1 = x d x D2) x L. (3)

This equation is identical with equation (2) except that the first three
factors have been lassoed together in parentheses to emphasize that all together
they are simply one constant. Now if you compare equation (3) with the first
equation displayed

TT
on page 94 , you will immediately see that k1 is simply

another name for 4 x d x D2. Since you know, or can easily work out,
the numerical values of 71/4 and d and D2, you should now compute the value
of kl and see how closely it agrees with the value you obtained for the propor-
tionhlity constant in Experiment 12.

Remember that d and D2 both have units (what are they?), while I I /4
is without units. Then, applying the rule for units when multiplying, what are
the units of ( 11 x d x D2)? What did you get for the units of ki in Experi=
ment 12? You4have now determined k1 in two ways: experimentally, in
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Experiment 12, and now theoretically. Do the two determinations agree both
numerically and with respect to their units?

Now let's tackle the second proportionality constant, k2, relating
weights and diameters for aluminum cylinders of length 2. 54 cm. Of course
equation (1) still applies, with the change that Wi now becomes W2. But we
are also again talking about cylinders, so tlat the formula for volume remains
as before and we can use equation (2) with W1 changed to W2:

W2 d x
4

x D2 x L (4)

The quantity ) 1 /4 is still a constant, of course, and since we are still talking
about aluminum, so is d a constant. With the other factors, however, there is
a difference. This time we are talking about cylinders of fixed length and
variable diameter, so that L is a constant but not D2. Thus we can rearrange
the right-hand side of (4) and lasso quantities as follows:

W2 = x d x L) x D2 (5)

Here again, the quantity in parentheses is, all together, a single constant.
If you compare equation (5) with the second equation displayed on page 94, you
will immediately see that k2 is merely another name for (.M. x d x L).
Since you know the numerical values of d and L, you should4be able to work
out the value of k2. Do it, and see whether the k2 you get by this theoretical
method agrees both in numerical value and units with the value you obtained
from Experiment 13.

You ought now to be able to compute k3, the proportionality constant
relating weights of aluminum spheres to their diameters. Notice that equa-
tion (1) still applies (change W1 to W3, of course) and recall that the volume
of a sphere is (1- D3/6. Compare the computed k3 with the experimentally
measured value you obtained in Experiment 14. Do they agree in both numer-
ical value and units?

So you see that the three proportionality constants, k1, k2, and k3, are
closely related after all. The main feature that makes physical science such
a pleasing study is the continual recurrence of unifying ideas like this one,
unifications that can be thought out just by the power of logical reasoning.

4. ,Densities of Various Solids

Now you understand that the density of aluminum is an intrinsic property
^4 luminum in the sense that every piece of aluminum in the world .1_ways
the same density. One of course feels that the same should be true of any
other material that can be definitely specified. You should now do Experiment
16, which is cnncerned with the determination of the densities for sever al
other materials.

,77
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Points to Discuss in Class

The densities you measured ranged from a low of about 0. 6 g /cc for
wood to a high of about 11. 3 g/cc for lead. (The exact values will vary lbecausethere are different kinds of wood and plastic, different alloys of lead, brass,
and steel. ) How is this variance in density reflected in the grlaphs of weight
vs, volume for the five materials?

Do all five curves have the same slope? Recall that one way to think ofdensity is as "the rate at which weight is accumulated as you add more volumeto the pile. " If we add more volume to a pile of lead and also to a pile of wood,
which pile will have its weight increased the more for each cc added? As youmove to the right on these curves, you are increasing volume, are you not?
Which curve rises more rapidly as you move to the right? Do you then feel
Elm it is that the greater the density of the material, the steeper is its curve,weight vs. volume?

For any material, a piece of zero volume of course has zero weight.
Thus the origin (where weight and volume are both zero) must lie on the curvefor weight vs. volume for every material. That is, the curve of weight vs.volume must always pass through the origin, for any material at all. If the
curve is known to be a straight line, how many other points do you need inorder to draw the curve? How many pieces of a material must you measure
(weight and volume) in order to determine the density? If the ratio, weight/
volume, is always the same, how many pairs of weight and volume must you
measure in order to know the ratio for all weights and volumes? Do you see the
interconnection among theselast three questions?

You are given that the density of brass is 8.4 g/cc and the density ofsteel is 7. 7 g/cc. See whether you can answer the following questions:

Which is the heavier, a block of brass or a block of steel, if they both
have a volume of 1 cc?

Which is the larger volume, 1 cc of brass or 1 cc of steel?

Which has the larger volume, 1 gram of brass or 1 gram of steel?

Two cylinders, one brass and one steel, are both 3 cm in diameter and
both weigh ten grams. Which is longer?

Which is heavier, a one-gram block of brass or a onegram block of

It is desired to make a metal block measuring 2 cm x 3 cm x 4 cm,
weighing not more than 200 grams. Can this be done with brags or steel,
neither or both?
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V' ill it take a greater weight of brass or of steel to make a statuette
whose I) plume is 22 cc?

W:.11 it take a greater volume of brass or of steel to make a miniature
baseball bat weighing 10 grams?

Which has the greater density in pounds per cubic. inch, brass or steel?

Suppose that you can make weighings with your spring that are good to
0. 01 gr;:.m. If you weigh a block of metal whose weight is just more than 1 gram,
how mar.y significant figures would you be entitled to in the weight? If you
wbigh a block whose weight is just more than 10 grams, how many significant
figures in the weight? If you knew the volume of the sample accurately to
four significant figures, how many significant figures would you be entitled to
in the di:nsity of the 1-gram block? In the 10-gram block? If you wanted to
obtain the highest precision possible using your apparatus to determine the
density of aluminum, would you choose to make your measurements on a small
or large piece of metal?

W:lirich is heavier, wood or lead? You MD uld probably answer lead, of
course. Yet you know that 10 poinds of wood is certainly heavier than 1 pound
of lead. What do you mean when you say "lead is heavier than wood"? Notice
that we commonly use the word "heavy" in two quite different senses: in one
sense we use the word to mean "having a great density. " There is nothing
wrong with this double use of the word as long as you are aware of possible
confusion and avoid it when you should. It is this double meaning of the word
"heavy" that forms the base for the riddle "Which is heavier, a pound of lead
or a pour.d of feathers?" Either "lead" or "neither" is the correct answer,
dependir.g on which meaning of the word "heavier" the questioner teas in mind.
It is nonuensical to spend hours arguing over the "correct" answer, when
the real point is "What does the question mean?" Once it is settled what the
question :means (and any good dictionary will give both meanings for the word
"heavy"), there is no longer any argument. Many passionate arguments are
the resu:h: of unagreed meanings of words. "-- 1---- 4- recognize.1.uu this
fact and ;guard against it.

Sin:e different materials have different densities, it ought to be possible
to use tilt=, property of density to identify an unknown material. Experiment 17
is a detective game based on this idea. Do it now!

Points to Discuss in Glass

How did you come out in your identification?

If you were to rub off the paint on the two blocks whose den.sities agreed
with none. of those you measured in Experiment. 16, you would find them to
be brass. Can you explain the discrepancy? It is not a different kind of brass.

-,-
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It is also entirely possible for two different materials to have the samedensity -- aluminum bronze and nickel steel might be examples. It is alsoentirely possible that two different materials might agree in density to thesecond decimal place but disagree beyond that. Do you see why one has to becareful when he uses only one property to decide identity?

Suppose you had two samples of material that agreed in density, but youwere not assured (as in this experiment) that they are each one of five materials.Could you safely conclude that they were the same material? Suppose in addi-tion that they both had the same color, taste, and hardness. Could you thensafely conclude that they were the same material? How many properties mustcoincide before you can certainly say that two samples are the same material?
5. Density of Liquids

Nothing in the definition. of the term density prevents its application toliquids. It is perfectly meaningful to speak of the density of a liquid, becauseone can measure both the volume and the weight of a sample of liquid and thencompute the ratio. Do Experiment 18 now, which involves the measuring ofthe densities of some liquids.

.Points to Discuss in Class

Of the four liquids, which has the greatest density and which the least?
Water does not mix with either benzene or carbon tetrachloride. If youplaced a few drops of water and a few drops of benzene together in a tube, whatwould you expect to happen? Try it, and tell which layer is which, and why.Close the tube with the thumb, shake it violently, let it stand a minute, and .observe what happens. Can you explain? Do the same experiment with waterand carbon tetrachloride. Now which layer is which? If two liquids do not mix,can you tell from;t3...aair densities which will float on top?

Pipette once cc of carbon tetrachloride into a tube, then onethen one cc of benzene (in that order). Explain what you observe.
tube with your thiaMb, shake it violently, let it stand a minute, andyou explain what happened this time?

cc of water,
Close the

observe. Can

Refer to the densities of water and alcohol as you determined them. Whichwould you expect to float on top if they were placed together in a tube? Try it,and then explain what you observe.

Tom and Jerry go to the drugstore, Tom to buy a pound of benzene andJerry to buy a pound of carbon tetrachloride. The druggist gives each of thema full bottle, but Jerry's is much smaller than Tom's. Why?

Did you notice that in this experiment we used the "No-load position" ofthe spring as the position with the vial hanging on it, whereas the spring wa.ccalibrated with truly "no load"? Does this bother you? It should! You calil:,7:ated
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the spring and found the weight hanging on it to be proportional to the lengththe spring extends beyond its length when nothing hangs on it. Suppose thatyou were to calibrate it again, this time first hanging a bucket on it (therebygiving the spring an initial extension) and then looking for the functionalrelationship between "weight added to the bucket" and "extension of the springbeyond what th;:ibucket extends it. " 'The questions come up: What right haveyou to suppose that these new variables are proportional? And even if theyare, would the proportionality constant be the same?

The answers to the questions are: "Yes, the new variables are propor-tional and the proportionality constant is the same. " The procedure you usedin Experiment 18 is valid, even though you calibrated the spring without thebucket. But PLEASE, you are not to accept someone's word for it. You havea duty to ask why the procedure is valid. Here is why:

When you calibrated the spring, you found that

E.= kxW (1)

where E is the extension of the spring beyond where it hangs with no load atall, W is the weight hanging on it, and k is a constant as long as we are dealingwith that particular spring. Now suppose you are interested in the weight ofa certain pay load, W . We could find the value of Wp by hanging it itselfon the spring, observing the extension (call it Ep), and then calculating Wfrom the equation

E = k x Wp (2)

as you have now done so many times. (Here, notice that E IL the extensionbeyond no load at all that you would get if you attached the pay load by itself. )Suppose, however, that the pay load is a liquid that you cannot hang on thespring by itself. You therefore put it in a bucket, and hang both the bucketand the pay load on the spring. Let us call the total weight (bucket plus payload), WT, and the extenstion it causes (beyond no load at all), ET. Equation(1) still applies of course, for the W and E in that equation mean total load andextension beyond no load at all. Therefore

ET = k x WT' (3)

Now the total load, WT, is made up of two parts. Wp, the pay load,and WB, the weight of the bucket. That is

WT = Imp + WB

This means that "WI) + WE" is another name for WT, and we may replace theWT that appears in 3) by this new name. Equation (3) then looks like this:

ET = k x (Wp + WB). (4)

--------
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But now youlknow that if you multiply the sum of two numbers by a multi-
pli.ex, you get the same result as if you multiply each of the numbers separatelyby the multiplier and then add. That is

k x (Wp + WB) = (k x W ) + (k x WB).

We m'.y then replace the right hand side of (4) by its new name given by thelast equation:

ET = $k x Wp) + (k x WB) (5)

Now consider what happens if you hang only the bucket on the spring. Equation(1) still applies, of course, and we know that the bucket will extend the spring
an amount proportional to its weight. If we call EB the extension beyond noload at all produced by the bucket, then we know that

EB k x WB. (6)

Let us subtract EB from ET: we get, of course, ET - EB. But equations
(5) and (6) give us two other names for ET and EB. We can use these two
names instead and write

ET EB = (k x Wp) (k x WB) - (k x WB).

Look at the right- hand side of this equation. It tells you to take the number(k x W,) and then add tc it x YYT
B

) , and after you have done that, to subtract(k x WB) away again.
You know that adding and subtracting the same thing to any number leaves thenumber unchanged. (Does this remind you of the numerical property that
dividing and multiplying by the same number leaves things unchanged? )Therefore the last equation above could be written

ET EB k x Wp.

If you now look at the right-hand side of this equation. and the right-hand side of equation (2), youwill see that (k x Wp) and Ep and (ET - EB)are all just different names for the same quantity,. That is,

Ep = ET EB.

This last equation is what we are looking for: it says that the extension Ethat the pay load would produce by itseA (if you could attach it) is simply
(the total extension it would produce when added to the bucket) minus (the
extension produced by the bucket alone). This is what we wished to prove,
and we now know that treating the position of the spring with bucket attachedas a "no load" position is an entirely valid procedure.

4,=;ZiariesT*."
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You found the density of .71,ter to be about I. 00 glcc and of alcohol about0. 79 g/cc. You now know that alcohol and water mix together. What would
you expect the density of a mixture to be? This question is looked into in Exper-
iment 19, which you should now do.

Points to Discuss in Class

Since water and alcohol have different densities, yet mix together com-
pletely, you can see that a mixture of the two could not ha-re the same density
as both pure materials, for the mixture could have only one density, Your
intuition would you to expect that the density of the mixture would depend
on its composition, for a mixture with only a little alcohol in it would have a
density nearly the same as water, whereas a mixture that is mostly alcohol
would have a density nearly the same as alcohol. Thus gradually adding alcohol
to water would have to bring the density all the way down from about 1. 00 g/ cc
eventually to about 0.79 g/ cc. The principle of continuity suggests that this
change would be a gradual one, with out big jumps in it.

Do your experimental findings indicate that the density is a function of
composition? You have exhibited this function in two ways -- tabularly and
graphically. Is density a monotonic function of composition? Is it proportional?

Since you cannot write an equation "d = k x c" (where d is the density
and c is the composition), the question comes up: Can we write an analytical
representation of this function in some other way? It is not easy to answer this
question. A physical scientist would feel that there must be some analytical
expression connecting density and composition, but the truth is that physical
science has not yet progressed to the point where we can say just what that
expression is. We must therefore be satisfied with the graphical and tabular
representations. At the same time, however, most physical scientists feel
that this limitation is only temporary and that eventually such an analytical
expression will be worked out. It will probably be very complicated. Lesson:
physical science is incomplete; not everything in its domain is understood.

This may surprise you. Physical scientists are able to work out problems
of seemingly vast complexity, like say the of the planets around the sun.
Yet they cannot work out a problem of seeming simplicity like the density of a
mixture of alcohol and water. Why is this? The answer is simply that the
density problem is only "seemingly" simple. The astronomical problem can
be solved by representing a dozen or so bodies by a dozen spheres that attract
each other. Complex as this problem turns out to be, it can be handled; and in
fact it is enormously more simple than the alcohol-water mixture, which must
be treated as a collection of millions of molecules that attract and interfere with
each other, and have complicated and even changing shapes. The astronomical
problem only seems more complex than the alcohol-water problem; probably
because it deals with a physically large system that you must look at from a
distance while the other is so physically small that you can hold it in your hand.
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Suppose you added 10. 00 cc of water to 10.00 cc of alcohol. What would
be the volume? You may be tenpted to add the numbers and answer 20. 00 cc.
But are you sure that "adding the two volumes of liquid together in a i:est
tube" is equivalent to "adding the two numbers together by arithmetic. " Is this
a case where "putting together" does not mean "adding"? You ought to be
suspicious about this! Adding 10 cc of water to 10 cc of water does indeed
give 20 cc; the same is true if both samples are alcohol; but do you really have
a well-founded reason. to believe that it also is true when one sample is alcohol
and the other water?

Wc11 you don't have to sit and argue about it! You cancalculate it from
data you now have. Since you know the densities of pure alcohol and pure water,
you cancalculate the weights of 10. 00 cc of water and of 10.00 cc of alcohol. Doit. Refer to the table at the bottom of the second work sheet for Experiment
10. You then can add these weights together to get the total weight, and you
can divide the weight of alcohol by the total weight to get the composition (frac-
tion of alcohol). Now you can look on your graph to see what is the density of
a mixture of this composition. Look up this density, and then knowing the
density and the total weight of the mixture, you can calculate its volume. How
does the actual volume compare to the sum of the individual volumes?

If you had a mixture of alcohol and water and you wanted to know what
percentage of the solution is alcohol, how would you go about analyzing it?

6. Concentration

Tom and Jerry were visiting some friends in New York City, and they
found it very different from their small home-town in Texas. Packed like
sardines in a can, they were riding on one of the subways.

"Whew! ", Jerry exclaimed, trying to make a little room so he could
move his arms. "I never saw so many people in my life. How many people
are there in New York City?"

"About 8 million, " 'T m replied,
subway with us. "

tInnel I thini\ nlost of them are on. the

"Well, I'm glad there aren't that many people in Texas, " Jerry sighed.
"I like the open spaces. Say, how many people are there in Texas, anyway?"

"About 8 million, same as in New York City. "

"Now wait a minute, " said Jerry in surprise. "I've never seen anythinglike this at home. If there are as many people in Texas as in New York City,how come it's so easy to move around at home? People in Texas aren't nearly
so crowded as they are here in New York City. You must be wrong about the
populations you told me. "
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Was Torn wrong with his figures? No, actually the population bf Texasis about the same as that of New York City, yet one gets the impression of far
more people on the average in New York than at most places in Texas. The
point is that crowdedness of people and number of people are two different
things. Ten people in a telephone booth would be rather crowded, but ten
people in a football stadium might be so far apart that they couldn't converse
comfortably. Question: is "crowdedness" a quality capable of numerical
expression, or is it another of those qualities where you only "feelna difference?

If you think about it a moment, you will realize that crowdedness refers
to the number of people packed into a given space. Suppose we take the "given
space" to be one square mile. The area of New York City is about 400 square
miles and of Texas about 250,000 square miles. Can you calculate the number
of people on the average in one square mile? Do so, and you will find there
are 20, 000 people per square mile in New York City but only 32 people per
square mile on the average in Texas. No wonder you notice a difference!
Notice that you obtained the crowdedness by dividing the number by the space
they occupy.

Another word for crowdedness is "concentration. " You can talk about
the concentration of many different things. For instance, you could speak of
the concentration of sugar in a sugar syrup, of salt in different samples of
salt water, of acetic acid in different samples of vinegar, and so on.

I gave you two samples of sugar syrup -- one thin and watery and
almost tasteless and the other thick and sweet --, and asked you which contains
the more sugar, you might answer, the thick one. But if I gave you a whole
tank car full of the thin syrup and only a thimble of thick, you would have to
agree that the thinner one actually contained the more sugar.

The confusion here is similar to that cited on page 98 about whether
wood or lead is heavier. You remember we saw the root of that puzzle as the
ambiguity in meaning of the word heavy; sometimes it refers to weight and some-
times to density. With the sugar solutions, too, there is an ambiguity. When
I ask which syrup contains the more sugar, do I mean actual amount of siig.ar
or do I mean concentration? The proper answer, perhaps, is that the tank-
carful of thin syrup contains more sugar. If I had at,.ked "which has the greater
concentration of sugar?", the answer of course would be the thimbleful of
thick syrup.

Whatever the stuff whose concentration you are talking about, the definition
of concentration is:

'Concentration of Stuff = Amount of Stuff
Space it occupies.

You can express both amount and space in lots of different ways, and therefore
express concentration in lots of different ways. From the rule regarding units
when dividing quantities, you can see that the units of a concentration are
always "something jr e something. " Here are some examples:



-105-

People per square mile

Monkeys pei barrel

Grams per cc

Pounds per gallon

Parts per million

Ten per cent

Notice that density is itself a kind of concentration. It measures the actual
weight of matter packed (crowded) into a unit of volume.

Your intuition tells you that the concentration of black jelly beans in a
one-pound box of different-colored beans increases as you increase the number
of black jelly beans there. Your intuition also tells you that the concentration
of black jelly beans decreases if you increase the size of a pile of beans that
contains always 15 black ones. Intuition means a judgement not based on con-
scious reasoning. Sometimes your intuition is wrong and sometimes it is right.
Either way, a good rule for the scientist is: Never ignore your intuition. If
you have an intuitive feeling about something, you should investigate it. A
scientist's intuition will often lead him to important discoveries or, just as
importantly, to errors he may not otherwise have noticed. Of course, you
never base a cnnclusion finally on intuition, hut a strong hunch is always worth
investigating to see whether logic and experiment bear out the conclusion your
mind leaped to. The difference between a scientist and a gambler is that the
scientist- applies logic and experiment to his hunches to see whether intuition
is supported by reason.

A simple illustration is to see whether your intuition about the jelly
beans above agrees with the definition. If you have a box of a certain size
filled with jelly beans of different colors, your intuition tells you that the more
black beans you put in the box, the greater is their concentration. Now what does
&los the definition say? Concentration is the quantity you get when you divide
the number of black beans by the volume of the box. If you
have a box of constant volume, then the concentration is found by dividing the
number of black beans always by the same number. That is, concentration is
then a fraction whose numerator may change but whose denominator is constant.
You know that under these circumstances, the larger the numerator, the larger
the value of the fraction (5/17 is bigger than 4/17, for instance, or 2. 3/5 is
bigger than 2. 1/5). Thus the more black jelly beans (i. e. , the larger the
numerator) when the box is fixed in size (i. e. , the denominator is constant),
the greater is the concentration (i. e. , the value of the fraction). Your intuition
was okay in the first case.
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Your intuition also tells you that for a fixed number of black jelly beans,
the larger the box into which they are mixed, the smaller the concentration.
This time the numerator is constant and the denominator changes. Does the
value of the fraction decrease as you increase the denominator? (Is 3/17
smaller than 3/16? Does the quotient get smaller if you divide.a certain num-j
ber by successively larger numbers ?) Is your intuition right again?

Would intuition tell you to expect the density of a sugar solution to depend
upon its concentration? Let's do Experiment 20.

Paints to Discuss in Class

Did you happen to notice that the units of concentration and the units ofdensity are the same? Don't let this bother you; it happens now and. then in
physici.1 science that two entirely different qualities are measured in quantities
having the same units. Density and concentration may be different qualities,
but they may have the same units. The point is that one must not confuse the
quality with the units in which the quality is measured. This point was mentioned
before on page 53. The head of the laboratory in a paint company instructs one
of his technicians, "Measure the pounds per gallon of this paint. " How can
the technician know what his boss wants? What two things are likely to be the
datum the boss is seeking?

Do you see how, though an idea may be simple, it may be a rather involved
process to reduce the idea to numerical measure? You think to yourself:
"Density and concentration are simple ideas. To get the density of this solu-
tion -A 1 I -

and41.11 1 I.LG'QC.A. 1.11G cuau v of a sample of it To get the concen-
tration, all I need in addition is the weight of sugar in that volume. Easy,let's go measure them. " And then you see that measuring them turns out not
to be so direct and easy a business after all. Sometimes physical measurements,though simple in meaning, have to be measured by very indirect and elaborate
methods.

What does your graph look like? Is density a function of concentration?
Can you find the density of any concentration you are given (within the range
of the graph), even though it is one that no one in your class happened actually
to measure? T density a monotonic function of concentration? An increasing
function? Is the density proportional to the concentration? The graph of
this function is a straight line; or better, is so nearly a straight line as to
allow being considered so for most purposes. If "you have not already done so,
use a ruler to draw what looks like the best straight line through the points.
Remember that experimental error will inevitably find some of the points a
little off. Try to draw the line so that you leave as many off-points on one sideof it as on the other.

7. Linear Functions

The density of a sugar solution is an increasing function of the concen-tration, for the graph slopes always upward to the right. The steepness of theslope is cnnstant, because the curve is a straight line. The density is not
proportional to the concentration, however, because the straight line does not
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go through the origin. Any function whose graph is a straight line is called
a linear function. A linear function is always monotonic, because the slope
never changes. Is a monotnnic function always linear? A linear function may
be either increasing or decreasing, depending upon whether the straight line
slopes upward or downward. A proportional function is always a linear function,
because a proportional function is merely a special case of linear function in
which the graph happens to go through the origin. Is a linear function always
a proportional function?

Let's go symbolic again! Suppose that Y, a dependent variable, is pro-
portional to X, the independent variable. We learned before, you remember,
that: (1) the graph of Y vs. X is therefore a straight line; and (2), there is
some constant, k, such that Y = k x X for all the possible Y's and X's.

It is time now for us to get used to a certain convention regarding the
"times sign", X. When symbols used to represent quantities, we have so
far written their product using the "times sign. " When we wished to represent the
the quantity "A times B", we would write it as "A x B. " Most people, however,
simply omit the times sign when the quantities are represented by symbols.
This we shall do. Hereafter, when we wish to write the product of "A times B",
we will simply write "AB. " Then when you see two symbols written togetle r
this way, remember that it always means the product of the two. You will
quickly get used to this convention.

Two things you have to be careful about, however. One is that you use
the convention only when at least one of the factors is not a number. You may
write "A times B" as "AB"; you may write "2 times B" as "2B"; but you must
continue to write "2 times 2" as "2 x 2". Do you see why? The other thing
to be careful about is that you never choose more than one letter as a symbol
for some quantity. For instance if you chose to represent the extension of
a spring as "EX", no one could tell whether you meant "extension" or the product
of the two quantities, E x X. Sometimes two letters are used to symbolize a
single quantity; if so, the symbol usually carries a bar over it to show that they
are tied together: like 1.4S.

It is a characteristic of a proportional function, you remember, that it
can always be represented by the very simple analytical expression, y = bx,
where y is the dependent variable, x is the independent variable, and b is the
name of some constant whose value depends on the slope. The close intercon-
nection between the equation, y = bx, and a straight line through the origin leads
to the usage of speech: "The equation of a straight line through the origin is
y = bx. " Since the equationof a straight line through the origin is so simple, one
wonders whether it is possible to. find the equation of a straight line that does
not go through the origin. Such an equation would then be an analytical repre-
sentation for any linear function just as "y = bx" is an analytical representation
for any proportional function.
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This can indeed be done. Imagine any
origin, like the upper line in the graph
to the right. Think very carefully what
this graph means. Consider how the point
P might have been plotted. You would be
given a value for y and a value for x.
Regardless of what kind of quantities y
and x represent, you always think of theme

di stances when you make a graph. The
point P must then have been plotted with
x equal to the distance OR, and y equal to
the distance PR. Similarly ,Q represents
the combination x = OS, y = QS. We write
bars over the two letters (like PR) to indi-
cate that PR is one symbol for a certain distance --
quantities, P times R. Now draw a line through the
first line, PQ. Suppose this new line intersects the
T and U as labeled in the drawing.

straight line not through the

0-
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N X

not the product of two
origin parallel to the
two lines PR and QS at

This new line we already know can be represented by the equation,
Y = bX (where we shift to capital letters to avoid confusion with the small
letters we are using for the other line).; What does this mean? Well it means
that any point (like T) has an X and Y such that X = OR, V = TR. (Remember
that any pair of letters with a bar over it represents a single distance. Inother words, it is a quantity . ) Moreover, these two quantities X and Y are
related by the equation Y = bX. That is,

TR = b x OR (1)

Can you write a similar equation derived from the point, U? It would be

US = b x OS (2)

You should see very clearly that these last two equations are nothing more than
two cases of Y = b x X, an equation that holds for every point on the line OTU.

Now since the two lines VPQ and OTU are parallel, the distances OV,
PT, and QU are all equal. This is a property of parallel lines that you are
probably familiar with and that we will make use of here without proving it.
You will prove it when you study geometry.

The two distances PR and QS can obviously be written as the sums of
their components:

Oa

PR = PT + TR

QS = QV + US



But in the paragraph just before this, we saw that PT and QU are equal --
that is, they are different names for the same quantity. Suppose we give this
quantity still another name, a, which is written in on the figure for you as a
label for OV (which happens to be still another name for it! ). Now we can
replace PT and QU in the last two equations above by their other name, a, and
write

PR = a + TR

QS = a + US

The quantities TR and US also have other names; they are given in equations
(1) and (2). If we replace TR and US jn the last two equations by these other
names, we have

PR=a+bx0R
QS=a+ bx0S.

(3)

(4)

If you look at these last two equations, you can't fail to see their
similarity: they both involve a and b in the same way. But they have a sim-
ilarity even more striking. If you look back at the drawing, you will see that
PR and QS are simply the y's of the two points P and Q; and OR and OS are
simply their x's. In other words, equations (3) and (4) say that for the two
points P and Q on the upper line, it is true that

y = a + bx (5)

Now this conclusion would be true for any point at all on the upper line,
for there was nothing special about the points P and Q that would make the
conclusion hold for just those points. In fact, why don't you try yourself to
go through the whole argument using the point L as labeled on the drawing?
Furthermore, there was nothing special about the line VPQ: it could be any
straight line at all not going through the origin. Therefore equation (5) is the
equation of any straight line not through the origin.

It is important that you understand themeaning of equation (5). If you
draw any straight line on a graph, every point on the line has some certain
y and x. The y of any point on the line depends upon which point you are
talking about. You can specify any point you wish to call attention to by naming
its x. That is, once you name an x, there is only one point on the line that
has that x. Therefore you see that specifying an x specifies a point on the
line, and specifying a point on the line specifies its y. Thus, as long as you
are talking about points on this line, whenever x is specified, then automatically
y is fixed. As long as you are talking about points on this line, in other words,
y is a function of x. If you were talking about some other line, specifying the
same x would in general give you a different y, as you will readily see if you
draw two different straight lines on a graph. Thus each different line you draw
will give you different y's for the same x; each different line, in other words,
represents a different function of x.

, 2z,.
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We have seen that the y and x of every point on a line are connected by
the analytical representation

y = a + bx. (5)

It is customary to say that "y = a + bx" is the equation of a line. Eachdifferc at line, of course, has a different combination of ar and b; but onceyou ha re chosen some particular line, the a and b for that line are constants.The reterse is also true: once you have chosen a and b, there is only onestraig: :tt line you can possibly get. You should now take a piece of graph paper anand try plotting the graph of equation (5) for some particular choice of a andb. Suppose you choose a = 2 and b = 3. Make yourself a little table like this:

0 1

2 5

Choose a series of any values you wish for x; calculate the corresponding yfrom the equation, y = 2 + 3x. Write the chosen x's on the first line of the
table and the calculated y's on the second line. After you have 6 or 8 pairs
of x.anil.y, plot them on the graph and see that they form a straight line. It
would ':)e a good idea then to choose another combination of a and b and repeat
the whale operation to see that this time, too, youget a straight line, but a
different one, of course.

1:;,eep in mind now that every point on a given straight line has an xand y i;uch that y = a + bx, where a and b are some fixed numbers. What is
the val'ie of y when x = 0? You see immediately that, regardless of what aand b are, y has the value a when x = 0. Thus every straight line, whose
equatirn is y = a + bx, crosses the vertical axis (where x = 0) at a distancea from the origin. In other words, if you see a straight line plotted on a graph,you kru first that that line has the equation y = a + bx, where a and b are some
fixed numbers; and you can tell at sight what the value of a is for that line. Itis simply the value of y when x = 0, or the point where the line crosses they- axia. It is less easy to tell the value of b at sight.

La the particular case where the line passes through the origin, thedistance a is of course zero. Hence for a proportional function, y = 0 + bx,or y = ax, as we learned before. Notice then that a proportional function is aspecial case of a linear function in which the constant term (a) is zero or inwhich the line crosses the y-axis zero-distance from the origin.

;'tow finally let's get back to your sugar solutions. Look at the graph youmade from the data of Experiment 20. You found that the graph is a straightline thil does not pass through the origin. The graph is a representation of the
functicrlal relationship between density (d) of a sugar solution and its concen-tration (c). We asked whether we could also find an analytical representation
of the same functional relationship. You now know that such an analytical
representation has to be of the form, d = A + Bc, where A and B are twoconstarts. The trouble is that we do not know the actual values of these con-stants. Can we find them? Yes, we can.
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In the first place, you know immediately that A is the value of d when.
c = 0. That is, A is simply the density of a sugar solution whose concentration
is zero, or the density of plain water, 0. 997 g/cc. Thus we can write immedi-
ately that

d + O. 997 + Bc (6)

when the density is given in g/cc.

Now this equation says that "d" and "0.997 + Bc" are merely different
names for the same quantity. If I subtract 0. 997 from this quarltity, I will get
the same result whether I subtrz.zt 0. 997 from "d" or from "0. 997 + Bc".
That is,

d O. 997 = 0. 997 + Bc - 0. 997.

Notice that on the right, we are taking the number Bc and adding 0. 997 to it
and then subtracting 0. 997 away again. This leaves us of course with ji..-st
Bc. Hence

Bc = d - 0. 997,

and this equation holds for all c and d. Now solve this equation for B and y
get

B d O. 997 .

In this last equation, we do not know B, but we do know lots of CombinatIoDs
of c and d. If you select (from the graph or from the table) a pair of values
of c and d that go together, you can place these values in the right-hand sicir of
the last equation, and work out numerically the right-hand side. If the c-z-..31d-d
combinations all fall on the same straight line, you will get the same valvc
B no matter which c-and-d combination you use.

Do you see the reason for the last statement? It isn't magic or dumb luck!
point this: all the c-and-d cornbinrLtions fall on one straight line. There-

fore, as we proved, they have to obey an equation of the form "d = A + Bc. " In
our particular case, every c-and-d combination must obey the equation,
"d = 0. 997 + Bc", where B is the same constant for every combination. Now
we showed by logic that: If it is true that d = 0. 997 + Bc, where B is a concl,:nt
regardless of what c and d you are talking about, then it is true that B = (d- (2 97)/c
where B is a constant regardless of what c and d you are talking about. CI-,n_y ?

Everyone in the class should now calculate B from his own c-and-d corn-.
bination, which is the second line of Table II in Experiment 20. Everyone
get nearly the same value of B; not exactly the same because of experimental
error. Take the average of all for the best value of B. Now you can write
equation (6) with the numerical value of B put in. You will get an equation very
close to

d = 0.997 + O. 378 c.



Observe that this is a functional relationship between density and concentrationfor sugar solutions. You can now predict the density of a sugar solution if
you are given the concentration

8. Once Again, Lightly

One must be careful in precise speech to be sure that such words as
"size, " "amount, " "big," etc. , a: used so that their meanings are understood:or else avoid using them. For example, "length, " "volume, " and "weight"
are all different but possible meanings your listener may attribute to your useof the word "amount. "

Den8ity of a material is the ratio of its weight to its volume, and is a
constant property of that material, regardless of which piece of it your are
talking about. Density can also be regarded as the proportionality_consta71t
in the statement "The weight of a piece of material is proportional to its volume. "
A determination of density can often be used to establish the identity of the
material of which a thing is made.

The concept of density applies to liquids, too. The density of a solution
is a function of its composition. For a solution of known components, its
composition can often be determined when its density is known.

Concentration is a numerical expression of "crowdedness" am', is defined
as the ratio of the amount of material to the space occupied by that material.

Any function whose graph is a straight line is called a linear function,
and is always of the form y = a + bx. In this equation, a is the distance from
the origin where the straight line meets the y-axis. When the function is pro-portional, this distance is zero, and the equation becomes simply y = bx.
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Unit V

Motion in a Straight Line

1. Position and Distance

This unit deals with certain aspects of the motion of moving bodies.As you..know, motion is the business of going from one place to another; thy'.'is, motion is a change in position of a body. Notice that one cannot observethe motion of a body unless he can observe its position at some moment andagain at some later moment. Thus in order to talk about motion, we have tobe able to talk about position; especially, we have to be able to tell the personwe are talking to just where a body is.

Notice that telling someone where something is, is really the same thingas giving an address. Here are. some examples:

Five blocks north and three blocks east ofthe postoffibe
Twelve paces south and twenty paces wast of the elm tree
35° north latitude and 1310 west longitude
Ten inches m the corner of the table along the front edge.

You might try making up some "addresses" like this yourself. Can you,for instanced. tell someone how to find the pole-star in the sky? Notice thatyou cannot tell anyone where the pole-star is -- or where anything else is,for that matter -- without telling how far it is from something else. Look atthe examples above; they all fix an address by using some fixed reference point:the post office, the elm tree, the corner of the table. What is the fixed rof2:71-ence point in the third example? Most people locate the pole-star by usingtwo stars in the big dipper as reference marks. To repeat: you can locat.3
a body only if you tell how far it is from something else. "Far" and "from"-- distance and reference mark. You can see how the idea of motion is tied
up willy-nilly with the ideas of distance and position.

Now suppose you were way out in space by yourself -- so far away fromanything else that you could be regarded-as completely alone. Question: Areyou moving or standing still? You might find this a little shocking, but themodern scientist would say that this question has no meaning! For the onlyway you could speak mea n in g fu 1 1 y of your motion would be to speak of yourposition at one moment and your position at a later moment. But you axealone; there is no reference mark available to describe your position, andtherefore no way to tell whether you are moving. The modern scientist wouldsay, since it is not possible to learn whether you are moving, that the idea ofmotion is without meaning to you. You might well say "But even though I can'ttell whether I am moving, this doesn't mean that I hrere no motion. It's on?,I can't tell. If I'm in a train with my eyes closed, I may not be able to tell
that I'm moving, but this doesn't mean that I'm not. " You have a good point,and it has been argued by scientists and philosophers for many years. Thepoint is that if the concept of position is without meaning to you, so is theconcept of motion.

"1-
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Perhaps you could understand this more clearly if you imagined you:: selfborn in a spPcecraft, floating in a sea of total emptiness all your life andalone. Suddenly a voice from nowhere asks:

"Where are you?"

"I don't understand the question, " you reply. "I'm here. There isn't
anywhere else. "

"Well, where are you going?"

"Again, I don't understand what you mean by 'going. There is no: placeto go to; I can't tell one place from another. I'm here id I cannot be going
anywhere. I'm not moving, for I don't even know what you mean by 'moving',"

Do you see that the "voice" couldn't even explain to you what the word
"move" means? The words "move" and "motion" literally have no meaning
to you

But let's get back to where we can describe the position of a body and
therefore tell where it 5s and whether it is moving. At first we will speak only
of motion along a straight line. This means that no matter when we observe
the body, it will always be somewhere on this line. We can then conveniently
describe the position of the body by choosing some point on the line as the
reference point and stating how far the body is from that point.

Notice, however, that there is an uncertainty here. If I say the body is
21 cm from the reference point, yot. will not know whether I mean 21 cm to theleft or to the right of the origin (another name for the reference point). Let
us then agree to the following convention. We will call one side of the origin"plus" and the other "minus". If the body lies on the minus side, we will
call its position "-21cm"; if the body lies on the plus side, we will call its
position "+24. cm". "'hat should we call the position if the body lies right onthe origin?

Next, we must settle which side is to be plus and which minus. The
choice is only a matter of taste,of course, and mostly it doesn't matter whichwe choose as long as we agree on it. We shall use the following conventionunless you are told otherwise: When the body is moving along the line, we will
say it is moving away from the negative side and toward the positive side. Inother words, if you stand so that the body is moving to your right, then the
minus side is on your left and the plus side .on your right. Okay?

Still another way to look at it is to notice that the body is always moving ,toward larger numbers. If the body is now at +1Q, it will later get to +15; if itis now at +2, it will later get to +6; if it is now at 0, it w. '1 later get to +.3; if
it is now at -2, it will later get to +2. Also, if it is now at -10, it will laterget to -5. N' e that -5 is a larger number than -10. You will have to get
used to the idea that -A is bigger than -B whenever A is smaller than Be Youuse the same idea when you say that -15 degrees is warmer than -30 degrees; or
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that the second floor below ground is higher than the fourth below;or that 200 BCis later than 300 BC. It's at: .easy idea to grasp, so don't let it get you mixedup.

Now we can easily find the distance between two points. The distancebetween two points is simply the difference between their positions. (Actually,you used this fact in all your spring experiments. ) Again there might be anambiguity. If you are given two positions, A and B, is the distance between themA-B or B-A? Here again we will have to agree on one oar the other. Sincethe word "distance" as we are using it here means "distance the body hastraveled, " we want to subtract in the way that shows how far the body traveled;or, what is the same thing, we want to show how much its position has changed.Now when we speak numerically of a change, we always in common speechmean "second minus first. " How much did you grow in height in this year? Toanswer you subtract your height last year from your height this year: secondminus first. How long did it take you to paint the fence? To answer you sub-tract the starting time from the finishing time: second minus first. How muchdid the temperature change from noon to midnight? You subtract the noontemperature from the midnight temperature: second from first.
So in our case also. "Distance traveled" always means "final positionminus initial position. " Since the body, in accordance with our convention,always travels toward higher-number positions, we then will be subtracting

2, smaller number from a larger. Examples:

How far does a body travel if it starts at +10 cm and ends at +25 cm?Answer: (+25) - (+10) = 15 cm.

How far does a body travel if it starts at -10 cm and ends at +25 cm? The
answer would be given by "(+25) - (-10)", but how do you work this out? Youmust remember that the only things we know how to subtract are ordinary
numbers. munbers like 16, 1. 97, 2/3, 5: +25, and 0 are "ordinary" numbers,but what is this thing we are calling "-10"? To be more precise, we will callthose numbers that lie on the plus side of the origin, "positive" numbers(instead of "ordinary" numbers); these new things that lie on the minus sidewe will call "negative" numbers. To repeat then: the only kind of numbersyou know how to subtract are positive numbers. What does it mean to subtracta negative number? Subtraction of negative numbers has never been definedfor us, and it therefore does not yet have a meaning. We can give it any meaningwe want to. The first question then is not "What does 'subtracting a negativenumber' mean? "; for it doesn't mean anything yet. The first question is rather"What do we want 'subtracting a negative number' to mean?"

To decide what we want it to mean, we have only to look at how the wholeidea of subtracting a negative number arose. It came up because we defined"distance a body travels" as "B-A", where B is its final position and A its initialposition. Since it is possible that A be negative, we immediately run into thepossibility of having to subtract a negative number. Whatever it means to"subtract a negative number," then, we want the result of "B-A" to mean thedistance a body travels in moving from position A to position B, even when Ais negative. So let's consider carefully the travel from a position, -P, to aposition, +Q.
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In making this trip, the body might be thought of as moving from the
position., -P, to the position, zero, and then on to the position, +Q, like this:

In the second part of the trip (from zero to +Q) the distance traveled is (Q-0)
or simply Q. To get the total distance traveled, we must then add somethinfi
to Q. The total distance we have defined as "Q (-P)", however, so that
"subtracting (-P) from Q" has to mean adding something to Q. What must you
add? Now the length of the first part of the trip from -P to 0 is actually just
+P. Why? Because that's the way -P was defined to begin with: If you lay
off a certain length to the right of the origin, we will call it +P and if you lay
off the same length to the left of the origin, we agreed o call it "-P". Thus the
total trip is Q + P. Thus we feel that we would like to define "Q (-P)" in
such a way that

(-P) P (I)

It is worth pointing out to you again that the two preceding paragraphs
are not a goof that Q - (-P) is the same thilig as Q + P. The intent of these
two paragraphs is rather to show you that equation (1) is a reasonable
definition of what ismeant by "subtracting a negative number. " We accordingly
take equation (1) as a definition of what the previously undefined, operation of
"subtracting a negative number" will henceforth mean. It is important that you
see that we could have defined it in anyway we wanted; but the way that we
finally choose to define it has the important property that then the distance
from -Q to +P gives what we intuitively feel "Q - (-P)" ought to mean. Now
how far does a body travel if it starts at 40 and ends up at +25? Work it out
yourself.

Then finally we ask: How far does a body travel if it starts at -Q and
ends at -P? The definition of distance says that this distance is "(-P) - (-Q)".
We have already decided that "subtraction of (-Q)" means "addition of Q. "
Hence "(-P) - (-Q)" means ''(-P) + Q". Since addition is commutative (that
is to say, we wipt it to be commutative if we can get it so), we can rearrange
"(-P) +Q" to "Q + (-P)". Then we would like it to be true that

distance from -0 to = (-P) ( -Q)' Q + (-P). (2)

In a picture, the situation looks like this:
131P,

-Q -P 0

1
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Now you can see that the distance from -Q to zero is more than the distance
from -Q to -P. Again, you can seethat

(the distance from -Q to zero) exceeds (the distance from -Q to -P) by
a (distance equal to that from -P to zero. )

But the distance from -Q to 0 is Q (Remember? That's the way we defined
-Q to begin with!), and the distance from -P to zero is P. Therefore the
indented sentence above can b' translated by replacing the contents of the first
parentheses by "Q"; the contents of the second parentheses by "Q + (-P)" (you
get this permission from equation (2)); and the contents of the third parentheses
by "P". That is,

Q exceeds Q + (-P) by P.

Next, we must realize what "exceeds" means. To say that "itT exceeds
V by W means that "U is W more than V" or "U = W + V". Thus we can write

Q= P Q + (-P).

Now subtract P from both sides of this equation. Then

Q-P= P+Q+ (-P) - P.

Now right away you see that we are both adding and subtracting P on the right.
Canceling them out gives

Q P = Q + (-P).

Turning this equation around will make the point a little more clear:

Q (-I?) = Q - P.

In words, adding -P to something is the same as subtracting P.

We can write equations (1) and (3) together like this to exhibit them
more compactly:-

Q (-P) = Q + p

Q (-P) = Q P

Notice the symmetry: the first equation says that subtracting -P is the same
as adding P; the second equation says that adding -P is the same as subtracting
P. That's easy, isn't it? Whenever you want to add or subtract a negative
number, you simply drop the minus sign and do the opposite.
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Once again: these rules for dealing with negative numbers were not
derived or proved. They are definitions of what we shall henceforth mean by
adding and subtracting negative numbers -- something that had not heretofore
been defined. All the discussion was only to show the definitions to be reason-
able and consistent with the ones for positive numbers.

2. Velocity

A body that is moving is by definition a body that changes its position.
You have many times observed that two different bodies can change their posi-
tions at different rates. A rabbit, for example, can change its position from
here to there more quickly than a turtle can. You know already -- and we
have several times before used this information -- that the speed of a body is
defined as the (distance the body travels) divided by (the time it takes to travel
that distance). Suppose, as a body moves along, that you measure the time it
takes to cover many different intervals. Suppose further that you find the
ratio, distance/time, to be constant for all the intervals. Then we say that the
body has a constant speed. For the present, we confine our attention to bodies
moving at constant speed.

The definition of speed as "distance/time" is familiar to you, but have
you ever wondered why it is defined that way rather than, say, as "time/distance'
The reason is closely related to the reason why concentration is defined as
"amount/ space ", and you should take off a few moments to think about it. The
meaning of the word speed, as you grew up using the word and hearing it used,
is such that the greater speed is to be assigned to the body that travels a given
distance in the shorter time. If you have two bodies traveling the same distance
in different times, then, their speeds will be given by two fractions whose
numerators (distance) are the same but whose denominators (time) are different.
Which of the two fractions has the greater value -- the one with the smaller or
the one with the larger denominator? Does this agree with what you want speed
to mean? If you have two bodies traveling over different distances in the same
time, you want the one that travels the greater distance to have the greater
speed. If they travel different distances in the same time their speeds will be
given by two fractions having the same denominator (time) but different numer-
ators (distance). Which of the two fractions has the greater value the one with
the larger or the smaller numerator? Does this agree with what you want
speed to mean? So you see that someone's suddenly telling you that speed
means "distance/time" is not violating the conception of the word that you
already have. The new definition merely makes precise and numerical what
you already had in mind.

The two words, speed and velocity, have slightly different meanings. The
difference between them will concern us later; but as long as the motion is
along one straight line, their meanings are identical.

It is now time to do Experiment 21.



ow-

.119.

Points to Discuss in Glass

Are the three curves straight lines? Use a ruler to draw the best
straight line you can for each plot. Do you notice any special relationship
among the three lines?

Since the curves are straight lines, they represent linear functions.
This means that the position attained by a body moving at uniform velocity is
a linear function of the time. If we repre sebt position attained by p and time by
t, in other words, it must then be true that

P = A + Bt, (4)

where A and B are constants for any one curve. They (A and B) may, of course,
be different constants for the different curves; all we know is that for any one
straight line, there will exist some A and B which have always the same valuefor that line. This means that for any one travel of the body, there will exist
some A and B such that you can always calculate p from equation (4) when t is
given to you.

Can you find the values of A and B for your curves? You have already
learned (page 110) that the value of A for any linear curve whose equation is
equation (4) is the value of p when t equals zero. But the value of p when t = 0is the value of p at the point where the curve crosses the vertical axis (the p.axis). You can then tell the value of A for any of your straight lines merely by
looking it the graph and reading the value of peat the place where the curve
crosses the p-axis.

But more than that, do you have a feeling for the meaning of A? When yousay "t = 0", you are referring to the instant at which you started counting time.What is the position (p) that the body has attained, since you started counting
time? Well, this position is given, for any t, by equation (4). In particular,
what position has the body attained since the starting time up to the time when
t = 0? You can see that the time "t = 0" is he starting time; therefore the bodyis at this moment just on the verge of moving aw-.y from where it was at the
starting time, but of course has not yet left there. At time t = 0, then, the
position the body has attained is the same as its starting position. Now notice
the elegant consistency among these three things:

(1) Your reason .tells you that the position of the body at time t = 0 is thesame as its starting position.

(2) Equation (4) tells you that the position of the body at time t = 0 is A.

(3) Your graph tells you that the position of the body at time t = 0 is given
by the point where the curve crosses the p-axis.
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Taken all together, then: your reason, the analytical representation given byequation (4), and the graphical representation given by your graph tell you that:the starting position of the body
and the value of A
and the point where your graph crosses the p-axis

are all the same thing!

Do you see how neatly these all fit together? Do you see how the graphmakes vividly visual both what your common sense tells you of thL1 motion of thebody, and what equation (4) allows you to calculate about the motion of the body?

One of your three curves looks something like the JK in the followingdiagram:
-1) 4

a.. OM. eVI L.
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You realize now that the line-segment ("line-segment" means piece of a line)OJ is a mply the value of A in the equation p = A + I3t. This curve represents
a monotonic increasing function. Notice again that your reason and your
observation in doing the experiment show that the change in position of thebody as it falls down the tube is indeed monotonic, for the body falls steadily
downward (in the d rection of higher numbers on the measuring tape) without
ever falling up. The graph pictorializes this observation. Try not to be con-fused by the arrow at the left on the diagram: it points 112. as the direction ofincreasing p, whereas the body actually fell down as p increases. Inc a,: asingp means motion downward in this experiment.

Suppose now we ask the question: What would be the position of the bodyat any time if it starts at J and stays thereforever? The answer of course isthat the body is always at the same position; that is the curve is always the samedistance, OJ, from.the t-a.xi3, This line is drawn dotted on the diagram. Do
you see why this dotted horizcntal line represents the "motion" of a body thatstarts at a distance OJ from he origin and never moves away? If it never moves,then its distance from the origin, 03, stays always the same. The distance fromthe origin at a later time (say at time M) must be the same .1,s its distance atthe start. The distance at later time M is ML, and its distance at the start isOJ. The only way this distance would always be the same -- OJ = ML = thedistance at any other t at all -- would be if the line JL is parallel to the t-axis.So you see that a body that does not move (which means a body moving with
zero velocity) can have its motion represented on a p-t graph by a horizontal
line whose distance from the t-axis is always the same.

r. P
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Now consider the case you actually investigated, where the body doesmove; where as time goes on, the distance from the horizontal axis does notstay the same but continuously increases. Such a motion must be representedby a line that slopes upward to the right; for as you move to the right on thegraph (moving to the right means "as time goes on", doesn't it?), the bodyincreases its distance from the reference mark -- that is, moves farther andfarther away from the reference mark. Therefore as you move to the righton the graph, you must represent the position of the body by points higher antihigher on the graph. You can probably see also that: if the body is movingfast, then the graph must rise steeply, because the position of the body movesfaster away from the reference mark; and if you move slowly, the graph rises
only gently, because the position of the body moves only slowly away from the
reference mark.

For instance, if the body is not moving at all, then by the time M (look
at the diagram) the body will not have moved any farther away from the::.refer-
ence mark than it was at the beginning, and the position of the body will begiven by ML, which equals OJ. If, however, it is moving very rapidlythen
by the time M it will have moved well beyond its original position and KL willbe large. If it is moving only slowly, then by the time M, it will not have
moved very far beyond its original position and KL will be small. Perhapsyou can see that for a body of high velocity, the line JK will be steep becauseit must rise rapidly whereas for a body of lower velocity the line JK will beless steep. If in fact the body is not moving at all, then the line JK would
have no steepness at all! It would be perfectly flat like JL. The faster thebody moves, the steeper will be the line JK.

Now do Experiment 22, which will help you understand the relationship
between the steepness of the graph and the velocity of the moving body.

Points to Discuss La Class

All the curves in Experiment 22 are straight lines. Are they all equally
steep? Could you have predicted whether the faster fall would have had thesteeper or the more gentle slope? Can you tell merely by looking at thegraphs which curve goes with the highest velocity? Recall thc discussion onpage 97 regarding the steepnesses of several curves you previously drew. For
which of two moving bodies does position increase more rapidly -- the slow
body or the fast one? Which curve rises more rapidly -- that for the slow orthe fast one? Which curve is steeper -- that for the slow or the fast one?

You should now have a feeling for the fact that the steepness of the curve-- position vs. time is somehow related to the body's velocity. The situation
is entirely analogous to the curves of weight vs. volume that you obtained inExperiment 16, where the steeper curve went with the greater density. We wantnow to examine certain numerical aspects involved in the idea of "steepness. "

,,LLZ7.71
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3. !;lope of a Straight Line

"Can you tell which of two ramps is steeper just by looking at them?",Tom asked Jerry.

"Sure, that's easy, " answered Jerry. "Try me. "

Tom showed Jerry a piece of, paper on which he had drawn two straight
ram. ;Is. The drawings looked like this:

"Okay, Jerry, which one is steeper?" Tom asked his brother.

"Why the one on the right, of course, " Jerry replied.

"Why do you say the one on the right?"

"Because it goes up higher than the one on the left." Jerry went on to
explain, "The steeper the ramp the higher up it goes. "

Tom wasn't quite so sure. "Now wait a minute, " he cautioned. "Lookhere, I'll draw two other ramps, and then you tell, me which is steeper. " Torn .

then, made two new drawings that looked like this:

"Now, which one is steeper?" he asked.

"The one on the right again, " answered Jerry.

"But the one on the left goes higher, " Toni reminded his brother.
"According to what you just told me, yc ought to call the left one steeper. "

"Yes, " admitted Jerry, "I guess I yoke too fast. The left one goes
higher, yet I can see that the one on the right is steeper. There must be
something more involved in 'steepness' than juste how high the ramp goes. Pm
not so sure any more. "

Do you think you can help Jerry to formulate his into idea of s'.;eep-
n.ees iiVo something numerical and definite?

r7r,17,-1. C4 Ca



-123-

The idea involved is analogous to those involved in the disti ;don between
weight and density, cr between amount and concentration. In the present case
we are trying to avoid the confusion between "height of a ramp," and "steepness
of a ramp. " They are closely related, you realize, but are not the same.

Suppose you were an ant in the middle of the ramp somewhere, yet with
all your human sensibilities. You can see neither end of the ramp and have no
idea how far it goes up or down. Could you still tell whether one ramp was
steeper than another? Of course you could, so right away you know that the
height of the ramp is not at all what determines its steepness. When you
determine the density of a material you take a unit volume of it and determine
its weight; when you determine the concentration of a solution, you take a unit
volume of it and determine the amount of material dissolved in it. What counts
in density is not merely the weight. but the weight per unit volume. What counts
in steepness is not the height, but .low much the height increases per unit of
horizontal distance. This, if he had the necessary instruments, an ant could
determine.

Notice that we said above that steepness could be thought of as the amount
the height increases per unit of horizontal travel. Consider the ramp below.

B

40-Le.

We could select any two points we wished on the ramp, aay A and B. We could
then lay out a horizontal line from A, like AC, and a vertical line from B,
like BC. Then BC is the amount by which your height increases as you walk
from A to B, and AC is the amount of horizontal travel. To find the "height

4.1111.10increase per unit of horizontal travel", you would then divide BC by AC (they
are both numerical quantities, remember!).

There are two questions you probably now are asking. One of these is:
"But can I not express the steepness in other ways that are just as good? For
instance, why not say the steepness is simply the value of the angle at A?
Or why can't I say that steepness is "height increase per unit of travel along
the ramp" MOB Ow rather than per unit of travel horizontally?" The answer is that
you can. This a a cat that can be skinned in sev:tral ways. For our purposes,
as you will soon see, it will be more useful to use the first suggestion above,
however, -- the "height increase per unit of horizontal travel." To avoid
ambiguity in the word "steepness", then, we call this particular measure of
steepness, slope, and we then have the definition:

Increase in Heightslope - Horizontal Distance
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The other question you were about to ask is this: The two points,
A and B, on the ramp were just chosen at random, and then the numerical
value of BC/AC was computed and called the slope of the line. Suppose some-
one else had measured the slope of the ramp. He probably would not have
;hosen the same two points A and B. In the drawing below, for instance, perhaps

the other person chooses the two2Liixits, D and E. Then he calls the slope
EF/DF. Now what is the :bloke: BC/AC or EF/iDF or-perhaps something else
that still a third person might measure and compute?

The whole idea of speaking of the slope of a straight line breaks down
if different people get different slopes. Where do we go frcm here? Actually,
you have run into this very problem several times before, though it appeared
before in different disguises. For instance:

How can we speak of the spring constant, k,, o certain spring if k
means "extension /weight ", and its value depended what weight you happened
to use? Answer: the ratio, extension/weight",is always the same for. a .

given spring. (Experiment 11)

How can we speak of the density of aluminum if -'ensity means "weight/
volume" and its value depended on what piece of aluminum you happened to
use? Answer: the ratio, "weight/volume" is always the same for any piece
of aluminum at all. ( Experiment 15)

In Experiment 10, you found that the ratio of "height above the ground"
divided by "diotance along a ramp", for a given ramLangle, is constant.
This means, in terms of the drawing above that B C /AB and EF/DE are equal,
as is any other similar ratio for whatever points on the lir-- you choose. In
fact, we saw an argument (pages 71-72) showing that this ratio is the same,
for a given ramp angle, regardless of what points you choose. Notice that
this argument was directed to showing that "height/distance along the ramp"
is a constant. It would be a good idea for you to go back and use the L-ame
argument (with only slight modifications) to show that "height/horizontal
distance" is also constant. This ratio, too, is constant for any given angle
that the line makes with the horizontal.
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Now suppose we have any straight-line graph like this:

L

f\A C..

X
We choose any two points on the line, say A and B, and draw the usual linesAC and BC. You now know that, for any choice whatever of A and B, theratio BC/AC for this line is constant and is called the slope of the line.Suppose we extend BC to the x-axis, hitting the axis at N, and extend AC tothe y-axis, hitting it at M. Also draw BL parallel to the x-axis and AK parallelto the y-axis. Could you plot the point A if its x and y are given? Certainlyyou can. Now backwards: can you find the x and y of a point if you are shownthe point? Certainly you can! The 'viand y of the point A are respectively OKand OM; and the x and y of the point B are respectively ON and OL. Be sureyou see that:

for point A: xA = OK and yA = OM

for point B: xB = ON and yB = OL

Next, we shall compute the quantities BC and AC (look at the drawin&Lwhose values we need to find the slope of the line. You can see that BC = BN-CN,
But BN is equal to OL and CN is equal toOM. Do you see why?But you just saw above that OL = yB and OM = yA. We then have

BC= BN CN

= OL - OM

= YB YA

You should also now be able to see that AC= MC - MA = ON - OK = xB xA.We now have shown that "y yA" is another name for BC and that "xB xA"is another name for AC. Then we have from the definition of slope that

EBXA.slope of line AB = _Z- (5)
xrs xA

Remember that A and B were selected in no particular way: they wereany points on the line AB. Equation (5) then says that the slope of any straightline may be found by

4
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(1) choosing any two points on the line;
(2) finding the difference between the y's of the points;
(3) finding the difference between the x's of the points;and (4) dividing the y-difference by the x-difference.

All you have to be sure of, in applying this 1-2-3-4 recipe for finding the slope,is that the two points you use to find the x-difference are the same two pointsyou used to find the y-difference, and that you subtract in the same directionboth times.

Scientists usually use the symbol 4 to represent the difference between
Vivo quantities. is a capital letter of the Greek alphabet, is pronounced"delta", and is the Greek equivalent of our letter D, meaning difference. Forinstance, 6 x means a difference in two x's, 6 y means a difference betweentwo y's, CtT might mean a difference between two temperatures. The symbol06 is an exception to the rule that two symbols written together is an instruc-tion to multiply. (J is not a symbol for a quantity and therefore " 6 timessom t.Ang else" doesn't mean anything. always means a difference. Whenyou see two used in the same expressions you must always remember thatthe two differences they represent must be "corresponding differences. " If Italk about 4y and .6,x at the same time, this means that the ',difference iny's" is worked out for the same two points as the "difference in xis." With
this understanding of how we shall use the symbol, , we can now write
equation (5) more compactly as

slope of a line = 6 Y
4% x

(6)

Remember: when you work out and ef..\x to find the slope, you musttfind /-y for the same points that you use to find .fix.

You might notice that we can symbolize our definition of velocity (orspeed) by using the compact notation. On page 118, we defined velocityas (the distance the body travels) divided by (the time required to travel thatdistance). Let us write this definition as ai equation.

distance the- .,body travelsvelocity time required for the trip

In turn, we have defined distance as the difference between two positions. The"distance the body travels" is then the difference between its position at theend of the timing interval and its position at the beginning of the timing inter-val. -4. ;:.. If we let p standfor position, then ,op is the change in position or distance traveled. The"time for the trip" is evidently the difference between the time at the end of theinterval and the time at the beginning of the interval. We can represent thisdifference as 4t. Now you can see that Alp and t are "corresponding
differences" in that they are measured over the same interval; hence we mayuse them in the same expression. The definition of velocity above then becomesvery simply

velocity = Al'
t
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4. Slope of a Linear Function

By this time you know that any straight-line graph may be represented
by a linear function, y = a + bx, where a and b are constants depending on
what line you are talking about. Keep in mind that, once a and b are fixed,
whatever they are, you are talking about one and only one straight line.

Now remember exactly what the relationship between the line and the
equation is. Every point on the line has some pair of x and y. But you cannot
choose any old x and any old y you please. Once you have chosen an x, then
there is only o,le point on the line that has this x; and the point has only one y.

So choosing an x automatically fixes a y: y is a function of x. But whatever the
y and x might be, you can always calculate the y that goes with a chosen x by
putting tha;. value of x in the equation y = a + bx and calculating the value of
"a + bx. " In other words, for every point on the line, the x and y of that
point satisfy the equation y = a + bx. See?

Let us choose two points on the line, say A and B, whose xis are

Q

O

Ax apart. In the figure, then, zi x = MN, and we can write

For the point A:: yA = OP and xA = OM

For the point B: yB = OQ and xB = ON

But the equation y = a + bx is satisfied by ever/ point on the line. Hence,
for example,

yA = a + bxA.

We have other names for xA and yA as given above yon the line "For the point
A. " If we place these values of xA and yA in the equation, we get

OP=a+bx0M (7)

You should be able to see that substituting similarly in the equation,
yB = a + bxB' gives

0Q=a+bxON (8)

Try it yourself!
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Next, let us find an expression for OQ - OP. You can see from equa-
tions (7) and (8) that

OQ - OP = (a + b x ON) - (a + b x OM). (9)

Look at the last part of equation (9). We are subtracting the sum of a . and
b x ON. You know that subtracting the sum of two numbers is the same as
subtracting each number individually. Therefore we can rewrite equation
(9) like this

00-0P=a+bx0N-a-bx0M.
Right away you see on the right hand side that a and -a appear, and may of
course be canceled out. Do you remember why? Then you have

OQ - OP = b x ON b x OM. (10)

Look at the right-hand side of this equation. It brings up a principle
that we used before and will have occasion to use again. It is an P-ithmetical
property of numbers that multiplying the sum of two number by a multipliergives the same result as multiplying each of the numbers separately by the
multiplier and then adding. In symbols,

a(b + c) = ab + bc.

This property of numbers is called the distributive principle, and applies tosubtraction as well as to addition. We used the distributive principle on
page 101, and wish now to use it again.

The right-hand side of equation (10) consists of the difference of two
terms, each multiplied by the same number, b. Using the distributive prin-
ciple, we can rewrite the right-hand side of equation (10) like this:

OQ - OP = b(ON - OM).

Now if you return to the drawing on page 127 you will notice that OQ - OP isQP and ON - OM is MN. We therefore have

= b x MN.

We can solve this equation for b (Do it yourself!) and obtain

b = QP/MN.
.

But now do you see that QP is the amount by _t ch y changes in going
from the point A to the point B? This means that QP is merely what we havepreviously called " Ay"; and similarly MN is just Ox. We therefore canrewrite the last equation above as

b = icy / GS x.
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Compare this equation with equation (6). You will remember that we defined
the slope of a line in accordance with our intuitive feeling of what the word
"steepness" means, arriving at the fraction yi,6x" as a reasonable defini-
tion. Earlier, we had learned that "y 7-- a + bx" is an equation that represents
any straight line at all. Now we find, by logic alone, on comparing equations
(6) and (11), that the constant b in the equation for a straight line is nothing
more nor less than the slope of that line!

5. Velocity and Slope

Let us now return to the graphs you made in Experiment 21. You hav3
three straight lines, each of which therefore can be represented by an equa-
tion of the form "y = a + bx", where, of course, the a and b may be different
for each line. You already know, in fact, that the a's are different; for a
tells where the line crosses the vertical axis.

In the particular case of your graphs of position vs. time, we have
noted before the convenience of using p to represent position (the quantity
plotted vertically), and t to represent time (the quantity plotted horizontally),
Instead then of writing "y = a + be as the equation of one of these lines, it will
be more appropriate to write "p = A + Bt". Now choose any two points on
the topmost line on your graph. Choose them so they are well-separated, and
label the lower one A and the upper one B. (You are actually to do this; not
just imagine it's being done! ) Draw lines through A and B parallel to both

C

axes as in the accompanying drawing, with the intersections as labeled there.
Notice that point A represents the body when the time is OK and the position of
the body is ON, and the point B when the time is OL and the body's pvsition is
OM. The time elapsed in going from A to B is therefore OL - OK and the
distance traveled in that time is OM - ON. But OL - OK is simply KL and
OM - ON is simply MN. Thus MN is the distance traveled by the body in the
time interval KL. By our definition of velocity, therefore,

v = 6p/ t = MN/KL. (12)

From this equation, calculate the velocity of the falling ball for each of the
three curves you plotted in Experiment 21. Follow the diagram above. After
choosing two points A and B, draw the lines AC and BC and measure BC and
AC. Since BC = p and AC = q t, you can calculate the velocity. Record the
calculated velocities at the bottome of Table I. Is your supposition borne out
that a given size ball of a given material will fall through a given oil column
always at the same velocity?
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Now let us go back and apply equation (11) to the equation of motion at
constant velocity, p = A + Bt, Equation (11) says that the slope of a line is
the constant, b, in the equation, "y = a + bx", of that line, and is also given
by the fraction, d y/ p x. Applied to our particular case, equation (11) says
that the slope of a line is the constant, B, in the equation, "p = A + Bt", of
that line, and is also given by the fraction, Zip/ /fit. In other words,
B = 6p/ t, when you are talking about the line, p = A + Bt. If you look at
equation (12), you will see that the velocity of a body is also p/O, t. We have
this interesting and important conclusion: For a body traveling at constant
velocity, the position of the body is given by "p = A + Bt" where B is the
velocity of the body.

We now can attach special significance to both the constants, A and B,
in the equation, p = A + Bt. We saw earlier that A is the value of p when
t = 0; that is, A is the position of the body at zero time. We might call this
position, pc.. Now we learn that B is the velocity of the body. We then have
the analytical expression in general,

p = po + vt, (13)

where p is the position of the body at any time, t, and po is its position at
time zero, and v is its velr-lity.

It is only fair to say that we could have arrived at equation (13) with
far less labor. You could reasnn as follows: If the body has position, po,
at time zero, then its position at a later time, t, will be pc) plus the distance
it moves during the time, t. If its velocity is v, then the distance it moves in
time, t, is vt; hence its position at time twill be pc. + vt. This three-line
derivation is perfe-tly rigorous, but our purpose in using the longer derivation
involving the general ideas of slope, linear functions, graphs of linear
functions, tl's, etc. was to develop your feeling for those ideas as well as
to arrive at equation (13). We will use those ge.ieral ideas again.

Now back to Experiment 21. You calculated the velocities of fall for
the three runs and found these velocities to be identical (within experimental
error). According to equation (13), the velocity is the slope. All three
curves should have the same slope. Do they? The fact that the three curves
are parallel is a reflection of their all representing motion at the same velocity.

By the same token, curves representing motion at different velocities
will have different slopes. The motion would still be represented, of course,
by equations like (13) but the values of v and hence the slopes will be different.
Now make calculations of the velocities of the three (or four) runs of Experi-
ment 22. Do it in the same way you calculated the velocities in Experiment
21, and record them at the bottom of Table II. Compare these velocities with
your judgement of the slopes of the curves. Does it seem reasonable to you
that greater velocity should mean greater slope?

'"..1,;',77::'



What is the slope of a horizontal line on the graph? How much does p
increase for any interval of t on a horizontal graph? What then is the value
cf p for any interval? What then is the value of the slope? What kind of
"motion" does P horizontal line represent? Do slope and velocity agree?

Equation (13) gives p as the sum of two terms, pc) and vt. You learned
long ago that you can add two quantitites only if they have the same uniti.
Can you show that pc, and vt have the same units?

You remember that (page 124) we could speak of the slope of a straight
line because a straight line has always the same steepness; that is, its slope
is constant. You learned that the falling balls in the last two experiments gave
you straight lines when you plotted,p versus t. These curves then have a con-
stant slope, since all straight lines have a constant slope. You also learned
that the slope of a p vs t curve is the velocity. It follows therefore that the
fact that you got straight lines when you plotted p vs t proves that the motion
of the balls was under constant velocity.

6. Accelerated Motion

Up to this point we have confined our attention to uniform motion; that
is, motion at constant speed (or velocity) along a straight line. Any motion
that takes place other than along a straight line at constant speed is called
"accelerated motion. " We will continue to restrict ours "es to motion along
a straight line, but will now consider motion in which the speed is not constant.
You may never have noticed that a rock dropped from the roof of a house does
not fall with constant speed. It falls at first very slowly, then picks up speed
and moves faster and ever faster until it hits the ground. Because of friction
against the air, a rock dropped from a very tall building or an airplane would
eventually reach a constant velocity. Using a small ball, and an oil where the
friction is much greater than with air, the constant speed is reached after
dropping only a centimeter or two. This was the idea behind the last two
experiments.

Dropping a rock through the air then is a good example of accelerated
motion. The motion here is much too fast for us, however, to make measure-
ments on the motion as we did for the ball falling through oil. But it is also
true that a ball rolling down a ramp in air behaves much like a free-falling rock
except that everything is slowed down to a point where you can make cnnvenient
measurements,

In Experiment 23, you will study the motion of a ball rolling down a ramp
as an example of accelerated motion. Do you know will t the accelerator on an
automobile does? The accelerator is the gas pedal, and by pushing down or
letting up on the accelerator, you can make the car go faster or slower. In
other words, the accelerator allows you to change the speed of the car. "Accel-
erate" is a verb meaning to "change the speed of" something. We use the word
the same way here. Sometimes "accelerate" is used to mean only "increase
the speed of", but we shall use it to refer to any kind of change in speed, not
only an increase.
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Accelerated motion then is motion whose velocity changes. Suppose you
observed a moving body and wished to determine whether its motion wasaccelerated. How might you do it? Well, since accelerated motion is merely
motion whose velocity changes, here is one sensible th5.'g to do: You could
choose any two points in the path of the body and measure its velocity at both
points. If the velocity is not the same at both points, you may certainly con-clude that the motion is accelerated.

Notice that a body moving with constant velocity has no acceleration. Itmight muve forever with never any change in its velocity; no matter how fast
or how slowly it's moving, then, it has no acceleration. This observation isthe germ of a physical idea. For if we say "the body has no acceleration," weare tampted to reword the statement as "the body has an acceleration of zero. "But :?..,ero is a number, and right away the physical scientist would say, "I canimagine a body that has zero acceleration, and zero is a number. I can also
observe a body that does not have zero accleration. I wonder whether acceler-
ation. is one of those qualities that can be expressed numerically. I haven't yet
defined exactly what the word 'acceleration' shall mean, though I have an
intuitive feeling that it ought somehow to have something to do with change in
velocity. Car_ I define it in such a way that acceleration becomes a measur-able quantity ?"

We can kick this idea around a little further. Imagine two cars standing
side by side, motors running, ready to begin a drag race. At the same instantthe drivers step on the gas. One car takes 10 seconds to reach a speed of 60miles. an hour starting from rest, and the other car requires 15 seconds to reachthat speed. Both cars accelerated, for both changed their speeds from zeroto 60 milhr. The first car changed its speed from zero to 60 mi /hr
more quickly than the second. We feel that the verb, "accelerate", ought tocontain in its meaning something that would allow us to say that the first car
accelerated more than the other. If we bother to define the word accelerationprecisely, then, we would like it to be defined in such a way that the firstcar have a greater acceleratiat than the second.

But both cars had the same "change in velocity", for both started with
zero velocity and speeded up to 60 mi/hr. Once again you see that something
more is involved here than simply "change in velocity. " What we are really
concerned about is not how much the velocity changes, but how rapidly it
changes.

You should now do Experiment 23. After you are finished we will havea lot of

Points to Discuss in Class

Do the plotted points fall on anything that looks reasonably close to astraight line? Since the point, (position = 0, time = 0), lies on the graph, yourcurve passes through the origin. Would it be fair to conclude that position (ordistance) is proportional to time?



-133-

If distance traveled were proportional to time, you now know that theequation of the curve woul: be "p = vt", where v is the constant velocity of thebody. Since the curve is nit a straight line, then, your experiment shows thatthe body does not travel with constant velocity. The motion is therefore, bydefinition, accelerated.

Draw the curve, position vs time, smoothly as best you can through thepoints. It is probably that the points will not fall all on a smooth curve. Tryto draw a curve through the points in one single sweep, placing it as usual insuch a way that roughly as many off-points lie on one side of the curve as onthe other.

Now fill in the third column of the data sheet for Experiment 23 with
"smoothed values of the time." You recognize that the points on your graphare "off' because of experimental errors incurred by the difficulty in makingprecise measurements on such a rapidly moving body. If you make enough
observations, however, you have a feeling (here is that intuition again!) thatyou probably made as many mistakes giving readings too high as too low. Thisis another aspect of the point discussed on page 21 about feeling that an averageis probably better than one reading alone. You therefore draw your curve sothat some points lie above and some below it, believ ring that the "tlue" curvelies comfortably "down the middle". We are new saying that we believe the curveitself gives "better" values for the "times of passage" than the ones actuallyobserved. We are saying, that is, that when th 'down the middle" curve passesbelow an observed point, that the observed point is probably "too high" becauseof experimental error; and that an error-free measurement would have placed thepoint close to the curve. We are saying that the curve, which is based on manyreadings of the same function, is more reliable than ony Ione pint.

If, then, you wanted to know the time of passage to, say, 160 cm, itwould be better to read the smooth graph than to take the actual measured point.Do this, reading the "smoothed" values for times of passage for every positionlisted in caumn one of the data sheet. These smoothed values are generallyregarded by scientists as more reliable than the ones actually observed by
measurement. Notice that it is a method of finding an "average time of passageto 160-cm" that takes into account not only your measured values at 160-cm,but also your measurements at other positions as well.

Does the curve have a constant slope? Can you tell whether the curve --as you move to the right, or a: time goes on -- becomes increasingly or
decreasingly steep? You have learned that, when you plot position vs. time,the slope of the curve is the velocity. From the slope of the curve only, doesthe velocity appear to be constant? From the slope of the curve only, doesthe velocity appear to be increasing all the time the ball is rolling?

Now (this is review) you know that you can find the position of the bodyat any time by reading the graph for that time. Moreover, any given t hasassociated with it one and only one point on the graph, hence one and only onep. In other words, given t, you can always find one and only one p. From the
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definition of function., we say that p is a function of t. But notice that the slope
also changes with t. Just as each t leads to exactly one p on the curve, so -41,To
does each t lead to exactly one slope of the curve. In other words, the slope
is also a function of t; because if you are given any t, the slope of the curve at
that t is fixed by the curve whether you like it or not.

But remember that (page 130) the slope of the curve p vs t is the velocity
of the moving body. Your graph, we now see, rhowo that not only the position
of the body out also the slope -- and therefore the velocity of the body -- is a
function of the time. You should understand that this conclusion is quite in
accord with your observation: you noticed that the ball speeded up more and
more as it rolled downhill; that at each different ir.stant during the roll, its
velocity was different, depending upon what instant; you are talking about. So
your observation alone tells you that the ball's velocity is a function of the
time. The preceding discussion was only to call your attention to the fact that
this information is revealed by the graph, too, if you know how to read the graph.

We therefore have good reason to believe thg.t the velocity at the rolling
ball is a function of the time. Can we find out what function it is? What do we
already know about the velocity? We know that at time zero the velocity was
zero, for we started counting time when the ball was at rest and we made sure
that the ball was allowed to pick up speed by itself, We also know that the
velocity is an increasing function of the time, for the slope of the curve become s
steadily greater (that is, the curve becomes steadily steeper) as we go to greater
times, Thus we know beforehand that thecurve will pass through the origin and
will slope always upward to the right. Does this Iruggest anything to you?

Now let us try to find the velocity for some certain time, If you look at
your table of data, you will remember that you have in column one a list of
positions of the ball and in column three a list of the times at vr".ich the ball
was in those positions. For instance, the first line of the table tells you that
the ball was at a positic.i of 0 cm at a time of 0 seconds. Thy second line tells
you that when the ball was at a position of 40 cm, the time was 2. 4 seconds
(Near there, anyway; the exact time you got depends upon how high the end of
the ramp was propped up, how hard is die wood of which the ramp was made,
and several other things. ). This means that the ball traveled a distance of
40 cm in 2. 4 seconds. We know that its velocity was not constant over this
interval. But suppose we did have a body moving at constant velocity that
covered this same distance of 40 cm in the same time of 2. 4 seconds. What
would that constant velocity have to be? You should be able to calculate that
a body traveling 40 cm in 2. 4 seconds at constant velocity would have to travel
with a velocity of about 16.7 cm/sec. We call this constant velocity by the
name of "average velocity. " "Average velocity" :merely means the constant
velocity that would "do the same job in the same time" as some other body not
moving at constant velocity.

In terms of our notation, the "difference in position in moving from
a position of zero to a position of 40 cm is 4 p = 40 cm. Correspondingly,

t = 2.4 sec. When we calculated the average velocity above, then, we
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actually used the definition of velocity given on page 129 :

15LEv = 40 cm
= 16.-7 cm/secAt 2.4 sec

So we are not really introducing anything new here; we are merely extenciing
our earlier definition of velocity as 6p/./2,t to the case when the velocity is
not constant.

Now the velocity at the beginning of the interval was zero, because the
body was at rest. The average velocity over the interval was 16. 7 cm/sec.
Do you see therefore that the velocity at the end of the interval (that is, at the
instant that the ball was passing the 40-cm mark) must have been greater than
16.7 cm/sec? This must be the case, because if the velocity started out less
than 16. 7 cm/ sec in order to get the average up to 16.7. Thus the body started
out slower than 16. 7 cm/sec, it must have ended xi-o greater than 16.7 cm/sec
in order to get the average up to 16.7. Thus the body started out slower than
16.7 cm/sec and ended up faster than 16.7. Do you see that the body must some-
time in between have had a velocity of exactly 16.7 cm/sec ? This is the prin-
ciple of continuity, which says that if the body's velocity changed from some-
thing less. than 16,7 to something greater than 16.7, it cannot have "skipped overany ve&caliebOnsfidt know exactly where and when it had this velocity, but
we do know that at sometime between 0 seconds and 2. 4 seconds, and some-
where between 0 cm and 40 cm, it did have this velocity. With very little
justification other than that the time and place must be somewhere between, let
us take the time and place of the average velocity as midway in the interval.
That is, let us say that the body had a velocity of 16. 7 cm/sec when it was
halfway betweeen 0 and 40 cm and halfway between 0 and 2.4 seconds. To
repeat: though we don't know that it is exactly correct, we do know that the
body had a velocity of 16.7 cm/sec somewhere close to a position of 20 cm and
a time of 1. 2 sec.

To sum up: During the interval over which the ball rolls from the 0 to
the 40-cm mark, its position changes by £p = 40 cm; time increases by Qt =
2.4 sec. The average velocity during this interval is 6p/ At = 16. 7 cm/sec.
The approximate place and time at which the body had exactly this velocity
are 20 cm and 1. 2 sec. Refer now to the right-hand portion of Table I in
Experiment 23. The data in the preceding two sentences are to be entered on
the first line of this table. p = 40 cm is already entered; At will be some-
where near 2.4 sec, depending on what you measur ed for the time of passage
to the 40-cm mark. "v" means "average velocity. " (Physical scientists
quite commonly denote the average value of a variable by placing a bar over the
symbol for the variable. You read v as "vee bar". ) Calculate your average
velocity for the first interval and enter it in this column. The next two
columns contain the midway points, both in distance and time. In distance, of
course, the midway point is 20 cm; in time, the midway point you will have
to calculate yourself. It will be close to the 1. 2 sec used in the example above.

You should now be able to fill in the rest of the right-hand portion of
Table I. First, notice that the Zip's are all the same; namely, 40 cm becai)ce.
the positions listed in column one are 4C cm apart. Next, remember that the
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first ocat is the time interval fromthe zero mark to the 40-cm mark. You find
it by subtracting the "time at 0 cm" from the "time at 40 cm. " The next
interval - 40 cm to 80 cm - begins at the time-of-passage for 40 cm and ends
at the time-of-passage for 80 cm. The At is the difference between these
times, which should be entered on the second line under At. v, of course, is
simply Ap/A.t. The midway position for the second interval is halfway
between 40 cm and 80 cm; calculate this position and enter it on the second
line under "Midway position. " The midway time for the interval is halfway
between the times at the beginning and end of the interval, both of which you
get from column three. Ca lc ulate the raidtime and enter it in the second last
column. Now complete the table yourself.

The third last column of Table I now gives you the velocity the ball had
at the time given by the second last column. These two columns therefore are
a tabular representation of the functional relationship we were seeking -- that
giving the velocity as a function of time. In the space on the lower half of the
second work sheet, make a graph of velocity vs. time, velocity vertically and
time horizontally. Dc you notice anything especially to be remarked about this
graph?

Your graph shows that in the case of a ball rolling downhill, velocity is
proportional to time, for the graph is a straight line passing through the origin.
Use a ruler to draw in the curve, again trying to place the straight line so that
it steers up the middle elf the plotted points.

You know now that the equation of this straight line must be "v = at", where
v represents the variable velocity, 1: the time, and a is a constant. You also
know that, if "v = at", then "a = v/t". Can you still show this? The fact that
your graph was a straight line then shows that the ratio v/t is a cnnstant. For
each line of Table I, calculate the ratio v/t, using the interval-average velocity,
v, for the numerator and the midway time, t, for the denominator. Record
these ratios in the last column of Table I. Is this ratio reasonably close to
constant? What are the units of this ratio?

The ratios yea calculated for v/t are nearly constant (within experimental
error), and will probably come out, to be somewhere around 15 to 20 cm/sect.
(You read this as "20 centimeters per second per second" or "20 centimeters
per second squared'.) If your ratio came to, say, 17.0 cm /sect, then the
functional relationship between velocity and time that you were looking for is

v= 17. 0, t.

If the units of "17. 0" are crnisec2 and. those of t are seconds, what will he
the units of v? Is this reasonable?

71CIE-21e2,1EZ:
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We have noted many times before that in a proportionality equation
like y = kx, the proportionality constant, k, often has some special physical
significance. What is the meaning of the constant, a, in the equation, v = at?
In order to get a feel for its meaning, notice first that the velocity keeps
changing (in our case, increasing) with time. The graph slopes always upward
to the right. Can you judge the relative appearance of two graphs of the form
v = at, one of which represents a body whose velocity changes only very slowly
and the other of which represents a body whose velocity changes very rapidly?
Which of these two straight-line graphs will have the greater slope? Do you
see that the line with the greater slope goes with the body whose velocity changes
more rapidly?

Now, you have seen (at the very end of Section 4 in this unit) that the
constant k in the equation y = kx is simply the slope of the graph of that line.
Similarly, the constant, a, in your equation, v = at, is simply the slope of
your graph_ Furtherrnorp; you know that the greater the value of a the more
k-tr--17,1v the curve climbs upward to the right. But from the latter part of the
preceding paragraph, you saw that the more steeply the curve climbs, the more
rapidly its velocity changes. Recall now that (page 132 , just before doing
Experiment 23) that we were looking for a way to define the term "acceleration"
numerically. We agreed that "acceleration" should refer to how fast the
velocity changes. Maybe we now have an acceptable definition of the word. If
the velocity of a body is proportional to the time, then velocity and time are
related by an equation, v = at, where a is a constant, namely the slope of the

curve whose equation is v = at If this curve is horizontal, then v = 0 every,
- - 4-W Z./ t: Zion 511 .t ; 11.11G AL 1.41G 01 LW G or a, i$ zero-, this means that the

velocity never changes. That is, if a = 0, the velocity stays constant or there
is no acceleration. If the curve is steep, the velocity changes slowly and a
is small. It looks as though we could take this quantity a to be the quantity
that we wanted to call "acceleration. " In fact, when the velocity is propor-
tional to the time, we will define the quantity a to be the acceleration.

Since earlier (page i26, equation (6)) we defined the slope of a straight
line as ,4y /Ax, you can see that our definition amounts to this:

acceleration = &.v /,Alt

when that ratio is constant. You will recognize that "Av/qt" is simply a
symbolic way of saying "change in velocity divided by the time interval over
which the change takesplace. " Keep in mind then that there must be a change
in velocity for the acceleration to be °the r than zero. An interplanetary rocket
traveling at 50,000 miles per hour has zero acceleration if its velocity
remains at 50,000 mph.

In the case of the ball rolling downhill, you have shown that the acceleration
is constant, because the velocity is proportional to the time.
in other words, that, for a moving body,

The velocity is proportional to the time.
and

The acceleration is constant.
are two exactly equivalent statements.

You have shown,
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You will remember that we defined velocity (page 129) as /.gyp /At under
conditions of constant velocity. We defined "average velc city for an interval!'
also ast,43/1St for that interval. Notice then that we have no "unconditional"
definition for velocity. We say Oat dp/At is the velocity if it is constant, orit is the average velocity if not. Is it possible to define what is meant by
velocity (not average velocity) even when the velocity is itself changing?

Notice that it is possible to define what is meant by position even when
a body's position is changing -- that is, even when the body is moving. We
can easily conceive of the idea of "instantaneous position" -- that is, the
position of the body at one certain instant. We feel that it ought also to be
possible to tell how fast a body is moving at some certain instant -- instantaneousvelocity -- even when the body is nio_ving. Ab a matter of fact, this is exactly
what the speedometer of an automobile CI (NC% Tl_ _ a

v
_ in rive s

velocity? 'not- back at the graph you made in the upper part of the secon-1
w ork sheet for Experiment 23. You plotted position vs time in this graph, and
obtained a curve that is not a straight line. If the graph of position vs time is
a straight line, then you learned, following Experiments 21 and 22, that the
constant slope of that line is the velocity. Does it seem reasonable to youthat if the slope islet constant, then we could still define the changing velocity
as being the changing slope? This certainly is reasonable, because the moresteeply the curve rises, the more rapidly its velocity changes.

T ants 4pctu a hat I .1iliay help you see tne point. The curved linein the diagram below may be thought of as a portion of your graph of p vs t in
Experiment 23. Suppose that we want the slope of this curve at the point A.

K

t

,,,,,,,N,4,!LJA: ,,,
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Referring to the definition of slope on page 126, we see that we need to find
i>pitst. We choose some her point on the curve, say B, and lay off the two
A's, 6/3 = BK and ,e.t = AK as we did so many times before. The fraction

4t is then the slope; -- but the slope of what? Actually hp/At is the slope
of the line AB, which is clearly steeper than the slope of the curve at A, and
not nearly so steep as the curve at B. As far as the curve is concerned, this
fraction p p/Lt does not give us the slope at either A or B, but rather at some
point between A and B. Try estimating the point where the curve has the same
slope as the line AB.

Suppose we had chosen some point C instead of B as the second point,
where C is closer to A than B is. Then we could calculate a new :.40/o t which
would equal CL/AL. But this would give us the slope of the line AC, which
again is the slope of the curve at neither A nor C, but at some place between
them. Try estimating the where the curve has the same slope as A C. We
could choose as the second point a still closer point, say D, to A than either
B oi; C; and the calculated Lpiat would again be, not the slope at A, but at
some. point betty eCil A and D. About where, would you say?

Do you see that each timo you choose a new second point, closer to A
than the last one, for measuring the two you get a new slope? This new
slope is not the slope at A, but the slope ..lt some point on the curve closer to
A than the last one. If you keep choosing points closer and closer to A, then
the point of the curve where the slope is the same as the straight line gets
closer and closer to A.

The a:Intents of the last two paragraphs are intuitive. Have you noticed
that we have been talking about the "slope of a curve at some point" without
ever having said exactly what we mean by that expression? We do, however,
have an intuitive feeling about what we would like to have the e:...gression mean.
Suppose someone gave you a yardstick, led you to a curved sliding-board, and
pointed to one spot on the side of the sliding board. Could you tilt the stick
so that the stick had the same slope as the sliding-board at that point? Would
everyone agree on exactly how much the stick should tilt in order to have the
same slope as the curve? Or, to put it another way: if someone disagreed
with your idea of the right tilt, how would he go about proving you wrong? You
can't prove someone wrong until you agree on a definition of what is right.

The curious thing is that most people woulti agree on what is meant by
the slope of a curve, at least to the extent of judging when a curve at some
given point is equally steep with an adjustable straight stick. What we must
try to discover is the unconscious basis that people use for their judgement
without having a definition. We can get at the matter like this: Suppose we
have a given curve like the one in the sketches below, and a given point on
the curve, like P. In one of the four sketches, the straight line and the curved
one have the same slope. Which one?
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In the first sketch, the straight line cuts the curved one in two points.
As we discussed before, you feel that at some point between the two inter-
sections, the curve and the line have the same slope, but not at the point ip
itself. The curve looks as though it has the same slope as the line at about the
point Q1. Now let us keep the line pinned at P, but free to rotate like the
propellor of an airplane. Rotate the line in the direction of the little arrow so
that the line, still pinned to the curve at P takes the position of the second
sketch. Again the straight line cuts the curve in two points. Again we feel
that the line does not have the same slope as the curve at 13 but more like that
at Q2. By rotating the line, we have moved the point where line and curve have
the same slope from 01 to Q2. Notice that Q1 lies on the curve below P and Q2
above. In other words, rotating the line around P from its position in the first
sketch to that in the second caused the movable point Q to go from somewhere
below Pto somewhere above.

The principle of continuity suggests to us that at some time during
1.1111C rotAti--,q the rnovablia 0 MI Q'it hay ez T)e %OM. =, si A. IP

between P positions of +ha
rrlf, ; c7 i evrri or2. Intik eh -Jr 4.

line in these two sketches, the line had the same
slope as the curve at P We rotated it too far. How far should we have rotatedit?

You probably see the idea by this time. As long as the line cuts the
curve in two points, P and another one, the line will not have the same slope as
the curve at P, but rather will have the same slope as some point between the
two intersections. The only way we ca,L arrange the line so its slope will be
the same as at Pis if we have the line touch the curve in only one point, as in
the third sketch. A line that touches a curve in only one point is called a
tangent to the curve at that point.

But wait a minute, you say. The fourth sketch shows a line that also
touches the curve in only one point. Is the line in the fourth sketch also a
tangent? If so, you can see that you can draw lots of similar lines that pass
through P and cut the curve in only one point. The answer is. co. A tangent
not only cuts the curve in only one point, but also lies on one side of the curve
only. Notice that in the first, second, and fourth sketches the line crosses
over the curve at P, from one side to the other. In the third sketch, the line
touches the curve at P without crossing. This is a tangent: a straight line
that touches a curve at one point without crossing it. A line that crosses a
curve is called a secant. (The word "tangent" comes from the Latin word
tangens, which means "touching. " The word "secant" comes from the Latin
secans, which means "cutting. ")

Notice that one way to think of a tangent is the following, patterned after
the sketch below: First, draw some secant to the curve through P, say PQ1.
Now keep the line pinned to the curve at Pand allow Qi to move along the curve

Q1

1.7
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toward P, through the points Q2, Q3, etc. As you do this, the secant rotatc.-;3
around P. Finally, when Q comes right on top of P, the secant has become a
tangent. Thus you can think of a tangent as the limiting position of a secant
as one of its two intersections approaches the other.

Now finally we can define what we mean by the slope of a curve at a point:
it is simply the slope of the tangent at that point. Again, you should notice that
the last several pages do not prove that the slope of a curve at a given point is
the same as the slope of the tangent at that point. This is a definition of what
is meant by "slope of a curve at a point" -- a notion that we had not previously
defined yet felt that we intuitively grasped. The long discussion preceding is
to show you that this definition agrees with your intuitive feeling of what "slope
of a curve" ought to mean.

Of course, if you are given a curve already drawn, you could use a ruler
to draw a tangent to the curve at an-assigned point just by using the judgement
of your eye. This might be done in much the same way as we tiled to adjust
the tilt of the ya.rels-tieJ(- to .0,iriAr evr trlca °II-ling- board a pages This
le_inr1 of ,,,,Ifizernent-I-vt, r in fct, ....lc try it o the dataJ.

rou obtained for Experiment 23. Do Experiment 24 now.

Points to Discuss in Class

What is the physical meaning of the Ap/At that you calculated from your
measurements? Remember tha.- the kp and the At that you measured were
obtained from the straight-line tangents that you drew. Therefore Qp /L4t
the slope of the tangent. But we agreed that "slope of tangent at a point" taca.-,:as
"slope of the curve at that point. " So the Ap/At 's that you found in Experirnent
24 are actually the slopes of the curve at the points where you drew the

But recall now that the slope of a p vs t curve (page 130) is the veloci';7
of the body at the point where the slope is measured. Therefore the Ap/at
you measured and computed from the tangent you drew at p = 140 cm is ac;.:Iolly
the velocity, v, of the ball at the instant it passed the 140-cm mark. Compare
the velocity obtained from the slope of the tangent with v, the average velocity
over a small interval surrounding the 140-cm mark. The two values -- approxi-
raate v and "exact" v -- should be nearly the same but not identical. Which
one, v or v, gives the instantaneous velocity at the point?

When you measured !gyp/ At, you obtained the slope of the tangent, which
is a straight line. Does it matter what interval you use for the ,o's when you
measure the slope of a straight line? Then why were you told to choose the
points A and B "at least 15 cm apart"? What avoidable error might arise if
A and B were only, say, 1 cm apart?

In your opinion, is there any judgement involved in estimating the
correct position of the ruler to make it tangent to the curve at the point P?
Most people will agree quite closely on where the ruler should be positioned,
but even one person will not always choose exactly the same position. The
question comes up: Is there a way to find the slope of a tangent to a curve that
does not require a judgement that may not always be reliable? There is, 54:
you can find an analytical representation for the curve.



Do you have analalytical representation for this curve? No. You know
that p is not a linear function of t, but that's all you know at the moment. Thus
you know that the ratio p/t is not constant. What would you suggest trying
instead of p/t in the hope of finding some constant ratio. involving p and t?
Think of it this way: If p/t were constant, the graph of p vs t would be a
straight line and would have a constant slope upwar d to the right. Look at
your graph of p vs t. It sl(x..es upward with ever-increasing slope. This means
that p increases "faster than t". Maybe p is proportional not to t but to some-
thing that increases faster than t -- maybe t2. Try it. Compute t2 for each
line of the table, recording the values in the appropriate column. Then compute
p/t2. This ratio should be nearly constant. Calculate the average value of
p/t2, and call this constant, It.

That p/t2 is a constant means, as you know, that

I)
1_4.2

We have already seen that this hall rolling downhill moves with constRrt_
acceleration. Is there any relationship between the constant acceleration
and the above constant, k? There is, but don't jump too quickly to a con-
clusion!

8. Derivative of a Function

You can 'Always find the slope of a straight line: it is simply Ay/4x. You
can therefore find the slope of any secant to a curve that might be given to you
If you allow the secant to swing around one of its intersections as in the figure
on page 140, you get a whole series of values of 4y/bx, each of which is the
slope of a secant that lies closer and closer to the tangent. If we could find
the number that o yizx gets closer and closer to, then we would know the
slope of the tangent. Wc: will see that this can actually be done.

Imagine that the tNy's and p x's were actually drawn in the sketch above.
Perhaps it would be well for you to draw a curve on a piece of scratch paper
and choose a point P on the curve. Then choose a series of Q's, each progres-
sively closer to P than the last. Finally draw in the 6y's and Axis for each
O. For Q1, say, you can then measure Dy and b x, and compute their
ratio. Call this ratio ( Vy/4x), for the point Qi. You could do the same thing
for Q2, obtaining the ratio ( Ay/tN x)2. In this way you could get a series of
( Ay/Ax)'s, one for each Q.

But notice that as the Q you choose gets closer and closer to P, the
measured values of ay and A x get smaller and smaller, md more and more
difficult to measure. In the limit when Q has come to coincide with P in
fact, btlth ay and ax will be zero, and then we couldn't calculate the ratio

y/Dx anyway. The ratio would then be 0/0, which not only cannot be calcu-
lated but also is undefined. But remember that 0/0 can be defined if we want
to. In this case we would want to define 0/0 in such a way as to fit snugly into
the series (py/ toc)l, (ay/ax)2, (Ay /0 x)3, etc. , for only in that way could we
satisfy the principle of continuity.
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Now before going on, it is important that you understand the following:We want to find what value .6y/Ax gets closer and closer to, as Q is made tocome closer and closer to P, until in the limit Q coincides with R. But as Qcomes closer and closer to Ax becomes zero. So another way to say thesame thing is to say that we want to find the value of ay /,ax when .11X becomeszero. It may surprise you that we can actually find this limiting value. Wecan do it when we have an analytical expression for y as a function of x.

Suppose that, for example, y is a linear function of x:

y = a + bx. (14)

of .6y/Llx as max. is allowed to become so small as to beLet us find the value
zero. Remember tha
+VA s case, of course,

y

t equation (14) applies to exrpru peint "r 111m.. the
a straight line). Suppose we choose two points,
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A. B.
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and draw the perpeadicular lines, AC and B C, in the usual way that you arenow so familiar with. The distance AC is what we have been call ax and aGis what we have been calling py. Suppose we say that the point A is the pointwhose x-and-y combination is xo, yo. Then it must be true, since A is onthe curve whose equation is (14), that

Yo = a + bxo (15)

Do you see that the x-value for the point B is (x0 + tx), and the y-value forthe same point is (yo + ay)? But since the point B is also on the curve whoseequation is (14), it must also be true that the x-and-y combination for Bsatisfies equation (14). That is,

yo + 6 y = a + b(xo + 4x). (16)

The last two equations give us alternate names for two quantities: one of themis yo, and the other is (yo + by). Therefore if we subtract the left-hand sideof (15) from the: left-hand side of (16), we will get the same result as when wesubtract the right-hand side of (15) from the right-hand side of (16). Subtractingthe left side of (15) from the left side of (16) gives

yo +44Y yo;

`7,
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and doing the same for the right-hand sides gives

a + L(xo + Dbx) - (a + bxo).

These two subtractions, we have just agreed, give the same result. Hence

Yo Yo a + b(x0 + L\x) - (a + bx0).

You can see right away that "y0" and "-yo" can be crossed out on the left, and
then we have

A y = a + b(xo + A x) - (a + bxo).

Now you will remember that subtracting + bx0) is the same as subtracting
a and also bxo individually. That is,

- a t b(x0 + vx) - a - bxo.

And again, you can see that "a" and "-a" on the right may be dropped out:

ay = b(x0 + Ax) bxo.

Next, recall the distributive principle: that b(x0 + ox) is the same thing
as bxo + 'beix. Therefore

Y = bxo + bbx - bxo.

Again you can drop the "bxo" and "-bxo", and find that

y = b x.
From this last expression you can easily find that

= b.
A X

(17)

Thfi:; is the same result we previously found (page la); namely thatfor any linear function "y = a + bx", the slope, Ay/ax, is simply b. In factthe reasoning we just now used is identical with the reasoning we used before.
We have simply changed to a different set of symbols. The reason for doing it
all over again was just to put you on familiar ground before we used the same
procedure for a function that is a little more complicated than a linear
function.

Notice that the choice of how big Ox was in the argument above, was
quite undecided. We never committed oursives to any particular value for
px, and hence equation (17) is true for any ..ax whatever. We are especially

interested, in the case when Ax = 0, for which Ay/Ax also, of course, is b.
This independence of the value of h y/a7 v,pon O x is not always the case.

-'77.7.;7277717.
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It is a result, in fact, of y's being a linear function of x, and in general the
value of a y/D x does depend on how big ,ox is. You have already seen that
Ayto x depends on how far apart the chosen points are when the curve is not

a straight line, and does not depend on how far apart they are when the curve
is a straight line. This conclusion, then, is not new, but it is worth recalling
in this new context.
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Suppose that y is not a linear function of k. Let us consider the case
when y = kx2. Again we consider two points, A and B, and the corresponding

13

x

X

6y

C

's, 0 x = AC and Ly = BC. The x-and-y combination for the point A we will
again call xo, yo; and that for the point B we will again call xo + ax, yo + Ay.
Since both A and B lie on the curve whose equation is y = kx2, moreover, we
are immediately assured that

yo = 101°2
and

Yo + day = k(xo + Lx)2.

Again we subtract the first of these equations from the second and obtain

yo + Ay - yo = k(x0 + x)2 kxo

And again you notice that "yo" and "-y0" may be dropped from the left-hand
side:

by = k(xo + ZS x)2 - 10%2 (18)

We now must consider the quantity (x0 + 4x)2, which, of course, means
(x0 + .11X) (x0 + 6x); that is, the product of two quantities, one of which is
(xo +ox) and the other of which is also (x0 + bx). In the expression (x0 + eix)
(x0 + A x), think of the first parentheses as being a single quantity (which it
is! ), and the second as the sum of two quantities (which it is!). Then we can
apply the distributive principle, saying that

(x0 + x) (x0 + 4x) = (x0 + 6 x)xo + (x0 + D X)&X,

Now we can apply the distributive principle again to both parts on the right:

(x0 + x)2 = x02 + x0Ax + x0bx + x)2.
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Notice that the two terms in the middle on the right are identical and we
can collect them, writing:

(x0 + t1 x)2 = x02 + 2x0 x + (1 c)2
Therefore

k(x0+ /x)2 = Ic.x02 + 2kx0Lx + k(xlx)2,
applying the distributive principle still another time. We now have another
name for "k(x0 +8x)2", which we can put in equation (18). This equation
then reads

Ay = kx02 + x + It(/ - kxoZ.

Once again you see that "kx02" and "-kx02" can be dropped out, and we
have then

L\y = 2licx0P.)x + k(h.x)a.
Now multiply both sides of this equation by 1 . We have/ x

1 , 1 1-.,y x iduccp X 1" X -itt.X X /.N XA X x
Since multiplying by the reciprocal of a number (IL /1--\x) is the same as
dividing by the number, we can write this as

2tX0/....\x

On the right, you can see that both (Ax/4\x)'s can be dropped out (Do you
see why?), and the equation then reads

- 21r.x0 kiN X.

Now remember that we never committed ourselves on how big hi x was,
and so equation (19) al ?lies for all e..:\x, including 2.; e r o . But if we let c).x be
zero, the last term on the right, ult,x", is zero, since any number multi..
plied by zero is zero. Thus the equation becomes

The value of /..sych
= 2

when r_x = 0 J kxo

'in'7;

(20)

Notice that this time the value ofLyhi x does depend on how big etx is.
Equation (19) applies for all n x of whatever size; but equation (20) applies
only when p x = 0. It is the limit of the quantity, tSy/i-Nx, as Ax becomes
zero, that we are most interested in. We cannot call this limit "Ay/6x"
any longer, because its value changes with Ax. In the case of a linear
function, it was not necessary to distinguish between "Ay/Ax" and "Ay/t.:..x
when ax = 0", for in that case ley /Ax did not depend on the size of ax.
Now we will have to distinguish.
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Scientists all over the world use the abbreviation, "dy/dx", to mean"the limit of 4y/Ax as Lx becore s zero. " Notice that dy/dx does not really
mean "dy divided by dx " It is not really a fraction -- it only looks like one.
Especially you should notice that "dy" does not mean "d times y". The wholething, dy/dx, is merely a symbol for "the limit of Ay/4 -- as Ax becomes zero.
Do not think of it as meaning anything else. The symbol %Ls read "the aerf.vative
of y with respect to x", or more simply as "dee-y by dee-x. "

The quantity, dy/dx, is called the derivative of y with respect to x.
Every time you have a dependent variable, y, which is a function of an indepen-
dent variable, x, the possibility exists of finding the derivative of y withrespect to x. Of course the derivative is not the same for every function. You
wouldn't expect it to be, for dy/dx represents the slope of the curve obtained
when y is plotted vs x. And different curves may have different slopes, as
you know.

For instance, when y a + bx, we have found that dy /dx is simply b.That is, the slope of the curve, y = a + bx, is constant. This is something
you can see by looking at the curve, which for a linear function, y = a + bx,is a straight line. But if y = kx2, the curve is truly curved, and the slope change
depending upon what point of the curve you are talking about. You would there-
fore expect that the value of dy /dx would change, depending upon what x youare talking about. Equation (20) says that dy/dx is equal to 2kxo whose value
clearly depends on what x (that is, xo) you are talking about. In fact, since
xo in our argument can be any x at all, we might as well drop the subscript fromxo and simply call it "x". Equation (20) then reads:

dx

Notice that this equation really says that dy/dx is proportional to x. Doesthis statement agree with your observation that the slope of the curve increases
as you go to the right on the graph, y = kx2?

We have found the derivative now for two kinds of functions. They arerepeated here for comparison:

when y = a + bx, dy/dx = b

when y = kx2, dy/dx = 2kx.

9. Uniformly Accelerated Motion

(21)

"Uniformly accelerated motion" means simply motion under constant
acceleration. We have now covered all that we need for a complete understanding
of the relationship between position and time when a body moves under uniform
acceleration. The present section will merely gather a few loose ends together.
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Let us first recall that you found the ball rolling downh ill to have a
constant acceleration. This was an experimenta finding. You found, further-
more, that defining the word "acceleration" in an acceptable (or agreeable)
way leads to the conclusion:

IF a body travels at constant acceleration starting from rest
THEN its velocity is at all times proportional to the time
it has been traveling:

v = at

where a is the acceleration. You verified in your case of a ball starting from
rest and rolling downhill that the velocity is in fact proportional to the timeand gives a straight line through the origin when plotted against time.

One might now ask: what would the velocity be if the body moved under
constant acceleration, but not from rest; i. e. , had a non-zero velocity tostart with? This problem is very easy.

First we know that, if the acceleration is constant, then by definintionLvhOt (or dv/dt) is constant. This means that the graph of v vs t must be astraight line. (Not necessarily a straight line through th,t orikin: that wouldmean it started from rest. ) This means that v is a linear function of t, and
therefore v and t must be related by the equation

v P Qt

where P and Q are constants. Now, can we tell whrt the constants are? Thatis, can you give the constants physical meaning? Of course you can! Here isthe way you think it out:

The equation holds for any case of uniformly accelerated motion,
regardless of what the body's initial (starting) velocity might be. For a partic-
ular acceleration and a particular initial velocity, the constants P and Q haveparticular values. This means that for a particular case, you can calculate
v from the equation for any given time, t, at all. If someone gives you t, you

can .calculate v for him. You can do this because for a particular case, P andQ are given numbers. Now suppose that 1: = 0. The equation then says thatv = P, since Q x t is zero wIten't=0. But when t = 0, the velocity is the startingvelocity, whatever that happens to be. Suppose we call it vo. Then we knowright away that P = vo, and there's one constant that now has physical meaning.
We therefore can write our equation with vo in place of v = vo + Qt.

In the equation v = vo + Qt, you now know that dv/dt = Q. But dv/dt isby definition the acceleration. Now you know the physical meaning of the otherconstant: Q is simply the acceleration. Thus we can write

v = vo + at (22)

for the general case. Be sure you understand the meaning of this expression.Here are some questions to help you understand.
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If a body starts ^lit with a veilocity of 10 cm per se-oi-al under zeroacceleration, what will be its velocity 8 seconds later? If the body is notaccelerated, what does common sense tell you the velocity will be at any latertime? Does this agree with what the formula tells you?

If abody starts from rest and accelerates 10 cm/sect, what will be itsvelocity 8 seconds later? What is the value of vo in this case? Does thisagree with the equation, v = at, which you derived earlier for the case of abody initially at rest?

Do you see why equation (22) is called a "general" formula? It is goodeven for the cases when vo and/or a are zero. Suppose a body is initially atrest and is under zero acceleration. What do common sense and the formulatell you is the velocity at a later time?

Are the units of all terms in equation (22) the same, as is required?
If you throw a rock downward from the top of a tall bLilding with aninitial velocity of 20 feet per second and the effect of gravity is to accelerate it32 feet/sec2, how fast will it be falling after one second, two seconds, threeseconds, four seconds. Notice how the velocity increases uniformly (by thesame amount) for each additional second of travel.

Let us now return to Experiment 24. Recall that you showed experimentallythat the position of a ball rolling downhill is related to the time by the expres-sion

p = kt2.

You also have determined the valut. of k in your experiment Now notice that,by definition, the velocity :for any moving body is dp/dt. When the velocity isconstant, the curve, p vs t, is a straight line whose slope, 4p/At, is theconstant velocity. But when the curve of p vs t is not a straight line, thevelocity is not constant. In this case, A t is the slope, not of the curve,but of some secant to the curve. 6 pibt then is not the velocity at either ofthe points where the secant cuts the curve, but at some uncertain point inbetween. If, however, we allow the two secant intersections to come closerand closer together, 4p/.4.t represents more and more closely the instantane-ous velocity. In the limit, when the two intersections have blended into one,tip/6.t becomes dp/dt, and this, the slope of the tangent, does represent thevelocity.

In Experiment 24, you found dp/dt for your curve, p = kt2, by judgingtangents with a ruler. You recognize now that this measurement is inexactin the sense that it is judgement-based because we have no method of drawinga tangent that is unarguably "it. " But remember from equation (21) that youlearned how to compute the derivative, dy/dx, for any function of the formy = kx2. We therefore now can compute dp/dt for the function p = kt2, and needno longer rely on the uncertain judgement involved in estimating a, tangent.



According to equation (21), dp/dt for the function, p = kt2 is simply2kt. But since dp/dt is also by definition the velocity of the boriv we have the
interesting conclusion that v = 2kt. This equation says, in agreement with whatwe previously learned, that the velocity is proportional to the time, with the
proportionality constant, 2k. That is:

IF (as you established experimentally) the position of the bodyis proportional to the square of the time with the proportionality
constant, k, THEN (as you demonstrated logically) the velocityis proportional to the time itself with the proportionality con-stant 2k.

If the velocity is proportional to the time, however, we have by definitionthat the proportionality constant is what we call "acceleration. " See page 137.Thus 2k is the acceleration of the body rolling downhill. Compute the valueof the acceleration in Experiment 24 from the average k you have already
determined, and enter this value in the box at the bottom of Table I.

Now finally you can compute the velocity at any time without drawing atangent. The velocity is always given by v = vo + at, according to equation (22).You can compute v for any given t when you know vo and a. But in your experi-ment, vo was zero and you now know the acceleration, a. Thus you can computev from the simple expression, v = at. Do so for each t listed in the secondcolumn of Table I, using your now-known acceleration. Enter these computedv's in the last column of Table I. Compare them with the "secant velocities"or "average velocities, " v, in column three; and with the "tangent velocities"
or "instantaneous velocities, " v, in column Piz, The instantaneous velocityas determined geometrically from tangents should agree quite well with thosecalculated from the derivative, dp/dt = v = at.

If a body starts from rest and moves under constant acceleration, youhave seen that position and time are related by the equation, p = kt2, where kis some constant. Do you see that we have now the same question we had before:is it possible to attach some physical meaning to k? It is possible, for youalready know that the acceleration, a, is 2k. This means that k is simply halfthe acceleration. Thus we can write for a body starting from rest and movingunder constant acceleration,

1p = at2
2

where a is the acceleration. Now you can calculate the distance traveled by abody under constant acceleration and starting from rest.

For instance, a body falling freely under gravity near the surface of theearth moves with a constant acceleration of 32 ft/sec". How far will a bodyfall in 10 seconds?

Or, try a problem the other way around. How long will it take for a bodyto fall from the top of the Washington monument, 555 feet to the ground? Takingthe origin at the top of the monument, the ground will have the position, p = 555 ft.
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Then

555 = 2 x 32 x t2 = 16t2.

Divide both sides of the equation by 16. Then

34. 7 t2.

Can you solve this equation for t?

Remember that "34. 7" and "t2" are different names for the same thing.If we take the square root of 34.7 we get the same result as when we take the
square root of tL. But what is the square root of t2? Then

t = 434.7 sec

which you can work out yourself. Guess at the answer first. Can you showthat the units of t are seconds?

Calculate how far a body falls under gravity in one second, two seconds,
three seconds, four seconds, and five seconds. Can you explain the peculiar
sequence of results?

1 1If
2

= at2

2
, both p and --at2 must have the same units. Do they?

10. The Most General Case

You now have seen that a body starting from rest at the origin and moving
under uniform acceleration, a, will have a position, p , given by

1p =
2
a.t2

(23)

after traveling t seconds. But do you see that this is a rather narrowly
restricted case? It applies only if the body starts at rest and also starts atthe origin? Suppose that it starts from rest but instead of starting at the origin,it starts at some other position, pc,. Suppose, for instance, that the body starts

at the point A in the diagram, traveling to the right. Suppose that it starts fromthis point, from rest, with an acceleration of a. Then the distance it travelsto the right from a will be given by equation (23), because there is no reason
why we cannot temporarily call A the origin. If in a time, t, the body travelsto the point, Q, then we know that

1

AQ =
2
at2.
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In this last equation, which holds for all t, suppose that t = 0. Then thewhole last term. 1,at2
. drops out; and vie have that, when t = = OA. Butthe position at t =z0 we have been calling po. Hence the term OA above is reallythe physically significant quantity, po, the initial position of the body. Thuswe have: If a body starts at an initial position, po, and at rest, and thenmoves with constant acceleration, its position at any later time will be givenby

1 42
p0 2

(24)

Notice that this equation is still restricted by one requirement: that thebody start at rest. We have generalized equation (23) to take care of the casewhen the body starts from a position other than zero. The result is equation(24). Now, can we generalize equation (24) so as to take care of the case whenthe body starts with a velocity otle r than zero? We can.

Suppose that you had set up your ball-rolling-downhill experirn:_nt in aboxcar. Instead of putting the distance-marks right on the ramp, however,
you can see that you could put them on, say, a railing beside the train-track.
It naiad be a little more difficult to make the readings this way, but you cansee .that the idea would ?e no different. Then, with the boxcar standing still,you would find that p = 2t2, just the same as in your experiment. Now supposethat you hold the ball at the top of the ramp, but allow the boxcar to move withuniform velocity along the track. Again you could make readings of the positionof the ball by using the marks on the trackside rail. Since the ball stays fixedat the top of the ramp, the only motion it has is the boxcar's motion, whichis at constant velocity. The position of the ball would then be given by p = po+vt,as you found before for motion at constant velocity.

Now think of the two together. If you held the ball at the top of the rampand the boxcar moved with constant velocity, the position of the ball would bePo + vt. If the boxcar stood still and you released the ball, the position of theball would be given by lat2 farther than it would if it stayed at the top of theramp. If the ball stays at the top of the ramp, it would be traveling with thesame velocity as the boxcar, as measured by your trackside distance-marks.

Suppose now you were in the boxcar, holding the ball at the top of theramp, and your partner stood at the trackside zero-mark. The boxcar startsa hundred yards down the track, heading toward the zero-mark, moving atconstant velocity, vo. When your partner sees the ball hit the trackside zero-mark, he yells "GO". You can do either of two things:

You can continue holding the ball. In this case, the position ofthe ball will be given by p = po vot; or

You can release the ball. In this case the ball will travellag farther than if the ball is not released.
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Thus if the ball is released with Jr....44.1 greal -
ev %tame . CIA mai 4..f. et 4.71-1erUhlirlre Ifuture position of the ball is given by

p = po + vot +
2
at-2. (25)

There you have it! This is the most general case of uniform acceleration.The formula gives the position of the ball at any future time, t, when it startsat position, po, has an initial velocity, vo, and a constant acceleration, a.Notice the following:

(1) If a = 0, there is no acceleration and the body then is traveling atconstant velocity. If a = 0, does equation (25) become identical with equation/13), the one developed for motion at constant velocity?

(2) If the body starts from rest and moves under constant acceleration,
what is the value of vo in equation (25)? Does this equation then becomeidentical with equation (24)?

(3) What does it mean if vo and a are both zero? Does equation (25) givea sensible result when vo and a are zero?

(4) Do all terms in equation (25) have the same units?

(5) If you subtract pc, from both sides of equation (25), you get

p - Vot +

What is the meaning of the left-hand side of this equation?

Now try your hand at a problem: A boy throws a rock downward fromthe top of a tall building. If the rock accelerates downward by gravity at32 ft/ sect and he throws it with an initial velocity of 40 ft/ sec, how far willit have fallen in 10 seconds? How far would it have fallen if he had merelydropped the rock without throwing it? Do you see how little effect an initialdownward throw has, if the body travels for a relatively long time? Try
making the same comparison if the rock travels for only one second.

Equation (25) is extremely important in dealing with the behavior ofmissiles and rockets.



Experiment 1
Measuring Lengths with a Ruler

In this very easy experiment, you will measure the lengths of anumber of plastic rods, using a ruler graduated in centimeters andtenths of a centimeter. Tenths of a centimeter are also called
"millimeters". The sticks will also be measured by several otherpeople in your class. After everyone is finished, you will be ableto compare your measurements with those of others who measured thesame sticks.

Before you start this experiment, your teacher will explain toyou how to make the measurements and how to record them. It is just
as important to record measurements properly as it is to make them
properly. Be sure you understand what to do before you start theexperiment. Also, read Sections 3 and 4 in your textbook beforeyou begin. You should understand about Making Measurements and
Significant Figures before you start.

In this experiment, as well as in all others, be very carefulwith all the apparatus you use. Do not damage the sticks or therulers. Do not make any marks on them. Be very careful not to
drop pieces of apparatus. Be careful that the edges of the rulersand sticks are not bumped so that they become dented or mashed.

Procedure: Your teacher will supply you with six sticks of
different lengths. Measure each one this way:

Lay one end of the stick so that it lies as nearly as you canHdge on the zero-centimeter nark of the ruler. On some rulers there
a zero-centimeter mark actually appearing on the ruler; on others,
zero-mark is sicIply the very end of the ruler. Examine yours and,cide which type you have. Lay the stick so that it lies along the

_ruler. Look NA th.. other onJ of the stick and decide which tenth-of-a-centimeter mark on the ruler the other end lies closest to.::elect this ,mark as representih,T the length of the rulcf. Read it,and record the lenwth before you forget it. hake your record inthe table on the data sheet (next page). Be sure you record also thenumber of the stick. The last column in the table is for entering
he avera-e length of each stick for everyone in the class who
measured it. Do not cnmpare your measurements with anyone else's
until everyone is finished.

Then everyone is measurin7, your teacher will call forthe results obtained by each diffrunt pe7:son who ':leasured each stickand will write the different results on the board. If the measuredlengths for any stick a-2(2 all alike, find the average, remember*ngLae busin,:ss abolit significant figures. Enter the averages obtainedfor the sticks you measured in the last column of the table.
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Experiment I.

Data Sheet

-2

Table I. Measured Length of Some Sticks

iStick
No.

Measured
Length

Average of
Several Measmts

i

i

1

Enter your neasurements from Experiment 1 in the table above.Record your observations as you make them, and don't forget to includcthe units. Wait until the whole class is finished before you computethe averages in the last column of the table.
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Experiment 2
The Adding of Measured Lengths

In this experiment you will take some sticks whose lengths have
already been measured, Jay them down end to end, and then measure
their combined lengths, We will then see whether the measurement
you make of the combined length could somehow have been predicted
from knowing the individual lengths.

Can you already make such a prediction? Suppose you have a straig
stick four feet long and another one three feet long. Lay them down
end-to-end so that they are exactly in line with one end of one stick
butted tightly against one end of the other. How far will it be
from the flee end of the first stick to the free.4 end of the second?
You would answer "seven feet", wouldn't you? Where did you get this
prediction of sever feet?

You probably would answer something like this: "If I have four
apples in one pile and three apples in another and then shove the two
piles together into one pile, I know that the total apples in the big
pile is the sum of --ose in the two piles. The same is true
whether the objects in the pile are apples, or pigs, or teacups, or
cuckoo-clocks. Why shouldn't it be true of feet as well?"

But there is something very doubtful about this argument. It istrue that combining a pile of three objects with a pile of four
objects givos a pile of seven objects, no matter what kind of individual
objects you talk about. In fact, it is true not only of three and four,
but of all ather natural numbers as well. If there are A objects in
one pile and B objects in the other pile, we say that the number of
objects in the combined pile is "A B". Here, remember that A and B
are numbers. The symbol "+" and the word "sum" are defined in such
a way that the sum, A + B, is the number of objects in the combinedpile. You have learncdttoaaddnnumbersi_innaywaytthat,makestthis
always true. But what right have you to think of the "4" in the
quantity "4 feet" as meaning a pile of four feet that can be lumped
together with a pile of three feet to make a pile of seven feet?
The fact thc-t the method of adding that you learned in arithmetic givesthe right answer when used on numbers by no means gives you the right
to say that it will also work with quantities that are not purely
numbers. On the other hand, we don't have the right to say that itwon't work, either! We just don't know. Let's try it!

Procedure: Obtain three sticks whose lengths have already been
measured to the nearest tenth of a centimeter. Lay them end-to-end in
a straight line. Push them gently against the edge of the ruler to makesure they are in line. Be sure they are butted tightly against:each
other. Then measure the distance with your ruler from one free
end of the train to the other. Measure the total length the same way
you did in Experiment 1. Enter the result in the seventh column of thetable below. Remember to put down the units.

Before disturbing the sticks, write the number marked on your left
hand stick in the first column of the table under the heading "No.";
write the number marked on your middle stick in the third column; and
write the number of your right hand stick in the fifth column. Do
not write anything now in the second, fourth, and sixth columns, under
the heading "Length."

404..SaanSitAtaWi .41geT$4110 .ft11011100011
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Now rearrange the sticks in a different order and measure theoverall lergth again. Record your result in the sevena column of thetable and also record the numbers of the left, middle, and right sticksin columns 1, 3, and 5. Obtain three new sticks from your teacher and
repeat the work, entering the results again in the proper columns. Make
two measurements of the combined length with the sticks in two differentorders. Then repeat the whole thing (two measurements) with a new setof three sticks.

After you have finished the measurement, ask your teacher to tell
you the known lengths of the sticks. These you can get by giving the
number of each stick (you recorded these numbers in the table) and having
your teacher tell you the known length of the stick with that numbermarked on it. Enter these quantities in their proper places in the
second, fourth, and sixth columns. Don't forget the units.

Your table now has six lines of data, complete except for the last
column. You obtain the last column by adding the individual lengthsof the left, middle, and right sticks. Do this for each line.



Experiment 2
Data Sheet

Table I. Measured Total Length of Combined Sticks

Left Stick Middle7Stick

Length

Right Stick
1

1

No. Length

Total Length

"I, n_ Length loo Of -I

First :

set of
sticks

1

Second
set of
sticks

.

Third
set of
sticks ,

:

Record your observations from Experiment 2 in this table, as
you make them. When you are ready to measure your first line-up of
sticks, first record the sticks' numbers in the first, third, and
fifth columns under "no." Do not record anything yet in columns
2, 4, and 6. Then measure the total length and record it in the
seventh column under "Measured." Don't forget the units. Do not
bother to measure individual sticks.

Next, rearrange the sticks in a different order, recording the
sticks' numbers in the second line of the table. Then measure the
combined length and record it in column 7.

Repeat the whole thing, using two other sets of sticks.

Find out from your teacher the known lengths of the sticks you
used,%and record them (units!) in the proper places. Then compute the
total length for each set, entering the sum in the last column.
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Experiment 3
Measuring Anus

In this experiment you will use what you have learned about signif-
icant figures and about measuring lengths to measure the areas of some
plastic cards which your teacher will give you. You will have to
remember -zme rules about how to compute the areas of rectangles,
triangles, and circles. You will also have to use your ingenuity.

Your teacher will first give you three cards: one rectangle, one
circle, and one triangle. You are to make the necessary measurements
on these cards that will permit you to computeetheir areas. Be very
carefll with the cards. Do not bend or fold them nor allow the edges
to become damaged. Do the rectangle first, then the circle, then the
triangle, as described below.

How might you measure the area of a rectangular card? You do
not have an "area-measurer" that will measure areas as a ruler measures
lengths. What then can you do? Well, you remember that area is
really a derived quantity, the unit of which is the area covered by
a square that measures 1 cm on each side. You could make for yourself
a little "unit area", which might be a tiny square card measuring
1 ell each way. Te measure the area of a given card you could "lay off"
the unit over the card to be measured, seeing how many times were needed
to cover it without overlap. You would have troubles fitting the
measuring card (the little unit square) to the big card that you are
measuring if the card were irregular in shape or if the laying off did
not come out even, but there is no problem otherwise.

For instance, suppose the card you wanted to measure looked like

VO 4 41

1;
the one in this p4.cture. You could first lay of the shaded area with
your unit measure, then block number two, then three, etc., with no
overlap ever and no space left over. If the rectangle were exactly
4 units long and 2 units wide, the job could be done as in the picture
with everything coming out even. Since you now have two rows of four
unit squares, you have 2 times 4 unit squares, or 8 units needed to
cover the rectangle. We say that the area of the rectangle is 8 square
cm. You will notice that the reason we could fit four unit squares
in the length of the rectangle is simply that the rectangle is 4 "pilong. The reason we could fit exactly two unit squares in the width
is that the rectangle is exactly 2 cm wide. Thus when we multiplied
2 x 4 to get the number of unit squares, we were also multiplying
2 cm by 4 cm to get 8 square centimeters.

There are several matters that would have to be examined more
carefully, however. First, does it make any difference in what order
you lay off the unit squares? Second, is it always true that the
number of square centimeters in a rectangle may be obtained by multi-
plying the number of centimeters in the length by the number of centi-
meters in the width? Does it matter whether you multiply width times



length or length times width? What do you do if the number of times you lay
off the unit square along the length does not come out even? We learn, partly
by experiment and partly by logical thinking, that the area of a rectangle is
always given by multiplying the number of length units in the length of the
rectangle by the number of units in the width. The product of these two num-
bers will be the number of square units in the area, no matter what units are
-,used to measure both length and width (as long as they are measured in the
same units). Proving that "Area equals Length times Width" requires a very
careful examination of principles of geometry. We will simply accept these
results here and not attempt to prove it beyond using the 2 by 4 diagrams of
blocks above.

When the area is not rectangular, then what do you do? If the shape is
simple enough, geometry can answer this question, too. You probably already
have met formulas for the area of a circle and for the area of a triangle. We
will use these formulas too without further proof. To help you-in case you have
4,orgotten, here they are:

For a rectangle, area = length x width
For a triangle, area = half of base x altitude
For a circle, area = pi x radius x radius

where pi is 3. 1416, to five significant figures.

Procedure: Take the rectangular card and measure both its length and
its width to the nearest tenth of a rArttimi=ter. Make a neat sketch of your
rectangle to scale in the box labeled "Rectangle" on the data Sheet. Draw
orrows to show the dimensions, writing the length and width that you measured
in the gaps in the arrow D it like this:

1
4 . 3 2 . of 14 Ar,

ileq.....' 1

After you have measured length and width and recorded them on the sketch,
use the formula to compute tie area of your rectangle and record the area
inside the sketch as in the above sample. Don't forget the rule about
significant figures and remember to put in the units.

101010

Next take the circular card. What information do you need to compute
the area? You need the radius, closet you? Now the radius of a circle is the
distance from the center of a circle to its boundary, isn't it? If the center
of your circle is not marked, how can you measure the radius? The radius is
half the diameter, and the diameter is the greatest distance through the circle.
So, put the zero end of your ruler on the edge the circle and be. sure to keep
it there. Then point the other end of the ruler so that the edge of the ruler
passes through the point where you think the center is. 1:.ove the ruler back
and forth a little, being sure to keet the zero mark of the ruler on the edge

iy

of the circle. Now watch where the opposite edge of the circle falls on
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the ruler. As you move the ruler back and forth, keeping the zero -mark
on the edge, the opposite edge of the circle will fall at different
places on the ruler. The largest reading you can get is the diameter.
Half of this is the radius. Read the diameter to the nearest 0.1
centimeter.

Draw a circle in the box labeled "Circle" on the data sheet.
Inside the circle, write neatly, "Diameter -; ", filling in the
blank with the diameter you measured. Then compute the area using
the formula, Area ="Trr2. If lir= 3.1416, how many of these five
significant figures should you use to compute the area? Write the
computed area inside the circle as you did for the rectangle.

Next take the triangular card. To compute its area, you need the
base and the altitude. Any side of the triangle may be called its base;it doesn't matter which one. Select any side ycu please as base and
place the triangle fiat on the table in front of you with your chosen
base nearest you. Now what is the altitude of this triangle? Once aside is selected as base, the altitude of the triangle is the perpendic-
ular distance from the opposite,corner.Of the:ttiangleztotthe;.base.
Mold your ruler so that the zero mark lipc at this corner, the rest
of the ruler pointing toward you across the -,ase. Keeping the zero
mark on the corner, waggle the ruler back and forth until you judge
the ruler to be perpendicular to the base. You can use a corner of
:our rectangular card to help you judge the right angle. Now read
the distance from corner to base. This is the altitude; read it to
the nearest 0.1 centimeter.

In the box on the data sheet labeled "Triangle, first base",
Y:ake a neat scale drawing of your triangle, your chosen base at the
bottom. (It isn't so easy to make a scale drawing of an irregular
-.riangle without drawing instruments. Your teacher will show you howto do it using the lines drawn across the corners of your plastic
triangular card.) Using arrows to show dimensions as you did for
the rectangle, show the base and altitude for this triangle. Then usingthe formula for the area of a triangle, compute the area of yours
and record it inside the sketch of the triangle. Remember about units
aid significant Figures.

Now choose another side for the base of the triangle and repeat the
measurements of base and altitude for this base. Make a scale drawing
in the box labeled "Triangle, second base", putting in dimensions asbefore. Compute the area again, using the new base and altitude. Thenrepeat the whole thing once more, using the third side of the triangleas base.

If you still have time, your teacher may want you to measure the
areas of some more complicated shapes. You will have to use your ingen-
uity in deciding what to measure and h,w to compute the areas of these
cards. You may have this hint: all the shapes are made up of rectangles
triangles, and circles or parts of circles. Try to discover for your-self how to measure their areas. Make sketches and show their dimensions
in the unlabeled boxes
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Experiment 3
Data Sheet

Make neat scale drawings of your cards in the boxes below

Rectangle #

First Base

Circle #

Second Base Third Base

If you measure any other cards, make scale drawings of it
(or them) iwithe space below.
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Experiment 4
Decimal Estimation

This experiment is intended to give you practice and confidence in reading
a scale by decimal estimation. First obtain a few plastic rods and a centir..-..er
scale from your teacher. Practice measuring these rods by decimal estima-
tion. Measure them exactly as you didin Experiment 1, but instead of calling
the length according to the nearest graduate mark on the ruler, do your best
to estimate how far between the graduations it lies. The diagram below may
be helpful. The horizontal line is the edge of the ruler; the two vertical marks
are the 6th and 7th marks between the 18 cm and 19 cm marks; the arrow
represents the end of the thing you are measuring.

If as nearly as you can tell, the
end of the ro.: lies where the arrow is here,

recor t e
length as:

Right on the six-tenths mark--

Just barely past the mark

A little more past the mark

Amount from 6 to arrow about
half as much as arrow to 7-

A little less than halfway

Right in the middle -

A little beyond the middle

Amount from 6 to arrow abort t
twice as much as arrow to 7-

Not quite as much as the one
next below

Just barely short of the 7 mark-

Right on the 7 mark

18.6 cm 18.7 cm

011

18.60 cm

- - -18.61 cm

-- -18.62 cm

-- -18.63 cm

---18. 64 cm

- - -18.65 cm

- - -18.66 cm

-- -18.67 cm

-- -18.68 cm

---18. 69 cm

- - -18. 70 cm



After you have practiced making a few measurements this way(maybe ten or so), begin making the measurements you will record.Measure five different rods. Record the rod number and your measuredlength in ,he table on the data sheet. Each length should be recordedto the nearest 0.01 cm, the last figure being estimated.

At least six, preferably more, people should measure each rod. Rodswill be passed around so that each student measures five different ones,and each rod is measured by at least six different students. Do not askanyone else ";What did you get?" in order to compare your measurement withhis. Wait until everyone has made all his measurements before anycomparing. Then the whole tlat3 will compare together.

The teacher will now ask each student who measured rod #1 to callout the length he recorded, and will write each value on the board. Thesame will be done for every rod that anyone in the class measured. Whenall the measurements for any one rod are listed, they should be averagedThe average length should be recorded in the data table. Don't forgetabout significant figures: the average should be rounded off to thenearest 0.01 cm, just like the individual measurements.

Record the average length for each stick you measured in the thirdcolumn of the data table. Was your measurement the same as the average?Probably not. compare your result with the average by subtractingwhichever is smaller from whichever is larger. This difference is calleda deviations: Record the deviations from the average in the last columnof the data table. If your measurement agreed exactly with the average,you would record your deviation at "0.00 cm." If your measurement was,say 0.02 cm more than the average, you record the deviation as "+0.02 cm.If your measurement was 0.03 cm less than the average, record your devia-tion as "-0.03 cm." Your deviation is minus if your measurement is lessthan the average; plus, if your measurement is greater than the average.

--



Experiment 4
Data Sheet

Table I. Measured Lengths of Some Rods

Number
of Rod

Measured
Length

AveraVe of several
Measured Lengths

Your
Deviation

------

_____J

Enter the number of each rod you measure in the first column andits length as you measure it to the nearest 0.01 cm in the second
column. Measure five rods (more if you have time).

After everyone is finished, enter the average of all measurements
made on each of your rods in column three. Subtract column three from
column two to get the deviation. Record the deviation in the last
column, + if your measurement is greater than the average and - if your
measurement is less than the average.

Keep these data because you will need them again for Experiment S.
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Experiment 5
Averages and Deviations

This experiment is a kind of guessing game in which you can find out
how good a guesser you or some of your classmates are. Your teacher
will have at hand a jar full of some kind of small uniform objects like
ball-bearings, marbles, or dried beans. There will also be eleven small
saucers arranged on a table. They should be arranged something like this

20 balls for comparison

0 0 )
One of the students should be elected to do:the. guessing.

empty saucers

Someone should count out exactly 20 balls (or beans or marbles or
whatever) and place them in the top saucer. The guesser takes the jar
of balls and pours into each saucer what looks to him like 20 balls,
looking at the top saucer for reference as often as he wishes. He must
portion out an estimated 20 balls to each dish in a time limit of two
minutes - ten dishes in all. After having filled all the dishes, he may
use any time remaining to add to any dish that seems to him to be short
of 20, or to remove from any dish any balls that seem to him too many.
He may not count the balls at any time. He may adjust any dish's portion
by Ming or removing balls and comparing with the reference dish, but
he may not count the balls.

After the two-minute limit has passed, the balls in each dish should
be counted and listed in the first empty column of Table I on the data
sheet. The balls are then returned to the jar (except those in the
reference dish), and thewhole game repeated with another student as
guesser. As many guessers should play the game as time permits. The
name of each guesser is entered in one of the boxes just below the top
double line of Table I, at the top of his column of guesses.

-444'745z14.4Attli.
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Each column in Table I is now averaged to find the average number
that each player guessed for 20. When you average ten or more numbers
that are close together, it iseusually agreed that you are entitled to
one more significant figure in the average than there are in the numbc-27
being averaged. It is perfectly legitimate, therefore, to enter the
average as "19.7," or "21.3" or whatever it comes to. That is, carry
to one decimal place the averages listed in the boxes below the bottom
double line of the table.

After you have computed the average for a player, compute the devia-
tion from the average that. he made on each estimate. Then compute his
average deviation and write it in the bottom box of his column. Do this
for each player.

You should now return to the results of Experiment 4. There, a
number of different people made measurements of the length of a certain
rod. In Table I of Experiment 4, you listed your own measurement of
the length of, say, rod #1. You also listed the average of the length-
measurements of this rod as obtained by several people, and the deviation
of your own measarement:from..this average. We will now treat these data
in much the same way as in the guessing game. Use Table II on the
second data sheet for this experiment.

The teacher will call for, say, the results obtained by all students
who measured rod #1 and write these measurements on the board. If you
measured rod #1, copy all these measurements into the first column of
boxes in the table, writing the number of the rod at the head of the
^nlumn. Do the same in other columns of the table for the other rods
you measured.

In the box ',First below the lower double line in the table, write the
average of the measurements in the column. Also compute the deviation
of each individual measurement from the average and then calculate
the average deviations, writing this value in the second box below the
double line.



Experiment 5
Data Sheet 41
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Table I. Estimation of Numbers

Number of balls guessed by

Dish
Ls

1 --A

2

3

4

S

A_.....

9

101'

Average

Average
Deviation

fl

Write in the box at the top of each column the name of a guesser
and in the column below his name, the actual number of balls he guessed
for each dish. Calculate his average guess and enter that in his column
in the box on the line label'ad "Average." In the box below that, enter
the average deviation of his guesses. Do the same for each guesser.
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Experiment 5
Data Sheet #2

The data on this page come from Experiment 4.

No

Table II. Measurements of Rod Lengths

Measured Lengths of Rod Number

. of Rod
r----
List here
the results
obtained b
all stu4
dents
measuring
the rod

Average
Length

Average
Deviation

The form of this Table is much like that of Table I. In the
top box of each column, write the number of a rod that you measured
in Experiment 4. In the boxes beneath this number, write the lengths
of this rod as measured by all the other people who measured it. Write
the average of these in the box second from the bottom and the
average deviation in the bottomebox.
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Experiment 6
Determining Ciby Measurement

In this experiment you will make some measurements that will allow yc,o_
to find the value of a very important absolute constant. This constant is a r_-_-_ra-
ber (without units), yet you would never meet it if the only numbers you evc..::
met were the numbers used in counting, or the numbers you get by adding,
multiplying, dividing, or subtracting the numbers used ;hi counting. It ther
has to be determined by measuring or by some other peculiear way. We will
measure it.

Procedure: Your teacher will supply you with storeral metal or plastic
squares of different sizes. Take one of these squares and measure very
carefully the length of its edge. Measure to the nearest 0. 01 cm and record
the edge-length in Table I. Also measure the diagonal of the same square to
the nearest 0. 01 cm and record it in the table. When you measure the diagonal,
be sure you measure from the very point of one corner to the very point of the
opposite one. If the points have been damaged by mashing, you cannot use
that square. Make the same measurements For at least six squares of different
sizes, entering the edge and diagonal that you measure for each square on a
different line of the table.

After you have made all your measurements, put the squares away and
work out the last column of the table. Do this by taking the measured vale
of the diagonal of your first square and dividing it by the measured value
the edge. The quotient (or ratio) should be entered on the first line in
last column. Then calculate the ratio for each line in the table. How n-iar.-;
significant figures are you entitled to in the ratios? .1s there anything
that you notice about the ratio, "diagonal divided by edge," for different r

7.7 IUD .1.444f"lia'



Experiment 6
Data Sheet

Table I. Measured Values of the
Edge;-Lengths and Diagonals of Some Squares

Square
No._

Edge of Diagonal
Square, cm cm

Average of Observed Ratios

Computed Value of fi...
so, oaaalilIamo

Enter your measurements from aq,eriment 6 in the table above, first tthree columns. After you have finished measuring, work out the ratio
'diagonal divided by edge" for each line of the table and record the ratio in

the last column. Find the average of these ratios and record the average, too.

Finally, work out J2, correct to five significant figures, and place this
value in the box at the lower right.
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Experiment 7
Calculating Ii by Continued Fractions

A fraction like the big complicated one on the next page is called a
"continued fraction. " The thing that makes it a continued (instead of an ordinary)
fraction is that the denominator is a fraction whose denominator is itself a
fraction whose denominator is itself a fraction whose denominator is itself a
fraction, and so on and on. Of course, you can't spend forever going "on and
on, but you can get as close as you please to the right result if you go far
enough. You will get o2 correct to five decimal places by taking seven 2'sin the big fraction as written on the worksheet.

The secret of harnessing this fraction is to start at the very end. Notice
the innermost circle drawn around 2 . Since21 is 2. 5, you can easily work
out 1/2-.5- and show that it equals 0. 40600. There fore the innermost circled
fraction is 0. 40000. This is already marked for you by the horizontal line
pointing to the innermost circle.

The next innermost circle then really sa.ya 2.4-0-0.6,ZA Work out 1/2,44
to five decimal places. Ycu should, get. 0. 41667. What will you then write at
the second horizontal line for the value of the fraction in the next innermost
circle? Write it.

Then the third innermost fraction is 0,44,66 7 which you can work
out dividing 2-, 41667 into 1. This result you put on the third horizontal
line. Now you should be able to finish it by yourself. Write each successive
partial result on successive horizontal lines.

Each time you work out the value of one of these fractions as you go along,
you could stop and add the result to 1 and the sum would then be approximately

But the more fractions you include, the closer you get to exactly F2,
though you never get it exactly.

The correct value of S2 is 1. 41421 to five decimal places. Notice that
the very first fraction would have given you 1. 40000, correct to one decimal

too small. The second fraction would have given you 1. 41667,
correct to two decimal places, but too large 256 units in the fifth decimal
place. The next fraction you will find is too small by a smaller error and
the next too large by a still smaller error. The results, in other words
swing back and forth past the "truth, " but get steadily closer. For six fractions,
the error is only one in the fifth decimal place.

You might find it interesting to make a graph showing how the successive
results zero-in toward the right value. The one on the worksheet is started for
you. You finish it. On this graph you plot the errors made by stopping the cal-
culation after only one fraction, two fractions, three fractions, etc. If the
calculated value is too high (i. e. , greater than 1, 41421), plot the error upwar d;
if too low, plot it downward. The "error" is calculated by finding the difference
between your calculated value to five decimal places for di. and its actual
value of 1. 41421, dropping the decimal point.
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Experiment 7
Data Sheet

Successive Values of the Continued Fraction

I

0. 40000

0. 41667

Too
High

Error

Too
Low

00

.3200

100

100

200

.300
Too low to
go on page

No. of
Fractions
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Experiment 8
Measurement of the Constant:Tr

The purpose of this experiment is to determine by measurernen.t the
value of a very important constant called7 . The constant may be defined
as the ratio, circumference divided by the diameter, of a circle. What
does this definition suggest that you do in order to measure the value of Ti
Let's do it.

Proce, ire: Your teacher will furnish you with some metal or plastic
circular discs of various sizes. You are to measure the diameter and the
circumference of each circle. In Experiment 3, you learned one way to measure
the diameter of a circle, but this method is not good enough for the present
experiment. Your teacher will demonstrate to you a better method -- the
"caliper" method -- for measuring the diameter of a circle', Take one circle
and measure its diameter to the nearest 0. 01 cm. Enter the value in Table I
on the data sheet.

To measure the circumference of the disc, get a narrow strip of thin
strong paper and an ordinary pin. Wrap the strip of paper carefully -- straight
and tight -- around the edge of the disc so that the paper makes a kind of raised
rim around the disc. Be sure that the paper overlaps itself a little so that
there is a region where the paper is double thick. Hold the disc with the
paper drawn very tight and prick the paper with a pin somewhere through the
double thickness. Both thicknesses must be pricked. Now unwrap the paper
strip and pencil a little circle around each of the two pin pricks. (The only
purpose of the penciled circle is to assure that you don't lose sight of the pin
pricks. )

Do you see that the distance between pinpricks after the paper strip is
stretched out equals the circumference of the disc? Measure the distance
between rvi.n pricks to the nearest 0.01 cm and record the measurement in
Table I. Cross out the two penciled circles on the paper strip to make sure
you don't confuse them with later measurements and then repeat the whole
process with other discs. Measure at least six discs this way, recording
diameters and circumferences in the table, each disc on a different line of
the table.

Next you are to repeat the measurements you made above but this time
make the measurements in units other than metric units (centimeters). First,
select any one of the discs you measured and recorded in Table I and prepare
to make the measurements again. There is little point in repeating the mea-
surements in centimeters, however, so simply copy on the first line of Table
II the data you recorded for this disc in Table I. Then repeat the measurements
of diameter and circumference on the same disc using a ruler graduated in
inches. Record these measurements in the second line of Table II. Make this
and the next measurement on only one (the same) disc.
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Finally, make the measurements using a ruler of your own manufacture.
Take a small piece of paper with a straight Page and make two perpendicular
marks at the edge like the two marks at the edge of the page after the end of the
line you are now reading. It doesn't really matter how far apart they are, but
make them about the width of one of your fingers. This will be your unit of
measurement; since it is not an inch or a centimeter, you will have to make
up your own name for it -- say "widget. " Write the name you give the unit in
the third line of Table II, first column under "Measured in. " Now make 2
ruler graduated in widgets (or whatever name you choose). Do this by taking
a strip of cardboard about ore foot long and transfer to the edge of the strip,
time after time, marks that are exactly one widget apart, using the original
widget you marked off on the small piece of paper. Use this ruler for measuring
the diameter and circumference again of the same disc, recording these data
on the third line of Table II. Your teacher will show you how to estimate
fractions of a widget.

Now work out the ratio, circumference divided by diameter, for this disc
for the three units of measurement you used, recording the ratios in the last
columr of Table IL
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Data Sheet
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Table
Measurement of the Constant, jr

No. of
Disc

Diameter
cm

Circumference
cm

Circumference
Diameter

Average

Enter in the table above your measurements of the diameters and circum-
ferences for the six discs you measured. Divided each circumference by its
diameter and record the ratio in the last column. Calculate the average of your
Fix ratios and enter the average in the bottom box.

Table II
Circumference/Diameter Ratio in Non-Metric Units

Measured in Circumference Diameter Ratio

Centimeters

Inches

Fill out this table in the same way as Table I. The first line will be the
same as some line of Table I. The second line should have the same measure-
ments made in inches, and the third line in some other unit of your own inven-
tion.
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Experiment 9
Calculation of IT

From li= 411/2 + 1/3 - 1/15 + 1/35 - 1/63 + etc.

The denominators of the fractions after 1/2 in the parentheses are each"one less than the square of the even numbers in order. " In the first column
below, fill in the even numbers up to 32. In the second column, write thesquares of these numbers. In the third column, write one less than the squares,and in the fourth column write the fraction having that numbers as denominatorand 1 as numerator. Work out the decimal value of each of these fractions bydividing the denominator into 1 to four decimal places, and write this decimal
number in the fifth column. In the next column tell whether this term is to beadded or subtracted. Look at the series at the top of the page and you willsee that the second fraction is to be added, the third subtracted, and theyalternate ever after.

In the next to last column, write the partial sums. Start with 0. 5000, addthe 0. 3333 to it to get 0. 8333. Next you subtract the 0. 0667 appearing in
column 5 from 0. 8333 and write the difference, 0. 7666, in the partial sumcolumn under 0. 8333. Finally, multiply the partial sum by 4 to get an
approximation toff .

Some of the numbers are already filled in to get you started. When you
are finished, notice how the number s in the last column swing back and fortharound 1( , always getting closer.
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Calculation ofir

Even
Nos.

Their
Squares

One
Less

1 Decimal +

or
Partial

Sum
4 x

SumOne Less Value

0. 5000 2. 0000Fiveit.terrn = 1/2

2 4 3 1/3 0. 3333 + 0. 8333 3. 3332

4 16 15 1/15 0. 0667 - 0. 7666 3. 0664

6 36 35 1/35 +

..._

32 1024 1023 1/1023 0.0010 -



Experiment 10

Height and Distance along a Ramp

As you walk up a ramp, you know that the height you stand above groundlevel at any moment is a function of how far along the ramp you have walked. T
The purpose of the present experiment is to help solidify in your mind the idea
of numerical relationships existing between two quantities one of which is a
function of the other. By carrying out the experiment with two ramps of different
charactek, we will try to distinguish between "known function" and "unknown
function. "

Procedure: Your teacher will supply you with two plastic "ramps"
really strips of plastic -- one straight and one crooked. Unlike the kind of
ramp you usually see, however, the "walk-on" part of these ramps is to be
regarded as; the edge of the strip, not the flat side. (This makes the ramp
a little troublesome to walk on, but you are not going to walk on anyway. )By setting up the strip so that it is inclined to the table top, you have a modelof a real ramp on which you can make some measurements. You will also be
supplied with a breadboard, a dowel post, a clothespin clamp, a ruler, a pro-tractor, and a dowel pin.

Your teacher will set up a sample apparatus to show you how to build
your own. Use the straight ramp first. Everyone in the class should have his
ramp inclined at a different angle, ranging from a gentle slope of perhaps 10°to a steep slope of perhaps 750 or so. Measure the angle of your ramp with aprotractor (to the nearest degree is close enough) and enter the value in the boxjust under the title of Table I of the data sheet.

Now take a pencil and make a mark at the upper edge of the ramp exactlyat the point where the upper edge crosses the face of the breadboard. Make aabout 8 or 10 other marks along the length of the ramp between the first mark
and the highest free point of the ramp. It doesn't matter exactly where youchoose to place these marks: try to space them out to cover the whole free
length of the ramp, but do not put them at carefully measured positions.
Mentally number these marks from number 1 at the bottom of the ramp (whe reit crosses the face of the breadboard) consecutively upward along the ramp.
Write these numbers in the first column of Table i. You are now ready tomake your measurements. Check the ramp angle by protractor to make sureit hasn't moved.

Measure the height above the face of the breadboard of each mark on theramp. Mark number 1 was made right at the point where the ramp crosses thebreadboard, so its height is obviously zero. This is already recorded for you inthe second column of Table I. Measure the heights of each of the other points inorder. You can do this with a ruler, placing it st_ that the zero mark of the ruleris right at the ramp mark and 7,slowing the ruler to hang downward from there.
You must make sure that the ruler is perpendicular to the breadboard at the pointwhere they cross. The square corner of a file card (or anything similar) willhelp assure that you get them perpendicular. The height is given by the point onthe ruler where it crosses the face of the breadboard. Read it to the nearest0.01 cm and enter the readings immediately in column 2 of the Table. Do thisfor each mark you made on the ramp.
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Now unclairnp the ramp and measure the "distance along the ramp" of each
mark. To do this; notice that the "bottom of the ramp" was the point where
it crossed the breadboard, mark number 1. Its distance from the bottom of
course is zero, and this Value is already entered for you in column three of
the table. The "distance along the ramp" of any other mark is its distance
from Mark number 1. Measure each of these distances to 0.01 cm and record
them in the third column. You are now finished with the measur ements for the
straight ramp. Check ',.he angle once again with the protractor to make sure
the ramp hasn't moved.

Repeat the entire procedure for the curved ramp. This time it is not
necessary to measure the angle of the ramp, but repeat all other measurements
exactly as for the straight ramp. Record the measurements in Table II. To
measure "distances along the ramp" this time, you may find it convenient to
lay a narrow strip of paper along the ramp so that the paper bends with the
ramp, mark the paper where the ramp marks are, and then straighten the
paper strip and measure the marks on it.

Finally, calculate "(height above ground) divided by (distance along ramp)"
for each line of the two tables. You will notice that the first line of each table
requires that you divide zero by zero. Leave this division unperformed for
the time being.

Before completing this experiment (that is, the second work sheet), you
will have a classroom discussion.

On the second work sheet, make a graph by plotting "distances along the
ramp" in the horizontal direction and "height above ground" on the vertical
axis. Marks for each cm of distance are already marked on the axes for you.
Do this first for the data of Table I, drawing a tiny circle around each plotted
point. Then, lightly in pencil, draw the best line you can through the plotted
points. On the same axes, do the same for the crooked ramp, data of Table II.

In the first hnx nt. the bottom of work sheet #21 enter the value calculated
from H = kD where D = 15.00 cm and k is the average ratio from Table I. In the
second box, record the value of H when D = 15. 00 cm as determined from the
graph for the straight ramp, after it is redrawn.
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Experiment 10
Data Sheet #1

Psna. AFT,F oW7,7"

Table I

Height and Distance along a Straight Ramp

Angle between ramp and "ground" = °

Mark
#

Height above
ground, cm

Distance along
ramp, cm

=Ratio .::
Distance

1 0. 00 0. 00
2

3

....

[Average Ratio j
Table II

Height and Distance along a Crooked Ramp

Marl
#

Height above
ground, cm

Distance along
ramp, cm Rtio = Height,a Distance

1
A. 0. 00 0. 00
2

3

v_______________

Average Ratio
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5
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Figure 1

Height and Distance along a Ramp.

[ 1----!.... '
10

Distance along ramp, cm
15 20

Plot the data from both tables of the preceding data sheet on the graph
above. Label the two lines one "straight ramp" and one "crooked ramp. "

For the straight ramp:

Calculated value of H for D = 15.00 cm -

Graphical value of H for D = 15. 00 cm -

7
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Experiment 11

Hooke's Law

We have several times referred to the functional relationship that we would
expect to exist between the weight that is hung on a vertical spring and the
amount by which the length of the spring increases. In this experiment you
will examine the nature cf this functional relationship. Be sure you understand
exactly what it is that we are going to examine. If you hang up a spring and then
hang a weight on its lower end, the length will increase. How much will it
increase? Went, that depends upon how much weight you attach. The more
weight you attach, the more the spring will extend. There is a functional
relationship between "extension of spring" and "weight attached. " The exten-
sion of the spring is a function of the weight that is added; that is, we will
think of the added weight as the independent variable and the increase in lengthof the spring as the dependent variable, because the increase in length depends
on the weight added. (We mean by "increase in length", not the actual length of
the spring, but how much the actual length excceds the length when no weight
is attached. )

Procedure: You will be supplied with a dowel-post, dowel-pin, bread-
board, 20 ball bearings, a piece of scotch tape, a ruler, and a spring. Set
up the breadboard, post, pin, and ruler like the model your teacher has already
set up. Use small pieces of scotch tape to attach the ruler (zero end at the top)
to the vertical post, but be sure the ruler is securely held in place. Hang one
end-hook of the spring over the dowel-pin, attach a two-inch length of scotch
tape to the lower hook so that the open sticky surface hangs downward. Be surethe tape is securely attached. Record the number of your spring at the top
left of Table I, where it says "Spring No. "

Now sight horizontally across the top of the upper hook to the ruler, and
take a reading of the position of the upper hook as shown by the ruler. Makeall readings of the ruler to the nearest 0. 01 cm. Record this just below "Spring
No." in Table I where it says "Pos'n of upper hook. " Then sight horizontally
across the bottom of the lower hook to the ruler an read its position as shownby the ruler. Record this reading on the first line of the table where the entries
"0" balls and "0. 00" grams have already been made. Now carefully attach
a ball bearing to the scotch tape, let the spring come to rest, and read again
the position of the bottomof the lower hook. Record this reading on the second
line of the table opposite "1" ball. Now take about ten more readings by
attaching successively more balls to the tape and each time reading the position
of the bottom of the lower hook, the last reading with 20 balls. Each time,
record in the first column the total number of balls sticking to the tape, and in
the third column the position of the bottom of the lower ho,)k.

In making readings on the ruler of the position of the hook, it is very
important that you sight horizontally across the hook to the ruler. Do you see
why?
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After you have completed your readings on this spring, turn it in to your
teacher and obtain a second, stiffer spring. Repeat the whole experiment with
the second spring, recording the readings in Table H.

Now fill in the second column of the table, the weights successively
hung on the spring. The ball bearings are all alike in weight. Your teacher
will tell you this weight, which you should record in the upper left box of each
table. You now can calculate the load hung on the spring by multiplying the
weight of one ball by the number of balls attached. Record these loads in the
third column of the table.

Next calculate the length of the spring for each load you applied. You have
the ruler-position of the top of the upper hook and of the bottom of the lower
hook. How would you calculate the length of the spring from these data? Notice
that the position of the upper hook never changes, so it need be read only once.
Record your calculated values of "Length of Spring" in the fourth column.

Next calculate the spring extension for each load. To do this, remember
what is meant by "extension. " The extension of the spring is the amount by
which the length of the spring under load exceeds the length under no load. The
first entry in column four, is the unloaded length. Other entries in column four
are the loaded lengths. Do you see how to calculate the extension now for each di
different load? Do so. The extension for zero load of course is zero, and this
value is already 'entered for you.

Next, calculate the ratio, "Exten.sioalLoad", for each line of the table.

Make all these calculations for both tables.

Finally make: a graph of extension (vertically) against load (horizontally)
for both springs. This grz 711 is on the second worksheet.
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Experiment 11
Data. Sheet

Weight of
one ball

grams

Spring No.

Position of upper hook Extension
1

Position of
lower hook, cm

Length of
Sprin , cm

cm
Extensioni

cm

No. of
Balls

Weight
g

Load
g/ cm

0 0.00

,

1

1
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ZO

15

Extension

cm

10

5

0
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Spring Extension vs. Weight Load

5 10 15 20

Weight, grams
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Experiment 12

Weight as a Function of Length
for Uniform Sticks

In this experiment, we will investigate the nature of the function connec-
ting the weight of an aluminum rod of fixed diameter but varying length with
the weight of the rod. The two variables between which we are seeking a
functional relationship are the weight of the rod and its length.

Procedure: Set up the breadboard with dowel post, pin, and ruler
exactly as in Experiment 11. Use the same spring that you used before, and
record its spring constant in the space provided near the bottom of the data
sheet. You will be furnished with a short piece of thread and a set of aluminum
rods all of the same diameter (0. 635 cm). Fashion a sling out of the thread so
that the rods may be hung one at a time from the end of the spring.

Make a reading f-r. the bottom of the lower hook (nearest 0.01 cm) with no
load hanging on the spring, and record this reading in the space provided near
the bottom of the data sheet. Then hang one of the aluminum rods on the spring,
allow it to come to rest, and read again the position of the hook. Make all
readings to the nearest 0. 01 cm. Record this reading in the third column of
Table I of the data sheet. Then measure the length of the rod, also to the
nearest 0. 01 cm, and record this reading in the second column of the table.
Record the number of the rod in the first column. Repeat these measurements
for at least 8 rods of the same diameter.

You now have the position of the bottom of the spring when it is unextended
(in the box at the bottom left of the data sheet) and the position when it is
extended (third column). How can you calculate the extensions? Do so, and
enter them in the fourth column of the table. Using the spring constant yolL
can now calculate the weights that must have caused these extensions. Calcu-
late these weights and enter them in the fifth column. Then calculate the
ratio of weight divided by length and write the calculated ratios in the ]ast
column.

When you have completed all measurements on the rods 0. 635 cm in
diameter, obtain another set measuring 0. 318 cm in diameter and repeat tho
whole experiment with them, recording your data in Table II.
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Table I

717,F, *VW

Lengths and Weights of Some Aluminum Rods
(0. 635 cm diameter)

Rod
No.

Length
cm

Bottom of
Spring, cm

Extension
cm

Weight
grams

Weight
Length

/ cm

Table II

(0. 318 cm diameter)

Rod
No.

Length
cm

Bottom of
Spring, cm

Extension
cm

Weight
_grams

Weight
Length

g / cm

Unextended Position
of Spring End Spring Constant
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Weight vs. Length for Aluminum
Rods of Different Diameters

tli I I I J

5 10 15 20

Length, cm

30
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Experiment .13

Weight as a Function of Diameter
for Cylinders of Fixed Length

The purpose of this experiment is to investigate the functional relation-
ship between the weight of au aluminum cylinder of fixed length and its dia-
meter. You will determine the weight of each one of a set of cylinders all
having a length of 2. 54 cm but of different diameters, and then seek a func-
tional relationship between weight and diameter.

Procedure: Set up the apparatus exactly as in Experiment 12. Be sure
you use a spring whose constant is known, recording the value of the constant
in the appropriate place on the data sheet. Prepare a sling of thread that
will allow you to hang each cylinder individually. Read the position of the
bottom of the hook when no load hangs on the spring, and record the reading
on the data sleet.

You will be supplied with a set of aluminum cylinders, all 2. 54 cm long,
but of varying diameters . Measure the diameter of each cylinder (use the
caliper method) to 0. 01 cm and also the point to which it extends the spring
when hung upon it. Record both data in the proper columns of Table I. Do
this for at least 8 cylinders, being sure that they are all different in diameter.

After you have completed your measurements, compute the ratio of
weight/diameter for each line of Table I, entering the ratios in the second-
last column of the table. Leave the last two columns blank for the time being.

Now make a graph of weight versus diameter at the bottom of the data
sheet, plotting diameter horizontally and weight vertically.

"'"--7.7=-7..,==
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Experiment 13
Data Sheet

Table I
Weights and Diameters for Some Aluminum Cylinders

Cy]
No.

Dia
cm

Bottom of
Spring, cm

Extension
cm

Weight.
grams

eisht I_ii
Diam. 7

Weight
grams

Unextended Position
of Spring End

20

15

10

5

cm Spring Constant

Weight versus Diameter for Aluminum
Cylinddrs of Fixed Length

cmig

00.0
I 1 I

0.5 1.0
Diameter, cm

1

1.5 2.0
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Experiment 14

Weight as a Function of Diameter
for Aluminum Spheres

In this experiment you will try to find a functional relationship between
the weight of an aluminum sphere and its diameter. Be sure you see exactly
what the two variables are, between which we are seeking a functional relation.

Procedure: The set up is exactly like that in Experiment 13 except
that you will probably find it more convenient to hang the spheres from the
spring by usiag scotch tape instead of a sling made from thread. Ent lr on
the data sheet the spring constant for yourcalibrated spring and the initial
unloaded position of the bottom of the spring.

You will be provided with a set of 8 aluminum spheres of different
diameters. Take one of these spheres and weigh it by hanging it from the
bottom of your spring and reading the position of the bottom of the hook. Enter
this reading in the second column of Table I on the data sheet. Then use the
caliper method to determine the diameter of the ball, recording this measure-
ment to the nearest 0. 01 cm in column one of the table. Repeat the measure,
ment for all 8 of the spheres provided. Calculate the weight of each ball by
computing first the extension (column 3) and then the weight (column 4) in the
usual way. Next compute the ratio of weight/diameter and enter these values
in column 5. Plot weight vs. diameter on the graph at the bottomof the data
sheet.

Now, before doing anything more with the data from this experiment, we
will have some classroom discussion.
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Table I

Weight vs. Diameter for Aluminum Spheres

Diam.
cm

Sp. Pos.
cm

Extensio
cm

Weight Wt/ Ext 1

g/cm__ '
-.Y ------ ---- 17

...

--- .----

.....,--.-

.*---

Unextended Position
of Spring End

20

MP.

15
Weight

grams

10

5

Cm Spring constant

0. 0 0. 5 1, 0
Diameter, cm

1.5 2.0
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Experiment 15

Density of Aluminum

You know from your own experience that larger things are generally
heavier than smaller things. Not always, of course. A small piece of lead
may be heavier than quite a large balloon, for instance. But if the two things
under comparison are made of the same material, the ststement is generally
true that the larger the object, the more it weighs. You would predict that
the weight of a piece of iron is an increasing function of its size.

But what do we mean by "size"? Is a niece of iron wire 10 cm long and
a hair's thinkness in diameter bigger than a ball of iron 9 cm in diameter?
Is the lump of brass in a solid ball 3 inches in diameter smaller than that in
a thin hollow brass ball 4 inches in diameter? Is a matchbox measuring
2 cm by 5 cm by 3 cm bigger or smaller than a cube measuring 3 cm each way?
Is a size 8 shoe bigger than a size 7 hat? You notice that we use the word
"size" rather imprecisely in our ordinary speech. But we cannot afford such
imprecision when we begin dealing with the numerical aspects of quantity.

We must use words so that none of the questions the preceding para-
graph is arguable. We will do this by avoiding the we 'size" altogether and
use the word "volume" in its place. If you consider e ..n of the above questions
as dealing with volumes, each of them has a very definite answer (though of
course you may not offhand know the answer).

The purpose of this experiment is to investigate the nature of the function
involved when you say "The weight of a lump of alurninu...n is an increasing func-
tion of the vplume of the lump. "

Procedure: The set up for this experiment is exactly like that for
Experiment 14. Again, you will probably find it more convenient to use scotch
tape than a sling of thread. - Record the spring constant and the initial reading
of the unextended spring in their proper places.

You will be furnished eight small blocks of aluminum of various shapes
and sizes. Each will be either a rectangular block or a circular cylinder. You
are to determine the weight and volume of each piece.

To find the volume of a rectangular block, measure the length, width,
and height, each to 0.01 cm. Record the number of the block in the first
column of Table I of the data sheet and in the second column record the shape
and dimensions like this:

Rectangular Block
1.76 x 3. 41 x 1. 32 cm
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For the cylindrical blocks, you must measure the height of the cylinder and
the diameter. Measure the latter by the caliper method, length and diameter
both to 0. 01 cm. Record the numbers of the block in the first column and a
description of its shape and size in the second column like this:

Cylinder
Diameter 7.- 2.41 cm

Height = 3.66 cm

A.fter you have measured and recorded the dimensions of you first block,
stick it to the scotch tape hanging from your spring, allow the spring to come
to rest, and measure the position of the bottom of the lower hook. Record this
measurement in the fourth column of the data table.

Repeat these measurements for eight different blocks, about half rectang-
ular and half cylindrical.

Now compute the volumes of your blocks. For a rectangular block, the
volume is the product of length times width times height. For a cylindrical
block, the volume is 1/4 x 11 x diameter x diameter x height. In what units are
these volumes and how many significant figures are you entitled to? Record the
volume s in the third column.

Compute the weight of each block from the spring extension and spring
constant in the usual way, and enter the computed weights in. the sixth column
of the table. Compute the ratio of weight/volume and record the ratios in the
last column. When you are finished make a graph of weight versus volume on
the second work sheet.
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Table I

Weights and Sizes of Some Aluminum Blocks

Blk.
No.

Shape and
Dimensions

Volume
cm3 or cc

Sp.. Pos..
cm

Extens.
cm

Weight
grams

Ratio
g/cc

Average Density of Aluminum = g/ cc

Unextended Position of Spring End:

Spring constant =

r
cm

crnig
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Graph Sheet #2

20

15

Weight
grams

10

5

-44.-

Wc:ight vs. Volume for Aluminum

2 4 6 8 10

Volume, cc
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Experiment 16

The Densities of Various Solids

In this experiment, you will obtain data from which you will be able to
compute the density of each of several materials othe r than aluminum. The
purpose of Experiment 15 was to establish that weight is 1._'oportional to volume,
and to do so it was necessary to measure a relatively large number of blocks to
establish that the ratio of weight/volume is constant. Having done this once
(for aluminum) there is little point in making so many measurements again just
to find one density. Hence, to save time and effort in the present experiment,
you will make measurements on only two block 3 of each material.

Procedure: The setup is identical with that of Experiment 15. Make the
measurements in the same way and record thcm in the same way on the data
sheet.

With me exception! Up to this point you have been using the spring con-
stant in cm/gm and dividing the extension (cm) by the constant (cm/gm) td get
the weight (gm). (Can you still show that dividing cm by cm/gm gives gin? )
You know that dividing by a number is the same as multiplying by its reciprocal.
Most people find it easier to multiply than divide. Has it occuri-,d to you that
you can make the work a little easier by using the spring consta-r+. in gm/cm, and
then multiply the extension by the new constant to get the weight!: The new
spring constant in gm/cm is, of course, the reciprocal of the old one in cm/gm.
You will have to divide the old constant into 1 (How many significant figures
in this 1? ), but after that one division, all the rest will be multiplying.

You will be furnished with two blocks each of wood, plastic, brass, steel,
and lead. Be very careful of the blocks (especially the lead ones) so that the
edges remain sharp and easily measured -- mashed edges cannot be measured
accurately. The name of each material is already entered in the first column;
be sure you put the data for each measurement on a line opposite the appropri-
ate name. Calculate the densities for each line and put .in the last column
the average of the two measurements you made for each material.

Make graphs of weit vs. volume for all five materials. Put all five
curves on the same graph on the second work sheet. You have three points to
outline the curve for each material: the two measured points plus the origin.
Is this enough, or more than enough, to show where the straight line for that
material lies?
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Table I.

Densities of Various Solids'

Material
Shape and Volame
Dimensions cc

Sp. Pos.
can

Exten.
cm .---g--

Weight Density
pi cc_ ....DensA&

Average

Wood

Wood

Plastic
Plastic

Brass
Brass

Steele
Steele

Lead
Lead

___,

Unextended position of Spring End

rin.

Cm
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L

20

15

Weight
grams

10

5
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Weight vs. Volume for Various Solids

5

Volume, cc

10 15

Plot the points and draw graphs, one for each of the materials whose
densities you measured. Label each curve with the name of the material it
repre sents.
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Experiment 17

Identifi ation of Unknown Solids by Density

This experiment tries to show you how a knowledge of the properties of
materials makes it possible for you to identify an unknown material. The idea
is not new to you: you recognize glass from iron, water from salt, waxed
paper from aluminum foil, and hamburger from pickles by an automatic recog-
nition of the differences in their properties. If you were given some granulated
sugar and some granulated iron, you could tell the difference right away by the
color. Suppose you had sugar and salt; color doesn't help you decide, but
taste will. Suppose you had granulated sand and sugar, and you were afraid to
decide which was which by tasting. How could you safely decide? Suppose you
had sand and granulated marble, neither of which will dissolve in water? This
is leas easy, but it happens that marble will dissolve in vinegar but sand will
not. One could go on like this testing property after property until some prop-
erty was found where the two disagreed. This experiment will use density only

You will be furnished with 7 blocks of material; one of each of the
materials used in Experiment 16 and one that is none of these. They are all
painted black, however, so that it may not be easy to tell them apart at sight.
Determine the density of each block by the same procedure u used in
Experiment 16. One determination for each is enough. Before you do this,
you should use a little educated guesswork to try to decide. Which ones feel
cold to the touch'? Can you tell anything fromthe surface appearance? What
about the heft? Do NOT attempt to scratch any of them: riot only is this cheating,
but it would also damage some of the blocks!

Make up you own data sheet on the next page. Include in it the number
of the block and the material you judge it to be after measuring its density.
Also be sure to record the no-load spring extension and the spring constant
in gm/cm, Your teacher will identify the materials for you after you have made
your.- own decision.

77
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Data Sheet



-5A-

Ex' eriment 18

The Densities of Some Liquids

To calculate the density of a material, you need have simply the weight
and the volum of a sample of the material. When the sample is in the form of
a simple geometric solid, it is a simple matter to measure its dimensions, and
compute its volume, then weigh it, then compute the ratio, weight/volume.
With liquids, however, it is lees simple to make the necessary measurements.
For one thing, you have to have the liquid in some kind of container when you
weigh. it, and then you are bothered by the weight of the container. For another
thing, it is difficult to measure the dimensions of a piece of liquid, because
the sample won't hold still for you while you measure it. In this experiment,
nevertheless, you will determine the densities of several liquids.

Procedure: Set up a calibrated spring and post again as a weighing
instrument. You will be furnished a plastic vial with cap. Tie a short piece
of thread in the form of a sling (similar to the handle of a bucket) securely to
the vial so that it may be hung thereby-from the bottom of the spring. Be sure
the thread is tied low enough below the rim so the .cap can be fitted to the vial,
but not so low that the vial may tip over when it hangs by the sling. Hang the
via]. on the lower hook of the spring, cap it, let th.e spring come to rest, and
carefully measure the position of the bottom of the spring, to the nearest 0. 01
cm.. Enter this reading on the data sheet as "Unextended position of spring. "
Also enter the spring constant in g/ cm in the proper place.

We will measure volumes of liquid by using an instrument called a pipette.
A pipette is simply a hollow cylinder (that is, a straight tube) whose inside dia-
meter is accurately uniform. When the tube holds a liquid, then, the liquid
itself is in the form of cylinder, bounded on its curved outside by the inside
wall of the tube, at one end by the bottom of the tube, and at the upper end

by the free surface of the liquid.
(Do you picture this cylinder in your mind? ) If you knew the inside diameter of
the tube and the length of the column of liquid, you could then calculate the
volume of the liquid. If this volume came to, say, 9. 76 cc, you could then
put a mark on the tube saying "whenever the pipette is filled to this level, the
volume of liquid it contains is 9. 76 cc. " Actually you can buy pipettes that are
already calibrated this way, graduated as a ruler is graduated, showing not
lengths, but volumes of liquid contained. A pipette is filled to any desired
level in the same way that a drinking straw is filled, and is kept from emptying
itself by pressing a finger against its upper end. Your teacher may prefer,
for sanitary reasons, to do the pipetting for you.
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Now pipette into the vial hanging on your spring an accurately measured
volume of water somewhere in the neighborhood of 15 cc. Many beginners are
tempted, in this kind of operation, to go to great trouble to adjust the contents
of the pipette to exactly 15.00 cc. This is a foolish waste of lime. Any volume
of water somewhere near 15 cc (say anywhere from 13 to 17 cc) is as good as
any other. The point is that you may use any volume of water you happen to
get in the pipette, but whatever volume you use must be measured accurately.
Read the voLime of water to the nearest 0. 01 cc, and record it on the first
line of your data sheet, column one. Your teacher may prefer to have you
bring your vial to a central place to receive a sample of water. If so, carefully
detach the thread bail from the spring, leaving the thread on the vial, have
the water placed in it, and then hang it again from the sprine.:1

To prevent evaporation of the liquid once its volume had been measured,
keep the cap on the vial at all times except when you are actually adding or
removing liquid. Allow the spring to come to rest and read the position of the
bottom of the hook once more. Record this reading in column two of the data
sheet. Empty the vial and dry it, obtain another sample of water, and repeat
the experiment. Enter volume and spring position again in the table, the newdata on the second line.

Now repeat this experiment using alcohol instead of water. After you havefinished with your first sample of alcohol, however, do not throw it away as youdid the water. Pour it into the bottle for wasU alcohol as designatdd by your
teacher. Make two separate measurements of volume and spring position on two
different samples of alcohol, recording your observations in the first two
columns, last two lines of Table I. Repeat with benzene and carbon tetrachloride.For carbon tetrachloride, use about 10 cc samples. (Carbon tetrachloride slowly
attacks the plastic of the pipettes and the vials. Do not let them stand in con-
tact more than a few minutes at a time. Alcohol, benzene, and water are with-
out effect. )

For all eight lines of the table, calculate columns 3 and 4 in the usual
way, Then compute the density (column 5) by dividing weight by volume. Record
the computed densities (three decimal places for each) in column 5. The two
measured densities for water should agree closely, and also the two for eachof the other liquids. Average the two values for water and enter the averagein the last column. Do the same for each of the other liquids.

NOTE:
There is no special danger involved in the use of these liquids,
but they are all poisonous (except water) if you drink them.
Getting them on the hands is not harmful, but you should avoid
doing so anyway. Alcohol and be.mene are inflammable; there
should be no flames in the room where this experiment is done.
It is harmless to smell the liquids, but avoid deliberate breathing
of the vapors, especially benzene and carbon tetrachloride.

7'777 717,77 r77-
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Table I

Densities of Several Liquids

Substance...k.,
Volume

cc
Spring

Position
Extension

cm
Weight

g

Density
g/cc

Average
Density

Water

Water

g /cc

Alcohol
Alcohol

.

g/cc
Benzene

g/cc

Benzene

Carbon-
Tetrachlor-
ide

Carbon
Tet.

z/ cc

No-load Suing Extension cm
Spring Constant g/ cm
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Experiment 19

Densities of Alcohol-Water Mixtures

The density of water is greater than that of alcohol, and the two liquids
readily mix together. if you make a mixture of the two, the mixture will be
neither alcohol nor water, and probably would then have the density of neither.
If you take a very large amount of alcohol and add to it only a drop of water, how
would you expect the density of the mixture to compare to the density of pure
alcohol? If you add a drop of alcohol to a very large amount of water, how would
you expect t:he density of the mixture to compare to that of pure water? How are
your answers illustrative of the principle of continuity?

If you start with a glass of water and add alcohol to it drop by drop, what
does the principle of continuity say about how the density of the mixture changes
from one drop to the next. If you keep on adding alcohol until you have a tank-
car full of mixture, you would end up with practically pure alcohol wouldn't you.?
You would therefore have made a series of mixix:itts 11 the way from
pure water (density = 1.00 g/cc) to pure alcohol (density -- 0. 79 g/cc). What
would the principle of continuity say about the densities of these mixtures?

The purpose of this experiment is to investigate how the density of an
alcohol-water mixture changes with composition. We are looking for a
functional relationship between density (the dependent variable) and composition
(the independent variable). This raiser and impor 'ant question: density is of
course a numerical quantity, but is composition? Put it thiq way: How much
of this sample of alcohol is alcohol? All of it, you say; 100. per cent of it;
not half of it, not three-fourths of it, not 99/100 of it, but 1 of it. In consideiing
mixtures of alcohol and water, we would say that pure alcohol had a "frac.' c'71"
of alcohol equal to 1. 'Pure water would have a fraction of alcohol equal to 0. If
I mixed 10 grams of alcohol with 10 grams of water, the fraction of alcohol ,.;.rould
be 0, 50h If I mixed 7 grams of alcohol with 3 grams of water, I would have
10 grams of mixture of which 7 grams or 7/10 is alcohol. The fraction of
alcohol is 0. 70. If I mix W grams of water and A grams of alcohol, how many
grams total? 'What fraction is alcohol?

We will use "fraction of alcohol" as a quantity representing the composi-
tion, and you should understand why this fraction is given by A/ (A + W).

Procedure: This will be a cooperative experiment. The class will be
divided into small teams so that there are nine teams. Each team will
determine the density of one mixture, so that the whole class will determine the
densities of nine different mixtures. Each team should set up a weighing appara-
tus as with the preceding experiments, using a calibtated spring. The team will
be furnished two vials, one of which should be slung from the string by a thread
bail as before.. Read the position of the spring with the capped vial hanging in
place, and record the reading as "No-load position of spring" in Table II. Also
record the spring constant in g/cc there.
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Leave the vial hanging on the spring, and take the other vial and cap toyour teacher and have a sample of water pipetted into it. Record the volumeof water, measured to 0. 01 cc, in the first column of the table. Then have asample of alcohol pipetted into the same vial (right in with the water alreadythere) and record this volume in the third column of the table. Cap the vialright away, Each team will get a different combination of water and alcoholas follows:

Team

1

2

3

4

5

6

7

8

9

Approximate Volume of
Alcohol Water

18 cc Z -cc

16 4

14 A

12 n

10 10

',8 12

6 14

4 1,6

2 18

As before, the volumes measured should be approximately those in the tablebut need not be exactly these Whatever they are, however, they must bemeasured precisely to the nearest 0. 01 cc. Notice that volumes of more than10 cc will require two fillings, and therefore two readings, of the pipette.Add the two readings together for the total.

Now swirl the capped vial around for a minute or two, gently but tho-roughly.to mix the alcohol and water completely. DO NOT SHAKE the vial, for you mustavoid getting liquid under the cap. Then detach the threaded vial, with thread,from the spring and take both vials to your teacher. Your teacher will use thepipette now to remove about 17 or /8 cc of the mixture from the first vial andtransfer it to the threaded one. This of course will have to be done in twofillings and readings of the pipette. Read each filling to 0.01 cc and add the twotogether to get the volume of mixture now in the threaded vial. Record thisvolume in the eighth column of the table under "cc of Mixture. " Cap thethreaded vial.
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Discard the remaining Uquid in the plain vial and hang the capped threaded vial
back on the spring. Allow the spring to come to rest and read the position of the
bottom of the hook. Record this reading in the third line of Table II. Calcu-
late the extension of the spring from the two readings recorded in this table and
enter it on the fourth line. Then, using the spring constant already recorded in
the table, calculate the weight of the mixture. Enter this value in the last line of
Table II and also in the second last column of Table I. Notice that your own
work will fill only the first line of Table I.

You now know the volume of mixture (column 8) and its weight (column 9).
Compute the density of your mixture and record its value in the last column,
first line. You are now finished with your part of the experiment. When every-
one has finished, your teacher will assemble the data of all teams. Copy the
data from other teams on succeeding lines of the table, making su-,..e you don't
repeat your own.

Finally, maky a graph on which you plot density (vertically) versus
"fraction of alcohol" (horizontally). The two columns of the table headed by
arrows ( 4, ) show which to plot. The data of Table II give you nine points for
the graph. You can got two more (zero and one fractions of alcohol) from the
results of Experiment 18. Be sure to include these two points on your graph.
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Table I

Densities of Water-Alcohol Mixtures

Amt. Water Amt. Alcohol g

Total

Fraction of cc of

Mixture

Wt.

g

Density

g/cccc g .--,.cc g Alc Wat

1

Table II

Spring Datauu

Spring Constant g/ cm

No load position of spring cm

Loaded position of spring cm

Extension of spring cm

Weight of sample g
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Density vs. Composition for
Mixtures of Alcohol and Water

IOW

rirC.

0.90

0. 85

0.80

0.0 0.2 0.4

Composition

An Example

Weight of 10 cc of water

Weight of 10 cc of alcohol

Total Weight

Composition

Density of this compositon
from graph

Volume corresponding to
total weight

111^

0.6 0.8 1.0

g

g

g/cc

CC
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Experiment 20

Density vs. Concentration for Sugar Solutions

You probably have a feeling that the density of a solution of sugar would
increase as you dissolved more and more sugar in it. The purpose of this
experiment is to look for a functional dependence between the density of a
sugar solution and the concentration of the solution. We will think of the
concentration as the independent variable and density as the dependent. Also,
we will express the concentration of, the sugar solutions in "grams of sugar
per cc ci solution". Be sure you see both that this is a concentration and
also what is meant by "grams of sugar per cc of solution.- "

Procedure; This experiment also will be a team effort. Each person in
the class will make up one sugar solution and determine its concentration and
its density. Everyone will make a solution of a different concentration, so that
the whole class together will have a complete set of data from a solution of
very lowconcentration to one of very high concentration.

Set up a weighing apparatus with the spring arrangement you have used
so often now, with a vial hanging from the spring with a thread. Record the
spring constant on the first line of Table I. Take a reading of the bottom of
the spring as usual (with the capped vial attached), and record it on the first line
of the left-hand portion of Table I.

Detach the vial (with thread bail) and take it to your teacher to obtain a
sample of sugar. The sugar can be conveniently measured with a "spoon" made
by cutting long notches near the end of a Popsicle stick in sitch a way as to
produce a spade-end about 1/2" long. Such a measure will hold about 1/3
gram of granulated sugar when used as a spoon. The exact amount it holds
is unimportant because you are going to weight the sample accurately anyway.
The first person to get his sample will receive 30 measures, the next 29,
and so on down to 1. If the number of persons in the class is not exactly thirty,
it is quite all right if some numbers are duplicated or if some numbers are
missing. The samples should, however, span the range from 1 to about 30.

When you have received your sugar, cap the vial and take it immediately
to your weighing machine and weigh it by hanging the vial from the spring and
reading the position of the bottom of the spring. Record this reading in
Tablc. I left -hand as "No load position, " `rhos detach the vial and take
it back to your teacher to obtain a measured sample of about 10 cc of water,
added directly to the sugar in the vial. Again, the exact amount of water is
unimportant but must be read accurately to 0. 01 cc. The amount should be
between 9. 5 and 10 cc. Record the volume received in Table I.

Now cap the vial again and gently swirl the water and sugar around until
the sugar is completely dissolved. Uncap the vial and look at the contents
from time to time to find out whether the sugar is completely dissolved. It must
be completely dissolved before proceeding with the experiment. The larger
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amounts of sugar dissolve only slowly (perhaps 10 minutes or more of constant
swirling); this is why the larger amounts were given out first. Do not shake the
vial, because some of the material will then become trapped between cap and
vial. Meantime, attach the second vial, capped, to the spring and read again
the spring position. Record this reading at "No load position" in the right-
hand column of Table I.

When the sugar has completely dissolved, take both vials to your teacher,
and pipette out of the vial that contains the solution, about 10 cc of solution.
Read the volume to the nearest 0. 01 cc and then drain the contents of the pipettz
into the other empty vial. Record the volume of solution in the right-hand
column of Table I. Cap the vial containing the solution you just pipetted into it,
and leave the other cap and vial with yowr teahciL. Take the vial with pipetted
solution back to your weighing machine, hang the vial on the spring, nead the
spring position, and record this position in the right-hand column You are now
finished obtaining all the data you need. Clean and put away your apparatus and
get ready to do some calculating.

Calculating From your Data: The calculations in this experiment are more
involved than you are accustomed to, and perhaps you should be guided through
them. The following paragraphs will explain how you can calculate the concen-
tration and the density of the solution you made. Please notice that this is an
explanation. It would be _Possible to tell y-ou what to do, you could dutifully go
ahead and do it, get it entirely right --- and have learned nothing. But that's
not the way we do things here. Notice that each step follows logica.ly one
after another. You make the calculations in the way explained below, not
because somebody says this is the way to do it; you do it this way because logic
says this is the way to do it. Keep your mind open and try to understand why
each step is taken. It would be a good idea to read the whole thing once before
you start calculating, just so you can see the flow of the whole idea. Ready?

Remember that you want to calculate the concentration and density of the
solution. Keep this in mind, because you have to know where you are going
before the directions for getting there make any sea se.

We'll start with the concentration of your solution. First, what do
you mean by concentration? If you don't know exactly what it me ans, don't
you think you should go back and look it up: how can you expect to understand
how to calculate concentration when you don't even know what it is? ! Refer
back to the end of the introductory paragraph of this experiment. Now you
know that the concentration of your solution means the number of grams of
sugar per cc of solution.- How can you get this? You made up the solution
by taking some sugar and dissolving it in water. You then can get the concen-
tration of the solution by dividing the weight of the sugar you 'ised by the
volume of solution produced. You can easily get the weight of sugar you used:
You have the no load spring position and the spring position with the sugar
added; from these you can get the spring extension; and then, knowing the
spring constant, you can get the weight of sugar. Do this, using the left-hand
part of Table I to record your data. Now you have the weight of sugar in your
solution, but ---
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You also need the volume of the same portion of solution that contains
that weight. You cannot get the concentration by dividing the weight of sugar
contained in one portion of solution by the volume of some other portion. The
weight of sugar contained in all the solution you prepared -- not just part of it.
Moreover, the volume of the solution is not merely the volume of water used to
make it, because the sugar, even when it's dissolved, takes up some room,
too. One way to get the volume of the total solution would be to transfer it
totally to a pipette, but this would be difficult to do without leaving behind some
droplets -- or at leasi, some wetness NW IOW in the vial. There is anotler iadirect
-- way to find this total -v-c)11taae.

You can find the total weight of the solution, can't you? The total weight
is simply the sum of the weights of the sugar and of the water that you combined
to make the solution. You just calculated the weight of sugar in the paragraph
above. OK,. add the weight of water to it. But wait a moment; you didn't weigh
the water! But you did measure its volume; can you get the weight if you
know the volume? Of course; all you need is the density of water, which is the
same to-2a) as it was when you did Experiment 18. Look up the density of water
from Fxperiment 18 and then calculate the weight of water added. (You could
have weighed the water -- or obtained the total weight of water and sugar
together -- directly by weighiiig them with your spring. ) Enter the weight of
water in the last line of the left-hand portion of Table I. Then add the weight
of water to the weight of sugar and enter the sum as "weight of solution" on the
first line of the centered bottom portion of the table.

But to calculate the concentration of the solution, vou need its volume,
not its weight. How can you find the volume from the weight? For this calcu-
lation you need the density of the solution. Do you know the density of the
solution? No, not ye:-; but you have the necessary data from which you can
calculate the density. These data are in the right-hand portion of Table I.

To calculate the density of the solution, you need the weight and the volume c,

of some sample of the solution. To find the density, is it necessary to work
with the whole solution? No; because you remember that the density of a fixed
material is always the same regardless of the size of the sample. Hence we
can find the density of the total solution by working with any size portion of it
we please. This is what saves us, for then it is not necessary to be sure to
transfer the whole sample to the pipette without leaving any wetness behind.
We can go ahead and make up the solution out of carefully measured compo-
nents, and then find the density of a convenient portion of it without worrying
a 10 rnrelpintP temnsfer, and still be assured that we have the density of the
whole solution. Of cour se, it is best to use as large a portion of the solution
as you can conveniently get to make the measurements for the same reason
as was discussed on page 98 .

From the two spring positions recorded in the right-hand part of Table I,
you can calculate the weight of your sample of solution. Do this, and enter both
"extension' and "weight of sample" in the table. Knowing the volume, you can
calculate the density. Do so. This will be the last entry on the right-hand side
of the table.

-17:771F15[T.-- 7-7 77'
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Now you know the density of the solution. Since you have already found
the weight of solution (first line of the bottom portion of the table), the density
and weight together will allow you to calculate the volume. Do so, and enter
the result in the second last line of the table.

To get the concentration of the solution; yet: nc....cd the weight of the sugar
contained in a known volume of solution. But you know the total weight of
sugar used and you now also know the total volume of solo-in?, yo
even though you never measured it directly. Calculate the concentration and
enter it in the last line of the table.

Now you are finished!

That wasn't so hard, was it? It was long, of course, but it wasn't hard.
Have you ever looked at a piece of chain and pictured clearly how it holds
together? It isn't very hard to see how a chain works -- how each link encircles
its neighboring links in such a way as to produce a whole train of hold-together
links. Would you say that a long chain of 100 links is more complicated than
a short chain of five links? Of course not! The long chain is merely longer --
not more complicated.

The long chain of reasoning that you just went through is long, of coot se;
but it is not complicates. You can easily understand every link in the chain.
Don't be worried about the possibility that you might need help in putting the links
together. Everybody needs help at first, and yoare only beginning your study
of physical science. Learn the little things first so that you understand them.
The big things will, later follow easily.

The Graph: You have worked out one pair of values, density and concen-
tration, for one sugar solution. Copy your calculated values of these two quan-
tities into Table II, the second line. Others in your class will have worked out
similar data for other solutions. Your teacher will arrange things so that
everybody's results will be available to everybody else. Copy everybody
else's results into Table II, and then you will have a whole set of densities and
concentrations. Notice that the first line is already entered for you; do you
understand its meaning? Pure water is really a sugar solution having zero
concentration, isn't it?

Now plot the data of Table II on the graph at the bottom of the page.
Notice that the origin does not appear on this graph. The reason for this is
simply that putting in the origin would of the graph merely blank
space.
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Table

Calculation of Concentration and Density
for One Sample of Sugar Sul'. .on

Spring

Total

Constant g/ cm

Solution Sample of Solution

No load Position cm No load Position cm

Pos'n with sugar cm Position with. Solution cm

Extension cm Extension cm

Wt. of sugar g Wt. of Sample g

Volume of water cc Vol. of Sample cc

Wt, of water Density of Solution g/cc,..g

Wt. of Solution g

7=-,77-77-77-777-TA C _

Volume of solution cc

Concentration g/cc
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Table II

Concentrations and Densities for Sugar Solutions

Conc g/ cc Dens g/ cc

0.000 0.99?

Density
g/cc

1. 3

1. 2

1. 1

1. 0

Cionc g /cc Dens g/ cc

Graph

Conc g/ce Dens g /cc

Concentration vs. Density for Sugar Solutions

0.2 0.4
Concentration, g/cc

0.6 0.8
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Experiment 21

Motion under Constant Velocity (Part 1)

The purpose of this experiment is to look into the interconnection among
the quantities of time, position, distance, and velocity fox body moving along
one straight line. To do so, we need to get our hands on something that can
be trusted to move with constant velocity and slowly enough to make satisfactory
measurements. One way to do this is to use the fact that a body falling under
gravity through a fluid will eventually reach a constant velocity if it falls far
enough. A ball not too heavy or large falling through a heavy oil reaches this
velocity after falling only a centimeter or less. That is the wayconstant
velocity will be assured in.this experiment.

Procedure: The entire class will perform this experiment together.
Seven persons are needed at one time to perform the experiment. Your
teacher will assign duties to a team-of-seven who will carry out the experiment;
another team to do it again; and so forth.

The preparations described in this paragraph and the next will be come
pleted ahead of time. First, a strip of paper about half an inch wide and
seven feet long should be obtained: a strip cut from an adding-machine roll
would do nicely; or an ordinary sheet of paper cut into strips securely scotch-
taped together will do as well. This should be made into a measuring tape as
follows. Lay the strip down running from left to right and about one fourth
of the way from the right-hand end, make a short mark like those cn a ruler.
Label this mark zero. Then lay off to the left of this mark a series of other
ruler-marks ten cm apart. Label them in order from zero to the left, 10, 20,
3, etc. up to 150. Label them in plack pencil, the black signifying plus. Then
lay off a similar c2e..k.;&1e. right,v.ra.+1.4..16a e. se to 1.1.4%;- labeled from zero to right in oraer,
10 up to 50. These should be labeled in red pencil, the red signifying minus.
You now have a centimeter measuring tape marked + and - from zero, the
zero not being in the middle. On this tape, plus is on the left and minus on
the right.

Second, a long glass tube about 2 cm in diameter and 120 cm long is
securely stoppered at one end, and securely held vertical (stoppered end down)
by tying it with thread to a dowel post set in a breadboard. Thi-, is filled
within a few centimeters of the top with a heavy mineral oil like, say, Nujol.
This should be allowed to stand overnight in order to come to a uniform temper-
ature.

You are ready to start. Arrange the tape-measure vertically along the
outside of the tube so the -40 cm mark (red) is about 5 centimeters below the
liquid level in the tube, scotch tape the upper end securely, stretch the
measuring tape vertically downward along the tube, and scotchtape it again
near the bottom. Never mind the excess measuring tape at the bottom; it will
be too long and some "unused" tape will just lie there unused. Leave it there.

a=rant...1.=.{7=C7^^...p=701137====3.=
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Now we need a team of seven. Their jobs are:

2 Timers 2 Recorders 2 Readers Dropper

The dropper has a supply of plastic beads. He stands holding a bead
in his fingers over the top of the tube.

The timers stand where they can read a clock with a second hand and
keep their eye on the clock.

The recorders stand near the timers (one recorder paired with each
timer) with pencil and paper. The papers have previously prepared tables of
five columns and about 8 lines. One recorder has the even multiples of 10
entered in the first column: -40, -20, 0, +20, and so on down to
the last mark on the tape. The other recorder has the odd multiples: -30,
-10, +10, +30, and so on. The recorders are designated odd and even. Thetables may be on scratch paper. The recorders hold pencil in hand and keep
their eyes on the paper, listening each to his own timer.

The readers stand one on each side of the oil filled tube, in a position
where they can clearly see both the paper measuring tape and a ball falling
down through the liquid at the same time. One reader is teamed with one
timer-recorder pair and the other with the other. The two readers should
have readily distinguishable voices so the timer and recorder can tell without
looking which reader is speaking. It might help, for instance if one reader is
a girl and the other a boy. It is the readers' job to watch the ball as it falls
through the oil,. They must keep their eyes on the ball. One reader is
designated odd and the other even, and are so teamed with the corresponding
recorders.

Here is the performance; everybody ready? One of the timers watches
for the approach of the second hand to the 12 (that is, zero) on the clock. He
announces 10 seconds to go, then counts down 5, 4, 3, 2, 1, GO, calling GO
when the second hand is at 12. At GO, the dropper drops a ball into the oil,
releasing it just under the surface. (Of course he gets his fingers oily, but
he has nothing else to do anyway. ) The readers watch the ball descend.

When the ball comes exactly opposite. the -40 mark on the tape, the even
reader calls out in a staccoto voice "Four". The even timer, eyes always on
the clockjreads the position of the sew nd hand on the clock at the moment
he hears "Four". The hand will be moving, of course, and he must very
quickly make up his mind where the hand was at the moment he hears the
signal. He estimates the time to the nearest 0. 1 second. Without 'taking his
eyes off the clock, he announces the reading cituietly to his recorder who
records the reading in the second column of 13113 table, on the line where "-40"
appears in the first column.

5.

,
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Meantime the odd reader, eyes always on the ball, watches for the
moment when the ball comes exactly oonosite the -30 mark. At this moment
he calls "Three" in a staccato voice, and the odd timer, eyes always on the

clock, reads the position of the second hand at the moment he hears the
signal. He makes this time reading, like all the rest, to the nearest 0. 1 sec-
ond, and announces it immediately and quietly to his recorder, who records
the reading in the second column of his table on the line where the first column
says "-30".

Meantime the even team, it is to be hoped, has recovered from its -40
task. The even reader continues to watch the ball. When it comes exactly to
-20, he calls "Two" and the even timer reads the clock and announces the time
to his recorder, who records the time in the second column opposite "-20".
By this time the odd team will have recovered from its f!30 activity and makes
a reading for -10. Then the even team at zero, odd at -t-10, and so on until
the ball falls to she bottom. The only persons in the entire class permitted to
talk are the readers and timers. This is very important.

The whole team should make several practice runs so they can wo:k
together as a team. They then make three runs for the record. The recorders
will then have three readings of the time for each multiple-of-ten position of the
ball. They should average each set of three readings to get a "best" time for each,

position. The two lists of averages are then blended into one sequence of aver-
aged times when the ball was at -40, -30, -20, and so on up to +80 or whatever
the bottom reading turns out to be. These data are entered in the first two
columns of Table I on the data sheet.

The team now retires to a well-deserved rest. Their places are taken
by another team with assignments exactly as before. First, the measuring
tape is detached and moved upward so the zero mark (instead of -40)is about
5 cm below the liquid level. Secur it in place. The recorders make their data
columns with the first r:olumn reading 0, 20, 40, etc. , to the bottom reading
of the tape for the even recorder; and 10, 30, 50, etc. for the odd. Repeat
the entire performance as before and enter the averaged and blended data in
the third and fourth columns of the data sheet. Second team is now finished.

Another set of runs should now be made with a new team. Detach the tape
and reattach it with the +40 (black) mark about 5 cm below the liquid level.
Recorders prepare the first column of the data sheet with +40 (even) or +50
(odd) as the first entry. The final averaged and blended data are entered in
the last two columns of the data sheet.

Finally, make plots (time horizontally and position vertically) of all
three seta of data on the same graph on the second graph sheets The positions
(in cm) are already marked on the vertical axis, but you will have to supply
your own time scale. Plot positive (black) distances above the zero and
negative (red) below. (This is opposite to the physical direction of fall. )

Leave the "calculated velociaes" blank for now.
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Table I

Position vs. Time in Uniform Motion
I

First Run
r

Second Run Third Run

Position
cm

Time
sec

Position
cm

Time
sec

Position
cm

Time
sec

.4O.0 0.0 40. 0

-30.0 10 0 c 50.0

1-

Calculated velocities

1st Run 2nd Run

cm/se cm/se

3rd Run

cm/seci

.:,.

.,,
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Position vs. Time in Uniform Motion
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Experiment 22
31

Motion under Constant Velocity (Part II)

You will remember that Experiment 22 was carried out by dropping balls
of the same size and same material through the same column of oil. Your
intuition would tell you that the balls would all fall with the same velocity.
This in fact is true -- they do all fall with the same velocity.

We now wish to compare the functional relationship between position and
time for bodies falling with different velocities. You would probably guess
that if you dropped a bigger ball through the liquid, it would fall with a differ..
ent velocity. This also is true, and this is how we will obtain different moving
bodies, each with a different, but constant, velocity.

Procedure: The setup and procedure, including team assignments, are
identical with those of Experiment 21, except that the droppers will use balls
of different sizes from those in the preceding experiment. Adjust the measuring
tape so that the zero-mark is about 5 centimeters below the liquid level and
leave it there for the entire experiment.

The first team repeats its performance in Experiment 21 with the tape
in the position noted in the preceding paragraph, except that the dropper uses
balls a little bit larger than those in Experiment 21. The team again makes
three runs for the record. The data are averaged and blended as before, 0'2d
the readings recorded in Table II. The first column of Table II lists the trIpc-
positions beginning with 0.0 cm and increasing by tens to the bottom of
tube. Since the tape will not be moved during this experiment, this colv.m:a will
serve for all the trials. The averaged times-of-passing for the 10-cm ma :'ks
are to be recorded in the third column; leave the second column blank for

The second team repeats the performa nce of the first team, leaving the
tape unchanged, but : using balls a bit larger still. The data are treated in the
same way and the times-of-passing are recorded in the fourth column of Table II.

If tine permits, a third team should make still another series of runs
using a set of balls still larger. These data, if taken, should be recorded in
the fifth column.

Now fill in the second column of Table II. These data are the times-of-
passing the 10-cm marks for the balls used in Experiment 21. Simply copy
the data fromthe fourth column of Table I (Experiment 11), since there is no
point in doing that experiment over again.

Then make plots (time horizontally and position vertically) of.the data
Table II. All distances are positive this time. Plot the points all on one graph
on the second work sheet. The data copied from Experiment 21 are also to be
plotted on this graph, and of course will merely be a copy of what you plotted
before. Use a ruler to draw the three (or four, if the third team performed)
straight-line curves. As usual draw the lines so you leave about as many points
on one side of the line as on the other..
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Position vs. Time in Uniform Motion
Table II

....

Position,cm

Slow
Time
sec

I Medium
Time
sec

Fast
Time
sec

Faater
Time
sec

0.0

0_10.

Calculated
velocities

1st Run 2nd Run

cm /sec! cm/sec
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Experiment '11

Motion under Constant Acceleration

The purpose of this Experiment is to investigate the motion of a body
in a simple case of accelerated motion. We will use a ball rolling down
aheinclined ramp as an example of accelerated motion.

There is a trouble with this experiment of which you should be forewarned.
:If the ball rolls too slowly, then friction takes charge and the motion quickly
becomes constant-velocity motion like the ball slowly falling through oil. If
ith,e ball rolls rapidly, its motion is truly uniformly acclerated, but then the
action is so fast that it is difficult to measure. In truth, the slowest movement
that can safely be used to avoid the effect of friction is still too fast to get
(Ni:cellent results. This experiment therefore is an example of something one
of meets in experimental physical science: you make measurements
which you recognize as being of low precision, yet treat the data in such a
way as to average out the errors as well as you can. This experiment, it
might be ELdded, can be carried out with high precision, but the equipment
required to do it would be prohibitively complicated. Perhaps after you
hive completed the experiment you will be able to suggest more complicated
measures that might be taken to secure better precision.

Procedure: A 12-foot long 2 x 4 wooden plank will be provided. It has
a ,l/2inch wide and 1/2-inch deep groove cut along its entire length in one of the
narrow ("two inch") faces. The board should be as free of warpage as posathle,
ar.d the dadoed groove should have clean edges fairly tree of splintered-out
Elections. The edges of the groove will 1Drovide the track for a steel bearing-
ball to run, along.

Lay the board out on the floor, grooved edge up. Prop up one end of the
board to make an inclined ramp for the ball to roll down. A stack of books
about 25 cm high under one end will make the ramp steep enough to give uni-
formly accelerated motion, yet not so steep as to make the speed of the ball
impossibly fast for measurement.

You will also need an electric clock having a sweep second hand, or a
stopuratch. If you use an electric clock, look at the scale marks on the dial.
(Oil many clocks, made to be viewed from a distance, the minute (or second)
marks are thick lines as wide as the space between them. Imagine how diffi-
cult it would be to read a ruler on which the centimeter "lines" were half a
centimeter wide! If your clock is made like this, it may be necessary to
modify it by pasting a make-shift scale made of a narrow arc of paper over
at least a part of the clock scale, and making thin pencil marks at the centers
of the dial's own thick ones. If this is necessary, your teacher will have
done it ahead of time.



A steel bearing ball about 2 cm in diameter will also be provided. Make
a pencil mark across the grooved face of the board about 2 cm from the upper
end. and label it "0", then use a meter stick and a pencil to make further
marks across the grooved face of the board, every 40 cm from the mark at the
upper end. Label these marks 40, 80, etc. down to 360 cm. The "0" mark
is the origin, and we will again take downward as the positive direction.

This is a team performance, and it is probably better to do the entire
experiment with one team given 10 minutes or so to rehearse than to use
several teams each of which will have to spend an equal time in practice,
The team consists of:

One starter, two timers, two markers, and one retriever.

The starter stations himself at the upper end of the board. He places
the ball in the groove and holds it there lightly with his finger, with the
leading edge of the ball opposite the starting mark onthe board. When No. 1
timer calls "Go", his sole job is to release the ball,. NO pushing; simply
lift the finger and let the ball start slowly by ilself.

The two timers st,n.d where they can clearly see the clock. enhey
must be able to get within normal reading distance of the clock; say, about
one foot. No. 1 timer stands immediately in front of the clockface with No. 2
Globe by his side. They both keep their eyes on the clock. No. 1 timer
wattheS. the second-hand, and when it approaches a part of the dial-scale
he can easily read, hemarns the starter: "Get ready...GO", calling "go"
at the instant the second-hand passes a convenient scale-makring. He stays
there with eyes always on the moving secondhand, waiting for No. 1 marker
to call "Mark. " When he hears the signal, "Mark", he makes reading of the
second hand, judging the time to the nearest 0.1 second. He immediately
moves aside. Nog 2 timer, who has never taken his eyes off the second hand,
then immediately moves in front of the clock face and waits for NO. 2 marker
to call "Mark". At this signal, he too reads the position of the secnnd-hand
to the nearest 0.1 second.

It requires quick eyes and quick decision to judge the position of the
moving second hand this way. It is not otherwise difficult, but the timers
must be able to make up their minds quickly. After both readings have been
made, the two timers announce their readings to the class. Ha" the class will
act as recorders for No. 1 timer and the other half for No. 2. They note on
scizstasjivaper the times announced by the timers.

The two markers station themselves along the side of the ramp, No. 1
marker at the 40-cm mark and No. 2 marker at the 240- cm mark. Markers
keep their eyes mostly on theseamarks. When they hear the word "Go",
they watch their marks carefully, waiting for the arrival of the ball. At
the instant when the ball hits the 40-cm mark, marker No. 1 calls :Mark",
the signal that timer No. 1 above was waiting for. He does not disturb the
ball in any way -- merely announces its arrival at the 40-cm mark. Meantime,
marker No. 2 awaits the arrival of the ball at the 240-cm mark, announcing
its arrival there by calling "Mark" also This is the signal that timer No.
above was waiting for. The ball continues its way down the ramp where it
is caught by the retriever who carries it back to the starter.
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The experiment is repeated at least five times, so that five readings ofthe times of passage to the 40-cm and 240-cm marks are obtained. Themembers of the class doing the recording should now average the five time
readings they recorded and some member of each recording group should
go to the blackboard and enter the average time for passage at 40 cm and
at 240 cm in a table like Table I on the data sheet. The averages should betaken to two decimal places, though the last figure will be very unreliable.

A peculiakity of repetitive experimental measurement will arise with thetimers. It is called "experimental prejudice" and is extremely difficult toavoid, even by skilled veteran scientists. It is simply this. If a timer readsthe first time as "1. 7 seconds", he will find it very difficult to forget thefact. On repeating the measurement on the second roll, the call of "mark"
may occur when the clock hand actually is at 1.8 or 1.8 seconds. But the
timer, remembering that he judged it as 1.7 the first time will find it
extremely difficult to resist calling it 1.7 again, simply because he read itthat way the first time and feels that the second time ought to give the samereading as the first. Try to make each reading uninfluenced by preceding
ones.. You will find it hard to do.

The reverse of the effect mentioned in the preceding paragraph is just
as likely to occur and just as bad. A timer may read the first time as 1.7
seconds. The second reading may also be 1.7 seconds. But the timer,
remembering that his first reading was 1.7, may resist calling the secondone 1.7 also because hP thinks he is being influenced by the first when hereally is not. The best thing is to keep in mind that the clock has no memory,and the timer who reads it should have no memory either.

After five readings of passage at 40 cm and 240 cm are taken, the markers
should move downhill to the 80-cm and 280-cm marks and the team repeatsthe whole performance, taking 5 readings of each again. Then repeat with themarkers at 120-cm and 320-cm (five readings); then 160-cm and 360-cm
(five readings); then marker No. 2 and timer No. 2 retire, and marker No. 1calls "mark" for passage of the 200-cm mark. The data are displayed on the
blackboard and the entire class then copies the complete table as the first
two columns of Table I on the first data sheet.

You should now make a graph in the upper space of the second work
sheet, plotting position (the dependent variable) vertically and time (the
independent variable) horizontally. Leave the other graph frametzandt:data
columns blank for now.
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Table I

Motion under Constant Acceleration

I -r

Pos 'n

p, cm

Time, t, seconds

cm sec

V

cm/secmeas 'd Smooth

0 0 0

40
40

40

80
40

120

40

160

40

200
40

240

40

280
40

320
40

360

Midway Ratio
Pos'n Time v/t
cm sec cm/sec

20

2
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Position vs. Time for Constant Acceleration

Tim a, Seconds

Velocity vs. Time for Constant Acceleration

Time, Seconds

...1
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Experiment 24

Tangent to a Curve

This experiment will give you a little experience with the notion of
"tangent to a curve at a point. " You will use the curve of p vs t obtained in
Experiment 23. You will obtain the tangents in two different ways, and at
the same time find a simple relationship between p and t that you may not
previously have suspected.

Recall that you obtained, in Experiment 23, the times, t, that it took
a ball to pass various positions, p, as it rolled downhill. You have these
data in Table I of that experiment. Refer back to this table and look at the
first and third columns. The first column gives the series of positions at
which you measured the times of passage, and the third column gives the
smoothed values of the times.

Procedure: Make another graph of p vs t on the first work sheet for this
experiment. Do this by plotting horizontally the times (third column of Table
I in Experiment 23) and vertically the positions (first column) for the ball
rolling downhill. Your graph will of course merely be a duplicate of your
first graph in Experiment 23, but somewhat larger. Draw in the curve
connecting the plotted points. Do this with the best care you can take. The
curve must be smooth (no wiggles) and cleanly drawn. Have your teacher
approve your drawing before you go ahead. Now erase the plotted points
and fill in again the gaps in the curve created by erasing.

Make a small penciled dot on the curve at a value of p equal to 140 cm.
We will refer to this point as P. You are going to ci.eaw a tangent to the
CUrVe 4-1-.4 s nrvirel- Before doing so however, you should play around alittle. Take your ruler and lay it across the curve like a secant, cutting

curve at P and some other point farther to the right. We will call this
other paint Q, but do not bother to mark it or label it. Notice the slope of thesecant ruler.

Now use your left hand to keep the ruler with its edge passing throughP, and rotate the :ruler slowly clockwise around P and notice how the other
point, Q, moves slowly to the left and downward along the curve. Notice
at the same time how the slope of the secant-ruler constantly changes as Q
moves toward the fixed point, P. Lay the secant-ruler across the curve so
Q lies to the left of P and repeat, this time rotating the ruler counterclock-wise aromid P. Again notice how the slope changes as Q moves closer and
closer to P.

You now see that the second intersection, Q, may lies either to theright or to the left of P, depending on how much the ruler is tiled. Youcan also see that the ruler may be moved so that Q comes as close to P as
you please. Can you arrange the secant-ruler ,o that it passes through P
only, through no other point on the curve, yet aoes not cross over the curve?
This, of course, is the position of the secant-ruler when Q has been moved
so close to P that Q lies right on top of P. Think of the curve as the rasied
curved curbing around a street corner and the ruler as a long board; you are
in the street and moving the long board horizontally up to the curb so that it
just touches.



When you think you have the right idea, adjust the ruler so that it is
tangent to the curve at P and actually draw the tangent with a pencil using
the ruler as a straight-edge guide. Be sure the pencil line goes through
the point P. 'Waggle the ruler back and forth a little before you draw the
line to be sure you have it just right. Draw the tangent long enough so that
at least 15 cm of it lies inside the frame-lines of the graph. Your drawing
will look something like this.:

to

6

C

Choose any two definite points, say A and B, that lie on the tangent line
and are at least 15 cm apart. Then draw the horizontal line AC and the ver-tical line BC. Be sure AC and BC are taxily parallel to the axes of the graph.
You will now have to measure AC and BC. But there is a catch involved in
measuring them; do you see what it is?

You must remember that AC represent At. It therefore represent some
number of seconds, and is not to be measured in length units like Its"length" must be measured in seconds, using the same scale that was used to
plot the graph. You therefor a. have to measure the length of Ar using the
t -scal' at the bottom of the graph as a ruler. One way to do this is to take
a sheet of paper and lay its edge along the line AC, and mark the edge ofthe paper with one tick exactly at A and another exactly at C. Then move the
paper so that the edge lies along the t-scale (bottom frame line) of the graph,with the left hand tick at the origin. Read the position of the right-hand tick
against the t-scale just as you would any other ruler. This reading is the
value of .o t, in seconds, which should be recorded in the fourth column of
Table I of the present experiment. Measure BC in the same way, but use
the vertical p-scale (left frame line) as thi ruler this time. This is p and
should be recorded in the fifth column of the table.
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The point P above was marked at p = 140 cm. You should now repeat
the whole performance for other points P of the curve. Do at least three
others; measure zSp and At for tangents at p = 60, 220, and 300 cm first,
and then others if you have time. If you do others, choose p's listed in the
first column of the table.

Columns four and five of this table now give you A p and A t for tangents
to your p vs t curve at several different points on the curve. Calculate
A p/ L1 t and record the ratios in the sixth column. Also, complete the first
three columes of the table. The first column, already filled in, gives a
series of positions of a ball rolling downhill. The second column gives the
times at which the ball passed these positions. You are to obtain these
times by r eading them from your graph -- values of t at p = 20, 60, 100, .4,,
340 cm. The third column is the average velocity, if, that you previously
calculated for a small interval surrounding p - 20, 60, etc. cm. Copy these
values from Tal-le I of Experiment 23.

You should now have a classroom discussion before proceeding with the
rest of this experiment.
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Tangents to Curve p vs. t
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Table

Velocities under Uniformly Accelerated Motion
...._

From Expt. 23 From
1-

/41

cm

tangent slopes
i v

I cmccre.

I From derivative
Pos 'n, p

cm
Time, t

sec
V

cm/sec

,

it t2
sec2

p/t2
cm/se

V

cm/secsec
any
thing0 0 0 1 0 0 0

20

60

100
1

140

180

220

260

300
i_

k = average p/t2

ft 0% 0%
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