Introduction
Adopting a ‘systems thinking’ approach to improvement in healthcare has been recommended as it may improve the ability to understand current work processes, predict system behaviour and design modifications to improve related functioning.1–3 ‘Systems thinking’ involves exploring the characteristics of components within a system (eg, work tasks and technology) and how they interconnect to improve understanding of how outcomes emerge from these interactions. It has been proposed that this approach is necessary when investigating incidents where harm has, or could have, occurred and when designing improvement interventions. While acknowledged as necessary, ‘systems thinking’ is often misunderstood and there does not appear to be a shared understanding and application of related principles and approaches.4–6 There is a need, therefore, for an accessible exposition of systems thinking.
Systems in healthcare are described as complex. In such systems it can be difficult to fully understand how safety is created and maintained.7 Complex systems consist of many dynamic interactions between people, tasks, technology, environments (physical, social and cultural), organisational structures and external factors.8–10 Care system components can be closely ‘coupled’ to other system elements and so change in one area can have unpredicted effects elsewhere with non-linear, cause–effect relations.11 The nature of interactions results in unpredictable changes in system conditions (such as patient demand, staff capacity, available resources and organisational constraints) and goal conflicts (such as the frequent pressure to be efficient and thorough).12 13 To achieve success, people frequently adapt to these system conditions and goal conflicts. But rather than being planned in advance, these adaptations are often approximate responses to the situations faced at the time.14 Therefore, to understand safety (and other emergent outcomes such as workforce well-being) we need to look beyond the individual components of care systems to consider how outcomes (wanted and unwanted) emerge from interactions in, and adaptations to, everyday working conditions.14
Despite the complexity of healthcare systems, we often appear to treat problems and issues in simple, linear terms.15–17 In simple systems (eg, setting your alarm clock to wake you up) and many complicated systems (eg, a car assembly production line) ‘cause and effect’ are often linked in a predictable or linear manner. This contrasts sharply with the complexity, dynamism and uncertainty associated with much of healthcare practice.1 7 18 For example, in a study to evaluate the impact of a comprehensive pharmacist review of patients’ medication after hospital discharge, the linear perspective suggested that this specific intervention would improve the safety and quality of medication regimens and so reduce healthcare utilisation.19 Unexpectedly the opposite result was observed. The authors suggested that this emergent outcome may have been due to the increased number of interactions with different healthcare professionals increasing the complexity of care resulting in greater anxiety, confusion and dependence on healthcare workers.
Analyses of safety issues in healthcare routinely examine how safety is destroyed or degraded but have surprisingly little to say about how it is created and maintained. In the UK, like many parts of the world, root cause analysis is the recommended method for analysing events with an adverse outcome.20 At its best, this should take a ‘systems approach’ to identify latent system conditions that interacted and contributed to the event and recommend evidence-based change to reduce the risk of recurrence.20 However, we find that the results of such analyses are commonly based on linear ‘cause and effect’ assumptions and thinking.15 16 21 22 Despite allusions to ‘root causes’, investigation approaches have a tendency to focus on single system elements such as people and/or items of equipment, rather than attempting to understand the interacting relationships and dependencies between people and other elements of the sociotechnical system from which safety performance and other outcomes in complex systems emerge.21 By focusing on components in isolation, proposed improvement interventions risk unintended consequences in other parts of the systems and enhanced performance of the targeted component rather than the overall system. The validity of focusing on relatively infrequent, unwanted events has been questioned as it does not always reveal how wanted outcomes usually occur and may limit our learning on how to improve care.22
Despite much related activity internationally, the impact of current safety improvement efforts in healthcare is limited.23–25 Similar to other safety-critical industrial sectors, such as nuclear power or air traffic control, there is a growing realisation in healthcare that exploring how safety is created in complex systems may add value to existing learning and improvement efforts. The European Organisation for the Safety of Air Navigation (EUROCONTROL), a pan-European intergovernmental air navigation organisation, published a white paper, Systems Thinking for Safety: Ten Principles.26 This sets out a way of thinking about safety in organisations that aligns with systems thinking and applies ‘Safety-II’ principles, for which there is also growing interest in healthcare.27 This latter approach attempts to explain and potentially resolve some of the ‘intractable problems’ associated with complex systems such as those found in healthcare, which traditional safety management thinking and responses (termed Safety-I) have struggled to adequately understand and improve on.28 The Safety-II approach aims to increase the number of events with a positive outcome by exploring and understanding how everyday work is done under different conditions and contexts. This can lead to a more informed appreciation of system functioning and complexity that may facilitate a deeper understanding of safety within systems.29 30
In this paper, we describe principles for systems thinking in healthcare that have been adapted and contextualised from the themes within the EUROCONTROL ‘Systems Thinking for Safety’ white paper. Our goal was to provide an accessible framework to explore how work is done under different conditions to facilitate a deeper understanding of safety within systems. A case report applying these principles to healthcare systems is described to illustrate systems thinking in everyday clinical practice and how this may inform quality improvement (QI) work.
Adaptation of EUROCONTROL Systems Thinking Principles
A participatory codesign approach31 was employed with informed stakeholders.32 33 First, in March 2016, a 1-day systems thinking workshop was held for participants who held a variety of roles in front-line primary care (general practitioners (GP), practice nurses, practice managers and community pharmacists) and National Health Service (NHS) Scotland patient safety leaders (table 1). The relevance and applicability of the EUROCONTROL white paper system principles were explored through presentations and discussion led by two experts in the field (including the original lead author of this document—SS). This was followed by a facilitated small group simulation exercise to apply the 10 principles to a range of clinical and administrative healthcare case studies (online supplementary appendix 1) (figure 1).
Systems Thinking for Everyday Work model.
Second, two rounds of consensus building using the Questback online survey tool were undertaken with workshop participants in April and July 2016.34
Finally, in May 2017, two 90 min workshops were held to test and refine the adapted principles with primary and secondary care medical appraisers (experienced medical practitioners with responsibility for the critical review of improvement and safety work performed by front-line peers).
At each stage, feedback was collected and analysed to identify themes related to applicability including wording, merging and missing principles. These themes directed the modification of the original principles and descriptors, which were then used at the next stage of development.
Throughout the process, external guidance and ‘sense-checking’ were provided by a EUROCONTROL human factors expert and lead author of the original systems thinking for safety white paper. While we believe the outputs from this work are generically applicable to all healthcare contexts, we have focused on the primary care setting for pragmatic purposes. The agreed principles are illustrated graphically in the Systems Thinking for Everyday Work (STEW) conceptual model (figure 1), and detailed descriptions are provided in online supplementary appendix 2.
Patient and public involvement
Patients and the public were not involved in the design of the study or the adaptation of the principles. The presented case study included a patient in the application of the principles to analyse the system. A service user read and commented on the manuscript and their feedback was incorporated into the final paper.