Introduction
On 31 January 2020, the WHO declared the outbreak of SARS-CoV-2 a Public Health Emergency of International Concern (PHEIC). Based on information available at the time, and beyond recommending that China should enforce exit screening at its borders, the International Health Regulations 2005 (IHR) Emergency Committee explicitly did not recommend the adoption of ‘any travel or trade restriction’.1 While the IHR do not preclude State Parties from adopting health measures aimed at travellers, they do state that State Parties should follow WHO guidance and that they should avoid the adoption of measures that may lead to ‘unnecessary interference with international traffic’ and that such measures should not be ‘more restrictive of international traffic and not more invasive or intrusive to persons than reasonably available alternatives that would achieve the appropriate level of health protection’ (Article 43). Moreover, measures adopted should be based on ‘scientific principles’ and evidence.
As early as 31 December 2019, the same day that the Chinese Centre for Disease Control first notified WHO of a cluster of atypical pneumonia cases in Wuhan, some jurisdictions (including Taiwan, Russia and Macau) began to impose travel-related measures on travellers from Wuhan, mainly airport screening.2 Within weeks, additional countries also restricted flights to and/or suspended entry from Wuhan, including Mongolia, Australia and North Korea. On 23 January, a cordon sanitaire was drawn around Wuhan, effectively suspending all international and domestic travel in and out of the city.3 A day later, the measures were extended to all of Hubei province. By March 2020, despite WHO’s initial recommendations, virtually all IHR (2005) State Parties had implemented some form of cross-border travel-related measure during the initial phase of the COVID-19 pandemic.4 This is, by far, the largest number of countries adopting such measures during a PHEIC: only about a quarter of countries had imposed such measures during the 2009 H1N1 pandemic and the 2014 Ebola outbreak in West Africa.5–7 It is estimated that there was a 65% drop in international travel in the first half of 2020 as a result of the COVID-19 pandemic.8
The nearly universal adoption of travel-related measures, especially in light of the potentially large economic and social consequences, raises questions as to whether such measures can be, and have been, effective at reducing international transmission of the virus during the pandemic. Studies from previous infectious disease outbreaks have suggested that certain travel-related measures have only limited, or at best modest, effectiveness in containing outbreaks of influenza. For example, a systematic review of the effectiveness of international travel measures (screening, travel restrictions and border closures) to control pandemic influenza identified 15 studies and found that measures implemented early could delay local transmission by a few days or weeks, slow international spread and delay the epidemic peak in isolated locations by reducing the number of seeding events.9 The review did not identify any evidence that screening methods were effective but it did find that border closures had been effective in preventing virus introduction to small island states during the 1918 influenza pandemic. However, the authors also concluded that the overall evidence base on which they drew their conclusions was small and of low quality.
A related but larger review of a broader range of measures, including travel advice, screening, internal travel restrictions and border closures, for both epidemic and pandemic influenza, also found that travel restrictions could delay the arrival and spread of epidemics and that select isolated locations may benefit more from border closures. However, once again, the overall effect sizes were relatively small, and the quality of evidence was also found to be very low.10 Another review of both international and domestic travel restrictions concluded that such measures could delay, but not contain, dissemination of both pandemic and seasonal influenza after it emerged.11 Based on the 23 studies identified, the review concluded that internal and international border restrictions could delay the spread of an outbreak by 1 week and 2 months, respectively, and that such restrictions could delay the spread and peak of epidemics from between a few days to up to 4 months. However, the timing of the introduction of such measures was key; the extent of the delay of spread was greatly reduced when restrictions were imposed more than 6 weeks after the onset of an epidemic.
Beyond influenza, evidence from other infectious disease outbreaks is more limited. A modelling study of travel restrictions implemented during the West African Ebola outbreak estimated that such measures may have delayed further international transmission by a few weeks for some countries.12 Given the low proportion of all international travellers originating in Ebola-affected countries at that time, another study suggested that exit screening measures in affected countries were likely to be more effective at reducing onward international transmission than travel restrictions,13 a finding that was supported by a similar study.14 The travel advisories issued by WHO during the 2003 SARS outbreak, which led to substantial declines in international travel to Hong Kong and Mainland China, were estimated to have delayed the export of cases by only a few days.15 Importantly, other studies have suggested that travel measures during outbreaks can be counter-productive by preventing countries from launching effective epidemic responses,16 undermining the detection of cases and causing widespread economic effects on the travel industry itself.17
However, since the onset of this pandemic, it has become clear that the clinical features of COVID-19 make it more challenging than previous infectious diseases to detect and contain,18 raising questions about whether evidence of effectiveness from previous studies is relevant for COVID-19.19 The goal of this paper is to review evidence of the effectiveness of travel-related measures implemented during the early stages of the COVID-19 pandemic, a time of many unknowns regarding the clinical and epidemiological features of the COVID-19. Since the emergence of COVID-19, dozens of studies have now been published or made available that evaluate the effectiveness of travel-related measures in the context of the pandemic. The only other effort we know of to review the evidence of travel measures is a very recently released Cochrane review of the literature on the effectiveness of international travel-related measures to contain COVID-19, severe acute respiratory syndrome (SARS) and Middle East Respiratory Syndrome (MERS).20 This review certainly adds to our understanding of the evidence base of travel measures; however, it did not investigate the effect of domestic travel measures, including those imposed in Wuhan, potentially overlooking a valuable piece of evidence on the effectiveness of travel measures. That review identified 36 studies, of which 25 were specific to COVID-19 and concluded that cross-border travel measures may limit the spread of disease across national borders, specifically in terms of reducing the number of imported cases and delaying or reducing epidemic development, although it found that the certainty of the reviewed evidence was low to very low. Given the widespread adoption of travel restrictions, and the likely enormous economic and social consequences resulting from them, a fuller understanding of the effectiveness of all of the measures adopted during the early phase of the pandemic is warranted. While the question of whether the adoption of these measures is compliant with the IHR has received attention in the literature,21 22 it is beyond the scope of this paper.