Abstract
A complex and multilayered immune defence system protects the host against harmful agents and maintains tissue homeostasis. Cigarette smoke ex posure markedly impacts the immune system, compromising the host's ability to mount appropriate immune and inflammatory responses and contributing to smoking-related pathologies. These adverse effects on the immune system not only occur in active smokers, but also in those exposed to smoke passively in contaminated environments, and may persist for decades after exposure has ended.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout


References
Kuper, H., Adami, H. O. & Boffetta, P. Tobacco use, cancer causation and public health impact. J. Intern. Med. 251, 455–466 (2002).
Stewart, S. L. et al. Surveillance for cancers associated with tobacco use — United States, 1999–2004. MMWR Surveill. Summ. 57, 1–33 (2008).
US Department of Health and Human Services. The Health Consequences of Involuntary Exposure to Tobacco Smoke: A Report of the Surgeon General. (US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health, 2004).
Jha, P., Ranson, M. K., Nguyen, S. N. & Yach, D. Estimates of global and regional smoking prevalence in 1995, by age and sex. Am. J. Public Health 92, 1002–1006 (2002).
Barnes, P. J. Alveolar macrophages as orchestrators of COPD. COPD 1, 59–70 (2004).
Sopori, M. Effects of cigarette smoke on the immune system. Nature Rev. Immunol. 2, 372–377 (2002).
Smith, C. J. & Hansch, C. The relative toxicity of compounds in mainstream cigarette smoke condensate. Food Chem. Toxicol. 38, 637–646 (2000).
Rahman, I. et al. 4-hydroxy-2-nonenal, a specific lipid peroxidation product, is elevated in lungs of patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 166, 490–495 (2002).
Cahill, K., Stead, L. F. & Lancaster, T. Nicotine receptor partial agonists for smoking cessation. Cochrane Database Syst. Rev. 16, CD006103 (2008).
Holt, P. G. Immune and inflammatory function in cigarette smokers. Thorax 42, 241–219 (1987).
Dye, J. A. & Adler, K. B. Effects of cigarette smoke on epithelial cells of the respiratory tract. Thorax 49, 825–834 (1994).
Jones, J. G. et al. Increased alveolar epithelial permeability in cigarette smokers. Lancet 1, 66–68 (1980).
Burns, A. R., Hosford, S. P., Dunn, L. A., Walker, D. C. & Hogg, J. C. Respiratory epithelial permeability after cigarette smoke exposure in guinea pigs. J. Appl. Physiol. 66, 2109–2116 (1989).
Mio, T. et al. Cigarette smoke induces interleukin-8 release from human bronchial epithelial cells. Am. J. Respir. Crit. Care Med. 155, 1770–1776 (1997).
Laan, M., Bozinovski, S. & Anderson, G. P. Cigarette smoke inhibits lipopolysaccharide-induced production of inflammatory cytokines by suppressing the activation of activator protein-1 in bronchial epithelial cells. J. Immunol. 173, 4164–4170 (2004).
Bauer, C. M. et al. Cigarette smoke suppresses type I interferon-mediated antiviral immunity in lung fibroblast and epithelial cells. J. Interferon Cytokine Res. 28, 167–179 (2008).
Kim, H. et al. Reversible cigarette smoke extract-induced DNA damage in human lung fibroblasts. Am. J. Respir. Cell. Mol. Biol. 31, 483–490 (2004).
Kamp, D. W., Greenberger, M. J., Sbalchierro, J. S., Preusen, S. E. & Weitzman, S. A. Cigarette smoke augments asbestos-induced alveolar epithelial cell injury: role of free radicals. Free Radic. Biol. Med. 25, 728–739 (1998).
de Boer, W. I. et al. Monocyte chemoattractant protein 1, interleukin 8, and chronic airways inflammation in COPD. J. Pathol. 190, 619–626 (2000).
Russell, R. E. et al. Alveolar macrophage-mediated elastolysis: roles of matrix metalloproteinases, cysteine, and serine proteases. Am. J. Physiol. Lung Cell. Mol. Physiol. 283, L867–L873 (2002).
King, T. E. Jr, Savici, D. & Campbell, P. A. Phagocytosis and killing of Listeria monocytogenes by alveolar macrophages: smokers versus nonsmokers. J. Infect. Dis. 158, 1309–1316 (1988).
Berenson, C. S., Garlipp, M. A., Grove, L. J., Maloney, J. & Sethi, S. Impaired phagocytosis of nontypeable Haemophilus influenzae by human alveolar macrophages in chronic obstructive pulmonary disease. J. Infect. Dis. 194, 1375–1384 (2006).
Hodge, S. et al. Smoking alters alveolar macrophage recognition and phagocytic ability: implications in chronic obstructive pulmonary disease. Am. J. Respir. Cell. Mol. Biol. 37, 748–755 (2007).
Chen, H., Cowan, M. J., Hasday, J. D., Vogel, S. N. & Medvedev, A. E. Tobacco smoking inhibits expression of proinflammatory cytokines and activation of IL-1R-associated kinase, p38, and NF-κB in alveolar macrophages stimulated with TLR2 and TLR4 agonists. J. Immunol. 179, 6097–6106 (2007).
Drannik, A. G. et al. Impact of cigarette smoke on clearance and inflammation after Pseudomonas aeruginosa infection. Am. J. Respir. Crit. Care Med. 170, 1164–1171 (2004).
Gaschler, G. J. et al. Cigarette smoke exposure attenuates cytokine production by mouse alveolar macrophages. Am. J. Respir. Cell. Mol. Biol. 38, 218–226 (2008).
Liu, G. et al. High mobility group protein-1 inhibits phagocytosis of apoptotic neutrophils through binding to phosphatidylserine. J. Immunol. 181, 4240–4246 (2008).
Doz, E. et al. Cigarette smoke-induced pulmonary inflammation is TLR4/MyD88 and IL-1R1/MyD88 signaling dependent. J. Immunol. 180, 1169–1178 (2008).
Gaschler, G. J. et al. Bacteria challenge in smoke exposed mice exacerbates inflammation and skews the inflammatory profile. Am. J. Respir. Crit. Care Med. 29 Jan 2009 (doi: 10.1164/rccm.200808-1306OC).
Woodruff, P. A distinctive alveolar macrophage activation state induced by cigarette smoking. Am. J. Respir. Crit. Care Med. 172, 1383–1392 (2005).
Suzuki, M. et al. Down-regulated NF-E2-related factor 2 in pulmonary macrophages of aged smokers and patients with chronic obstructive pulmonary disease. Am. J. Respir. Cell. Mol. Biol. 39, 673–682 (2008).
Taraseviciene-Stewart, L. et al. An animal model of autoimmune emphysema. Am. J. Respir. Crit. Care Med. 171, 734–742 (2005).
Ito, K. & Barnes, P. J. COPD as a disease of accelerated lung aging. Chest 135, 173–180 (2009).
Rangasamy, T. et al. Genetic ablation of Nrf2 enhances susceptibility to cigarette smoke-induced emphysema in mice. J. Clin. Invest. 114, 1248–1259 (2004).
Just, M. et al. Relationships between lung function, smoking and morphology of dermal elastic fibres. Exp. Dermatol. 14, 744–751 (2005).
Postma, D. S. & Boezen, H. M. Rationale for the Dutch hypothesis. Allergy and airway hyperresponsiveness as genetic factors and their interaction with environment in the development of asthma and COPD. Chest 126, 96S–104S (2004).
Pelkonen, M. et al. Delaying decline in pulmonary function with physical activity: a 25-year follow-up. Am. J. Respir. Crit. Care Med. 168, 494–499 (2003).
Becker, C. E. & O'Neill, L. A. Inflammasomes in inflammatory disorders: the role of TLRs and their interactions with NLRs. Semin. Immunopathol. 29, 239–248 (2007).
Hamerman, J. A., Ogasawara, K. & Lanier, L. L. NK cells in innate immunity. Curr. Opin. Immunol. 17, 29–35 (2005).
Swann, J. B., Coquet, J. M., Smyth, M. J. & Godfrey, D. I. CD1-restricted T cells and tumor immunity. Curr. Top. Microbiol. Immunol. 314, 293–323 (2007).
Tollerud, D. J. et al. Association of cigarette smoking with decreased numbers of circulating natural killer cells. Am. Rev. Respir. Dis. 139, 194–198 (1989).
Mian, M. F., Lauzon, N. M., Stämpfli, M. R., Mossman, K. L. & Ashkar, A. A. Impairment of human NK cell cytotoxic activity and cytokine release by cigarette smoke. J. Leukoc. Biol. 83, 774–784 (2008).
Lu, L. et al. Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature 442, 997–1002 (2006).
Ng, A. K. & Travis, L. B. Subsequent malignant neoplasms in cancer survivors. Cancer J. 14, 429–434 (2008).
Kim, E. et al. Persistent activation of an innate immune response translates respiratory viral infection into chronic lung disease. Nature Med. 14, 633–640 (2008).
Vijayanand, P. et al. Invariant natural killer T cells in asthma and chronic obstructive pulmonary disease. N. Engl. J. Med. 356, 1410–1422 (2007).
Mellman, I. & Steinman, R. M. Dendritic cells: specialized and regulated antigen processing machines. Cell 106, 255–258 (2001).
McComb, J. G. et al. CX3CL1 up-regulation is associated with recruitment of CX3CR1+ mononuclear phagocytes and T lymphocytes in the lungs during cigarette smoke-induced emphysema. Am. J. Pathol. 173, 949–961 (2008).
Tsoumakidou, M., Demedts, I., Brusselle, G. & Jeffery, P. K. Dendritic cells in chronic obstructive pulmonary disease: new players in an old game. Am. J. Respir. Crit. Care Med. 177, 1180–1186 (2008).
Jahnsen, F. L. et al. Accelerated antigen sampling and transport by airway mucosal dendritic cells following inhalation of a bacterial stimulus. J. Immunol. 177, 5861–5867 (2006).
Brokaw, J. J. et al. Glucocorticoid-induced apoptosis of dendritic cells in the rat tracheal mucosa. Am. J. Respir. Cell. Mol. Biol. 19, 598–605 (1998).
Robbins, C. S. et al. Cigarette smoke decreases pulmonary dendritic cells and impacts antiviral immune responsiveness. Am. J. Respir. Cell. Mol. Biol. 30, 202–211 (2004).
Robbins, C. S., Franco, F., Mouded, M., Cernadas, M. & Shapiro, S. D. Cigarette smoke exposure impairs dendritic cell maturation and T cell proliferation in thoracic lymph nodes of mice. J. Immunol. 180, 6623–6628 (2008).
Kroening, P. R. et al. Cigarette smoke-induced oxidative stress suppresses generation of dendritic cell IL-12 and IL-23 through ERK-dependent pathways. J. Immunol. 181, 1536–1547 (2008).
Wang, L., Joad, J. P., Zhong, C. & Pinkerton, K. E. Effects of environmental tobacco smoke exposure on pulmonary immune response in infant monkeys. J. Allergy Clin. Immunol. 122, 400–406 (2008).
Trimble, N. J., Botelho, F. M., Bauer, C. M., Fattouh, R. & Stämpfli, M. R. Adjuvant and anti-inflammatory properties of cigarette smoke in murine allergic airway inflammation. Am. J. Respir. Cell. Mol. Biol. 40, 38–46 (2008).
Hogg, J. C. et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N. Engl. J. Med. 350, 2645–2653 (2004).
Van Hove, C. L., Moerloose, K., Maes, T., Joos, G. & Tournoy, K. G. Cigarette smoke enhances Th-2 driven airway inflammation and delays inhalational tolerance. Respir. Res. 9, 42 (2008).
Lee, S. et al. Antielastin autoimmunity in tobacco smoking-induced emphysema. Nature Med. 13, 567–569 (2007).
Feghali-Bostwick, C. A. et al. Autoantibodies in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 177, 156–163 (2008).
Grumelli, S. et al. An immune basis for lung parenchymal destruction in chronic obstructive pulmonary disease and emphysema. Plos Med. 1, e8 (2004).
Hautamaki, R. D., Kobayashi, D. K., Senior, R. M. & Shapiro, S. D. Requirement for macrophage elastase for cigarette smoke-induced emphysema in mice. Science 277, 2002–2004 (1997).
Maeno, T. et al. CD8+ T cells are required for inflammation and destruction in cigarette smoke-induced emphysema in mice. J. Immunol. 178, 8090–8096 (2007).
Motz, G. T. et al. Persistence of lung CD8 T cell oligoclonal expansions upon smoking cessation in a mouse model of cigarette smoke-induced emphysema. J. Immunol. 181, 8036–8043 (2008).
Gualano, R. et al. Cigarette smoke worsens lung inflammation and impairs resolution of influenza infection in mice. Respir. Res. 9, 53 (2008).
Korn, S. et al. Characterization of the interstitial lung and peripheral blood T cell receptor repertoire in cigarette smokers. Am. J. Respir. Cell. Mol. Biol. 32, 142–148 (2005).
Sullivan, A. K. et al. Oligoclonal CD4+ T cells in the lungs of patients with severe emphysema. Am. J. Respir. Crit. Care Med. 172, 590–596 (2005).
Kang, M. J. et al. Cigarette smoke selectively enhances viral PAMP- and virus-induced pulmonary innate immune and remodeling responses in mice. J. Clin. Invest. 118, 2771–2784 (2008).
Karrasch, S., Holz, O. & Jorres, R. A. Aging and induced senescence as factors in the pathogenesis of lung emphysema. Respir. Med. 102, 1215–1230 (2008).
Kalra, R., Singh, S. P., Savage, S. M., Finch, G. L. & Sopori, M. L. Effects of cigarette smoke on immune response: chronic exposure to cigarette smoke impairs antigen-mediated signaling in T cells and depletes IP3-sensitive Ca2+ stores. J. Pharmacol. Exp. Ther. 293, 166–171 (2000).
Zavitz, C. C. et al. Impact of cigarette smoke on T and B cell responsiveness. Cell. Immunol. 253, 38–44 (2008).
Harrison, O. J. et al. Airway infiltration of CD4+ CCR6+ Th17 type cells associated with chronic cigarette smoke induced airspace enlargement. Immunol. Lett. 121, 13–21 (2008).
Barcelo, B. et al. Phenotypic characterisation of T-lymphocytes in COPD: abnormal CD4+CD25+ regulatory T-lymphocyte response to tobacco smoking. Eur. Respir. J. 31, 555–562 (2008).
Sethi, S. & Murphy, T. F. Bacterial infection in chronic obstructive pulmonary disease in 2000: a state-of-the-art review. Clin. Microbiol Rev. 14, 336–363 (2001).
Wedzicha, J. Role of viruses in exacerbations of chronic obstructive pulmonary disease. Proc. Am. Thorac. Soc. 1, 115–120 (2004).
Papi, A. et al. Infections and airway inflammation in chronic obstructive pulmonary disease severe exacerbations. Am. J. Respir. Crit. Care Med. 173, 1114–1121 (2006).
Patel, I. S. et al. Relationship between bacterial colonisation and the frequency, character, and severity of COPD exacerbations. Thorax 57, 759–764 (2002).
Robbins, C. S. et al. Cigarette smoke impacts immune inflammatory responses to influenza in mice. Am. J. Respir. Crit. Care Med. 174, 1342–1351 (2006).
Kerstjens, H. A., Overbeek, S. E., Schouten, J. P., Brand, P. L. & Postma, D. S. Airways hyperresponsiveness, bronchodilator response, allergy and smoking predict improvement in FEV1 during long-term inhaled corticosteroid treatment. Dutch CNSLD study group. Eur. Respir. J. 6, 868–876 (1993).
Chalmers, G. W. et al. Influence of cigarette smoking on inhaled corticosteroid treatment in mild asthma. Thorax 57, 226–230 (2002).
Chaudhuri, R. et al. Cigarette smoking impairs the therapeutic response to oral corticosteroids in chronic asthma. Am. J. Respir. Crit. Care Med. 168, 1308–1311 (2003).
Chalmers, G. W. et al. Smoking and airway inflammation in patients with mild asthma. Chest 120, 1917–1922 (2001).
Melgert, B. N. et al. Short-term smoke exposure attenuates ovalbumin-induced airway inflammation in allergic mice. Am. J. Respir. Cell. Mol. Biol. 30, 880–885 (2004).
Robbins, C. S. et al. Mainstream cigarette smoke exposure attenuates airway immune inflammatory responses to surrogate and common environmental allergens in mice, despite evidence of increased systemic sensitization. J. Immunol. 175, 2834–2842 (2005).
Thatcher, T. H., Benson, R. P., Phipps, R. P. & Sime, P. J. High dose but not low dose mainstream cigarette smoke suppresses allergic airway inflammation by inhibiting T cell function. Am. J. Physiol. Lung Cell. Mol. Physiol. 295, L412–L421 (2008).
Moerloose, K. B., Pauwels, R. A. & Joos, G. F. Short-term cigarette smoke exposure enhances allergic airway inflammation in mice. Am. J. Respir. Crit. Care Med. 172, 168–172 (2005).
Culpitt, S. V. et al. Impaired inhibition by dexamethasone of cytokine release by alveolar macrophages from patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 167, 24–31 (2003).
Bouzigon, E. et al. Effect of 17q21 variants and smoking exposure in early-onset asthma. N. Engl. J. Med. 359, 1985–1994 (2008).
Noakes, P. S., Holt, P. G. & Prescott, S. L. Maternal smoking in pregnancy alters neonatal cytokine responses. Allergy 58, 1053–1058 (2003).
Ng, S. P., Silverstone, A. E., Lai, Z. W. & Zelikoff, J. T. Effects of prenatal exposure to cigarette smoke on offspring tumor susceptibility and associated immune mechanisms. Toxicol. Sci. 89, 135–144 (2006).
Alberg, A. J., Brock, M. V. & Samet, J. M. Epidemiology of lung cancer: looking to the future. J. Clin. Oncol. 23, 3175–3185 (2005).
Ji, H. et al. K-ras activation generates an inflammatory response in lung tumors. Oncogene 25, 2105–2112 (2006).
Anderson, G. P. & Bozinovski, S. Acquired somatic mutations in the molecular pathogenesis of COPD. Trends Pharmacol. Sci. 24, 71–76 (2003).
Nagrath, S. et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450, 1235–1239 (2007).
Maheswaran, S. et al. Detection of mutations in EGFR in circulating lung-cancer cells. N. Engl. J. Med. 359, 366–377 (2008).
Chalmer, J., Holt, P. G. & Keast, D. Cell-mediated immune responses to transplanted tumors in mice chronically exposed to cigarette smoke. J. Natl Cancer Inst. 55, 1129–1134 (1975).
Lu, L. M. et al. Cigarette smoke impairs NK cell-dependent tumor immune surveillance. J. Immunol. 178, 936–943 (2007).
Anderson, G. P. Endotyping asthma: new insights into key pathogenic mechanisms in a complex, heterogeneous disease. Lancet 372, 1107–1119 (2008).
Rabe, K. F. et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am. J. Respir. Crit. Care Med. 176, 532–555 (2007).
Mishra, N. C. et al. Nicotine primarily suppresses lung Th2 but not goblet cell and muscle cell responses to allergens. J. Immunol. 180, 7655–7663 (2008).
de Jonge, W. J. et al. Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2–STAT3 signaling pathway. Nature Immunol. 6, 844–851 (2005).
Hecht, S. S. Cigarette smoking and lung cancer: chemical mechanisms and approaches to prevention. Lancet Oncol. 3, 461–469 (2002).
Kim, J. H. et al. Aryl hydrocarbon receptor gene polymorphisms affect lung cancer risk. Lung Cancer 56, 9–15 (2007).
Harrigan, J. A. et al. DNA adduct formation in precision-cut rat liver and lung slices exposed to benzo[a]pyrene. Toxicol. Sci. 77, 307–314 (2004).
Pae, H. O., Lee, Y. C. & Chung, H. T. Heme oxygenase-1 and carbon monoxide: emerging therapeutic targets in inflammation and allergy. Recent Pat. Inflamm. Allergy Drug. Discov. 2, 159–165 (2008).
Ryter, S. W., Otterbein, L. E., Morse, D. & Choi, A. M. Heme oxygenase/carbon monoxide signaling pathways: regulation and functional significance. Mol. Cell. Biochem. 234–235, 249–263 (2002).
Anderson, G. P. The COPD CO-factor. Eur. Respir. J. 30, 1032–1034 (2007).
Yao, K. et al. Administration of intracoronary bone marrow mononuclear cells on chronic myocardial infarction improves diastolic function. Heart 94, 1147–1153 (2008).
Barreiro, E., Gea, J., Matar, G. & Hussain, S. N. Expression and carbonylation of creatine kinase in the quadriceps femoris muscles of patients with chronic obstructive pulmonary disease. Am. J. Respir. Cell. Mol. Biol. 33, 636–642 (2005).
Bowler, R. P., Barnes, P. J. & Crapo, J. D. The role of oxidative stress in chronic obstructive pulmonary disease. COPD 1, 255–277 (2004).
Wang, H. et al. Genetic susceptibility of lung cancer associated with common variants in the 3′ untranslated regions of the adenosine triphosphate-binding cassette B1 (ABCB1) and ABCC1 candidate transporter genes for carcinogen export. Cancer 115, 595–607 (2009).
Schuller, H. M. Nitrosamines as nicotinic receptor ligands. Life Sci. 80, 2274–2280 (2007).
Pfeifer, G. P. et al. Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated cancers. Oncogene 21, 7435–7451 (2002).
Nair, U., Bartsch, H. & Nair, J. Lipid peroxidation-induced DNA damage in cancer-prone inflammatory diseases: a review of published adduct types and levels in humans. Free Radic. Biol. Med. 43, 1109–1120 (2007).
Acknowledgements
We thank M. Peters for expert advice on the effect of smoke on human clinical infections. We also thank our basic science collaborators M. Hibbs, M. Ernst, S. Bozinovski and R. Gualano, as well as the graduate students G. Gaschler, C. Bauer and C. Zavitz.
Author information
Authors and Affiliations
Corresponding author
Related links
Rights and permissions
About this article
Cite this article
Stämpfli, M., Anderson, G. How cigarette smoke skews immune responses to promote infection, lung disease and cancer. Nat Rev Immunol 9, 377–384 (2009). https://doi.org/10.1038/nri2530
Issue Date:
DOI: https://doi.org/10.1038/nri2530
This article is cited by
-
Household air pollution and risk of pulmonary tuberculosis in HIV-Infected adults
Environmental Health (2024)
-
The association of psychological distress and economic and health worries with tobacco smoking behavior during the COVID-19 pandemic: a two-year longitudinal cohort study
BMC Public Health (2024)
-
The Relation Between Cigarette Smoking and Development of Sepsis: A 10-Year Follow-Up Study of Four Million Adults from the National Health Screening Program
Journal of Epidemiology and Global Health (2024)
-
Do alternative tobacco products induce less adverse respiratory risk than cigarettes?
Respiratory Research (2023)
-
The Dunning–Kruger effect: subjective health perceptions on smoking behavior among older Chinese adults
BMC Public Health (2023)