Abstract
The year 2009 marked the fiftieth anniversary of the first successful allogeneic haematopoietic stem cell transplant (HSCT). The field of HSCT has pioneered some of the most exciting areas of research today. HSCT was the original stem cell therapy, the first cancer immune therapy and the earliest example of individualized cancer therapy. In this Timeline article we review the history of the development of HSCT and major advances made in the past 50 years. We highlight accomplishments made by researchers who continue to strive to improve outcomes for patients and increase the availability of this potentially life-saving therapy for patients with otherwise incurable malignancies.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout


Change history
02 March 2010
Figure 1 has been corrected in the HTML and PDF versions.
References
Kolb, H. J. Graft-versus-leukemia effects of transplantation and donor lymphocytes. Blood 112, 4371–4383 (2008).
Appelbaum, F. R. Hematopoietic-cell transplantation at 50. N. Engl. J. Med. 357, 1472–1475 (2007).
Thomas, E. D., Lochte, H. L. Jr, Lu, W. C. & Ferrebee, J. W. Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. N. Engl. J. Med. 257, 491–496 (1957).
Thomas, E. D., Lochte, H. L. Jr, Cannon, J. H., Sahler, O. D. & Ferrebee, J. W. Supralethal whole body irradiation and isologous marrow transplantation in man. J. Clin. Invest. 38, 1709–1716 (1959).
Lorenz, E., Uphoff, D., Reid, T. R. & Shelton, E. Modification of irradiation injury in mice and guinea pigs by bone marrow injections. J. Natl Cancer Inst. 12, 197–201 (1951).
Berenson, R. J. et al. Antigen CD34+ marrow cells engraft lethally irradiated baboons. J. Clin. Invest. 81, 951–955 (1988).
Molineux, G., Pojda, Z., Hampson, I. N., Lord, B. I. & Dexter, T. M. Transplantation potential of peripheral blood stem cells induced by granulocyte colony-stimulating factor. Blood 76, 2153–2158 (1990).
Bensinger, W. I. et al. Transplantation of bone marrow as compared with peripheral-blood cells from HLA-identical relatives in patients with hematologic cancers. N. Engl. J. Med. 344, 175–181 (2001).
Couban, S. et al. A randomized multicenter comparison of bone marrow and peripheral blood in recipients of matched sibling allogeneic transplants for myeloid malignancies. Blood 100, 1525–1531 (2002).
Cutler, C. et al. Acute and chronic graft-versus-host disease after allogeneic peripheral-blood stem-cell and bone marrow transplantation: a meta-analysis. J. Clin. Oncol. 19, 3685–3691 (2001).
Pasquini, M., Wang, Z. & Schneider, L. . CIBMTR summary slides. CIBMTR Newsletter 13, 2–9 (2007).
Eapen, M. et al. Higher mortality after allogeneic peripheral-blood transplantation compared with bone marrow in children and adolescents: the Histocompatibility and Alternate Stem Cell Source Working Committee of the International Bone Marrow Transplant Registry. J. Clin. Oncol. 22, 4872–4880 (2004).
Wright, D. E., Bowman, E. P., Wagers, A. J., Butcher, E. C. & Weissman, I. L. Hematopoietic stem cells are uniquely selective in their migratory response to chemokines. J. Exp. Med. 195, 1145–1154 (2002).
Dipersio, J. F. et al. Plerixafor and G-CSF versus placebo and G-CSF to mobilize hematopoietic stem cells for autologous stem cell transplantation in patients with multiple myeloma. Blood 113, 5720–5726 (2009).
Burger, J. A. & Peled, A. CXCR4 antagonists: targeting the microenvironment in leukemia and other cancers. Leukemia 23, 43–52 (2009).
Knudtzon, S. In vitro growth of granulocytic colonies from circulating cells in human cord blood. Blood 43, 357–361 (1974).
Gluckman, E. et al. Hematopoietic reconstitution in a patient with Fanconi's anemia by means of umbilical-cord blood from an HLA-identical sibling. N. Engl. J. Med. 321, 1174–1178 (1989).
Han, P., Hodge, G., Story, C. & Xu, X. Phenotypic analysis of functional T-lymphocyte subtypes and natural killer cells in human cord blood: relevance to umbilical cord blood transplantation. Br. J. Haematol. 89, 733–740 (1995).
Godfrey, W. R. et al. Cord blood CD4+CD25+-derived T regulatory cell lines express FoxP3 protein and manifest potent suppressor function. Blood 105, 750–758 (2005).
Kollman, C. et al. Assessment of optimal size and composition of the U. S. National Registry of hematopoietic stem cell donors. Transplantation 78, 89–95 (2004).
Barker, J. N., Rocha, V. & Scaradavou, A. Optimizing unrelated donor cord blood transplantation. Biol. Blood Marrow Transplant. 15, 154–161 (2008).
Barker, J. N., Weisdorf, D. J. & Wagner, J. E. Creation of a double chimera after the transplantation of umbilical-cord blood from two partially matched unrelated donors. N. Engl. J. Med. 344, 1870–1871 (2001).
Barker, J. N. et al. Transplantation of 2 partially HLA-matched umbilical cord blood units to enhance engraftment in adults with hematologic malignancy. Blood 105, 1343–1347 (2005).
Barker J. N. et al. Rapid and complete donor chimerism in adult recipients of unrelated donor umbilical cord blood transplantation after reduced-intensity conditioning. Blood 102, 1915–1919 (2003).
Brunstein, C. G. et al. Umbilical cord blood transplantation after nonmyeloablative conditioning: impact on transplantation outcomes in 110 adults with hematologic disease. Blood 110, 3064–3070 (2007).
Dellatore, S. M., Garcia, A. S. & Miller, W. M. Mimicking stem cell niches to increase stem cell expansion. Curr. Opin. Biotechnol. 19, 534–540 (2008).
Delaney, C., Varnum-Finney, B., Aoyama, K., Brashem-Stein, C. & Bernstein, I. D. Dose-dependent effects of the Notch ligand Delta1 on ex vivo differentiation and in vivo marrow repopulating ability of cord blood cells. Blood 106, 2693–2699 (2005).
Weisel, K. C., Moore, M. A., Kanz, L. & Mohle, R. Extended in vitro expansion of adult, mobilized CD34+ cells without significant cell senescence using a stromal cell coculture system with single cytokine support. Stem Cells Dev. 18, 229–234 (2009).
Andrade-Zaldivar, H., Santos, L. & De Leon Rodriguez, A. Expansion of human hematopoietic stem cells for transplantation: trends and perspectives. Cytotechnology 56, 151–160 (2008).
Hai-Jiang, W., Xin-Na, D. & Hui-Jun, D. Expansion of hematopoietic stem/progenitor cells. Am. J. Hematol. 83, 922–926 (2008).
Ali, N. et al. Forward RNAi screens in primary human hematopoietic stem/progenitor cells. Blood 113, 3690–3695 (2009).
Uphoff, D. E. Genetic factors influencing irradiation protection by bone marrow. I. The F1 hybrid effect. J. Natl Cancer. Inst. 19, 123–130 (1957).
Barnes, D. W., Corp, M. J., Loutit, J. F. & Neal, F. E. Treatment of murine leukaemia with X rays and homologous bone marrow; preliminary communication. Br. Med. J. 2, 626–627 (1956).
Korngold, R. & Sprent, J. Lethal graft-versus-host disease after bone marrow transplantation across minor histocompatibility barriers in mice. Prevention by removing mature T cells from marrow. J. Exp. Med. 148, 1687–1698 (1978).
Ruggeri, L. et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295, 2097–2100 (2002).
Ferrara, J. L., Levine, J. E., Reddy, P. & Holler, E. Graft-versus-host disease. Lancet 373, 1550–1561 (2009).
Weiden, P. L. et al. Antileukemic effect of graft-versus-host disease in human recipients of allogeneic-marrow grafts. N. Engl. J. Med. 300, 1068–1073 (1979).
Passweg, J. R. et al. Graft-versus-leukemia effects in T lineage and B lineage acute lymphoblastic leukemia. Bone Marrow Transplant 21, 153–158 (1998).
Horowitz, M. M. et al. Graft-versus-leukemia reactions after bone marrow transplantation. Blood 75, 555–562 (1990).
Marmont, A. M. et al. T-cell depletion of HLA-identical transplants in leukemia. Blood 78, 2120–2130 (1991).
Gale, R. P. et al. Identical-twin bone marrow transplants for leukemia. Ann. Intern. Med. 120, 646–652 (1994).
Kolb, H. J. et al. Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. Blood 86, 2041–2050 (1995).
Collins, R. H. Jr et al. Donor leukocyte infusions in 140 patients with relapsed malignancy after allogeneic bone marrow transplantation. J. Clin. Oncol. 15, 433–444 (1997).
Sharabi, Y. & Sachs, D. H. Mixed chimerism and permanent specific transplantation tolerance induced by a nonlethal preparative regimen. J. Exp. Med. 169, 493–502 (1989).
Storb, R. et al. Stable mixed hematopoietic chimerism in DLA-identical littermate dogs given sublethal total body irradiation before and pharmacological immunosuppression after marrow transplantation. Blood 89, 3048–3054 (1997).
Giralt, S. et al. Engraftment of allogeneic hematopoietic progenitor cells with purine analog-containing chemotherapy: harnessing graft-versus-leukemia without myeloablative therapy. Blood 89, 4531–4536 (1997).
McSweeney, P. A. et al. Hematopoietic cell transplantation in older patients with hematologic malignancies: replacing high-dose cytotoxic therapy with graft-versus-tumor effects. Blood 97, 3390–3400 (2001).
Baron, F. et al. Graft-versus-tumor effects after allogeneic hematopoietic cell transplantation with nonmyeloablative conditioning. J. Clin. Oncol. 23, 1993–2003 (2005).
Sandmaier, B. M., Mackinnon, S. & Childs, R. W. Reduced intensity conditioning for allogeneic hematopoietic cell transplantation: current perspectives. Biol. Blood Marrow Transplant 13, 87–97 (2007).
Karanes, C. et al. Twenty years of unrelated donor hematopoietic cell transplantation for adult recipients facilitated by the National Marrow Donor Program. Biol. Blood Marrow Transplant 14, 8–15 (2008).
Aversa, F. et al. Hematopoietic stem cell transplantation from alternative donors for high-risk acute leukemia: the haploidentical option. Curr. Stem Cell Res. Ther. 2, 105–112 (2007).
Symons, H. J. & Fuchs, E. J. Hematopoietic SCT from partially HLA-mismatched (HLA-haploidentical) related donors. Bone Marrow Transplant 42, 365–377 (2008).
Fowler, D. H. Shared biology of GVHD and GVT effects: potential methods of separation. Crit. Rev. Oncol. Hematol. 57, 225–244 (2006).
Le, N. T. & Chao, N. Regulating regulatory T cells. Bone Marrow Transplant 39, 1–9 (2007).
Rezvani, A. R. & Storb, R. F. Separation of graft-vs.-tumor effects from graft-vs.-host disease in allogeneic hematopoietic cell transplantation. J. Autoimmun. 30, 172–179 (2008).
Welniak, L. A., Blazar, B. R. & Murphy, W. J. Immunobiology of allogeneic hematopoietic stem cell transplantation. Annu. Rev. Immunol. 25, 139–170 (2007).
Cesco-Gaspere, M., Morris, E. & Stauss, H. J. Immunomodulation in the treatment of haematological malignancies. Clin. Exp. Med. 9, 81–92 (2009).
Morris, E. et al. Generation of tumor-specific T-cell therapies. Blood Rev. 20, 61–69 (2006).
Pillai, A. B., George, T. I., Dutt, S. & Strober, S. Host natural killer T cells induce an interleukin-4-dependent expansion of donor CD4+CD25+Foxp3+ T regulatory cells that protects against graft-versus-host disease. Blood 113, 4458–4467 (2009).
Boyiadzis, M., Foon, K. A. & Herberman, R. B. NK cells in cancer immunotherapy: three decades of discovery. Discov. Med. 6, 243–248 (2006).
Ruggeri, L. et al. Natural killer cell alloreactivity and haplo-identical hematopoietic transplantation. Cytotherapy 8, 554–558 (2006).
Shi, J. et al. Infusion of haplo-identical killer immunoglobulin-like receptor ligand mismatched NK cells for relapsed myeloma in the setting of autologous stem cell transplantation. Br. J. Haematol. 143, 641–653 (2008).
Miller, J. S. et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 105, 3051–3057 (2005).
Ofran, Y. & Ritz, J. Targets of tumor immunity after allogeneic hematopoietic stem cell transplantation. Clin. Cancer Res. 14, 4997–4999 (2008).
Rezvani, K. & Barrett, A. J. Characterizing and optimizing immune responses to leukaemia antigens after allogeneic stem cell transplantation. Best Pract. Res. Clin. Haematol. 21, 437–453 (2008).
Greiner, J., Bullinger, L., Guinn, B. A., Dohner, H. & Schmitt, M. Leukemia-associated antigens are critical for the proliferation of acute myeloid leukemia cells. Clin. Cancer Res. 14, 7161–7166 (2008).
Berger, C., Turtle, C. J., Jensen, M. C. & Riddell, S. R. Adoptive transfer of virus-specific and tumor-specific T cell immunity. Curr. Opin. Immunol. 21, 224–232 (2009).
Bendle, G. M., Haanen, J. B. & Schumacher, T. N. Preclinical development of T cell receptor gene therapy. Curr. Opin. Immunol. 21, 209–214 (2009).
Dossett, M. L, et al. Adoptive immunotherapy of disseminated leukemia with TCR-transduced, CD8+ T cells expressing a known endogenous TCR. Mol. Ther. 17, 742–749 (2009).
Till, B. G. et al. Adoptive immunotherapy for indolent non-Hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T cells. Blood 112, 2261–2271 (2008).
Johnson, L. A. et al. Gene therapy with human and mouse T cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood 114, 535–546 (2009).
Zakrzewski, J. L. et al. Tumor immunotherapy across MHC barriers using allogeneic T-cell precursors. Nature Biotechnol. 26, 453–461 (2008).
Sadelain, M., Brentjens, R. & Riviere, I. The promise and potential pitfalls of chimeric antigen receptors. Curr. Opin. Immunol. 21, 215–223 (2009).
Paulos, C. M. et al. Adoptive immunotherapy: good habits instilled at youth have long-term benefits. Immunol. Res. 42, 182–196 (2008).
Rapoport, A. P. et al. Restoration of immunity in lymphopenic individuals with cancer by vaccination and adoptive T-cell transfer. Nature Med. 11, 1230–1237 (2005).
Rapoport, A. P. et al. Rapid immune recovery and graft-versus-host disease-like engraftment syndrome following adoptive transfer of costimulated autologous T cells. Clin. Cancer Res. 15, 4499–4507 (2009).
Dudley, M. E. et al. Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J. Clin. Oncol. (2008).
Muranski, P. et al. Increased intensity lymphodepletion and adoptive immunotherapy — how far can we go? Nature Clin. Pract. Oncol. 3, 668–681 (2006).
Hirschhorn-Cymerman, D. et al. OX40 engagement and chemotherapy combination provides potent antitumor immunity with concomitant regulatory T cell apoptosis. J. Exp. Med. 206, 1103–1116 (2009).
Jenq, R. R. et al. Keratinocyte growth factor enhances DNA plasmid tumor vaccine after murine allogeneic bone marrow transplantation. Blood 113, 1574–1580 (2009).
Perales, M. A. et al. DNA immunization against tissue-restricted antigens enhances tumor immunity after allogeneic hemopoietic stem cell transplantation. J. Immunol. 177, 4159–4167 (2006).
Krupica, T. Jr, Fry, T. J. & Mackall, C. L. Autoimmunity during lymphopenia: a two-hit model. Clin. Immunol. 120, 121–128 (2006).
Surh, C. D. & Sprent, J. Homeostasis of naive and memory T cells. Immunity 29, 848–862 (2008).
Kirberg, J., Berns, A. & von Boehmer, H. Peripheral T cell survival requires continual ligation of the T cell receptor to major histocompatibility complex-encoded molecules. J. Exp. Med. 186, 1269–1275 (1997).
Ku, C. C., Murakami, M., Sakamoto, A., Kappler, J. & Marrack, P. Control of homeostasis of CD8+ memory T cells by opposing cytokines. Science 288, 675–678 (2000).
Schluns, K. S., Kieper, W. C., Jameson, S. C. & Lefrancois, L. Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo. Nature Immunol. 1, 426–432 (2000).
Sakaguchi, S., Fukuma, K., Kuribayashi, K. & Masuda, T. Organ-specific autoimmune diseases induced in mice by elimination of T cell subset. I. Evidence for the active participation of T cells in natural self-tolerance; deficit of a T cell subset as a possible cause of autoimmune disease. J. Exp. Med. 161, 72–87 (1985).
Eyrich, M. et al. Sequential expression of adhesion and costimulatory molecules in graft-versus-host disease target organs after murine bone marrow transplantation across minor histocompatibility antigen barriers. Biol. Blood Marrow Transplant 11, 371–382 (2005).
Zhang, Y., Louboutin, J. P., Zhu, J., Rivera, A. J. & Emerson, S. G. Preterminal host dendritic cells in irradiated mice prime CD8+ T cell-mediated acute graft-versus-host disease. J. Clin. Invest. 109, 1335–1344 (2002).
Bach, F. H. Genetics of transplantation: the major histocompatibility complex. Annu. Rev. Genet. 10, 319–339 (1976).
Cosimi, A. B. Nobel prizes in medicine in the field of transplantation. Transplantation 82, 1558–1562 (2006).
McCullough, J., Perkins, H. A. & Hansen, J. The National Marrow Donor Program with emphasis on the early years. Transfusion 46, 1248–1255 (2006).
Petersdorf, E. W. et al. Major-histocompatibility-complex class I alleles and antigens in hematopoietic-cell transplantation. N. Engl. J. Med. 345, 1794–1800 (2001).
Morishima, Y. et al. The clinical significance of human leukocyte antigen (HLA) allele compatibility in patients receiving a marrow transplant from serologically HLA-A, HLA-B, and HLA-DR matched unrelated donors. Blood 99, 4200–4206 (2002).
Bray, R. A. et al. National marrow donor program HLA matching guidelines for unrelated adult donor hematopoietic cell transplants. Biol. Blood Marrow Transplant 14, 45–53 (2008).
Flomenberg, N. et al. Impact of HLA class I and class II high-resolution matching on outcomes of unrelated donor bone marrow transplantation: HLA-C mismatching is associated with a strong adverse effect on transplantation outcome. Blood 104, 1923–1930 (2004).
Yu, J. et al. Breaking tolerance to self, circulating natural killer cells expressing inhibitory KIR for non-self HLA exhibit effector function after T cell-depleted allogeneic hematopoietic cell transplantation. Blood 113, 3875–3884 (2009).
Grzywacz, B., Miller, J. S. & Verneris, M. R. Use of natural killer cells as immunotherapy for leukaemia. Best Pract. Res. Clin. Haematol. 21, 467–483 (2008).
Velardi, A. Role of KIRs and KIR ligands in hematopoietic transplantation. Curr. Opin. Immunol. 20, 581–587 (2008).
Parham, P. The genetic and evolutionary balances in human NK cell receptor diversity. Semin. Immunol. 20, 311–316 (2008).
Bochud, P. Y. et al. Toll-like receptor 4 polymorphisms and aspergillosis in stem-cell transplantation. N. Engl. J. Med. 359, 1766–1777 (2008).
Viel, D. O. et al. IL2 and TNFA gene polymorphisms and the risk of graft-versus-host disease after allogeneic haematopoietic stem cell transplantation. Scand. J. Immunol. 66, 703–710 (2007).
Holler, E. et al. Both donor and recipient NOD2/CARD15 mutations associate with transplant-related mortality and GvHD following allogeneic stem cell transplantation. Blood 104, 889–894 (2004).
van der Velden, W. J. et al. NOD2 polymorphisms predict severe acute graft-versus-host and treatment-related mortality in T-cell-depleted haematopoietic stem cell transplantation. Bone Marrow Transplant. 44, 243–248 (2009).
Shimada, M. et al. Association of autoimmune disease-related gene polymorphisms with chronic graft-versus-host disease. Br. J. Haematol. 139, 458–463 (2007).
Akatsuka, Y., Morishima, Y., Kuzushima, K., Kodera, Y. & Takahashi, T. Minor histocompatibility antigens as targets for immunotherapy using allogeneic immune reactions. Cancer Sci. 98, 1139–1146 (2007).
Goekkurt, E. et al. Pharmacogenetic analysis of liver toxicity after busulfan/cyclophosphamide-based allogeneic hematopoietic stem cell transplantation. Anticancer Res. 27, 4377–4380 (2007).
Dickinson, A. M., Harrold, J. L. & Cullup, H. Haematopoietic stem cell transplantation: can our genes predict clinical outcome? Expert Rev. Mol. Med. 9, 1–19 (2007).
Dutta, P. & Burlingham, W. J. Tolerance to noninherited maternal antigens in mice and humans. Curr. Opin. Organ Transplant. 14, 439–447 (2009).
van Rood, J. J. et al. Reexposure of cord blood to noninherited maternal HLA antigens improves transplant outcome in hematological malignancies. Proc. Natl Acad. Sci. USA 106, 19952–19957 (2009).
Li, M., Sun, K., Welniak, L. A. & Murphy, W. J. Immunomodulation and pharmacological strategies in the treatment of graft-versus-host disease. Expert Opin. Pharmacother. 9, 2305–2316 (2008).
Ram, R. et al. Prophylaxis regimens for GVHD: systematic review and meta-analysis. Bone Marrow Transplant. 43, 643–653 (2009).
Cutler, C. & Antin, J. H. Novel drugs for the prevention and treatment of acute GVHD. Curr. Pharm. Des. 14, 1962–1973 (2008).
Pavletic, S. & Vogelsand, G. B. Treatment of high-risk chronic GVHD. Biol. Blood Marrow Transplant. 14, 1436–1437 (2008).
Hippen, K. L. et al. Umbilical cord blood regulatory T-cell expansion and functional effects of tumor necrosis factor receptor family members OX40 and 4–1BB expressed on artificial antigen-presenting cells. Blood 112, 2847–2857 (2008).
Nguyen, V. H., Zeiser, R. & Negrin, R. S. Role of naturally arising regulatory T cells in hematopoietic cell transplantation. Biol. Blood Marrow Transplant. 12, 995–1009 (2006).
Boeckh, M. & Nichols, W. G. The impact of cytomegalovirus serostatus of donor and recipient before hematopoietic stem cell transplantation in the era of antiviral prophylaxis and preemptive therapy. Blood 103, 2003–2008 (2004).
Boeckh, M. & Ljungman, P. How we treat cytomegalovirus in hematopoietic cell transplant recipients. Blood 113, 5711–5719 (2009).
Ljungman, P. CMV infections after hematopoietic stem cell transplantation. Bone Marrow Transplant. 42, S70–S72 (2008).
Goldberg, G. L, Zakrzewski, J. L., Perales, M. A. & van den Brink, M. R. Clinical strategies to enhance T cell reconstitution. Semin. Immunol. 19, 289–296 (2007).
Holland, A. M., Zakrzewski, J. L., Goldberg, G. L., Ghosh, A. & van den Brink, M. R. Adoptive precursor cell therapy to enhance immune reconstitution after hematopoietic stem cell transplantation in mouse and man. Semin. Immunopathol. 30, 479–487 (2008).
Zakrzewski, J. L., Goldberg, G. L., Smith, O. M. & van den Brink, M. R. Enhancing T cell reconstitution after hematopoietic stem cell transplantation: a brief update of the latest trends. Blood Cells Mol. Dis. 40, 44–47 (2008).
Papadopoulos, E. B. et al. Infusions of donor leukocytes to treat Epstein-Barr virus-associated lymphoproliferative disorders after allogeneic bone marrow transplantation. N. Engl. J. Med. 330, 1185–1191 (1994).
Hanley, P. J. et al. Functionally active virus-specific T-cells that target CMV, adenovirus and EBV can be expanded from naive T-cell populations in cord blood and will target a range of viral epitopes. Blood 114, 1958–1967 (2009).
Leen, A. M. et al. Monoculture-derived T lymphocytes specific for multiple viruses expand and produce clinically relevant effects in immunocompromised individuals. Nature Med. 12, 1160–1166 (2006).
Chandrasekar, P. & Ljungman, P. T. Antifungal therapy strategies in hematopoietic stem-cell transplant recipients: early treatment options for improving outcomes. Transplantation 86, 183–191 (2008).
Marr, K. A. Primary antifungal prophylaxis in hematopoietic stem cell transplant recipients: clinical implications of recent studies. Curr. Opin. Infect. Dis. 21, 409–414 (2008).
Ho, V. T., Revta, C. & Richardson, P. G. Hepatic veno-occlusive disease after hematopoietic stem cell transplantation: update on defibrotide and other current investigational therapies. Bone Marrow Transplant. 41, 229–237 (2008).
Dvorak, C. C. & Cowan, M. J. Hematopoietic stem cell transplantation for primary immunodeficiency disease. Bone Marrow Transplant. 41, 119–126 (2008).
Brodsky, R. A. & Jones, R. J. Aplastic anaemia. Lancet 365, 1647–1656 (2005).
Bolanos-Meade, J. & Brodsky, R. A. Blood and marrow transplantation for sickle cell disease: overcoming barriers to success. Curr. Opin. Oncol. 21, 158–161 (2009).
Storb, R. F., Lucarelli, G., McSweeney, P. A. & Childs, R. W. Hematopoietic cell transplantation for benign hematological disorders and solid tumors. Hematology Am. Soc. Hematol. Educ. Program, 372–397 (2003).
Rabusin, M., Andolina, M. & Maximova, N. Haematopoietic SCT in autoimmune diseases in children: rationale and new perspectives. Bone Marrow Transplant. 41 S96–S99 (2008).
Sykes, M. Hematopoietic cell transplantation for tolerance induction: animal models to clinical trials. Transplantation 87, 309–316 (2009).
Kode, J. A., Mukherjee, S., Joglekar, M. V. & Hardikar, A. A. Mesenchymal stem cells: immunobiology and role in immunomodulation and tissue regeneration. Cytotherapy 11, 377–391 (2009).
de, V. M., Crouch, B. G., van, P. L. & van, B. D. Pathologic changes in irradiated monkeys treated with bone marrow. J. Natl Cancer Inst. 27, 67–97 (1961).
Lochte, H. L. Jr, Levy, A. S., Guenther, D. M., Thomas, E. D. & Ferrebee, J. W. Prevention of delayed foreign marrow reaction in lethally irradiated mice by early administration of methotrexate. Nature 196, 1110–1111 (1962).
Epstein, R. B., Storb, R., Ragde, H. & Thomas, E. D. Cytotoxic typing antisera for marrow grafting in littermate dogs. Transplantation 6, 45–58 (1968).
Storb, R., Rudolph, R. H. & Thomas, E. D. Marrow grafts between canine siblings matched by serotyping and mixed leukocyte culture. J. Clin. Invest. 50, 1272–1275 (1971).
Bach, F. H., Albertini, R. J., Joo, P., Anderson, J. L. & Bortin, M. M. Bone-marrow transplantation in a patient with the Wiskott-Aldrich syndrome. Lancet 2, 1364–1366 (1968).
Gatti, R. A., Meuwissen, H. J., Allen, H. D., Hong, R. & Good, R. A. Immunological reconstitution of sex-linked lymphopenic immunological deficiency. Lancet 2, 1366–1369 (1968).
O'Reilly, R. J. et al. Reconstitution in severe combined immunodeficiency by transplantation of marrow from an unrelated donor. N. Engl. J. Med. 297, 1311–1318 (1977).
Hansen, J. A. et al. Transplantation of marrow from an unrelated donor to a patient with acute leukemia. N. Engl. J. Med. 303, 565–567 (1980).
Deeg, H. J. et al. Cyclosporin A and methotrexate in canine marrow transplantation: engraftment, graft-versus-host disease, and induction of intolerance. Transplantation 34, 30–35 (1982).
Reisner, Y. et al. Transplantation for acute leukaemia with HLA-A and B nonidentical parental marrow cells fractionated with soybean agglutinin and sheep red blood cells. Lancet 2, 327–331 (1981).
Reisner, Y. et al. Transplantation for severe combined immunodeficiency with HLA-A, B, D, DR incompatible parental marrow cells fractionated by soybean agglutinin and sheep red blood cells. Blood 61, 341–348 (1983).
Spangrude, G. J., Heimfeld, S. & Weissman, I. L. Purification and characterization of mouse hematopoietic stem cells. Science 241, 58–62 (1988).
Kolb, H. J. et al. Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood 76, 2462–2465 (1990).
Slavin, S. et al. Allogeneic cell therapy: the treatment of choice for all hematologic malignancies relapsing post BMT. Blood 87, 4011–4013 (1996).
Raju, T. N. The Nobel chronicles. 1990: Joseph Edward Murray (b 1919) and E Donnall Thomas (b 1920). Lancet 355, 1282 (2000).
Acknowledgements
The authors would like to acknowledge T. Pederson, V. He, M. Pasquini and M. Horwitz for the Center for International Blood and Marrow Transplant Research survival data presented, as well as M. Perales, J. Barker and J. Jurcic for critical comments on the manuscript.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Related links
Glossary
- Acute GVHD
-
Typically observed within the first 100 days post-transplant; can manifest in the skin, gastrointestinal tract, liver and haematopoietic system.
- Allogeneic
-
From different individuals of the same species.
- Antigen-presenting cells
-
Immune cells that present antigen to T cells, resulting in T cell priming and expansion.
- Autologous
-
A graft from one's own self.
- Chronic GVHD
-
Typically observed after day 100; can target many organ systems, including acute GVHD target organs as well as connective tissue and exocrine glands.
- Donor leukocyte infusion
-
Infusion of peripheral blood white cells from a donor.
- Double-unit cord blood transplant
-
Administering two cord blood units as the donor graft product for HSCT in adults.
- Effector cells
-
Immune cells that can mediate the killing of other cells; includes CD8+ T cells, natural killer cells, macrophages and in certain circumstances CD4+ T cells.
- Graft-versus-host disease (GVHD)
-
An immune-mediated, potentially life-threatening syndrome in which host tissues are attacked by donor immune cells. Clinically divided into acute and chronic forms.
- Graft-versus-tumour (GVT) effect
-
A phenomenon in which malignant host cells are attacked by donor immune cells.
- Immunosuppressive cell population
-
Immune cells, including regulatory T cells, natural killer T cells and myeloid suppressor cells, which suppress immune responses.
- Killer immunoglobulin-like receptor
-
Receptor found on natural killer cells that can be activating or inhibitory.
- Lymphopenia
-
Reduced numbers of lymphocytes, commonly following radiation or chemotherapy.
- Minor histocompatability antigens
-
Polymorphisms in tissue-specific proteins resulting in histocompatibility antigens that can elicit allogeneic immune responses.
- Mixed T cell chimerism
-
A situation following HSCT in which an individual has T cells of both donor and host origin.
- Myeloablative
-
Causes bone marrow ablation owing to the loss of haematopoietic stem cells following high-dose radiation or chemotherapy.
- Non-myeloablative conditioning
-
Doses of radiation and chemotherapy that immune suppress the host enough to allow engraftment of donor haematopoietic stem cells but that are not intense enough to completely ablate the host haematopoietic stem cells.
- Sinusoidal obstruction syndrome (SOS)
-
A form of organ toxicity following high-dose therapy involving the obstruction of the hepatic sinusoids, resulting in increased bilirubin levels in the blood, abdominal pain and fluid retention.
Rights and permissions
About this article
Cite this article
Jenq, R., van den Brink, M. Allogeneic haematopoietic stem cell transplantation: individualized stem cell and immune therapy of cancer. Nat Rev Cancer 10, 213–221 (2010). https://doi.org/10.1038/nrc2804
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrc2804