Published online by Cambridge University Press: 01 January 2025
For the confirmatory factor model a series of inequalities is given with respect to the mean square error (MSE) of three main factor score predictors. The eigenvalues of these MSE matrices are a monotonic function of the eigenvalues of the matrix Γp = Φ1/2Λ′pΨp−1ΛpΦ1/2. This matrix increases with the number of observable variables p. A necessary and sufficient condition for mean square convergence of predictors is divergence of the smallest eigenvalue of Γp or, equivalently, divergence of signal-to-noise (Schneeweiss & Mathes, 1995). The same condition is necessary and sufficient for convergence to zero of the positive definite MSE differences of factor predictors, convergence to zero of the distance between factor predictors, and convergence to the unit value of the relative efficiencies of predictors. Various illustrations and examples of the convergence are given as well as explicit recommendations on the problem of choosing between the three main factor score predictors.
The author is obliged to Maarten Speekenbrink and Peter van Rijn for their assistance with plotting the figures. In addition, I am obliged to the referees for their stimulating remarks.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.